

NumPy Cookbook

Over 70 interesting recipes for learning the Python open
source mathematical library, NumPy

Ivan Idris

BIRMINGHAM - MUMBAI

NumPy Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1181012

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849518-92-5

www.packtpub.com

Cover Image by Avishek Roy (roy007avishek88@gmail.com)

Credits

Author
Ivan Idris

Reviewers
Alexandre Devert

Ludovico Fischer

Ryan R. Rosario

Acquisition Editor
Usha Iyer

Lead Technical Editor
Ankita Shashi

Technical Editors
Merin Jose

Rohit Rajgor

Farhaan Shaikh

Nitee Shetty

Copy Editor
Insiya Morbiwala

Project Coordinator
Vishal Bodwani

Proofreader
Clyde Jenkins

Indexer
Monica Ajmera Mehta

Production Coordinators
Arvindkumar Gupta

Manu Joseph

Cover Work
Arvindkumar Gupta

Manu Joseph

About the Author

Ivan Idris has an MSc in Experimental Physics. His graduation thesis had a strong emphasis
on Applied Computer Science. After graduating, he worked for several companies as a Java
Developer, Data Warehouse Developer, and QA Analyst. His main professional interests are
business intelligence, big data, and cloud computing. He enjoys writing clean, testable code,
and interesting technical articles. He is the author of NumPy 1.5 Beginner's Guide. You can
find more information and a blog with a few NumPy examples at ivanidris.net.

I would like to dedicate this book to my family and friends. I would like
to take this opportunity to thank the reviewers and the team at Packt for
making this book possible. Thanks also goes to my teachers, professors,
and colleagues, who taught me about science and programming. Last but
not least, I would like to acknowledge my parents, family, and friends for
their support.

About the Reviewers

Alexandre Devert is a computer scientist. To put his happy obsessions to good use,
he decided to solve optimization problems, in both academic and industrial contexts. This
included all kinds of optimization problems, such as civil engineering problems, packing
problems, logistics problems, biological engineering problems—you name it. It involved
throwing lots of science on the wall and seeing what sticks. To do so, he had to analyze and
visualize large amounts of data quickly, for which Python, NumPy, Scipy, and Matplotlib excel.
Thus, the latter are among the daily tools he has been using for a couple of years. He also
lectures on Data mining at the University of Science and Technology of China, and uses those
very same tools for demonstration purposes and to enlighten his students with graphics
glittering of anti-aliased awesomeness.

I would like to thank my significant other for her understanding my usually
hefty work schedule, and my colleagues, for their patience with my shallow
interpretation of concepts such as a "deadline".

Ludovico Fischer is a software developer working in the Netherlands. By day, he builds
enterprise applications for large multinational companies. By night, he cultivates his academic
interests in mathematics and computer science, and plays with mathematical and scientific
software.

Ryan R. Rosario is a Doctoral Candidate at the University of California, Los Angeles.
He works at Riot Games as a Data Scientist, and he enjoys turning large quantities of
massive, messy data into gold. He is heavily involved in the open source community,
particularly with R, Python, Hadoop, and Machine Learning, and has also contributed code
to various Python and R projects. He maintains a blog dedicated to Data Science and related
topics at http://www.bytemining.com. He has also served as a technical reviewer for
NumPy 1.5 Beginner's Guide.

http://www.bytemining.com/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Winding Along with IPython	 5

Introduction	 5
Installing IPython	 6
Using IPython as a shell	 8
Reading manual pages	 10
Installing Matplotlib	 11
Running a web notebook	 12
Exporting a web notebook	 14
Importing a web notebook	 16
Configuring a notebook server	 20
Exploring the SymPy profile	 23

Chapter 2: Advanced Indexing and Array Concepts	 25
Introduction	 25
Installing SciPy	 26
Installing PIL	 28
Resizing images	 29
Creating views and copies	 32
Flipping Lena	 34
Fancy indexing	 36
Indexing with a list of locations	 38
Indexing with booleans	 40
Stride tricks for Sudoku	 42
Broadcasting arrays	 45

Chapter 3: Get to Grips with Commonly Used Functions	 49
Introduction	 50
Summing Fibonacci numbers	 50
Finding prime factors	 54

ii

Table of Contents

Finding palindromic numbers	 56
The steady state vector determination	 58
Discovering a power law	 64
Trading periodically on dips	 67
Simulating trading at random	 70
Sieving integers with the Sieve of Erasthothenes	 72

Chapter 4: Connecting NumPy with the Rest of the World	 75
Introduction	 75
Using the buffer protocol	 76
Using the array interface	 79
Exchanging data with MATLAB and Octave	 80
Installing RPy2	 82
Interfacing with R	 82
Installing JPype	 84
Sending a NumPy array to JPype	 84
Installing Google App Engine	 86
Deploying NumPy code in the Google cloud	 88
Running NumPy code in a Python Anywhere web console	 90
Setting up PiCloud	 92

Chapter 5: Audio and Image Processing	 95
Introduction	 95
Loading images into memory map	 96
Combining images	 100
Blurring images	 104
Repeating audio fragments	 108
Generating sounds	 110
Designing an audio filter	 114
Edge detection with the Sobel filter	 117

Chapter 6: Special Arrays and Universal Functions	 121
Introduction	 121
Creating a universal function	 121
Finding Pythagorean triples	 122
Performing string operations with chararray	 124
Creating a masked array	 125
Ignoring negative and extreme values	 128
Creating a scores table with recarray	 131

Chapter 7: Profiling and Debugging	 135
Introduction	 135
Profiling with timeit	 135
Profiling with IPython	 139

iii

Table of Contents

Installing line_profiler	 142
Profiling code with line_profiler	 143
Profiling code with the cProfile extension	 144
Debugging with IPython	 146
Debugging with pudb	 148

Chapter 8: Quality Assurance	 151
Introduction	 151
Installing Pyflakes	 151
Performing static analysis with Pyflakes	 152
Analyzing code with Pylint	 153
Performing static analysis with Pychecker	 155
Testing code with docstrings	 156
Writing unit tests	 158
Testing code with mocks	 162
Testing the BDD way	 164

Chapter 9: Speed Up Code with Cython	 169
Introduction	 169
Installing Cython	 170
Building a Hello World program	 170
Using Cython with NumPy	 172
Calling C functions	 173
Profiling Cython code	 175
Approximating factorials with Cython	 178

Chapter 10: Fun with Scikits	 183
Introduction	 183
Installing scikits-learn	 184
Loading an example dataset	 184
Clustering Dow Jones stocks with scikits-learn	 185
Installing scikits-statsmodels	 189
Performing a normality test with scikits-statsmodels	 190
Installing scikits-image	 191
Detecting corners	 191
Detecting edges	 193
Installing Pandas	 194
Estimating stock returns correlation with Pandas	 195
Loading data as pandas objects from statsmodels	 198
Resampling time series data	 200

Index	 205

Preface
We, NumPy users, live in exciting times. New NumPy-related developments seem to come
to our attention every week or maybe even daily. When this book was being written, NumPy
Foundation of Open Code for Usable Science was created. The Numba project—NumPy-aware,
dynamic Python compiler using LLVM—was announced. Also, Google added support to their
Cloud product Google App Engine.

In the future, we can expect improved concurrency support for clusters of GPUs and CPUs.
OLAP-like queries will be possible with NumPy arrays.

This is wonderful news, but we have to keep reminding ourselves that NumPy is not alone in
the scientific (Python) software ecosystem. There is Scipy, Matplotlib (a very useful Python
plotting library), IPython (an interactive shell), and Scikits. Outside of the Python ecosystem,
languages such as R, C, and Fortran are pretty popular. We will go into the details of
exchanging data with these environments.

What this book covers
Chapter 1, Winding Along with IPhython, covers IPython that is a toolkit, mostly known for its
shell. The web-based notebook is a new and exciting feature, which we will cover in detail.
Think of Matlab and Mathematica, but in your browser, that is open source and free.

Chapter 2, Advanced Indexing and Array Concepts, describes some of NumPy's more
advanced and tricky indexing techniques. NumPy has very efficient arrays that are easy to use
due to their powerful indexing mechanism.

Chapter 3, Get to Grips with Commonly Used Functions, makes an attempt to document the
most essential functions that every NumPy user should know. NumPy has many functions, too
many to even mention in this book.

Preface

2

Chapter 4, Connecting NumPy with the Rest of the World, shows us that the number
of programming languages, libraries, and tools that one encounters in the real world is
mind-boggling. Some of the software runs on the Cloud, and some of it lives on your local
machine or a remote server. Being able to fit and connect NumPy in such an environment is
just as important as being able to write standalone NumPy code.

Chapter 5, Audio and Image Processing, shows you a different view of NumPy. So when you
think of NumPy after reading this chapter, you'll probably think of sounds or images too.

Chapter 6, Special Arrays and Universal Functions, covers technical topics, such as special
arrays and universal functions. It will help us learn how to perform string operations, ignore
illegal values, and store heterogeneous data.

Chapter 7, Profiling and Debugging, will demonstrate several convenient profiling and
debugging tools necessary to produce a great software application.

Chapter 8, Quality Assurance, will discuss common methods and techniques such as unit
testing, mocking, and BDD, including the NumPy testing utilities, as quality assurance
deserves a lot of attention.

Chapter 9, Speed Up Code with Cython, shows how Cython works from the NumPy
perspective. Cython tries to combine the speed of C and the strengths of Python.

Chapter 10, Fun with Scikits, gives us a quick tour through some of the most useful Scikits
projects. Scikits are a yet another part of the fascinating, scientific Python ecosystem.

What you need for this book
To try out the code samples in this book, you will need a recent build of NumPy. This means
that you will need to have one of the Python versions supported by NumPy as well. Recipes to
install other relevant software packages are provided throughout the book.

Who this book is for
This book is for scientists, engineers, programmers, or analysts, with a basic knowledge of
Python and NumPy, who want to go to the next level. Also, some affinity for or at least interest
in mathematics and statistics is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

Preface

3

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Winding Along

with IPython

In this chapter, we will cover the following topics:

ff Installing IPython

ff Using IPython as a shell

ff Reading manual pages

ff Installing Matplotlib

ff Running a web notebook

ff Exporting a web notebook

ff Importing a web notebook

ff Configuring a notebook server

ff Exploring the SymPy profile

Introduction
IPython, which is available at http://ipython.org/, is a free, open source project
available for Linux, Unix, Mac OS X, and Windows. The IPython authors only request that
you cite IPython in any scientific work where IPython was used. It provides the following
components, among others:

ff Interactive Python shells (terminal-based and Qt application)

ff A web notebook (available in IPython 0.12 and later) with support for rich media
and plotting

ff IPython is compatible with Python versions 2.5, 2.6, 2.7, 3.1, and 3.2

Winding Along with IPython

6

You can try IPython in cloud without installing it on your system, by going to the following URL:
http://www.pythonanywhere.com/try-ipython/. There is a slight delay compared to
locally installed software; so this is not as good as the real thing. However, most of the features
available in the IPython interactive shell seem to be available. They also have a Vi (m) editor,
which if you like vi, is of course great. You can save and edit files from your IPython sessions.
The author of this book doesn't care much about other editors, such as the one that starts with
E and ends with macs. This should, however, not be a problem.

Installing IPython
IPython can be installed in various ways depending on your operating system. For the
terminal-based shell, there is a dependency on readline. The web notebook requires
tornado and zmq.

In addition to installing IPython, we will install setuptools, which gives you the
easy_install command. The easy_install command is the default, standard
package manager for Python. pip can be installed once you have easy_install
available. The pip command is similar to easy_install, and adds options such
as uninstalling.

How to do it...
This section describes how IPython can be installed on Windows, Mac OS X, and Linux.
It also describes how to install IPython and its dependencies with easy_install and pip,
or from source.

ff Installing IPython and setup tools on Windows: A binary Windows installer
for Python 2 or Python 3 is available on the IPython website. Also see http://
ipython.org/ipython-doc/stable/install/install.html#windows.

Install setuptools with an installer from http://pypi.python.org/pypi/
setuptools#files. Then install pip; for instance:
cd C:\Python27\scripts

python .\easy_install-27-script.py pip

ff Installing IPython On Mac OS X: Install the Apple Developer Tools (Xcode) if
necessary. Xcode can be found on the OSX DVDs that came with your Mac or
App Store. Follow the easy_install/pip instructions, or the installing from source
instructions provided later in this section.

ff Installing IPython On Linux: Because there are so many Linux distributions, this
section will not be exhaustive.

�� On Debian, type the following command:
su – aptitude install ipython python-setuptools

Chapter 1

7

�� On Fedora, the magic command is as follows:
su – yum install ipython python-setuptools-devel

�� The following command will install IPython on Gentoo:
su – emerge ipython

�� For Ubuntu, the install command is as follows:
sudo apt-get install ipython python-setuptools

ff Installing IPython with easy_install or pip: Install IPython and all the
dependencies required for the recipes in this chapter with easy_install,
using the following command:
easy_install ipython pyzmq tornado readline

Alternatively, you can first install pip with easy_install, by typing the following
command in your terminal:
easy_install pip

After that, install IPython using pip, with the following command:
sudo pip install ipython pyzmq tornado readline

ff Installing from source: If you want to use the bleeding edge development version,
then installing from source is for you.

1.	 Download the latest tarball from https://github.com/ipython/
ipython/downloads.

2.	 Unpack the source code from the archive:
tar xzf ipython-<version>.tar.gz

3.	 If you have Git installed, you can clone the Git repository instead:
$ git clone https://github.com/ipython/ipython.git

4.	 Go to the ipython directory:
cd ipython

5.	 Run the setup script. This may require you to run the command with
sudo, as follows:
sudo setup.py install

How it works...
We installed IPython using several methods. Most of these methods install the latest stable
release, except when you install from source, which will install the development version.

Winding Along with IPython

8

Using IPython as a shell
Scientists and engineers are used to experimenting. IPython was created by scientists with
experimentation in mind. The interactive environment that IPython provides is viewed by many
as a direct answer to Matlab, Mathematica, and Maple and R.

Following is a list of features of the IPython shell:

ff Tab completion

ff History mechanism

ff Inline editing

ff Ability to call external Python scripts with %run

ff Access to system commands

ff The pylab switch

ff Access to Python debugger and profiler

How to do it...
This section describes how to use the IPython shell.

ff The pylab switch: The pylab switch automatically imports all the Scipy, NumPy,
and Matplotlib packages. Without this switch, we would have to import these
packages ourselves.

All we need to do is enter the following instruction on the command line:
$ ipython -pylab

Type "copyright", "credits" or "license" for more information.

IPython 0.12 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra
details.

Welcome to pylab, a matplotlib-based Python environment [backend:
MacOSX].

For more information, type 'help(pylab)'.

In [1]: quit()

quit() or Ctrl + D quits the IPython shell.

Chapter 1

9

ff Saving a session: We might want to be able to go back to our experiments. In IPython,
it is easy to save a session for later use, with the following command:
In [1]: %logstart

Activating auto-logging. Current session state plus future input
saved.

Filename : ipython_log.py

Mode : rotate

Output logging : False

Raw input log : False

Timestamping : False

State : active

Logging can be switched off as follows:

In [9]: %logoff

Switching logging OFF

ff Executing system shell commands: Execute system shell commands in the default
IPython profile by prefixing the command with the ! symbol. For instance, the
following input will get the current date:
In [1]: !date

In fact, any line prefixed with ! is sent to the system shell. Also, we can store the
command output, as shown here:
In [2]: thedate = !date

In [3]: thedate

ff Displaying history: We can show the history of commands with the %hist
command () for example:
In [1]: a = 2 + 2

In [2]: a

Out[2]: 4

In [3]: %hist

a = 2 + 2

a

%hist

Winding Along with IPython

10

This is a common feature in Command Line Interface (CLI) environments. We can
also search through the history with the -g switch
In [5]: %hist -g a = 2

 1: a = 2 + 2

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
We saw a number of so called "magic functions" in action. These functions start with the
% character. If the magic function is used on a line by itself, the % prefix is optional.

Reading manual pages
When we are in IPython's pylab mode, we can open manual pages for NumPy functions with
the help command. It is not necessary to know the name of a function. We can type a few
characters and then let tab completion do its work. Let's, for instance, browse the available
information for the arange function.

How to do it...
We can browse the available information, in either of the following two ways:

ff Calling the help function: Call the help command. Type a few characters of the
function and press the Tab key:

ff Querying with a question mark: Another option is to put a question mark behind the
function name. You will then, of course, need to know the function name, but you
don't have to type help:
In [3]: arange?

Chapter 1

11

How it works...
Tab completion is dependent on readline, so you need to make sure it is installed. The
question mark gives you information from docstrings.

Installing Matplotlib
Matplotlib is a very useful plotting library, which we will need for the next recipe. It depends
on NumPy, but in all likelihood you already have NumPy installed.

How to do it...
We will see how Matplotlib can be installed in Windows, Linux, and Mac, and also how to
install it from source.

ff Installing Matplotlib on Windows: Install with the Enthought distribution
(http://www.enthought.com/products/epd.php).

It might be necessary to put the msvcp71.dll file in your C:\Windows\system32
directory. You can get it from http://www.dll-files.com/dllindex/dll-
files.shtml?msvcp71.

ff Installing Matplotlib on Linux: Let's see how Matplotlib can be installed in the
various distributions of Linux:

�� The install command on Debian and Ubuntu is as follows:
sudo apt-get install python-matplotlib

�� The install command on Fedora/Redhat is as follows:
su - yum install python-matplotlib

ff Installing from source: Download the latest source from the tar.gz release at
Sourceforge (http://sourceforge.net/projects/matplotlib/files/)
or from the Git repository using the following command:
git clone git://github.com/matplotlib/matplotlib.git

Once it has been downloaded, build and install as usual with the following command:
cd matplotlib

python setup.py install

ff Installing Matplotlib on Mac: Get the latest DMG file from http://sourceforge.
net/projects/matplotlib/files/matplotlib/, and install it.

Winding Along with IPython

12

Running a web notebook
The newest release of IPython introduced a new exciting feature – the web notebook. A so
called "notebook server" can serve notebooks over the web. We can now start a notebook
server and have a web-based IPython environment. This environment has most of the features
in the regular IPython environment. The new features include the following:

ff Displaying images and inline plots

ff Using HTML and Markdown in text cells

ff Importing and exporting of notebooks

Getting ready
Before we start, we should make sure that all the required software is installed. There is
a dependency on tornado and zmq. See the Installing IPython recipe in this chapter for
more information.

How to do it...
ff Running a notebook: We can start a notebook with the following code:

$ ipython notebook

[NotebookApp] Using existing profile dir: u'/Users/ivanidris/.
ipython/profile_default'

[NotebookApp] The IPython Notebook is running at:
http://127.0.0.1:8888

[NotebookApp] Use Control-C to stop this server and shut down
all kernels.

As you can see, we are using the default profile. A server started on the local
machine at port 8888. We will learn how to configure these settings later on in this
chapter. The notebook is opened in your default browser; this is configurable as well:

Chapter 1

13

IPython lists all the notebooks in the directory where you started the notebook.
In this example no notebooks were found. The server can be stopped with Ctrl + C.

ff Running a notebook in the pylab mode: Run a web notebook in the pylab mode with
the following command:
$ ipython notebook --pylab

This loads the Scipy, NumPy, and Matplotlib modules.

ff Running notebook with inline figures: We can display inline Matplotlib plots with the
inline directive, using the following command:
$ ipython notebook --pylab inline

1.	 Create a notebook: Click on the New Notebook button to create a new notebook:

I

2.	 Create an array: Create an array with the arange function. Type the command in
the following screenshot, and press Enter:

Next, enter the following command and press Enter. You will see the output as shown
in Out [2] in the following screenshot:

Winding Along with IPython

14

3.	 Plot the sinc function: Apply the sinc function to the array and plot the result, as
shown in the following screenshot:

How it works...
The inline option lets you display inline Matplotlib plots. When combined with the pylab mode,
you don't need to import the NumPy, SciPy, and Matplotlib packages.

See also
The Installing IPython recipe.

Exporting a web notebook
Sometimes you will want to exchange notebooks with friends or colleagues. The web notebook
provides several methods to export your data.

How to do it...
A web notebook can be exported using the following options:

ff The Print option: The Print button doesn't actually print the notebook, but allows you
to export the notebook as PDF or HTML document.

Chapter 1

15

ff Downloading the notebook: Download your notebook to a location chosen by
you, using the Download button. We can specify whether we want to download the
notebook as .py file, which is just a normal Python program, or in the JSON format
as a .ipynb file. The notebook we created in the previous recipe looks like the
following, after exporting:
{
 "metadata": {
 "name": "Untitled1"
 },
 "nbformat": 2,
 "worksheets": [
 {
 "cells": [
 {
 "cell_type": "code",
 "collapsed": false,
 "input": [
 "plot(sinc(a))"
],
 "language": "python",
 "outputs": [
 {
 "output_type": "pyout",
 "prompt_number": 3,
 "text": [
 "[<matplotlib.lines.Line2D at
 0x103d9c690>]"
]
 },
 {
 "output_type": "display_data",
 "png": "iVBORw0KGgoAAAANSUhEUgAAAXk
 AAAD9CAYAAABZVQdHAAAABHNCSVQICAgIf...
 mgkAAAAASUVORK5CYII=\n"
 }
],
 "prompt_number": 3
 }
]
 }
]
}

Winding Along with IPython

16

Some of the text has been omitted for brevity. This file is not intended
for editing or reading even, but it is pretty readable if you ignore the
image representation part. For more information about JSON please
see https://en.wikipedia.org/wiki/JSON.

ff Saving the notebook: Save the notebook using the Save button. This will automatically
export a notebook in the native JSON .ipynb format. The file will be stored in the
directory where you started IPython initially.

Importing a web notebook
Python scripts can be imported as a web notebook. Obviously, we can also import previously
exported notebooks.

How to do it...
The following steps show how a python script can be imported as a web notebook:

1.	 Import a python script by dragging it from Explorer or Finder into the notebook
page. The following screenshot is an example of what we see after dragging the
vectorsum.py from NumPy Beginner's Guide into the notebook page:

2.	 Click the Upload button to import the program. IPython does a decent job of importing
the code. Unfortunately, as shown in the following screenshot, the code is all placed in
one cell. At least that is how it worked at the time of writing:

Chapter 1

17

3.	 Tag the script for multiple cells.

In order to split the code into multiple cells we need to use special tags. These tags
are in fact Python comments, but they look a bit like XML tags. The code has to start
with the following tag:
<nbformat>2</nbformat>

This indicates the format of the notebook. Each new code cell is indicated with the
following tag:
<codecell>

The following is the tagged code:
<nbformat>2</nbformat>
#!/usr/bin/env/python

from datetime import datetime
import numpy

Winding Along with IPython

18

"""
 Chapter 1 of NumPy Beginners Guide.
 This program demonstrates vector addition the Python way.
 Run from the command line as follows

 python vectorsum.py n

 where n is an integer that specifies the size of the vectors.

 The first vector to be added contains the squares of 0 up to n.
 The second vector contains the cubes of 0 up to n.
 The program prints the last 2 elements of the sum and the elapsed
time.
"""

def numpysum(n):
 a = numpy.arange(n) ** 2
 b = numpy.arange(n) ** 3
 c = a + b

 return c

def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

<codecell>
size = int(50)

<codecell>
start = datetime.now()

Chapter 1

19

c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds

<codecell>
start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds

The code is split into several cells according to the tags, as shown in the
following screenshot:

Winding Along with IPython

20

Configuring a notebook server
A public notebook server needs to be secure. You should set a password and use a SSL
certificate to connect to it. We need the certificate to provide secure communication over
https (for more information see https://en.wikipedia.org/wiki/Transport_
Layer_Security).

How to do it...
The following steps describe how to configure a secure notebook server:

1.	 Generate a password: We can generate a password from IPython. Start a new
IPython session, and type in the following commands:
In [1]: from IPython.lib import passwd

In [2]: passwd()

Enter password:

Verify password:

Out[2]: 'sha1:0e422dfccef2:84cfbcb
 b3ef95872fb8e23be3999c123f862d856'

At the second input line you will be prompted for a password. You need to remember
this password. A long string is generated. Copy this string because we will need it
later on.

2.	 Create a SSL certificate: To create a SSL certificate, you will need to have the
openssl command in your path.

Setting up the openssl command is not rocket science, but can be tricky.
Unfortunately, it is outside the scope of this book. On the bright side there are plenty
of tutorials available online to help you further.

Execute the following command to create a certificate with the name mycert.pem:
$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout
mycert.pem -out mycert.pem

Generating a 1024 bit RSA private key

......++++++

........................++++++

writing new private key to 'mycert.pem'

You are about to be asked to enter information that will be
incorporated

into your certificate request.

Chapter 1

21

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:

Email Address []:

The openssl utility prompts you to fill in some fields. For more information, check
the relevant man page (short for manual page).

3.	 Create a server profile: Create a special profile for the server using the
following command:
ipython profile create nbserver

4.	 Edit the profile configuration file: Edit the configuration file. In this example, it can
be found in Edit in ~/.ipython/profile_nbserver/ipython_notebook_
config.py.

The configuration file is pretty large, so we will omit many of the lines in it. The lines
that we need to change at minimum are:
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate'

c.NotebookApp.password = u'sha1:b...your password'

c.NotebookApp.port = 9999

Notice that we are pointing to the SSL certificate we created. We set a password and
changed the port to 9999.

5.	 Start the server: Using the following command, start the server to check whether the
changes worked.
ipython notebook --profile=nbserver

[NotebookApp] Using existing profile dir: u'/Users/ivanidris/.
ipython/profile_nbserver'

[NotebookApp] The IPython Notebook is running at:
https://127.0.0.1:9999

[NotebookApp] Use Control-C to stop this server and shut down
all kernels.

Winding Along with IPython

22

The server is running on port 9999, and you need to connect to it via https. If
everything goes well, we should see a login page. Also, you would probably need to
accept a security exception in your browser.

How it works...
We created a special profile for our public server. There are some sample profiles
that are already present, such as the default profile. Creating a profile adds a
profile_<profilename> folder to the .ipython directory with, among others, a
configuration file. The profile can then be loaded with the --profile=<profile_name>
command-line option. We can list the profiles with the following command:

ipython profile list

Available profiles in IPython:

 cluster

 math

 pysh

 python3

 The first request for a bundled profile will copy it

 into your IPython directory (/Users/ivanidris/.ipython),

 where you can customize it.

Available profiles in /Users/ivanidris/.ipython:

 default

 nbserver

 sh

Chapter 1

23

Exploring the SymPy profile
IPython has a sample SymPy profile. SymPy is a Python symbolic, mathematics library. For
instance, we can simplify algebraic expressions or differentiate, similar to Mathematica and
Maple. SymPy is obviously a fun piece of software, but is not directly necessary for our journey
through the NumPy landscape. Consider this as an optional bonus recipe. Like dessert, feel
free to skip, although you might miss out on the sweetest piece of this chapter.

Getting ready
Install SymPy using either easy_install, or pip:

easy_install sympy

sudo pip install sympy

How to do it...
1.	 Look at the configuration file, which can be found at ~/.ipython/profile_

sympy/ipython_config.py. The contents are as follows:
c = get_config()
app = c.InteractiveShellApp

This can be used at any point in a config file to load a sub
config
and merge it into the current one.
load_subconfig('ipython_config.py', profile='default')

lines = """
from __future__ import division
from sympy import *
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
"""

You have to make sure that attributes that are containers
already
exist before using them. Simple assigning a new list will
override
all previous values.

Winding Along with IPython

24

if hasattr(app, 'exec_lines'):
 app.exec_lines.append(lines)
else:
 app.exec_lines = [lines]

Load the sympy_printing extension to enable nice printing of
sympy expr's.
if hasattr(app, 'extensions'):
 app.extensions.append('sympyprinting')
else:
 app.extensions = ['sympyprinting']

This code accomplishes the following:

�� Loading the default profile

�� Importing the SymPy packages

�� Defining symbols

2.	 Start IPython with the SymPy profile using the following command:
ipython --profile=sympy

3.	 Expand an algebraic expression using the command shown in the following screenshot:

2
Advanced Indexing and

Array Concepts

In this chapter, we will cover:

ff Installing SciPy

ff Installing PIL

ff Resizing images

ff Comparing views and copies

ff Flipping Lena

ff Fancy indexing

ff Indexing with a list of locations

ff Indexing with booleans

ff Stride tricks for Sudoku

ff Broadcasting arrays

Introduction
NumPy is famous for its efficient arrays. This fame is partly due to the ease of indexing. We
will demonstrate advanced indexing tricks using images. Before diving into indexing, we will
install the necessary software— SciPy and PIL.

Advanced Indexing and Array Concepts

26

The code for the recipes in this chapter can be found on the book
website at http://www.packtpub.com. You can also visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Some of the examples in this chapter will involve manipulating images. In order to do that,
we will require the Python Image Library (PIL); but don't worry, instructions and pointers to
help you install PIL and other necessary Python software are given throughout the chapter,
when necessary.

Installing SciPy
SciPy is the scientific Python library and is closely related to NumPy. In fact, SciPy and NumPy
used to be one and the same project many years ago. In this recipe, we will install SciPy.

Getting ready
In Chapter 1, Winding Along with IPython, we discussed how to install setup tools and pip.
Reread the recipe if necessary.

How to do it...
In this recipe, we will go through the steps for installing SciPy.

ff Installing from source: If you have Git installed, you can clone the SciPy repository
using the following command:
git clone https://github.com/scipy/scipy.git

python setup.py build

python setup.py install --user

This installs to your home directory and requires Python 2.6 or higher.

Before building, you will also need to install the following packages on which
SciPy depends:

�� BLAS and LAPACK libraries

�� C and Fortran compilers

There is a chance that you have already installed this software as a part of the
NumPy installation.

http://www.packtpub.com

Chapter 2

27

ff Installing SciPy on Linux: Most Linux distributions have SciPy packages. We will go
through the necessary steps for some of the popular Linux distributions:

�� In order to install SciPy on Red Hat, Fedora, and CentOS, run the following
instructions from the command line:
yum install python-scipy

�� In order to install SciPy on Mandriva, run the following command line
instruction:
urpmi python-scipy

�� In order to install SciPy on Gentoo, run the following command line
instruction:
sudo emerge scipy

�� On Debian or Ubuntu, we need to type the following:
sudo apt-get install python-scipy

ff Installing SciPy on Mac OS X: Apple Developer Tools (XCode) is required, because
it contains the BLAS and LAPACK libraries. It can be found either in the App Store,
or in the installation DVD that came with your Mac, or you can get the latest version
from Apple Developer's connection at https://developer.apple.com/
technologies/tools/. Make sure that everything, including all the optional
packages is installed.

You probably already have a Fortran compiler installed for NumPy. The binaries for
gfortran can be found at http://r.research.att.com/tools/.

ff Installing SciPy using easy_install or pip: Install with either of the following
two commands:
sudo pip install scipy

easy_install scipy

ff Installing on Windows: If you have Python installed already, the preferred
method is to download and use the binary distribution. Alternatively, you may
want to install the Enthought Python distribution, which comes with other
scientific Python software packages.

ff Check your installation: Check the SciPy installation with the following code:
import scipy
print scipy.__version__
print scipy.__file__

This should print the correct SciPy version.

Advanced Indexing and Array Concepts

28

How it works...
Most package managers will take care of any dependencies for you. However, in some
cases, you will need to install them manually. Unfortunately, this is beyond the scope of
this book. If you run into problems, you can ask for help at:

ff The #scipy IRC channel of freenode, or

ff The SciPy mailing lists at http://www.scipy.org/Mailing_Lists

Installing PIL
PIL, the Python imaging library, is a prerequisite for the image processing recipes in this chapter.

How to do it...
Let's see how to install PIL.

ff Installing PIL on Windows: Install using the Windows executable from the PIL
website http://www.pythonware.com/products/pil/.

ff Installing on Debian or Ubuntu: On Debian or Ubuntu, install PIL using the
following command:
sudo apt-get install python-imaging

ff Installing with easy_install or pip: At the time of writing this book, it appeared
that the package managers of Red Hat, Fedora, and CentOS did not have direct
support for PIL. Therefore, please follow this step if you are using one of these
Linux distributions.

Install with either of the following commands:
easy_install PIL

sudo pip install PIL

Chapter 2

29

Resizing images
In this recipe, we will load a sample image of Lena, which is available in the SciPy distribution,
into an array. This chapter is not about image manipulation, by the way; we will just use the
image data as an input.

Lena Soderberg appeared in a 1972 Playboy magazine. For historical
reasons, one of those images is often used in the field of image processing.
Don't worry; the picture in question is completely safe for work.

We will resize the image using the repeat function. This function repeats an array, which in
practice means resizing the image by a certain factor.

Getting ready
A prerequisite for this recipe is to have SciPy, Matplotlib, and PIL installed. Have a look at the
corresponding recipes in this chapter and the previous chapter.

How to do it...
1.	 Load the Lena image into an array.

SciPy has a lena function, which can load the image into a NumPy array:
lena = scipy.misc.lena()

Some refactoring has occurred since version 0.10, so if you are using an older
version, the correct code is:
lena = scipy.lena()

2.	 Check the shape.

Check the shape of the Lena array using the assert_equal function from the
numpy.testing package—this is an optional sanity check test:
numpy.testing.assert_equal((LENA_X, LENA_Y), lena.shape)

3.	 Resize the Lena array.

Resize the Lena array with the repeat function. We give this function a resize
factor in the x and y direction:
resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)

Advanced Indexing and Array Concepts

30

4.	 Plot the arrays.

We will plot the Lena image and the resized image in two subplots that are a part
of the same grid. Plot the Lena array in a subplot:
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(lena)

The Matplotlib subplot function creates a subplot. This function accepts a 3-digit
integer as the parameter, where the first digit is the number of rows, the second digit
is the number of columns, and the last digit is the index of the subplot starting with 1.
The imshow function shows images. Finally, the show function displays the end result.

Plot the resized array in another subplot and display it. The index is now 2:
matplotlib.pyplot.subplot(212)
matplotlib.pyplot.imshow(resized)
matplotlib.pyplot.show()

The following screenshot is the result with the original image (first) and the resized
image (second):

Chapter 2

31

The following is the complete code for this recipe:

import scipy.misc
import sys
import matplotlib.pyplot
import numpy.testing

This script resizes the Lena image from Scipy.

if(len(sys.argv) != 3):
 print "Usage python %s yfactor xfactor" % (sys.argv[0])
 sys.exit()

Loads the Lena image into an array
lena = scipy.misc.lena()
#Lena's dimensions
LENA_X = 512
LENA_Y = 512
#Check the shape of the Lena array
numpy.testing.assert_equal((LENA_X, LENA_Y), lena.shape)

Get the resize factors
yfactor = float(sys.argv[1])
xfactor = float(sys.argv[2])

Resize the Lena array
resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)

#Check the shape of the resized array
numpy.testing.assert_equal((yfactor * LENA_Y, xfactor * LENA_Y),
resized.shape)

Plot the Lena array
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(lena)

#Plot the resized array
matplotlib.pyplot.subplot(212)
matplotlib.pyplot.imshow(resized)
matplotlib.pyplot.show()

Advanced Indexing and Array Concepts

32

How it works...
The repeat function repeats arrays, which, in this case, resulted in changing the size of the
original image. The Matplotlib subplot function creates a subplot. The imshow function
shows images. Finally, the show function displays the end result.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy recipe

ff The Installing PIL recipe

Creating views and copies
It is important to know when we are dealing with a shared array view, and when we have a
copy of the array data. A slice, for instance, will create a view. This means that if you assign
the slice to a variable and then change the underlying array, the value of this variable will
change. We will create an array from the famous Lena image, copy the array, create a view,
and, at the end, modify the view.

Getting ready
The prerequisites are the same as in the previous recipe.

How to do it...
Let's create a copy and views of the Lena array:

1.	 Create a copy of the Lena array:
acopy = lena.copy()

2.	 Create a view of the array:
aview = lena.view()

3.	 Set all the values of the view to 0 with a flat iterator:
aview.flat = 0

Chapter 2

33

The end result is that only one of the images shows the Playboy model. The other ones get
censored completely:

The following is the code of this tutorial showing the behavior of array views and copies:

import scipy.misc
import matplotlib.pyplot

lena = scipy.misc.lena()
acopy = lena.copy()
aview = lena.view()

Plot the Lena array
matplotlib.pyplot.subplot(221)
matplotlib.pyplot.imshow(lena)

#Plot the copy
matplotlib.pyplot.subplot(222)
matplotlib.pyplot.imshow(acopy)

#Plot the view
matplotlib.pyplot.subplot(223)
matplotlib.pyplot.imshow(aview)

Advanced Indexing and Array Concepts

34

Plot the view after changes
aview.flat = 0
matplotlib.pyplot.subplot(224)
matplotlib.pyplot.imshow(aview)

matplotlib.pyplot.show()

How it works...
As you can see, by changing the view at the end of the program, we changed the original
Lena array. This resulted in having three blue (or black if you are looking at a black and
white image) images—the copied array was unaffected. It is important to remember that
views are not read-only.

Flipping Lena
We will be flipping the SciPy Lena image—all in the name of science, of course, or at least as
a demo. In addition to flipping the image, we will slice it and apply a mask to it.

How to do it...
The steps to follow are listed below:

1.	 Plot the flipped image.

Flip the Lena array around the vertical axis using the following code:
matplotlib.pyplot.imshow(lena[:,::-1])

2.	 Plot a slice of the image.

Take a slice out of the image and plot it. In this step, we will have a look at the shape
of the Lena array. The shape is a tuple representing the dimensions of the array. The
following code effectively selects the left-upper quadrant of the Playboy picture.

matplotlib.pyplot.imshow(lena[:lena.shape[0]/2,
 :lena.shape[1]/2])

3.	 Apply a mask to the image.

Apply a mask to the image by finding all the values in the Lena array that are even
(this is just arbitrary for demo purposes). Copy the array and change the even values
to 0. This has the effect of putting lots of blue dots (dark spots if you are looking at a
black and white image) on the image:
mask = lena % 2 == 0
masked_lena = lena.copy()
masked_lena[mask] = 0

Chapter 2

35

All these efforts result in a 2 by 2 image grid, as shown in the following screenshot:

The following is the complete code for this recipe:

import scipy.misc
import matplotlib.pyplot

Load the Lena array
lena = scipy.misc.lena()

Plot the Lena array
matplotlib.pyplot.subplot(221)
matplotlib.pyplot.imshow(lena)

#Plot the flipped array
matplotlib.pyplot.subplot(222)
matplotlib.pyplot.imshow(lena[:,::-1])

#Plot a slice array
matplotlib.pyplot.subplot(223)
matplotlib.pyplot.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])

Advanced Indexing and Array Concepts

36

Apply a mask
mask = lena % 2 == 0
masked_lena = lena.copy()
masked_lena[mask] = 0
matplotlib.pyplot.subplot(224)
matplotlib.pyplot.imshow(masked_lena)

matplotlib.pyplot.show()

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy recipe

ff The Installing PIL recipe

Fancy indexing
In this tutorial, we will apply fancy indexing to set the diagonal values of the Lena image to
0. This will draw black lines along the diagonals, crossing it through, not because there is
something wrong with the image, but just as an exercise. Fancy indexing is indexing that
does not involve integers or slices, which is normal indexing.

How to do it...
We will start with the first diagonal:

1.	 Set the values of the first diagonal to 0.

To set the diagonal values to 0, we need to define two different ranges for the
x and y values:
lena[range(xmax), range(ymax)] = 0

2.	 Set the values of the other diagonal to 0.

To set the values of the other diagonal, we require a different set of ranges,
but the principles stay the same:
lena[range(xmax-1,-1,-1), range(ymax)] = 0

Chapter 2

37

At the end, we get this image with the diagonals crossed off, as shown in the
following screenshot:

The following is the complete code for this recipe:

import scipy.misc
import matplotlib.pyplot

This script demonstrates fancy indexing by setting values
on the diagonals to 0.

Load the Lena array
lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

Fancy indexing
Set values on diagonal to 0
x 0-xmax
y 0-ymax
lena[range(xmax), range(ymax)] = 0

Advanced Indexing and Array Concepts

38

Set values on other diagonal to 0
x xmax-0
y 0-ymax
lena[range(xmax-1,-1,-1), range(ymax)] = 0

Plot Lena with diagonal lines set to 0
matplotlib.pyplot.imshow(lena)
matplotlib.pyplot.show()

How it works...
We defined separate ranges for the x values and y values. These ranges were used to index
the Lena array. Fancy indexing is performed based on an internal NumPy iterator object.
The following three steps are performed:

1.	 The iterator object is created.

2.	 The iterator object gets bound to the array.

3.	 Array elements are accessed via the iterator.

Indexing with a list of locations
Let's use the ix_ function to shuffle the Lena image. This function creates a mesh from
multiple sequences.

How to do it...
We will start by randomly shuffling the array indices:

1.	 Shuffle array indices.

Create a random indices array with the shuffle function of the
numpy.random module:
def shuffle_indices(size):
 arr = numpy.arange(size)
 numpy.random.shuffle(arr)

 return arr

2.	 Plot the shuffled indices:
matplotlib.pyplot.imshow(lena[numpy.ix_(xindices, yindices)])

Chapter 2

39

What we get is a completely scrambled Lena image, as shown in the following screenshot:

The following is the complete code for the recipe:

import scipy.misc
import matplotlib.pyplot
import numpy.random
import numpy.testing

Load the Lena array
lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle_indices(size):
 arr = numpy.arange(size)
 numpy.random.shuffle(arr)

 return arr

Advanced Indexing and Array Concepts

40

xindices = shuffle_indices(xmax)
numpy.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
numpy.testing.assert_equal(len(yindices), ymax)

Plot Lena
matplotlib.pyplot.imshow(lena[numpy.ix_(xindices, yindices)])
matplotlib.pyplot.show()

Indexing with booleans
Boolean indexing is indexing based on a boolean array and falls in the category fancy indexing.

How to do it...
We will apply this indexing technique to an image:

1.	 Image with dots on the diagonal.

This is in some way similar to the Fancy indexing recipe, in this chapter. This time
we select modulo 4 points on the diagonal of the image:
def get_indices(size):
 arr = numpy.arange(size)
 return arr % 4 == 0

Then we just apply this selection and plot the points:
lena1 = lena.copy()
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(lena1)

2.	 Set to 0 based on value.

Select array values between quarter and three-quarters of the maximum value
and set them to 0:
lena2[(lena > lena.max()/4) &
 (lena < 3 * lena.max()/4)] = 0

Chapter 2

41

The plot with the two new images will look like the following screenshot:

The following is the complete code for this recipe:

import scipy.misc
import matplotlib.pyplot
import numpy

Load the Lena array
lena = scipy.misc.lena()

def get_indices(size):
 arr = numpy.arange(size)
 return arr % 4 == 0

Plot Lena
lena1 = lena.copy()
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(lena1)

Advanced Indexing and Array Concepts

42

lena2 = lena.copy()
Between quarter and 3 quarters of the max value
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
matplotlib.pyplot.subplot(212)
matplotlib.pyplot.imshow(lena2)

matplotlib.pyplot.show()

How it works...
Because boolean indexing is a form of fancy indexing, the way it works is basically the same.
This means that indexing happens with the help of a special iterator object.

See also
ff The Fancy Indexing recipe

Stride tricks for Sudoku
The ndarray class has a strides field, which is a tuple indicating the number of bytes to step
in each dimension when going through an array. Let's apply some stride tricks to the problem of
splitting a Sudoku puzzle to the 3 by 3 squares of which it is composed.

Explaining the Sudoku rules is outside the scope of this book. For more
information see http://en.wikipedia.org/wiki/Sudoku.

How to do it...
1.	 Define the Sudoku puzzle array

Let's define the Sudoku puzzle array. This one is filled with the contents of an actual,
solved Sudoku puzzle:
sudoku = numpy.array([
 [2, 8, 7, 1, 6, 5, 9, 4, 3],
 [9, 5, 4, 7, 3, 2, 1, 6, 8],
 [6, 1, 3, 8, 4, 9, 7, 5, 2],
 [8, 7, 9, 6, 5, 1, 2, 3, 4],
 [4, 2, 1, 3, 9, 8, 6, 7, 5],
 [3, 6, 5, 4, 2, 7, 8, 9, 1],
 [1, 9, 8, 5, 7, 3, 4, 2, 6],
 [5, 4, 2, 9, 1, 6, 3, 8, 7],
 [7, 3, 6, 2, 8, 4, 5, 1, 9]
])

Chapter 2

43

2.	 Calculate the strides. The itemsize field of ndarray gives us the number of bytes
in an array. Using the itemsize, calculate the strides:
strides = sudoku.itemsize *
 numpy.array([27, 3, 9, 1])

3.	 Split into squares.

Now we can split the puzzle into squares with the as_strided function of the
numpy.lib.stride_tricks module:
squares = numpy.lib.stride_tricks.as_strided
 (sudoku, shape=shape, strides=strides)
print(squares)

This prints separate Sudoku squares:
[[[[2 8 7]
 [9 5 4]
 [6 1 3]]

 [[1 6 5]
 [7 3 2]
 [8 4 9]]

 [[9 4 3]
 [1 6 8]
 [7 5 2]]]

 [[[8 7 9]
 [4 2 1]
 [3 6 5]]

 [[6 5 1]
 [3 9 8]
 [4 2 7]]

 [[2 3 4]
 [6 7 5]
 [8 9 1]]]

 [[[1 9 8]
 [5 4 2]
 [7 3 6]]

Advanced Indexing and Array Concepts

44

 [[5 7 3]
 [9 1 6]
 [2 8 4]]

 [[4 2 6]
 [3 8 7]
 [5 1 9]]]]

The following is the complete source code for this recipe:

import numpy

sudoku = numpy.array([
 [2, 8, 7, 1, 6, 5, 9, 4, 3],
 [9, 5, 4, 7, 3, 2, 1, 6, 8],
 [6, 1, 3, 8, 4, 9, 7, 5, 2],
 [8, 7, 9, 6, 5, 1, 2, 3, 4],
 [4, 2, 1, 3, 9, 8, 6, 7, 5],
 [3, 6, 5, 4, 2, 7, 8, 9, 1],
 [1, 9, 8, 5, 7, 3, 4, 2, 6],
 [5, 4, 2, 9, 1, 6, 3, 8, 7],
 [7, 3, 6, 2, 8, 4, 5, 1, 9]
])

shape = (3, 3, 3, 3)

strides = sudoku.itemsize *
 numpy.array([27, 3, 9, 1])

squares = numpy.lib.stride_tricks.as_strided
 (sudoku, shape=shape, strides=strides)
print(squares)

How it works...
We applied stride tricks to decompose a Sudoku puzzle in its constituent 3 by 3 squares.
The strides tell us how many bytes we need to skip at each step when going through the
Sudoku array.

Chapter 2

45

Broadcasting arrays
Without knowing it, you might have broadcasted arrays. In a nutshell, NumPy tries to perform
an operation even though the operands do not have the same shape. In this recipe, we will
multiply an array and a scalar. The scalar is "extended" to the shape of the array operand and
then the multiplication is performed. We will download an audio file and make a new version
that is quieter.

How to do it...
Let's start by reading a WAV file:

1.	 Reading a WAV file.

We will use a standard Python code to download an audio file of Austin Powers called
"Smashing, baby". SciPy has a wavfile module, which allows you to load sound data
or generate WAV files. If SciPy is installed, then we should have this module already.
The read function returns a data array and sample rate. In this example, we only care
about the data:
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)

2.	 Plot the original WAV data.

Plot the original WAV data with Matplotlib. Give the subplot the title Original.
matplotlib.pyplot.subplot(2, 1, 1)
matplotlib.pyplot.title("Original")
matplotlib.pyplot.plot(data)

3.	 Create a new array.

Now we will use NumPy to make a quieter audio sample. It's just a matter of creating
a new array with smaller values by multiplying with a constant. This is where the magic
of broadcasting occurs. At the end, we need to make sure that we have the same data
type as in the original array, because of the WAV format:
newdata = data * 0.2
newdata = newdata.astype(numpy.uint8)

4.	 Write to a WAV file.

This new array can be written into a new WAV file as follows:
scipy.io.wavfile.write("quiet.wav",
 sample_rate, newdata)

Advanced Indexing and Array Concepts

46

5.	 Plot the new WAV data.

Plot the new data array with Matplotlib:
matplotlib.pyplot.subplot(2, 1, 2)
matplotlib.pyplot.title("Quiet")
matplotlib.pyplot.plot(newdata)

matplotlib.pyplot.show()

The result is a plot of the original WAV file data and a new array with smaller values,
as shown in the following screenshot:

The following is the complete code for this recipe:

import scipy.io.wavfile
import matplotlib.pyplot
import urllib2
import numpy

Chapter 2

47

response = urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype, "Shape", data.shape

matplotlib.pyplot.subplot(2, 1, 1)
matplotlib.pyplot.title("Original")
matplotlib.pyplot.plot(data)

newdata = data * 0.2
newdata = newdata.astype(numpy.uint8)
print "Data type", newdata.dtype, "Shape", newdata.shape

scipy.io.wavfile.write("quiet.wav",
 sample_rate, newdata)

matplotlib.pyplot.subplot(2, 1, 2)
matplotlib.pyplot.title("Quiet")
matplotlib.pyplot.plot(newdata)

matplotlib.pyplot.show()

3
Get to Grips with
Commonly Used

Functions

In this chapter, we will cover a number of commonly used functions:

ff sqrt, log, arange, astype, and sum

ff ceil, modf, where, ravel, and take

ff sort and outer

ff diff, sign, eig

ff histogram and polyfit

ff compress and randint

We will be discussing these functions through the following recipes:

ff Summing Fibonacci numbers

ff Finding prime factors

ff Finding palindromic numbers

ff The steady state vector determination

ff Discovering a power law

ff Trading periodically on dips

ff Simulating trading at random

ff Sieving integers with the Sieve of Eratosthenes

Get to Grips with Commonly Used Functions

50

Introduction
This chapter is about the commonly used functions. These are the functions that you will
be using on a daily basis. Obviously, the usage may differ for you. There are so many NumPy
functions that it is virtually impossible to know all of them, but the functions in this chapter
will be the bare minimum with which we must be familiar. You can download source code for
this chapter from the book website http://www.packtpub.com.

Summing Fibonacci numbers
In this recipe, we will sum the even-valued terms in the Fibonacci sequence whose values
do not exceed four million. The Fibonacci series is a sequence of integers starting with zero,
where each number is the sum of the previous two; except, of course, the first two numbers
zero and one.

For more information, read the Wikipedia article about Fibonacci numbers at
http://en.wikipedia.org/wiki/Fibonacci_number.

This recipe uses a formula based on the golden ratio, which is an irrational number with
special properties comparable to pi. It we will use the sqrt, log, arange, astype, and
sum functions.

How to do it...
The first thing to do is calculate the golden ratio (http://en.wikipedia.org/wiki/
Golden_ratio), also called the golden section or golden mean.

1.	 Calculate the golden ratio.

We will be using the sqrt function to calculate the square root of five:
phi = (1 + numpy.sqrt(5))/2
print "Phi", phi

This prints the golden mean:
Phi 1.61803398875

2.	 Find the index below four million.

Next in the recipe, we need to find the index of the Fibonacci number below four
million. A formula for this is given in the Wikipedia page, and we will compute it
using that formula. All we need to do is convert log bases with the log function.
We don't need to round the result down to the closest integer. This is automatically
done for us in the next step of the recipe:

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

Chapter 3

51

n = numpy.log(4 * 10 ** 6 * numpy.sqrt(5)
 + 0.5)/numpy.log(phi)
print n

The value for n is:
33.2629480359

3.	 Create an array of 1-n.

The arange function is a very basic function, which many people know. Still, we will
mention it here for completeness:
n = numpy.arange(1, n)

4.	 Compute the Fibonacci numbers.

There is a convenient formula we can use to calculate the Fibonacci numbers.
We will need the golden ratio and the array from the previous step in this recipe
as input parameters.

Print the first nine Fibonacci numbers to check the result:
fib = (phi**n - (-1/phi)**n)/numpy.sqrt(5)
print "First 9 Fibonacci Numbers", fib[:9]

I could have made a unit test instead of a print statement. A unit
test is a test which tests a small unit of code, such as a function.
This variation of the recipe is left as an exercise for the reader.

Have a look at Chapter 8, Quality Assurance for pointers on how
to write a unit test.

We are not starting with the number zero here, by the way. The aforementioned code
gives us a series as expected:
First 9 Fibonacci Numbers [1. 1. 2. 3. 5. 8. 13. 21.
34.]

You can plug this right into a unit test, if you want.

5.	 Convert to integers.

This step is optional. I think it's nice to have an integer result at the end. OK, I
actually wanted to show you the astype function:
fib = fib.astype(int)
print "Integers", fib

Get to Grips with Commonly Used Functions

52

This code gives us the following result, after snipping a bit for brevity:

Integers [1 1 2 3 5 8 13
21 34

 ... snip ... snip ...

 317811 514229 832040 1346269 2178309 3524578]

6.	 Select even-valued terms.

The recipe demands that we select the even-valued terms now. This should be easy
for you, if you followed the boolean indexing piece in the previous chapter:
eventerms = fib[fib % 2 == 0]
print eventerms

There we go:
[2 8 34 144 610 2584 10946 46368
196418

 832040 3524578]

For completeness, following is the complete code for this recipe:

import numpy

#Each new term in the Fibonacci sequence is generated by adding the
previous two terms.
#By starting with 1 and 2, the first 10 terms will be:

#1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

#By considering the terms in the Fibonacci sequence whose values do
not exceed four million,
#find the sum of the even-valued terms.

#1. Calculate phi
phi = (1 + numpy.sqrt(5))/2
print "Phi", phi

#2. Find the index below 4 million
n = numpy.log(4 * 10 ** 6 * numpy.sqrt(5) + 0.5)/numpy.log(phi)
print n

Chapter 3

53

#3. Create an array of 1-n
n = numpy.arange(1, n)
print n

#4. Compute Fibonacci numbers
fib = (phi**n - (-1/phi)**n)/numpy.sqrt(5)
print "First 9 Fibonacci Numbers", fib[:9]

#5. Convert to integers
optional
fib = fib.astype(int)
print "Integers", fib

#6. Select even-valued terms
eventerms = fib[fib % 2 == 0]
print eventerms

#7. Sum the selected terms
print eventerms.sum()

How it works...
In this recipe, we used the functions sqrt, log, arange, astype, and sum; their description
is as follows:

Function Description
sqrt Calculates the square root of array elements.
log Calculates the natural log of array elements.
arange Creates an array with a specified range.
astype Converts array elements to a specified data type.
sum Calculates the sum of array elements.

See also
ff The Indexing with booleans recipe in Chapter 2, Advanced Indexing and

Array Concepts

Get to Grips with Commonly Used Functions

54

Finding prime factors
Prime factors (http://en.wikipedia.org/wiki/Prime_factor) are prime numbers
that divide an integer exactly without a remainder. Finding prime factors seems almost
impossible to crack. However, using the right algorithm—Fermat's factorization method
(http://en.wikipedia.org/wiki/Fermat%27s_factorization_method) and
NumPy—it becomes very easy. The idea is to factor a number N into two numbers c and
d, according to the following equation:

We can apply the factorization recursively, until we get the required prime factors.

How to do it...
The algorithm requires us to try a number of trial values for a.

1.	 Create an array of trial values.

It makes sense to create a NumPy array and eliminate the need for loops.
However, you should be careful to not create an array that is too big in terms
of memory requirements. On my system, an array of a million elements seems
to be just the right size:
a = numpy.ceil(numpy.sqrt(n))
lim = min(n, LIM)
a = numpy.arange(a, a + lim)
b2 = a ** 2 - n

We used the ceil function to return the ceiling of the input, element-wise.

2.	 Get the fractional part of the b array.

We are now supposed to check whether b is a square. Use the NumPy modf
function to get the fractional part of the b array:
fractions = numpy.modf(numpy.sqrt(b2))[0]

3.	 Find 0 fractions.

Call the NumPy where function to find the indices of zero fractions, where the
fractional part is 0:
indices = numpy.where(fractions == 0)

Chapter 3

55

4.	 Find the first occurrence of a zero fraction.

Actually, we only need the first occurrence of a zero fraction. First, call the NumPy
take function with the indices array from the previous step to get the values of zero
fractions. Now we need to "flatten" this array with the NumPy ravel function:
a = numpy.ravel(numpy.take(a, indices))[0]

The following is the entire code needed to solve the problem of finding the largest prime factor
of the number 600851475143:

import numpy

#The prime factors of 13195 are 5, 7, 13 and 29.

#What is the largest prime factor of the number 600851475143 ?

N = 600851475143
LIM = 10 ** 6

def factor(n):
 #1. Create array of trial values
 a = numpy.ceil(numpy.sqrt(n))
 lim = min(n, LIM)
 a = numpy.arange(a, a + lim)
 b2 = a ** 2 - n

 #2. Check whether b is a square
 fractions = numpy.modf(numpy.sqrt(b2))[0]

 #3. Find 0 fractions
 indices = numpy.where(fractions == 0)

 #4. Find the first occurrence of a 0 fraction
 a = numpy.ravel(numpy.take(a, indices))[0]
 a = int(a)
 b = numpy.sqrt(a ** 2 - n)
 b = int(b)
 c = a + b
 d = a - b

 if c == 1 or d == 1:
 return

Get to Grips with Commonly Used Functions

56

 print c, d
 factor(c)
 factor(d)

factor(N)

The output for this code is the following:

1234169 486847

1471 839

6857 71

How it works...
We applied the Fermat factorization recursively using the NumPy functions ceil, modf,
where, ravel, and take. The description of these functions is as follows:

Function Description
ceil Calculates the ceiling of array elements.
modf Returns the fractional and integral part of floating point numbers.
where Returns array indices based on condition.
ravel Returns a flattened array.
take Takes element from an array.

Finding palindromic numbers
A palindromic number reads the same both ways. The largest palindrome made from the
product of two 2-digit numbers is 9009 = 91 x 99. Let's try to find the largest palindrome
made from the product of two 3-digit numbers.

How to do it...
We will create an array to hold 3-digit numbers from 100 to 999 using our favorite NumPy
function arange.

1.	 Create a 3-digit numbers array.

Check the first and last element of the array with the assert_equal function
from the numpy.testing package:
a = numpy.arange(100, 1000)
numpy.testing.assert_equal(100, a[0])
numpy.testing.assert_equal(999, a[-1])

Chapter 3

57

2.	 Create the products array

Now, we will create an array to hold all the possible products of the elements of the
3-digits array with itself. We can accomplish this with the outer function. The resulting
array needs to be flattened with ravel, to be able to easily iterate over it. Call the sort
method on the array to make sure the array is properly sorted. After that, we can do
some sanity checks:
numbers = numpy.outer(a, a)
numbers = numpy.ravel(numbers)
numbers.sort()
numpy.testing.assert_equal(810000, len(numbers))
numpy.testing.assert_equal(10000, numbers[0])
numpy.testing.assert_equal(998001, numbers[-1])

The following is the complete program:

import numpy
import numpy.testing

#A palindromic number reads the same both ways.
#The largest palindrome made from the product of two 2-digit
numbers is 9009 = 91 x 99.

#Find the largest palindrome made from the product of two
3-digit numbers.

#1. Create 3-digits numbers array
a = numpy.arange(100, 1000)
numpy.testing.assert_equal(100, a[0])
numpy.testing.assert_equal(999, a[-1])

#2. Create products array
numbers = numpy.outer(a, a)
numbers = numpy.ravel(numbers)
numbers.sort()
numpy.testing.assert_equal(810000, len(numbers))
numpy.testing.assert_equal(10000, numbers[0])
numpy.testing.assert_equal(998001, numbers[-1])

Get to Grips with Commonly Used Functions

58

#3. Find largest palindromic number
for i in xrange(-1, -1 * len(numbers), -1):
 s = str(numbers[i])
 if s == s[::-1]:
 print s
 break

The code prints 906609, which is a palindromic number.

How it works...
We saw the outer function in action. This function returns the outer product of two arrays
(http://en.wikipedia.org/wiki/Outer_product). The sort function returns a
sorted copy of an array.

There's more...
It might be a good idea to check the result. Find out which two 3-digit numbers produce our
palindromic number by modifying the code a bit. Try implementing the last step in a NumPy way.

The steady state vector determination
A Markov chain is a system that has at least two states. For detailed information on Markov
chains, please refer to http://en.wikipedia.org/wiki/Markov_chain.The state
at time t depends on the state at time t-1, and only the state at t-1. The system switches at
random between these states. I would like to define a Markov chain for a stock. Let's say that
we have the states flat F, up U, and down D. We can determine the steady state based on end
of day close prices.

Far into the distant future or in theory infinite time, the state of our Markov chain system
will not change anymore. This is also called a steady state (http://en.wikipedia.org/
wiki/Steady_state). The stochastic matrix (http://en.wikipedia.org/wiki/
Stochastic_matrix) A, which contains the state transition probabilities, and when applied
to the steady state, will yield the same state x. The mathematical notation for this will be
as follows:

Another way to look at this is as the eigenvector (http://en.wikipedia.org/wiki/
Eigenvalues_and_eigenvectors) for eigenvalue 1.

Chapter 3

59

How to do it...
Now we need to obtain the data.

1.	 Obtain one year of data.

One way we can do this is with Matplotlib (refer to the Installing Matplotlib recipe in
Chapter 1, Winding Along with IPython, if necessary). We will retrieve the data going
back one year. Here is the code to do this:
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('AAPL', start, today)

2.	 Select the close price.

We now have historical data from Yahoo Finance. The data is represented as a list of
tuples, but we are only interested in the close price. For example:
[(734744.0, 675.25, 673.47000000000003, 677.66999999999996,
672.60000000000002, 7228500.0), …,(734745.0, 670.63999999999999,
663.87, 671.54999999999995, 662.85000000000002, 10799600.0)]

The first element in the tuple represents the date. It is followed by the open, high,
low, and close prices. The last element is the volume. We can select the close prices
as follows.
close = [q[4] for q in quotes]

The close price is the fifth number in each tuple. We should have a list of about 253
close prices now.

3.	 Determine the states.

We can determine the states by subtracting the price of sequential days with
the NumPy diff function. The state is then given by the sign of the difference.
The NumPy sign function returns -1 for a negative, 1 for a positive number, or
0 otherwise.
states = numpy.sign(numpy.diff(close))

4.	 Initialize the stochastic matrix to 0 values.

We have three possible start states and three possible end states for each transition.
For instance, if we start from a U state, we could switch to:

�� U

�� F

�� D

Get to Grips with Commonly Used Functions

60

Initialize the stochastic matrix with the NumPy zeros function:
NDIM = 3
SM = numpy.zeros((NDIM, NDIM))

5.	 For each sign, select the corresponding start state indices.

Now the code becomes a bit messy. We will have to use actual loops! We will loop
over the possible signs, and select the start state indices corresponding to each sign.
Select the indices with the NumPy, where function. k here is a smoothing constant
that we will discuss later on:
signs = [-1, 0, 1]
k = int(sys.argv[2])

for i in xrange(len(signs)):
 #we start the transition from the state with the specified sign
 start_indices = numpy.where
 (states[:-1] == signs[i])[0]

6.	 Smoothing and the stochastic matrix.

We can now count the number of occurrences of each transition. Dividing by the total
number of transitions for a given start state gives us the transition probabilities for our
stochastic matrix. This is not the best method, by the way, since it could be over-fitting.

In real life, we could have a day that the close price does not change, although
unlikely for liquid stock markets. One way to deal with zero occurrences is to apply
additive smoothing (http://en.wikipedia.org/wiki/Additive_smoothing).
The idea is to add a certain constant to the number of occurrences we find, getting
rid of zeroes. The following code calculates the values of the stochastic matrix:
N = len(start_indices) + k * NDIM

skip since there are no transitions possible
if N == 0:
 continue

#find the values of states at the end positions
end_values = states[start_indices + 1]

for j in xrange(len(signs)):
 # number of occurrences of this transition
 occurrences = len
 (end_values[end_values == signs[j]])
 SM[i][j] = (occurrences + k)/float(N)

print SM

Chapter 3

61

What the aforementioned code does is compute the transition probabilities for each
possible transition based on the number of occurrences and additive smoothing.

For AAPL (Apple Inc.) and smoothing constant k = 1, I got the following
stochastic matrix:
[[0.50925926 0.00925926 0.48148148]

 [0.33333333 0.33333333 0.33333333]

 [0.35135135 0.00675676 0.64189189]]

7.	 Eigenvalues and eigenvectors.

To get the eigenvalues and eigenvectors, we will need the NumPy linalg module
and the eig function:
eig_out = numpy.linalg.eig(SM)
print eig_out

The eig function returns an array containing the eigenvalues and an array containing
the eigenvectors:
(array([1. , 0.15817566, 0.32630882]),
 array([[0.57735027, 0.74473695, 0.00297158],

 [0.57735027, -0.39841481, -0.99983179],

 [0.57735027, -0.53538072, 0.01809841]]))

8.	 Select the eigenvector for eigenvalue 1.

Currently, we are only interested in the eigenvector for eigenvalue 1. In reality, the
eigenvalue might not be exactly one, so we should build in a margin for error. We can
find the index for eigenvalue between 0.9 and 1.1 as follows:
idx_vec = numpy.where
 (numpy.abs(eig_out[0] - 1) < 0.1)
print "Index eigenvalue 1", idx_vec

x = eig_out[1][:,idx_vec].flatten()

The following is the complete code for the steady state vector example:

from matplotlib.finance
import quotes_historical_yahoo
from datetime import date
import numpy
import sys

if (len(sys.argv) != 3):
 print "Usage python %s SYMBOL
 k" % (sys.argv[0])

Get to Grips with Commonly Used Functions

62

 print "For instance python %s
 AAPL 1" % (sys.argv[0])
 sys.exit()

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo
 (sys.argv[1], start, today)
close = [q[4] for q in quotes]

states = numpy.sign(numpy.diff(close))

NDIM = 3
SM = numpy.zeros((NDIM, NDIM))

signs = [-1, 0, 1]
k = int(sys.argv[2])

for i in xrange(len(signs)):
 #we start the transition from the state with the specified sign
 start_indices = numpy.where
 (states[:-1] == signs[i])[0]

 N = len(start_indices) + k * NDIM

 # skip since there are no transitions possible
 if N == 0:
 continue

 #find the values of states at the end positions
 end_values = states[start_indices + 1]

 for j in xrange(len(signs)):
 # number of occurrences of this transition
 occurrences = len
 (end_values[end_values == signs[j]])
 SM[i][j] = (occurrences + k)/float(N)

print SM
eig_out = numpy.linalg.eig(SM)
print eig_out

Chapter 3

63

idx_vec = numpy.where
 (numpy.abs(eig_out[0] - 1) < 0.1)
print "Index eigenvalue 1", idx_vec

x = eig_out[1][:,idx_vec].flatten()
print "Steady state vector", x
print "Check", numpy.dot(SM, x)

The output for this code is as follows:

[[0.4952381 0.00952381 0.4952381]

 [0.33333333 0.33333333 0.33333333]

 [0.34210526 0.00657895 0.65131579]]

(array([1. , 0.15328174, 0.32660547]),
 array([[0.57735027, 0.7424435 , 0.00144451],

 [0.57735027, -0.44112882, -0.99982343],

 [0.57735027, -0.50416566, 0.01873551]]))

Index eigenvalue 1 (array([0]),)

Steady state vector [0.57735027 0.57735027 0.57735027]

Check [0.57735027 0.57735027 0.57735027]

How it works...
The values for the eigenvector we get are not normalized. Because we are the dealing with
probabilities, they should sum up to one. The diff, sign, and eig functions were introduced
in this example. Their descriptions are as follows:

Function Description
diff Calculates the discrete difference. By default, the first order.
sign Returns the sign of array elements.
eig Returns the eigenvalues and eigenvectors of an array.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

Get to Grips with Commonly Used Functions

64

Discovering a power law
For the purpose of this recipe, imagine that we are operating a Hedge Fund. Let it sink in; you
are part of the one percent now!

Power laws occur in a lot of places, see http://en.wikipedia.org/wiki/Power_law
for more information. The Pareto principle (http://en.wikipedia.org/wiki/Pareto_
principle) for instance, which is a power law, states that wealth is unevenly distributed.
This principle tells us that if we group people by their wealth, the size of the groups will vary
exponentially. To put it simply, there are not a lot of rich people, and there are even less
billionaires; hence the one percent.

Assume that there is a power law in the closing stock prices log returns. This is a big
assumption, of course, but power law assumptions seem to pop up all over the place.

We don't want to trade too often, because of involved transaction costs per trade. Let's say
that we would prefer to buy and sell once a month based on a significant correction (in other
words a big drop). The issue is to determine an appropriate signal given that we want to
initiate a transaction every one out of about 20 days.

How to do it...
First, let's get historical end-of-day data for the past year from Yahoo Finance. After that,
extract the close prices for this period. These steps are described in the previous recipe.

1.	 Get positive log returns.

Now calculate the log returns for the close prices. For more information on log returns
refer to http://en.wikipedia.org/wiki/Rate_of_return.

First, we will take the log of the close prices, and then compute the first difference of
these values with the NumPy diff function. Let's select the positive values from the
log returns. Why the positive values? It doesn't really matter; I like being positive:
logreturns = numpy.diff(numpy.log(close))
pos = logreturns[logreturns > 0]

2.	 Get frequencies of returns.

We need to get the frequencies of the returns with the histogram function. Counts
and an array of the bins are returned. At the end, we need to take the log of the
frequencies in order to get a nice linear relation:
counts, rets = numpy.histogram(pos)
rets = rets[:-1] + (rets[1] - rets[0])/2

http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Rate_of_return

Chapter 3

65

freqs = 1.0/counts
freqs = numpy.log(freqs)

3.	 Fit the frequencies and returns to a line.

Use the polyfit function to do a linear fit:
p = numpy.polyfit(rets,freqs, 1)

4.	 Plot the results.

Finally, we will plot the data and linear fit with Matplotlib:
matplotlib.pyplot.plot(rets, freqs, 'o')
matplotlib.pyplot.plot(rets, p[0] * rets + p[1])
matplotlib.pyplot.show()

We get a nice plot of the linear fit, returns, and frequencies:

Get to Grips with Commonly Used Functions

66

The following is the complete code:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
import matplotlib.pyplot

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])
#2. Get positive log returns.
logreturns = numpy.diff(numpy.log(close))
pos = logreturns[logreturns > 0]

#3. Get frequencies of returns.
counts, rets = numpy.histogram(pos)
rets = rets[:-1] + (rets[1] - rets[0])/2
freqs = 1.0/counts
freqs = numpy.log(freqs)

#4. Fit the frequencies and returns to a line.
p = numpy.polyfit(rets,freqs, 1)

#5. Plot the results.
matplotlib.pyplot.plot(rets, freqs, 'o')
matplotlib.pyplot.plot(rets, p[0] * rets + p[1])
matplotlib.pyplot.show()

How it works...
The histogram function calculates the histogram of a data set. It returns the histogram
values and bin edges. The polyfit function fits data to a polynomial of given order. In this
case, we chose for a linear fit. We "discovered" a power law—you have to be careful making
such claims, but the evidence looks promising.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

Chapter 3

67

Trading periodically on dips
Stock prices periodically dip and go up. We will have a look at the probability distribution of the
stock price log returns.

Let's start by downloading the historical data for a stock; for instance, AAPL. Next, calculate
the daily log returns (http://en.wikipedia.org/wiki/Rate_of_return) of the close
prices. We will skip these steps because they were already done in the previous recipe.

Getting ready
If necessary, install Matplotlib and SciPy. Refer to the See Also section for the
corresponding recipes.

How to do it...
Now comes the interesting part.

1.	 Calculate breakout and pullback.

Let's say we want to trade five times per year, or roughly every 50 days. One strategy
would be to buy when the price drops by a certain percentage—a pullback, and sell
when the price increases by another percentage—a breakout.

By setting the percentile appropriate for our trading frequency, we can match the
corresponding log returns. SciPy offers the scoreatpercentile function, which
we will use:
freq = 1/float(sys.argv[2])
breakout = scipy.stats.scoreatpercentile
 (logreturns, 100 * (1 - freq))
pullback = scipy.stats.scoreatpercentile
 (logreturns, 100 * freq)

2.	 Generate buys and sells.

Use the NumPy compress function to generate buys and sells for our close price
data. This function returns elements based on a condition:
buys = numpy.compress
 (logreturns < pullback, close)
sells = numpy.compress
 (logreturns > breakout, close)
print buys
print sells
print len(buys), len(sells)
print sells.sum() - buys.sum()

Get to Grips with Commonly Used Functions

68

The output for AAPL and a 50-day period is as follows:
[340.1 377.35 378. 373.17 415.99]

[357. 370.8 366.48 395.2 419.55]

5 5

24.42

So we have a profit of 24 dollars, if we buy and sell an AAPL share five times.

3.	 Plot a histogram of the log returns.

Just for fun, let's plot the histogram of the log returns with Matplotlib:
matplotlib.pyplot.hist(logreturns)
matplotlib.pyplot.show()

This is what the histogram looks like.

The following is the complete code:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
import scipy.stats
import matplotlib.pyplot

Chapter 3

69

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])

#2. Get log returns.
logreturns = numpy.diff(numpy.log(close))

#3. Calculate breakout and pullback
freq = 1/float(sys.argv[2])
breakout = scipy.stats.scoreatpercentile(logreturns, 100 * (1 - freq)
)
pullback = scipy.stats.scoreatpercentile(logreturns, 100 * freq)
#4. Generate buys and sells
buys = numpy.compress(logreturns < pullback, close)
sells = numpy.compress(logreturns > breakout, close)
print buys
print sells
print len(buys), len(sells)
print sells.sum() - buys.sum()

#5. Plot a histogram of the log returns
matplotlib.pyplot.hist(logreturns)
matplotlib.pyplot.show()

#AAPL 50
#[340.1 377.35 378. 373.17 415.99]
#[357. 370.8 366.48 395.2 419.55]
#5 5
#24.42

How it works...
We encountered the compress function, which returns an array containing the array
elements of the input that satisfy a given condition. The input array remains unchanged.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy in Chapter 2, Advanced Indexing and Array Concepts

ff The Discovering a power law recipe

Get to Grips with Commonly Used Functions

70

Simulating trading at random
In the previous recipe, we tried out a trading idea. However, we have no benchmark that can
tell us if the result we got was any good. It is common in such cases to trade at random, under
the assumption that we should be able to beat a random process. We will simulate trading
by taking some random days from a trading year. This should illustrate working with random
numbers using NumPy.

Getting ready
If necessary, install Matplotlib. Refer to the See Also section for the corresponding recipe.

How to do it...
First, we need an array filled with random integers.

1.	 Generate random indices.

Generate random integers with the NumPy randint function. This will be linked to
random days of a trading year:
return numpy.random.randint(0, high, size)

2.	 Simulate trades.

Simulate trades with the random indices from the previous step. Use the NumPy
take function to extract random close prices from the array of step 1:
buys = numpy.take(close, get_indices(len(close), nbuys))
sells = numpy.take(close, get_indices(len(close), nbuys))
profits[i] = sells.sum() - buys.sum()

3.	 Plot a histogram of the profits.

Let's plot a histogram of the profits for a large number of simulations:
matplotlib.pyplot.hist(profits)
matplotlib.pyplot.show()

The resulting histogram of 2000 simulations for AAPL with 5 buys and sells in
a year:

Chapter 3

71

The following is the complete code:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
import matplotlib.pyplot

def get_indices(high, size):
 #2. Generate random indices
 return numpy.random.randint(0, high, size)

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])

nbuys = int(sys.argv[2])
N = int(sys.argv[3])
profits = numpy.zeros(N)

Get to Grips with Commonly Used Functions

72

for i in xrange(N):
 #3. Simulate trades
 buys = numpy.take(close, get_indices(len(close), nbuys))
 sells = numpy.take(close, get_indices(len(close), nbuys))
 profits[i] = sells.sum() - buys.sum()

print "Mean", profits.mean()
print "Std", profits.std()

#4. Plot a histogram of the profits
matplotlib.pyplot.hist(profits)
matplotlib.pyplot.show()

#python random_periodic.py AAPL 5 2000
#Mean -2.566465
#Std 133.746039463

How it works...
We used the randint function, which can be found in the numpy.random module. This
module contains more convenient random generators, as described in the following table:

Function Description
rand Creates an array from a uniform distribution over [0,1] with a shape

based on dimension parameters. If no dimensions are specified a
single float is returned.

randn Sample values from the normal distribution with mean 0 and variance
1. The dimension parameters function the same way as for rand.

randint Returns an integer array given a low boundary, an optional high
bound, and an optional output shape.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

Sieving integers with the Sieve of
Erasthothenes

The Sieve of Eratosthenes (http://en.wikipedia.org/wiki/Sieve_of_
Eratosthenes) is an algorithm that filters out prime numbers. It iteratively identifies
multiples of found primes. This sieve is efficient for primes smaller than 10 million.
Let's now try to find the 10001st prime number.

Chapter 3

73

How to do it...
The first mandatory step is to create a list of natural numbers.

1.	 Create a list of consecutive integers.

NumPy has the arange function for that:
a = numpy.arange(i, i + LIM, 2)

2.	 Sieve out multiples of p.

We are not sure if this is what Eratosthenes wanted us to do, but it works. In the
following code, we are passing a NumPy array and getting rid of all the elements that
have a zero remainder, when divided by p:
a = a[a % p != 0]

The following is the entire code for this problem:

import numpy

LIM = 10 ** 6
N = 10 ** 9
P = 10001
primes = []
p = 2

#By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
we can see that the 6th prime is 13.
#What is the 10 001st prime number?

def check_primes(a, p):
 #2. Sieve out multiples of p
 a = a[a % p != 0]

 return a
for i in xrange(3, N, LIM):
 #1. Create a list of consecutive integers
 a = numpy.arange(i, i + LIM, 2)

 while len(primes) < P:
 a = check_primes(a, p)
 primes.append(p)

 p = a[0]

print len(primes), primes[P-1]

4
Connecting NumPy with

the Rest of the World

In this chapter, we will cover:

ff Using the buffer protocol

ff Using the array interface

ff Exchanging data with MATLAB and Octave

ff Installing RPy2

ff Interfacing with R

ff Installing JPype

ff Sending a NumPy array to JPype

ff Installing Google App Engine

ff Deploying NumPy code in the Google cloud

ff Running NumPy code in a Python Anywhere web console

ff Setting up PiCloud

Introduction
This chapter is about interoperability. We have to keep reminding ourselves that NumPy
is not alone in the scientific (Python) software ecosystem. Working together with SciPy and
Matplotlib is pretty easy. Protocols exist for interoperability with other Python packages.
Outside of the Python ecosystem languages such as Java, R, C, and FORTRAN are pretty
popular. We will go into the details of exchanging data with these environments.

Connecting NumPy with the Rest of the World

76

Also, we will discuss how to get our NumPy code in the cloud. This is a continuously evolving
technology, in a fast-moving space. Many options are available to you, of which Google App
Engine, PiCloud, and Python Anywhere will be covered.

The danger here is to seem subjective, so please be
assured that the author is in no way affiliated with any of
these companies.

Using the buffer protocol
C-based Python objects have a so called "buffer interface". Python objects can expose
their data for direct access without the need to copy it. The buffer protocol enables us to
communicate with other Python software such as the Python Imaging Library (PIL). We will
see an example of saving a PIL image from a NumPy array.

Getting ready
Install PIL and SciPy, if necessary. Check the See Also section of this recipe for instructions.

How to do it...
First, we need a NumPy array with which to play.

1.	 Create an array from image data.

In previous chapters, we saw how to load the "Lena" sample image of Lena
Soderberg. We will create an array filled with zeroes, and populate the alpha channel
with the image data:
lena = scipy.misc.lena()
data = numpy.zeros((lena.shape[0], lena.shape[1], 4), dtype=numpy.
int8)
data[:,:,3] = lena.copy()

2.	 Save the data as a PIL image.

Now, we will use the PIL API to save the data as a RGBA image:
img = Image.frombuffer("RGBA", lena.shape, data)
img.save('lena_frombuffer.png')

Chapter 4

77

3.	 Modify the data array and save the image.

Modify the data array by getting rid of the image data and making the image red.
Save the image with the PIL API:
data[:,:,3] = 255
data[:,:,0] = 222
img.save('lena_modified.png')

The following is the before image:

Connecting NumPy with the Rest of the World

78

The data of the PIL image object has changed by the magic of the "buffer interface", and
therefore, we see the following image:

The complete code for this recipe is as follows:

import numpy
import Image
import scipy.misc

lena = scipy.misc.lena()
data = numpy.zeros((lena.shape[0], lena.shape[1], 4), dtype=numpy.
int8)
data[:,:,3] = lena.copy()
img = Image.frombuffer("RGBA", lena.shape, data)
img.save('lena_frombuffer.png')

data[:,:,3] = 255
data[:,:,0] = 222
img.save('lena_modified.png')

How it works...
We created a PIL image from a buffer—a NumPy array. After changing the buffer, we saw the
changes being reflected in the image object. This was done without copying the PIL image
object; instead, we directly accessed and modified its data to make a red image out of the
picture of the model.

Chapter 4

79

See also
ff The Installing PIL recipe in Chapter 2, Advanced Indexing and Array Concepts

ff The Installing SciPy recipe in Chapter 2, Advanced Indexing and Array Concepts

Using the array interface
The array interface is a yet another mechanism to communicate with other Python
applications. This protocol, as its name suggests, is only applicable to array-like objects.
A demonstration is in order. Let's use PIL again, but without saving files.

Getting ready
We will be reusing part of the code from the previous recipe, so the prerequisites are similar.
We will skip the first step of the previous step here, and assume it is already known.

How to do it...
The following steps will let us explore the array interface:

1.	 The PIL image array interface attribute.

The PIL image object has a __array_interface__ attribute. Let's inspect its
contents. The value of this attribute is a dictionary:
array_interface = img.__array_interface__
print "Keys", array_interface.keys()
print "Shape", array_interface['shape']
print "Typestr", array_interface['typestr']

This code prints the following information:
Keys ['shape', 'data', 'typestr']

Shape (512, 512, 4)

Typestr |u1

2.	 The NumPy array interface attributes.

The NumPy ndarray module has a __array_interface__ attribute as well. We
can convert the PIL image to a NumPy array with the asarray function:
numpy_array = numpy.asarray(img)
print "Shape", numpy_array.shape
print "Data type", numpy_array.dtype

Connecting NumPy with the Rest of the World

80

The shape and data type of the array:
Shape (512, 512, 4)

Data type uint8

As you can see, the shape has not changed. The code for this recipe is as follows:

import numpy
import Image
import scipy.misc

lena = scipy.misc.lena()
data = numpy.zeros((lena.shape[0],
 lena.shape[1], 4), dtype=numpy.int8)
data[:,:,3] = lena.copy()
img = Image.frombuffer("RGBA", lena.shape, data)
array_interface = img.__array_interface__
print "Keys", array_interface.keys()
print "Shape", array_interface['shape']
print "Typestr", array_interface['typestr']

numpy_array = numpy.asarray(img)
print "Shape", numpy_array.shape
print "Data type", numpy_array.dtype

How it works...
The array interface or protocol lets us share data between array-like Python objects. Both
NumPy and PIL provide such an interface.

See also
ff Using the buffer protocol in this chapter

Exchanging data with MATLAB and Octave
MATLAB and its open source alternative Octave are popular mathematical applications. The
scipy.io package has the savemat function, which allows you to store NumPy arrays in a
.mat file as a value of a dictionary.

Chapter 4

81

Getting ready
Installing MATLAB or Octave is outside of the scope of this book. The Octave website has
some pointers for installing: http://www.gnu.org/software/octave/download.html.
Check the See Also section of this recipe, for instructions on installing SciPy, if necessary.

How to do it...
Once you have installed MATLAB or Octave, you need to follow the subsequent steps to store
NumPy arrays:

1.	 Call savemat.

Create a NumPy array, and call savemat to store the array in a .mat file. This
function has two parameters—a file name and a dictionary containing variable
names and values.
a = numpy.arange(7)
scipy.io.savemat("a.mat",
 {"array": a})

2.	 Load the .mat file.

Navigate to the directory where you created the file. Load the file, and check the array:
octave-3.4.0:2> load a.mat

octave-3.4.0:3> array

array =

 0

 1

 2

 3

 4

 5

 6

The complete code for this recipe is as follows:

import numpy
import scipy.io

a = numpy.arange(7)
scipy.io.savemat("a.mat",
 {"array": a})

Connecting NumPy with the Rest of the World

82

See also
ff Installing SciPy in Chapter 2

Installing RPy2
R is a popular scripting language used for statistics and data analysis. RPy2 is an interface
between R and Python. We will install RPy2 in this recipe.

How to do it...
If you want to install RPy2, choose one of the following options:

ff Installing with pip or easy_install.

RPy2 is available on PYPI, so we can install it with either of the following
two commands:
easy_install rpy2

or

sudo pip install rpy2

ff Installing from source.

We can install RPy2 from the source tar.gz:
tar -xzf <rpy2_package>.tar.gz

cd <rpy2_package>

python setup.py build install

Interfacing with R
RPy2 can only be used to call R from Python, and not the other way around. We will import
some sample R datasets, and plot the data of one of them.

Getting ready
Install RPy2 if necessary. See the previous recipe.

Chapter 4

83

How to do it...
Let's start by loading a sample R dataset.

1.	 Load a data set into an array.

Load the datasets with the RPy2 importr function. This function can import R
packages. In this example, we will import the datasets R package. Create a NumPy
array from the mtcars dataset:
datasets = importr('datasets')
mtcars = numpy.array(datasets.mtcars)

2.	 Plot the dataset.

Plot the dataset with Matplotlib:
matplotlib.pyplot.plot(mtcars)
matplotlib.pyplot.show()

The following image shows the data, which is a two dimensional array:

Connecting NumPy with the Rest of the World

84

The complete code for this recipe is as follows:

from rpy2.robjects.packages import importr
import numpy
import matplotlib.pyplot

datasets = importr('datasets')
mtcars = numpy.array(datasets.mtcars)

matplotlib.pyplot.plot(mtcars)
matplotlib.pyplot.show()

See also
ff Installing Matplotlib in Chapter 1, Winding Along with IPython

Installing JPype
Jython is the default interoperability solution for Python and Java. However, Jython runs on the
Java Virtual Machine, and therefore, cannot access NumPy modules because they are mostly
written in C. JPype is an open-source project that tries to solve this problem. The interfacing
occurs on the native level between the Python and Java virtual machines. Let's install JPype.

How to do it...
Follow the ensuing steps for installing JPype:

1.	 Download JPype.

Download JPype from http://sourceforge.net/projects/jpype/files/.

2.	 Build JPype.

Unpack JPype and run the following command:
python setup.py install

Sending a NumPy array to JPype
In this recipe, we will start a JVM and send a NumPy array to it. We will print the received array
using standard Java calls. Obviously, you will need to have Java installed.

Chapter 4

85

How to do it...
First, we need to start the JVM from JPype.

1.	 Start the JVM.

JPype is conveniently able to find the default JVM path:
jpype.startJVM(jpype.getDefaultJVMPath())

2.	 Print hello world.

Just because of tradition, let's print hello world:
jpype.java.lang.System.out.
 println("hello world")

3.	 Send a NumPy array.

Create a NumPy array, convert it to a Python list, and pass it to JPype. Now, it's trivial
to print the array elements:
values = numpy.arange(7)
java_array = jpype.JArray
 (jpype.JDouble, 1)(values.tolist())

for item in java_array:
 jpype.java.lang.System.out.
 println(item)

4.	 Shutdown the JVM.

After we are done, we will shutdown the JVM:
jpype.shutdownJVM()

Only one JVM can run at a time in JPype. If we forget to shutdown the JVM, it could
lead to unexpected errors. The program output is as follows:
hello world

0.0

1.0

2.0

3.0

4.0

5.0

6.0

JVM activity report :

 classes loaded : 31

JVM has been shutdown

Connecting NumPy with the Rest of the World

86

The complete code for this recipe is as follows:

import jpype
import numpy

#1. Start the JVM
jpype.startJVM(jpype.getDefaultJVMPath())

#2. Print hello world
jpype.java.lang.System.out.println("hello world")

#3. Send a NumPy array
values = numpy.arange(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

for item in java_array:
 jpype.java.lang.System.out.println(item)

#4. Shutdown the JVM
jpype.shutdownJVM()

How it works...
JPype allows us to start up and shut down a Java Virtual Machine. It provides wrappers for
standard Java API calls. As we saw in this example, we can pass Python lists to be transformed
to Java arrays by the JArray wrapper. JPype uses the Java Native Interface (JNI), which is a
bridge between native C code and Java. Unfortunately, using JNI hurts performance, so you
have to be mindful of that fact.

See also
ff Installing JPype in this chapter

Installing Google App Engine
Google App Engine (GAE) enables you to build web applications in the Google cloud. Since
2012, there is official support for NumPy; you need to have a Google account to use GAE.

Chapter 4

87

How to do it...
The first step is to download GAE.

1.	 Download GAE.

Download GAE for your operating system from https://developers.google.
com/appengine/downloads.

From this page, you can download documentation and the GAE Eclipse plugin as well.
If you are developing with Eclipse, you should definitely install it.

2.	 The development environment.

GAE comes with a development environment, which simulates the production cloud.
GAE, at the time of writing, only supported officially Python 2.5 and 2.7. GAE will try
to find Python on your system; however, it may be necessary to set that yourself,
for instance, if you have multiple Python versions. You can set this setting in the
Preferences dialog of the launcher application.

There are two important scripts in the SDK:

�� dev_appserver.py: Development server

�� appcfg.py: Deploys to the cloud

On Windows and Mac, there is a GAE launcher application. The launcher has Run and
Deploy buttons that do the same as the aforementioned scripts:

Connecting NumPy with the Rest of the World

88

Deploying NumPy code in the Google cloud
Deploying GAE applications is pretty easy. For NumPy an extra configuration step is required,
but that will take only minutes.

How to do it...
Let's create a new application.

1.	 Create a new application.

Create a new application with the launcher (File | New Application). Name it
numpycloud. This will create a folder with the same name containing the
following files:

�� app.yaml: YAML application configuration file

�� favicon.ico: Icon image

�� index.yaml: Auto generated file

�� main.py: Main entry point for the web application

2.	 Add NumPy to the libraries.

First, we need to let GAE know that we want to use NumPy. Add the following lines to
the app.yaml configuration file in the libraries section:
- name: NumPy
 version: "1.6.1"

The configuration file should have the following contents:
application: numpycloud
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: /favicon\.ico
 static_files: favicon.ico
 upload: favicon\.ico

- url: .*
 script: main.app

libraries:
- name: webapp2
 version: "2.5.1"

Chapter 4

89

- name: numpy
 version: "1.6.1"

3.	 Write NumPy code.

To demonstrate that we can use NumPy code, let's modify the main.py file. There is
a MainHandler class with a handler method for get requests. Replace this method
with the following code:
def get(self):
 self.response.out.write
 ('Hello world!
')
 self.response.out.write
 ('NumPy sum = ' + str
 (numpy.arange(7).sum()))

We will have the following code in the end:

import webapp2
import numpy

class MainHandler
 (webapp2.RequestHandler):
 def get(self):
 self.response.out.write('Hello world!
')
 self.response.out.write('NumPy sum = ' +
 str(numpy.arange(7).sum()))

app = webapp2.WSGIApplication([('/', MainHandler)],
 debug=True)

If you click on the Browse button in the GAE launcher, you should see a web page in your
default browser, with the following text:

Hello world!
NumPy sum = 21

How it works...
GAE is free depending on how much of the resources are used. You can create up to ten web
applications. GAE takes the sandboxing approach, which means that NumPy was not available
for a while, but now it is, as demonstrated in this recipe.

You should also be aware that GAE currently does not support relational databases. There are
other features too, which might make portability a concern.

Connecting NumPy with the Rest of the World

90

Running NumPy code in a Python Anywhere
web console

In Chapter 1, we already saw a Python Anywhere console in action, without having an account.
This recipe will require you to have an account, but don't worry—it's free; at least if you don't
need too many resources.

Signing up is a pretty straightforward process and will not be covered here. NumPy is
already installed along with a long list of other Python software. For a complete list,
see https://www.pythonanywhere.com/batteries_included/.

We will setup a simple script that gets price data from Google Finance every minute, and does
simple statistics with the prices using NumPy.

How to do it...
Once we have signed up, we can login and have a look at the Python Anywhere dashboard:

1.	 Write the code.

The complete code for this example is as follows:
import urllib2
import re
import time
import sys	
import numpy

prices = numpy.array([])

for i in xrange(3):

https://www.pythonanywhere.com/batteries_included/

Chapter 4

91

 req = urllib2.Request
 ('http://finance.google.com/finance/
 info?client=ig&q=' + sys.argv[1])
 req.add_header('User-agent',
 'Mozilla/5.0')
 response = urllib2.urlopen(req)
 page = response.read()
 m = re.search('l_cur" : "(.*)"', page)
 prices = numpy.append(prices,
 float(m.group(1)))
 avg = prices.mean()
 sigma = prices.std()

 evFactor = float(sys.argv[2])
 bottom = avg - devFactor * sigma
 top = avg + devFactor * sigma
 timestr = time.strftime
 ("%H:%M:%S", time.gmtime())

 print timestr, "Average", avg,
 "-Std", bottom, "+Std", top
 time.sleep(60)

Most of it is standard Python, except the bits where we grow a NumPy array
containing prices and calculate the mean and standard deviation of the prices. A URL
is used to download price data in JSON format from Google Finance given a stock
ticker such as AAPL. This URL could change, of course.

Next, we parse the JSON with regular expressions to extract a price. This price is
added to a NumPy array. We compute the mean and standard deviation for the
prices. The price is printed with a timestamp bottom and top, based on the
standard deviation times some factor to be specified by us.

2.	 Upload the code.

After we are done with the code on our local machine, we can upload the script to
Python Anywhere. Go to the dashboard, and click on the Files tab. Upload the script
from the widget at the bottom of the page.

3.	 Run the code.

To run the code, click on the Consoles tab, and then click on the Bash link. Python
Anywhere should create a bash console for us right now.

Connecting NumPy with the Rest of the World

92

We can now run our program for AAPL with a one standard deviation band, as shown
in the following screenshot:

How it works...
Python Anywhere is perfect if you want to run NumPy code on a remote server; especially, if
you need your program to execute at scheduled times. For the free account, at least, it's not
so convenient to do interactive work, since there is a certain lag whenever you enter text in the
web console.

However, as we saw, it is possible to create and test a program locally, and upload it to Python
Anywhere. This frees resources on your local machine as well. We can do fancy things such as
sending emails based on the stock price, for instance, or schedule our scripts to be activated
during trading hours. By the way, this is also possible with Google App Engine, but it is done
the Google way; so you will need to learn about their API.

Setting up PiCloud
PiCloud is another cloud computing provider, which is actually using the EC2 Amazon
infrastructure. However, they do offer environments with preinstalled Python software,
including NumPy. These environments are just EC2 instances that we can ssh into. In
this recipe, we will be using the Python 2.7—Ubuntu Natty 11.04 environment. For the
installed packages in this environment, see http://www.picloud.com/docs/base_
environment/2/installed/. PiCloud follows the freemium model, meaning that you can
start out for free and pay later on if you require more resources.

How to do it...
After the mandatory sign up, log in to PiCloud.

1.	 Create an environment.

We start out without any environments. In order to create an environment, first click
on the Environments tab. Next, click on the "create a new environment button.
Select the Python 2.7 base environment. Currently, you can choose between a Python
2.7 and 2.6 environments, both on Ubuntu.

http://www.picloud.com/docs/base_environment/2/installed/
http://www.picloud.com/docs/base_environment/2/installed/

Chapter 4

93

Creating an environment takes a few minutes. When the environment is ready, you
will receive an e-mail, and you should see something like the following screenshot in
your browser:

2.	 Connect to the environment.

If we click on the connect link in the action column, we get a pop up with the
following instructions:
chmod 400 privatekey.pem

ssh –i privatekey.pem picloud@yourserver.amazonaws.com

Download the private key using the link in the pop up. Follow the instructions further
to connect to the environment.

3.	 Check the versions.

In order to prove that we can use NumPy, we will check the available version. We will
do that for Matplotlib as well.

First, let's start an IPython shell. Recall from Chapter 1 that the pylab switch allows us
to auto-import several packages, including NumPy. Execute the following command:
ipython -pylab

NumPy and Matplotlib have a __version__ attribute, which tells us the version.
Print the version attributes:
In [1]: numpy.__version__

Out[1]: '1.6.1'

In [4]: matplotlib.__version__

Out[4]: '1.0.1'

How it works...
PiCloud gives us preconfigured EC2 Amazon instances with NumPy and other Python
packages. This gives us direct access from a terminal. We can customize our environment and
save it for later. A customized environment can be used as a template as well.

mailto:picloud@yourserver.amazonaws.com

5
Audio and Image

Processing

In this chapter, we will cover basic image and audio (WAV files) processing with NumPy and
SciPy. We will use NumPy to do interesting things with sounds and images:

ff Loading images into memory maps

ff Combining images

ff Blurring images

ff Repeating audio fragments

ff Generating sounds

ff Designing an audio filter

ff Edge detection with the Sobel filter

Introduction
This should be a fun chapter. Although all the chapters in this book are fun, in this chapter we
are going to really go for it and concentrate on having fun. In Chapter 10, Fun with Scikits, you
will find a few more image processing recipes that use scikits-image.

Unfortunately, this book does not have a direct support for audio files, so you will really need
to run the code examples to appreciate the recipes fully. The source code should be available
from the book website http://www.packtpub.com/.

http://www.packtpub.com/

Audio and Image Processing

96

Loading images into memory map
It is recommended to load large files into memory maps. Memory-mapped files only load a
small part of large files. NumPy memory maps are array-like. In this example, we will generate
an image of colored squares and load it into a memory map.

Getting ready
If necessary, install Matplotlib. The See Also section of this recipe has a reference to the
corresponding recipe.

How to do it...
We will begin by initializing arrays.

1.	 First, we need to initialize the following arrays:

�� an array that holds the image data

�� an array with random coordinates of the centers of the squares

�� an array with random radii of the squares

�� an array with random colors of the squares

Initialize the arrays as follows:
img = numpy.zeros((N, N),
 numpy.uint8)
centers = numpy.random.random_integers
 (0, N, size=(NSQUARES, 2))
radii = numpy.random.randint
 (0, N/9, size=NSQUARES)
colors = numpy.random.randint
 (100, 255, size=NSQUARES)

As you can see, we are initializing the first array to zeroes. The other arrays
are initialized with functions from the numpy.random package that generate
random integers.

2.	 Generate squares.

The next step is to generate squares. We create the squares using the arrays in the
previous step. With the clip function, we will make sure that the squares do not
wander outside the image area.

Chapter 5

97

The meshgrid function gives us the coordinates of the squares. If we give this
function two arrays with size N and M, it will give us two arrays of shape N by M. The
first array will have its elements repeated along the x axis. The second array will have
its elements repeated along the y axis. The following example of an IPython session
should make this clearer:
In: x = linspace(1, 3, 3)

In: x

Out: array([1., 2., 3.])

In: y = linspace(1, 2, 2)

In: y

Out: array([1., 2.])

In: meshgrid(x, y)

Out:

[array([[1., 2., 3.],

 [1., 2., 3.]]),

 array([[1., 1., 1.],

 [2., 2., 2.]])]

Finally, we will set the colors of the squares:
for i in xrange(NSQUARES):
 xindices = range(centers[i][0] - radii[i], centers[i][0] +
radii[i])
 xindices = numpy.clip(xindices, 0, N - 1)
 yindices = range(centers[i][1] - radii[i], centers[i][1] +
radii[i])
 yindices = numpy.clip(yindices, 0, N - 1)

 if len(xindices) == 0 or len(yindices) == 0:
 continue

 coordinates = numpy.meshgrid(xindices, yindices)
 img[coordinates] = colors[i]

Audio and Image Processing

98

3.	 Load into memory map.

Before we load the image data into a memory map, we need to store it into a file with
the tofile function. Then, we load the image data from this file into a memory map
with the memmap function:
img.tofile('random_squares.raw')
img_memmap = numpy.memmap
 ('random_squares.raw', shape=img.shape)

4.	 Display the image.

To demonstrate that everything worked fine, we will display the image with Matplotlib:
matplotlib.pyplot.imshow(img_memmap)
matplotlib.pyplot.axis('off')
matplotlib.pyplot.show()

Notice that we are not displaying the axes. The following is an example of a
generated image:

Chapter 5

99

The following is the complete source code for this recipe:

import numpy
import matplotlib.pyplot
import sys

N = 512

if(len(sys.argv) != 2):
 print "Please input the number of squares to generate"
 sys.exit()

NSQUARES = int(sys.argv[1])

Initialize
img = numpy.zeros((N, N), numpy.uint8)
centers = numpy.random.random_integers(0, N, size=(NSQUARES, 2))
radii = numpy.random.randint(0, N/9, size=NSQUARES)
colors = numpy.random.randint(100, 255, size=NSQUARES)

Generate squares
for i in xrange(NSQUARES):
 xindices = range(centers[i][0] - radii[i], centers[i][0] +
radii[i])
 xindices = numpy.clip(xindices, 0, N - 1)
 yindices = range(centers[i][1] - radii[i], centers[i][1] +
radii[i])
 yindices = numpy.clip(yindices, 0, N - 1)

 if len(xindices) == 0 or len(yindices) == 0:
 continue

 coordinates = numpy.meshgrid(xindices, yindices)
 img[coordinates] = colors[i]

Load into memory map
img.tofile('random_squares.raw')
img_memmap = numpy.memmap('random_squares.raw', shape=img.shape)

Display image
matplotlib.pyplot.imshow(img_memmap)
matplotlib.pyplot.axis('off')
matplotlib.pyplot.show()

Audio and Image Processing

100

How it works...
We used the following functions in this recipe:

Function Description
zeros Gives an array filled with zeroes.
random_
integers

Returns an array with random integer values between a high and low
bound.

randint Synonym for random_integers.
clip Clips values of an array, given a minimum and a maximum.
meshgrid Returns coordinate arrays from an array containing x-coordinates, and an

array containing y-coordinates.
tofile Writes an array to a file.
memmap Creates a NumPy memory map from a file given the name of a file.

Optionally, you can specify the shape of the array.
axis Matplotlib function that configures the plot axes. For instance, we can

turn them off.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

Combining images
In this recipe, we will combine the famous Mandelbrot fractal (for more information on
Madelbrot set visit http://en.wikipedia.org/wiki/Mandelbrot_set) and the image
of Lena. These types of fractals are defined by a recursive formula, where you calculate the
next complex number in a series by multiplying the current complex number you have, by itself
and adding a constant to it.

Getting ready
Install SciPy, if necessary. The See Also section of this recipe, has a reference to the
related recipe.

Chapter 5

101

How to do it...
We will start by initializing the arrays, followed by generating and plotting the fractal, and
finally, combining the fractal with the Lena image.

1.	 Initialize the arrays.

We will initialize x, y, and z arrays corresponding to the pixels in the image area with
the meshgrid, zeros, and linspace functions:
x, y = numpy.meshgrid(numpy.linspace
 (x_min, x_max, SIZE),
 numpy.linspace(y_min, y_max, SIZE))
c = x + 1j * y
z = c.copy()
fractal = numpy.zeros
 (z.shape, dtype=numpy.uint8) +
 MAX_COLOR

2.	 Generate the fractal.

If z is a complex number, you have the following relation for a Mandelbrot fractal:

In this equation, c is a constant complex number. This can be graphed in the complex
plane with horizontal real values axis and vertical imaginary values axis. We will use
the so-called "escape time algorithm" to draw the fractal.

The algorithm scans the points in a small region around the origin on a distance of
about two. Each of these points is used as the c value, and is assigned a color based
on the number of iterations it takes to escape the region. If it takes more than a
predefined number of iterations to escape, the pixel gets the default background color.
For more information see the Wikipedia article already mentioned in this recipe:
for n in range(ITERATIONS):
 print n
 mask = numpy.abs(z) <= 4
 z[mask] = z[mask] ** 2 + c[mask]
 fractal[(fractal == MAX_COLOR) &
 (-mask)] = (MAX_COLOR - 1) *
 n / ITERATIONS

Audio and Image Processing

102

3.	 Plot the fractal.

Plot the fractal with Matplotlib:
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(fractal)
matplotlib.pyplot.title('Mandelbrot')
matplotlib.pyplot.axis('off')

4.	 Combine the fractal and Lena.

Use the choose function to pick value from the fractal or Lena array:
matplotlib.pyplot.subplot(212)
matplotlib.pyplot.imshow(numpy.choose
 (fractal < lena, [fractal, lena]))
matplotlib.pyplot.axis('off')
matplotlib.pyplot.title
 ('Mandelbrot + Lena')

The following is the resulting image:

Chapter 5

103

The following is the complete code for this recipe:

import numpy
import matplotlib.pyplot
import sys
import scipy

if(len(sys.argv) != 2):
 print "Please input the number of
 iterations for the fractal"
 sys.exit()

ITERATIONS = int(sys.argv[1])
lena = scipy.misc.lena()
SIZE = lena.shape[0]
MAX_COLOR = 255.
x_min, x_max = -2.5, 1
y_min, y_max = -1, 1

Initialize arrays
x, y = numpy.meshgrid(numpy.linspace
 (x_min, x_max, SIZE),
 numpy.linspace(y_min, y_max, SIZE))
c = x + 1j * y
z = c.copy()
fractal = numpy.zeros(z.shape,
 dtype=numpy.uint8) + MAX_COLOR

Generate fractal
for n in range(ITERATIONS):
 print n
 mask = numpy.abs(z) <= 4
 z[mask] = z[mask] ** 2 + c[mask]
 fractal[(fractal == MAX_COLOR) &
 (-mask)] = (MAX_COLOR - 1) * n / ITERATIONS

Display the fractal
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(fractal)
matplotlib.pyplot.title('Mandelbrot')
matplotlib.pyplot.axis('off')

Combine with lena
matplotlib.pyplot.subplot(212)

Audio and Image Processing

104

matplotlib.pyplot.imshow(numpy.choose
 (fractal < lena, [fractal, lena]))
matplotlib.pyplot.axis('off')
matplotlib.pyplot.title('Mandelbrot + Lena')

matplotlib.pyplot.show()

How it works...
The following functions were used in this example:

Function Description
linspace Returns numbers within a range with a specified interval between them.
choose Creates an array by choosing values from arrays based on a condition.
meshgrid Returns coordinate arrays from an array containing x-coordinates, and an

array containing y-coordinates.

See also
ff The Installing Matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy recipe in Chapter 2, Advanced Indexing and Array Concepts

Blurring images
We can blur images with a Gaussian filter (for more information on Gaussian filter visit
http://en.wikipedia.org/wiki/Gaussian_filter). This filter is based on the normal
distribution. A corresponding SciPy function requires the standard deviation as a parameter.

In this recipe, we will also plot a polar rose and a spiral (for more information on Polar
coordinate system visit http://en.wikipedia.org/wiki/Polar_coordinate_system).
These figures are not directly related, but it seemed more fun to combine them here.

Chapter 5

105

How to do it...
We will start by initializing the polar plots, after which we will blur the Lena image and plot in
the polar coordinates.

1.	 Initialization.

Initialize the polar plots as follows:
NFIGURES = int(sys.argv[1])
k = numpy.random.random_integers
 (1, 5, NFIGURES)
a = numpy.random.random_integers
 (1, 5, NFIGURES)

colors = ['b', 'g', 'r', 'c',
 'm', 'y', 'k']

2.	 Blur Lena.

In order to blur Lena, we will apply the Gaussian filter with standard deviation of four:
matplotlib.pyplot.subplot(212)
blurred = scipy.ndimage.gaussian_filter
 (lena, sigma=4)

matplotlib.pyplot.imshow(blurred)
matplotlib.pyplot.axis('off')

3.	 Plot in polar coordinates.

Matplotlib has a polar function, which plots in polar coordinates:
theta = numpy.linspace
 (0, k[0] * numpy.pi, 200)
matplotlib.pyplot.polar
 (theta, numpy.sqrt(theta), choice(colors))

for i in xrange(1, NFIGURES):
 theta = numpy.linspace
 (0, k[i] * numpy.pi, 200)
 matplotlib.pyplot.polar
 (theta, a[i] * numpy.cos(k[i] *
 theta), choice(colors))

Audio and Image Processing

106

The result will look like the following image:

The following is the complete code for this recipe:

import numpy
import matplotlib.pyplot
from random import choice
import sys
import scipy
import scipy.ndimage

Initialization
NFIGURES = int(sys.argv[1])
k = numpy.random.random_integers
 (1, 5, NFIGURES)
a = numpy.random.random_integers
 (1, 5, NFIGURES)

Chapter 5

107

colors = ['b', 'g', 'r', 'c',
 'm', 'y', 'k']

lena = scipy.misc.lena()
matplotlib.pyplot.subplot(211)
matplotlib.pyplot.imshow(lena)
matplotlib.pyplot.axis('off')

Blur Lena
matplotlib.pyplot.subplot(212)
blurred = scipy.ndimage.gaussian_filter
 (lena, sigma=4)

matplotlib.pyplot.imshow(blurred)
matplotlib.pyplot.axis('off')

Plot in polar coordinates
theta = numpy.linspace(0, k[0] *
 numpy.pi, 200)
matplotlib.pyplot.polar(theta,
 numpy.sqrt(theta), choice(colors))

for i in xrange(1, NFIGURES):
 theta = numpy.linspace(0, k[i] *
 numpy.pi, 200)
 matplotlib.pyplot.polar(theta, a[i] *
 numpy.cos(k[i] * theta), choice(colors))

matplotlib.pyplot.axis('off')

matplotlib.pyplot.show()

How it works...
We made use of the following functions in this tutorial:

Function Description
gaussian_filter Applies a Gaussian filter.
random_integers Returns an array with random integer values between a high and low

bound.
polar Plots a figure using polar coordinates.

Audio and Image Processing

108

Repeating audio fragments
As we saw in Chapter 2, we can do neat things with WAV files. It's just a matter of downloading
the file and loading it with SciPy. Let's download a WAV file and repeat it three times. We will
skip some of the steps that we already saw in Chapter 2.

How to do it...
1.	 Repeating the audio fragment.

Although NumPy has a repeat function, in this case, it is more appropriate to use
the tile function. The repeat function would have the effect of enlarging the array
by repeating individual elements, and not repeating the contents of it.

The following IPython session should clarify the difference between these functions:
In: x = array([1, 2])

In: x

Out: array([1, 2])

In: repeat(x, 3)

Out: array([1, 1, 1, 2, 2, 2])

In: tile(x, 3)

Out: array([1, 2, 1, 2, 1, 2])

Now armed with this knowledge apply the tile function:
repeated = numpy.tile(data, int(sys.argv[1]))

2.	 Plot the audio data.

We can plot the audio data with Matplotlib:
matplotlib.pyplot.title("Repeated")
matplotlib.pyplot.plot(repeated)

Chapter 5

109

The original sound data and the repeated data plots are shown as follows:

The complete code for this recipe is as follows:

import scipy.io.wavfile
import matplotlib.pyplot
import urllib2
import numpy
import sys

response = urllib2.urlopen
 ('http://www.thesoundarchive.com/
 austinpowers/smashingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data =
 scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype,
 "Shape", data.shape

matplotlib.pyplot.subplot(2, 1, 1)

Audio and Image Processing

110

matplotlib.pyplot.title("Original")
matplotlib.pyplot.plot(data)

matplotlib.pyplot.subplot(2, 1, 2)

Repeat the audio fragment
repeated = numpy.tile(data,
 int(sys.argv[1]))

Plot the audio data
matplotlib.pyplot.title("Repeated")
matplotlib.pyplot.plot(repeated)
scipy.io.wavfile.write("repeated_yababy.wav",
 sample_rate, repeated)

matplotlib.pyplot.show()

How it works...
The following are the most important functions in this recipe:

Function Description
scipy.
io.wavfile.read

Reads a WAV file into an array.

numpy.tile Repeats an array a specified number of times.
scipy.
io.wavfile.write

Creates a WAV file out of a NumPy array with a specified sample rate.

Generating sounds
A sound can be represented mathematically by a sine wave, with a certain amplitude,
frequency, and phase. We can randomly select frequencies from a list specified on Wikipedia
at http://en.wikipedia.org/wiki/Piano_key_frequencies that complies
with the following formula:

The variable n in this formula is the number of the piano key. We will number the keys from 1
to 88. We will also select the amplitude, duration, and phase at random.

Chapter 5

111

How to do it...
We will begin by initializing random values, then generate sine waves, compose a melody, and
finally, plot the generated audio data with Matplotlib.

1.	 Initialization.

Initialize to random values:

�� the amplitude between 200 to 2000,

�� the duration to 0.01 to 0.2,

�� the frequencies using the formula already mentioned

�� the phase to values between 0 and 2 pi

�� NTONES = int(sys.argv[1])

amps = 2000. * numpy.random.random
 ((NTONES,)) + 200.
durations = 0.19 * numpy.random.random
 ((NTONES,)) + 0.01
keys = numpy.random.random_integers
 (1, 88, NTONES)
freqs = 440.0 * 2 ** ((keys - 49.)/12.)
phi = 2 * numpy.pi * numpy.random.random
 ((NTONES,))

2.	 Generate sine waves.

Write a generate function to generate sine waves:
def generate(freq, amp, duration, phi):
 t = numpy.linspace
 (0, duration, duration * RATE)
 data = numpy.sin(2 * numpy.pi *
 freq * t + phi) * amp

 return data.astype(DTYPE)

3.	 Compose.

Once we have generated a few tones, we only need to compose a coherent melody.
For now, we will just concatenate the sine waves—this does not give a nice melody,
but could serve as a starting point for more experimenting:
for i in xrange(NTONES):
 newtone = generate(freqs[i], amp=amps[i],
 duration=durations[i], phi=phi[i])
 tone = numpy.concatenate((tone, newtone))

Audio and Image Processing

112

4.	 Plot the data.

Plot the generated audio data with Matplotlib:
matplotlib.pyplot.plot(numpy.linspace
 (0, len(tone)/RATE, len(tone)), tone)
matplotlib.pyplot.show()

The generated audio data plot is shown as follows:

The source code for this example is as follows:

import scipy.io.wavfile
import numpy
import sys
import matplotlib.pyplot

RATE = 44100
DTYPE = numpy.int16

Generate sine wave
def generate(freq, amp, duration, phi):
 t = numpy.linspace
 (0, duration, duration * RATE)
 data = numpy.sin(2 * numpy.pi *
 freq * t + phi) * amp

Chapter 5

113

 return data.astype(DTYPE)

if len(sys.argv) != 2:
 print "Please input the
 number of tones to generate"
 sys.exit()

Initialization
NTONES = int(sys.argv[1])
amps = 2000. * numpy.random.random
 ((NTONES,)) + 200.
durations = 0.19 * numpy.random.random
 ((NTONES,)) + 0.01
keys = numpy.random.random_integers
 (1, 88, NTONES)
freqs = 440.0 * 2 ** ((keys - 49.)/12.)
phi = 2 * numpy.pi * numpy.random.random
 ((NTONES,))

tone = numpy.array([], dtype=DTYPE)

Compose
for i in xrange(NTONES):
 newtone = generate(freqs[i], amp=amps[i],
 duration=durations[i], phi=phi[i])
 tone = numpy.concatenate((tone, newtone))

scipy.io.wavfile.write
 ('generated_tone.wav', RATE, tone)

Plot audio data
matplotlib.pyplot.plot
 (numpy.linspace(0, len(tone)/RATE,
 len(tone)), tone)
matplotlib.pyplot.show()

How it works...
We created a WAV file with randomly generated sounds. The concatenate function was used
to concatenate sine waves.

Audio and Image Processing

114

Designing an audio filter
I remember learning in the Analog Electronics class about all types of filters. Then we actually
constructed these filters. As you can imagine, it's much easier to make a filter in software than
in hardware.

We will build a filter and apply it to an audio fragment that we will download. We have done
some of these steps before in this chapter, so we will leave out those parts.

How to do it...
The iirdesign function, as its name suggests, allows us to construct several types of analog
and digital filters. It can be found in the scipy.signal module. This module contains a
comprehensive list of signal processing functions.

1.	 Design the filter.

Design the filter with iirdesign function of the scipy.signal module.

IIR stands for infinite impulse response; for more information visit Wikipedia at
http://en.wikipedia.org/wiki/Infinite_impulse_response. We
are not going to go into all the details of the iirdesign function. Have a look at
the documentation at http://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.iirdesign.html, if necessary.

In short, we will set the following parameters:

�� Frequencies normalized from 0 to 1

�� Maximum loss

�� Minimum attenuation

�� Filter type

b,a = scipy.signal.iirdesign
 (wp=0.2, ws=0.1, gstop=60,
 gpass=1, ftype='butter')

The configuration of this filter corresponds to a Butterworth bandpass filter
(for more information on Butterworth bandpass filter visit http://en.wikipedia.
org/wiki/Butterworth_filter).

2.	 Apply filter.

We can apply the filter with the scipy.signal.lfilter function. It accepts as
arguments the values from the previous step and of course, the data array to filter:
filtered = scipy.signal.lfilter(b, a, data)

http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html

Chapter 5

115

3.	 Write the new audio file.

When writing the new audio file, we need to make sure that it is of the same data
type as the original data array:
scipy.io.wavfile.write('filtered.wav',
 sample_rate, filtered.astype(data.dtype))

After plotting the original and filtered data, we get the following plot:

The code for the audio filter is as follows:

import scipy.io.wavfile
import matplotlib.pyplot
import urllib2
import scipy.signal

response = urllib2.urlopen
 ('http://www.thesoundarchive.com/austinpowers/
 smashingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()

Audio and Image Processing

116

sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype, "Shape", data.shape

matplotlib.pyplot.subplot(2, 1, 1)
matplotlib.pyplot.title("Original")
matplotlib.pyplot.plot(data)

Design the filter
b,a = scipy.signal.iirdesign
 (wp=0.2, ws=0.1, gstop=60, gpass=1, ftype='butter')

Filter
filtered = scipy.signal.lfilter(b, a, data)

Plot filtered data
matplotlib.pyplot.subplot(2, 1, 2)
matplotlib.pyplot.title("Filtered")
matplotlib.pyplot.plot(filtered)

scipy.io.wavfile.write('filtered.wav', sample_rate,
 filtered.astype(data.dtype))

matplotlib.pyplot.show()

How it works...
We created and applied a Butterworth bandpass filter. The following functions were introduced
to create the filter:

Function Description
scipy.signal.
iirdesign

Creates an IIR digital or analog filter. This function has an extensive
parameter list, which is documented at http://docs.scipy.
org/doc/scipy/reference/generated/scipy.signal.
iirdesign.html.

scipy.signal.
lfilter

Filters an array given a digital filter.

Chapter 5

117

Edge detection with the Sobel filter
The Sobel operator (for more information on Sobel operator visit http://en.wikipedia.
org/wiki/Sobel_operator) can be used for edge detection in images. The edge detection
is based on performing a discrete differentiation on the image intensity. Because an image
is two-dimensional, the gradient also has two components; unless we limit ourselves to one
dimension, of course. We will apply the Sobel filter to the picture of Lena Soderberg.

How to do it...
In this section, we will learn how to apply the Sobel filter to detect edges in the Lena image.

1.	 Apply the Sobel filter in the x direction.

To apply the Sobel filter in the x direction, we need to set the axis parameter to 0:
sobelx = scipy.ndimage.sobel
 (lena, axis=0, mode='constant')

2.	 Apply the Sobel filter in the y direction.

To apply the Sobel filter in the y direction, we need to set the axis parameter to 1:
sobely = scipy.ndimage.sobel
 (lena, axis=1, mode='constant')

3.	 Apply the default Sobel filter.

The default Sobel filter only requires the input array:
default = scipy.ndimage.sobel(lena)

The original and resulting image plots showing edge detection with the Sobel filter:

Audio and Image Processing

118

The complete edge detection code is as follows:

import scipy
import scipy.ndimage
import matplotlib.pyplot

lena = scipy.misc.lena()

matplotlib.pyplot.subplot(221)
matplotlib.pyplot.imshow(lena)
matplotlib.pyplot.title('Original')
matplotlib.pyplot.axis('off')

Sobel X filter
sobelx = scipy.ndimage.sobel
 (lena, axis=0, mode='constant')

matplotlib.pyplot.subplot(222)
matplotlib.pyplot.imshow(sobelx)
matplotlib.pyplot.title('Sobel X')
matplotlib.pyplot.axis('off')

Sobel Y filter
sobely = scipy.ndimage.sobel
 (lena, axis=1, mode='constant')

matplotlib.pyplot.subplot(223)
matplotlib.pyplot.imshow(sobely)
matplotlib.pyplot.title('Sobel Y')
matplotlib.pyplot.axis('off')

Default Sobel filter
default = scipy.ndimage.sobel(lena)

matplotlib.pyplot.subplot(224)
matplotlib.pyplot.imshow(default)
matplotlib.pyplot.title('Default Filter')
matplotlib.pyplot.axis('off')

matplotlib.pyplot.show()

Chapter 5

119

How it works...
We applied the Sobel filter to the picture of the famous Playboy model Lena Soderberg. As we
saw in this example, we can specify the axis along which to do the computation. The default
setting is axis independent.

6
Special Arrays and

Universal Functions

In this chapter, we will cover the following topics:

ff Creating a universal function

ff Finding Pythagorean triples

ff Performing string operations with chararray

ff Creating a masked array

ff Ignoring negative and extreme values

ff Creating a scores table with recarray

Introduction
This chapter is about special arrays and universal functions. These are topics that you may
not encounter every day, but are still important enough to mention here. Universal functions
(Ufuncs) work on arrays, element-by-element, or on scalars. Ufuncs accept a set of scalars
as input, and produce a set of scalars as output. Universal functions can typically be mapped
to mathematical counterparts, such as add, subtract, divide, multiply, and so on. The special
arrays mentioned here, are all subclassed from the basic NumPy array object, and offer
additional functionality.

Creating a universal function
We can create a universal function from a Python function with the NumPy
frompyfunc function.

Special Arrays and Universal Functions

122

How to do it...
The following steps let us create a universal function:

1.	 Define the Python function.

Let's define a simple Python function that just doubles the input:
def double(a):
 return 2 * a

2.	 Create the universal function.

Create the universal function with frompyfunc. We need to specify the number of
input arguments and the number of objects returned:
import numpy

def double(a):
 return 2 * a

ufunc = numpy.frompyfunc(double, 1, 1)
print "Result", ufunc(numpy.arange(4))

The code prints the following output, when executed:
Result [0 2 4 6]

How it works...
We defined a Python function, which doubles the numbers it receives. Actually, we could also
have strings as input, because that is legal in Python. We created a universal function from
this Python function with the NumPy frompyfunc function.

Finding Pythagorean triples
For this tutorial you may need to read the Wikipedia page about Pythagorean triple
(for more information on Pythagorean triple visit http://en.wikipedia.org/wiki/
Pythagorean_triple). Pythagorean triples are closely related to the Pythagorean Theorem,
which you probably have learned about in high school geometry.

Pythagorean triples represent the three sides of a right triangle, and therefore, obey the
Pythagorean Theorem. Let's find the Pythagorean triple that has a components sum of 1000.
We will do this using Euclid's formula:

Chapter 6

123

In this example we will see some universal functions in action.

How to do it...
The Euclid's formula defines indices m and n.

1.	 Create m and n arrays.

We will create arrays to hold these indices:

m = numpy.arange(33)
n = numpy.arange(33)

2.	 Calculate a, b, and c of the Pythagorean triple.

The second step is to calculate a, b, and c of the Pythagorean triple using Euclid's
formula. Use the outer function to get the Cartesian products, difference, and sums
we require:

a = numpy.subtract.outer(m ** 2, n ** 2)
b = 2 * numpy.multiply.outer(m, n)
c = numpy.add.outer(m ** 2, n ** 2)

3.	 Find the index.

At this point, we have a number of arrays containing a, b and c values. However, we
still need to find the values that conform to the problem's condition. Find the index of
those values with the NumPy where function:

idx = numpy.where((a + b + c) == 1000)

4.	 Check the solution.

Check the solution with the numpy.testing module:
numpy.testing.assert_equal
 (a[idx]**2 + b[idx]**2, c[idx]**2)

The following is the complete code:

import numpy
import numpy.testing

#A Pythagorean triplet is a set of three natural numbers, a < b < c,
for which,
#a ** 2 + b ** 2 = c ** 2
#
#For example, 32 + 42 = 9 + 16 = 25 = 52.
#

Special Arrays and Universal Functions

124

#There exists exactly one Pythagorean triplet for which a + b + c =
1000.
#Find the product abc.

#1. Create m and n arrays
m = numpy.arange(33)
n = numpy.arange(33)

#2. Calculate a, b and c
a = numpy.subtract.outer(m ** 2, n ** 2)
b = 2 * numpy.multiply.outer(m, n)
c = numpy.add.outer(m ** 2, n ** 2)

#3. Find the index
idx = numpy.where((a + b + c) == 1000)

#4. Check solution
numpy.testing.assert_equal
 (a[idx]**2 + b[idx]**2, c[idx]**2)
print a[idx] * b[idx] * c[idx]

How it works...
Universal functions are not really functions, but objects representing functions. Ufuncs have
the outer method, which we saw in action just now. Many of the NumPy standard universal
functions are implemented in C, and are, therefore, faster than regular Python code. Ufuncs
support element-by-element processing and type casting, which in practice means less loops.

Performing string operations with chararray
NumPy has a specialized chararray object, which can hold strings. It is a subclass of
ndarray, and has special string methods. We will download a text from the Python website
and use those methods. The advantages of chararray over a normal array of strings are as
follows:

ff Whitespace of array elements is automatically trimmed on indexing

ff Whitespace at the ends of strings is also trimmed by comparison operators

ff Vectorized string operations are available, so loops are not needed

Chapter 6

125

How to do it...
Let's create the character array.

1.	 Create the character array.

We can create the character array as a view:
carray = numpy.array(html).view(numpy.chararray)

2.	 Expand tabs to spaces.

Expand tabs to spaces with the expandtabs function. This function accepts the tab
size as argument. The value is 8, if not specified:
carray = carray.expandtabs(1)

3.	 Split lines.

The splitlines function can split a string into separate lines:
carray = carray.splitlines()

The following is the complete code for this example:

import urllib2
import numpy
import re

response = urllib2.urlopen('http://python.org/')
html = response.read()
html = re.sub(r'<.*?>', '', html)
carray = numpy.array(html).view(numpy.chararray)
carray = carray.expandtabs(1)
carray = carray.splitlines()
print carray

How it works...
In this example, we saw the specialized chararray class in action. It offers several
vectorized string operations and convenient behavior regarding whitespace.

Creating a masked array
Masked arrays can be used to ignore missing or invalid data items. A MaskedArray function
from the numpy.ma module is a subclass of ndarray, with a mask. In this recipe, we will use
the Lena Soderberg image as data source, and pretend that some of this data is corrupt. At
the end, we will plot the original image, log values of the original image, the masked array, and
log values thereof.

Special Arrays and Universal Functions

126

How to do it...
Let's create the masked array.

1.	 Create the masked array.

In order to create a masked array, we need to specify a mask. Let's create a random
mask. This mask has values, which are either zero or one:
random_mask = numpy.random.randint
 (0, 2, size=lena.shape)

2.	 Create a masked array.

Using the mask in the previous step, create a masked array:
masked_array = numpy.ma.array
 (lena, mask=random_mask)

The following is the complete code for this masked array tutorial:

import numpy
import scipy
import matplotlib.pyplot

lena = scipy.misc.lena()
random_mask = numpy.random.randint
 (0, 2, size=lena.shape)

matplotlib.pyplot.subplot(221)
matplotlib.pyplot.title("Original")
matplotlib.pyplot.imshow(lena)
matplotlib.pyplot.axis('off')

masked_array = numpy.ma.array
 (lena, mask=random_mask)
print masked_array

matplotlib.pyplot.subplot(222)
matplotlib.pyplot.title("Masked")
matplotlib.pyplot.imshow(masked_array)
matplotlib.pyplot.axis('off')

matplotlib.pyplot.subplot(223)
matplotlib.pyplot.title("Log")
matplotlib.pyplot.imshow(numpy.log(lena))
matplotlib.pyplot.axis('off')

Chapter 6

127

matplotlib.pyplot.subplot(224)
matplotlib.pyplot.title("Log Masked")
matplotlib.pyplot.imshow(numpy.log(masked_array))
matplotlib.pyplot.axis('off')

matplotlib.pyplot.show()

The resulting images are shown in the following screenshot:

How it works...
We applied a random mask to NumPy arrays. This had the effect of ignoring the data
corresponding to the mask. There is a whole range of masked array operations to be found in
the numpy.ma module. In this tutorial, we only demonstrated how to create a masked array.

Special Arrays and Universal Functions

128

Ignoring negative and extreme values
Masked arrays are useful when we want to ignore negative values, for instance, when taking
the logarithm of array values. Another use case for masked arrays is excluding extreme
values. This works based on an upper and lower bound for extreme values.

In this tutorial, we will apply these techniques to stock price data. We will skip the steps for
downloading data, as they are repeated in previous chapters.

How to do it...
We will take the logarithm of an array that contains negative numbers.

1.	 Take the logarithm of negative numbers.

First, let's create an array containing numbers divisible by three:
triples = numpy.arange(0, len(close), 3)
print "Triples", triples[:10], "..."

Next, we will create an array with the ones that have the same size as the price
data array:
signs = numpy.ones(len(close))
print "Signs", signs[:10], "..."

We will set each third number to be negative, with the help of indexing tricks we
learned about in Chapter 2, Advanced Indexing and Array Concepts.
signs[triples] = -1
print "Signs", signs[:10], "..."

Finally, we will take the logarithm of this array:
ma_log = numpy.ma.log(close * signs)
print "Masked logs", ma_log[:10], "..."

This should print the following output for AAPL:
Triples [0 3 6 9 12 15 18 21 24 27] ...

Signs [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] ...

Signs [-1. 1. 1. -1. 1. 1. -1. 1. 1. -1.] ...

Masked logs [-- 5.93655586575 5.95094223368 -- 5.97468290742
5.97510711452 --

 6.01674381162 5.97889061623 --] ...

Chapter 6

129

2.	 Ignoring extreme values.

Let's define extreme values as being below one standard deviation of the mean, or
one standard deviation above the mean. This definition leads us to write the following
code, which will mask extreme values:
dev = close.std()
avg = close.mean()
inside = numpy.ma.masked_outside
 (close, avg - dev, avg + dev)
print "Inside", inside[:10], "..."

This code prints for the first ten elements:
Inside [-- -- -- -- -- -- 409.429675172
 410.240597855 -- --] ...

Let's plot the original price data, the data after taking the logarithm, and the
exponent back again, and finally the data after applying the standard deviation based
mask. The result will be as shown in the following screenshot:

The complete program for this tutorial is as follows:

import numpy
from matplotlib.finance
import quotes_historical_yahoo
from datetime import date

Special Arrays and Universal Functions

130

import sys
import matplotlib.pyplot

def get_close(ticker):
 today = date.today()
 start = (today.year - 1,
 today.month, today.day)

 quotes = quotes_historical_yahoo
 (ticker, start, today)

 return numpy.array(
 [q[4] for q in quotes])

close = get_close(sys.argv[1])

triples = numpy.arange(0, len(close), 3)
print "Triples", triples[:10], "..."

signs = numpy.ones(len(close))
print "Signs", signs[:10], "..."

signs[triples] = -1
print "Signs", signs[:10], "..."

ma_log = numpy.ma.log(close * signs)
print "Masked logs", ma_log[:10], "..."

dev = close.std()
avg = close.mean()
inside = numpy.ma.masked_outside
 (close, avg - dev, avg + dev)
print "Inside", inside[:10], "..."

matplotlib.pyplot.subplot(311)
matplotlib.pyplot.title("Original")
matplotlib.pyplot.plot(close)

matplotlib.pyplot.subplot(312)
matplotlib.pyplot.title("Log Masked")
matplotlib.pyplot.plot(numpy.exp(ma_log))

matplotlib.pyplot.subplot(313)
matplotlib.pyplot.title("Not Extreme")
matplotlib.pyplot.plot(inside)

matplotlib.pyplot.show()

Chapter 6

131

How it works...
Functions in the numpy.ma module mask array elements, which we regard as illegal. For
instance, negative values are not allowed for the log and sqrt functions. A masked value is
like a NULL value in databases and programming. All operations with a masked value result in
a masked value.

Creating a scores table with recarray
The recarray class is a subclass of ndarray. They can hold records like in a database,
with different data types. For instance, we can store records about employees, containing
numerical data such as salary, and strings such as the employee name.

Modern economic theory tells us that an investing boils down to optimizing risk and
reward. Risk is represented by the standard deviation of log returns (for more information
on Arithmetic and logarithmic return visit http://en.wikipedia.org/wiki/Rate_
of_return#Arithmetic_and_logarithmic_return). Reward on the other hand, is
represented by the average of log returns. We can come up with a relative score, where a high
score means low risk and high reward. We will calculate the scores for several stocks and store
them together with the stock symbol using a table format in a NumPy recarray function.

How to do it...
We will start by creating the record array.

1.	 Create the record array.

Create a record array with for each record a symbol, standard deviation score, mean
score, and overall score:
weights = numpy.recarray((len(tickers),),
 dtype=[('symbol', numpy.str_, 16),
 ('stdscore', float), ('mean', float),
 ('score', float)])

2.	 Initialize the scores.

To keep things simple, we will initialize the scores in a loop based on the log returns:
for i in xrange(len(tickers)):
 close = get_close(tickers[i])
 logrets = numpy.diff
 (numpy.log(close))
 weights[i]['symbol'] =
 tickers[i]
 weights[i]['mean'] =
 logrets.mean()

Special Arrays and Universal Functions

132

 weights[i]['stdscore'] =
 1/logrets.std()
 weights[i]['score'] = 0

As you can see, we can access elements using the field names we defined in the
previous step.

3.	 Normalize the scores.

We now have some numbers, but they are not easy to compare with each other.
Normalize the scores, so that we can combine them later. Here, normalizing means
making sure that the scores add up to one:

for key in ['mean', 'stdscore']:
 wsum = weights[key].sum()
 weights[key] = weights[key]/wsum

4.	 Calculate the overall score and sort it.

The overall score will just be the average of the intermediate scores. Sort the records
on the overall score to produce a ranking:
weights['score'] = (weights
 ['stdscore'] + weights['mean'])/2
weights['score'].sort()

The following is the complete code for this example:

import numpy
from matplotlib.finance
import quotes_historical_yahoo
from datetime import date

DJIA stock with div yield > 4 %
tickers = ['MRK', 'T', 'VZ']

def get_close(ticker):
 today = date.today()
 start = (today.year - 1,
 today.month, today.day)

 quotes = quotes_historical_yahoo
 (ticker, start, today)

 return numpy.array
 ([q[4] for q in quotes])

Chapter 6

133

weights = numpy.recarray((len(tickers),),
 dtype=[('symbol', numpy.str_, 16),
 ('stdscore', float), ('mean', float),
 ('score', float)])

for i in xrange(len(tickers)):
 close = get_close(tickers[i])
 logrets = numpy.diff(numpy.log(close))
 weights[i]['symbol'] = tickers[i]
 weights[i]['mean'] = logrets.mean()
 weights[i]['stdscore'] = 1/logrets.std()
 weights[i]['score'] = 0

for key in ['mean', 'stdscore']:
 wsum = weights[key].sum()
 weights[key] = weights[key]/wsum

weights['score'] = (weights['stdscore'] +
 weights['mean'])/2
weights['score'].sort()

for record in weights:
 print "%s,mean=%.4f,stdscore=%.4f,
 score=%.4f" % (record['symbol'],
 record['mean'], record['stdscore'],
 record['score'])

This program produces the following output:

MRK,mean=0.1862,stdscore=0.2886,score=0.2374

T,mean=0.3570,stdscore=0.3556,score=0.3563

VZ,mean=0.4569,stdscore=0.3557,score=0.4063

How it works...
We computed scores for several stocks, and stored them in a NumPy recarray object. This
array enables us to mix data of different data types, in this case, stock symbols and numerical
scores. Record arrays allow us to access fields as array members, for example, arr.field.
This tutorial covered the creation of a record array. More record array related functions can be
found in the numpy.recarray module.

7
Profiling and Debugging

In this chapter, we will cover:

ff Profiling with timeit

ff Profiling with IPython

ff Installing line_profiler

ff Profiling code with line_profiler

ff Profiling code with the cProfile extension

ff Debugging with IPython

ff Debugging with pudb

Introduction
Debugging is the act of finding and removing bugs in software. Profiling is about building
a profile of a software program in order to collect information about memory usage or time
complexity. Profiling and debugging are activities that are an integral part of the life of a
developer. This is especially true for non-trivial software. The good news is that there are
lots of tools to help you. We will review a number of techniques that are popular amongst
NumPy users.

Profiling with timeit
timeit is a module that allows you to time pieces of code. It is part of the standard Python
library. We will time the NumPy sort function with several different array sizes. The classic
quicksort and merge sort algorithms have an average running time of O(nlogn); so we will
try to fit our result to such a model.

Profiling and Debugging

136

How to do it...
We will require arrays to sort.

1.	 Create arrays to sort.

We will create arrays of varying sizes containing random integer values:
times = numpy.array([])

for size in sizes:
 integers = numpy.random.random_integers
 (1, 10 ** 6, size)

2.	 Measure time.

In order to measure time, we need to create a timer and give it a function to execute
and specify the relevant imports. After that, sort 100 times to get some data about
the sorting times:
def measure():
 timer = timeit.Timer('dosort()',
 'from __main__ import dosort')

 return timer.timeit(10 ** 2)

3.	 Build measurement time arrays.

Build the measurement time arrays by appending times one by one:
times = numpy.append
 (times, measure())

4.	 Fit to nlogn.

Fit the times to the theoretical model of nlogn. Because we are varying the array size
as powers of two, this is easy:
fit = numpy.polyfit(sizes * powersOf2,
 times, 1)

Chapter 7

137

The following is the complete timing code:

import numpy
import timeit
import matplotlib.pyplot

This program measures the performance of the NumPy sort function
and plots time vs array size.
integers = []
def dosort():
 integers.sort()

def measure():
 timer = timeit.Timer('dosort()', '
 from __main__ import dosort')

 return timer.timeit(10 ** 2)

powersOf2 = numpy.arange(0, 19)
sizes = 2 ** powersOf2

times = numpy.array([])

for size in sizes:
 integers = numpy.random.random_integers
 (1, 10 ** 6, size)
 times = numpy.append(times, measure())

fit = numpy.polyfit(sizes * powersOf2, times, 1)
print fit
matplotlib.pyplot.title
 ("Sort array sizes vs execution times")
matplotlib.pyplot.xlabel("Size")
matplotlib.pyplot.ylabel("(s)")
matplotlib.pyplot.semilogx(sizes, times, 'ro')
matplotlib.pyplot.semilogx(sizes,
 numpy.polyval(fit, sizes * powersOf2))
matplotlib.pyplot.show()

Profiling and Debugging

138

The resulting plot for the running time versus array size is shown in the following screenshot:

How it works...
We measured the average running time of the NumPy sort function. The following functions
were used in this recipe:

Function Description
random_integers Creates an array of random integers given a range for the

values and array size.
append Appends a value to a NumPy array.
polyfit Fits data to a polynomial of a given degree.
polyval Evaluates a polynomial and returns the corresponding value

for a certain "x" value.
semilogx Plots data using logarithmic scale on the X-axis.

Chapter 7

139

Profiling with IPython
In IPython, we can profile small snippets of code using timeit. We can also profile a larger
script. We will show both approaches.

How to do it...
First, we will time a small snippet.

1.	 Timing a snippet.

Start IPython in pylab mode:
ipython -pylab

Create an array containing 1000 integer values between 0 and 1000:
In [1]: a = arange(1000)

Measure the time taken for searching "the answer to everything"—42, in the
array. Yes, the answer to everything is 42. If you don't believe me please read
http://en.wikipedia.org/wiki/42_%28number%29.
In [2]: %timeit searchsorted(a, 42)
100000 loops, best of 3: 7.58 us per loop

2.	 Profile a script.

We will profile this small script that inverts a matrix of varying size containing random
values. The .I attribute (that's uppercase I) of a NumPy array represents the inverse
of a matrix:
import numpy

def invert(n):
 a = numpy.matrix(numpy.random.
 rand(n, n))
 return a.I

sizes = 2 ** numpy.arange(0, 12)

for n in sizes:
 invert(n)

Profiling and Debugging

140

We can time this as follows:
In [1]: %run -t invert_matrix.py

IPython CPU timings (estimated):

 User : 6.08 s.

 System : 0.52 s.

Wall time: 19.26 s.

Then we can profile the script with the p option:
In [2]: %run -p invert_matrix.py

852 function calls in 6.597 CPU seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)

 12 3.228 0.269 3.228 0.269 {numpy.linalg.
lapack_lite.dgesv}

 24 2.967 0.124 2.967 0.124 {numpy.core.
multiarray._fastCopyAndTranspose}

 12 0.156 0.013 0.156 0.013 {method 'rand' of
'mtrand.RandomState' objects}

 12 0.087 0.007 0.087 0.007 {method 'copy' of
'numpy.ndarray' objects}

 12 0.069 0.006 0.069 0.006 {method 'astype' of
'numpy.ndarray' objects}

 12 0.025 0.002 6.304 0.525 linalg.py:404(inv)

 12 0.024 0.002 6.328 0.527 defmatrix.
py:808(getI)

 1 0.017 0.017 6.596 6.596 invert_matrix.
py:1(<module>)

 24 0.014 0.001 0.014 0.001 {numpy.core.
multiarray.zeros}

 12 0.009 0.001 6.580 0.548 invert_matrix.
py:3(invert)

Chapter 7

141

 12 0.000 0.000 6.264 0.522 linalg.py:244(solve)

 12 0.000 0.000 0.014 0.001 numeric.
py:1875(identity)

 1 0.000 0.000 6.597 6.597 {execfile}

 36 0.000 0.000 0.000 0.000 defmatrix.py:279(__
array_finalize__)

 12 0.000 0.000 2.967 0.247 linalg.py:139(_
fastCopyAndTranspose)

 24 0.000 0.000 0.087 0.004 defmatrix.py:233(__
new__)

 12 0.000 0.000 0.000 0.000 linalg.py:99(_
commonType)

 24 0.000 0.000 0.000 0.000 {method '__array_
prepare__' of 'numpy.ndarray' objects}

 36 0.000 0.000 0.000 0.000 linalg.py:66(_
makearray)

 36 0.000 0.000 0.000 0.000 {numpy.core.
multiarray.array}

 12 0.000 0.000 0.000 0.000 {method 'view' of
'numpy.ndarray' objects}

 12 0.000 0.000 0.000 0.000 linalg.py:127(_to_
native_byte_order)

 1 0.000 0.000 6.597 6.597 interactiveshell.
py:2270(safe_execfile)

How it works...
We run the aforementioned NumPy code through a profiler. The following table summarizes
the profiler output:

Column Description
ncalls Number of calls.
tottime Total time spent in a function.
percall Time per call, calculate by dividing the total time by the calls count.
cumtime Cumulative time spent in function and functions called by the

function, including recursive calls.

Profiling and Debugging

142

Installing line_profiler
line_profiler was created by one of the NumPy developers. This module does line-by-line
profiling of Python code. We will describe the necessary installation steps in this recipe.

Getting ready
You might need to install setuptools. This is covered in a previous recipe; refer to the See
Also section if necessary. In order to install the development version, you will need Mercurial.
Installing Mercurial is outside the scope of this book. Steps to install Mercurial can be found
at http://mercurial.selenic.com/wiki/Download.

How to do it...
Choose the install option appropriate for you:

ff Install with easy_install.

You can install line_profiler with easy_install by using any one of the
following commands:

easy_install line_profiler

pip install line_profiler

ff Install development version.

We can check out the source with Mercurial:
$ hg clone https://bitbucket.org/robertkern/line_profiler

After checking out the source, we can build it as follows:
$ python setup.py install

See also
ff The Installing IPython recipe in Chapter 1, Winding Along with IPython

Chapter 7

143

Profiling code with line_profiler
Now that we installed line_profiler, we can start profiling.

How to do it...
Obviously, we will need some code to profile.

1.	 Write code to profile.

We will write code to multiply a random matrix of varying size with itself. Also, the thread
will sleep for a few seconds. The function to profile will be annotated with @profile:
import numpy
import time

@profile
def multiply(n):
 A = numpy.random.rand(n, n)
 time.sleep(numpy.random.randint(0, 2))
 return numpy.matrix(A) ** 2

for n in 2 ** numpy.arange(0, 10):
 multiply(n)

2.	 Profile the code.

Run the profiler with the following command:
$ kernprof.py -l -v mat_mult.py

Wrote profile results to mat_mult.py.lprof

Timer unit: 1e-06 s

File: mat_mult.py

Function: multiply at line 4

Total time: 3.19654 s

Profiling and Debugging

144

Line # Hits Time Per Hit % Time Line Contents

==

 4 @profile

 5 def multiply(n):

 6 10 13461 1346.1 0.4 A = numpy.
random.rand(n, n)

 7 10 3000689 300068.9 93.9 time.
sleep(numpy.random.randint(0, 2))

 8 10 182386 18238.6 5.7 return numpy.
matrix(A) ** 2

How it works...
The @profile decorator tells line_profiler which functions to profile. The following table
explains the output of the profiler:

Column Description
Line # The line number in the file.
Hits The number of times the line was executed.
Time Time spent executing the line.
Per Hit Average time spent executing the line.
% Time Percentage of time spent executing the line relative

to the time spent executing all the lines.
Line Contents The contents of the line.

Profiling code with the cProfile extension
cProfile is a C extension introduced in Python 2.5. It can be used for deterministic profiling.
Deterministic profiling means that the time measurements are precise, and no sampling
is used. Contrast this with statistical profiling, where measurements come from random
samples. We will profile a small NumPy program, using cProfile that transposes an array
with random values.

Chapter 7

145

How to do it...
Again we require code to profile.

1.	 Write the code to profile.

We will write the transpose function that creates the array with random values and
transposes it:
def transpose(n):
 random_values = numpy.random.random((n, n))
 return random_values.T

2.	 Run the profiler.

Run the profiler and give it the function to profile:
cProfile.run('transpose(%d)' %(int(sys.argv[1])))

The complete code for this tutorial can be found in the following snippet:
import numpy
import cProfile
import sys

def transpose(n):
 random_values = numpy.random.random((n, n))
 return random_values.T

cProfile.run('transpose(%d)' %(int(sys.argv[1])))

For a 1000-by-1000 array, we get the following output:
4 function calls in 0.029 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall
filename:lineno(function)

 1 0.001 0.001 0.029 0.029 <string>:1(<module>)

 1 0.000 0.000 0.028 0.028 cprofile_transpose.
py:5(transpose)

 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

 1 0.028 0.028 0.028 0.028 {method 'random_
sample' of 'mtrand.RandomState' objects}

The columns in the output are the same as in the IPython profiling recipe.

Profiling and Debugging

146

Debugging with IPython
Debugging is one of those things nobody really likes, but is very important to master. It can
take hours, and because of Murphy's law, you most likely, don't have that time. Therefore, it
is important to be systematic and know your tools well. After you are done finding the bug
and implementing a fix, you should have a test in place. This way at least you will not have
to go through the hell of debugging again. Unit testing is covered in the next chapter. We will
debug the following buggy code, which tries to access an array element that is not present:

import numpy

a = numpy.arange(7)
print a[8]

The IPython debugger works as the normal Python pdb debugger; it adds features such as tab
completion and syntax highlighting.

How to do it...
The following steps illustrate a typical debugging session:

1.	 Run the buggy script in IPython.

Start the IPython shell. Run the buggy script in IPython by issuing the
following command:
In [1]: %run buggy.py

--

IndexError Traceback (most recent
call last)

.../site-packages/IPython/utils/py3compat.pyc in execfile(fname,
*where)

 173 else:

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

.../buggy.py in <module>()

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

IndexError: index out of bounds

Chapter 7

147

2.	 Start the debugger.

Now that our program has crashed, we can start the debugger. This will set a
breakpoint on the line where the error occurred:
In [2]: %debug

> .../buggy.py(4)<module>()

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

3.	 List code.

We can list code with the list command, or use the shorthand l:
ipdb> list

 1 import numpy

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

4.	 Evaluate the code at the current line.

We can now evaluate arbitrary code at the current line, the line to which the debugger
is currently pointing:
ipdb> len(a)

7

ipdb> print a

[0 1 2 3 4 5 6]

5.	 View the call stack.

The call stack is a stack containing information about active functions of a running
program. We can view the call stack with the bt command:
ipdb> bt

 .../py3compat.py(175)execfile()

 171 if isinstance(fname, unicode):

 172 filename = fname.encode(sys.
getfilesystemencoding())

 173 else:

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

> .../buggy.py(4)<module>()

 0 print a[8]

Profiling and Debugging

148

Move up the call stack:
ipdb> u

> .../site-packages/IPython/utils/py3compat.py(175)execfile()

 173 else:

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

Move down the call stack:
ipdb> d

> .../buggy.py(4)<module>()

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

How to do it...
In this tutorial, we saw how to debug a NumPy program using IPython. We set a breakpoint
and navigated the call stack. The following debugger commands were used:

Command Description
list or l Lists source code.
bt Shows call stack.
u Moves up a call stack.
d Moves down a call stack.

Debugging with pudb
Pudb is a visual full-screen, console-based Python debugger that is easy to install. Pudb
supports cursor keys and vi commands. The debugger can also be integrated with IPython,
if required.

How to do it...
We'll start with the installation of pudb.

1.	 Installing pudb.

In order to install pudb, we only need to execute the following command:
sudo easy_install pudb

Chapter 7

149

2.	 Starting the debugger.

Let's debug the buggy program from the previous example. We can start the
debugger as follows:
python -m pudb buggy.py

The user interface of the debugger is shown in the following screenshot:

The screenshot shows the most important debugging commands at the top. We can also see
the code being debugged, variables, the stack, and the defined breakpoints. Typing q exits most
menus. Typing n moves the debugger to the next line. We can also move with the cursor keys or
vi j and k keys to, for instance, set a breakpoint by typing b.

8
Quality Assurance

In this chapter, we will cover the following topics:

ff Installing Pyflakes

ff Performing static analysis with Pyflakes

ff Analyzing code with Pylint

ff Performing static analysis with Pychecker

ff Testing code with docstrings

ff Writing unit tests

ff Testing code with mocks

ff Testing the BDD way

Introduction
Quality assurance, contrary to popular belief, is not so much about finding bugs as it is about
preventing them. We will discuss two ways to improve the code quality, thereby preventing
issues. First, we will do static analysis of already existing code. Second, we will cover unit
testing; this includes mocking and Behavior Driven Development (BDD).

Installing Pyflakes
Pyflakes is a Python code analysis package. It can analyze your code, and spot potential
problems such as:

ff Unused imports

ff Unused variables

Quality Assurance

152

Getting ready
Install pip or easy_install, if necessary.

How to do it...
Choose one of the following listed options to install pyflakes:

ff Installing with pip.

We can install pyflakes with the pip command:
sudo pip install pyflakes

ff Installing with easy_install.

We can install pyflakes with the easy_install command:
sudo easy_install pyflakes

ff Installing on Linux.

The Linux package name is pyflakes as well. For instance, on Red Hat do
the following:
sudo yum install pyflakes

On Debian/Ubuntu, the command is:
sudo apt-get install pyflakes

Performing static analysis with Pyflakes
We will perform static analysis of a part of the NumPy codebase. In order to do this,
we will check out the code using Git. We will then run static analysis on part of the code
using pyflakes.

How to do it...
1.	 Check out the code.

To check out the NumPy code, we will need Git. Installing Git is outside the scope of
this book. The Git command to retrieve the code is as follows:
git clone git://github.com/numpy/numpy.git numpy

Alternatively, we can download a zip archive from
https://github.com/numpy/numpy.

https://github.com/numpy/numpy
https://github.com/numpy/numpy

Chapter 8

153

2.	 Analyze the code.

The previous step should have created a numpy directory with all the NumPy code.
Go to this directory, and within it run the following command:
$ pyflakes *.py

pavement.py:71: redefinition of unused 'md5' from line 69

pavement.py:88: redefinition of unused 'GIT_REVISION' from line 86

pavement.py:314: 'virtualenv' imported but unused

pavement.py:315: local variable 'e' is assigned to but never used

pavement.py:380: local variable 'sdir' is assigned to but never
used

pavement.py:381: local variable 'bdir' is assigned to but never
used

pavement.py:536: local variable 'st' is assigned to but never used

setup.py:21: 're' imported but unused

setup.py:27: redefinition of unused 'builtins' from line 25

setup.py:124: redefinition of unused 'GIT_REVISION' from line 118

setupegg.py:17: 'setup' imported but unused

setupscons.py:61: 'numpy' imported but unused

setupscons.py:64: 'numscons' imported but unused

setupsconsegg.py:6: 'setup' imported but unused

This will run analysis on the code style, and check for PEP-8 violations in all
the Python scripts within the current directory. You can also analyze a single
file if you prefer.

How it works...
As you can see, it is pretty simple to analyze code style and look for PEP-8 violations with
Pyflakes. The other advantage is speed; however, the number of error types that Pyflakes
reports is pretty limited.

Analyzing code with Pylint
Pylint is another open source static analyzer originally created by Logilab. Pylint is more
complex than Pyflakes; it allows more customization. However, it is slower than Pyflakes. For
more information check out http://www.logilab.org/card/pylint_manual.

In this recipe, we will again download the NumPy code from the Git repository—this step is
omitted for brevity.

Quality Assurance

154

Getting ready
You can install Pylint from the source distribution. However, there are many dependencies, so
you are better off installing with either easy_install, or pip. The installation commands
are as follows:

easy_install pylint

sudo pip install pylint

How to do it...
We will again analyze from the top directory of the NumPy codebase. Please notice that we
are getting much more output. In fact, Pylint prints so much text that most of it had to be cut
out here:

pylint *.py

$ pylint *.py

No config file found, using default configuration

************* Module pavement

C: 60: Line too long (81/80)

C:139: Line too long (81/80)

...

W: 50: TODO

W:168: XXX: find out which env variable is necessary to avoid the
pb with python

W: 71: Reimport 'md5' (imported line 143)

F: 73: Unable to import 'paver'

F: 74: Unable to import 'paver.easy'

C: 79: Invalid name "setup_py" (should match (([A-Z_][A-Z0-
9_]*)|(__.*__))$)

F: 86: Unable to import 'numpy.version'

E: 86: No name 'version' in module 'numpy'

C:149: Operator not followed by a space

if sys.platform =="darwin":

 ^^

C:202:prepare_nsis_script: Missing docstring

W:228:bdist_superpack: Redefining name 'options' from outer scope
(line 74)

C:231:bdist_superpack.copy_bdist: Missing docstring

W:275:bdist_wininst_nosse: Redefining name 'options' from outer
scope (line 74)

...

Chapter 8

155

How it works...
Pylint outputs raw text, by default; but we could have requested HTML output, if desired. The
messages have the following format:

MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE

The message type can be one of the following:

ff [R] meaning that refactoring is recommended

ff [C] means that there was a code style violation

ff [W] for warning about a minor issue

ff [E] for error or potential bug

ff [F] indicating that a fatal error occurred, blocking further analysis

See also
ff The Performing static analysis with Pyflakes recipe

Performing static analysis with Pychecker
Pychecker is an old, static analysis tool, which is not very actively developed, but it's good
enough to be mentioned here. The last version at the time of writing was 0.8.19, and was
last updated in 2011. Pychecker tries to import each module and process it. The code is then
analyzed to find issues such as passing incorrect number of parameters, incorrect format
strings using non-existing methods, and other problems. In this recipe, we will again analyze
code, but this time with Pychecker.

How to do it...
1.	 Install from tarball.

Download the tar.gz from Sourceforge (http://pychecker.sourceforge.
net/). Unpack the tarball and run the following command:
python setup.py install

2.	 Install using pip.

We can, alternatively, install Pychecker using pip:
sudo pip install http://sourceforge.net/projects/pychecker/files/
pychecker/0.8.19/pychecker-0.8.19.tar.gz/download

Quality Assurance

156

3.	 Analyze the code.

Let's analyze the code, just like in the previous recipes. The command we need is:
pychecker *.py

...

Warnings...

...

setup.py:21: Imported module (re) not used

setup.py:27: Module (builtins) re-imported

...

Testing code with docstrings
Docstrings are strings embedded in Python code that resemble interactive sessions. These
strings can be used to test certain assumptions, or just provide examples. We need to use the
doctest module to run these tests.

Let's write a simple example that is supposed to calculate the factorial, but doesn't cover all
the possible boundary conditions. In other words, some tests will fail.

How to do it...
1.	 Write the docstring.

Write the docstring with a test that will pass, and a test that will fail. This should look
like what you would normally see in a Python shell:
"""
Test for the factorial of 3 that should pass.
>>> factorial(3)
6

Test for the factorial of 0 that should fail.
>>> factorial(0)
1
"""

Chapter 8

157

2.	 Write the NumPy code.

Write the following NumPy code:
return numpy.arange(1, n+1).cumprod()[-1]

We want this code to fail on purpose, sometimes. It will create an array of sequential
numbers, calculate the cumulative product of the array, and return the last element.

3.	 Run the test.

As previously stated, we need to use the doctest module to run the tests:
doctest.testmod()

The following is the complete factorial and docstring test example code:

import numpy
import doctest

def factorial(n):
 """
 Test for the factorial of 3 that should pass.
 >>> factorial(3)
 6

 Test for the factorial of 0 that should fail.
 >>> factorial(0)
 1
 """
 return numpy.arange(1, n+1).cumprod()[-1]

doctest.testmod()

We can get verbose output with the -v option, as shown here:

python docstringtest.py -v

Trying:

 factorial(3)

Expecting:

 6

ok

Trying:

 factorial(0)

Expecting:

 1

**

Quality Assurance

158

File "docstringtest.py", line 11, in __main__.factorial

Failed example:

 factorial(0)

Exception raised:

 Traceback (most recent call last):

 File ".../doctest.py", line 1253, in __run

 compileflags, 1) in test.globs

 File "<doctest __main__.factorial[1]>", line 1, in <module>

 factorial(0)

 File "docstringtest.py", line 14, in factorial

 return numpy.arange(1, n+1).cumprod()[-1]

 IndexError: index out of bounds

1 items had no tests:

 __main__

**

1 items had failures:

 1 of 2 in __main__.factorial

2 tests in 2 items.

1 passed and 1 failed.

Test Failed 1 failures.

How it works...
As you can see, we didn't take into account zero and negative numbers. Actually, we got an
index out of bounds error due to an empty array. This is easy to fix of course, which we
will do in the next tutorial.

Writing unit tests
Test-driven development (TDD) is the best thing that happened to software development this
century. One of the most important aspects of TDD is the almost manic focus on unit testing.

Unit tests are automated tests that test a small piece of code, usually a function or method.
Python has the PyUnit API for unit testing. As NumPy users, we can make use of the
convenience functions in the numpy.testing module, as well. This module, as its name
suggests, is dedicated to testing.

Chapter 8

159

How to do it...
Let's write some code to be tested.

1.	 Write the factorial function.

We start by writing the following factorial function:
def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Don't be so negative"

 return numpy.arange(1, n+1).cumprod()

The code is the same as in the previous recipe, but we added a few checks for
boundary conditions.

2.	 Write the unit test.

Now we will write the unit test. Maybe you have noticed that we don't have that many
classes in this book; somehow, it didn't seem that necessary.

Let's write a class for a change. This class will contain the unit tests. It extends the
TestCase class from the unittest module, which is a part of standard Python. We
test for calling the factorial function with:

�� a positive number, the happy path

�� boundary condition 0

�� negative numbers, which should result in an error

class FactorialTest(unittest.TestCase):
 def test_factorial(self):
 #Test for the factorial of 3 that should pass.
 self.assertEqual(6, factorial(3)[-1])
 numpy.testing.assert_equal(numpy.array([1, 2, 6]),
factorial(3))

 def test_zero(self):
 #Test for the factorial of 0 that should pass.
 self.assertEqual(1, factorial(0))

 def test_negative(self):
 #Test for the factorial of negative numbers that should
fail.
 # It should throw a ValueError, but we expect IndexError
 self.assertRaises(IndexError, factorial(-10))

Quality Assurance

160

The code for the factorial and the unit test in its entirety is as follows:

import numpy
import unittest

def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Don't be so negative"

 return numpy.arange(1, n+1).cumprod()

class FactorialTest(unittest.TestCase):
 def test_factorial(self):
 #Test for the factorial of 3 that should pass.
 self.assertEqual(6, factorial(3)[-1])
 numpy.testing.assert_equal(numpy.array([1, 2, 6]), factorial(3))

 def test_zero(self):
 #Test for the factorial of 0 that should pass.
 self.assertEqual(1, factorial(0))

 def test_negative(self):
 #Test for the factorial of negative numbers that should fail.
 # It should throw a ValueError, but we expect IndexError
 self.assertRaises(IndexError, factorial(-10))

if __name__ == '__main__':
 unittest.main()

The negative numbers test failed, as you can see in the following output:

.E.

==

ERROR: test_negative (__main__.FactorialTest)

--

Traceback (most recent call last):

 File "unit_test.py", line 26, in test_negative

 self.assertRaises(IndexError, factorial(-10))

 File "unit_test.py", line 9, in factorial

 raise ValueError, "Don't be so negative"

Chapter 8

161

ValueError: Don't be so negative

--

Ran 3 tests in 0.001s

FAILED (errors=1)

How it works...
We saw how to implement simple unit tests using the standard unittest Python module.
We wrote a test class, which extends the TestCase class from the unittest module. The
following functions were used to perform various tests:

Function Description
numpy.testing.assert_equal Tests whether two NumPy arrays are equal
unittest.assertEqual Tests whether two values are equal
unittest.assertRaises Tests whether an exception is thrown

The NumPy testing package has a number of test functions that we should know about:

Function Description
assert_almost_equal Raises an exception if two numbers are not equal up

to a specified precision.
assert_approx_equal Raises an exception if two numbers are not equal up

to a certain significance.
assert_array_almost_equal Raises an exception if two arrays are not equal up to

a specified precision.
assert_array_equal Raises an exception if two arrays are not equal.
assert_array_less Raises an exception if two arrays do not have the

same shape, and the elements of the first array are
strictly less than the elements of the second array.

assert_raises Fails if a specified exception is not raised by a
callable invoked with defined arguments.

assert_warns Fails if a specified warning is not thrown.
assert_string_equal Asserts that two strings are equal.

Quality Assurance

162

Testing code with mocks
Mocks are objects created as substitutes for real objects, with the purpose of testing a part of
the behavior of the real objects. If you have seen the Body Snatchers movie, you already have
an understanding of the basic idea. Generally speaking, mocking is only useful when the real
objects under test are expensive to create, such as a database connection, or when testing
could have undesired side effects; for instance, we might not want to write to the file system
or database.

In this recipe, we will test a nuclear reactor—not a real one, of course. This nuclear reactor
class performs a factorial calculation that could, in theory, cause a chain reaction with a
nuclear disaster as consequence. We will mock the factorial computation with a mock, using
the mock package.

How to do it...
First, we will install the mock package; after which, we will create a mock and test a
piece of code.

1.	 Install mock.

In order to install the mock package, execute the following command:
sudo easy_install mock

2.	 Create a mock.

The nuclear reactor class has a do_work method, which calls a dangerous
factorial method, which we want to mock. Create a mock as follows:
reactor.factorial = MagicMock(return_value=6)

This ensures that the mock returns a value of 6.

3.	 Assert behavior.

We can check the behavior of a mock and from that, the behavior of the real object
under test, in several ways. For instance, we can assert that the potentially explosive
factorial method is being called with the correct arguments as follows:
reactor.factorial.assert_called_with(3, "mocked")

The complete test code with mocks is as follows:

from mock import MagicMock
import numpy
import unittest

class NuclearReactor():
 def __init__(self, n):

Chapter 8

163

 self.n = n

 def do_work(self, msg):
 print "Working"

 return self.factorial(self.n, msg)

 def factorial(self, n, msg):
 print msg

 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Core meltdown"

 return numpy.arange(1, n+1).cumprod()

class NuclearReactorTest(unittest.TestCase):
 def test_called(self):
 reactor = NuclearReactor(3)
 reactor.factorial = MagicMock(return_value=6)
 result = reactor.do_work("mocked")
 self.assertEqual(6, result)
 reactor.factorial.assert_called_with(3, "mocked")

 def test_unmocked(self):
 reactor = NuclearReactor(3)
 reactor.factorial(3, "unmocked")
 numpy.testing.assert_raises(ValueError)

if __name__ == '__main__':
 unittest.main()

We pass a string to the factorial method to show that the code with mock does not
exercise the real code. The unit test works in the same way as the unit test in the previous
recipe. The second test here does not test anything. The purpose of the second test is just to
demonstrate what happens if we exercise the real code without mocks.

Quality Assurance

164

The output of the tests is as follows:

Working

.unmocked

.

--

Ran 2 tests in 0.000s

OK

How it works...
Mocks do not have any behavior. They are like alien clones pretending to be real people, only
dumber than aliens. An alien clone wouldn't be able to tell you the birthday of the real person
it is replacing. We need to set them up to respond in an appropriate manner. For instance, the
mock returned 6 in this example. We can record what is happening to the mock—how many
times it is being called and with which arguments.

Testing the BDD way
BDD (Behavior Driven Development) is another hot acronym that you might have come
across. In BDD, we start by defining (in English) the expected behavior of the system under
test, according to certain conventions and rules. In this recipe, we will see an example of
those conventions.

The idea behind this approach is that we can have people who may not be able to program,
write a major part of the tests. A feature written by these people takes the form of a sentence
consisting of several steps. Each step is more or less a unit test that we can write, for
instance, using NumPy. There are many Python BDD frameworks. In this recipe, we will be
using Lettuce to test the factorial function.

How to do it…
In this section, we will see how to install Lettuce, set up the tests, and write the specifications
for the test.

1.	 Installing Lettuce.

In order to install Lettuce, run either of the following commands:
pip install lettuce

sudo easy_install lettuce

Chapter 8

165

2.	 Setting up the tests.

Lettuce requires a special directory structure for the tests. In the tests directory,
we will have a directory named features containing the factorial.feature file,
along with the functional descriptions and test code in the steps.py file:
./tests:

features

./tests/features:

factorial.feature	 steps.py

3.	 Writing the specifications.

Coming up with the business requirements is a hard job. Writing it all down in
such a way that it is easy to test is even harder. Luckily, the requirements for these
recipes are pretty trivial—we will just write down different input values and the
expected outputs.

We have different scenarios with Given, When, and Then sections, which
correspond to different test steps. We will define the following three scenarios
for the factorial feature:
Feature: Compute factorial

 Scenario: Factorial of 0
 Given I have the number 0
 When I compute its factorial
 Then I see the number 1

 Scenario: Factorial of 1
 Given I have the number 1
 When I compute its factorial
 Then I see the number 1

 Scenario: Factorial of 3
 Given I have the number 3
 When I compute its factorial
 Then I see the number 1, 2, 6

Quality Assurance

166

4.	 Defining the steps.

We will define methods that correspond to the steps of our scenario. We should pay
extra attention to the text used to annotate the methods. It matches the text in the
business scenarios file, and we are using regular expressions to get input parameters.

In the first two scenarios, we are matching numbers, and in the last we match any
text. The NumPy fromstring function is used to create a string from a NumPy array,
with an integer data type and comma separator in the string. The following code tests
our scenarios:
from lettuce import *
import numpy

@step('I have the number (\d+)')
def have_the_number(step, number):
 world.number = int(number)

@step('I compute its factorial')
def compute_its_factorial(step):
 world.number = factorial(world.number)

@step('I see the number (.*)')
def check_number(step, expected):
 expected = numpy.fromstring(expected, dtype=int, sep=',')
 numpy.testing.assert_equal(world.number, expected, \
 "Got %s" % world.number)

def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Core meltdown"

 return numpy.arange(1, n+1).cumprod()

5.	 Run the tests.

In order to run the tests, go to the tests directory and type the following command:
$ lettuce

Feature: Compute factorial # features/factorial.feature:1

 Scenario: Factorial of 0 # features/factorial.feature:3

 Given I have the number 0 # features/steps.py:5

Chapter 8

167

 When I compute its factorial # features/steps.py:9

 Then I see the number 1 # features/steps.py:13

 Scenario: Factorial of 1 # features/factorial.feature:8

 Given I have the number 1 # features/steps.py:5

 When I compute its factorial # features/steps.py:9

 Then I see the number 1 # features/steps.py:13

 Scenario: Factorial of 3 # features/factorial.feature:13

 Given I have the number 3 # features/steps.py:5

 When I compute its factorial # features/steps.py:9

 Then I see the number 1, 2, 6 # features/steps.py:13

1 feature (1 passed)

3 scenarios (3 passed)

9 steps (9 passed)

How it works...
We defined a feature with three scenarios and corresponding steps. We used the NumPy
testing functions to test the different steps, and the fromstring function to create a NumPy
array from the specifications text.

9
Speed Up Code

with Cython

In this chapter, we will cover:

ff Installing Cython

ff Building a Hello World program

ff Using Cython with NumPy

ff Calling C functions

ff Profiling Cython code

ff Approximating factorials with Cython

Introduction
Cython is a relatively young programming language based on Python. The difference with
Python is that we can optionally declare static types. Many programming languages, such
as C, have static typing, which means that we have to tell C the type of variables, function
parameters, and return types. Another difference is that C is a compiled language, while
Python is an interpreted language. As a rule of thumb, we can say that C is faster but less
flexible than Python. From Cython code, we can generate C or C++ code. After that, we can
compile the generated code into Python extension modules.

In this chapter we will be learning about Cython. We will get some simple Cython programs
running together with NumPy. Also we will profile Cython code.

Speed Up Code with Cython

170

Installing Cython
In order to use Cython, we need to install Cython. Enthought and Sage have Cython included.
For more information, see http://www.enthought.com/products/epd.php and
http://sagemath.org/. We will not discuss here how to install these distributions.
Obviously, we need a C compiler to compile the generated C code. On some operating
systems, such as Linux, the compiler will already be present. In this recipe, we will assume
that you already have the compiler installed.

How to do it...
Cython can be installed using any of the following methods:

ff Installing from tarball (.tar archive): Cython can be installed from tarball by
performing the following steps:

1.	 Download a tarball from http://cython.org/#download.

2.	 Unpack it.

3.	 Browse to the directory using the cd command.

4.	 Run the following command:

python setup.py install

ff Installing with setup tools or pip

We can install Cython from the PyPI repository with easy_install cython or sudo
pip install cython.

ff Installing with Windows installers

We can install Cython on Windows using the unofficial Windows installers from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython.

Building a Hello World program
As is the tradition with programming languages, we will start with a Hello World example.
Unlike with Python, we need to compile Cython code. We start with a .pyx file, from which we
will generate C code. This .c file can be compiled and then imported into a Python program.

http://www.enthought.com/products/epd.php

Chapter 9

171

How to do it...
This section describes how to build a Cython Hello World program.

1.	 Write the hello.pyx code.

First, we will write some pretty trivial code that prints "Hello World". This is just normal
Python code, but the file has the pyx extension.
def say_hello():
print "Hello World!"

2.	 Write a distutils setup.py script.

We need to create a file named setup.py to help us build the Cython code.
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(
 name = 'Hello world app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

As you can see, we specified the file from the previous step and gave our application
a name.

3.	 Build using the following command:
python setup.py build_ext --inplace

This will generate C code, compile it for your platform, and will produce the
following output
running build_ext
cythoning hello.pyx to hello.c
building 'hello' extension
creating build

Now, we can import our module with the following statement:
from hello import say_hello

Speed Up Code with Cython

172

How it works...
In this recipe we did a traditional Hello World example. Cython is a compiled language, so
we needed to compile our code. We wrote a .pyx file containing the Hello World code and a
setup.py file that was used to generate and build the C code.

Using Cython with NumPy
We can integrate Cython and NumPy code in the same way that we can integrate Cython and
Python code. Let's go through an example that analyzes the ratio of up days (days on which a
stock closes higher than the previous day) for a stock. We will apply the formula for binomial
proportion confidence. You can refer to http://en.wikipedia.org/wiki/Binomial_
proportion_confidence_interval for more information. This indicates how significant
the ratio is.

How to do it...
This section describes how we can use Cython with NumPy. To demonstrate this, perform the
following steps:

1.	 Write the .pyx file.

Let's write a .pyx file that contains a function to calculate the ratio of up days and
associated confidence. First, this function computes the differences of the prices.
Then, we count the number of positive differences, giving us a ratio for the proportion
of up days. Finally, we apply the formula for the confidence from the Wikipedia page
in the introduction.
import numpy

def pos_confidence(numbers):
diffs = numpy.diff(numbers)
n = float(len(diffs))
p = len(diffs[diffs > 0])/n
confidence = numpy.sqrt(p * (1 - p)/ n)

return (p, confidence)

2.	 Write the setup.py file.

We will use the setup.py file from the previous example, as the template. There are
some obvious things that need to be changed, such as the name of the .pyx file.
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

Chapter 9

173

ext_modules = [Extension("binomial_proportion", ["binomial_
proportion.pyx"])]

setup(
 name = 'Binomial proportion app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

We can now build—see the previous recipe for more details.

3.	 Use the Cython module.

After building, we can use the Cython module from the previous step by importing. We
will write a Python program that downloads stock price data with matplotlib. Then, we
will apply the confidence function to the close prices.
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
from binomial_proportion import pos_confidence

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])
print pos_confidence(close)

The output of the program for AAPL is shown as follows:
(0.56746031746031744, 0.031209043355655924)

How it works...
We computed the probability of an up day for AAPL shares and the corresponding confidence.
We put NumPy code in a .pyx file and built it just like in the previous tutorial, creating a
Cython module. At the end, we imported and used the Cython module.

Calling C functions
We can call C functions from Cython. For instance, in this example, we will call the C log
function. This function works on a single number only. Remember that the NumPy log
function can also work with arrays. We will compute the so-called log returns of stock prices.

Speed Up Code with Cython

174

How to do it...
We will start by writing some Cython code:

1.	 Write the .pyx file.

First, we need to import the C log function from the libc namespace. Second, we
will apply this function to numbers in a for loop. Finally, we will use the NumPy diff
function to get the first order difference between the log values in the second step.
from libc.math cimport log
import numpy

def logrets(numbers):
 logs = [log(x) for x in numbers]
 return numpy.diff(logs)

Building has been covered in the previous recipes already. We only need to change
some values in the setup.py file.

2.	 Plot the log returns.

Let's download stock price data with matplotlib, again. Apply the Cython logrets
function that we just created on the prices and plot the result.
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
from log_returns import logrets
import matplotlib.pyplot

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])
matplotlib.pyplot.plot(logrets(close))
matplotlib.pyplot.show()

Chapter 9

175

The resulting plot of the log returns for AAPL is shown in the following screenshot:

How it works...
We called the C log function from Cython code. The function together with NumPy functions
was used to calculate log returns of stocks. This way, we can create our own specialized API
containing convenience functions. The nice thing is that our code should perform at or near
the speed of C code, while looking more or less like Python code.

Profiling Cython code
We will profile Cython and NumPy code that tries to approximate the Euler constant. You can
refer to http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 for the
required formula.

Speed Up Code with Cython

176

How to do it...
This section demonstrates how to profile Cython code. To do this, go through the
following steps:

ff NumPy approximation of e: For the NumPy approximation of e perform the
following steps:

1.	 First, we will create an array of 1 to n (n is 40 in our example).

2.	 Then, we will compute the cumulative product of this array, which happens to
be the factorial.

3.	 After that, we take the reciprocal of the factorials.

4.	 Finally, we apply the formula from the Wikipedia page. At the end, we put
standard profiling code, giving us the following program:

import numpy
import cProfile
import pstats

def approx_e(n=40):
 # array of [1, 2, ... n-1]
 arr = numpy.arange(1, n)

 # calculate the factorials and convert to floats
 arr = arr.cumprod().astype(float)

 # reciprocal 1/n
 arr = numpy.reciprocal(arr)

 print 1 + arr.sum()

cProfile.runctx("approx_e()", globals(), locals(), "Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

The profiling output and the result for the e approximation is shown in the following
snippet. Please refer to Chapter 7, Profiling and Debugging, for more information
about the profiling output.
2.71828182846

 7 function calls in 0.000 CPU seconds

Chapter 9

177

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)
 1 0.000 0.000 0.000 0.000 numpy_approxe.
py:5(approx_e)
 1 0.000 0.000 0.000 0.000 {method 'cumprod' of
'numpy.ndarray' objects}
 1 0.000 0.000 0.000 0.000 {numpy.core.
multiarray.arange}
 1 0.000 0.000 0.000 0.000 {method 'sum' of
'numpy.ndarray' objects}
 1 0.000 0.000 0.000 0.000 {method 'astype' of
'numpy.ndarray' objects}
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

ff Cython approximation of e: The Cython code uses the same algorithm as in the
previous step, but the implementation is different. There are less convenience
functions, and we actually need a for loop now. Also, we need to specify types for
some of the variables. The code for the .pyx file is shown as follows:
def approx_e(int n=40):
 cdef double sum = 0.
 cdef double factorial = 1.
 cdef int k
 for k in xrange(1,n+1):
 factorial *= k
 sum += 1/factorial
 print 1 + sum

The following Python program imports the Cython module and does some profiling.
import pstats
import cProfile
import pyximport
pyximport.install()

import approxe
cProfile.runctx("approxe.approx_e()", globals(), locals(),
"Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

Speed Up Code with Cython

178

This is the profiling output of the Cython code:
2.71828182846

 3 function calls in 0.000 CPU seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)
 1 0.000 0.000 0.000 0.000 {approxe.approx_e}
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

How it works...
We profiled NumPy and Cython code. NumPy is heavily optimized for speed, so we should not
be surprised that both NumPy and Cython programs are high-performing programs.

Approximating factorials with Cython
The last example is about approximating factorials with Cython. We will use two approximation
methods. First, we will use the Stirling approximation method (see http://en.wikipedia.
org/wiki/Stirling%27s_approximation for more information). The formula for the
Stirling approximation is:

Secondly, we will be using the approximation due to Ramanujan, with the following formula:

http://en.wikipedia.org/wiki/Stirling%27s_approximation

Chapter 9

179

How to do it...
This section describes how to approximate factorials using Cython. In this recipe, we will be
using types, which as you may remember, is optional in Cython. In theory, declaring static
types should speed things up. Static typing offers interesting challenges that you may not
encounter when writing Python code, but don't worry, we will try to keep it simple.

1.	 Write the Cython code.

The Cython code that we will write looks like regular Python code, except that we
declare function parameters and a local variable to be an ndarray array. In order to
get the static types to work, we need to import NumPy using the cimport statement.
Also we have to use the cdef keyword to declare the type of the local variable.
import numpy
cimport numpy

def ramanujan_factorial(numpy.ndarray n):
 sqrt_pi = numpy.sqrt(numpy.pi, dtype=numpy.float64)
 cdef numpy.ndarray root = (8 * n + 4) * n + 1
 root = root * n + 1/30.
 root = root ** (1/6.)
 return sqrt_pi * calc_eton(n) * root

def stirling_factorial(numpy.ndarray n):
 return numpy.sqrt(2 * numpy.pi * n) * calc_eton(n)

def calc_eton(numpy.ndarray n):
 return (n/numpy.e) ** n

2.	 Build the code.

Building requires us to create a setup.py file, as in the previous tutorials, but we
now need to include NumPy-related directories by calling the get_include function.
With this amendment, the setup.py file will have the following content:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy

ext_modules = [Extension("factorial", ["factorial.pyx"], include_
dirs = [numpy.get_include()])]

setup(
 name = 'Factorial app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

Speed Up Code with Cython

180

3.	 Plot the relative error.

Let's plot the relative error for both approximation methods. We will calculate the
error relative to the factorial values that we will compute with the NumPy cumprod
function, as we have done throughout the book.
from factorial import ramanujan_factorial
from factorial import stirling_factorial
import numpy
import matplotlib.pyplot

N = 50
numbers = numpy.arange(1, N)
factorials = numpy.cumprod(numbers, dtype=float)

def error(approximations):
 return (factorials - approximations)/factorials

matplotlib.pyplot.plot(error(ramanujan_factorial(numbers)), 'b-')
matplotlib.pyplot.plot(error(stirling_factorial(numbers)), 'ro')
matplotlib.pyplot.show()

The following plot shows the relative error for the Ramanujan approximation (dots)
and the Stirling approximation (line). As you can see, the Ramanujan method is
more accurate:

Chapter 9

181

How it works...
In this example, we saw a demonstration of Cython's static types. The main ingredients of this
recipe were:

ff cimport, which imports C declarations

ff Including directories with the get_include() function

ff The cdef keyword to define the type of local variables

10
Fun with Scikits

In this chapter, we will cover the following topics:

ff Installing scikits-learn
ff Loading an example dataset
ff Clustering Dow Jones stocks with scikits-learn
ff Installing scikits-statsmodels
ff Performing a normality test with scikits-statsmodels
ff Installing scikits-image
ff Detecting corners
ff Detecting edges
ff Installing pandas
ff Estimating stock returns correlation with Pandas
ff Loading data as pandas objects from statsmodels
ff Resampling time series data

Introduction
Scikits are small, independent projects that are related to SciPy in some way, but are not a
part of SciPy. These projects are not entirely independent, but operate under an umbrella,
as a consortium of sorts. In this chapter, we will discuss several Scikits projects, such as
the following:

ff scikits-learn, a machine learning package
ff scikits-statsmodels, a statistics package
ff scikits-image, an image processing package
ff pandas, a data analysis package

Fun with Scikits

184

Installing scikits-learn
The scikits-learn project aims to provide an API for machine learning. What I like most about
it is the amazing documentation. We can install scikits-learn with the package manager of
our operating system. This option may or may not be available, depending on the operating
system, but should be the most convenient route.

Windows users can just download an installer from the project website. On Debian
and Ubuntu, the project is named python-sklearn. On MacPorts, the ports are named
py26-scikits-learn and py27-scikits-learn. We can also install from source, or using
easy_install. There are third-party distributions from Python(x, y), Enthought, and NetBSD.

Getting ready
You need to have SciPy and NumPy installed. Go back to Chapter 1, Winding Along with
Ipython, for instructions, if necessary.

How to do it...
Let us now see how we can install the scikits-learn project.

ff Installing with easy_install: We can install by typing any one of the following
commands, at the command line:
pip install -U scikit-learn

easy_install -U scikit-learn

This might not work because of permissions, so you might either need to put sudo in
front of the commands, or log in as admin.

ff Installing from source: Download the source from http://pypi.python.org/
pypi/scikit-learn/, unpack and cd into the downloaded folder. Issue the
following command:
python setup.py install

Loading an example dataset
The scikits-learn project comes with a number of datasets and sample images with which
we can experiment. In this recipe, we will load an example dataset, that is included with the
scikits-learn distribution. The datasets hold data as a NumPy, two-dimensional array and
metadata linked to the data.

http://pypi.python.org/pypi/scikit-learn/
http://pypi.python.org/pypi/scikit-learn/

Chapter 10

185

How to do it...
We will load a sample data set of the Boston house prices. It is a tiny dataset, so if you are
looking for a house in Boston, don't get too excited. There are more datasets as described
in http://scikit-learn.org/dev/modules/classes.html#module-sklearn.
datasets.

We will look at the shape of the raw data, and its maximum and minimum value. The shape is
a tuple, representing the dimensions of the NumPy array. We will do the same for the target
array, which contains values that are the learning objectives. The following code accomplishes
our goals:

from sklearn import datasets

boston_prices = datasets.load_boston()
print "Data shape", boston_prices.data.shape
print "Data max=%s min=%s" %
 (boston_prices.data.max(),
 boston_prices.data.min())
print "Target shape",
 boston_prices.target.shape
print "Target max=%s min=%s" %
 (boston_prices.target.max(),
 boston_prices.target.min())

And the outcome of our program is as follows:

Data shape (506, 13)

Data max=711.0 min=0.0

Target shape (506,)

Target max=50.0 min=5.0

Clustering Dow Jones stocks with
scikits-learn

Clustering is a type of machine learning algorithm, which aims to group items based
on similarities. In this example, we will use the log returns of stocks in the Dow Jones
Industrial Index to cluster. Most of the steps of this recipe have already passed the review
in previous chapters.

Fun with Scikits

186

How to do it...
First, we will download the EOD price data for those stocks from Yahoo Finance. Second,
we will calculate a square affinity matrix. Finally, we will cluster the stocks with the
AffinityPropagation class.

1.	 Downloading the price data.

We will download price data for 2011 using the stock symbols of the DJI Index. In this
example, we are only interested in the close price:
2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

#Dow Jones symbols
symbols = ["AA", "AXP", "BA",
 "BAC", "CAT", "CSCO", "CVX",
 "DD", "DIS", "GE", "HD", "HPQ",
 "IBM", "INTC", "JNJ", "JPM",
 "KFT", "KO", "MCD", "MMM", "MRK",
 "MSFT", "PFE", "PG", "T", "TRV",
 "UTX", "VZ", "WMT", "XOM"]

quotes = [finance.quotes_historical_yahoo
 (symbol, start, end, asobject=True)
 for symbol in symbols]

close = numpy.array(
 [q.close for q in quotes])
 .astype(numpy.float)

2.	 Calculating the affinity matrix.

Calculate the similarities between different stocks using the log returns as metric.
What we are trying to do is calculate the Euclidean distances for the data points:
logreturns = numpy.diff(numpy.log(close))
print logreturns.shape

logreturns_norms = numpy.sum(logreturns ** 2, axis=1)
S = - logreturns_norms[:, numpy.newaxis] -
 logreturns_norms[numpy.newaxis, :] + 2 *
 numpy.dot(logreturns, logreturns.T)

Chapter 10

187

3.	 Clustering the stocks.

Give the AffinityPropagation class the result from the previous step. This class
labels the data points, or in our case, stocks with the appropriate cluster number:
aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

for i in xrange(len(labels)):
 print '%s in Cluster %d' %
 (symbols[i], labels[i])

The complete clustering program is as follows:

import datetime
import numpy
import sklearn.cluster
from matplotlib import finance

#1. Download price data

2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

#Dow Jones symbols
symbols = ["AA", "AXP", "BA", "BAC", "CAT",
 "CSCO", "CVX", "DD", "DIS", "GE", "HD",
 "HPQ", "IBM", "INTC", "JNJ", "JPM", "KFT",
 "KO", "MCD", "MMM", "MRK", "MSFT", "PFE",
 "PG", "T", "TRV", "UTX", "VZ", "WMT", "XOM"]

quotes = [finance.quotes_historical_yahoo
 (symbol, start, end, asobject=True)
 for symbol in symbols]

close = numpy.array([q.close for q in quotes]).astype(numpy.float)
print close.shape

#2. Calculate affinity matrix
logreturns = numpy.diff(numpy.log(close))
print logreturns.shape

logreturns_norms = numpy.sum
 (logreturns ** 2, axis=1)

Fun with Scikits

188

S = - logreturns_norms[:, numpy.newaxis] -
 logreturns_norms[numpy.newaxis, :] + 2 *
 numpy.dot(logreturns, logreturns.T)

#3. Cluster using affinity propagation
aff_pro = sklearn.cluster
 .AffinityPropagation().fit(S)
labels = aff_pro.labels_

for i in xrange(len(labels)):
 print '%s in Cluster %d' % (symbols[i], labels[i])

The output with the cluster numbers for each stock is as follows:

(30, 252)

(30, 251)

AA in Cluster 0

AXP in Cluster 6

BA in Cluster 6

BAC in Cluster 1

CAT in Cluster 6

CSCO in Cluster 2

CVX in Cluster 7

DD in Cluster 6

DIS in Cluster 6

GE in Cluster 6

HD in Cluster 5

HPQ in Cluster 3

IBM in Cluster 5

INTC in Cluster 6

JNJ in Cluster 5

JPM in Cluster 4

KFT in Cluster 5

KO in Cluster 5

MCD in Cluster 5

MMM in Cluster 6

MRK in Cluster 5

MSFT in Cluster 5

PFE in Cluster 7

Chapter 10

189

PG in Cluster 5

T in Cluster 5

TRV in Cluster 5

UTX in Cluster 6

VZ in Cluster 5

WMT in Cluster 5

XOM in Cluster 7

How it works...
The following table is an overview of the functions we used in this recipe:

Function Description
sklearn.cluster.
AffinityPropagation()

Creates an AffinityPropagation object.

sklearn.cluster.
AffinityPropagation.fit

Computes an affinity matrix from Euclidian distances and
applies affinity propagation clustering.

diff Calculates differences of numbers within a NumPy array.
If not specified, first-order differences are computed.

log Calculates the natural log of elements in a NumPy array.
sum Sums the elements of a NumPy array.
dot Does matrix multiplication for 2D arrays. Calculates the

inner product for 1D arrays.

Installing scikits-statsmodels
The scikits-statsmodels package focuses on statistical modeling. It can be integrated with
NumPy and Pandas (more about Pandas later in this chapter).

How to do it...
Source and binaries can be downloaded from http://statsmodels.sourceforge.net/
install.html. If you are installing from source, you need to run the following command:

python setup.py install

If you are using setuptools, the command is:

easy_install statsmodels

http://statsmodels.sourceforge.net/install.html
http://statsmodels.sourceforge.net/install.html

Fun with Scikits

190

Performing a normality test with
scikits-statsmodels

The scikits-statsmodels package has lots of statistical tests. We will see an example of such
a test—the Anderson-Darling test for normality (http://en.wikipedia.org/wiki/
Anderson%E2%80%93Darling_test).

How to do it...
We will download price data as in the previous recipe; but this time for a single stock. Again,
we will calculate the log returns of the close price of this stock, and use that as an input for
the normality test function.

This function returns a tuple containing a second element—a p-value between zero and one.
The complete code for this tutorial is as follows:

import datetime
import numpy
from matplotlib import finance
from statsmodels.stats.adnorm import normal_ad
import sys

#1. Download price data

2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

print "Retrieving data for", sys.argv[1]
quotes = finance.quotes_historical_yahoo
 (sys.argv[1], start, end, asobject=True)

close = numpy.array(quotes.close).astype(numpy.float)
print close.shape

print normal_ad(numpy.diff(numpy.log(close)))

The following shows the output of the script with p-value of 0.13:

Retrieving data for AAPL

(252,)

(0.57103805516803163, 0.13725944999430437)

Chapter 10

191

How it works...
This recipe demonstrated the Anderson Darling statistical test for normality, as found in
scikits-statsmodels. We used the stock price data, which does not have a normal distribution,
as input. For the data, we got a p-value of 0.13. Since probabilities range between zero and
one, this confirms our hypothesis.

Installing scikits-image
scikits image is a toolkit for image processing, which requires PIL, SciPy, Cython, and NumPy.
There are Windows installers available for it. It is part of Enthought Python Distribution, as well
as the Python(x, y) distribution.

How to do it...
As usual, we can install using either of the following two commands:

pip install -U scikits-image

easy_install -U scikits-image

Again, you might need to run these commands as root.

Another option is to obtain the latest development version by cloning the Git repository,
or downloading the repository as a zip file from Github. Then, you will need to run the
following command:

python setup.py install

Detecting corners
Corner detection (http://en.wikipedia.org/wiki/Corner_detection) is a standard
technique in Computer Vision. scikits-image offers a Harris Corner Detector, which is great,
because corner detection is pretty complicated. Obviously, we could do it ourselves from
scratch, but that would violate the cardinal rule of not reinventing the wheel.

https://en.wikipedia.org/wiki/Corner_detection

Fun with Scikits

192

Getting ready
You might need to install jpeglib on your system to be able to load the scikits-learn image,
which is a JPEG file. If you are on Windows, use the installer; otherwise, download the
distribution, unpack it, and build from the top folder with the following command:

./configure

 make

 sudo make install

How to do it...
We will load a sample image from scikits-learn. This is not absolutely necessary for this
example; you can use any other image instead.

1.	 Load the sample image.

scikits-learn currently has two sample JPEG images in a dataset structure. We will
look at the first image only:
dataset = load_sample_images()
img = dataset.images[0]

2.	 Detect corners.

Call the harris function to get the coordinates of corners:
harris_coords = harris(img)
print "Harris coords shape", harris_coords.shape
y, x = numpy.transpose(harris_coords)

The code for the corner detection is as follows:

from sklearn.datasets import load_sample_images
from matplotlib.pyplot import imshow, show, axis, plot
import numpy
from skimage.feature import harris

dataset = load_sample_images()
img = dataset.images[0]
harris_coords = harris(img)
print "Harris coords shape", harris_coords.shape
y, x = numpy.transpose(harris_coords)
axis('off')
imshow(img)
plot(x, y, 'ro')
show()

Chapter 10

193

We get an image with red dots, where corners are detected, as shown in the following screenshot:

How it works...
We applied the Harris corner detection on a sample image from scikits-image. The result
is pretty good, as you can see. We could have done this with NumPy only, since it is just a
straightforward, linear-algebra type computation, still it could have become pretty messy.
The scikits-image toolkit has a lot more similar functions, so check the scikits-image
documentation if you are in need of an image processing routine.

Detecting edges
Edge detection is another popular image processing technique (http://en.wikipedia.
org/wiki/Edge_detection). scikits-image has a Canny filter implementation, based on the
standard deviation of the Gaussian distribution, which can perform edge detection out of the
box. In addition to the image data as a 2D array, this filter accepts the following parameters:

ff Standard deviation of the Gaussian distribution

ff Lower bound threshold

ff Upper bound threshold

http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Edge_detection

Fun with Scikits

194

How to do it...
We will use the same image as in the previous recipe. The code is almost the same. You
should pay extra attention to the one line where we call the Canny filter function:

from sklearn.datasets import load_sample_images
from matplotlib.pyplot import imshow, show, axis
import numpy
import skimage.filter

dataset = load_sample_images()
img = dataset.images[0]
edges = skimage.filter.canny(img[..., 0], 2, 0.3, 0.2)
axis('off')
imshow(edges)
show()

The code produces an image of the edges within the original picture, as shown in the
following screenshot:

Installing Pandas
Pandas is a Python library for data analysis. It has some similarities with the R programming
language, which are not coincidental. R is a specialized programming language popular with
data scientists. For instance, the core DataFrame object is inspired by R.

Chapter 10

195

How to do it...
On PyPi, the project is called pandas. So, for instance, run either of the following two
command:

sudo easy_install -U pandas

pip install pandas

If you are using a Linux package manager, you will need to install the python-pandas
project. On Ubuntu, you would do the following:

sudo apt-get install python-pandas

You can also install from source (requires Git):

git clone git://github.com/pydata/pandas.git

cd pandas

python setup.py install

Estimating stock returns correlation with
Pandas

A Pandas DataFrame is a matrix and dictionary-like data structure similar to the functionality
available in R. In fact, it is the central data structure in Pandas and you can apply all kinds of
operations on it. It is quite common to have a look, for instance, at the correlation matrix of a
portfolio. So let's do that.

How to do it...
First, we will create the DataFrame with Pandas for each symbol's daily log returns. Then we
will join these on the date. At the end, the correlation will be printed, and plot will be shown.

1.	 Creating the data frame.

To create the data frame, we will create a dictionary containing stock symbols as
keys, and the corresponding log returns as values. The data frame itself has the date
as index and the stock symbols as column labels:
data = {}

for i in xrange(len(symbols)):
 data[symbols[i]] = numpy.diff(numpy.log(close[i]))

df = pandas.DataFrame(data,
 index=dates[0][:-1], columns=symbols)

Fun with Scikits

196

2.	 Operating on the data frame.

We can now perform operations, such as calculating a correlation matrix or plotting.
on the data frame:
print df.corr()
df.plot()

The complete source code that also downloads the price data is as follows:

import pandas
from matplotlib.pyplot import show, legend
from datetime import datetime
from matplotlib import finance
import numpy

2011 to 2012
start = datetime(2011, 01, 01)
end = datetime(2012, 01, 01)

symbols = ["AA", "AXP", "BA", "BAC", "CAT"]

quotes = [finance.quotes_historical_yahoo
 (symbol, start, end, asobject=True)
 for symbol in symbols]

close = numpy.array([q.close for q in quotes])
 .astype(numpy.float)
dates = numpy.array([q.date for q in quotes])

data = {}

for i in xrange(len(symbols)):
 data[symbols[i]] = numpy.diff(numpy.log(close[i]))

df = pandas.DataFrame(data,
 index=dates[0][:-1], columns=symbols)

print df.corr()
df.plot()
legend(symbols)
show()

Chapter 10

197

Output for the correlation matrix:

 AA AXP BA BAC CAT

AA 1.000000 0.768484 0.758264 0.737625 0.837643

AXP 0.768484 1.000000 0.746898 0.760043 0.736337

BA 0.758264 0.746898 1.000000 0.657075 0.770696

BAC 0.737625 0.760043 0.657075 1.000000 0.657113

CAT 0.837643 0.736337 0.770696 0.657113 1.000000

The following image shows the plot for the log returns of the five stocks:

How it works...
We used the following DataFrame methods:

Method Description
pandas.DataFrame Constructs DataFrame with specified data, index (row), and

column labels.
pandas.DataFrame.corr Computes pair-wise correlation of columns, ignoring the

missing values. By default, Pearson correlation is used.
pandas.DataFrame.plot Plots the data frame with Matplotlib.

Fun with Scikits

198

Loading data as pandas objects from
statsmodels

Statsmodels has quite a lot of sample datasets in its distributions. The complete list can
be found at https://github.com/statsmodels/statsmodels/tree/master/
statsmodels/datasets.

In this tutorial, we will concentrate on the copper dataset, which contains information about
copper prices, world consumption, and other parameters.

Getting ready
Before we start, we might need to install patsy. It is easy enough to see if this is necessary
just run the code. If you get errors related to patsy, you will need to execute any one of the
following two commands:

sudo easy_install patsy

pip install --upgrade patsy

How to do it...
In this section, we will see how we can load a dataset from statsmodels as a Pandas
DataFrame or Series object.

1.	 Loading the data.

The function we need to call is load_pandas. Load the data as follows:
data = statsmodels.api.datasets
 .copper.load_pandas()

This loads the data in a DataSet object, which contains pandas objects.

2.	 Fitting the data.

The Dataset object has an attribute exog, which when loaded as a pandas object,
becomes a DataFrame object with multiple columns. It also has an endog attribute
containing values for the world consumption of copper in our case.

Perform an ordinary least squares calculation by creating an OLS object, and calling
its fit method as follows:
x, y = data.exog, data.endog

fit = statsmodels.api.OLS(y, x).fit()
print "Fit params", fit.params

https://github.com/statsmodels/statsmodels/tree/master/statsmodels/datasets
https://github.com/statsmodels/statsmodels/tree/master/statsmodels/datasets

Chapter 10

199

This should print the result of the fitting procedure, as follows:
Fit params COPPERPRICE 14.222028

INCOMEINDEX 1693.166242

ALUMPRICE -60.638117

INVENTORYINDEX 2515.374903

TIME 183.193035

3.	 Summarize.

The results of the OLS fit can be summarized by the summary method as follows:
print fit.summary()

This will give us the following output for the regression results:

Fun with Scikits

200

The code to load the copper data set is as follows:

import statsmodels.api

See https://github.com/statsmodels
 /statsmodels/tree/master/statsmodels/datasets
data = statsmodels.api.datasets.copper.load_pandas()

x, y = data.exog, data.endog

fit = statsmodels.api.OLS(y, x).fit()
print "Fit params", fit.params
print
print "Summary"
print
print fit.summary()

How it works...
The data in the Dataset class of statsmodels follows a special format. Among others, this
class has the endog and exog attributes. Statsmodels has a load function, which loads
data as NumPy arrays. Instead, we used the load_pandas method, which loads data as
Pandas objects. We did an OLS fit, basically giving us a statistical model for copper price
and consumption.

Resampling time series data
In this tutorial, we will learn how to resample time series with Pandas.

How to do it...
We will download the daily price time series data for AAPL, and resample it to monthly data by
computing the mean. We will accomplish this by creating a Pandas DataFrame, and calling
its resample method.

1.	 Creating a date-time index.

Before we can create a Pandas DataFrame, we need to create a DatetimeIndex
method to pass to the DataFrame constructor. Create the index from the
downloaded quotes data as follows:
dt_idx = pandas.DatetimeIndex
 (quotes.date)

https://github.com/statsmodels
https://github.com/statsmodels
https://github.com/statsmodels

Chapter 10

201

2.	 Creating the data frame.

Once we have the date-time index, we can use it together with the close prices to
create a data frame:
df = pandas.DataFrame
 (quotes.close, index=dt_idx,
 columns=[symbol])

3.	 Resample.

Resample the time series to monthly frequency, by computing the mean:
resampled = df.resample
 ('M', how=numpy.mean)
print resampled

The resampled time series, as shown in the following, has one value for each month:
 AAPL

2011-01-31 336.932500

2011-02-28 349.680526

2011-03-31 346.005652

2011-04-30 338.960000

2011-05-31 340.324286

2011-06-30 329.664545

2011-07-31 370.647000

2011-08-31 375.151304

2011-09-30 390.816190

2011-10-31 395.532381

2011-11-30 383.170476

2011-12-31 391.251429

4.	 Plot.

Use the DataFrame plot method to plot the data:
df.plot()
resampled.plot()
show()

Fun with Scikits

202

The plot for the original time series is as follows:

The resampled data has less data points, and therefore, the resulting plot, as shown
in the following image, is choppier:

Chapter 10

203

The complete resampling code is as follows:

import pandas
from matplotlib.pyplot import show, legend
from datetime import datetime
from matplotlib import finance
import numpy

Download AAPL data for 2011 to 2012
start = datetime(2011, 01, 01)
end = datetime(2012, 01, 01)

symbol = "AAPL"
quotes = finance.quotes_historical_yahoo
 (symbol, start, end, asobject=True)

Create date time index
dt_idx = pandas.DatetimeIndex(quotes.date)

#Create data frame
df = pandas.DataFrame(quotes.close,
 index=dt_idx, columns=[symbol])

Resample with monthly frequency
resampled = df.resample('M', how=numpy.mean)
print resampled

Plot
df.plot()
resampled.plot()
show()

How it works...
We created a date-time index from a list of date and times. This index was then used to create
a Pandas data frame. We then resampled our time series data. The resampling frequency is
given by a single character:

ff D for daily

ff M for monthly

ff A for annual

The how parameter of the resample method indicates how the data is sampled. This defaults
to calculating the mean.

Index
__array_interface__ attribute 79
[C], message type 155
[E], message type 155
[F], message type 155
%hist command 9
@profile decorator 144
.pyx file

about 170
writing 172-174

[R], message type 155
% Time column 144
[W], message type 155

A
AAPL (Apple Inc.) 61
AffinityPropagation class 186, 187
Anderson-Darling test

URL 190
append function 138
Apple Developer Tools (Xcode)

installing 6
arange function 13, 50, 51, 53
array interface

using 79, 80
asarray function 79
assert_almost_equal function 161
assert_approx_equal function 161
assert_array_almost_equal function 161
assert_array_equal function 161
assert_array_less function 161
assert_raises function 161
assert_string_equal function 161
assert_warns function 161
astype function 50-53
audio filter

designing 114, 115

audio fragments
repeating 108-110

axis function 100

B
BDD

about 151
steps, defining 166
tests, setting up 165
used, for testing 164
way, used for testing 164-167

Behavior Driven Development. See BDD
binomial proportion confidence

wikipedia, URL 172
boolean indexing 40-42
broadcasting arrays 45, 46
Browse button 89
bt command 148
buffer interface 76
buffer protocol 76-78
Butterworth bandpass filter

wikipedia, URL 114

C
Canny filter function 194
cdef keyword 181
ceil function 54, 56
C functions

.pyx file, writing 174
calling 173, 175
log returns, plotting 174

chararray object
about 124
string operations. performing 124, 125

Choose function 104

206

cimport 181
clip function 100
clustering 185
code

profiling, with cProfile extension 144, 145
testing, docstrings used 156-158
testing, mocks used 162, 163

Command Line Interface (CLI) 10
compress function 67
concatenate function 113
corner detection

about 191, 192
wikipedia, URL 191

cProfile extension
code, profiling with 144, 145

create a new environment button 92
cumprod function 180
cumtime column 141
Cython

about 169
factorials, approximating 178-181
installing 170
installing, from tarball 170
installing, ways for 170
installing, with pip 170
installing, with setup tools 170
installing, with Windows installers 170
using, with NumPy 172, 173

Cython approximation
of e 177

Cython code
profiling 175-178

D
daily log returns

wikipedia, URL 67
data

exchanging, with MATLAB 80, 81
exchanging, with Octave 80, 81
loading, as pandas objects, from statsmodels

198-200
DataFrame 195
DataFrame object 198
DataFrame plot method 201
Dataset class 200
Dataset object 198

DatetimeIndex method 200
d command 148
Debian

PIL, installing 28
debugging 135
diff function 63, 174, 189
dips

periodically, training on 67-69
distutils setup.py script 171
docstrings

code, testing with 156-158
dot function 189
Dow Jones stocks

clustering, with scikits-learn project 185-189
do_work method 162

E
easy_install

IPython, installing with 7
used, for installing PIL 28
used, for installing Pyflakes 152
used, for installing RPy2 82
used, for installing scikits-learn project 184
used, for installing SciPy 27

edge detection
about 193, 194
wikipedia, URL 193

eigenvector
URL 58

eig function 61, 63
endog attribute 198, 200
Euclid’s formula 123
Euler constant

URL 175
exog attribute 200
extreme values

ignoring 128-131

F
factorial method 163
factorials approximation

code, building 179
Cython code, writing 179
error, plotting 180
with Cython 178, 179

207

fancy indexing 36-38
Fermat’s factorization method

Wikipedia, URL 54
Fibonacci series

about 50
wikipedia, URL 50

fit method 198

G
GAE

about 86
development environment 87
downloading 87
installing, steps for 87

Gaussian filter
wikipedia, URL 104

gaussian_filter function 107
generate function 111
get_include function 181
golden ratio

wikipedia, URL 50
Google App Engine. See GAE
Google cloud

NumPy code, deploying 88, 89

H
harris function 192
hello.pyx code

writing 171
Hello World program

building 170
building, steps for 171
distutils setup.py script 171
hello.pyx code, writing 171

help command 10
histogram function 66
Hits column 144
how parameter 203

I
iirdesign function 114
images

blurring 104-107
loading, into memory map 96-100
merging 100-104

resizing 29-32
importr function 83
indexing

fancy indexing 36-38
with booleans 40-42
with list of locations 38, 39

Infinite Impulse Response (IIR) 114
inline figures

web notebook, running with 13
installing

Apple Developer Tools (Xcode) 6
cikits-learn project installing, easy_install

used 184
Cython 170
Cython, pip used 170
Cython, setup tools used 170
Cython, tarball (.tar archive) used 170
Cython, ways for 170
Cython, with Windows installers 170
GAE 87
IPython, from source 7
IPython, on Linux 6
IPython, on Mac OS X 6
IPython, on Windows 6
IPython, pip used 7
IPython, steps for 6
IPython, with easy_install 7
JPype 84
line_profiler, with easy_install 142
Matplotlib 11
Matplotlib, from source 11
Matplotlib, on Linux 11
Matplotlib, on Mac 11
Matplotlib, on Windows 11
Mocks 162
Octave, pointers for 81
Pandas 195
Patsy 198
PIL 28
PIL, on Debian 28
PIL, on Ubuntu 28
PIL, on Windows 28
PIL, pip used 28
PIL, with easy_install 28
PIL, with rip 28
Pudb 148
Pyflakes, easy_install used 152

208

Pyflakes, in Linux 152
Pyflakes, pip used 152
Pylint, from source distribution 154
RPy2 82
RPy2, from source 82
RPy2, steps for 82
RPy2, easy_install used 82
RPy2, pip used 82
scikits-learn project, from source 184
scikits-learn project, with easy_install 184
SciPy, easy_install used 27
SciPy, from source 26
SciPy, on Linux 27
SciPy, on Mac OS X 27
SciPy, on Windows 27
SciPy, pip used 27
SciPy, rip used 27
setup tools, on Windows 6
SymPy profile, easy_install used 23, 24
SymPy profile, pip used 23, 24

interoperability 75
IPython

about 5
components 5
debugging with 146-148
in cloud URL 6
installing, from source 7
installing, on Linux 6
installing, on Mac OS X 6
installing, on Windows 6
installing, steps for 6
installing, with easy_install 7
installing, with pip 7
profiling with 139-141
URL 5
using, as shell 8, 10

IPython, installing
from source 7
on Linux 6
on Mac OS X 6
on Windows 6
with easy_install 7
with pip 7

IPython shell
history, displaying 9
pylab switch 8
session, saving 9

system shell command, executing 9
using, ways for 8

J
Java Native Interface (JNI) 86
JPype

about 84
building 84
installing, steps for 84
NumPy array, sending to 84-86
URL, for downloading 84

Jython 84

L
l command 148
lena function 29
lena image

flipping 34, 35
linalg module 61
Line # column 144
Line Contents column 144
line_profiler

about 142
code, profiling with 143, 144
development version, installing 142
installing, with easy_install 142

linspace function 104
Linux

IPython, installing 6
Matplotlib, installing 11
Pyflakes, installing 152
Scipy, installing 27

list command 147, 148
load function 200
load_pandas method 200
locations list

used, for indexing 38, 39
log function 50, 53, 173, 189

M
Mac

Matplotlib, installing 11
Mac OS X

IPython, installing 6
Scipy, installing 27

209

MainHandler class 89
Mandelbrot fractal

wikipedia, URL 100
manual pages

reading 10, 11
Markov chain 58
masked array

creating 125
creating, steps for 126, 127

MaskedArray function 125
MATLAB

data, exchanging with 80, 81
Matplotlib, installing

from source 11
on Linux 11
on Mac 11
on Windows 11

memmap function 98, 100
memory map

images, loading into 96-100
loading into 98

merge sort algorithm 135
meshgrid function 97, 100, 104
message type

[C] 155
[E] 155
[F] 155
[R] 155
[W] 155

mocks
asset behavior 162
creating 162
installing 162
used, for testing code 162, 163

modf function 54, 56
mtcars dataset 83

N
ncalls column 141
ndarray class 42
ndarray module 79
negative values

ignoring 128-131
notebook server

about 12
configuring, steps for 20-22

password, generating 20
profile configuration file, editing 21
server profile, creating 21
SSL certificate, creating 20, 21
starting 21

NumPy
.pyx file, writing 172
about 25
Cython module, using 173
Cython, using with 172, 173
diff function 174
log function 173
setup.py file, writing 172

NumPy approximation
of e 176

NumPy array
sending, to Jype 84-86

NumPy code
deploying, in Google cloud 88, 89
running, in Python Anywhere web console

90-92
numpy.ma module 125
numpy.random module 72
numpy.recarray module 133
numpy.testing.assert_equal function 161
numpy.tile function 110

O
Octave

data, exchanging with 80, 81
pointers, for installing 81

O(nlogn) 135
outer function 57, 58, 123
outer method 124

P
palindromic numbers 56, 58
Pandas

about 194
installing 195
stock returns correlation, estimating 195
time series data, resampling 200-203

pandas.DataFrame.corr method 197
pandas.DataFrame method 197
pandas.DataFrame.plot method 197

210

Pareto principle
URL 64

patsy
installing 198

percall column 141
Per Hit column 144
PiCloud

about 92, 93
URL 92
working 93

PIL
about 76
installing, on Debian 28
installing, on Ubuntu 28
installing, on Windows 28
installing, with easy_install 28
installing, with rip 28

pip
IPython, installing with 7
used, for installing Cython 170
used, for installing PIL 28
used, for installing Pyflakes 152
used, for installing RPy2 82
used, for installing SciPy 27

polar function 107
polar rose

wikipedia, URL 104
polyfit function 66, 138
polyval function 138
power law

discovering 64-66
prime factors

finding 54-56
Wikipedia, URL 54

profiler output
cumtime column 141
ncalls column 141
percall column 141
tottime column 141

profiling
script, profiling 139
snippet, timing 139
with IPython 139

pudb
debugging with 148, 149
installing 148

py26-scikits-learn 184

py27-scikits-learn 184
Pychecker

static analysis, performing 155
Pyflakes

about 151
installing, on Linux 152
installing, with easy_install 152
installing, with pip 152
static analysis, performing 152, 153

pylab mode
web notebook, running 13

pylab switch 8
Pylint

about 153
installing, from source distribution 154
working 155

Pythagorean triples
finding 122, 124
wikipedia, URL 122

Python Anywhere web console
NumPy code, running 90-92

Python Image Library (PIL) 26
python-pandas project 195
python-sklearn 184

Q
quicksort algorithm 135

R
R

interfacing with 82-84
rand function 72
randint function 72, 100
randn function 72
random

trading, simulating at 70, 72
random_integers function 100, 107, 138
ravel function 55, 56
recarray

score tables, creating with 131-133
recarray class 131
repeat function 32
resample method 200
RPy2

installing 82
installing, from source 82

211

installing, steps for 82
installing, with easy_install 82
installing, with pip 82

S
savemat function 80
Scikits 183
scikits-image 191
scikits-learn project

about 184
Dow Jones stocks, clustering 185-189
example dataset, loading 184
installing, from source 184
installing, with easy_install 184

Scikits, projects
pandas 183
scikits-image 183
scikits-learn 183
scikits-statsmodels 183

scikits-statsmodels package
about 189
binaries downloading, URL 189
normality test, performing 190, 191
source downloading, URL 189

SciPy
about 26
installation, checking 27
installing, easy_install used 27
installing, from source 26
installing, on Linux 27
installing, on Mac OS X 27
installing, on Windows 27
installing, rip used 27

scipy.io.wavfile.read function 110
scipy.io.wavfile.write function 110
scipy.signal.iirdesign function 116
Scipy.signal.lfilter function 116
score tables

creating, with recarray 131-133
semilogx function 138
server profile

creating 21
setup.py file

writing 172
setup tools

installing, on Windows 6

used, for installing Cython 170
shell

IPython, using as 8
Sieve of Erasthothenes

integers, sieving with 72
URL 72

sign function 63
sinc function

plotting 14
sklearn.cluster.AffinityPropagation.fit function

189
sklearn.cluster.AffinityPropagation() function

189
Sobel filter

edge detection with 117-119
Sobel operator

URL 117
sort method 57
sounds

generating 110, 112
splitlines function 125
sqrt function 50, 53
SSL certificate

creating 20, 21
standard deviation of log returns

wikipedia, URL 131
static analysis

performing, with Pyflakes 152-155
statsmodels

data, loading as pandas objects 198-200
steady state

about 59, 60
URL 58

stirling approximation method
URL 178

stochastic matrix
URL 58

stride tricks
for Sudoku 42-44

string operations
performing, with chararray 124
performing, with chararray object 124, 125

subplot function 30
Sudoku

stride tricks for 42-44
wikipedia, URL 42

sum function 50, 53, 189

212

SymPy profile
exploring 23
installing, easy_install used 23, 24
installing, pip used 23, 24

T
take function 55, 56
tarball (.tar archive)

used, for installing Cython 170
TDD 158
TestCase class 159
Test-driven development. See TDD
Time column 144
timeit

about 135
append function 138
arrays, creating to sort 136
measurement time arrays, building 136
measure time 136
nlogn, fitting to 136
polyfit function 138
polyval function 138
random_integers function 138
semilogx function 138

time series data
resampling, with Pandas 200-203

tofile function 98, 100
tottime column 141
trading

simulating, at random 70, 72
tuple 185

U
Ubuntu

PIL, installing 28
u command 148
Ufuncs. See universal function
unittest.assertEqual function 161
unittest.assertRaises function 161
unit tests

about 158
implementing, standard unittest Python

module used 161

writing 159, 160
universal function

about 121
creating 121, 122
creating, steps for 122

U state 59

V
views

creating 32-34
Vi (m) editor 6

W
web notebook

array, creating 13
creating 13
downloading 15
exporting 14
exporting, print option used 14
features 12
importing, steps for 16-19
running 12
running, in pylab mode 13
running, with inline figures 13
saving 16
sinc function, plotting 14

web notebook, exporting
via download button 15
via print option 14
via save notebook option 16

where function 54, 56
Windows

Matplotlib, installing 11
PIL, installing 28
SciPy, installing 27
setup tools, installing 6

Windows installers
used, for installing Cython 170

Z
zeros function 60, 100

Thank you for buying

NumPy Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

NumPy 1.5 Beginner's Guide
ISBN: 978-1-84951-530-6 Paperback: 234 pages

An action-packed guide for the easy-to-use, high
performance, Python based free open source NumPy
mathematical library using real-world examples

1.	 The first and only book that truly explores NumPy
practically

2.	 Perform high performance calculations with clean
and efficient NumPy code

3.	 Analyze large data sets with statistical functions

4.	 Execute complex linear algebra and mathematical
computations

Matplotlib for Python
Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy way

1.	 Create high quality 2D plots by using Matplotlib
productively

2.	 Incremental introduction to Matplotlib, from the
ground up to advanced levels

3.	 Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

Please check www.PacktPub.com for information on our titles

Sage Beginner's Guide
ISBN: 978-1-84951-446-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying and
automating mathematical computing

1.	 The best way to learn Sage which is a
open source alternative to Magma, Maple,
Mathematica, and Matlab

2.	 Learn to use symbolic and numerical
computation to simplify your work and
produce publication-quality graphics

3.	 Numerically solve systems of equations, find roots,
and analyze data from experiments or simulations

R Graph Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most useful
types of graphs in R—starting from the simplest versions
to more advanced applications

1.	 Learn to draw any type of graph or visual data
representation in R

2.	 Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations

3.	 All examples are accompanied with the
corresponding graph images, so you know what
the results look like

4.	 Each recipe is independent and contains the
complete explanation and code to perform the
task as efficiently as possible

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Winding Along
with IPython
	Introduction
	Installing IPython
	Using IPython as a shell
	Reading manual pages
	Installing Matplotlib
	Running a web notebook
	Exporting a web notebook
	Importing a web notebook
	Configuring a notebook server
	Exploring the SymPy profile

	Chapter 2:
Advanced Indexing and Array Concepts
	Introduction
	Installing SciPy
	Installing PIL
	Resizing images
	Creating views and copies
	Flipping Lena
	Fancy indexing
	Indexing with a list of locations
	Indexing with booleans
	Stride tricks for Sudoku
	Broadcasting arrays

	Chapter 3:
Get to Grips with Commonly Used Functions
	Introduction
	Summing Fibonacci numbers
	Finding prime factors
	Finding palindromic numbers
	The steady state vector determination
	Discovering a power law
	Trading periodically on dips
	Simulating trading at random
	Sieving integers with the Sieve of Erasthothenes

	Chapter 4:
Connecting NumPy with the Rest of the World
	Introduction
	Using the buffer protocol
	Using the array interface
	Exchanging data with MATLAB and Octave
	Installing RPy2
	Interfacing with R
	Installing JPype
	Sending a NumPy array to JPype
	Installing Google App Engine
	Deploying NumPy code in the Google cloud
	Running NumPy code in a Python Anywhere web console
	Setting up PiCloud

	Chapter 5:
Audio and Image Processing
	Introduction
	Loading images into memory map
	Combining images
	Blurring images
	Repeating audio fragments
	Generating sounds
	Designing an audio filter
	Edge detection with the Sobel filter

	Chapter 6:
Special Arrays and Universal Functions
	Introduction
	Creating a universal function
	Finding Pythagorean triples
	Performing string operations with chararray
	Creating a masked array
	Ignoring negative and extreme values
	Creating a scores table with recarray

	Chapter 7:
and Debugging
	Introduction
	Profiling with timeit
	Profiling with IPython
	Installing line_profiler
	Profiling code with line_profiler
	Profiling code with the cProfile extension
	Debugging with IPython
	Debugging with pudb

	Chapter 8:
Quality Assurance
	Introduction
	Installing Pyflakes
	Performing static analysis with Pyflakes
	Analyzing code with Pylint
	Performing static analysis with Pychecker
	Testing code with docstrings
	Writing unit tests
	Testing code with mocks
	Testing the BDD way

	Chapter 9:
Speed Up Code
with Cython
	Introduction
	Installing Cython
	Building a Hello World program
	Using Cython with NumPy
	Calling C functions
	Profiling Cython code
	Approximating factorials with Cython

	Chapter 10:
Fun with Scikits
	Introduction
	Installing scikits-learn
	Loading an example dataset
	Clustering Dow Jones stocks with
scikits-learn
	Installing scikits-statsmodels
	Performing a normality test with
scikits-statsmodels
	Installing scikits-image
	Detecting corners
	Detecting edges
	Installing Pandas
	Estimating stock returns correlation with Pandas
	Loading data as pandas objects from statsmodels
	Resampling time series data

	Index

