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Machine learning is a hot topic today, due in no small part to the 
rapid increase in computing power that allows a host of tasks to be 
performed on a desktop machine. However, machine learning can 
be overwhelming to the inexperienced. That’s why Python Machine 
Learning provides a step-by-step approach that first educates  
you on the underlying technologies, enabling you to build on that 
knowledge base as you develop your machine learning skills. 

You’ll first explore the libraries used in Python to facilitate machine 
learning, including NumPy, Pandas, and matplotlib. Once you have 
a firm foundation in those, you’ll look at machine learning using 
Python and the Scikit-Learn libraries, where you’ll discover how 
various algorithms such as regression, clustering, and classification 
work behind the scenes. There’s a chapter showing how to perform 
machine learning using the Microsoft Azure Machine Learning  
Studio, which lets you start building models without needing to 
code. Finally, you’ll learn how to deploy the models you have built  
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning 
Solutions (http://www.learn2develop.net), a company specializing in 
hands-on training on the latest technologies. His training courses focus 
on learning by doing, and his hands-on approach to learning programming 
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned 
in online and print publications such as DevX.com, MobiForge.com, and 
CoDe Magazine.
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     Introduction   oduction

    This book covers machine learning, one of the hottest topics in more recent 

years. With computing power increasing exponentially and prices decreasing 

simultaneously, there is no better time for machine learning. With machine 

learning, tasks that usually require huge processing power are now possible on 

desktop machines. Nevertheless, machine learning is not for the faint of heart—it 

requires a good foundation in statistics, as well as programming knowledge. 

Most books on the market either are too superficial or go into too much depth 

that often leaves beginning readers gasping for air. 

 This book will take a gentle approach to this topic. First, it will cover some of 

the fundamental libraries used in Python that make machine learning possible. 

In particular, you will learn how to manipulate arrays of numbers using the 

NumPy library, followed by using the Pandas library to deal with tabular data. 

Once that is done, you will learn how to visualize data using the matplotlib 

library, which allows you to plot different types of charts and graphs so that 

you can visualize your data easily. 

 Once you have a fi rm foundation in the basics, I will discuss machine learning 

using Python and the Scikit-Learn libraries. This will give you a solid under-

standing of how the various machine learning algorithms work behind the scenes. 

 For this book, I will cover the common machine learning algorithms, such 

as regression, clustering, and classifi cation. 

 This book also contains a chapter where you will learn how to perform machine 

learning using the Microsoft Azure Machine Learning Studio, which allows 

developers to start building machine learning models using drag-and-drop 

without needing to code. And most importantly, without requiring a deep 

knowledge of machine learning. 
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 Finally, I will discuss how you can deploy the models that you have built, 

so that they can be used by client applications running on mobile and desktop 

devices.

 It is my key intention to make this book accessible to as many developers as 

possible. To get the most out of this book, you should have some basic knowledge 

of Python programming, and some foundational understanding of basic statistics. 

And just like you will never be able to learn how to swim just by reading a 

book, I strongly suggest that you try out the sample code while you are going 

through the chapters. Go ahead and modify the code and see how the output 

varies, and very often you would be surprised by what you can do.  

 All the sample code in this book are available as Jupyter Notebooks (avail-

able for download from Wiley’s support page for this book, www.wiley.com/go/

leepythonmachinelearning ). So you could just download them and try them 

out immediately. 

 Without further delay, welcome to Python Machine Learning!   g
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    Welcome to  Python Machine Learning ! The fact that you are reading this bookg
is a clear indication of your interest in this very interesting and exciting topic. 

 This book covers  machine learning , one of the hottest programming topics in gg
more recent years.  Machine learning (ML)    is a collection of algorithms and tech-

niques used to design systems that learn from data. These systems are then able 

to perform predictions or deduce patterns from the supplied data. 

 With computing power increasing exponentially and prices decreasing simulta-

neously, there is no better time for machine learning. Machine learning tasks that 

usually require huge processing power are now possible on desktop machines. 

Nevertheless, machine learning is not for the faint of heart—it requires a good 

foundation in mathematics, statistics, as well as programming knowledge. The 

majority of the books in the market on machine learning go into too much detail, 

which often leaves beginning readers gasping for air. Most of the discussion on 

machine learning revolves heavily around statistical theories and algorithms, so 

unless you are a mathematician or a PhD candidate, you will likely fi nd them 

diffi cult to digest. For most people, developers in particular, what they want 

is to have a foundational understanding of how machine learning works, and 

most importantly, how to apply machine learning in their applications. It is with 

this motive in mind that I set out to write this book. 

     Introduction to Machine LearningLearning
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 This book will take a gentle   approach to machine learning. I will attempt to 

do the following:

➤   Cover the libraries in Python that lay the foundation for machine 

learning, namely NumPy, Pandas, and matplotlib.

➤  Discuss machine learning using Python and the Scikit-learn libraries. 

Where possible, I will manually implement the relevant machine learning

algorithm using Python. This will allow you to understand how the

various machine learning algorithms work behind the scenes. Once this

is done, I will show how to use the Scikit-learn libraries, which make it

really easy to integrate machine learning into your own apps.

➤  Cover the common machine learning algorithms—regressions, clustering,

and classifications. 

       T I P       It is not the intention of this book to go into a deep discussion of machine 
learning algorithms. Although there are chapters that discuss some of the
mathematical concepts behind the algorithms, it is my intention to make the subject
easy to understand and hopefully motivate you to learn further.

 Machine learning is indeed a very complex topic. But instead of discussing the 

complex mathematical theories behind it, I will cover it using easy-to-understand 

examples and walk you through numerous code samples. This code-intensive book 

encourages readers to try out the numerous examples in the various chapters, which 

are designed to be independent, compact, and easy to follow and understand.  

  What Is Machine Learning? 

 If you have ever written a program, you will be familiar with the diagram shown 

in Figure   1.1  . You write a program, feed some data into it, and get your output. 

For example, you might write a program to perform some accounting tasks for 

your business. In this case, the data collected would include your sales records, 

your inventory lists, and so on. The program would then take in the data and 

calculate your profi ts or loss based on your sales records. You may also perhaps 

churn out some nice and fanciful charts showing your sales performance. In 

this case, the output is the profi t/loss statement, as well as other charts.      

Data

Program
Output

Traditional Programming

Computer

 Figure 1.1  :      In traditional programming, the data and the program produce the output
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 For many years, traditional desktop and web programming have dominated 

the landscape, and many algorithms and methodologies have evolved to make 

programs run more effi ciently. In more recent years, however, machine learning 

has taken over the programming world. Machine learning has transformed the 

paradigm in Figure   1.1   to a new paradigm, which is shown in Figure   1.2  . Instead 

of feeding the data to the program, you now use the data and the output that 

you have collected to derive your program (also known as the  model ). Using the 

same accounting example, with the machine learning paradigm, you would take 

the detailed sales records (which are collectively both the data and output) and 

use them to derive a set of rules to make predictions. You may use this model 

to predict the most popular items that will sell next year, or which items will 

be less popular going forward.

       T I P       Machine learning is about finding  patterns   in data.

  What Problems Will Machine Learning Be Solving in This Book? 
 So, what exactly is machine learning? Machine learning (ML) is a collection 

of algorithms and techniques used to design systems that learn from data. ML 

algorithms have a strong mathematical and statistical basis, but they do not 

take into account domain knowledge. ML consists of the following disciplines:

■   Scientifi c computing 

■  Mathematics 

■  Statistics   

 A good application of machine learning is trying to determine if a particular 

credit card transaction is fraudulent. Given past transaction records, the data 

scientist ’ s job is to clean up and transform the data based on domain knowledge 

so that the right ML algorithm can be applied in order to solve the problem (in 

this case determine if a transaction is fraudulent). A data scientist needs to know 

about which method of machine learning will best help in completing this task 

and how to apply it. The data scientist does not necessarily need to know how 

that method works, although knowing this will always help in building a more 

accurate learning model. 

Data

Output
Program

Machine Learning

Computer

 Figure 1.2  :      In machine learning, the data and the output produce the program
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 In this book, there are three main types of problems that we want to solve 

using machine learning. These problem types are as follows:

Classifi cation:  Is this A or B?

Regression:  How much or how many?

Clustering:  How is this organized?

  Classification 

 In machine learning, classifi cation  is identifying to which set of categories a new 

observation belongs based on the set of training data containing in the observed 

categories. Here are some examples of classifi cation problems:

■   Predicting the winner for the U.S. 2020 Presidential Election

■  Predicting if a tumor is cancerous 

■  Classifying the different types of fl owers

 A classifi cation problem with two classes is known as a two-class classifi cation
problem. Those with more than two classes are known as  multi-class classifi cation
problems. 

 The outcome of a classifi cation problem is a discrete value indicating the 

predicted class in which an observation lies. The outcome of a classifi cation 

problem can also be a continuous value, indicating the likelihood of an obser-

vation belonging to a particular class. For example, candidate A is predicted 

to win the election with a probability of 0.65 (or 65 percent). Here, 0.65 is the 

continuous value indicating the confi dence of the prediction, and it can be 

converted to a class value (“win” in this case) by selecting the prediction with 

the highest probability. 

 Chapter   7   through Chapter   9   will discuss classifi cations in more detail.

  Regression 

Regression  helps in forecasting the future by estimating the relationship between 

variables. Unlike classifi cation (which predicts the class to which an observa-

tion belongs), regression returns a continuous output variable. Here are some 

examples of regression problems:

■   Predicting the sales number for a particular item for the next quarter 

■  Predicting the temperatures for next week

■  Predicting the lifespan of a particular model of tire   

 Chapter   5   and Chapter   6   will discuss regressions in more detail.
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  Clustering 

Clustering  helps in grouping similar data points into intuitive groups. Given a 

set of data, clustering helps you discover how they are organized by grouping 

them into natural clumps. 

 Examples of clustering problems are as follows:

■   Which viewers like the same genre of movies 

■  Which models of hard drives fail in the same way   

 Clustering is very useful when you want to discover a specifi c pattern in the 

data. Chapter   10   will discuss clustering in more detail.   

  Types of Machine Learning Algorithms 
 Machine learning algorithms fall into two broad categories:

■ Supervised learning algorithms  are trained with labeled data. In other words,

data composed of examples of the desired answers. For instance, a model 

that identifi es fraudulent credit card use would be trained from a dataset 

with labeled data points of known fraudulent and valid charges. Most 

machine learning is supervised. 

■ Unsupervised learning algorithms  are used on data with no labels, and 

the goal is to fi nd relationships in the data. For instance, you might 

want to fi nd groupings of customer demographics with similar buying 

habits. 

  Supervised Learning 

 In supervised learning, a labeled dataset is used. A  labeled dataset  means that

a group of data has been tagged with a label. This label provides informative 

meaning to the data. Using the label, unlabeled data can be predicted to obtain 

a new label. For example, a dataset may contain a series of records containing 

the following fi elds, which record the size of the various houses and the prices 

for which they were sold:

     House Size, Price Sold   

 In this very simple example,  Price Sold  is the label. When plotted on a chart

(see Figure   1.3  ), this dataset can help you predict the price of a house that is yet 

to be sold. Predicting a price for the house is a  regression  problem.
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 Using another example, suppose that you have a dataset containing the 

following:

     Tumor Size, Age, Malignant   

 The Malignant   fi eld is a label indicating if a tumor is cancerous. When you

plot the dataset on a chart (see Figure   1.4  ), you will be able to classify it into two 

distinct groups, with one group containing the cancerous tumors and the other 

containing the benign tumors. Using this grouping, you can now predict if a new 

tumor is cancerous or not. This type of problem is known as a classifi cation  problem.        

       T I P       Chapter   6   through Chapter   9   will discuss supervised learning algorithms in 
more detail.    
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  Unsupervised Learning

 In unsupervised learning, the dataset used is not labeled. An easy way to visu-

alize unlabeled data is to consider the dataset containing the waist size and leg 

length of a group of people:

     Waist Size, Leg Length   

 Using unsupervised learning, your job is to try to predict a pattern in the 

dataset. You may plot the dataset in a chart, as shown in Figure   1.5  .      

 You can then use some clustering algorithms to fi nd the patterns in the data-

set. The end result might be the discovery of three distinct groups of clusters 

in the data, as shown in Figure   1.6  .       
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 Figure 1.5  :      Plotting the unlabeled data 
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       T I P       Chapter   10   will discuss unsupervised learning algorithms in more detail.

  Getting the Tools

 For this book, all of the examples are tested using Python 3 and the Scikit-learn 

library, a Python library that implements the various types of machine learning 

algorithms, such as classifi cation, regression, clustering, decision tree, and 

more. Besides Scikit-learn, you will also be using some complementary Python 

libraries—NumPy, Pandas, and matplotlib.

 While you can install the Python interpreter and the other libraries individ-

ually on your computer, the trouble-free way to install all of these libraries is 

to install the Anaconda package. Anaconda   is a free Python distribution that 

comes with all of the necessary libraries that you need to create data science 

and machine learning projects. 

 Anaconda includes the following:

■   The core Python language 

■  The various Python packages (libraries) 

■ conda , Anaconda ’ s own package manager for updating Anaconda and

packages 

■  Jupyter Notebook (formerly known as iPython Notebook), a web-based kk
editor for working with Python projects

 With Anaconda, you have the flexibility to install different languages 

(R, JavaScript, Julia, and so on) to work in Jupyter Notebook. 

  Obtaining Anaconda
 To download Anaconda, go to https://www.anaconda.com/download/ . You will/

be able to download Anaconda for these operating systems (see Figure   1.7  ):

■   Windows 

■  macOS

■  Linux

 Download the Python 3 for the platform you are using.

       N OT E       At the time of this writing, Python is in version 3.7.  

       T I P       For this book, we will be using Python 3. So be sure to download the correct 
version of Anaconda containing Python 3.    
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  Installing Anaconda
 Installing Anaconda is mostly a non-event process. Double-click the fi le that 

you have downloaded, and follow the instructions displayed on the screen. In 

particular, Anaconda for Windows has the option to be installed only for the 

local user. This option does not require administrator rights, and hence it is very 

useful for users who are installing Anaconda on company-issued computers, 

which are usually locked down with limited user privileges.

 Once Anaconda is installed, you will want to launch Jupyter Notebook. Jupyter 

Notebook is an open source web application, which allows you to create and 

share documents that contain documentation, code, and more.

  Running Jupyter Notebook for Mac 

 To launch Jupyter from macOS, launch Terminal  and type the following command:

    $   jupyter notebook

 You will see the following:

    $ jupyter notebook  
  [I 18:57:03.642 NotebookApp] JupyterLab extension loaded from
/Users/weimenglee/anaconda3/lib/python3.7/site-packages/jupyterlab 
  [I 18:57:03.643 NotebookApp] JupyterLab application directory is
/Users/weimenglee/anaconda3/share/jupyter/lab  
  [I 18:57:03.648 NotebookApp] Serving notebooks from local directory: 
/Users/weimenglee/Python Machine Learning  
  [I 18:57:03.648 NotebookApp] The Jupyter Notebook is running at:

 Figure 1.7  :      Downloading Anaconda for Python 3 
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  [I 18:57:03.648 NotebookApp] 
http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a68107399b07f89
b85fa  
  [I 18:57:03.648 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation).  
  [C 18:57:03.649 NotebookApp]   
        
      Copy/paste this URL into your browser when you connect for the first 
time,  
      to login with a token:
          http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a681073
99b07f89b85fa 
  [I 18:57:04.133 NotebookApp] Accepting one-time-token-authenticated
connection from ::1     

 Essentially, Jupyter Notebook starts a web server listening at port 8888. After 

a while, a web browser will launch (see Figure   1.8  ).       

       T I P       The Home page of Jupyter Notebook shows the content of the directory from 
where it is launched. Hence, it is always useful to change to the directory that contains
your source code first, prior to launching Jupyter Notebook.

  Running Jupyter Notebook for Windows 

 The best way to launch Jupyter Notebook in Windows is to launch it from the 

Anaconda Prompt . The Anaconda Prompt automatically runs the batch fi le located t
at C:\Anaconda3\Scripts\activate.bat  with the following argument:

    C:\Anaconda3\Scripts\activate.bat C:\Anaconda3    

 Figure 1.8  :      The Jupyter Notebook Home page
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       T I P       Note that the exact location of the Anaconda3 folder can vary. For example, 
by default Windows 10 will install Anaconda in  C:\Users\<username>\AppData\
Local\Continuum\anaconda3  instead of  C:\Anaconda3 .

 This sets up the necessary paths for accessing Anaconda and its libraries. 

 To launch the Anaconda Prompt, type  Anaconda Prompt  in the Windows

Run textbox. To launch Jupyter Notebook from the Anaconda Prompt, type 

the following:

    (base) C:\Users\Wei-Meng Lee\Python Machine Learning>jupyter notebook

 You will then see this:

    [I 21:30:48.048 NotebookApp] JupyterLab beta preview extension loaded from 
C:\Anaconda3\lib\site-packages\jupyterlab  
  [I 21:30:48.048 NotebookApp] JupyterLab application directory is
C:\Anaconda3\share\jupyter\lab  
  [I 21:30:49.315 NotebookApp] Serving notebooks from local directory: 
C:\Users\Wei-Meng Lee\Python Machine Learning  
  [I 21:30:49.315 NotebookApp] 0 active kernels  
  [I 21:30:49.322 NotebookApp] The Jupyter Notebook is running at:
  [I 21:30:49.323 NotebookApp] 
http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e450ce5e1c4
d7b2f  
  [I 21:30:49.324 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation).  
  [C 21:30:49.336 NotebookApp]  

       Copy/paste this URL into your browser when you connect for the first 
time,  
      to login with a token:
          http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e45
0ce5e1c4d7b2f 
  [I 21:30:49.470 NotebookApp] Accepting one-time-token-authenticated
connection from ::1     

 Essentially, Jupyter Notebook starts a web server listening at port 8888. It then 

launches your web browser showing you the page in Figure   1.9  .       

  Creating a New Notebook 

 To create a new notebook, locate the New button on the right side of the screen 

and click it. You should be able to see Python 3 in the dropdown (see Figure   1.10  ). 

Click this option.

 Your new notebook will now appear (see Figure   1.11  ).
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  Naming the Notebook 

 By default, your notebook will be named “Untitled”. To give it a suitable name, 

click “Untitled” and type in a new name. Your notebook will be saved in the 

directory from which you have launched Jupyter Notebook. The notebook will be 

saved with a fi lename that you have given it, together with the  .ipynb  extension. 

 Figure 1.9  :      Jupyter Notebook showing the Home page

 Figure 1.10  :      Creating a new Python 3 notebook 
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       T I P       Jupyter Notebook was previously known as  iPython Notebook; hence thek
.ipynb  extension.

  Adding and Removing Cells

 A notebook contains one or more cells. You can type Python statements in each 

cell. Using Jupyter Notebook, you can divide your code into multiple snippets 

and put them into cells so that they can be run individually.

 To add more cells to your notebook, click the +  button. You can also use

the Insert menu item and select the option Insert Cell Above to add a new 

cell above the current cell, or select the Insert Cell Below option to add a 

new cell below the current cell.

 Figure   1.12   shows the notebook containing two cells.       

 Figure 1.11  :      The Python 3 notebook created in Jupyter Notebook 

 Figure 1.12  :      The notebook with two cells
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  Running a Cell 

 Each cell in a Jupyter Notebook can be run independently. To execute (run) the 

code in a cell, press Ctrl+Enter, or click the arrow icon displayed to the left of 

the cell when you hover your mouse over it (see Figure   1.13  ).      

 When cells are run, the order in which they were executed is displayed as 

a running number. Figure   1.14   shows two cells executed in the order shown. 

The number 1 in the fi rst cell indicates that this cell was executed fi rst, followed by 

number 2 in the second cell. The output of the cell is displayed immediately after 

the cell. If you go back to the fi rst cell and run it, the number will then change to 3.      

 As you can see, code that was executed previously in another cell retains its 

value in memory when you execute the current cell. However, you need to be 

careful when you are executing cells in various orders. Consider the example 

in Figure   1.15  . Here, we have three cells. In the fi rst cell, we initialize the value 

of s  to a string and print its value in the second cell. In the third cell, we change 

the value of  s  to another string.

 Figure 1.13  :      Running (executing) the code in the cell

 Figure 1.14  :      The number displayed next to the cell indicates the order in which it was run
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 Very often, in the midst of testing your code, it is very common that you 

may make modifi cations in one cell and go back to an earlier cell to retest the 

code. In this example, suppose that you go back and rerun the second cell. In 

this case, you would now print out the new value of  s  (see Figure   1.16  ). At fi rst 

glance, you may be expecting to see the string “Welcome to Python Machine 

Learning,” but since the second cell was rerun after the third cell, the value of 

s  will take on the “Python Machine Learning” string.      

 Figure 1.15  :      The notebook with three cells

 Figure 1.16  :      Executing the cells in non-linear order 
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 To restart the execution from the fi rst cell, you need to restart the kernel, or 

select Cell ⇨ Run All.

  Restarting the Kernel 

 As you can run any cell in your notebook in any order, after a while things may 

get a little messy. You may want to restart the execution and start all over again. 

This is where restarting the kernel is necessary (see Figure   1.17  ).       

       T I P       When your code goes into an infinite loop, you need to restart the kernel. 
There are two common scenarios for restarting the kernel:
Restart & Clear Output     Restart the kernel and clear all of the outputs. You can now run

any of the cells in any order you like.
Restart & Run All   Restart the kernel and run all of the cells from the first to the last. This 

is very useful if you are satisfied with your code and want to test it in its entirety.

  Exporting Your Notebook 

 Once you are done with your testing in Jupyter Notebook, you can now export 

code from your notebook to a Python fi le. To do so, select File ⇨ Download as

⇨ python (.py). (See Figure   1.18  .)

 A fi le with the same name as your notebook, but now with the .py  extension, 

will be downloaded to your computer. 

       T I P       Make sure that you select the python (.py) option and not the Python (.py) 
option. The latter option saves the file with an .html  extension.

 Figure 1.17  :      Restarting the kernel
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  Getting Help

 You can get help in Jupyter Notebook quite easily. To get help on a function in 

Python, position your cursor on the function name and press Shift+Tab. This 

will display a pop-up known as the  tooltip  (see Figure   1.19  ).

 To expand the tooltip (see Figure   1.20  ), click the +  button on the upper-right 

corner of the tooltip. You can also get the expanded version of the tooltip when 

you press Shift+Tab+Tab.

 Figure 1.18  :      Exporting your notebook to a Python file
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  Summary

 In this chapter, you learned about machine learning and the types of problems 

that it can solve. You also studied the main difference between supervised and 

unsupervised learning. For developers who are new to Python programming, 

I strongly advise you to install Anaconda, which will provide all of the libraries 

and packages you ’ ll need to follow the examples in this book. I know that you 

are all eager to start learning, so let ’ s move onward to Chapter   2  !   

 Figure 1.19  :      The tooltip displays help information 

 Figure 1.20  :      Expanding the tooltip to show more detail
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     Extending Python Using NumPy   g NumPy   

    What Is NumPy?

 In Python, you usually use the list  data type to store a collection of items. The

Python list is similar to the concept of arrays in languages like Java, C#, and 

JavaScript. The following code snippet shows a Python list:

    list1 = [1,2,3,4,5]  

    Unlike arrays, a Python list does not need to contain elements of the same 

type. The following example is a perfectly legal list in Python:

   list2 = [1,"Hello",3.14,True,5] 

    While this unique feature in Python provides fl exibility when handling 

multiple types in a list, it has its disadvantages when processing large amounts 

of data (as is typical in machine learning and data science projects). The key 

problem with Python ’ s list  data type is its effi ciency. To allow a list to have 

non-uniform type items, each item in the list is stored in a memory location, with 

the list containing an “array” of pointers to each of these locations. A Python 

list requires the following:

■   At least 4 bytes per pointer.

■  At least 16 bytes for the smallest Python object—4 bytes for a pointer, 

4 bytes for the reference count, 4 bytes for the value. All of these together 

round up to 16 bytes.   
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 Due to the way that a Python list is implemented, accessing items in a large list 

is computationally expensive. To solve this limitation with Python ’ s list feature, 

Python programmers turn to NumPy , an extension to the Python programming yy
language that adds support for large, multidimensional arrays and matrices, 

along with a large library of high-level mathematical functions to operate on 

these arrays. 

 In NumPy, an array is of type  ndarray  (n-dimensional array), and all ele-

ments must be of the same type. An  ndarray  object represents a multidimen-

sional, homogeneous array of fi xed-size items, and it is much more effi cient 

than Python ’ s list. The ndarray  object also provides functions that operate on 

an entire array at once.  

  Creating NumPy Arrays

 Before using NumPy, you fi rst need to import the NumPy package (you may 

use its conventional alias  np  if you prefer):

    import numpy as np  

    The fi rst way to make NumPy arrays is to create them intrinsically, using the 

functions built right into NumPy. First, you can use the arange()  function to

create an evenly spaced array with a given interval:

    a1 = np.arange(10)        # creates a range from 0 to 9  
  print(a1)                 # [0 1 2 3 4 5 6 7 8 9]
  print(a1.shape)           # (10,)  

    The preceding statement creates a rank 1 array (one-dimensional) of ten ele-

ments. To get the shape of the array, use the shape  property. Think of  a1  as a 

10×1 matrix.

 You can also specify a step in the arange()  function. The following code

snippet inserts a step value of 2:

    a2 = np.arange(0,10,2)    # creates a range from 0 to 9, step 2
  print(a2)                 # [0 2 4 6 8]

    To create an array of a specifi c size fi lled with 0s, use the  zeros()  function:

    a3 = np.zeros(5)          # create an array with all 0s  
  print(a3)                 # [ 0.  0.  0.  0.  0.]
  print(a3.shape)           # (5,)  

    You can also create two-dimensional arrays using the  zeros()  function:

    a4 = np.zeros((2,3))      # array of rank 2 with all 0s; 2 rows and 3 
                          # columns 
  print(a4.shape)           # (2,3)  
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  print(a4)
  '''  
  [[ 0.  0.  0.]  
   [ 0.  0.  0.]]  
  '''  

    If you want an array fi lled with a specifi c number instead of 0, use the full()

function:

    a5 = np.full((2,3), 8)    # array of rank 2 with all 8s  
  print(a5)
  '''  
  [[8 8 8]
   [8 8 8]]
  '''  

    Sometimes, you need to create an array that mirrors an identity matrix. In 

NumPy, you can do so using the eye()  function:

    a6 = np.eye(4)            # 4x4 identity matrix  
  print(a6)
  '''  
  [[ 1.  0.  0.  0.]  
   [ 0.  1.  0.  0.]  
   [ 0.  0.  1.  0.]  
   [ 0.  0.  0.  1.]]  
  '''  

    The eye()  function returns a 2-D array with ones on the diagonal and zeros 

elsewhere. 

 To create an array fi lled with random numbers, you can use the  random()

function from the  numpy.random  module:

    a7 = np.random.random((2,4)) # rank 2 array (2 rows 4 columns) with
                             # random values  
                               # in the half-open interval [0.0, 1.0)
  print(a7)
  '''  
  [[ 0.48255806  0.23928884  0.99861279  0.4624779 ]
   [ 0.18721584  0.71287041  0.84619432  0.65990083]]
  '''  

    Another way to create a NumPy array is to create it from a Python list as 

follows:

    list1 = [1,2,3,4,5]  # list1 is a list in Python  
  r1 = np.array(list1) # rank 1 array
  print(r1)            # [1 2 3 4 5]  

    The array created in this example is a rank 1 array.
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  Array Indexing 

 Accessing elements in the array is similar to accessing elements in a Python list:

    print(r1[0])         # 1
  print(r1[1])         # 2

    The following code snippet creates another array named  r2 , which is

two-dimensional:

    list2 = [6,7,8,9,0]  
  r2 = np.array([list1,list2])     # rank 2 array  
  print(r2)
  '''  
  [[1 2 3 4 5]
   [6 7 8 9 0]]
  '''  
  print(r2.shape)             # (2,5) - 2 rows and 5 columns  
  print(r2[0,0])              # 1  
  print(r2[0,1])              # 2  
  print(r2[1,0])              # 6  

    Here,  r2  is a rank 2 array, with two rows and fi ve columns. 

 Besides using an index to access elements in an array, you can also use a list 

as the index as follows:

    list1 = [1,2,3,4,5]  
  r1 = np.array(list1)  
  print(r1[[2,4]])    # [3 5]  

     Boolean Indexing
 In addition to using indexing to access elements in an array, there is another 

very cool way to access elements in a NumPy array. Consider the following:

    print(r1>2)     # [False False  True  True  True]

    This statement prints out a list containing Boolean values. What it actually 

does is to go through each element in  r1  and check if each element is more than 

two. The result is a Boolean value, and a list of Boolean values is created at the 

end of the process. You can feed the list results back into the array as the index:

    print(r1[r1>2])    # [3 4 5]  
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    This method of accessing elements in an array is known as  Boolean Indexing. gg
This method is very useful. Consider the following example:

    nums = np.arange(20)  
  print(nums)        # [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
17 18 19] 

    If you want to retrieve all of the odd numbers from the list, you could simply 

use Boolean Indexing as follows:

    odd_num = nums[nums % 2 == 1]  
  print(odd_num)     # [ 1  3  5  7  9 11 13 15 17 19]

      Slicing Arrays 
 Slicing in NumPy arrays is similar to how it works with a Python list. Consider 

the following example:

    a = np.array([[1,2,3,4,5],
                [4,5,6,7,8],
                [9,8,7,6,5]])    # rank 2 array  
  print(a)
  '''  
  [[1 2 3 4 5]
   [4 5 6 7 8]
   [9 8 7 6 5]]
  '''  

    To extract the last two rows and fi rst two columns, you can use slicing:

    b1 = a[1:3, :3]     # row 1 to 3 (not inclusive) and first 3 columns  
  print(b1)

    The preceding code snippet will print out the following:

    [[4 5 6]
   [9 8 7]]

    Let ’ s dissect this code. Slicing has the following syntax: [start:stop] . For 

two-dimensional arrays, the slicing syntax becomes [start:stop, start:stop] .

The  start:stop  before the comma ( , ) refers to the rows, and the  start:stop  after 

the comma ( , ) refers to the columns. Hence for  [1:3, :3] , this means that you 

want to extract the rows with index 1 right up to 3 (but not including 3), and 
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columns starting from the fi rst column right up to index 3 (but not including 3). 

The general confusion regarding slicing is the end index. You need to remember 

that the end index is not included in the answer. A better way to visualize slicing 

is to write the index of each row and column between the numbers, instead of 

at the center of the number, as shown in Figure   2.1  .

      Using this approach, it is now much easier to visualize how slicing works 

(see Figure   2.2  ). 

      What about negative indices? For example, consider the following:

    b2 = a[-2:,-2:]  
  print(b2)

    Using the method just described, you can now write the negative row and 

column indices, as shown in Figure   2.3  .

      You should now be able to derive the answer quite easily, which is as follows:

    [[7 8]  
   [6 5]]

 Figure 2.1  :      Writing the index for row and column in between the numbers

 Figure 2.2  :      Performing slicing using the new approach 
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      NumPy Slice Is a Reference 
 It is noteworthy that the result of a NumPy slice is a reference and not a copy 

of the original array. Consider the following:

    b3 = a[1:, 2:]      # row 1 onwards and column 2 onwards  
                      # b3 is now pointing to a subset of a  
  print(b3)

    The result is as follows:

    [[6 7 8]
   [7 6 5]]

    Here,  b3  is actually a reference to the original array a  (see Figure   2.4  ).

      Hence, if you were to change one of the elements in b3  as follows:

    b3[0,2] = 88         # b3[0,2] is pointing to a[1,4]; modifying it will 
                     # modify     the original array
  print(a)

 Figure 2.3  :      Writing the negative indices for rows and columns

 Figure 2.4  :      Slicing returns a reference to the original array and not a copy
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    The result will affect the content of a  like this:

    [[ 1  2  3  4  5]  
   [ 4  5  6  7   88  ]  
   [ 9  8  7  6  5]]  

    Another salient point to note is that the result of the slicing is dependent on 

how you slice it. Here is an example:

    b4 = a[2:, :]       # row 2 onwards and all columns
  print(b4)
  print(b4.shape)  

    In the preceding statement, you are getting rows with index 2 and above and 

all of the columns. The result is a rank 2 array, like this:

    [[9 8 7 6 5]]
  (1,5)  

    If you have the following instead . . .

    b5 = a[2, :]         # row 2 and all columns  
  print(b5)            # b5 is rank 1

    . . . then the result would be a rank 1 array:

    [9 8 7 6 5]

    Printing the shape of the array confi rms this:

    print(b5.shape)      # (5,)  

       Reshaping Arrays 

 You can reshape an array to another dimension using the reshape()  function. 

Using the b5  (which is a rank 1 array) example, you can reshape it to a rank 2 

array as follows:

    b5 = b5.reshape(1,-1)
  print(b5)
  '''  
  [[9 8 7 6 5]]
  '''  

    In this example, you call the  reshape()  function with two arguments. The 

fi rst 1  indicates that you want to convert it into rank 2 array with 1 row, and the 
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-1  indicates that you will leave it to the  reshape()  function to create the correct

number of columns. Of course, in this example, it is clear that after reshaping 

there will be fi ve columns, so you can call the reshape()  function as  reshape(1,5) .

In more complex cases, however, it is always convenient to be able to use -1  to 

let the function decide on the number of rows or columns to create.

 Here is another example of how to reshape  b4  (which is a rank 2 array) to rank 1:

    b4.reshape(-1,)  
  '''  
  [9 8 7 6 5]
  '''  

    The -1  indicates that you let the function decide how many rows to create as 

long as the end result is a rank 1 array.

       T I P       To convert a rank 2 array to a rank 1 array, you can also use the  flatten()  or
ravel() functions. The  flatten()  function always returns a copy of the array, while
the  ravel()  and  reshape()  functions return a view (reference) of the original array.

     Array Math 

 You can perform array math very easily on NumPy arrays. Consider the fol-

lowing two rank 2 arrays:

    x1 = np.array([[1,2,3],[4,5,6]])  
  y1 = np.array([[7,8,9],[2,3,4]])  

    To add these two arrays together, you use the  +  operator as follows:

    print(x1 + y1)  

    The result is the addition of each individual element in the two arrays:

    [[ 8 10 12]
   [ 6  8 10]]

    Array math is important, as it can be used to perform vector calculations. 

A good example is as follows:

    x = np.array([2,3])  
  y = np.array([4,2])  
  z = x + y
  '''  
  [6 5]  
  '''  
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    Figure   2.5   shows the use of arrays to represent vectors and uses array addition 

to perform vector addition.

      Besides using the +  operator, you can also use the np.add()  function to add

two arrays:

    np.add(x1,y1)

    Apart from addition, you can also perform subtraction, multiplication, as well 

as division with NumPy arrays:

    print(x1 - y1)     # same as np.subtract(x1,y1)  
  '''  
  [[-6 -6 -6]
   [ 2  2  2]]
  '''  

   print(x1 * y1)     # same as np.multiply(x1,y1)  
  '''  
  [[ 7 16 27]
   [ 8 15 24]]
  '''  

   print(x1 / y1)     # same as np.divide(x1,y1)  
  '''  
  [[ 0.14285714  0.25        0.33333333]
   [ 2.          1.66666667  1.5       ]]
  '''  

    What ’ s a practical use of the ability to multiply or divide two arrays? As an 

example, suppose you have three arrays: one containing the names of a group 

of people, another the corresponding heights of these individuals, and the last 

one the corresponding weights of the individuals in the group:

    names   = np.array(['Ann','Joe','Mark'])
  heights = np.array([1.5, 1.78, 1.6])
  weights = np.array([65, 46, 59])  

 Figure 2.5  :      Using array addition for vector addition 
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    Now say that you want to calculate the Body Mass Index (BMI) of this group 

of people. The formula to calculate BMI is as follows:

■   Divide the weight in kilograms (kg) by the height in meters (m)

■  Divide the answer by the height again   

 Using the BMI, you can classify a person as healthy, overweight, or under-

weight using the following categories:

■   Underweight if BMI < 18.5

■  Overweight if BMI > 25

■  Normal weight if 18.5 <= BMI <= 25   

 Using array division, you could simply calculate BMI using the following 

statement:

    bmi = weights/heights **2            # calculate the BMI  
  print(bmi)                           # [ 28.88888889  14.51836889 
23.046875  ] 

    Finding out who is overweight, underweight, or otherwise is now very easy:

    print("Overweight: " , names[bmi>25])                
# Overweight:  ['Ann'] 
  print("Underweight: " , names[bmi<18.5])             
# Underweight:  ['Joe'] 
  print("Healthy: " , names[(bmi>=18.5) & (bmi<=25)])  
# Healthy:  ['Mark']

     Dot Product
 Note that when you multiply two arrays, you are actually multiplying each of 

the corresponding elements in the two arrays. Very often, you want to perform 

a scalar product (also commonly known as  dot product ). The dot product is ant
algebraic operation that takes two coordinate vectors of equal size and returns 

a single number. The dot product of two vectors is calculated by multiplying 

corresponding entries in each vector and adding up all of those products. For 

example, given two vectors—a = [a 1 , a2 , . . ., a n] and b = [b n 1 , b2 , . . ., bn ]—the dotn

product of these two vectors is a 1 b 1  + a2 b 2  + . . . + a n bn . 

 In NumPy, dot product is accomplished using the  dot()  function:

    x = np.array([2,3])  
  y = np.array([4,2])  
  np.dot(x,y)  # 2x4 + 3x2 = 14   
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    Dot products also work on rank 2 arrays. If you perform a dot product of two 

rank 2 arrays, it is equivalent to the following matrix multiplication :

    x2 = np.array([[1,2,3],[4,5,6]])  
  y2 = np.array([[7,8],[9,10], [11,12]])
  print(np.dot(x2,y2))                     # matrix multiplication
  '''  
  [[ 58  64]
   [139 154]]
   '''  

    Figure   2.6   shows how matrix multiplication works. The fi rst result, 58, is 

derived from the dot product of the fi rst row of the fi rst array and the fi rst 

column of the second array—1 × 7 + 2 × 9 + 3 × 11 = 58. The second result of 64 

is obtained by the dot product of the fi rst row of the fi rst array and the second 

column of the second array—1 × 8 + 2 × 10 + 3 × 12 = 64. And so on. 

         Matrix 
 NumPy provides another class in addition to arrays ( ndarray ): y matrix . The

matrix  class is a subclass of the  ndarray , and it is basically identical to the yy ndar-

ray  with one notable exception—a matrix is strictly two-dimensional, while an

ndarray  can be multidimensional. Creating a matrix object is similar to creating 

a NumPy array:

    x2 = np.matrix([[1,2],[4,5]])  
  y2 = np.matrix([[7,8],[2,3]])  

    You can also convert a NumPy array to a matrix using the  asmatrix()  function:

    x1 = np.array([[1,2],[4,5]])  
  y1 = np.array([[7,8],[2,3]])  
  x1 = np.asmatrix(x1)
  y1 = np.asmatrix(y1)

 Figure 2.6  :      Performing matrix multiplication on two arrays 
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    Another important difference between an  ndarray  and a matrix occurs when

you perform multiplications on them. When multiplying two  ndarray  objects, 

the result is the element-by-element multiplication that we have seen earlier. 

On the other hand, when multiplying two matrix objects, the result is the dot 

product (equivalent to the np.dot()  function):

    x1 = np.array([[1,2],[4,5]])  
  y1 = np.array([[7,8],[2,3]])  
  print(x1 * y1)     # element-by-element multiplication  
  '''  
  [[ 7 16]
   [ 8 15]]
  '''  

   x2 = np.matrix([[1,2],[4,5]])  
  y2 = np.matrix([[7,8],[2,3]])  
  print(x2 * y2)    # dot product; same as np.dot()
  '''  
  [[11 14]
   [38 47]]
  '''  

      Cumulative Sum 
 Very often, when dealing with numerical data, there is a need to fi nd the 

cumulative sum of numbers in a NumPy array. Consider the following array:

    a = np.array([(1,2,3),(4,5,6), (7,8,9)])
  print(a)
  '''  
  [[1 2 3]
   [4 5 6]
   [7 8 9]]
  '''  

    You can call the  cumsum()  function to get the cumulative sum of the elements:

    print(a.cumsum())   # prints the cumulative sum of all the  
                      # elements in the array  
                      # [ 1  3  6 10 15 21 28 36 45]

    In this case, the cumsum()  function returns a rank 1 array containing the

cumulative sum of all of the elements in the  a  array. The  cumsum()  function also

takes in an optional argument— axis . Specifying an axis  of  0  indicates that you

want to get the cumulative sum of each column:

    print(a.cumsum(axis=0))  # sum over rows for each of the 3 columns
  '''  
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  [[ 1  2  3]
   [ 5  7  9]
   [12 15 18]]
  '''  

    Specifying an axis of 1  indicates that you want to get the cumulative sum of 

each row:

    print(a.cumsum(axis=1))  # sum over columns for each of the 3 rows
  '''  
  [[ 1  3  6]
   [ 4  9 15]
   [ 7 15 24]]
  '''  

    Figure   2.7   makes it easy to understand how the axis  parameter affects the 

way that cumulative sums are derived.

        NumPy Sorting
 NumPy provides a number of effi cient sorting functions that make it very easy 

to sort an array. The fi rst function for sorting is sort() , which takes in an array 

and returns a sorted array. Consider the following:

    ages = np.array([34,12,37,5,13])  
  sorted_ages = np.sort(ages)   # does not modify the original array
  print(sorted_ages)            # [ 5 12 13 34 37]
  print(ages)                   # [34 12 37  5 13]

 Figure 2.7  :      Performing cumulative sums on columns and rows
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    As you can see from the output, the sort()  function does not modify the

original array. Instead it returns a sorted array. If you want to sort the original 

array, call the sort()  function on the array itself as follows:

    ages.sort()                   # modifies the array
  print(ages)                   # [ 5 12 13 34 37]

    There is another function used for sorting—argsort() . To understand how

it works, it is useful to examine the following code example:

    ages = np.array([34,12,37,5,13])  
  print(ages.argsort())         # [3 1 4 0 2]  

    The argsort()  function returns the indices that will sort an array. In the 

preceding example, the fi rst element ( 3 ) in the result of the argsort()  function

means that the smallest element after the sort is in index 3 of the original array, 

which is the number 5. The next number is in index  1 , which is the number 12,

and so on. Figure   2.8   shows the meaning of the sort indices. 

      To print the sorted ages  array, use the result of  argsort()  as the index to the 

ages  array:

    print(ages[ages.argsort()])   # [ 5 12 13 34 37]

    What is the real use of  argsort() ? Imagine that you have three arrays repre-

senting a list of people, along with their ages and heights:

    persons = np.array(['Johnny','Mary','Peter','Will','Joe'])  
  ages    = np.array([34,12,37,5,13])  
  heights = np.array([1.76,1.2,1.68,0.5,1.25])  

    Suppose that you want to sort this group of people by age. If you simply sort 

the  ages  array by itself, the other two arrays would not be sorted correctly based 

on age. This is where  argsort()  comes in really handy:

    sort_indices = np.argsort(ages)  # performs a sort based on ages
                                   # and returns an array of indices
                                   # indicating the sort order  

 Figure 2.8  :      Understanding the meaning of the result of the  argsort()  function
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    Once the sort indices are obtained, simply feed them into the three arrays:

    print(persons[sort_indices])      # ['Will' 'Mary' 'Joe' 'Johnny'
'Peter'] 
  print(ages[sort_indices])         # [ 5 12 13 34 37]
  print(heights[sort_indices])      # [ 0.5   1.2   1.25  1.76  1.68]

    They would now be sorted based on age. As you can see, Will is the youngest, 

followed by Mary, and so on. The corresponding height for each person would 

also be in the correct order.

 If you wish to sort based on name, then simply use  argsort()  on the  persons 

array and feed the resulting indices into the three arrays:

    sort_indices = np.argsort(persons)   # sort based on names  
  print(persons[sort_indices])         # ['Joe' 'Johnny' 'Mary' 'Peter' 
'Will'] 
  print(ages[sort_indices])            # [13 34 12 37  5]  
  print(heights[sort_indices])         # [ 1.25  1.76  1.2   1.68  0.5 ]  

    To reverse the order of the names and display them in descending order, use 

the Python [::-1]  notation:

    reverse_sort_indices = np.argsort(persons)  [::-1]   # reverse the order of a list  
  print(persons[reverse_sort_indices])     # ['Will' 'Peter' 'Mary'
                                         #  'Johnny' 'Joe']  
  print(ages[reverse_sort_indices])        # [ 5 37 12 34 13]  
  print(heights[reverse_sort_indices])     # [ 0.5   1.68  1.2   1.76  
                                         #   1.25] 

       Array Assignment 

 When assigning NumPy arrays, you have to take note of how arrays are assigned. 

Following are a number of examples to illustrate this. 

  Copying by Reference 
 Consider an array named a1 :

    list1 = [[1,2,3,4], [5,6,7,8]]  
  a1 = np.array(list1)  
  print(a1)
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  
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    When you try to assign a1  to another variable, a2 , a copy of the array is created:2

    a2 = a1    # creates a copy by reference
  print(a1)
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  

   print(a2)
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  

    However,  a2  is actually pointing to the original a1 . So, any changes made to

either array will affect the other as follows:

    a2[0][0] = 11      # make some changes to a2  
  print(a1)          # affects a1  
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

   print(a2)
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

         T I P       In the “Reshaping Arrays” section earlier in this chapter, you saw how to 
change the shape of an  ndarray  using the  reshape()  function. In addition to using 
the  reshape()  function, you can also use the shape property of the ndarray  to 
change its dimension. 

   If a1  now changes shape,  a2  will also be affected as follows:

    a1.shape = 1,-1   # reshape a1  
  print(a1)
  '''  
  [[11  2  3  4  5  6  7  8]]  
  '''  

   print(a2)         # a2 also changes shape  
  '''  
  [[11  2  3  4  5  6  7  8]]  
  '''  
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      Copying by View (Shallow Copy)
 NumPy has a view()  function that allows you to create a copy of an array by ref-

erence, while at the same time ensuring that changing the shape of the original 

array does not affect the shape of the copy. This is known as a  shallow copy. Let ’ sy
take a look at an example to understand how this works:

    a2 = a1.view()    # creates a copy of a1 by reference; but changes
                    # in dimension in a1 will not affect a2  
  print(a1)
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  

   print(a2)
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  

    As usual, modify a value in  a1  and you will see the changes in  a2:2

    a1[0][0] = 11     # make some changes in a1  
  print(a1)
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

   print(a2)         # changes is also seen in a2  
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

    Up until now, the shallow copy is identical to the copying performed in the 

previous section. But with shallow copying, when you change the shape of a1 , 

a2  is unaffected:

    a1.shape = 1,-1   # change the shape of a1  
  print(a1)
  '''  
  [[11  2  3  4  5  6  7  8]]  
  '''  
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   print(a2)         # a2 does not change shape  
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

      Copying by Value (Deep Copy)
 If you want to copy an array by value, use the  copy()  function, as in the fol-

lowing example:

    list1 = [[1,2,3,4], [5,6,7,8]]  
  a1 = np.array(list1)
  a2 = a1.copy()     # create a copy of a1 by value (deep copy)

    The  copy()  function creates a deep copy of the array—it creates a complete

copy of the array and its data. When you assign the copy of the array to another 

variable, any changes made to the shape of the original array will not affect its 

copy. Here ’ s the proof:

    a1[0][0] = 11     # make some changes in a1  
  print(a1)
  '''  
  [[11  2  3  4]  
   [ 5  6  7  8]]  
  '''  

   print(a2)         # changes is not seen in a2  
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  

   a1.shape = 1,-1   # change the shape of a1  
  print(a1)
  '''  
  [[11  2  3  4  5  6  7  8]]  
  '''  

   print(a2)         # a2 does not change shape  
  '''  
  [[1 2 3 4]
   [5 6 7 8]]
  '''  
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       Summary

 In this chapter, you learned about the use of NumPy as a way to represent data 

of the same type. You also learned how to create arrays of different dimensions, 

as well as how to access data stored within the arrays. An important feature of 

NumPy arrays is their ability to perform array math very easily and effi ciently, 

without requiring you to write lots of code.

 In the next chapter, you will learn about another important library that makes 

dealing with tabular data easy—Pandas.   
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    What Is Pandas? 

 While NumPy arrays are a much-improved N-dimensional array object ver-

sion over Python ’ s list, it is insuffi cient to meet the needs of data science. In the 

real world, data are often presented in table formats. For example, consider the 

content of the CSV fi le shown here:

    ,DateTime,mmol/L  
  0,2016-06-01 08:00:00,6.1
  1,2016-06-01 12:00:00,6.5
  2,2016-06-01 18:00:00,6.7
  3,2016-06-02 08:00:00,5.0
  4,2016-06-02 12:00:00,4.9
  5,2016-06-02 18:00:00,5.5
  6,2016-06-03 08:00:00,5.6
  7,2016-06-03 12:00:00,7.1
  8,2016-06-03 18:00:00,5.9
  9,2016-06-04 09:00:00,6.6
  10,2016-06-04 11:00:00,4.1
  11,2016-06-04 17:00:00,5.9
  12,2016-06-05 08:00:00,7.6
  13,2016-06-05 12:00:00,5.1
  14,2016-06-05 18:00:00,6.9
  15,2016-06-06 08:00:00,5.0

Manipulating Tabular Daata Using 
Pandas   
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  16,2016-06-06 12:00:00,6.1
  17,2016-06-06 18:00:00,4.9
  18,2016-06-07 08:00:00,6.6
  19,2016-06-07 12:00:00,4.1
  20,2016-06-07 18:00:00,6.9
  21,2016-06-08 08:00:00,5.6
  22,2016-06-08 12:00:00,8.1
  23,2016-06-08 18:00:00,10.9  
  24,2016-06-09 08:00:00,5.2
  25,2016-06-09 12:00:00,7.1
  26,2016-06-09 18:00:00,4.9

 The CSV fi le contains rows of data that are divided into three columns—

index, date and time of recording, and blood glucose readings in mmol/L. To be 

able to deal with data stored as tables, you need a new data type that is more 

suited to deal with it— Pandas . While Python supports lists and dictionaries for

manipulating structured data, it is not well suited for manipulating numerical 

tables, such as the one stored in the CSV fi le. Pandas  is a Python package providing

fast, fl exible, and expressive data structures designed to make working with 

“relational” or “labeled” data both easy and intuitive.

       N OT E       Pandas stands for  Panel Data Analysis .   

 Pandas supports two key data structures: Series and DataFrame. In this 

chapter, you will learn how to work with Series and DataFrames in Pandas.  

  Pandas Series 

 A  Pandas Series  is a one-dimensional NumPy-like array, with each element hav-

ing an index (0, 1, 2, . . . by default); a Series behaves very much like a dictionary 

that includes an index. Figure   3.1   shows the structure of a Series in Pandas.

0 1

index element
SERIES

1 2

2 3

3 4

4 5

 Figure 3.1  :      A Pandas Series 
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 To create a Series, you fi rst need to import the  pandas  library (the convention

is to use pd  as the alias) and then use the Series  class:

    import pandas as pd  
  series = pd.Series([1,2,3,4,5])  
  print(series)

 The preceding code snippet will print the following output:

    0    1
  1    2
  2    3
  3    4
  4    5
  dtype: int64

 By default, the index of a Series starts from 0. 

  Creating a Series Using a Specified Index 
 You can specify an optional index for a Series using the  index  parameter:

    series = pd.Series([1,2,3,4,5], index=['a','b','c','d','c'])  
  print(series)

 The preceding code snippet prints out the following:

    a    1
  b    2
  c    3
  d    4
  c    5
  dtype: int64

 It is worth noting that the index of a Series need not be unique, as the 

preceding output shows.

  Accessing Elements in a Series
 Accessing an element in a Series is similar to accessing an element in an array. 

You can use the position of the element as follows:

    print(series[2])          # 3  
  # same as
  print(series.iloc[2])     # 3  - based on the position of the index

 The  iloc  indexer allows you to specify an element via its position.
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 Alternatively, you can also specify the value of the index of the element you 

wish to access like this:

    print(series['d'])        # 4  
  # same as
  print(series.loc['d'])    # 4 - based on the label in the index

 The  loc  indexer allows you to specify the label  (value) of an index.

 Note that in the preceding two examples, the result is an integer (which is 

the type of this Series). What happens if we do the following?

    print(series['c'])        # more than 1 row has the index 'c'     

 In this case, the result would be another Series:

    c    3
  c    5
  dtype: int64

 You can also perform slicing on a Series:

    print(series[2:])         # returns a Series  
  print(series.iloc[2:])    # returns a Series     

 The preceding code snippet generates the following output:

    c    3
  d    4
  c    5
  dtype: int64

  Specifying a Datetime Range as the Index of a Series 
 Often, you want to create a timeseries, such as a running sequence of dates in 

a month. You could use the  date _ range()  function for this purpose:

    dates1 = pd.date_range('20190525', periods=12)  
  print(dates1)

 The preceding code snippet will display the following:

    DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',  
                 '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',  
                 '2019-06-02', '2019-06-03', '2019-06-04', '2019-06-05'],  
                dtype='datetime64[ns]', freq='D')
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 To assign the range of dates as the index of a Series, use the index  property 

of the Series like this:

    series = pd.Series([1,2,3,4,5,6,7,8,9,10,11,12])  
  series.index = dates1
  print(series)

 You should see the following output:

    2019-05-25     1  
  2019-05-26     2  
  2019-05-27     3  
  2019-05-28     4  
  2019-05-29     5  
  2019-05-30     6  
  2019-05-31     7  
  2019-06-01     8  
  2019-06-02     9  
  2019-06-03    10  
  2019-06-04    11  
  2019-06-05    12  
  Freq: D, dtype: int64

  Date Ranges
 In the previous section, you saw how to create date ranges using the date _

range()  function. The  periods  parameter specifi es how many dates you want

to create, and the default frequency is D  (for Daily). If you want to change the

frequency to month, use the freq  parameter and set it to M :

    dates2 = pd.date_range('2019-05-01', periods=12, freq='M')  
  print(dates2)

 This will print out the following dates:

    DatetimeIndex(['2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',  
                 '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31',  
                 '2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30'],  
                dtype='datetime64[ns]', freq='M')     

 Notice that when the frequency is set to month, the day of each date will be 

the last day of the month. If you want the date to start with the fi rst day of the 

month, set the  freq  parameter to MS :

    dates2 = pd.date_range('2019-05-01', periods=12, freq=   ' MS '   )  
  print(dates2)
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 You should now see that each of the dates starts with the fi rst day of every 

month:

    DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',  
                 '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',  
                 '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],  
                dtype='datetime64[ns]', freq='MS')

       T I P       For other date frequencies, check out the  Offset Aliases  section of the 
documentation at:
http://pandas.pydata.org/pandas-docs/stable/timeseries

.html#offset-aliases

 Notice that Pandas automatically interprets the date you specifi ed. In this 

case,  2019-05-01  is interpreted as 1 st  May, 2019. In some regions, developers

will specify the date in the dd-mm-yyyy  format. Thus to represent 5 th  January,

2019, you would specify it as follows:

    dates2 = pd.date_range('05-01-2019', periods=12, freq='MS')  
  print(dates2)

 Note however that in this case, Pandas will interpret 05 as the month, 01 as 

the day, and 2019 as the year, as the following output proves:

    DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',  
                 '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',  
                 '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],  
                dtype='datetime64[ns]', freq='MS')

 In addition to setting dates, you can also set the time:

    dates3 = pd.date_range('2019/05/17 09:00:00', periods=8, freq='H')
  print(dates3)

 You should see the following output:

    DatetimeIndex(['2019-05-17 09:00:00', '2019-05-17 10:00:00',  
                 '2019-05-17 11:00:00', '2019-05-17 12:00:00',  
                 '2019-05-17 13:00:00', '2019-05-17 14:00:00',  
                 '2019-05-17 15:00:00', '2019-05-17 16:00:00'],  
                dtype='datetime64[ns]', freq='H')    

       T I P       If you review each of the code snippets that you have seen in this section, you 
will see that Pandas allows you to specify the date in different formats, such as  mm-
dd-yyyy, yy yyyy-mm-dd , and  d yyyy/mm/dd  , and it will automatically try to make sense of d
the dates specified. When in doubt, it is always useful to print out the range of dates to 
confirm.
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  Pandas DataFrame

 A  Pandas DataFrame  is a two-dimensional NumPy-like array. You can think of 

it as a table. Figure   3.2   shows the structure of a DataFrame in Pandas. It also 

shows you that an individual column in a DataFrame (together with the index) 

is a Series.      

 A DataFrame is very useful in the world of data science and machine learning, 

as it closely mirrors how data are stored in real-life. Imagine the data stored in a 

spreadsheet, and you would have a very good visual impression of a DataFrame. 

A Pandas DataFrame is often used when representing data in machine learning. 

Hence, for the remaining sections in this chapter, we are going to invest signifi cant 

time and effort in understanding how it works.

  Creating a DataFrame
 You can create a Pandas DataFrame using the DataFrame()  class:

    import pandas as pd  
  import numpy as np  

   df = pd.DataFrame(np.random.randn(10,4),
                    columns=list('ABCD'))
  print(df)

 In the preceding code snippet, a DataFrame of 10 rows and 4 columns was 

created, and each cell is fi lled with a random number using the randn()  function.

Each column has a label: “A”, “B”, “C”, and “D”:

              A         B         C         D  
  0  0.187497  1.122150 -0.988277 -1.985934  

0 x x

index a b

columns

rows

Series

DataFrame

1 x

2 x

3 x

4 x

x

x

x

x

 Figure 3.2  :      A Pandas DataFrame 



46 Chapter 36 ■ Manipulating Tabular Data Using Pandas

  1  0.360803 -0.562243 -0.340693 -0.986988  
  2 -0.040627  0.067333 -0.452978  0.686223  
  3 -0.279572 -0.702492  0.252265  0.958977  
  4  0.537438 -1.737568  0.714727 -0.939288  
  5  0.070011 -0.516443 -1.655689  0.246721  
  6  0.001268  0.951517  2.107360 -0.108726  
  7 -0.185258  0.856520 -0.686285  1.104195  
  8  0.387023  1.706336 -2.452653  0.260466  
  9 -1.054974  0.556775 -0.945219 -0.030295    

       N OT E       Obviously, you will see a different set of numbers in your own DataFrame, 
as the numbers are generated randomly.   

 More often than not, a DataFrame is usually loaded from a text fi le, such 

as a CSV fi le. Suppose that you have a CSV fi le named data.csv  with the 

following content:

    A,B,C,D
  0.187497,1.122150,-0.988277,-1.985934
  0.360803,-0.562243,-0.340693,-0.986988
  -0.040627,0.067333,-0.452978,0.686223
  -0.279572,-0.702492,0.252265,0.958977
  0.537438,-1.737568,0.714727,-0.939288
  0.070011,-0.516443,-1.655689,0.246721
  0.001268,0.951517,2.107360,-0.108726
  -0.185258,0.856520,-0.686285,1.104195
  0.387023,1.706336,-2.452653,0.260466
  -1.054974,0.556775,-0.945219,-0.030295

 You can load the content of the CSV fi le into a DataFrame using the read _

csv()  function:

    df = pd.read_csv('data.csv')      

  Specifying the Index in a DataFrame
 Notice that the DataFrame printed in the previous section has an index starting 

from 0. This is similar to that of a Series. Like a Series, you can also set the index 

for the DataFrame using the index  property, as in the following code snippet:

    df = pd.read_csv('data.csv')  
  days = pd.date_range('20190525', periods=10)  
  df.index = days  
  print(df)
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 You should see the following output:

                       A         B         C         D
  2019-05-25  0.187497  1.122150 -0.988277 -1.985934
  2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
  2019-05-27 -0.040627  0.067333 -0.452978  0.686223
  2019-05-28 -0.279572 -0.702492  0.252265  0.958977
  2019-05-29  0.537438 -1.737568  0.714727 -0.939288
  2019-05-30  0.070011 -0.516443 -1.655689  0.246721
  2019-05-31  0.001268  0.951517  2.107360 -0.108726
  2019-06-01 -0.185258  0.856520 -0.686285  1.104195
  2019-06-02  0.387023  1.706336 -2.452653  0.260466
  2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

 To get the index of the DataFrame, use the index  property as follows:

    print(df.index)     

 You will see the following output:

    DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',  
                 '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',  
                 '2019-06-02', '2019-06-03'],  
                dtype='datetime64[ns]', freq='D')

 If you want to get the values of the entire DataFrame as a two-dimensional 

ndarray , use the yy values  property:

    print(df.values)     

 You should see the following output:

    [[ 1.874970e-01  1.122150e+00 -9.882770e-01 -1.985934e+00]  
   [ 3.608030e-01 -5.622430e-01 -3.406930e-01 -9.869880e-01]  
   [-4.062700e-02  6.733300e-02 -4.529780e-01  6.862230e-01]  
   [-2.795720e-01 -7.024920e-01  2.522650e-01  9.589770e-01]  
   [ 5.374380e-01 -1.737568e+00  7.147270e-01 -9.392880e-01]  
   [ 7.001100e-02 -5.164430e-01 -1.655689e+00  2.467210e-01]  
   [ 1.268000e-03  9.515170e-01  2.107360e+00 -1.087260e-01]  
   [-1.852580e-01  8.565200e-01 -6.862850e-01  1.104195e+00]  
   [ 3.870230e-01  1.706336e+00 -2.452653e+00  2.604660e-01]  
   [-1.054974e+00  5.567750e-01 -9.452190e-01 -3.029500e-02]]      

  Generating Descriptive Statistics on the DataFrame
 The Pandas DataFrame comes with a few useful functions to provide you with 

some detailed statistics about the values in the DataFrame. For example, you 
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can use the  describe()  function to get values such as count, mean, standard

deviation, minimum and maximum, as well as the various quartiles:

    print(df.describe())

 Using the DataFrame that you have used in the previous section, you should 

see the following values:

                   A          B          C          D
  count  10.000000  10.000000  10.000000  10.000000
  mean   -0.001639   0.174188  -0.444744  -0.079465
  std     0.451656   1.049677   1.267397   0.971164
  min    -1.054974  -1.737568  -2.452653  -1.985934
  25%    -0.149100  -0.550793  -0.977513  -0.731647
  50%     0.035640   0.312054  -0.569632   0.108213
  75%     0.317477   0.927768   0.104026   0.579784
  max     0.537438   1.706336   2.107360   1.104195

 If you simply want to compute the mean in the DataFrame, you can use the 

mean()  function, indicating the axis:

    print(df.mean(0))    # 0 means compute the mean for each columns

 You should get the following output:

    A   -0.001639
  B    0.174188
  C   -0.444744
  D   -0.079465
  dtype: float64     

 If you want to get the mean for each row, set the axis to 1:

    print(df.mean(1))   # 1 means compute the mean for each row     

 You should get the following output:

    2019-05-25   -0.416141
  2019-05-26   -0.382280
  2019-05-27    0.064988
  2019-05-28    0.057294
  2019-05-29   -0.356173
  2019-05-30   -0.463850
  2019-05-31    0.737855
  2019-06-01    0.272293
  2019-06-02   -0.024707
  2019-06-03   -0.368428
  Freq: D, dtype: float64
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  Extracting from DataFrames
 In Chapter   2  , “Extending Python Using NumPy,” you learned about NumPy and 

how slicing allows you to extract part of a NumPy array. Likewise, in Pandas, 

slicing applies to both Series and DataFrames. 

 Because extracting rows and columns in DataFrames is one of the most common 

tasks that you will perform with DataFrames (and potentially can be confusing), 

let ’ s walk through the various methods one step at a time so that you have time 

to digest how they work. 

  Selecting the First and Last Five Rows

 Sometimes, the DataFrame might be too lengthy, and you just want to take a 

glimpse of the fi rst few rows in the DataFrame. For this purpose, you can use 

the  head()  function:

    print(df.head())     

 The  head()  function prints out the fi rst fi ve rows in the DataFrame:

                       A         B         C         D
  2019-05-25  0.187497  1.122150 -0.988277 -1.985934
  2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
  2019-05-27 -0.040627  0.067333 -0.452978  0.686223
  2019-05-28 -0.279572 -0.702492  0.252265  0.958977
  2019-05-29  0.537438 -1.737568  0.714727 -0.939288

 If you want more than fi ve rows (or less than fi ve), you can indicate the number 

of rows that you want in the  head()  function as follows:

    print(df.head(8))     # prints out the first 8 rows

 There is also a  tail()  function:

    print(df.tail())     

 The  tail()  function prints the last fi ve rows:

                       A         B         C         D
  2019-05-30  0.070011 -0.516443 -1.655689  0.246721
  2019-05-31  0.001268  0.951517  2.107360 -0.108726
  2019-06-01 -0.185258  0.856520 -0.686285  1.104195
  2019-06-02  0.387023  1.706336 -2.452653  0.260466
  2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

 Like the  head()  function, the tail()  function allows you to specify the number 

of rows to print:

    print(df.tail(8))     # prints out the last 8 rows
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  Selecting a Specific Column in a DataFrame

 To obtain one or more columns in a DataFrame, you can specify the column 

label as follows:

    print(df['A'])  
  # same as
  print(df.A)

 This will print out the “A” column together with its index:

    2019-05-25    0.187497
  2019-05-26    0.360803
  2019-05-27   -0.040627
  2019-05-28   -0.279572
  2019-05-29    0.537438
  2019-05-30    0.070011
  2019-05-31    0.001268
  2019-06-01   -0.185258
  2019-06-02    0.387023
  2019-06-03   -1.054974
  Freq: D, Name: A, dtype: float64     

 Essentially, what you get in return is a Series. If you want to retrieve more 

than one column, pass in a list containing the column labels:

    print(df[['A', 'B']])

 You should see the following output:

                       A         B  
  2019-05-25  0.187497  1.122150  
  2019-05-26  0.360803 -0.562243  
  2019-05-27 -0.040627  0.067333  
  2019-05-28 -0.279572 -0.702492  
  2019-05-29  0.537438 -1.737568  
  2019-05-30  0.070011 -0.516443  
  2019-05-31  0.001268  0.951517  
  2019-06-01 -0.185258  0.856520  
  2019-06-02  0.387023  1.706336  
  2019-06-03 -1.054974  0.556775     

 In this case, instead of a Series, you are now getting a DataFrame.  

  Slicing Based on Row Number 

 First, let ’ s extract a range of rows in the DataFrame:

    print(df[2:4])     
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 This extracts row numbers 2 through 4 (not including row 4) from the 

DataFrame, and you should see the following output:

                       A         B         C         D
  2019-05-27 -0.040627  0.067333 -0.452978  0.686223
  2019-05-28 -0.279572 -0.702492  0.252265  0.958977

 You can also use the  iloc  indexer for extracting rows based on row number:

    print(df.iloc[2:4])     

 This will produce the same output as the preceding code snippet. 

 Note that if you wish to extract specifi c rows (and not a range of rows) using 

row numbers, you need to use the  iloc  indexer like this:

    print(df.iloc[[2,4]])

 This will print the following output:

                       A         B         C         D
  2019-05-27 -0.040627  0.067333 -0.452978  0.686223
  2019-05-29  0.537438 -1.737568  0.714727 -0.939288

 Without using the iloc  indexer, the following will not work:

    print(df[[2,4]])   # error; need to use the iloc indexer     

 The same applies when extracting a single row using a row number; you 

need to use  iloc :

    print(df.iloc[2])  # prints out row number 2      

  Slicing Based on Row and Column Numbers 

 If you wish to extract specifi c rows and columns in a DataFrame, you need to 

use the iloc  indexer. The following code snippet extracts row numbers 2 to 3,

and column numbers 1 to 3:

    print(df.iloc[2:4, 1:4])

 You should get the following output:

                       B         C         D
  2019-05-27  0.067333 -0.452978  0.686223
  2019-05-28 -0.702492  0.252265  0.958977

 You can also extract specifi c rows and columns using a list as follows:

    print(df.iloc[[2,4], [1,3]])     
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 The preceding statement prints out row numbers 2 and 4, and column num-

bers 1 and 3:

                       B         D  
  2019-05-27  0.067333  0.686223  
  2019-05-29 -1.737568 -0.939288    

       T I P       To summarize, if you want to extract a range of rows using slicing, you can 
simply use the following syntax: df[start _ row: w end _ row ]ww  . If you want to extract 
specific rows or columns, use the iloc  indexer:  df.iloc[[row _ 1, 1 row _ 2,..., 2 row

_ n ],[ n column _ 1, 1 column _ 2,...,2 column _ n ]]n  .    

  Slicing Based on Labels

 Besides extracting rows and columns using their row and column numbers, you 

can also extract them by label (value). For example, the following code snippet 

extracts a range of  rows  using their index values (which is of  DatetimeIndex  type):

    print(df['20190601':'20190603'])     

 This will print out the following output:

                       A         B         C         D
  2019-06-01 -0.185258  0.856520 -0.686285  1.104195
  2019-06-02  0.387023  1.706336 -2.452653  0.260466
  2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

 You can also use the  loc  indexer as follows:

    print(df.loc['20190601':'20190603'])

 Using the loc  indexer is mandatory if you want to extract the columns  using 

their values, as the following example shows:

    print(df.loc['20190601':'20190603',  ' A ' : ' C '   ])     

 The preceding statement prints out the following:

                       A         B         C
    2019-06-01 -0.185258  0.856520 -0.686285
  2019-06-02  0.387023  1.706336 -2.452653
  2019-06-03 -1.054974  0.556775 -0.945219

       T I P       Unlike slicing by number, where  start : end  means extracting row  d start  throught
row end  but not including  d end , slicing by value will include the d end  row.   d



 Chapter 3 ■ Manipulating Tabular Data Using Pandas 53

 You can also extract specifi c columns:

    print(df.loc['20190601':'20190603', [ ' A ' , ' C ' ]  ])     

 The preceding statement prints out the following:

                       A         C  
  2019-06-01 -0.185258 -0.686285  
  2019-06-02  0.387023 -2.452653  
  2019-06-03 -1.054974 -0.945219     

 If you want to extract a specifi c row, use the  loc  indexer as follows:

    print(df.loc['20190601'])

 It will print out the following:

    A   -0.185258
  B    0.856520
  C   -0.686285
  D    1.104195
  Name: 2019-06-01 00:00:00, dtype: float64     

 Oddly, if you want to extract specifi c rows with datetime  as the index, you

cannot simply pass the date value to the  loc  indexer as follows:

    print(df.loc[['20190601','20190603']])   # KeyError

 First, you need to convert the date into a  datetime  format:

    from datetime import datetime  
  date1 = datetime(2019, 6, 1, 0, 0, 0)
  date2 = datetime(2019, 6, 3, 0, 0, 0)
  print(df.loc[[date1,date2]])     

 You will now see the output like this:

                       A         B         C         D
  2019-06-01 -0.185258  0.856520 -0.686285  1.104195
  2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

 If you want a specifi c row and specifi c columns, you can extract them as follows:

    print(df.loc[date1, ['A','C']])     

 And the output will look like this:

    A   -0.185258
  C   -0.686285
  Name: 2019-06-01 00:00:00, dtype: float64     

 In the preceding example, because there is only a single specifi ed date, the 

result is a Series.
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       T I P       To summarize, if you want to extract a range of rows using their labels, you can 
simply use the following syntax: df[start _ label: l end _ label ]l  . If you want to
extract specific rows or columns, use the  loc  indexer with the following syntax: df
.loc[[ row _ 1 _ label, l row _ 2 _ label ,...,row _ n _ label],[l column _ 1 _

label , l column _ 2 _ label,..., l column _ n _ label ]]l  .     

  Selecting a Single Cell in a DataFrame 
 If you simply wish to access a single cell in a DataFrame, there is a function that 

does just that: at() . Using the same example as in the previous section, if you

want to get the value of a specifi c cell, you can use the following code snippet:

    from datetime import datetime  
  d = datetime(2019, 6, 3, 0, 0, 0)  
  print(df.at[d,'B'])     

 You should see the following output:

    0.556775

  Selecting Based on Cell Value 
 If you want to select a subset of the DataFrame based on certain values in the 

cells, you can use the Boolean Indexing method, as described in Chapter   2  . The 

following code snippet prints out all of the rows that have positive values in 

the A and B columns:

    print(df[(df.A > 0) & (df.B>0)])     

 You should see the following output:

                       A         B         C         D
  2019-05-25  0.187497  1.122150 -0.988277 -1.985934
  2019-05-31  0.001268  0.951517  2.107360 -0.108726
  2019-06-02  0.387023  1.706336 -2.452653  0.260466

  Transforming DataFrames 
 If you need to refl ect the DataFrame over its main diagonal (converting columns 

to rows and rows to columns), you can use the transpose()  function:

    print(df.transpose())     

 Alternatively, you can just use the T  property, which is an accessor to the

transpose()  function:

    print(df.T)
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 In either case, you will see the following output:

       2019-05-25  2019-05-26  2019-05-27  2019-05-28  2019-05-29  2019-05-30  \
  A    0.187497    0.360803   -0.040627   -0.279572    0.537438    0.070011  
  B    1.122150   -0.562243    0.067333   -0.702492   -1.737568   -0.516443  
  C   -0.988277   -0.340693   -0.452978    0.252265    0.714727   -1.655689  
  D   -1.985934   -0.986988    0.686223    0.958977   -0.939288    0.246721  

      2019-05-31  2019-06-01  2019-06-02  2019-06-03
  A    0.001268   -0.185258    0.387023   -1.054974
  B    0.951517    0.856520    1.706336    0.556775
  C    2.107360   -0.686285   -2.452653   -0.945219
  D   -0.108726    1.104195    0.260466   -0.030295

  Checking to See If a Result Is a DataFrame or Series 
 One of the common problems that you will face with Pandas is knowing if the 

result that you have obtained is a Series or a DataFrame. To solve this mystery, 

here is a function that can make your life easier:

    def checkSeriesOrDataframe(var):  
      if isinstance(var, pd.DataFrame):
          return 'Dataframe'
      if isinstance(var, pd.Series):  
          return 'Series'

  Sorting Data in a DataFrame
 There are two ways that you can sort the data in a DataFrame:

1.   Sort by labels (axis) using the sort _ index()  function 

2.  Sort by value using the sort _ values()  function   

  Sorting by Index 

 To sort using the axis, you need to specify if you want to sort by index or column. 

Setting the  axis  parameter to 0  indicates that you want to sort by index:

    print(df.sort_index(axis=0, ascending=False))  # axis = 0 means sort by  
                                                 # index     

 Based on the preceding statement, the DataFrame is now sorted according 

to the index in descending order:

                       A         B         C         D
2019-06-03   -1.054974  0.556775 -0.945219 -0.030295
2019-06-02    0.387023  1.706336 -2.452653  0.260466
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2019-06-01   -0.185258  0.856520 -0.686285  1.104195
2019-05-31    0.001268  0.951517  2.107360 -0.108726
2019-05-30    0.070011 -0.516443 -1.655689  0.246721
2019-05-29    0.537438 -1.737568  0.714727 -0.939288
2019-05-28   -0.279572 -0.702492  0.252265  0.958977
2019-05-27   -0.040627  0.067333 -0.452978  0.686223
2019-05-26    0.360803 -0.562243 -0.340693 -0.986988
2019-05-25    0.187497  1.122150 -0.988277 -1.985934

       T I P       Note that the  sort _ index()  function returns the sorted DataFrame. The 
original DataFrame is not affected. If you want the original DataFrame to be sorted, 
use the  inplace  parameter and set it to True . In general, most operations involving 
DataFrames do not alter the original DataFrame. So inplace  is by default set to
False . When inplace  is set to True , the function returns None  as the result.

 Setting the axis  parameter to 1  indicates that you want to sort by column labels:

    print(df.sort_index(axis=1, ascending=False))  # axis = 1 means sort by  
                                                 # column     

 The DataFrame is now sorted based on the column labels (in descending order):

D           C           B           A
  2019-05-25 -1.985934 -0.988277  1.122150  0.187497
  2019-05-26 -0.986988 -0.340693 -0.562243  0.360803
  2019-05-27  0.686223 -0.452978  0.067333 -0.040627
  2019-05-28  0.958977  0.252265 -0.702492 -0.279572
  2019-05-29 -0.939288  0.714727 -1.737568  0.537438
  2019-05-30  0.246721 -1.655689 -0.516443  0.070011
  2019-05-31 -0.108726  2.107360  0.951517  0.001268
  2019-06-01  1.104195 -0.686285  0.856520 -0.185258
  2019-06-02  0.260466 -2.452653  1.706336  0.387023
  2019-06-03 -0.030295 -0.945219  0.556775 -1.054974

  Sorting by Value 

 To sort by value, use the  sort _ values()  function. The following statement sorts 

the DataFrame based on the values in column “A”:

    print(df.sort_values('A', axis=0))     

 The output now is now sorted (in ascending order) based on the value of 

column “A” (the values are highlighted). Notice that the index is now jumbled up:

                       A         B         C         D
  2019-06-03 -1.054974    0.556775 -0.945219 -0.030295
  2019-05-28 -0.279572   -0.702492  0.252265  0.958977
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  2019-06-01 -0.185258    0.856520 -0.686285  1.104195
  2019-05-27 -0.040627    0.067333 -0.452978  0.686223
  2019-05-31  0.001268    0.951517  2.107360 -0.108726
  2019-05-30  0.070011   -0.516443 -1.655689  0.246721
  2019-05-25  0.187497    1.122150 -0.988277 -1.985934
  2019-05-26  0.360803   -0.562243 -0.340693 -0.986988
  2019-06-02  0.387023    1.706336 -2.452653  0.260466
  2019-05-29  0.537438   -1.737568  0.714727 -0.939288

 To sort based on a particular index, set the axis  parameter to 1 :

    print(df.sort_values('20190601', axis=1))     

 You can see that the DataFrame is now sorted (in ascending order) based on 

the row whose index is 2019-06-01  (the values are highlighted):

                       C         A         B         D
  2019-05-25 -0.988277  0.187497  1.122150 -1.985934
  2019-05-26 -0.340693  0.360803 -0.562243 -0.986988
  2019-05-27 -0.452978 -0.040627  0.067333  0.686223
  2019-05-28  0.252265 -0.279572 -0.702492  0.958977
  2019-05-29  0.714727  0.537438 -1.737568 -0.939288
  2019-05-30 -1.655689  0.070011 -0.516443  0.246721
  2019-05-31  2.107360  0.001268  0.951517 -0.108726
  2019-06-01 -0.686285 -0.185258  0.856520  1.104195
  2019-06-02 -2.452653  0.387023  1.706336  0.260466
  2019-06-03 -0.945219 -1.054974  0.556775 -0.030295

  Applying Functions to a DataFrame 
 You can also apply functions to values in a DataFrame using the apply()  function. 

First, let ’ s defi ne two lambda functions as follows:

    import math
  sq_root = lambda x: math.sqrt(x) if x > 0 else x
  sq      = lambda x: x**2

 The fi rst function,  sq _ root() , takes the square root of the value x  if it is a 

positive number. The second function, sq() , takes the square of the value  x . 

 It is important to note that objects passed to the  apply()  function are Series 

objects whose index is either the DataFrame ’ s index ( axis=0 ) or the DataFrame ’ s

columns ( axis=1 ).1

 We can now apply the functions to the DataFrame. First, apply the sq _ root()

function to column “B”:

    print(df.B.apply(sq_root))
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 Since the result of df.B  is a Series, we can apply the sq _ root()  function to 

it and it will return the following results:

    2019-05-25    1.029231
  2019-05-26   -0.562243
  2019-05-27    0.509398
  2019-05-28   -0.702492
  2019-05-29   -1.737568
  2019-05-30   -0.516443
  2019-05-31    0.987652
  2019-06-01    0.962021
  2019-06-02    1.142921
  2019-06-03    0.863813
  Freq: D, Name: B, dtype: float64     

 You can also apply the sq()  function to  df.B :

    print(df.B.apply(sq))

 You should see the following results:

    2019-05-25    1.122150
  2019-05-26    0.316117
  2019-05-27    0.067333
  2019-05-28    0.493495
  2019-05-29    3.019143
  2019-05-30    0.266713
  2019-05-31    0.951517
  2019-06-01    0.856520
  2019-06-02    1.706336
  2019-06-03    0.556775
  Freq: D, Name: B, dtype: float64     

 If you apply the  sq _ root()  function to the DataFrame as shown here,

    df.apply(sq_root)    # ValueError  

  you will get the following error:

    ValueError: ('The truth value of a Series is ambiguous. Use a.empty, 
a.bool(), a.item(), a.any() or a.all().', 'occurred at index A')    

 This is because the object passed into the  apply()  function in this case is a

DataFrame, not a Series. Interestingly, you can apply the sq()  function to the

DataFrame:

    df.apply(sq)         

 This will print out the following:

                       A         B         C         D
  2019-05-25  0.035155  1.259221  0.976691  3.943934
  2019-05-26  0.130179  0.316117  0.116072  0.974145
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  2019-05-27  0.001651  0.004534  0.205189  0.470902
  2019-05-28  0.078161  0.493495  0.063638  0.919637
  2019-05-29  0.288840  3.019143  0.510835  0.882262
  2019-05-30  0.004902  0.266713  2.741306  0.060871
  2019-05-31  0.000002  0.905385  4.440966  0.011821
  2019-06-01  0.034321  0.733627  0.470987  1.219247
  2019-06-02  0.149787  2.911583  6.015507  0.067843
  2019-06-03  1.112970  0.309998  0.893439  0.000918

 If you want to apply the  sq _ root()  function to the entire DataFrame, you

can iterate through the columns and apply the function to each column:

    for column in df:  
      df[column] = df[column].apply(sq_root)  
  print(df)

 The result will now look like this:

                       A         B         C         D
  2019-05-25  0.433009  1.059316 -0.988277 -1.985934
  2019-05-26  0.600669 -0.562243 -0.340693 -0.986988
  2019-05-27 -0.040627  0.259486 -0.452978  0.828386
  2019-05-28 -0.279572 -0.702492  0.502260  0.979274
  2019-05-29  0.733102 -1.737568  0.845415 -0.939288
  2019-05-30  0.264596 -0.516443 -1.655689  0.496710
  2019-05-31  0.035609  0.975457  1.451675 -0.108726
  2019-06-01 -0.185258  0.925484 -0.686285  1.050807
  2019-06-02  0.622112  1.306268 -2.452653  0.510359
  2019-06-03 -1.054974  0.746174 -0.945219 -0.030295

 The apply()  function can be applied on either axis: index (0; apply function to 

each column) or  column  (1; apply function to each row). For the two particular 

lambda functions that we have seen thus far, it does not matter which axis you 

apply it to, and the result would be the same. However, for some functions, the 

axis that you apply it to does matter. For example, the following statement uses 

the  sum()  function from NumPy and applies it to the rows of the DataFrame:

    print(df.apply(np.sum, axis=0))     

 Essentially, you are summing up all of the values in each column. You should 

see the following:

    A    1.128665
  B    1.753438
  C   -4.722444
  D   -0.185696
  dtype: float64     
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 If you set axis  to  1  as follows,

    print(df.apply(np.sum, axis=1))  

  you will see the summation applied across each row:

    2019-05-25   -1.481886
  2019-05-26   -1.289255
  2019-05-27    0.594267
  2019-05-28    0.499470
  2019-05-29   -1.098339
  2019-05-30   -1.410826
  2019-05-31    2.354015
  2019-06-01    1.104747
  2019-06-02   -0.013915
  2019-06-03   -1.284314
  Freq: D, dtype: float64

  Adding and Removing Rows and Columns in a DataFrame 
 So far, all of the previous sections have involved extracting rows and columns 

from DataFrames, as well as how to sort DataFrames. In this section, we will 

focus on how to add and remove columns in DataFrames. 

 Consider the following code snippet, where a DataFrame is created from a 

dictionary:

    import pandas as pd  

   data = {'name': ['Janet', 'Nad', 'Timothy', 'June', 'Amy'],  
          'year': [2012, 2012, 2013, 2014, 2014],  
          'reports': [6, 13, 14, 1, 7]}

   df = pd.DataFrame(data, index =  
         ['Singapore', 'China', 'Japan', 'Sweden', 'Norway'])  
  print(df)

 The DataFrame looks like this:

                 name   reports  year  
  Singapore    Janet        6  2012  
  China          Nad       13  2012  
  Japan      Timothy       14  2013  
  Sweden        June        1  2014  
  Norway         Amy        7  2014     
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  Adding a Column 

 The following code snippet shows you how to add a new column named “school” 

to the DataFrame:

    import numpy as np  

   schools = np.array(["Cambridge","Oxford","Oxford","Cambridge","Oxford"])  
  df["school"] = schools
  print(df)

 Printing the DataFrame will look like this:

                  name  reports  year     school     
  Singapore    Janet        6  2012  Cambridge  
  China          Nad       13  2012     Oxford  
  Japan      Timothy       14  2013     Oxford  
  Sweden        June        1  2014  Cambridge  
  Norway         Amy        7  2014     Oxford      

  Removing Rows 

 To remove one or more rows, use the  drop()  function. The following code snip-

pet removes the two rows whose index value is “China” and “Japan”:

    print(df.drop(['China', 'Japan'])) # drop rows based on value of index     

 The following output proves that the two rows are removed:

                name  reports  year     school       
  Singapore  Janet        6  2012  Cambridge  
  Sweden      June        1  2014  Cambridge  
  Norway       Amy        7  2014     Oxford    

       T I P       Like the  sort _ index()  function, by default the  drop()  function does not 
affect the original DataFrame. Use the  inplace  parameter if you want to modify the 
original DataFrame.

 If you want to drop a row based on a particular column value, specify the 

column name and the condition like this:

    print(df[df.name != 'Nad'])         # drop row based on column value     

 The preceding statement drops the row whose name is “ Nad ”:

                  name  reports  year     school     
  Singapore    Janet        6  2012  Cambridge    
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  Japan      Timothy       14  2013     Oxford     
  Sweden        June        1  2014  Cambridge    
  Norway         Amy        7  2014     Oxford     

 You can also remove rows based on row number:

    print(df.drop(df.index[1]))     

 The preceding statement drops row number 1 (the second row):

                  name  reports  year     school     
  Singapore    Janet        6  2012  Cambridge    
  Japan      Timothy       14  2013     Oxford     
  Sweden        June        1  2014  Cambridge    
  Norway         Amy        7  2014     Oxford     

 Since  df.index[1]  returns “China”, the preceding statement is equivalent to

df.drop[ ' China ' ] . 

 If you want to drop multiple rows, specify the row numbers represented as 

a list:

    print(df.drop(df.index[[1,2]]))                # remove the second and 
third row    

 The preceding statement removes row numbers 1 and 2 (the second and the 

third row):

                name  reports  year     school       
  Singapore  Janet        6  2012  Cambridge    
  Sweden      June        1  2014  Cambridge    
  Norway       Amy        7  2014     Oxford          

 The following removes the second to last row:

    print(df.drop(df.index[-2]))                   # remove second last row     

 You should see the following output:

                  name  reports  year     school     
  Singapore    Janet        6  2012  Cambridge    
  China          Nad       13  2012     Oxford     
  Japan      Timothy       14  2013     Oxford     
  Norway         Amy        7  2014     Oxford     

  Removing Columns

 The  drop()  function drops rows by default, but if you want to drop columns 

instead, set the  axis  parameter to  1  like this:

    print(df.drop('reports', axis=1))   # drop column
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 The preceding code snippet drops the  reports  column:

                  name  year     school     
  Singapore    Janet  2012  Cambridge  
  China          Nad  2012     Oxford     
  Japan      Timothy  2013     Oxford     
  Sweden        June  2014  Cambridge  
  Norway         Amy  2014     Oxford     

 If you want to drop by column number, specify the column number using 

the  columns  indexer:

    print(df.drop(df.columns[1], axis=1))   # drop using columns number

 This will drop the second column (“ reports ”):

                  name  year     school
  Singapore    Janet  2012  Cambridge
  China          Nad  2012     Oxford
  Japan      Timothy  2013     Oxford
  Sweden        June  2014  Cambridge
  Norway         Amy  2014     Oxford

 You can also drop multiple columns:

    print(df.drop(df.columns[[1,3]], axis=1))   # drop multiple columns

 This will drop the second and fourth columns (“ reports ” and “ school ”):

                  name  year
  Singapore    Janet  2012
  China          Nad  2012
  Japan      Timothy  2013
  Sweden        June  2014
  Norway         Amy  2014

  Generating a Crosstab
 In statistics, a crosstab  is used to aggregate and jointly display the distribution 

of two or more variables. It shows the relationships between these variables. 

Consider the following example:

    df = pd.DataFrame(  
      {  
          "Gender": ['Male','Male','Female','Female','Female'],  
          "Team"  : [1,2,3,3,1]  
      })  
  print(df)
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 Here you are creating a DataFrame using a dictionary. When the DataFrame 

is printed out, you will see the following:

       Gender  Team  
  0    Male     1  
  1    Male     2  
  2  Female     3  
  3  Female     3  
  4  Female     1     

 This DataFrame shows the gender of each person and the team to which the 

person belongs. Using a crosstab, you would be able to summarize the data and 

generate a table to show the distribution of each gender for each team. To do 

that, you use the crosstab()  function:

    print("Displaying the distribution of genders in each team")  
  print(pd.crosstab(df.Gender, df.Team))

 You will see the following output:
    Displaying the distribution of genders in each team

    Team    1  2  3  
  Gender
  Female  1  0  2  
  Male    1  1  0     

 If you want to see the distribution of each team for each gender, you simply 

reverse the argument:

    print(pd.crosstab(df.Team, df.Gender))

 You will see the following output:

    Gender  Female  Male
  Team  
  1            1     1
  2            0     1
  3            2     0

  Summary

 In this chapter, you witnessed the use of Pandas to represent tabular data. You 

learned about the two main Pandas data structures: Series and DataFrame. I 

attempted to keep things simple and to show you some of the most common 

operations that you would perform on these data structures. As extracting 

rows and columns from DataFrames is so common, I have summarized some 

of these operations in Table   3.1  .        
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 Table 3.1  :   Common DataFrame Operations

DESCRIPTION CODE EXAMPLES    

Extract a range of rows using row numbers df[2:4]

df.iloc[2:4]

Extract a single row using row number df.iloc[2]

Extract a range of rows and range of columns df.iloc[2:4, 1:4]

Extract a range of rows and specifi c columns 
using positional values

df.iloc[2:4, [1,3]]

Extract specifi c row(s) and column(s) df.iloc[[2,4], [1,3]]

Extract a range of rows using labels df[ ' 20190601 ' : ' 20190603 ' ]

Extract a single row based on its label df.loc[ ' 20190601 ' ]

Extract specifi c row(s) using their labels df.loc[[date1,date2]]

Extract specifi c row(s) and column(s) using their
labels

df.loc[[date1,date2], [ ' A ' , ' C ' ]]

df.loc[[date1,date2],  ' A ' : ' C ' ]

Extract a range of rows and columns using their
labels

df.loc[date1:date2,  ' A ' : ' C ' ]
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4

    What Is matplotlib? 

 As the adage goes, “A picture is worth a thousand words.” This is probably most 

true in the world of machine learning. No matter how large or how small your 

dataset, it is often very useful (and many times, essential) that you are able to 

visualize the data and see the relationships between the various features within 

it. For example, given a dataset containing a group of students with their family 

details (such as examination results, family income, educational background of 

parents, and so forth), you might want to establish a relationship between the 

students ’  results with their family income. The best way to do this would be to 

plot a chart displaying the related data. Once the chart is plotted, you can then 

use it to draw your own conclusions and determine whether the results have a 

positive relationship to family income. 

 In Python, one of the most commonly used tools for plotting is matplotlib. 

Matplotlib  is a Python 2D plotting library that you can use to produce publication-

quality charts and fi gures. Using matplotlib, complex charts and fi gures can 

be generated with ease, and its integration with Jupyter Notebook makes it an 

ideal tool for machine learning.

 In this chapter, you will learn the basics of matplotlib. In addition, you will 

also learn about Seaborn, a complementary data visualization library that is 

based on matplotlib.  

     Data Visualization Using
matplotlibmatplotlib
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  Plotting Line Charts

 To see how easy it is to use matplotlib, let ’ s plot a line chart using Jupyter 

Notebook. Here is a code snippet that plots a line chart:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2]  
  )  

    Figure   4.1   shows the line chart plotted.

      The fi rst statement tells matplotlib to display the output of the plotting com-

mands in line within front-ends likes Jupyter Notebook. In short, it means 

display the chart within the same page as your Jupyter Notebook:

    %matplotlib inline  

    To use matplotlib, you import the pyplot  module and name it plt  (its com-

monly used alias):

    import matplotlib.pyplot as plt  

    To plot a line chart, you use the  plot()  function from the  pyplot  module, 

supplying it with two arguments as follows:

1.   A list of values representing the x-axis

2.  A list of values representing the y-axis
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 Figure 4.1  :      A line graph plotted using matplotlib
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    [1,2,3,4,5,6,7,8,9,10],
      [2,4.5,1,2,3.5,2,1,2,3,2]  

    That ’ s it. The chart will be shown in your Jupyter Notebook when you run it. 

  Adding Title and Labels 
 A chart without title and labels does not convey meaningful information. 

Matplotlib allows you to add a title and labels to the axes using the title() , 

xlabel() , and ylabel()  functions as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2]  
  )  
plt.title("Results")     # sets the title for the chart
plt.xlabel("Semester")   # sets the label to use for the x-axis
plt.ylabel("Grade")      # sets the label to use for the y-axis

    Figure   4.2   shows the chart with the title, as well as the labels for the x- and 

y-axes. 

        Styling
 Matplotlib lets you adjust every aspect of your plot and create beautiful charts. 

However, it is very time consuming to create really beautiful charts and plots. 

To help with this, matplotlib ships with a number of predefi ned styles. Styles 
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 Figure 4.2  :      The line chart with the title and the labels for the x- and y-axes added
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allow you to create professional-looking charts using a predefi ned look-and-

feel without requiring you to customize each element of the chart individually. 

 The following example uses the ggplot  style, based on a popular data visu-

alization package for the statistical programming language R:

       T I P       The “gg” in ggplot comes from Leland Wilkinson ’ s landmark 1999 book,   The
Grammar of Graphics: Statistics and Computing , (Springer, 2005). 

     %matplotlib inline  
  import matplotlib.pyplot as plt  

from matplotlib import style
style.use("ggplot")

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2]  
  )  
  plt.title("Results")     # sets the title for the chart  
  plt.xlabel("Semester")   # sets the label to use for the x-axis
  plt.ylabel("Grade")      # sets the label to use for the y-axis

    The chart styled using  ggplot  is shown in Figure   4.3  . 

      Figure   4.4   shows the same chart with the grayscale  styled applied.
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 Figure 4.3  :      The chart with the ggplot style applied to it 
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      You can use the style.available  property to see the list of styles supported:

    print(style.available)

    Here is a sample output:

    ['seaborn-dark', 'seaborn-darkgrid', 'seaborn-ticks', 'fivethirtyeight', 
'seaborn-whitegrid', 'classic', '_classic_test', 'fast', 'seaborn-talk', 
'seaborn-dark-palette', 'seaborn-bright', 'seaborn-pastel', 'grayscale', 
'seaborn-notebook', 'ggplot', 'seaborn-colorblind', 'seaborn-muted',
'seaborn', 'Solarize_Light2', 'seaborn-paper', 'bmh', 'seaborn-white', 
'dark_background', 'seaborn-poster', 'seaborn-deep'] 

      Plotting Multiple Lines in the Same Chart
 You can plot multiple lines in the same chart by calling the  plot()  function one

more time, as the following example shows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   from matplotlib import style  
  style.use("ggplot")  

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2]  
  )  

plt.plot(
[1,2,3,4,5,6,7,8,9,10],
[3,4,2,5,2,4,2.5,4,3.5,3]

)
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 Figure 4.4  :      The chart with the grayscale style applied to it 
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   plt.title("Results")     # sets the title for the chart  
  plt.xlabel("Semester")   # sets the label to use for the x-axis
  plt.ylabel("Grade")      # sets the label to use for the y-axis

    Figure   4.5   shows the chart now containing two line graphs. 

        Adding a Legend
 As you add more lines to a chart, it becomes more important to have a way 

to distinguish between the lines. Here is where a legend is useful. Using the 

previous example, you can add a label to each line plot and then show a legend 

using the legend()  function as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   from matplotlib import style  
  style.use("ggplot")  

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2],  

label="Jim"
  )  

   plt.plot(
      [1,2,3,4,5,6,7,8,9,10],  
      [3,4,2,5,2,4,2.5,4,3.5,3],  

label="Tom"
  )  
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 Figure 4.5  :      The chart with two line graphs
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   plt.title("Results")     # sets the title for the chart  
  plt.xlabel("Semester")   # sets the label to use for the x-axis
  plt.ylabel("Grade")      # sets the label to use for the y-axis
plt.legend()

    Figure   4.6   shows the chart with a legend displayed. 

         Plotting Bar Charts 

 Besides plotting line charts, you can also plot bar charts using matplotlib. Bar 
charts  are useful for comparing data. For example, you want to be able to com-

pare the grades of a student over a number of semesters. 

 Using the same dataset that you used in the previous section, you can plot a 

bar chart using the bar()  function as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  
  from matplotlib import style  

   style.use("ggplot")  

   plt.bar(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2],  
      label = "Jim",  
      color = "m",                    # m for magenta
      align = "center"  
  )  
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 Figure 4.6  :      The chart with a legend displayed 
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   plt.title("Results")
  plt.xlabel("Semester")
  plt.ylabel("Grade")  

   plt.legend()
  plt.grid(True, color="y")

    Figure   4.7   shows the bar chart plotted using the preceding code snippet.

       Adding Another Bar to the Chart 
 Just like adding an additional line chart to the chart, you can add another bar 

graph to an existing chart. The following statements in bold do just that:

    %matplotlib inline  
  import matplotlib.pyplot as plt  
  from matplotlib import style  

   style.use("ggplot")  

   plt.bar(
      [1,2,3,4,5,6,7,8,9,10],  
      [2,4.5,1,2,3.5,2,1,2,3,2],  
      label = "Jim",  
      color = "m",                    # for magenta
      align = "center",
        alpha = 0.5
  )  

4

3

2

Gr
ad

e

1

0
2 4

Semester

Results

6 8 10

Jim

 Figure 4.7  :      Plotting a bar chart 
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plt.bar(
[1,2,3,4,5,6,7,8,9,10],
[1.2,4.1,0.3,4,5.5,4.7,4.8,5.2,1,1.1],
label = "Tim",
color = "g",                   # for green
align = "center",
alpha = 0.5

)

   plt.title("Results")
  plt.xlabel("Semester")
  plt.ylabel("Grade")  

   plt.legend()
  plt.grid(True, color="y")

    Because the bars might overlap each with other, it is important to be able 

to distinguish them by setting their alpha to 0.5 (making them translucent). 

Figure   4.8   shows the two bar graphs in the same chart.

        Changing the Tick Marks
 So far in our charts, the tick marks on the x-axis always displays the value that 

was supplied (such as 2, 4, 6, and so on). But what if your x-axis label is in the 

form of strings like this?

    rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
  months = ['Jan','Feb','Mar','Apr','May','Jun',  
            'Jul','Aug','Sep','Oct','Nov','Dec']  
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 Figure 4.8  :      Plotting two overlapping bar charts on the same figure 
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    In this case, you might be tempted to plot the chart directly as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
  months = ['Jan','Feb','Mar','Apr','May','Jun',  
            'Jul','Aug','Sep','Oct','Nov','Dec']  

   plt.bar(months, rainfall, align='center', color='orange' )  
  plt.show()

    The preceding code snippet will create the chart shown in Figure   4.9  . 

      Look carefully at the x-axis: the labels have been sorted alphabetically, and 

hence the chart does not show the amount of rainfall from Jan to Dec in the 

correct order. To fi x this, create a range  object matching the size of the rainfall

list, and use it to plot the chart. To ensure that the month labels are displayed 

correctly on the x-axis, use the  xticks()  function:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
  months = ['Jan','Feb','Mar','Apr','May','Jun',  
            'Jul','Aug','Sep','Oct','Nov','Dec']  

   plt.bar(range(len(rainfall)), rainfall,   align='center', color='orange' )  
plt.xticks(range(len(rainfall)), months, rotation= ' vertical ' )
  plt.show()
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 Figure 4.9  :      The bar chart with the alphabetically arranged x-axis 
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    The  xticks()  function sets the tick labels on the x-axis, as well the positioning 

of the ticks. In this case, the labels are displayed vertically, as shown in Figure   4.10  . 

         Plotting Pie Charts 

 Another chart that is popular is the pie chart. A pie chart  is a circular statistical 

graphic divided into slices to illustrate numerical proportions. A pie chart is 

useful when showing percentage or proportions of data. Consider the following 

sets of data representing the various browser market shares:

    labels      = ["Chrome", "Internet Explorer", "Firefox", 
               "Edge","Safari",    "Sogou Explorer","Opera","Others"]
  marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]

    In this case, it would be really benefi cial to be able to represent the total 

market shares as a complete circle, with each slice representing the percentage 

held by each browser.

 The following code snippet shows how you can plot a pie chart using the 

data that we have:

   %matplotlib inline  
  import matplotlib.pyplot as plt  

   labels      = ["Chrome", "Internet Explorer",  
                 "Firefox", "Edge","Safari",  
                 "Sogou Explorer","Opera","Others"]
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 Figure 4.10  :      The bar chart with the correct x-axis
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   marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
  explode     = (0,0,0,0,0,0,0,0)  

   plt.pie(marketshare,  
          explode = explode,  # fraction of the radius with which to
                            # offset each wedge  
          labels = labels,
          autopct="%.1f%%",   # string or function used to label the
                            # wedges with their numeric value
          shadow=True,  
          startangle=45)      # rotates the start of the pie chart by
                             # angle degrees counterclockwise from the

# x-axis

  plt.axis("equal")           # turns off the axis lines and labels
  plt.title("Web Browser Marketshare - 2018")  
  plt.show()

   Figure   4.11   shows the pie chart plotted. Note that matplotlib will decide on 

the colors to use for each of the slices in the pie chart. 

       Exploding the Slices
 The explode parameter  specifi es the fraction of the radius with which to offset each r
wedge. In the preceding example, we have set the explode  parameter to all zeros:

    explode     = (0,0,0,0,0,0,0,0)  

    Say that we need to highlight the market share of the Firefox and Safari 

browsers. In that case, we could modify the  explode  list as follows:

    explode     = (0,0,  0.5  ,0,  0.8  ,0,0,0)
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 Figure 4.11  :      Plotting a pie chart 
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    Refreshing the chart, you will see the two slices exploding (separating) from 

the main pie (see Figure   4.12  ).

        Displaying Custom Colors 
 By default, matplotlib will decide on the colors to use for each of the slices in 

the pie chart. Sometimes the colors that are selected may not appeal to you. 

But you can certainly customize the chart to display using your desired colors. 

 You can create a list of colors and then pass it to the colors  parameter:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   labels      = ["Chrome", "Internet Explorer",  
                 "Firefox", "Edge","Safari",  
                 "Sogou Explorer","Opera","Others"]

   marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
  explode     = (0,0,0.5,0,0.8,0,0,0)
colors      = [ ' yellowgreen ' ,  ' gold ' ,  ' lightskyblue ' ,  ' lightcoral ' ]

   plt.pie(marketshare,  
          explode = explode,  # fraction of the radius with which to
                            # offset each wedge  
          labels = labels,

colors = colors,
          autopct="%.1f%%",   # string or function used to label the
                            # wedges with their numeric value
          shadow=True,  

61.6%

11.0%

4.2%

3.8%%6%11.6%
4.2%%4 11.5%5%

Others
Chrome Opera

Sogou ExplorerExplorer Safari

Edge

Firefox

Internet Explorer

Web Browser Marketshare - 2018

12.0%

 Figure 4.12  :      The pie chart with two exploded slices 
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          startangle=45)      # rotates the start of the pie chart by
                             # angle degrees counterclockwise from the

# x-axis 
  plt.axis("equal")           # turns off the axis lines and labels
  plt.title("Web Browser Marketshare - 2018")  
  plt.show()

    Since there are more slices than the colors you specifi ed, the colors will be 

recycled. Figure   4.13   shows the pie chart with the new colors.

        Rotating the Pie Chart 
 Observe that we have set the  startangle  parameter to 45. This parameter spec-

ifi es the degrees by which to rotate the start of the pie chart, counterclockwise 

from the x-axis. Figure   4.14   shows the effect of setting the  startangle  to 0 versus 45. 

Web Browser Marketshare - 2018

Chrome

61.6%

12.0% 11.0%

4.2%

%4.2%4 Safari

Edge

Firefox

Internet Explorer

6%.6%1.6%1 6

5%1.5%1

Others

Opera
Sogou Explou Explorer

33.8%3.8%

 Figure 4.13  :      Displaying the pie chart with custom colors
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 Figure 4.14  :      Setting the start angle for the pie chart 
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        Displaying a Legend
 Like the line and bar charts, you can also display a legend in your pie charts. 

But before you can do that, you need to handle the return values from the  pie()

function:

pie =   plt.pie(marketshare,
          explode = explode,  # fraction of the radius with which to
                            # offset each wedge  
          labels = labels,
          colors = colors,
          autopct="%.1f%%",   # string or function used to label the
                            # wedges with their numeric value
          shadow=True,  
          startangle=45)      # rotates the start of the pie chart by
                             # angle degrees counterclockwise from the 

# x-axis 

    The  pie()  function returns a tuple containing the following values:

patches : A list of matplotlib.patches.Wedge  instances. 

texts : A list of the label matplotlib.text.Text  instances. 

autotexts : A list of Text  instances for the numeric labels. This will only be

returned if the parameter autopct  is not  None .   

 To display the legend, use the legend()  function as follows:

    plt.axis("equal")           # turns off the axis lines and labels
  plt.title("Web Browser Marketshare - 2018")  
plt.legend(pie[0], labels, loc="best")
  plt.show()

    Figure   4.15   shows the legend displaying on the pie chart. 
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 Figure 4.15  :      Displaying the legend on the pie chart 
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             T I P       If the  autopct  parameter is not set to None , the pie()  function returns the
tuple ( patches ,  texts ,  autotexts ).

   The positioning of the legend can be modifi ed through the  loc  parameter. It

can take in either a string value or an integer value. Table   4.1   shows the various 

values that you can use for the  loc  parameter.

        Saving the Chart
 So far, you have been displaying the charts in a browser. At times, it is useful 

to be able to save the image to disk. You can do so using the  savefig()  function

as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   labels      = ["Chrome", "Internet Explorer",  
                 "Firefox", "Edge","Safari",  
                 "Sogou Explorer","Opera","Others"]

  ... 
  plt.axis("equal")           # turns off the axis lines and labels
  plt.title("Web Browser Marketshare - 2018")  
plt.savefig("Webbrowsers.png", bbox_inches="tight")
  plt.show()

    Setting the  bbox_inches  parameter to tight  removes all of the extra white 

space around your fi gure.

 Table 4.1  :  Location Strings and Corresponding Location Codes

LOCATION STRING LOCATION CODE    

 ’ best ’ 0  

 ’ upper right ’ 1  

 ’ upper left ’ 2  

 ’ lower left ’ 3  

 ’ lower right ’ 4  

 ’ right ’ 5  

 ’ center left ’ 6  

 ’ center right ’ 7  

 ’ lower center ’ 8  

 ’ upper center ’ 9  

 ’ center ’ 10
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  Plotting Scatter Plots

 A  scatter plot  is a two-dimensional chart that uses dots (or other shapes) to rep-

resent the values for two different variables. Scatter plots are often used to show 

how much the value of one variable is affected by another. 

 The following code snippet shows a scatter plot with the x-axis containing a 

list of numbers from 1 to 4, and the y-axis showing the cube of the x-axis values:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   plt.plot([1,2,3,4],        # x-axis
           [1,8,27,64],      # y-axis
           'bo')             # blue circle marker  
  plt.axis([0, 4.5, 0, 70])  # xmin, xmax, ymin, ymax
  plt.show()

    Figure   4.16   shows the scatter plot. 

       Combining Plots
 You can combine multiple scatter plots into one chart as follows:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

   import numpy as np  

  a = np.arange(1,4.5,0.1)   # 1.0, 1.1, 1.2, 1.3...4.4
  plt.plot(a, a**2, 'y^',    # yellow triangle_up marker  
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 Figure 4.16  :      Plotting a scatter plot 
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           a, a**3, 'bo',    # blue circle
           a, a**4, 'r--',)  # red dashed line  

   plt.axis([0, 4.5, 0, 70])  # xmin, xmax, ymin, ymax
  plt.show()

    Figure   4.17   shows the chart displaying three scatter plots. You can customize 

the shape of the points to draw on the scatter plot. For example,  y^  indicates a

yellow triangle-up marker,  bo  indicates a blue circle, and so on.

        Subplots
 You can also plot multiple scatter plots separately and combine them into a 

single fi gure:

    %matplotlib inline  
  import matplotlib.pyplot as plt  
  import numpy as np  

   a = np.arange(1,5,0.1)

   plt.subplot(121)            # 1 row, 2 cols, chart 1
  plt.plot([1,2,3,4,5],
           [1,8,27,64,125],
           'y^')  

   plt.subplot(122)            # 1 row, 2 cols, chart 2
  plt.plot(a, a**2, 'y^',
           a, a**3, 'bo',
           a, a**4, 'r--',)
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 Figure 4.17  :      Combining multiple scatter plots into a single chart
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   plt.axis([0, 4.5, 0, 70])   # xmin, xmax, ymin, ymax
  plt.show()

    Figure   4.18   shows two charts displayed in a single fi gure. 

      The  subplot()  function adds a subplot to the current fi gure. One of the argu-

ments it takes in has the following format:  nrow,ncols,index . In the precedingx
example, the 121 means “1 row, 2 columns, and chart 1.” Using this format, you 

can have up to a maximum of nine fi gures. The  subplot()  function can also be

called with the following syntax:

    plt.subplot(1,2,1)            # 1 row, 2 cols, chart 1  

    Using this syntax, you can now have more than 10 charts in a single fi gure.

       T I P       The scatter()  function draws points without lines connecting them, 
whereas the plot()  function may or may not plot the lines, depending on the 
arguments.

      Plotting Using Seaborn

 While matplotlib allows you to plot a lot of interesting charts, it takes a bit of 

effort to get the chart that you want. This is especially true if you are dealing 

with a large amount of data and would like to examine the relationships be -

tween multiple variables.

 Introducing Seaborn , a complementary plotting library that is based on the

matplotlib data visualization library. Seaborn ’ s strength lies in its ability to 
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 Figure 4.18  :      Combining two charts into a single figure
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make statistical graphics in Python, and it is closely integrated with the Pandas 

data structure (covered in Chapter   3  ). Seaborn provides high-level abstractions 

to allow you to build complex visualizations for your data easily. In short, you 

write less code with Seaborn than with matplotlib, while at the same time you get 

more sophisticated charts. 

  Displaying Categorical Plots
 The fi rst example that you will plot is called a categorical plot (formerly known 

as a factorplot). It is useful in cases when you want to plot the distribution of a 

certain group of data. Suppose that you have a CSV fi le named drivinglicense

.csv  containing the following data:

    gender,group,license  
  men,A,1  
  men,A,0  
  men,A,1  
  women,A,1
  women,A,0
  women,A,0
  men,B,0  
  men,B,0  
  men,B,0  
  men,B,1  
  women,B,1
  women,B,1
  women,B,1
  women,B,1

    This CSV fi le shows the distribution of men and women in two groups, A and 

B, with 1 indicating that the person has a driver ’ s license and a 0 indicating no 

driver ’ s license. If you are tasked with plotting a chart to show the proportion 

of men and women in each group that has a driver ’ s license, you can use Sea-

born ’ s categorical plot.

 First, import the relevant modules:

    import matplotlib.pyplot as plt  
  import seaborn as sns
  import pandas as pd  

    Load the data into a Pandas dataframe:

    #---load data---  
  data = pd.read_csv('drivinglicense.csv')
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    Call the  catplot()  function with the following arguments:

    #---plot a factorplot---
  g = sns.catplot(x="gender", y="license", col="group",
          data=data, kind="bar", ci=None, aspect=1.0)

    You pass in the dataframe through the data  parameter, and you specify the 

gender  as the x-axis. The y-axis will tabulate the proportion of men and women r

who have a driver ’ s license, and hence you set y  to  license . You want to separatee

the chart into two groups based on group, hence you set  col  to  group. p

 Next, you set the labels on the chart:

    #---set the labels---
  g.set_axis_labels("", "Proportion with Driving license")  
  g.set_xticklabels(["Men", "Women"])
  g.set_titles("{col_var} {col_name}")

   #---show plot---  
  plt.show()

    Figure   4.19   shows the categorical plot drawn by Seaborn. As you can see, 2/3 

of the men and 1/3 of the women have driver ’ s licenses in Group A, while in 

Group B, 1/4 of the men and all the women have driver ’ s licenses. Neat, isn ’ t it? 

      Let ’ s take a look at another example of catplot. Using the Titanic dataset, let ’ s 

plot a chart and see what the survival rate of men, women, and children looks 

like in each of the three classes.
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 Figure 4.19  :      Displaying a factorplot showing the distribution of men and women who have
driver ’ s licenses in each group
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       T I P       Seaborn has a built-in dataset that you can load directly using the  load_
dataset()  function. To see the names of the dataset that you can load, use the sns
.get_dataset_names()  function. Alternatively, if you want to download the data-
set for offline use, check out  https://github.com/mwaskom/seaborn-data .
Note that you would need to have an Internet connection, as the load_dataset()_
function loads the specified dataset from the online repository.

     import matplotlib.pyplot as plt  
  import seaborn as sns

   titanic = sns.load_dataset("titanic")
  g = sns.catplot(x="who", y="survived", col="class",
          data=titanic, kind="bar", ci=None, aspect=1)

   g.set_axis_labels("", "Survival Rate")
  g.set_xticklabels(["Men", "Women", "Children"])
  g.set_titles("{col_name} {col_var}")

   #---show plot---  
  plt.show()

    Figure   4.20   shows the distribution of the data based on classes. As you can 

see, both women and children have a higher chance of survival if they are in 

the fi rst- and second-class cabins.

        Displaying Lmplots
 Another plot that is popular in Seaborn is the lmplot. An lmplot  is a scatter plot. 

Using another built-in dataset from Seaborn, you can plot the relationships bet-

ween the petal width and petal length of an iris plant and use it to determine 

the type of iris plants: setosa, versicolor, or virginica.
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 Figure 4.20  :      A factorplot showing the survival rate of men, women, and children in each of the
cabin classes in the Titanic dataset
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    import seaborn as sns
  import matplotlib.pyplot as plt  

   #---load the iris dataset---  
  iris = sns.load_dataset("iris")  

   #---plot the lmplot---
  sns.lmplot('petal_width', 'petal_length', data=iris,
             hue='species', palette='Set1',  
             fit_reg=False, scatter_kws={"s": 70})

   #---get the current polar axes on the current figure---  
  ax = plt.gca()  
  ax.set_title("Plotting using the Iris dataset")  

   #---show the plot---
  plt.show()

    Figure   4.21   shows the scatter plot created using the  lmplot()  function.
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 Figure 4.21  :      An lmplot showing the relationship between the petal length and width of the 
iris dataset
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        Displaying Swarmplots 
 A swarmplot  is a categorical scatterplot with nonoverlapping points. It is useful 

for discovering the distribution of data points in a dataset. Consider the follow-

ing CSV fi le named salary.csv , which contains the following content:v

    gender,salary
  men,100000
  men,120000
  men,119000
  men,77000
  men,83000
  men,120000
  men,125000
  women,30000
  women,140000
  women,38000
  women,45000
  women,23000
  women,145000
  women,170000

    You want to show the distribution of salaries for men and women. In this 

case, a swarmplot is an ideal fi t. The following code snippet does just that:

    import matplotlib.pyplot as plt  
  import seaborn as sns
  import pandas as pd  

   sns.set_style("whitegrid")

   #---load data---  
  data = pd.read_csv('salary.csv')  

   #---plot the swarm plot---
  sns.swarmplot(x="gender", y="salary", data=data)

   ax = plt.gca()  
  ax.set_title("Salary distribution")

   #---show plot---  
  plt.show()

    Figure   4.22   shows that, in this group, even though women have the highest 

salary, it also has the widest income disparity. 
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         Summary

 In this chapter, you learned how to use matplotlib to plot the different types of 

charts that are useful for discovering patterns and relationships in a dataset. A 

complementary plotting library, Seaborn, simplifi es plotting more sophisticated 

charts. While this chapter does not contain an exhaustive list of charts that you 

can plot with matplotlib and Seaborn, subsequent chapters will provide more 

samples and uses for them.   
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 Figure 4.22  :      A swarmplot showing the distribution of salaries for men and women 
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5

    Introduction to Scikit-learn 

 In Chapters   2  –  4  , you learned how to use Python together with libraries such 

as NumPy and Pandas to perform number crunching, data visualization, and 

analysis. For machine learning, you can also use these libraries to build your 

own learning models. However, doing so would require you to have a strong 

appreciation of the mathematical foundation for the various machine learning 

algorithms—not a trivial matter.

 Instead of implementing the various machine learning algorithms manually 

by hand, fortunately, someone else has already done the hard work for you. 

Introducing Scikit-learn , a Python library that implements the various types 

of machine learning algorithms, such as classifi cation, regression, clustering, 

decision tree, and more. Using Scikit-learn, implementing machine learning is 

now simply a matter of calling a function with the appropriate data so that you 

can fi t and train the model.

 In this chapter, fi rst you will learn the various venues where you can get the 

sample datasets to learn how to perform machine learning. You will then learn 

how to use Scikit-learn to perform simple linear regression on a simple dataset. 

Finally, you will learn how to perform data cleansing.  

     Getting Started with Sciikit-learn 
for Machine LearningLearning
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  Getting Datasets 

 Often, one of the challenges in machine learning is obtaining sample datasets 

for experimentation. In machine learning, when you are just getting started 

with an algorithm, it is often useful to get started with a simple dataset that you 

can create yourself to test that the algorithm is working correctly according to 

your understanding. Once you clear this stage, it is time to work with a large 

dataset, and for this you would need to fi nd the relevant source so that your 

machine learning model can be as realistic as possible. 

 Here are some places where you can get the sample dataset to practice your 

machine learning:

■   Scikit-learn ’ s built-in dataset 

■  Kaggle dataset 

■  UCI (University of California, Irvine) Machine Learning Repository   

 Let ’ s take a look at each of these in the following sections. 

  Using the Scikit-learn Dataset
 Scikit-learn comes with a few standard sample datasets, which makes learning 

machine learning easy. To load the sample datasets, import the datasets module 

and load the desired dataset. For example, the following code snippets load the 

Iris dataset :

    from sklearn import datasets  
  iris = datasets.load_iris()   # raw data of type Bunch  

         T I P       The Iris flower dataset or Fisher ’ s Iris dataset is a multivariate dataset intro-
duced by the British statistician and biologist Ronald Fisher. The dataset consists of 
50 samples from each of three species of Iris (Iris setosa, Iris virginica, and Iris versi-
color). Four features were measured from each sample: the length and the width
of the sepals and petals in centimeters. Based on the combination of these four 
features, Fisher developed a linear discriminant model to distinguish the species 
from each other.

   The dataset loaded is represented as a Bunch  object, a Python dictionary

that provides attribute-style access. You can use the  DESCR  property to obtain

a description of the dataset:

    print(iris.DESCR)  
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    More importantly, however, you can obtain the features of the dataset using 

the  data  property:

    print(iris.data)                        # Features

    The preceding statement prints the following:

    [[ 5.1  3.5  1.4  0.2]
   [ 4.9  3.   1.4  0.2]
    ... 
   [ 6.2  3.4  5.4  2.3]
   [ 5.9  3.   5.1  1.8]]

    You can also use the feature_names property to print the names of the features:

    print(iris.feature_names)      # Feature Names  

    The preceding statement prints the following:

    ['sepal length (cm)', 'sepal width (cm)',  
   'petal length (cm)', 'petal width (cm)']  

    This means that the dataset contains four columns—sepal length, sepal width, 

petal length, and petal width. If you are wondering what a petal and sepal are, 

Figure   5.1   shows the Tetramerous fl ower of Ludwigia octovalvis showing petals 

and sepals (source:  https://en.wikipedia.org/wiki/Sepal ). 

 Figure 5.1  :      The petal and sepal of a flower
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      To print the label of the dataset, use the target  property. For the label names, 

use the target_names  property:

    print(iris.target)                 # Labels  
  print(iris.target_names)           # Label names  

    This prints out the following:

   [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 2 2 2 2 2 2 
   2 2]  
  ['setosa' 'versicolor' 'virginica']

    In this case, 0 represents  setosa , 1 represents versicolor , and 2 represents  rr virginica .

       T I P       Note that not all sample datasets in Scikit-learn support the  feature_names
and  target_names  properties.

   Figure   5.2   summarizes what the dataset looks like. 

      Often, it is useful to convert the data to a Pandas dataframe, so that you can 

manipulate it easily:

    import pandas as pd  
  df = pd.DataFrame(iris.data)   # convert features
                                 # to dataframe in Pandas  
  print(df.head())  

    These statements print out the following:

         0    1    2    3
  0  5.1  3.5  1.4  0.2
  1  4.9  3.0  1.4  0.2
  2  4.7  3.2  1.3  0.2
  3  4.6  3.1  1.5  0.2
  4  5.0  3.6  1.4  0.2
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 Figure 5.2  :      The fields in the Iris dataset and its target



 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 97

    Besides the Iris dataset, you can also load some interesting datasets in Scikit-

learn, such as the following:

    # data on breast cancer
  breast_cancer = datasets.load_breast_cancer()  

   # data on diabetes  
  diabetes = datasets.load_diabetes()

   # dataset of 1797 8x8 images of hand-written digits
  digits = datasets.load_digits()  

    For more information on the Scikit-learn dataset, check out the documenta-

tion at http://scikit-learn.org/stable/datasets/index.html .  

  Using the Kaggle Dataset 
Kaggle  is the world ’ s largest community of data scientists and machine learners. 

What started off as a platform for offering machine learning competitions, Kaggle 

now also offers a public data platform, as well as a cloud-based workbench for 

data scientists. Google acquired Kaggle in March 2017.

 For learners of machine learning, you can make use of the sample datasets 

provided by Kaggle at https://www.kaggle.com/datasets/ . Some of the inter-/

esting datasets include:

■ Women ’ s Shoe Prices:  A list of 10,000 women ’ s shoes and the prices at 

which they are sold ( https://www.kaggle.com/datafiniti/womens-

shoes-prices )

■ Fall Detection Data from China:  Activity of elderly patients along with

their medical information ( https://www.kaggle.com/pitasr/falldata ) a

■ NYC Property Sales:  A year ’ s worth of properties sold on the NYC real

estate market ( https://www.kaggle.com/new-york-city/nyc-property-

sales#nyc-rolling-sales.csv ) v

■ US Flight Delay:  Flight Delays for year 2016 ( https://www.kaggle.com/

niranjan0272/us-flight-delay )y

  Using the UCI (University of California, Irvine) Machine 
Learning Repository
 The UCI Machine Learning Repository ( https://archive.ics.uci.edu/ml/ 

datasets.html ) is a collection of databases, domain theories, and data generators l

that are used by the machine learning community for the empirical analysis 
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of machine learning algorithms. Here are some interesting ones from the huge 

dataset it contains:

■ Auto MPG Data Set:  A collection of data about the fuel effi ciency of dif-

ferent types of cars ( https://archive.ics.uci.edu/ml/datasets/Auto+MPG )G

■ Student Performance Data Set:  Predict student performance in secondary 

education (high school) ( https://archive.ics.uci.edu/ml/datasets/

Student+Performance )e

■ Census Income Data Set:  Predict whether income exceeds $50K/yr. based

on census data ( https://archive.ics.uci.edu/ml/datasets/census+income )e

  Generating Your Own Dataset
 If you cannot fi nd a suitable dataset for experimentation, why not generate one 

yourself? The sklearn.datasets.samples_generator  module from the Scikit-

learn library contains a number of functions to let you generate different types 

of datasets for different types of problems. You can use it to generate datasets of 

different distributions, such as the following:

■   Linearly distributed datasets 

■  Clustered datasets

■  Clustered datasets distributed in circular fashion   

  Linearly Distributed Dataset 

 The  make_regression()  function generates data that is linearly distributed. 

You can specify the number of features that you want, as well as the standard 

deviation of the Gaussian noise applied to the output:

    %matplotlib inline  
  from matplotlib import pyplot as plt
  from sklearn.datasets.samples_generator import make_regression

   X, y = make_regression(n_samples=100, n_features=1, noise=5.4)
  plt.scatter(X,y)  

    Figure   5.3   shows the scatter plot of the dataset generated.

        Clustered Dataset 

 The  make_blobs()  function generates n  number of clusters of random data. This

is very useful when performing clustering in unsupervised learning (Chapter   9  , 

“Supervised Learning—Classifi cation using K Nearest Neighbors (KNN)”):
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     %matplotlib inline  
  import matplotlib.pyplot as plt  
  import numpy as np  
  from sklearn.datasets import make_blobs

   X, y = make_blobs(500, centers=3)  # Generate isotropic Gaussian
                                     # blobs for clustering  

   rgb = np.array(['r', 'g', 'b'])  

   # plot the blobs using a scatter plot and use color coding  
  plt.scatter(X[:, 0], X[:, 1], color=rgb[y])  

    Figure   5.4   shows the scatter plot of the random dataset generated. 
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 Figure 5.3  :      Scatter plot showing the linearly distributed data points
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 Figure 5.4  :      Scatter plot showing the three clusters of data points generated
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        Clustered Dataset Distributed in Circular Fashion

 The make_circles()_   function generates a random dataset containing a large circle

embedding a smaller circle in two dimensions. This is useful when performing 

classifi cations, using algorithms like SVM (Support Vector Machines). SVM will 

be covered in Chapter   8  , “Supervised Learning—Classifi cation using SVM.”

     %matplotlib inline  
  import matplotlib.pyplot as plt  
  import numpy as np  
  from sklearn.datasets import make_circles  

   X, y = make_circles(n_samples=100, noise=0.09)  

   rgb = np.array(['r', 'g', 'b'])  
  plt.scatter(X[:, 0], X[:, 1], color=rgb[y])  

    Figure   5.5   shows the scatter plot of the random dataset generated.

          Getting Started with Scikit-learn 

 The easiest way to get started with machine learning with Scikit-learn is to start 

with linear regression.  Linear regression  is a linear approach for modeling the 

relationship between a scalar dependent variable  y   and one or more explana-

tory variables (or independent variables). For example, imagine that you have 

a set of data comprising the heights (in meters) of a group of people and their 

corresponding weights (in kg):

    %matplotlib inline  
  import matplotlib.pyplot as plt  
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 Figure 5.5  :      Scatter plot showing the two clusters of data points distributed in circular fashion
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   # represents the heights of a group of people in meters  
  heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]  

   # represents the weights of a group of people in kgs
  weights = [[60], [65], [72.3], [75], [80]]  

   plt.title('Weights plotted against heights')  
  plt.xlabel('Heights in meters')  
  plt.ylabel('Weights in kilograms')  

   plt.plot(heights, weights, 'k.')  

   # axis range for x and y
  plt.axis([1.5, 1.85, 50, 90])  
  plt.grid(True)  

    When you plot a chart of weights against heights, you will see the chart as 

shown in Figure   5.6  .

      From the chart, you can see that there is a positive correlation between the 

weights and heights for this group of people. You could draw a straight line 

through the points and use that to predict the weight of another person based 

on their height.

  Using the LinearRegression Class for Fitting the Model 
 So how do we draw the straight line that cuts though all of the points? It turns 

out that the Scikit-learn library has the  LinearRegression  class that helps you 

to do just that. All you need to do is to create an instance of this class and use 
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 Figure 5.6  :      Plotting the weights against heights for a group of people 
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the  heights  and weights  lists to create a linear regression model using the fit()

function, like this:

    from sklearn.linear_model import LinearRegression

   # Create and fit the model
  model = LinearRegression()
  model.fit(X=heights, y=weights)  

         T I P       Observe that the  heights  and weights  are both represented as
two-dimensional lists. This is because the  fit()  function requires both the X  and  X y

arguments to be two-dimensional (of type list  or ndarray ). y

     Making Predictions 
 Once you have fi tted (trained) the model, you can start to make predictions 

using the predict()  function, like this:

    # make prediction  
  weight = model.predict([[1.75]])[0][0]
  print(round(weight,2))         # 76.04

    In the preceding example, you want to predict the weight for a person that is 

1.75m tall. Based on the model, the weight is predicted to be 76.04kg.

       T I P       In Scikit-learn, you typically use the  fit()  function to train a model. Once the 
model is trained, you use the  predict()  function to make a prediction.

     Plotting the Linear Regression Line 
 It would be useful to visualize the linear regression line that has been created 

by the  LinearRegression  class. Let ’ s do this by fi rst plotting the original data

points and then sending the  heights  list to the model to predict the weights.

We then plot the series of forecasted weights to obtain the line. The following 

code snippet shows how this is done:

    import matplotlib.pyplot as plt  

   heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]  
  weights = [[60], [65], [72.3], [75], [80]]  

   plt.title('Weights plotted against heights')  
  plt.xlabel('Heights in meters')  
  plt.ylabel('Weights in kilograms')  
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   plt.plot(heights, weights, 'k.')  

   plt.axis([1.5, 1.85, 50, 90])  
  plt.grid(True)  

   # plot the regression line
  plt.plot(heights, model.predict(heights), color='r')

    Figure   5.7   shows the linear regression line. 

        Getting the Gradient and Intercept of the Linear 
Regression Line
 From Figure   5.7  , it is not clear at what value the linear regression line intercepts 

the y-axis. This is because we have adjusted the x-axis to start plotting at 1.5. A 

better way to visualize this would be to set the x-axis to start from 0 and enlarge 

the range of the y-axis. You then plot the line by feeding in two extreme values 

of the height: 0 and 1.8. The following code snippet re-plots the points and the 

linear regression line:

    plt.title('Weights plotted against heights')  
  plt.xlabel('Heights in meters')  
  plt.ylabel('Weights in kilograms')

   plt.plot(heights, weights, 'k.')  

   plt.axis([0, 1.85, -200, 200])  
  plt.grid(True)  
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 Figure 5.7  :      Plotting the linear regression line
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   # plot the regression line
  extreme_heights = [[0], [1.8]]  
  plt.plot(extreme_heights, model.predict(extreme_heights), color='b')  

    Figure   5.8   now shows the point where the line cuts the y-axis. 

      While you can get the y-intercept by predicting the weight if the height is 0:

    round(model.predict([[0]])[0][0],2)   # -104.75  

  the model  object provides the answer directly through the intercept_  property:

    print(round(model.intercept_[0],2))   # -104.75  

    Using the  model  object, you can also get the gradient of the linear regression 

line through the coef_  property:

print(round(model.coef_[0][0],2))    # 103.31

      Examining the Performance of the Model by Calculating the 
Residual Sum of Squares
 To know if your linear regression line is well fi tted to all of the data points, we 

use the Residual Sum of Squares (RSS)  method. Figure   5.9   shows how the RSS is

calculated. 

      The following code snippet shows how the RSS is calculated in Python:

    import numpy as np  

   print('Residual sum of squares: %.2f' %
         np.sum((weights - model.predict(heights)) ** 2))  
  # Residual sum of squares: 5.34  

0.00
–200

–150

–100

–50

0

50

100

150

200

0.25 0.50 0.75
Heights in meters

Weights plotted against heights

1.00 1.25 1.50 1.75

W
ei

gh
ts

 in
 k

ilo
gr

am
s

 Figure 5.8  :      The linear regression line
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    The RSS should be as small as possible, with 0 indicating that the regression 

line fi ts the points exactly (rarely achievable in the real world).  

  Evaluating the Model Using a Test Dataset
 Now that our model is trained with our training data, we can put it to the test. 

Assuming that we have the following test dataset:

    # test data
  heights_test = [[1.58], [1.62], [1.69], [1.76], [1.82]]  
  weights_test = [[58], [63], [72], [73], [85]]  

    we can measure how closely the test data fi ts the regression line using the 

R-Squared method . The R-Squared method is also known as the  coeffi cient of 
determination , or the coeffi cient of multiple determinations for multiple regressions . 

 The formula for calculating R-Squared is shown in Figure   5.10  .

      Using the formula shown for R-Squared, note the following:

■   R2  is R-squared 

■  TSS is Total Sum of Squares

■  RSS is Residual Sum of Squares   

Errors of prediction (E)

Residual Sum of Squares
= Sum of E2

 Figure 5.9  :      Calculating the Residual Sum of Squares for linear regression
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 Figure 5.10  :      The formula for calculating R-Squared
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 You can now calculate it in Python using the following code snippet:

    # Total Sum of Squares (TSS)  
  weights_test_mean = np.mean(np.ravel(weights_test))
  TSS = np.sum((np.ravel(weights_test) -
                weights_test_mean) ** 2)
  print("TSS: %.2f" % TSS)

   # Residual Sum of Squares (RSS)  
  RSS = np.sum((np.ravel(weights_test) -
                np.ravel(model.predict(heights_test)))
                   ** 2)
  print("RSS: %.2f" % RSS)

   # R_squared
  R_squared = 1 - (RSS / TSS)  
  print("R-squared: %.2f" % R_squared)

         T I P       The ravel()  function converts the two-dimensional list into a contiguous
flattened (one-dimensional) array.

   The preceding code snippet yields the following result:

    TSS: 430.80
  RSS: 24.62
  R-squared: 0.94  

    Fortunately, you don ’ t have to calculate the R-Squared  manually yourself—

Scikit-learn has the score()  function to calculate the R-Squared automatically 

for you:

    # using scikit-learn to calculate r-squared  
  print('R-squared: %.4f' % model.score(heights_test,
                                        weights_test))

   # R-squared: 0.9429  

    An R-Squared value of 0.9429 (94.29%) indicates a pretty good fi t for your 

test data.  

  Persisting the Model
 Once you have trained a model, it is often useful to be able to save it for later 

use. Rather than retraining the model every time you have new data to test, a 

saved model allows you to load the trained model and make predictions imme-

diately without the need to train the model again.
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 There are two ways to save your trained model in Python:

■   Using the standard  pickle   module in Python to serialize and 

deserialize objects 

■  Using the  joblib  module in Scikit-learn that is optimized to save and load

Python objects that deal with NumPy data   

 The fi rst example you will see is saving the model using the pickle  module:

    import pickle

   # save the model to disk
  filename = 'HeightsAndWeights_model.sav'
  # write to the file using write and binary mode  
  pickle.dump(model, open(filename, 'wb'))

    In the preceding code snippet, you fi rst opened a fi le in "wb " mode ("w " for w

write  and "b " for binary). You then use the  dump()  function from the  pickle

module to save the model into the fi le.

 To load the model from fi le, use the load()  function:

    # load the model from disk
  loaded_model = pickle.load(open(filename, 'rb'))  

    You can now use the model as usual:

    result = loaded_model.score(heights_test,  
                              weights_test)  

    Using the joblib  module is very similar to using the  pickle  module:

    from sklearn.externals import joblib

   # save the model to disk
  filename = 'HeightsAndWeights_model2.sav'  
  joblib.dump(model, filename)  

   # load the model from disk
  loaded_model = joblib.load(filename)
  result = loaded_model.score(heights_test,  
                              weights_test)  
  print(result)

       Data Cleansing

 In machine learning, one of the fi rst tasks that you need to perform is  data
cleansing . Very seldom would you have a dataset that you can use straightaway gg
to train your model. Instead, you have to examine the data carefully for any 
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missing values and either remove them or replace them with some valid values, 

or you have to normalize them if there are columns with wildly different values. 

The following sections show some of the common tasks you need to perform 

when cleaning  your data. 

  Cleaning Rows with NaNs
 Consider a CSV fi le named NaNDataset.csv  with the following content:

    A,B,C  
  1,2,3  
  4,,6  
  7,,9  
  10,11,12
  13,14,15
  16,17,18

    Visually, you can spot that there are a few rows with empty fi elds. Specifi cally, 

the second and third rows have missing values for the second columns. For 

small sets of data, this is easy to spot. But if you have a large dataset, it becomes 

almost impossible to detect. An effective way to detect for empty rows is to load 

the dataset into a Pandas dataframe and then use the isnull()  function to check

for null values in the dataframe:

    import pandas as pd  
  df = pd.read_csv('NaNDataset.csv')  
  df.isnull().sum()  

    This code snippet will produce the following output:

    A    0  
  B    2  
  C    0  
  dtype: int64

    You can see that column B has two null values. When Pandas loads a dataset 

containing empty values, it will use  NaN  to represent those empty fi elds. The 

following is the output of the dataframe when you print it out:

        A     B   C  
  0   1   2.0   3  
  1   4   NaN   6  
  2   7   NaN   9  
  3  10  11.0  12  
  4  13  14.0  15  
  5  16  17.0  18  
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     Replacing NaN with the Mean of the Column

 One of the ways to deal with  NaN s in your dataset is to replace them with the

mean of the columns in which they are located. The following code snippet 

replaces all of the NaN s in column B with the average value of column B:

    # replace all the NaNs in column B with the average of column B
  df.B = df.B.fillna(df.B.mean())  
  print(df)

    The dataframe now looks like this:

        A     B   C  
  0   1   2.0   3  
  1   4  11.0   6  
  2   7  11.0   9  
  3  10  11.0  12  
  4  13  14.0  15  
  5  16  17.0  18  

      Removing Rows 

 Another way to deal with  NaN s in your dataset is simply to remove the rows 

containing them. You can do so using the  dropna()  function, like this:

    df = pd.read_csv('NaNDataset.csv')  
  df = df.dropna()                             # drop all rows with NaN  
  print(df)

    This code snippet will produce the following output:

        A     B   C  
  0   1   2.0   3  
  3  10  11.0  12  
  4  13  14.0  15  
  5  16  17.0  18  

    Observe that after removing the rows containing  NaN , the index is no longer inN

sequential order. If you need to reset the index, use the  reset_index()  function:

    df = df.reset_index(drop=True)               # reset the index
  print(df)

    The dataframe with the reset index will now look like this:

        A     B   C  
  0   1   2.0   3  
  1  10  11.0  12  
  2  13  14.0  15  
  3  16  17.0  18  



110 Chapter 50 ■ Getting Started with Scikit-learn for Machine Learning

       Removing Duplicate Rows 
 Consider a CSV fi le named DuplicateRows.csv  with the following content:

    A,B,C  
  1,2,3  
  4,5,6  
  4,5,6  
  7,8,9  
  7,18,9  
  10,11,12
  10,11,12
  13,14,15
  16,17,18

    To fi nd all of the duplicated rows, fi rst load the dataset into a dataframe and 

then use the  duplicated()  function, like this:

    import pandas as pd  
  df = pd.read_csv('DuplicateRows.csv')
  print(df.duplicated(keep=False))  

    This will produce the following output:

    0    False
  1     True
  2     True
  3    False
  4    False
  5     True
  6     True
  7    False
  8    False
  dtype: bool

    It shows which rows are duplicated. In this example, rows with index 1, 2, 5, 

and 6 are duplicates. The  keep  argument allows you to specify how to indicate

duplicates:

■   The default is   ' first '  : All duplicates are marked as True  except for the 

fi rst occurrence 

■  ' last '  : All duplicates are marked as True  except for the last occurrence

■ False : All duplicates are marked as True

 So, if you set  keep  to   ' first ' , you will see the following output:

    0    False
  1    False
  2     True
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  3    False
  4    False
  5    False
  6     True
  7    False
  8    False
  dtype: bool

    Hence, if you want to see all duplicate rows, you can set  keep  to  False  and 

use the result of the duplicated()  function as the index into the dataframe:

    print(df[df.duplicated(keep=False)])

    The preceding statement will print all of the duplicate rows:

        A   B   C
  1   4   5   6
  2   4   5   6
  5  10  11  12
  6  10  11  12

    To drop duplicate rows, you can use the  drop_duplicates()_   function, like this:

df.drop_duplicates(keep= ' first ' , inplace=True)  # remove
duplicates and keep the first
print(df)

         T I P       By default, the  drop_pp duplicates()_   function will not modify the original
dataframe and will return the dataframe containing the dropped rows. If you want to
modify the original dataframe, set the  inplace  parameter to  True , as shown in the 
preceding code snippet. 

   The preceding statements will print the following:

        A   B   C
  0   1   2   3
  1   4   5   6
  3   7   8   9
  4   7  18   9
  5  10  11  12
  7  13  14  15
  8  16  17  18

         T I P       To remove all duplicates, set the  keep  parameter to False . To keep the last
occurrence of duplicate rows, set the keep  parameter to   ' last ' . 

   Sometimes, you only want to remove duplicates that are found in certain 

columns in the dataset. For example, if you look at the dataset that we have 
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been using, observe that for row 3 and row 4, the values of column A and C 

are identical:

        A   B   C
  3   7   8   9
  4   7  18   9

    You can remove duplicates in certain columns by specifying the subset

parameter:

    df.drop_duplicates(subset=['A', 'C'], keep='last',
                             inplace=True)     # remove all duplicates in  
                                               # columns A and C and keep  
                                               # the last  
  print(df)

    This statement will yield the following:

        A   B   C
  0   1   2   3
  1   4   5   6
  4   7  18   9
  5  10  11  12
  7  13  14  15
  8  16  17  18

      Normalizing Columns 
 Normalization is a technique often applied during the data cleansing process. The 

aim of normalization  is to change the values of numeric columns in the dataset to

use a common scale, without modifying the differences in the ranges of values. 

 Normalization is crucial for some algorithms to model the data correctly. For 

example, one of the columns in your dataset may contain values from 0 to 1, 

while another column has values ranging from 400,000 to 500,000. The huge 

disparity in the scale of the numbers could introduce problems when you use 

the two columns to train your model. Using normalization, you could main-

tain the ratio of the values in the two columns while keeping them to a limited 

range. In Pandas, you can use the  MinMaxScaler  class to scale each column to

a particular range of values.

 Consider a CSV fi le named NormalizeColumns.csv  with the following content:

    A,B,C  
  1000,2,3
  400,5,6
  700,6,9
  100,11,12
  1300,14,15
  1600,17,18
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    The following code snippet will scale all the columns ’   values to the (0,1) range:

    import pandas as pd  
  from sklearn import preprocessing

   df = pd.read_csv('NormalizeColumns.csv')
  x = df.values.astype(float)  

   min_max_scaler = preprocessing.MinMaxScaler()  
  x_scaled = min_max_scaler.fit_transform(x)  
  df = pd.DataFrame(x_scaled, columns=df.columns)  
  print(df)

    You should see the following output:

         A         B    C
  0  0.6  0.000000  0.0
  1  0.2  0.200000  0.2
  2  0.4  0.266667  0.4
  3  0.0  0.600000  0.6
  4  0.8  0.800000  0.8
  5  1.0  1.000000  1.0

      Removing Outliers
 In statistics, an  outlier  is a point that is distant from other observed points. 

For example, given a set of values—234, 267, 1, 200, 245, 300, 199, 250, 8999, and 

245—it is quite obvious that 1 and 8999 are outliers. They distinctly stand out 

from the rest of the values, and they “lie outside” most of the other values in the 

dataset; hence the word outlier . Outliers occur mainly due to errors in recording rr
or experimental error, and in machine learning it is important to remove them 

prior to training your model as it may potentially distort your model if you don ’ t. 

 There are a number of techniques to remove outliers, and in this chapter we 

discuss two of them:

■   Tukey Fences 

■  Z-Score

  Tukey Fences

 Tukey  Fences is based on Interquartile Range (IQR). IQR is the difference between )
the fi rst and third quartiles of a set of values. The fi rst quartile, denoted Q1, 

is the value in the dataset that holds 25% of the values below it. The third quartile, 
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denoted Q3, is the value in the dataset that holds 25% of the values above it. 

Hence, by defi nition, IQR = Q3 – Q1.

 Figure   5.11   shows an example of how IQR is obtained for datasets with even 

and odd numbers of values.

      In Tukey Fences, outliers are values that are as follows:

■   Less than Q1 – (1.5 × IQR), or 

■  More than Q3 + (1.5 × IQR)

 The following code snippet shows the implementation of Tukey Fences using 

Python:

    import numpy as np  

   def outliers_iqr(data):
      q1, q3 = np.percentile(data, [25, 75])  
      iqr = q3 - q1  
      lower_bound = q1 - (iqr * 1.5)  
      upper_bound = q3 + (iqr * 1.5)  
      return np.where((data > upper_bound) | (data < lower_bound))

         T I P       The np.where()  function returns the location of items satisfying the conditions.

   The outliers_iqr()  function returns a tuple of which the fi rst element is an 

array of indices of those rows that have outlier values. 

Number of Items: 10

Number of Items: 11

1 3 4 5 6

Median is 6.5

Median is 7

Interquartile Range (IQR) is 11 – 4 = 7

Interquartile Range (IQR) is 12 – 4 = 8

First Quartile is 4

First Quartile is 4

Third Quartile is 11

Third Quartile is 12

7 10 11 12 14

1 3 4 5 6 7 10 11 12 14

      Examples of finding the Interquartile Range (IQR) 
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 To test the Tukey Fences, let ’ s use the famous Galton dataset on the heights 

of parents and their children. The dataset contains data based on the famous 

1885 study of   Francis Galton exploring the relationship between the heights of 

adult children and the heights of their parents. Each case is an adult child, and 

the variables are as follows:

Family:   The family that the child belongs to, labeled by the numbers from

1 to 204 and 136A 

Father:  The father ’ s height, in inches 

Mother:  The mother ’ s height, in inches 

Gender:  The gender of the child, male (M) or female (F)

Height:  The height of the child, in inches

Kids:  The number of kids in the family of the child

 The dataset has 898 cases.

 First, import the data:

    import pandas as pd  
  df = pd.read_csv("http://www.mosaic-web.org/go/datasets/galton.csv")  
  print(df.head())  

    You should see the following:

      family  father  mother sex  height  nkids  
  0      1    78.5    67.0   M    73.2      4  
  1      1    78.5    67.0   F    69.2      4  
  2      1    78.5    67.0   F    69.0      4  
  3      1    78.5    67.0   F    69.0      4  
  4      2    75.5    66.5   M    73.5      4  

    If you want to fi nd the outliers in the height  column, you can call the  out-

liers_iqr()  function as follows:

    print("Outliers using outliers_iqr()")
  print("=============================")
  for i in outliers_iqr(df.height)[0]:
      print(df[i:i+1])

    You should see the following output:

    Outliers using outliers_iqr()  
  =============================  
      family  father  mother sex  height  nkids  
  288     72    70.0    65.0   M    79.0      7  

    Using the Tukey Fences method, you can see that the  height  column has a

single outlier.
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  Z-Score

 The second method for determining outliers is to use the  Z-score  method. A 

Z-score indicates how many standard deviations a data point is from the mean. 

The Z-score has the following formula:

Z xi /

  where x i  is the data point, μ  is the mean of the dataset, and  σ  is the standard

deviation.

 This is how you interpret the Z-score:

■   A negative Z-score indicates that the data point is less than the mean, and 

a positive Z-score indicates the data point in question is larger than 

the mean

■  A Z-score of 0 tells you that the data point is right in the middle (mean), 

and a Z-score of 1 tells you that your data point is 1 standard deviation 

above the mean, and so on

■  Any Z-score greater than 3 or less than –3 is considered to be an outlier

 The following code snippet shows the implementation of the Z-score using 

Python:

    def outliers_z_score(data):  
      threshold = 3  
      mean = np.mean(data)
      std = np.std(data)
      z_scores = [(y - mean) / std for y in data]  
      return np.where(np.abs(z_scores) > threshold)

    Using the same Galton dataset that you used earlier, you can now fi nd the 

outliers for the height  column using the outliers_z_score()  function:

    print("Outliers using outliers_z_score()")  
  print("=================================")  
  for i in outliers_z_score(df.height)[0]:
      print(df[i:i+1])  
  print()  

    You should see the following output:

    Outliers using outliers_z_score()  
  =================================  
      family  father  mother sex  height  nkids  
  125     35    71.0    69.0   M    78.0      5  
      family  father  mother sex  height  nkids  
  288     72    70.0    65.0   M    79.0      7  
      family  father  mother sex  height  nkids  
  672    155    68.0    60.0   F    56.0      7  
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    Using the Z-score method, you can see that the height  column has three

outliers.    

  Summary

 In this chapter, you have seen how to get started with the Scikit-learn library 

to solve a linear regression problem. In addition, you have also learned how to 

get sample datasets, generate your own, perform data cleansing, as well as the 

two techniques that you can use to remove outliers from your datasets. 

 In subsequent chapters, you will learn more about the various machine learning 

algorithms and how to use them to solve real-life problems.   
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6

    Types of Linear Regression 

 In the previous chapter, you learned how to get started with machine learning 

using simple linear regression, fi rst using Python, and then followed by using 

the Scikit-learn library. In this chapter, we will look into linear regression in 

more detail and discuss another variant of linear regression known as  polyno- 

mial regression . 

 To recap, Figure   6.1   shows the Iris dataset used in Chapter   5  , “Getting Started 

with Scikit-learn for Machine Learning.” The fi rst four columns are known as 

the features , or also commonly referred to as the independent variables . The last

column is known as the  label , or commonly called the  dependent variable  (or 

dependent variables  if there is more than one label).

     Supervised Learningg—Linear 
Regression   egression   

(Dependent variable)
Features

(Independent variables)

sepal length sepal width petal length petal width target

 Figure 6.1  :      Some terminologies for features and label 
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       T I P       Features are also sometimes called  explanatory variables , while labels are also
sometimes called targets .   

 In simple linear regression, we talked about the linear relationship between 

one independent variable and one dependent variable. In this chapter, besides 

simple linear regression, we will also discuss the following:

Multiple Regression    Linear relationships between two or more independent 

variables and one dependent variable.  

Polynomial Regression      Modeling the relationship between one independent 

variable and one dependent variable using an nth  degree polynomial

function.

Polynomial Multiple Regression     Modeling the relationship between two 

or more independent variables and one dependent variable using an nth

degree polynomial function.

       T I P      There is another form of linear regression, called  multivariate linear regres-
sion, where there is more than one correlated dependent variable in the relationship. 
Multivariate linear regression is beyond the scope of this book.

  Linear Regression

 In machine learning, linear regression  is one of the simplest algorithms that you 

can apply to a dataset to model the relationships between features and labels. 

In Chapter   5  , we started by exploring simple linear regression, where we could 

explain the relationship between a feature and a label by using a straight line. 

In the following section, you will learn about a variant of simple linear regres-

sion, called  multiple linear regression , by predicting house prices based on mul-

tiple features. 

  Using the Boston Dataset 
 For this example, we will use the Boston dataset, which contains data 

about the housing and price data in the Boston area. This dataset was taken 

from the StatLib library, which is maintained at Carnegie Mellon University. 

It is commonly used in machine learning, and it is a good candidate to learn 

about regression problems. The Boston dataset is available from a number of 

sources, but it is now available directly from the sklearn.datasets  package. 

This means you can load it directly in Scikit-learn without needing explicitly 

to download it.
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 First, let ’ s import the necessary libraries and then load the dataset using the 

load_boston()  function:

    import matplotlib.pyplot as plt  
  import pandas as pd  
  import numpy as np  

   from sklearn.datasets import load_boston
  dataset = load_boston()

 It is always good to examine the data before you work with it. The  data  prop-

erty contains the data for the various columns of the dataset:

    print(dataset.data)     

 You should see the following:

    [[  6.32000000e-03   1.80000000e+01   2.31000000e+00 ...,   1.53000000e+01  
      3.96900000e+02   4.98000000e+00]
   [  2.73100000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01  
      3.96900000e+02   9.14000000e+00]
   [  2.72900000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01  
      3.92830000e+02   4.03000000e+00]
   ...,  
   [  6.07600000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01  
      3.96900000e+02   5.64000000e+00]
   [  1.09590000e-01   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01  
      3.93450000e+02   6.48000000e+00]
   [  4.74100000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01  
      3.96900000e+02   7.88000000e+00]]

 The data is a two-dimensional array. To know the name of each column (fea-

ture), use the  feature_names  property:

    print(dataset.feature_names)     

 You should see the following:

    ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'  
   'B' 'LSTAT']

 For the description of each feature, you can use the  DESCR  property:

    print(dataset.DESCR)

 The preceding statement will print out the following:

    Boston House Prices dataset  
  ===========================  

   Notes  
  ------
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  Data Set Characteristics:

       :Number of Instances: 506  

       :Number of Attributes: 13 numeric/categorical predictive  

       :Median Value (attribute 14) is usually the target  

       :Attribute Information (in order):
          - CRIM     per capita crime rate by town  
          - ZN       proportion of residential land zoned for lots over 
25,000 sq.ft. 
          - INDUS    proportion of non-retail business acres per town
          - CHAS     Charles River dummy variable (= 1 if tract bounds 
river; 0 otherwise)  
          - NOX      nitric oxides concentration (parts per 10 million)  
          - RM       average number of rooms per dwelling  
          - AGE      proportion of owner-occupied units built prior to 1940  
          - DIS      weighted distances to five Boston employment centres  
          - RAD      index of accessibility to radial highways  
          - TAX      full-value property-tax rate per $10,000  
          - PTRATIO  pupil-teacher ratio by town  
          - B        1000(Bk - 0.63)^2 where Bk is the proportion of
blacks by town  
          - LSTAT    % lower status of the population
          - MEDV     Median value of owner-occupied homes in $1000's

       :Missing Attribute Values: None

       :Creator: Harrison, D. and Rubinfeld, D.L.  

   This is a copy of UCI ML housing dataset:   http://archive.ics.uci.edu/
ml/datasets/Housing

   This dataset was taken from the StatLib library which is maintained at 
Carnegie Mellon University. 

   The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic  
  prices and the demand for clean air', J. Environ. Economics & Management,  
  vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression
diagnostics 
  ...', Wiley, 1980.   N.B. Various transformations are used in the table on  
  pages 244-261 of the latter.  

   The Boston house-price data has been used in many machine learning
papers that address regression  
  problems.

   **References**  
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      - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying
Influential Data and Sources of Collinearity', Wiley, 1980. 244-261. 
     - Quinlan,R. (1993). Combining Instance-Based and Model-Based
Learning. In Proceedings on the Tenth International Conference of
Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan 
Kaufmann. 
     - many more! (see   http://archive.ics.uci.edu/ml/datasets/
Housing  )     

 The prices of houses is the information we are seeking, and it can be accessed 

via the  target  property:

    print(dataset.target)     

 You will see the following:

    [ 24.   21.6  34.7  33.4  36.2  28.7  22.9  27.1  16.5  18.9  15.   18.9  
    21.7  20.4  18.2  19.9  23.1  17.5  20.2  18.2  13.6  19.6  15.2  14.5  
    15.6  13.9  16.6  14.8  18.4  21.   12.7  14.5  13.2  13.1  13.5  18.9  
    20.   21.   24.7  30.8  34.9  26.6  25.3  24.7  21.2  19.3  20.   16.6  
    14.4  19.4  19.7  20.5  25.   23.4  18.9  35.4  24.7  31.6  23.3  19.6  
    18.7  16.   22.2  25.   33.   23.5  19.4  22.   17.4  20.9  24.2  21.7  
    22.8  23.4  24.1  21.4  20.   20.8  21.2  20.3  28.   23.9  24.8  22.9  
    23.9  26.6  22.5  22.2  23.6  28.7  22.6  22.   22.9  25.   20.6  28.4  
    21.4  38.7  43.8  33.2  27.5  26.5  18.6  19.3  20.1  19.5  19.5  20.4  
    19.8  19.4  21.7  22.8  18.8  18.7  18.5  18.3  21.2  19.2  20.4  19.3  
    22.   20.3  20.5  17.3  18.8  21.4  15.7  16.2  18.   14.3  19.2  19.6  
    23.   18.4  15.6  18.1  17.4  17.1  13.3  17.8  14.   14.4  13.4  15.6  
    11.8  13.8  15.6  14.6  17.8  15.4  21.5  19.6  15.3  19.4  17.   15.6  
    13.1  41.3  24.3  23.3  27.   50.   50.   50.   22.7  25.   50.   23.8  
    23.8  22.3  17.4  19.1  23.1  23.6  22.6  29.4  23.2  24.6  29.9  37.2  
    39.8  36.2  37.9  32.5  26.4  29.6  50.   32.   29.8  34.9  37.   30.5  
    36.4  31.1  29.1  50.   33.3  30.3  34.6  34.9  32.9  24.1  42.3  48.5  
    50.   22.6  24.4  22.5  24.4  20.   21.7  19.3  22.4  28.1  23.7  25.  
    23.3  28.7  21.5  23.   26.7  21.7  27.5  30.1  44.8  50.   37.6  31.6  
    46.7  31.5  24.3  31.7  41.7  48.3  29.   24.   25.1  31.5  23.7  23.3  
    22.   20.1  22.2  23.7  17.6  18.5  24.3  20.5  24.5  26.2  24.4  24.8  
    29.6  42.8  21.9  20.9  44.   50.   36.   30.1  33.8  43.1  48.8  31.  
    36.5  22.8  30.7  50.   43.5  20.7  21.1  25.2  24.4  35.2  32.4  32.  
    33.2  33.1  29.1  35.1  45.4  35.4  46.   50.   32.2  22.   20.1  23.2  
    22.3  24.8  28.5  37.3  27.9  23.9  21.7  28.6  27.1  20.3  22.5  29.  
    24.8  22.   26.4  33.1  36.1  28.4  33.4  28.2  22.8  20.3  16.1  22.1  
    19.4  21.6  23.8  16.2  17.8  19.8  23.1  21.   23.8  23.1  20.4  18.5  
    25.   24.6  23.   22.2  19.3  22.6  19.8  17.1  19.4  22.2  20.7  21.1  
    19.5  18.5  20.6  19.   18.7  32.7  16.5  23.9  31.2  17.5  17.2  23.1  
    24.5  26.6  22.9  24.1  18.6  30.1  18.2  20.6  17.8  21.7  22.7  22.6  
    25.   19.9  20.8  16.8  21.9  27.5  21.9  23.1  50.   50.   50.   50.  
    50.   13.8  13.8  15.   13.9  13.3  13.1  10.2  10.4  10.9  11.3  12.3  
     8.8   7.2  10.5   7.4  10.2  11.5  15.1  23.2   9.7  13.8  12.7  13.1  
    12.5   8.5   5.    6.3   5.6   7.2  12.1   8.3   8.5   5.   11.9  27.9  
    17.2  27.5  15.   17.2  17.9  16.3   7.    7.2   7.5  10.4   8.8   8.4  
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    16.7  14.2  20.8  13.4  11.7   8.3  10.2  10.9  11.    9.5  14.5  14.1  
    16.1  14.3  11.7  13.4   9.6   8.7   8.4  12.8  10.5  17.1  18.4  15.4  
    10.8  11.8  14.9  12.6  14.1  13.   13.4  15.2  16.1  17.8  14.9  14.1  
    12.7  13.5  14.9  20.   16.4  17.7  19.5  20.2  21.4  19.9  19.   19.1  
    19.1  20.1  19.9  19.6  23.2  29.8  13.8  13.3  16.7  12.   14.6  21.4  
    23.   23.7  25.   21.8  20.6  21.2  19.1  20.6  15.2   7.    8.1  13.6  
    20.1  21.8  24.5  23.1  19.7  18.3  21.2  17.5  16.8  22.4  20.6  23.9  
    22.   11.9]

 Now let ’ s load the data into a Pandas DataFrame:

    df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
  df.head()

 The DataFrame would look like the one shown in Figure   6.2  .      

 You would also want to add the prices of the houses to the DataFrame, so 

let ’ s add a new column to the DataFrame and call it MEDV :V

    df['MEDV'] = dataset.target  
  df.head()

 Figure   6.3   shows the complete DataFrame with the features and label.
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 Figure 6.2  :      The DataFrame containing all of the features 
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 Figure 6.3  :      The DataFrame containing all of the features and the label 
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  Data Cleansing
 The next step would be to clean the data and perform any conversion if necessary. 

First, use the info()  function to check the data type of each fi eld:

df.info  ()     

 You should see the following:

    <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 506 entries, 0 to 505  
  Data columns (total 14 columns):  
  CRIM       506 non-null float64  
  ZN         506 non-null float64  
  INDUS      506 non-null float64  
  CHAS       506 non-null float64  
  NOX        506 non-null float64  
  RM         506 non-null float64  
  AGE        506 non-null float64  
  DIS        506 non-null float64  
  RAD        506 non-null float64  
  TAX        506 non-null float64  
  PTRATIO    506 non-null float64  
  B          506 non-null float64  
  LSTAT      506 non-null float64  
  MEDV       506 non-null float64  
  dtypes: float64(14)  
  memory usage: 55.4 KB

 As Scikit-learn only works with fi elds that are numeric, you need to encode 

string values into numeric values. Fortunately, the dataset contains all numerical 

values, and so no encoding is necessary.

 Next, we need to check to see if there are any missing values. To do so, use 

the  isnull()  function:

    print(df.isnull().sum())

 Again, the dataset is good, as it does not have any missing values:

    CRIM       0
  ZN         0
  INDUS      0
  CHAS       0
  NOX        0
  RM         0
  AGE        0
  DIS        0
  RAD        0
  TAX        0
  PTRATIO    0
  B          0
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  LSTAT      0
  MEDV       0
  dtype: int64

  Feature Selection
 Now that the data is good to go, we are ready to move on to the next step of 

the process. As there are 13 features in the dataset, we do not want to use all 

of these features for training our model, because not all of them are relevant. 

Instead, we want to choose those features that directly infl uence the result (that 

is, prices of houses) to train the model. For this, we can use the  corr()  function. 

The  corr()  function computes the pairwise correlation of columns:

    corr = df.corr()  
  print(corr)

 You will see the following:

    CRIM        ZN     INDUS      CHAS       NOX        RM       AGE  \
  CRIM     1.000000 -0.199458  0.404471 -0.055295  0.417521 -0.219940  
0.350784 
  ZN      -0.199458  1.000000 -0.533828 -0.042697 -0.516604  0.311991
-0.569537 
  INDUS    0.404471 -0.533828  1.000000  0.062938  0.763651 -0.391676  
0.644779 
  CHAS    -0.055295 -0.042697  0.062938  1.000000  0.091203  0.091251  
0.086518 
  NOX      0.417521 -0.516604  0.763651  0.091203  1.000000 -0.302188  
0.731470 
  RM      -0.219940  0.311991 -0.391676  0.091251 -0.302188  1.000000
-0.240265 
  AGE      0.350784 -0.569537  0.644779  0.086518  0.731470 -0.240265  
1.000000 
  DIS     -0.377904  0.664408 -0.708027 -0.099176 -0.769230  0.205246
-0.747881 
  RAD      0.622029 -0.311948  0.595129 -0.007368  0.611441 -0.209847  
0.456022 
  TAX      0.579564 -0.314563  0.720760 -0.035587  0.668023 -0.292048  
0.506456 
  PTRATIO  0.288250 -0.391679  0.383248 -0.121515  0.188933 -0.355501  
0.261515 
  B       -0.377365  0.175520 -0.356977  0.048788 -0.380051  0.128069
-0.273534 
  LSTAT    0.452220 -0.412995  0.603800 -0.053929  0.590879 -0.613808  
0.602339 
  MEDV    -0.385832  0.360445 -0.483725  0.175260 -0.427321  0.695360
-0.376955 
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                 DIS       RAD       TAX   PTRATIO         B     LSTAT      
MEDV  
  CRIM    -0.377904  0.622029  0.579564  0.288250 -0.377365  0.452220
-0.385832 
  ZN       0.664408 -0.311948 -0.314563 -0.391679  0.175520 -0.412995  
0.360445 
  INDUS   -0.708027  0.595129  0.720760  0.383248 -0.356977  0.603800
-0.483725 
  CHAS    -0.099176 -0.007368 -0.035587 -0.121515  0.048788 -0.053929  
0.175260 
  NOX     -0.769230  0.611441  0.668023  0.188933 -0.380051  0.590879
-0.427321 
  RM       0.205246 -0.209847 -0.292048 -0.355501  0.128069 -0.613808  
0.695360 
  AGE     -0.747881  0.456022  0.506456  0.261515 -0.273534  0.602339
-0.376955 
  DIS      1.000000 -0.494588 -0.534432 -0.232471  0.291512 -0.496996  
0.249929 
  RAD     -0.494588  1.000000  0.910228  0.464741 -0.444413  0.488676
-0.381626 
  TAX     -0.534432  0.910228  1.000000  0.460853 -0.441808  0.543993
-0.468536 
  PTRATIO -0.232471  0.464741  0.460853  1.000000 -0.177383  0.374044
-0.507787 
  B        0.291512 -0.444413 -0.441808 -0.177383  1.000000 -0.366087  
0.333461 
  LSTAT   -0.496996  0.488676  0.543993  0.374044 -0.366087  1.000000
-0.737663 
  MEDV     0.249929 -0.381626 -0.468536 -0.507787  0.333461 -0.737663  
1.000000    

 A positive correlation  is a relationship between two variables in which both 

variables move in tandem. A positive correlation exists when one variable 

decreases as the other variable decreases, or one variable increases while the 

other variable increases. Similarly, a  negative correlation  is a relationship between

two variables in which one variable increases as the other decreases. A perfect 

negative correlation is represented by the value –1.00: a 0.00 indicates no corre-

lation and a +1.00 indicates a perfect positive correlation. 

 From the MEDV  column in the output, you can see that the  V RM  and  LSTAT  features

have high correlation factors (positive and negative correlations) with the MEDV :V

    MEDV  
  CRIM    -0.385832  
  ZN       0.360445  
  INDUS   -0.483725  
  CHAS     0.175260  
  NOX     -0.427321  
RM       0.695360
  AGE     -0.376955  
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  DIS      0.249929  
  RAD     -0.381626  
  TAX     -0.468536  
  PTRATIO -0.507787  
  B        0.333461  
LSTAT   -0.737663
  MEDV     1.000000     

 This means that as LSTAT  (“% of lower status of the population”) increases, the 

prices of houses go down. When LSTAT  decreases, the prices go up. Similarly, as

RM  (“average number of rooms per dwelling”) increases, so will the price. And 

when  RM  goes down, the prices go down as well.

 Instead of visually fi nding the top two features with the highest correlation 

factors, we can do it programmatically as follows:

    #---get the top 3 features that has the highest correlation---
  print(df.corr().abs().nlargest(3, 'MEDV').index)

   #---print the top 3 correlation values---  
  print(df.corr().abs().nlargest(3, 'MEDV').values[:,13])     

 The result confi rms our fi ndings:

    Index(['MEDV', 'LSTAT', 'RM'], dtype='object')  
  [ 1.          0.73766273  0.69535995]

       T I P       We will ignore the first result, as  MEDV  definitely has a perfect correlation 
with itself!   

 Since RM  and  LSTAT  have high correlation values, we will use these two fea-

tures to train our model.

  Multiple Regression 
 In the previous chapter, you saw how to perform a simple linear regression 

using a single feature and a label. Often, you might want to train your model 

using more than one independent variable and a label. This is known as multiple
regression . In multiple regression, two or more independent variables are used

to predict the value of a dependent variable (label). 

 Now let ’ s plot a scatter plot showing the relationship between the LSTAT  fea-

ture and the  MEDV  label:

    plt.scatter(df['LSTAT'], df['MEDV'], marker='o')
  plt.xlabel('LSTAT')  
  plt.ylabel('MEDV')     
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 Figure   6.4   shows the scatter plot. It appears that there is a linear correlation 

between the two.      

 Let ’ s also plot a scatter plot showing the relationship between the  RM  feature 

and the MEDV  label:

    plt.scatter(df['RM'], df['MEDV'], marker='o')  
  plt.xlabel('RM')  
  plt.ylabel('MEDV')     

 Figure   6.5   shows the scatter plot. Again, it appears that there is a linear cor-

relation between the two, albeit with some outliers.
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 Figure 6.4  :      Scatter plot showing the relationship between LSTAT and MEDV 
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 Figure 6.5  :      Scatter plot showing the relationship between RM and MEDV 
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 Better still, let ’ s plot the two features and the label on a 3D chart:

    from mpl_toolkits.mplot3d import Axes3D

   fig = plt.figure(figsize=(18,15))  
  ax = fig.add_subplot(111, projection='3d')  

   ax.scatter(df['LSTAT'],
             df['RM'],  
             df['MEDV'],
             c='b')  

   ax.set_xlabel("LSTAT")
  ax.set_ylabel("RM")  
  ax.set_zlabel("MEDV")  
  plt.show()

 Figure   6.6   shows the 3D chart of LSTAT  and RM  plotted against  MEDV .       VV
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 Figure 6.6  :      The 3D scatter plot showing the relationship between LSTAT, RM, and MEDV 
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  Training the Model
 We can now train the model. First, create two DataFrames:  x  and  Y . The Y x

DataFrame will contain the combination of the LSTAT and  RM  features, while 

the  Y  DataFrame will contain the  MEDV  label:

    x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])  
  Y = df['MEDV']     

 We will split the dataset into 70 percent for training and 30 percent for testing:

    from sklearn.model_selection import train_test_split
  x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,  
                                                      random_state=5)

       T I P       Chapter   7  , “Supervised Learning—Classification Using Logistic Regression,” 
will discuss more about the train_test_split()  function.   

 After the split, let ’ s print out the shape of the training sets:

    print(x_train.shape)
  print(Y_train.shape)

 You will see the following:

    (354, 2)
  (354,)     

 This means that the  x  training set now has 354 rows and 2 columns, while 

the  Y  training set (which contains the label) has 354 rows and 1 column. 

 Let ’ s also print out the testing set:

    print(x_test.shape)  
  print(Y_test.shape)     

 This time, the testing set has 152 rows:

    (152, 2)
  (152,)     

 We are now ready to begin the training. As you learned from the previous 

chapter, you can use the  LinearRegression  class to perform linear regression. 

In this case, we will use it to train our model:

    from sklearn.linear_model import LinearRegression

   model = LinearRegression()
  model.fit(x_train, Y_train)     
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 Once the model is trained, we will use the testing set to perform some 

predictions:

    price_pred = model.predict(x_test)     

 To learn how well our model performed, we use the R-Squared method that 

you learned in the previous chapter. The R-Squared method lets you know how 

close the test data fi ts the regression line. A value of 1.0 means a perfect fi t. So, 

you aim for a value of R-Squared that is close to 1:

    print('R-Squared: %.4f' % model.score(x_test,  
                                        Y_test))     

 For our model, it returns an R-Squared value as follows:

    R-Squared: 0.6162     

 We will also plot a scatter plot showing the actual price vs. the predicted price:

    from sklearn.metrics import mean_squared_error  

   mse = mean_squared_error(Y_test, price_pred)  
  print(mse)

   plt.scatter(Y_test, price_pred)  
  plt.xlabel("Actual Prices")  
  plt.ylabel("Predicted prices")  
  plt.title("Actual prices vs Predicted prices")     

 Figure   6.7   shows the plot. Ideally, it should be a straight line, but for now it 

is good enough.
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 Figure 6.7  :      A scatter plot showing the predicted prices vs. the actual prices 
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  Getting the Intercept and Coefficients
 The formula for multiple regression is as follows:

Y x x0 1 1 2 2

 where Y is the dependent variable, β0  is the intercept, and  β1  and β2  are the coef-

fi cient of the two features x 1  and x 2 , respectively. 

 With the model trained, we can obtain the intercept as well as the coeffi cients 

of the features:

    print(model.intercept_)
  print(model.coef_)     

 You should see the following:

    0.3843793678034899  
  [-0.65957972  4.83197581]

 We can use the model to make a prediction for the house price when  LSTAT

is 30 and RM  is 5:

    print(model.predict([[30,5]]))     

 You should see the following:

    [4.75686695]

 You can verify the predicted value by using the formula that was given earlier:

    Y x x0 1 1 2 2

    Y = 0.3843793678034899 30 0 65957972 5 4 83197581

    Y 4 7568

  Plotting the  3D  Hyperplane
 Let ’ s plot a 3D regression hyperplane showing the predictions:

    import matplotlib.pyplot as plt  
  import pandas as pd  
  import numpy as np  
  from mpl_toolkits.mplot3d import Axes3D

   from sklearn.datasets import load_boston
  dataset = load_boston()

   df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
  df['MEDV'] = dataset.target  
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   x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])  
  Y = df['MEDV']  

   fig = plt.figure(figsize=(18,15))  
  ax = fig.add_subplot(111, projection='3d')  

   ax.scatter(x['LSTAT'],
             x['RM'],  
             Y,
             c='b')  

   ax.set_xlabel("LSTAT")
  ax.set_ylabel("RM")  
  ax.set_zlabel("MEDV")

   #---create a meshgrid of all the values for LSTAT and RM---  
  x_surf = np.arange(0, 40, 1)   #---for LSTAT---  
  y_surf = np.arange(0, 10, 1)   #---for RM---  
  x_surf, y_surf = np.meshgrid(x_surf, y_surf)  

   from sklearn.linear_model import LinearRegression
  model = LinearRegression()
  model.fit(x, Y)  

   #---calculate z(MEDC) based on the model---  
  z = lambda x,y: (model.intercept_ + model.coef_[0] * x + model.coef_[1] * y) 

   ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
                  rstride=1,
                  cstride=1,
                  color='None',  
                  alpha = 0.4)  

   plt.show()

 Here, we are training the model using the entire dataset. We then make pre-

dictions by passing a combination of values for LSTAT  ( x _ surf ) and f RM  (y_surf ) f

and calculating the predicted values using the model ’ s intercept and coeffi cients. 

The hyperplane is then plotted using the  plot_surface()  function. The end 

result is shown in Figure   6.8  .      

 As the chart shown in Jupyter Notebook is static, save the preceding code 

snippet in a fi le named boston.py  and run it in Terminal, like this:

    $ python boston.py     
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 You will now be able to rotate the chart and move it around to have a better 

perspective, as shown in Figure   6.9  .        

  Polynomial Regression 

 In the previous section, you saw how to apply linear regression to predict the 

prices of houses in the Boston area. While the result is somewhat acceptable, it 

is not very accurate. This is because sometimes a linear regression line might 

not be the best solution to capture the relationships between the features and 

label accurately. In some cases, a curved line might do better. 

 Consider the series of points shown in Figure   6.10  .      

 The series of points are stored in a fi le named polynomial.csv :

    x,y  
  1.5,1.5  
  2,2.5  
  3,4  
  4,4  
  5,4.5  
  6,5     
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 Figure 6.8  :      The hyperplane showing the predictions for the two features—LSTAT and RM 
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 Figure 6.10  :      A scatter plot of points 

Figure 6.9  :      Rotating the chart to have a better view of the hyperplane



 Chapter 6 ■ Supervised Learning—Linear Regression 137

 And plotted using a scatter plot:

    df = pd.read_csv('polynomial.csv')  
  plt.scatter(df.x,df.y)

 Using linear regression, you can try to plot a straight line cutting through 

most of the points:

    model = LinearRegression()

   x = df.x[0:6, np.newaxis] #---convert to 2D array---
  y = df.y[0:6, np.newaxis] #---convert to 2D array---

   model.fit(x,y)  

   #---perform prediction---
  y_pred = model.predict(x)

   #---plot the training points---  
  plt.scatter(x, y, s=10, color='b')  

   #---plot the straight line---  
  plt.plot(x, y_pred, color='r')  
  plt.show()

   #---calculate R-Squared---
  print('R-Squared for training set: %.4f' % model.score(x,y))     

 You will see the straight regression line, as shown in Figure   6.11  .      

 The R-Squared value for the training set is:

    R-Squared for training set: 0.8658     
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 Figure 6.11  :      The regression line fitting the points 
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 We want to see if there is a more accurate way to fi t the points. For instance, 

instead of a straight line, we want to investigate the possibility of a curved line. 

This is where polynomial regression  comes in.

  Formula for Polynomial Regression 
Polynomial regression  is an attempt to create a polynomial function that fi ts a set 

of data points. 

 A polynomial function of degree 1 has the following form:

Y x0 1

 This is the simple linear regression that we have seen in the previous chapter. 

Quadratic regression  is a degree 2 polynomial:

Y x x0 1 2
2

 For a polynomial of degree 3, the formula is as follows:

Y x x x0 1 2
2

3
3

 In general, a polynomial of degree n  has the formula of:

Y x x x x0 1 2
2

3
3

n
n

polynomial function that best fi ts the data.  

  Polynomial Regression in Scikit-learn 
 The Scikit-learn library contains a number of classes and functions for solving 

polynomial regression. The PolynomialFeatures  class takes in a number spec-

ifying the degree of the polynomial features. In the following code snippet, we 

are creating a quadratic equation (polynomial function of degree 2):

    from sklearn.preprocessing import PolynomialFeatures
  degree = 2
  polynomial_features = PolynomialFeatures(degree = degree)     

 Using this PolynomialFeatures  object, you can generate a new feature matrix 

consisting of all polynomial combinations of the features with a degree of less 

than or equal to the specifi ed degree:

    x_poly = polynomial_features.fit_transform(x)  
  print(x_poly)
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 You should see the following:

    [[ 1.    1.5   2.25]  
   [ 1.    2.    4.  ]  
   [ 1.    3.    9.  ]  
   [ 1.    4.   16.  ]  
   [ 1.    5.   25.  ]  
   [ 1.    6.   36.  ]]

 The matrix that you see is generated as follows:

■   The fi rst column is always 1. 

■  The second column is the value of x. 

■  The third column is the value of x 2 .   

 This can be verifi ed using the  get_feature_names()  function:

    print(polynomial_features.get_feature_names('x'))

 It prints out the following:

    ['1', 'x', 'x^2']      

       T I P       The math behind finding the coefficients of a polynomial function is beyond 
the scope of this book. For those who are interested, however, check out the following
link on the math behind polynomial regression:  http://polynomialregression.
drque.net/math.html .   

 You will now use this generated matrix with the  LinearRegression  class to 

train your model:

    model = LinearRegression()
  model.fit(x_poly, y)  
  y_poly_pred = model.predict(x_poly)

   #---plot the points---
  plt.scatter(x, y, s=10)

   #---plot the regression line---  
  plt.plot(x, y_poly_pred)
  plt.show()

 Figure   6.12   now shows the regression line, a nice curve trying to fi t the points.      

 You can print out the intercept and coeffi cients of the polynomial function:

    print(model.intercept_)
  print(model.coef_)     
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 You should see the following:

    [-0.87153912]
  [[ 0.          1.98293207 -0.17239897]]

 By plugging these numbers  Y 0 87153912 1 98293207 x 0 17239897 x2

into the formula  Y x x0 1 2
2 , you can make predictions using the pre-

ceding formula.

 If you evaluate the regression by printing its R-Squared value,

    print('R-Squared for training set: %.4f' % model.score(x_poly,y))

 you should get a value of 0.9474:

    R-Squared for training set: 0.9474

 Can the R-Squared value be improved? Let ’ s try a degree 3 polynomial. Using 

the same code and changing degree  to  3 , you should get the curve shown in

Figure   6.13   and a value of 0.9889 for R-Squared.
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 Figure 6.12  :      A curved line trying to fit the points
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 Figure 6.13  :      A curved line trying to fit most of the points
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 You now see a curve that more closely fi ts the points and a much-improved 

R-Squared value. Moreover, since raising the polynomial degree by 1 improves 

the R-Squared value, you might be tempted to increase it further. In fact, Figure   6.14   

shows the curve when the degree  is set to 4 . It fi ts all the points perfectly.     

 And guess what? You get an R-Squared value of 1! However, before you cel-

ebrate your success in fi nding the perfect algorithm in your prediction, you 

need to realize that while your algorithm may fi t the training data perfectly, it 

is unlikely to perform well with new data. This is a known as overfi tting, and gg
the next section will discuss this topic in more detail.  

  Understanding Bias and Variance
 The inability for a machine learning algorithm to capture the true relationship 

between the variables and the outcome is known as the  bias . Figure   6.15   shows 

a straight line trying to fi t all the points. Because it doesn ’ t cut through all of 

the points, it has a high bias.      

 The curvy line in Figure   6.16  , however, is able to fi t all of the points and thus 

has a low bias.      

 While the straight line can ’ t fi t through all of the points and has high 

bias, when it comes to applying unseen observations, it gives a pretty good 

estimate. Figure   6.17   shows the testing points (in pink). The RSS (Residual 

Sum of Squares), which is the sum of the errors of prediction, is pretty low 

compared to that of the curvy line when using the same test points (see 

Figure   6.18  ).           
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 Figure 6.14  :      The line now fits the points perfectly 
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 Figure 6.16  :      The curvy line fits all of the points, so the bias is low

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4

Errors of prediction

Test points

5 6

 Figure 6.17  :      The straight line works well with unseen data, and its result does not vary much 
with different datasets. Hence, it has low variance.
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 Figure 6.15  :      The straight line can ’ t fit all of the points, so the bias is high
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 In machine learning, the fi t between the datasets is known as  variance . In thise
example, the curvy line has high variance  because it will result in vastly differ-

ent RSS for different datasets. That is, you can ’ t really predict how well it will 

perform with future datasets—sometimes it will do well with certain datasets 

and at other times it may fail badly. On the other hand, the straight line has a 

low variance , as the RSS is similar for different datasets.e

       T I P       In machine learning, when we try to find a curve that tries to fit all of the 
points perfectly, it is known as  overfitting . On the other hand, if we have a line that 
does not fit most points, it is known as underfitting .   

 Ideally, we should fi nd a line that accurately expresses the relationships 

between the independent variables and that of the outcome. Expressed in terms 

of bias and variance, the ideal algorithm should have the following:

High bias , with the line hugging as many points as possible 

Low variance , with the line resulting in consistent predictions using differ-e
ent datasets   

 Figure   6.19   shows such an ideal curve—high bias and low variance.      

 To strike a balance between fi nding a simple model and a complex model, 

you can use techniques such as Regularization ,  Bagging , and  gg Boosting:g

■ Regularization  is a technique that automatically penalizes the extra features

you used in your modeling.

■ Bagging  (or bootstrap aggregation ) is a specifi c type of machine learningn
process that uses  ensemble learning  to evolve machine learning models.

Bagging uses a subset of the data and each sample trains a weaker learner. 

The weak learners can then be combined (through averaging or max vote) 

to create a strong learner that can make accurate predictions.
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      The curvy line does not work well with unseen data, and its result varies with 
different datasets. Hence, it has high variance.
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■ Boosting  is also similar to Bagging, except that it uses all of the data to 

train each learner, but data points that were misclassifi ed by previous 

learners are given more weight so that subsequent learners will give more 

focus to them during training.  

       T I P        Ensemble learning  is a technique where you use several models working 
together on a single dataset and then combine its result.    

  Using Polynomial Multiple Regression on the Boston Dataset 
 Earlier in this chapter, you used multiple linear regression and trained a model 

based on the Boston dataset. After learning about the polynomial regression 

in the previous section, now let ’ s try to apply it to the Boston dataset and see if 

we can improve the model.

 As usual, let ’ s load the data and split the dataset into training and testing sets:

    import matplotlib.pyplot as plt  
  import pandas as pd  
  import numpy as np  

   from sklearn.preprocessing import PolynomialFeatures
  from sklearn.linear_model import LinearRegression
  from sklearn.datasets import load_boston

   dataset = load_boston()

   df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
  df['MEDV'] = dataset.target  

   x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])  
  Y = df['MEDV']  
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 Figure 6.19  :      You should aim for a line that has high bias and low variance
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   from sklearn.model_selection import train_test_split
  x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,
                                                      random_state=5)

 You then use the polynomial function with degree 2:

    #---use a polynomial function of degree 2---  
  degree = 2
  polynomial_features= PolynomialFeatures(degree = degree)  
  x_train_poly = polynomial_features.fit_transform(x_train)     

 When using a polynomial function of degree 2 on two independent variables 

x 1  and x 2 , the formula becomes:

    Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2

where Y is the dependent variable,  β0  is the intercept, and β1 ,  β2 ,  β3 , and β4  are the 

coeffi cients of the various combinations of the two features x 1 and x 2 , respectively. 

 You can verify this by printing out the feature names:

    #---print out the formula---  
  print(polynomial_features.get_feature_names(['x','y']))     

 You should see the following, which coincides with the formula:

    # ['1', 'x', 'y', 'x^2', 'x y', 'y^2']

       T I P       Knowing the polynomial function formula is useful when plotting the 3D 
hyperplane, which you will do shortly.

 You can then train your model using the  LinearRegression  class:

    model = LinearRegression()
  model.fit(x_train_poly, Y_train)     

 Now let ’ s evaluate the model using the testing set:

    x_test_poly = polynomial_features.fit_transform(x_test)  
  print('R-Squared: %.4f' % model.score(x_test_poly,
                                        Y_test))     

 You will see the result as follows:

    R-Squared: 0.7340     

 You can also print the intercept and coeffi cients:

    print(model.intercept_)
  print(model.coef_)     
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 You should see the following:

    26.9334305238
  [  0.00000000e+00   1.47424550e+00  -6.70204730e+00   7.93570743e-04  
    -3.66578385e-01   1.17188007e+00]

 With these values, the formula now becomes:

    Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2

Y 26 9334305238 1 47424550e 00 x 6 70204730e 00 x 7 9351 2 770743e

04 x 3 66578385e 01 x x 17188007e 00 x1
2

1 2 2
21

  Plotting the  3D  Hyperplane
 Since you know the intercept and coeffi cients of the polynomial multiple regres-

sion function, you can plot out the 3D hyperplane of function easily. Save the 

following code snippet as a fi le named boston2.py:y

    import matplotlib.pyplot as plt  
  import pandas as pd  
  import numpy as np  

   from mpl_toolkits.mplot3d import Axes3D
  from sklearn.preprocessing import PolynomialFeatures
  from sklearn.linear_model import LinearRegression
  from sklearn.datasets import load_boston

   dataset = load_boston()

   df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
  df['MEDV'] = dataset.target  

   x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])  
  Y = df['MEDV']  

   fig = plt.figure(figsize=(18,15))  
  ax = fig.add_subplot(111, projection='3d')  

   ax.scatter(x['LSTAT'],
             x['RM'],  
             Y,
             c='b')  
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   ax.set_xlabel("LSTAT")
  ax.set_ylabel("RM")  
  ax.set_zlabel("MEDV")

   #---create a meshgrid of all the values for LSTAT and RM---  
  x_surf = np.arange(0, 40, 1)   #---for LSTAT---  
  y_surf = np.arange(0, 10, 1)   #---for RM---  
  x_surf, y_surf = np.meshgrid(x_surf, y_surf)  

   #---use a polynomial function of degree 2---  
  degree = 2
  polynomial_features= PolynomialFeatures(degree = degree)  
  x_poly = polynomial_features.fit_transform(x)  
  print(polynomial_features.get_feature_names(['x','y']))  

   #---apply linear regression---  
  model = LinearRegression()
  model.fit(x_poly, Y)  

   #---calculate z(MEDC) based on the model---  
  z = lambda x,y: (model.intercept_ +
                  (model.coef_[1] * x) +
                  (model.coef_[2] * y) +
                  (model.coef_[3] * x**2) +  
                  (model.coef_[4] * x*y) +
                  (model.coef_[5] * y**2))

   ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
                  rstride=1,
                  cstride=1,
                  color='None',  
                  alpha = 0.4)  

   plt.show()

 To run the code, type the following in Terminal:

    $ python boston2.py     

 You will see the 3D chart, as shown in Figure   6.20  .      

 You can drag to rotate the chart. Figure   6.21   shows the different perspectives 

of the hyperplane.        
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 Figure 6.20  :      The hyperplane in the polynomial multiple regression 

 Figure 6.21  :      Rotate the chart to see the different perspectives of the hyperplane
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  Summary 

 In this chapter, you learned about the various types of linear regression. In 

particular, you learned about the following:

Multiple Regression     Linear relationships between two or more independent

variables and one dependent variable.  

Polynomial Regression     Modeling the relationship between one independent 

variable and one dependent variable using an nth  degree polynomial 

function.

Polynomial Multiple Regression     Modeling the relationship between two 

or more independent variables and one dependent variable using an nth

degree polynomial function.

 You also learned how to plot the hyperplane showing the relationships between 

two independent variables and the label.   
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    What Is Logistic Regression?

 In the previous chapter, you learned about linear regression and how you can 

use it to predict future values. In this chapter, you will learn another super-

vised machine learning algorithm—logistic regression . Unlike linear regression,

logistic regression does not try to predict the value of a numeric variable given 

a set of inputs. Instead, the output of logistic regression is the probability of a 

given input point belonging to a specifi c class. The output of logistic regression 

always lies in [0,1]. 

 To understand the use of logistic regression, consider the example shown in 

Figure   7.1  . Suppose that you have a dataset containing information about voter 

income and voting preferences. For this dataset, you can see that low-income 

voters tend to vote for candidate B, while high-income voters tend to favor 

candidate A. 

      With this dataset, you would be very interested in trying to predict which 

candidate future voters will vote for based on their income level. At fi rst glance, 

you might be tempted to apply what you have just learned to this problem; that 

is, using linear regression. Figure   7.2   shows what it looks like when you apply 

linear regression to this problem.

     Supervised Learning—
Classification Usingg Logistic 

Regression   egression   
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      The main problem with linear regression is that the predicted value does not 

always fall within the expected range. Consider the case of a very low-income 

voter (near to 0), and you can see from the chart that the predicted result is a 

negative value. What you really want is a way to return the prediction as a value 

from 0 to 1, where this value represents the probability of an event happening. 

 Figure   7.3   shows how logistic regression solves this problem. Instead of drawing 

a straight line cutting through the points, you now use a curved line to try to 

fi t all of the points on the chart.

      Using logistic regression, the output will be a value from 0 to 1, where anything 

less than (or equal to) 0.5 (known as the  threshold ) will be considered as voting

for candidate B, and anything greater than 0.5 will be considered as voting for 

candidate A. 

Income of voters

XX X X X  X

X XXX XX X

Candidate B

Candidate A

 Figure 7.1  :      Some problems have binary outcomes

Income of voters x

y

Candidate B

Candidate A X XXX XX X

XX X X X  X

 Figure 7.2  :      Using linear regression to solve the voting preferences problem leads
to strange values
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  Understanding Odds
 Before we discuss the details of the logistic regression algorithm, we fi rst need 

to discuss one important term—odds . Odds are defi ned as the ratio of the prob-

ability of success to the probability of failure (see Figure   7.4  ). 

      For example, the odds of landing a head when you fl ip a coin are 1. This is 

because you have a 0.5 probability of landing a head and a 0.5 probability of 

landing a tail. When you say that the odds of landing a head are 1, this means 

you have a 50 percent chance of landing a head.

 But if the coin is rigged in such a way that the probability of landing a head is 

0.8 and the probability of landing a tail is 0.2, then the odds of landing a head 

is 0.8/0.2 = 4. That is, you are 4 times more likely to land a head than a tail. 

Likewise, the odds of getting a tail are 0.2/0.8 = 0.25.

  Logit Function
 When you apply the natural logarithm function to the odds, you get the logit 
function . The logit function is the logarithm of the odds (see Figure   7.5  ). 

Income of voters x

y

XX X X X  X

X XXX X  X X

Candidate B

Candidate A

 Figure 7.3  :      Logistic regression predicts the probability of an outcome, rather than 
a specific value

Chances of something happening

Chances of something not happening

Probability of success

Probability of failure
P

(1 – P)

 Figure 7.4  :      How to calculate the odds of an event happening



154 Chapter 74 ■ Supervised Learning—Classification Using Logistic Regression

      The logit function transfers a variable on (0, 1) into a new variable on (–∞, ∞). 

To see this relationship, you can use the following code snippet:

    %matplotlib inline  
  import pandas as pd  
  import numpy as np  
  import matplotlib.pyplot as plt  

   def logit(x):
      return np.log( x / (1 - x) )  

   x = np.arange(0.001,0.999, 0.0001)
  y = [logit(n) for n in x]
  plt.plot(x,y)
  plt.xlabel("Probability")
  plt.ylabel("Logit - L")

    Figure   7.6   shows the logit curve plotted using the preceding code snippet.

        Sigmoid Curve
 For the logit curve, observe that the x-axis is the probability and the y-axis is the 

real-number range. For logistic regression, what you really want is a function 

that maps numbers on the real-number system to the probabilities, which is 

exactly what you get when you fl ip the axes of the logit curve (see Figure   7.7  ). 

PL = In 1 – P(   )
 Figure 7.5  :      The formula for the logit function
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 Figure 7.6  :      The logit curve
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      When you fl ip the axes, the curve that you get is called the  sigmoid curve. Thee
sigmoid curve is obtained using the Sigmoid function , which is the inverse of the 

logit function. The Sigmoid function is used to transform values on (–∞, ∞) into 

numbers on (0, 1). The Sigmoid function is shown in Figure   7.8  .

      The following code snippet shows how the sigmoid curve is obtained:

    def sigmoid(x):  
      return (1 / (1 + np.exp(-x)))  

   x = np.arange(-10, 10, 0.0001)  
  y = [sigmoid(n) for n in x]  
  plt.plot(x,y)
  plt.xlabel("Logit - L")
  plt.ylabel("Probability")

    Figure   7.9   shows the sigmoid curve.

      Just like you try to plot a straight line that fi ts through all of the points in 

linear regression (as explain in Chapter   5  ), in logistics regression, we would also 

like to plot a sigmoid curve that fi ts through all of the points. Mathematically, 

this can be expressed by the formula shown in Figure   7.10  . 
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 Figure 7.7  :      Flipping the logit curve into a Sigmoid curve

1P  = 
(1 + e–(L))

 Figure 7.8  :      The formula for the Sigmoid function
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      Notice that the key difference between the formula shown in Figure   7.8   

and   7.10   is that now L has been replaced by  β0  and xβ . The coeffi cients  β β0  and β
are unknown, and they must be estimated based on the available training data 

using a technique known as  Maximum Likelihood Estimation (MLE)   . In logistics )
regression, β0  is known as the intercept and xβ  is known as the coeffi cient.

  Using the Breast Cancer Wisconsin (Diagnostic) Data Set 

 Scikit-learn ships with the Breast Cancer Wisconsin (Diagnostic) Data Set. It 

is a classic dataset that is often used to illustrate binary classifi cations. This 

dataset contains 30 features, and they are computed from a digitized image of 

a fi ne needle aspirate (FNA) of a breast mass. The label of the dataset is a binary 

classifi cation—M for malignant or B for benign. Interested readers can check 

out more information at  https://archive.ics.uci.edu/ml/datasets/Breast+

Cancer+Wisconsin+(Diagnostic) . 

  Examining the Relationship Between Features
 You can load the Breast Cancer dataset by fi rst importing the  datasets  module

from sklearn . Then use the load _ breast _ cancer()  function as follows:

    from sklearn.datasets import load_breast_cancer  
  cancer = load_breast_cancer()  
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 Figure 7.9  :      The sigmoid curve plotted using matplotlib

1P = 
(1 + e–(β0 + xβ))

 Figure 7.10  :      Expressing the sigmoid function using the intercept and coefficient 
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    Now that the Breast Cancer dataset has been loaded, it is useful to examine 

the relationships between some of its features. 

  Plotting the Features in 2D 

 For a start, let ’ s plot the fi rst two features of the dataset in 2D and examine their 

relationships. The following code snippet:

■   Loads the Breast Cancer dataset 

■  Copies the fi rst two features of the dataset into a two-dimensional list

■  Plots a scatter plot showing the distribution of points for the two 

features

■  Displays malignant growths in red and benign growths in blue

    %matplotlib inline  

   import matplotlib.pyplot as plt  
  from sklearn.datasets import load_breast_cancer

   cancer = load_breast_cancer()  

   #---copy from dataset into a 2-d list---
  X = []  
  for target in range(2):
      X.append([[], []])
      for i in range(len(cancer.data)):              # target is 0 or 1  
          if cancer.target[i] == target:
              X[target][0].append(cancer.data[i][0]) # first feature - 
mean radius 
             X[target][1].append(cancer.data[i][1]) # second feature — 
mean texture

   colours = ("r", "b")   # r: malignant, b: benign  
  fig = plt.figure(figsize=(10,8))  
  ax = fig.add_subplot(111)
  for target in range(2):
      ax.scatter(X[target][0],  
                 X[target][1],  
                 c=colours[target])

   ax.set_xlabel("mean radius")  
  ax.set_ylabel("mean texture")  
  plt.show()

    Figure   7.11   shows the scatter plot of the points. 
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      From this scatter plot, you can gather that as the tumor grows in radius and 

increases in texture, the more likely that it would be diagnosed as malignant.

  Plotting in 3D 

 In the previous section, you plotted the points based on two features using a 

scatter plot. It would be interesting to be able to visualize more than two fea-

tures. In this case, let ’ s try to visualize the relationships between three features. 

You can use matplotlib to plot a 3D plot. The following code snippet shows how 

this is done. It is very similar to the code snippet in the previous section, with 

the additional statements in bold:

    %matplotlib inline  

   import matplotlib.pyplot as plt  
from mpl_toolkits.mplot3d import Axes3D
  from sklearn.datasets import load_breast_cancer  

   cancer = load_breast_cancer()  

   #---copy from dataset into a 2-d array---  
  X = []  
  for target in range(  2  ):  
      X.append([[], [], []])
      for i in range(len(cancer.data)):    # target is 0,1  
          if cancer.target[i] == target:
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 Figure 7.11  :      The scatter plot showing the relationships between the mean radius and mean 
texture of the tumor 



 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 159

              X[target][0].append(cancer.data[i][0])
              X[target][1].append(cancer.data[i][1])

X[target][2].append(cancer.data[i][2])

   colours = ("r", "b")   # r: malignant, b: benign
  fig = plt.figure(figsize=(18,15  ))  
  ax = fig.add_subplot(111, projection= ' 3d '   )  
  for target in range(2):
      ax.scatter(X[target][0],  
                 X[target][1],  

X[target][2],
                 c=colours[target])  

   ax.set_xlabel("mean radius")  
  ax.set_ylabel("mean texture")  
ax.set_zlabel("mean perimeter")
  plt.show()

    Instead of plotting using two features, you now have a third feature: mean 

perimeter. Figure   7.12   shows the 3D plot. 
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 Figure 7.12  :      Plotting three features using a 3D map 



160 Chapter 70 ■ Supervised Learning—Classification Using Logistic Regression

      Jupyter Notebook displays the 3D plot statically. As you can see from Figure   7.12  , 

you can ’ t really have a good look at the relationships between the three features. 

A much better way to display the 3D plot would be to run the preceding code 

snippet outside of Jupyter Notebook. To do so, save the code snippet (minus the 

fi rst line containing the statement “ %matplotlib inline ”) to a fi le named, say,

3dplot.py . Then run the fi le in Terminal using the  yy python  command, as follows:

    $ python 3dplot.py  

    Once you do that, matplotlib will open a separate window to display the 3D 

plot. Best of all, you will be able to interact with it. Use your mouse to drag the 

plot, and you are able to visualize the relationships better between the three 

features. Figure   7.13   gives you a better perspective: as the mean perimeter of the 

tumor growth increases, the chance of the growth being malignant also increases. 

 Figure 7.13  :      You can interact with the 3D plot when you run the application outside of Jupyter 
Notebook 
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         Training Using One Feature 
 Let ’ s now use logistic regression to try to predict if a tumor is cancerous. To get 

started, let ’ s use only the fi rst feature of the dataset: mean radius. The follow-

ing code snippet plots a scatter plot showing if a tumor is malignant or benign 

based on the mean radius:

    %matplotlib inline  
  import pandas as pd  
  import matplotlib.pyplot as plt  
  import matplotlib.patches as mpatches

   from sklearn.datasets import load_breast_cancer  

   cancer = load_breast_cancer()   # Load dataset  
  x = cancer.data[:,0]            # mean radius  
  y = cancer.target               # 0: malignant, 1: benign  
  colors = {0:'red', 1:'blue'}    # 0: malignant, 1: benign  

   plt.scatter(x,y,  
              facecolors='none',  
              edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x: 
colors[x]), 
              cmap=colors)

   plt.xlabel("mean radius")
  plt.ylabel("Result")  

   red   = mpatches.Patch(color='red',   label='malignant')  
  blue  = mpatches.Patch(color='blue',  label='benign')

   plt.legend(handles=[red, blue], loc=1)

    Figure   7.14   shows the scatter plot. 
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 Figure 7.14  :      Plotting a scatter plot based on one feature 
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      As you can see, this is a good opportunity to use logistic regression to pre-

dict if a tumor is cancerous. You could try to plot an “s” curve (albeit fl ipped 

horizontally).

  Finding the Intercept and Coefficient 

 Scikit-learn comes with the  LogisticRegression  class that allows you to apply 

logistic regression to train a model. Thus, in this example, you are going to train 

a model using the fi rst feature of the dataset:

    from sklearn import linear_model  
  import numpy as np  

   log_regress = linear_model.LogisticRegression()  

   #---train the model---
  log_regress.fit(X = np.array(x).reshape(len(x),1),
                  y = y)

   #---print trained model intercept---
  print(log_regress.intercept_)     # [ 8.19393897]

   #---print trained model coefficients---
  print(log_regress.coef_)          # [[-0.54291739]]

    Once the model is trained, what we are most interested in at this point is 

the intercept and coeffi cient. If you recall from the formula in Figure   7.10  , the 

intercept is β0  and the coeffi cient is xβ . Knowing these two values allows us to β
plot the sigmoid curve that tries to fi t the points on the chart.  

  Plotting the Sigmoid Curve

 With the values of β0  and x β  obtained, you can now plot the sigmoid curve using 

the following code snippet:

    def sigmoid(x):  
      return (1 / (1 +  
          np.exp(-(log_regress.intercept_[0] +  
          (log_regress.coef_[0][0] * x)))))  

   x1 = np.arange(0, 30, 0.01)  
  y1 = [sigmoid(n) for n in x1]  

   plt.scatter(x,y,  
      facecolors='none',
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      edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x:
colors[x]), 
      cmap=colors)  

   plt.plot(x1,y1)  
  plt.xlabel("mean radius")
  plt.ylabel("Probability")

    Figure   7.15   shows the sigmoid curve. 

        Making Predictions 

 Using the trained model, let ’ s try to make some predictions. Let ’ s try to predict 

the result if the mean radius is 20:

    print(log_regress.predict_proba(20)) # [[0.93489354 0.06510646]]
  print(log_regress.predict(20)[0])    # 0

    As you can see from the output, the predict _ proba()  function in the fi rst 

statement returns a two-dimensional array. The result of 0.93489354 indicates 

the probability that the prediction is 0 (malignant) while the result of 0.06510646 

indicates the probability that the prediction is 1. Based on the default threshold  of 

0.5, the prediction is that the tumor is malignant (value of 0), since its predicted 

probability (0.93489354) of 0 is more than 0.5.

 The  predict()  function in the second statement returns the class that the

result lies in (which in this case can be a 0 or 1). The result of 0 indicates that 
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 Figure 7.15  :      The sigmoid curve fitting to the two sets of points 
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the prediction is that the tumor is malignant. Try another example with the 

mean radius of 8 this time:

    print(log_regress.predict_proba(8))  # [[0.02082411 0.97917589]]
  print(log_regress.predict(8)[0])     # 1

    As you can see from the result, the prediction is that the tumor is benign.

  Training the Model Using All Features 
 In the previous section, you specifi cally trained the model using one feature. 

Let ’ s now try to train the model using all of the features and then see how well 

it can accurately perform the prediction. 

 First, load the dataset:

    from sklearn.datasets import load_breast_cancer  
  cancer = load_breast_cancer()   # Load dataset  

    Instead of training the model using all of the rows in the dataset, you are 

going to split it into two sets, one for training and one for testing. To do so, you 

use the train _ test _ split()  function. This function allows you to split your 

data into random train and test subsets. The following code snippet splits the 

dataset into a 75 percent training and 25 percent testing set:

    from sklearn.model_selection import train_test_split
  train_set, test_set, train_labels, test_labels = train_test_split(
                                cancer.data,               # features
                                cancer.target,             # labels
                                test_size = 0.25,          # split ratio  
                                random_state = 1,          # set random 
seed  
                                stratify = cancer.target)  # randomize 
based on labels  

    Figure   7.16   shows how the dataset is split. The random _ state  parameter

of the train _ test _ split()  function specifi es the seed used by the random 

number generator. If this is not specifi ed, every time you run this function you 

will get a different training and testing set. The  stratify  parameter allows you to y

specify which column (feature/label) to use so that the split is proportionate. 

For example, if the column specifi ed is a categorical variable with 80 percent 0s 

and 20 percent 1s, then the training and test sets would each have 80 percent 

of 0s and 20 percent of 1s. 
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      Once the dataset is split, it is now time to train the model. The following code 

snippet trains the model using logistic regression:

    from sklearn import linear_model  
  x = train_set[:,0:30]         # mean radius  
  y = train_labels              # 0: malignant, 1: benign  
  log_regress = linear_model.LogisticRegression()
  log_regress.fit(X = x,
                  y = y)

    In this example, we are training it with all of the 30 features in the dataset. 

When the training is done, let ’ s print out the intercept and model coeffi cients:

    print(log_regress.intercept_)     #
  print(log_regress.coef_)          #

    The following output shows the intercept and coeffi cients:

    [0.34525124]
  [[ 1.80079054e+00  2.55566824e-01 -3.75898452e-02 -5.88407941e-03
    -9.57624689e-02 -3.16671611e-01 -5.06608094e-01 -2.53148889e-01
    -2.26083101e-01 -1.03685977e-02  4.10103139e-03  9.75976632e-01
     2.02769521e-01 -1.22268760e-01 -8.25384020e-03 -1.41322029e-02
    -5.49980366e-02 -3.32935262e-02 -3.05606774e-02  1.09660157e-04
     1.62895414e+00 -4.34854352e-01 -1.50305237e-01 -2.32871932e-02
    -1.94311394e-01 -9.91201314e-01 -1.42852648e+00 -5.40594994e-01
    -6.28475690e-01 -9.04653541e-02]]

    Because we have trained the model using 30 features, there are 30 coeffi cients. 
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 Figure 7.16  :      Splitting the dataset into training and test sets
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  Testing the Model 

 It ’ s time to make a prediction. The following code snippet uses the test set and 

feeds it into the model to obtain the predictions:

    import pandas as pd  

   #---get the predicted probablities and convert into a dataframe---
  preds_prob = pd.DataFrame(log_regress.predict_proba(X=test_set))

   #---assign column names to prediction---
  preds_prob.columns = ["Malignant", "Benign"]  

   #---get the predicted class labels---
  preds = log_regress.predict(X=test_set)
  preds_class = pd.DataFrame(preds)  
  preds_class.columns = ["Prediction"]

   #---actual diagnosis---
  original_result = pd.DataFrame(test_labels)  
  original_result.columns = ["Original Result"]  

   #---merge the three dataframes into one---  
  result = pd.concat([preds_prob, preds_class, original_result], axis=1)  
  print(result.head())  

    The results of the predictions are then printed out. The predictions and original 

diagnosis are displayed side-by-side for easy comparison:

    Malignant        Benign  Prediction  Original Result
  0   0.999812  1.883317e-04           0                0  
  1   0.998356  1.643777e-03           0                0  
  2   0.057992  9.420079e-01           1                1  
  3   1.000000  9.695339e-08           0                0  
  4   0.207227  7.927725e-01           1                0  

      Getting the Confusion Matrix 

 While it is useful to print out the predictions together with the original diag-

nosis from the test set, it does not give you a clear picture of how good the 

model is in predicting if a tumor is cancerous. A more scientifi c way would be 

to use the confusion matrix. The confusion matrix shows the number of actual x
and predicted labels and how many of them are classifi ed correctly. You can 

use Pandas ’ s crosstab()  function to print out the confusion matrix:

    #---generate table of predictions vs actual---  
  print("---Confusion Matrix---")  
  print(pd.crosstab(preds, test_labels))
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    The  crosstab()  function computes a simple cross-tabulation of two factors.

The preceding code snippet prints out the following:

    ---Confusion Matrix---
  col_0   0   1
  row_0  
  0      48   3
  1       5  87

    The output is interpreted as shown in Figure   7.17  .

      The columns represent the actual diagnosis (0 for malignant and 1 for benign). 

The rows represent the prediction. Each individual box represents one of the 

following:

■ True Positive (TP) : The model correctly predicts the outcome as positive.

In this example, the number of TP (87) indicates the number of correct 

predictions that a tumor is benign.

■ True Negative (TN) : The model correctly predicts the outcome as negative.

In this example, tumors were correctly predicted to be malignant. 

■ False Positive (FP) : The model incorrectly predicted the outcome as positive,

but the actual result is negative. In this example, it means that the tumor 

is actually malignant, but the model predicted the tumor to be benign.

■ False Negative (FN) : The model incorrectly predicted the outcome as neg-

ative, but the actual result is positive. In this example, it means that the 

tumor is actually benign, but the model predicted the tumor to be 

malignant.   

 This set of numbers is known as the  confusion matrix. x
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 Figure 7.17  :      The confusion matrix for the prediction 
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 Besides using the crosstab()  function, you can also use the confusion _

matrix()  function to print out the confusion matrix:

    from sklearn import metrics  
  #---view the confusion matrix---  
  print(metrics.confusion_matrix(y_true = test_labels,  # True labels
                                 y_pred = preds))       # Predicted labels  

    Note that the output is switched for the rows and columns.

    [[48  5]
   [ 3 87]]

      Computing Accuracy, Recall, Precision, and Other Metrics 

 Based on the confusion matrix, you can calculate the following metrics:

■ Accuracy :  This is defi ned as the sum of all correct predictions divided 

by the total number of predictions, or mathematically:

TP TN TP TN FP FN/ /

■   This metric is easy to understand. After all, if the model correctly predicts 

99 out of 100 samples, the accuracy is 0.99, which would be very impres-

sive in the real world. But consider the following situation: Imagine that 

you ’ re trying to predict the failure of equipment based on the sample data. 

Out of 1,000 samples, only three are defective. If you use a dumb algorithm 

that always returns negative (meaning no failure) for all results, then the 

accuracy is 997/1000, which is 0.997. This is very impressive, but does this 

mean it ’ s a good algorithm? No. If there are 500 defective items in 

the dataset of 1,000 items, then the accuracy metric immediately indicates the 

fl aw of the algorithm. In short, accuracy works best with evenly distrib-

uted data points, but it works really badly for a skewed dataset. Figure   7.18   

summarizes the formula for accuracy. 

■ Precision :  This metric is defi ned to be TP / (TP + FP). This metric is

concerned with number of correct positive predictions. You can think of 

precision as “of those predicted to be positive, how many were actually 

predicted correctly?” Figure   7.19   summarizes the formula for precision. 

■ Recall  (also known as True Positive Rate (TPR) ):  This metric is defi ned

to be TP / (TP + FN). This metric is concerned with the number of cor-

rectly predicted positive events. You can think of recall as “of those positive 

events, how many were predicted correctly?” Figure   7.20   summarizes the 

formula for recall. 
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 Figure 7.18  :      Formula for calculating accuracy 
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■ F1 Score :  This metric is defi ned to be 2 * (precision * recall) / (precision

+ recall). This is known as the  harmonic mean of precision and recall, and itl
is a good way to summarize the evaluation of the algorithm in a single 

number. 

■ False Positive Rate (FPR) :  This metric is defi ned to be FP / (FP+TN). 

FPR corresponds to the proportion of negative data points that are mis-

takenly considered as positive, with respect to all negative data points. In 

other words, the higher FPR, the more negative data points you ’ ll 

misclassify.

            The concept of precision and recall may not be apparent immediately, but if 

you consider the following scenario, it will be much clearer. Consider the case 

of breast cancer diagnosis. If a malignant tumor is represented as negative and 

a benign tumor is represented as positive, then:

■   If the precision or recall is high, it means that more patients with benign 

tumors are diagnosed correctly, which indicates that the algorithm is 

good. 

■  If the precision is low, it means that more patients with malignant tumors 

are diagnosed as benign.

■  If the recall is low, it means that more patients with benign tumors are 

diagnosed as malignant.

 For the last two points, having a low precision is more serious than a low 

recall (although wrongfully diagnosed as having breast cancer when you do not 

have it will likely result in unnecessary treatment and mental anguish) because 

it causes the patient to miss treatment and potentially causes death. Hence, for 

cases like diagnosing breast cancer, it ’ s important to consider both the preci-

sion and recall metrics when evaluating the effectiveness of an ML algorithm. 

 To get the accuracy of the model, you can use the  score()  function of the model:

    #---get the accuracy of the prediction---  
  print("---Accuracy---")
  print(log_regress.score(X = test_set ,
                          y = test_labels))  

    You should see the following result:

    ---Accuracy---  
  0.9440559440559441  

    To get the precision, recall, and F1-score of the model, use the  classification _

report()  function of the  metrics  module:

    # View summary of common classification metrics  
  print("---Metrices---")
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  print(metrics.classification_report(
        y_true = test_labels,  
        y_pred = preds))

    You will see the following results:

    ---Metrices---  
               precision    recall  f1-score   support

             0       0.94      0.91      0.92        53
            1       0.95      0.97      0.96        90

   avg / total       0.94      0.94      0.94       143

      Receiver Operating Characteristic (ROC) Curve

 With so many metrics available, what is an easy way to examine the effective-

ness of an algorithm? One way would be to plot a curve known as the  Receiver
Operating Characteristic (ROC) curve . The ROC curve is created by plotting the e
TPR against the FPR at various threshold settings. 

 So how does it work? Let ’ s run through a simple example. Using the existing 

project that you have been working on, you have derived the confusion matrix 

based on the default threshold of 0.5 (meaning that all of those predicted proba-

bilities less than or equal to 0.5 belong to one class, while those greater than 0.5 

belong to another class). Using this confusion matrix, you then fi nd the recall, 

precision, and subsequently FPR and TPR. Once the FPR and TPR are found, 

you can plot the point on the chart, as shown in Figure   7.21  . 

      Then you regenerate the confusion matrix for a threshold of 0, and recalcu-

late the recall, precision, FPR, and TPR. Using the new FPR and TPR, you plot 
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 Figure 7.21  :      The point at threshold 0.5
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another point on the chart. You then repeat this process for thresholds of 0.1, 

0.2, 0.3, and so on, all the way to 1.0. 

 At threshold 0, in order for a tumor to be classifi ed as benign (1), the predicted 

probability must be greater than 0. Hence, all of the predictions would be clas-

sifi ed as benign (1). Figure   7.22   shows how to calculate the TPR and FPR. For a 

threshold of 0, both the TPR and FPR are 1. 

      At threshold 1.0, in order for a tumor to be classifi ed as benign (1), the predicted 

probability must be equal to exactly 1. Hence, all of the predictions would be 

classifi ed as malignant (0). Figure   7.23   shows how to calculate the TPR and FPR 

when the threshold is 1.0. For a threshold of 1.0, both the TPR and FPR are 0. 
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 Figure 7.22  :      The value of TPR and FPR for threshold 0 

0 - Malignant
1 - Benign

0 TN FN

TP
(0)

FP
(0)

0
Actual

Threshold 1.0

All predictions would be 0

No predictions for 1

TPR = TP / (TP + FN)
Since TP = 0, therefore

= 0
FPR = FP / (FP + TN)

Since FP = 0, therefore
= 0

Pr
ed
ic
tio
n

1

1

 Figure 7.23  :      The value of TPR and FPR for threshold 1 
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      We can now plot two more points on our chart (see Figure   7.24  ). 

      You then calculate the metrics for the other threshold values. Calculating 

all of the metrics based on different threshold values is a very tedious process. 

Fortunately, Scikit-learn has the roc _ curve()  function, which will calculate 

the FPR and TPR automatically for you based on the supplied test labels and 

predicted probabilities:

    from sklearn.metrics import roc_curve, auc  

   #---find the predicted probabilities using the test set  
  probs = log_regress.predict_proba(test_set)  
  preds = probs[:,1]  

   #---find the FPR, TPR, and threshold---
  fpr, tpr, threshold = roc_curve(test_labels, preds)

    The  roc _ curve()  function returns a tuple containing the FPR, TPR, and

threshold. You can print them out to see the values:

    print(fpr)
  print(tpr)
  print(threshold)  

    You should see the following:

    [ 0.          0.          0.01886792  0.01886792  0.03773585  0.03773585  
    0.09433962  0.09433962  0.11320755  0.11320755  0.18867925  0.18867925  
    1.        ]

   [ 0.01111111  0.88888889  0.88888889  0.91111111  0.91111111  0.94444444  
    0.94444444  0.96666667  0.96666667  0.98888889  0.98888889  1.
    1.        ]

   [  9.99991063e-01   9.36998422e-01   9.17998921e-01   9.03158173e-01  
     8.58481867e-01   8.48217940e-01   5.43424515e-01   5.26248925e-01  
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 Figure 7.24  :      Plotting the points for threshold 0, 0.5, and 1.0.
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     3.72174142e-01   2.71134211e-01   1.21486104e-01   1.18614069e-01  
     1.31142589e-21]  

    As you can see from the output, the threshold starts at 0.99999 (9.99e-01) and 

goes down to 1.311e-21.

  Plotting the ROC and Finding the Area Under the Curve (AUC) 

 To plot the ROC, you can use matplotlib to plot a line chart using the values 

stored in the  fpr  and r tpr  variables. You can use the  r auc()  function to fi nd the 

area under the ROC:

    #---find the area under the curve---
  roc_auc = auc(fpr, tpr)

   import matplotlib.pyplot as plt  
  plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)  
  plt.plot([0, 1], [0, 1],'r--')  
  plt.xlim([0, 1])  
  plt.ylim([0, 1])  
  plt.ylabel('True Positive Rate (TPR)')
  plt.xlabel('False Positive Rate (FPR)')
  plt.title('Receiver Operating Characteristic (ROC)')
  plt.legend(loc = 'lower right')  
  plt.show()

    The area under an ROC curve is a measure of the usefulness of a test in 

general, where a greater area means a more useful test and the areas under 

ROC curves are used to compare the usefulness of tests. Generally, aim for the 

algorithm with the highest AUC.

 Figure   7.25   shows the ROC curve as well as the AUC.
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 Figure 7.25  :      Plotting the ROC curve and calculating the AUC
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          Summary

 In this chapter, you learned about another supervised machine learning 

algorithm—logistics regression. You fi rst learned about the logit function and 

how to transform it into a sigmoid function. You then applied the logistic regres-

sion to the breast cancer dataset and used it to predict if a tumor is malignant 

or benign. More importantly, this chapter discussed some of the metrics that 

are useful in determining the effectiveness of a machine learning algorithm. 

In addition, you learned about what an ROC curve is, how to plot it, and how 

to calculate the area under the curve.
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    What Is a Support Vector Machine? 

 In the previous chapter, you saw how to perform classifi cation using logistics 

regression. In this chapter, you will learn another supervised machine learning 

algorithm that is also very popular among data scientists— Support Vector Machines
(SVM) . Like logistics regression, SVM is also a classifi cation algorithm. )

 The main idea behind SVM is to draw a line between two or more classes in 

the best possible manner (see Figure   8.1  ).

     Supervised Learning—
Classification Usingg Support 

Vector MMachines   

Ea
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eo
m

et
ry

Snout Length

Dividing line

 Figure 8.1  :      Using SVM to separate two classes of animals 
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      Once the line is drawn to separate the classes, you can then use it to predict 

future data. For example, given the snout length and ear geometry of a new 

unknown animal, you can now use the dividing line as a classifi er to predict 

if the animal is a dog or a cat.

 In this chapter, you will learn how SVM works and the various techniques 

you can use to adapt SVM for solving nonlinearly-separable datasets. 

  Maximum Separability
 How does SVM separate two or more classes? Consider the set of points in 

Figure   8.2  . Before you look at the next fi gure, visually think of a straight line 

dividing the points into two groups.

      Now look at Figure   8.3  , which shows two possible lines separating the two 

groups of points. Is this what you had in mind?

      Though both lines separate the points into two distinct groups, which one 

is the right one? For SVM, the right line is the one that has the widest margins 

(with each margin touching at least a point in each class), as shown in Figure   8.4  . 

In that fi gure, d1 and d2 are the width of the margins. The goal is to fi nd the 

largest possible width for the margin that can separate the two groups. Hence, 

in this case d2 is the largest. Thus the line chosen is the one on the right.
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 Figure 8.2  :      A set of points that can be separated using SVM
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      Each of the two margins touches the closest point(s) to each group of points, 

and the center of the two margins is known as the  hyperplane . The hyperplane 

is the line separating the two groups of points. We use the term “hyperplane”

instead of “line” because in SVM we typically deal with more than two dimen-

sions, and using the word “hyperplane” more accurately conveys the idea of a

plane in a multidimensional space. 

  Support Vectors
 A key term in SVM is  support vectors . Support vectors are the points that lie

on the two margins. Using the example from the previous section, Figure   8.5   

shows the two support vectors lying on the two margins.
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 Figure 8.3  :      Two possible ways to split the points into two classes 
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      In this case, we say that there are two support vectors—one for each class.

  Formula for the Hyperplane 
 With the series of points, the next question would be to fi nd the formula 

for the hyperplane, together with the two margins. Without delving too much into 

the math behind this, Figure   8.6   shows the formula for getting the hyperplane. 
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 Figure 8.5  :      Support vectors are points that lie on the margins

Total Margin = 2d
x1

Class 2

Class 1

x1

x2

d
d

=   2
∣∣w∣∣

w→0x1 + w→1x2 + b = –1

w→0x1 + w→1x2 + b = 1

w→0x1 + w→1x2 + b = 0

 Figure 8.6  :      The formula for the hyperplane and its accompanying two margins 
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      As you can see from Figure   8.6  , the formula for hyperplane (g) is given as: 

g x x x b
� �

W W0 1 1 2

  where x 1  and x2  are the inputs,  
�

W0 and  
�

W1 are the weight vectors, and b is the bias. 1

 If the value of g is  1, then the point specifi ed is in Class 1, and if the value 

of g is 1, then the point specifi ed is in Class 2. As mentioned, the goal of 

SVM is to fi nd the widest margins that divide the classes, and the total margin 

(2d) is defi ned by:

    
2/ w

  where w  is the normalized weight vectors (
�

W0  and  
�

W1). Using the training 

set, the goal is to minimize the value of w  so that you can get the maximum 

separability between the classes. Once this is done, you will be able to get the 

values of 
�

W0, 
�

W1, and b. 

 Finding the margin is a  Constrained Optimization  problem, which can be solved 

using the  Larange Multipliers  technique. It is beyond the scope of this book to 

discuss how to fi nd the margin based on the dataset, but suffi ce it to say that 

we will make use of the Scikit-learn library to fi nd them.  

  Using Scikit-learn for SVM 
 Now let ’ s work on an example to see how SVM works and how to implement it 

using Scikit-learn. For this example, we have a fi le named  svm.csv   containing 

the following data:

    x1,x2,r
  0,0,A  
  1,1,A  
  2,3,B  
  2,0,A  
  3,4,B  

    The fi rst thing that we will do is to plot the points using Seaborn:

    %matplotlib inline  
  import pandas as pd  
  import numpy as np  
  import seaborn as sns; sns.set(font_scale=1.2)  
  import matplotlib.pyplot as plt  

   data = pd.read_csv('svm.csv')  
  sns.lmplot('x1', 'x2',
             data=data,
             hue='r',  
             palette='Set1',
             fit_reg=False,
             scatter_kws={"s": 50});
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    Figure   8.7   shows the points plotted using Seaborn. 

      Using the data points that we have previously loaded, now let ’ s use Scikit-

learn ’ s   svm  module ’ s   SVC  class to help us derive the value for the various vari-

ables that we need to compute otherwise. The following code snippet uses the 

linear kernel  to solve the problem. The linear kernel assumes that the dataset

can be separated linearly.

    from sklearn import svm
  #---Converting the Columns as Matrices---  
  points = data[['x1','x2']].values  
  result = data['r']  

   clf = svm.SVC(kernel = 'linear')  
  clf.fit(points, result)

   print('Vector of weights (w) = ',clf.coef_[0])  
  print('b = ',clf.intercept_[0])  
  print('Indices of support vectors = ', clf.support_)
  print('Support vectors = ', clf.support_vectors_)
  print('Number of support vectors for each class = ', clf.n_support_)  
  print('Coefficients of the support vector in the decision function = ',  
         np.abs(clf.dual_coef_))  
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 Figure 8.7  :      Plotting the points using Seaborn 
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    The   SVC  stands for  Support Vector Classifi cation . The   svm  module contains a 

series of classes that implement SVM for different purposes:

 svm.LinearSVC  : Linear Support Vector Classifi cation 

 svm.LinearSVR : Linear Support Vector Regression 

 svm.NuSVC : Nu-Support Vector Classifi cation 

 svm.NuSVR  : Nu-Support Vector Regression

 svm.OneClassSVM  : Unsupervised Outlier Detection 

 svm.SVC  : C-Support Vector Classifi cation

 svm.SVR : Epsilon-Support Vector Regression

       T I P       For this chapter, our focus is on using SVM for classification, even though SVM 
can also be used for regression. 

   The preceding code snippet yields the following output:

    Vector of weights (w) =  [0.4 0.8]  
  b =  -2.2
  Indices of support vectors =  [1 2]
  Support vectors =  [[1. 1.]  
   [2. 3.]]
  Number of support vectors for each class =  [1 1]
  Coefficients of the support vector in the decision function =  [[0.4 0.4]]  

    As you can see, the vector of weights has been found to be [0.4 0.8], meaning 

that  
�

W0 is now 0.4 and  
�

W1 is now 0.8. The value of b is –2.2, and there are two

support vectors. The index of the support vectors is 1 and 2, meaning that the 

points are the ones in bold:

    x1  x2  r
  0   0   0  A  
1   1   1  A
2   2   3  B
  3   2   0  A  
  4   3   4  B

    Figure   8.8   shows the relationship between the various variables in the for-

mula and the variables in the code snippet.

g(x) = w→ww0x1 + w→ww1x2 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.intercept_[0]

 Figure 8.8  :      Relationships between the variables in the formula and the variables in the code snippet
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        Plotting the Hyperplane and the Margins 
 With the values of the variables all obtained, it is now time to plot the hyper-

plane and its two accompanying margins. Do you remember the formula for 

the hyperplane? It is as follows:

    g x W W b,X X

� �
0 11 2

  To plot the hyperplane, set 
� �
W W bX X0 11 2

 to 0, like this: 
� �
W W bX X0 11 2

0

  In order to plot the hyperplane (which is a straight line in this case), we need 

two points: one on the x-axis and one on the y-axis.

 Using the preceding formula, when x1 0, we can solve for x2  as follows: 
�
W0 (0) +   

�
W1X2  + b = 0�

W1X2  = -b  
  x  2  = -b/  

�
W1

    When x2  = 0, we can solve for x 1  as follows:
�
W0X1  +   

�
W1 (0) + b = 0�

W0X1  = -b  
  x  1   = -b/

�
W0

    The point   (0,-b/
�
W1)  is the  y-intercept   of the straight line. Figure   8.9   shows the

two points on the two axes. 

      Once the points on each axis are found, you can now calculate the slope  as

follows:

    Slope = (-b/
�
W1 ) / (b/  

�
W0 )  

  Slope = -(
�
W0 /  

�
W1 )  

x1

x2

(0, –b/w→1)

(–b/w→0,0)

      The two intercepts for the hyperplane 
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    With the slope and y-intercept of the line found, you can now go ahead and 

plot the hyperplane. The following code snippet does just that:

    #---w is the vector of weights---  
  w = clf.coef_[0]  

   #---find the slope of the hyperplane---
  slope = -w[0] / w[1]  

   b = clf.intercept_[0]

   #---find the coordinates for the hyperplane---  
  xx = np.linspace(0, 4)
  yy = slope * xx - (b / w[1])  

   #---plot the margins---
  s = clf.support_vectors_[0]    #---first support vector---  
  yy_down = slope * xx + (s[1] - slope * s[0])  

   s = clf.support_vectors_[-1]   #---last support vector---  
  yy_up   = slope * xx + (s[1] - slope * s[0])  

   #---plot the points---
  sns.lmplot('x1', 'x2', data=data, hue='r', palette='Set1', 
fit_reg=False, scatter_kws={"s": 70}) 

   #---plot the hyperplane---
  plt.plot(xx, yy, linewidth=2, color='green');  

   #---plot the 2 margins---
  plt.plot(xx, yy_down, 'k--')  
  plt.plot(xx, yy_up, 'k--')

    Figure   8.10   shows the hyperplane and the two margins.

        Making Predictions
 Remember, the goal of SVM is to separate the points into two or more classes, 

so that you can use it to predict the classes of future points. Having trained your 

model using SVM, you can now perform some predictions using the model.

 The following code snippet uses the model that you have trained to perform 

some predictions:

    print(clf.predict([[3,3]])[0])  # 'B'
  print(clf.predict([[4,0]])[0])  # 'A'
  print(clf.predict([[2,2]])[0])  # 'B'
  print(clf.predict([[1,2]])[0])  # 'A'

    Check the points against the chart shown in Figure   8.10   and see if it makes 

sense to you.
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  Kernel Trick 

 Sometimes, the points in a dataset are not always linearly separable. Consider 

the points shown in Figure   8.11  .
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 Figure 8.11  :      A scatter plot of two groups of points distributed in circular fashion 
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 Figure 8.10  :      The hyperplane and the two margins 
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      You can see that it is not possible to draw a straight line to separate the two 

sets of points. With some manipulation, however, you can make this set of points 

linearly separable. This technique is known as the kernel trick . The kernel trick is k
a technique in machine learning that transforms data into a higher dimension 

space so that, after the transformation, it has a clear dividing margin between 

classes of data. 

  Adding a Third Dimension 
 To do so, we can add a third dimension, say the z-axis, and defi ne z to be: 

     z x y2 2

  Once we plot the points using a 3D chart, the points are now linearly sepa-

rable. It is diffi cult to visualize this unless you plot the points out. The following 

code snippet does just that:

    %matplotlib inline  

   from mpl_toolkits.mplot3d import Axes3D
  import matplotlib.pyplot as plt  
  import numpy as np  
  from sklearn.datasets import make_circles  

   #---X is features and c is the class labels---  
  X, c = make_circles(n_samples=500, noise=0.09)  

   rgb = np.array(['r', 'g'])
  plt.scatter(X[:, 0], X[:, 1], color=rgb[c])  
  plt.show()

   fig = plt.figure(figsize=(18,15))  
  ax = fig.add_subplot(111, projection='3d')  
  z = X[:,0]**2 + X[:,1]**2
  ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])  
  plt.xlabel("x-axis")
  plt.ylabel("y-axis")
  plt.show()

    We fi rst create two sets of random points (a total of 500 points) distributed 

in circular fashion using the   make_circles()  function. We then plot them out 

on a 2D chart (as what was shown in Figure   8.11  ). We then add the third axis, 

the z-axis, and plot the chart in 3D (see Figure   8.12  ). 
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             T I P       If you run the preceding code in Terminal (just remove the   %matplotlib 
inline   statement at the top of the code snippet) using the   python  command, you
will be able to rotate and interact with the chart. Figure   8.13   shows the different per-
spectives of the 3D chart.
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 Figure 8.12  :      Plotting the points in the three dimensions 
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 Figure 8.13  :      The various perspectives on the same dataset in 3D
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          Plotting the 3D Hyperplane
 With the points plotted in a 3D chart, let ’ s now train the model using the third 

dimension:

    #---combine X (x-axis,y-axis) and z into single ndarray---  
  features = np.concatenate((X,z.reshape(-1,1)), axis=1)  

   #---use SVM for training---  
  from sklearn import svm

   clf = svm.SVC(kernel = 'linear')  
  clf.fit(features, c)  

    First, we combined the three axes into a single  ndarray   using the   np.concat-

enate()  function. We then trained the model as usual. For a linearly-separable

set of points in two dimensions, the formula for the hyperplane is as follows:

    g(x) = 
�
W0X1  + 

�
W1X2  + b  

    For the set of points now in three dimensions, the formula now becomes the 

following:

    g(x) = 
�
W0X1  + 

�
W1X2  +   

�
W2X3  + b  

    In particular,  
�

W2 is now represented by   clf.coef_[0][2] , as shown in Figure   8.14  .      

 The next step is to draw the hyperplane in 3D. In order to do that, you need 

to fi nd the value of   x3 , which can be derived, as shown in Figure   8.15  . 

g(x) = w→ww0x1 + w→ww1x2 + w→ww2x3 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.coef_[0][2]

clf.intercept_[0]

 Figure 8.14  :      The formula for the hyperplane in 3D and its corresponding variables in the
code snippet

w→ww0x1 + w→ww1x2 + w→ww2x3 + b = 0

w→ww2x3 = –w→ww0x1 – w→ww1x2 – b

x3 = –w→ww0x1 – w→ww1x2 – b

w→ww2

 Figure 8.15  :      Formula for finding the hyperplane in 3D
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      This can be expressed in code as follows:

    x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1] * y) / 
                                 clf.coef_[0][2] 

    To plot the hyperplane in 3D, use the   plot_surface()  function:

    tmp = np.linspace(-1.5,1.5,100)  
  x,y = np.meshgrid(tmp,tmp)

   ax.plot_surface(x, y, x3(x,y))  
  plt.show()

    The entire code snippet is as follows:

    from mpl_toolkits.mplot3d import Axes3D
  import matplotlib.pyplot as plt  
  import numpy as np  
  from sklearn.datasets import make_circles  

   #---X is features and c is the class labels---  
  X, c = make_circles(n_samples=500, noise=0.09)  
  z = X[:,0]**2 + X[:,1]**2

   rgb = np.array(['r', 'g'])

   fig = plt.figure(figsize=(18,15))  
  ax = fig.add_subplot(111, projection='3d')  
  ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])  
  plt.xlabel("x-axis")
  plt.ylabel("y-axis")
#   plt.show()

#---combine X (x-axis,y-axis) and z into single ndarray---
features = np.concatenate((X,z.reshape(-1,1)), axis=1)

#---use SVM for training---
from sklearn import svm

clf = svm.SVC(kernel =  ' linear ' )
clf.fit(features, c)
x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1] 
                   * y) / clf.coef_[0][2]
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tmp = np.linspace(-1.5,1.5,100)
x,y = np.meshgrid(tmp,tmp)

ax.plot_surface(x, y, x3(x,y))
plt.show()

    Figure   8.16   shows the hyperplane, as well as the points, plotted in 3D. 

         Types of Kernels 

 Up to this point, we only discussed one type of SVM—linear SVM. As the name 

implies, linear SVM uses a straight line to separate the points. In the previous sec-

tion, you also learned about the use of kernel tricks to separate two sets of data that 

are distributed in a circular fashion and then used linear SVM to separate them. 

 Sometimes, not all points can be separated linearly, nor can they be separated 

using the kernel tricks that you observed in the previous section. For this type 

of data, you need to “bend” the lines to separate them. In machine learning, 

kernels  are functions that transform your data from nonlinear spaces to linear 

ones (see Figure   8.17  ).

      To understand how kernels work, let ’ s use the Iris dataset as an example. 

The following code snippet loads the Iris dataset and prints out the features, 

target, and target names:

    %matplotlib inline  
  import pandas as pd  
  import numpy as np  
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 Figure 8.16  :      The hyperplane in 3D cutting through the two sets of points
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   from sklearn import svm, datasets  
  import matplotlib.pyplot as plt  

   iris = datasets.load_iris()  
  print(iris.data[0:5])      # print first 5 rows  
  print(iris.feature_names)  # ['sepal length (cm)', 'sepal width (cm)',  
                             #  'petal length (cm)', 'petal width (cm)']  
  print(iris.target[0:5])    # print first 5 rows  
  print(iris.target_names)   # ['setosa' 'versicolor' 'virginica']

    To illustrate, we will only use the fi rst two features of the Iris dataset:

    X = iris.data[:, :2]       #  take the first two features  
  y = iris.target  

    We will plot the points using a scatter plot (see Figure   8.18  ):

    #---plot the points---
  colors = ['red', 'green', 'blue']  
  for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
      plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

   plt.xlabel('Sepal length')
  plt.ylabel('Sepal width')
  plt.legend(loc='best', shadow=False, scatterpoints=1)

   plt.title('Scatter plot of Sepal width against Sepal length')  
  plt.show()

         Next, we will use the SVC class with the linear kernel:

    C = 1  # SVM regularization parameter
  clf = svm.SVC(kernel='linear', C=C).fit(X, y)  
  title = 'SVC with linear kernel'  
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 Figure 8.17  :      A kernel function transforms your data from nonlinear spaces to linear ones 
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         T I P       Notice that this time around, we have a new parameter C. We will discuss this 
in a moment. 

   Instead of drawing lines to separate the three groups of Iris fl owers, this time 

we will paint the groups in colors using the   contourf()   function:

    #---min and max for the first feature---
  x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

   #---min and max for the second feature---  
  y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

   #---step size in the mesh---  
  h = (x_max / x_min)/100

   #---make predictions for each of the points in xx,yy---  
  xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                       np.arange(y_min, y_max, h))

   Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])  

   #---draw the result using a color plot---  
  Z = Z.reshape(xx.shape)
  plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)  

   #---plot the training points---  
  colors = ['red', 'green', 'blue']  
  for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
      plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)
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 Figure 8.18  :      Scatter plot of the Iris dataset ’ s first two features 
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   plt.xlabel('Sepal length')
  plt.ylabel('Sepal width')
  plt.title(title)  
  plt.legend(loc='best', shadow=False, scatterpoints=1)

    Figure   8.19   shows the scatter plots as well as the groups determined by the 

SVM linear kernel. 

      Once the training is done, we will perform some predictions:

    predictions = clf.predict(X)  
  print(np.unique(predictions, return_counts=True))

    The preceding code snippet returns the following:

    (array([0, 1, 2]), array([50, 53, 47]))

    This means that after the feeding the model with the Iris dataset, 50 are 

classifi ed as “setosa,” 53 are classifi ed as “versicolor,” and 47 are classifi ed as 

“virginica.” 

  C 
 In the previous section, you saw the use of the C parameter:

    C = 1  
  clf = svm.SVC(kernel='linear',   C=C  ).fit(X, y)
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    C is known as the penalty parameter of the error term  . It controls the tradeoff 

between the smooth decision boundary and classifying the training points cor-

rectly. For example, if the value of C is high, then the SVM algorithm will seek 

to ensure that all points are classifi ed correctly. The downside to this is that it 

may result in a narrower margin, as shown in Figure   8.20  . 

      In contrast, a lower C will aim for the widest margin possible, but it will result 

in some points being classifi ed incorrectly (see Figure   8.21  ). 

       Figure   8.22   shows the effects of varying the value of C when applying the 

SVM linear kernel algorithm. The result of the classification appears at 

the  bottom of each chart.

More concerned about getting the points correctly classified
(prioritizes making lesser mistakes)

High C

 Figure 8.20  :      A high C focuses more on getting the points correctly classified

More concerned about maximizing the margin
(prioritizes simplicity)

Low C

 Figure 8.21  :      A low C aims for the widest margin, but may classify some points incorrectly
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      Note that when C is 1 or 10 10 , there isn ’ t too much difference among the 

classifi cation results. However, when C is small (10–10 ), you can see that a number

of points (belonging to “versicolor” and “virginica”) are now misclassifi ed as 

“setosa.”

       T I P       In short, a low C makes the decision surface smooth while trying to classify 
most  points, while a high C tries to classify  t all  of the points correctly.l

     Radial Basis Function (RBF) Kernel
 Besides the linear kernel that we have seen so far, there are some commonly 

used nonlinear kernels:

■ Radial Basis function (RBF), also known as  ) Gaussian Kernel

■  Polynomial
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 Figure 8.22  :      Using SVM with varying values of C
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 The fi rst, RBF, gives value to each point based on its distance from the origin 

or a fi xed  center, commonly on a Euclidean space. Let ’ s use the same example

that we used in the previous section, but this time modify the kernel to use   rbf :

    C = 1  
  clf = svm.SVC(kernel= ' rbf '   , gamma='auto', C=C).fit(X, y)  
  title = 'SVC with RBF kernel'  

    Figure   8.23   shows the same sample trained using the RBF kernel.

        Gamma
 If you look at the code snippet carefully, you will discover a new parame-

ter—  gamma .  Gamma  defi nes how far the infl uence of a single training example

reaches. Consider the set of points shown in Figure   8.24  . There are two classes 

of points—x ’ s and o ’ s. 

      A low Gamma value indicates that every point has a far reach (see Figure   8.25  ). 

      On the other hand, a high Gamma means that the points closest to the decision 

boundary have a close reach. The higher the value of Gamma, the more it will 

try to fi t the training dataset exactly, resulting in overfi tting (see Figure   8.26  ). 

      Figure   8.27   shows the classifi cation of the points using RBF, with varying 

values of C and Gamma.

      Note that if Gamma is high (10), overfi tting occurs. You can also see from this 

fi gure that the value of C controls the smoothness of the curve.
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 Figure 8.23  :      The Iris dataset trained using the RBF kernel
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       T I P       To summarize, C controls the smoothness of the boundary and Gamma deter-
mines if the points are overfitted.

     Polynomial Kernel
 Another type of kernel is called the  polynomial kernel  . A polynomial kernel of 

degree 1 is similar to that of the linear kernel. Higher-degree polynomial kernels 

afford a more fl exible decision boundary. The following code snippet shows the 

Iris dataset trained using the polynomial kernel with degree 4:

    C = 1  # SVM regularization parameter
  clf = svm.SVC(kernel='poly', degree=4, C=C, gamma='auto').fit(X, y)
  title = 'SVC with polynomial (degree 4) kernel'

    Figure   8.28   shows the dataset separated with polynomial kernels of degree 

1 to 4. 
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         Using SVM for Real-Life Problems 

 We will end this chapter by applying SVM to a common problem in our daily lives. 

Consider the following dataset (saved in a fi le named   house_sizes_prices_svm

.csv  ) containing the size of houses and their asking prices (in thousands) for v

a particular area:

    size,price,sold  
  550,50,y
  1000,100,y
  1200,123,y
  1500,350,n
  3000,200,y
  2500,300,y
  750, 45,y
  1500,280,n
  780,400,n
  1200, 450,n
  2750, 500,n

    The third column indicates if the house was sold. Using this dataset, you want 

to know if a house with a specifi c asking price would be able to sell. 
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Figure 8.28  :      The classification of the Iris dataset using polynomial kernel of varying degrees
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 First, let ’ s plot out the points:

    %matplotlib inline  

   import pandas as pd  
  import numpy as np  
  from sklearn import svm
  import matplotlib.pyplot as plt  
  import seaborn as sns; sns.set(font_scale=1.2)  

   data = pd.read_csv('house_sizes_prices_svm.csv')

   sns.lmplot('size', 'price',  
             data=data,
             hue='sold',
             palette='Set2',
             fit_reg=False,
             scatter_kws={"s": 50});  

    Figure   8.29   shows the points plotted as a scatter plot. 

      Visually, you can see that this is a problem that can be solved with SVM ’ s 

linear kernel:

    X = data[['size','price']].values  
  y = np.where(data['sold']=='y', 1, 0) #--1 for Y and 0 for N---
  model = svm.SVC(kernel='linear').fit(X, y)  
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 Figure 8.29  :      Plotting the points on a scatter plot 
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    With the trained model, you can now perform predictions and paint the two 

classes:

    #---min and max for the first feature---
  x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

   #---min and max for the second feature---  
  y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

   #---step size in the mesh---  
  h = (x_max / x_min) / 20

   #---make predictions for each of the points in xx,yy---  
  xx, yy = np.meshgrid(np.arange(x_min, x_max, h),  
                       np.arange(y_min, y_max, h))  

   Z = model.predict(np.c_[xx.ravel(), yy.ravel()])  

   #---draw the result using a color plot---  
  Z = Z.reshape(xx.shape)
  plt.contourf(xx, yy, Z, cmap=plt.cm.Blues, alpha=0.3)

   plt.xlabel('Size of house')  
  plt.ylabel('Asking price (1000s)')  
  plt.title("Size of Houses and Their Asking Prices")

    Figure   8.30   shows the points and the classes to which they belong.
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 Figure 8.30  :      Separating the points into two classes 
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      You can now try to predict if a house of a certain size with a specifi c selling 

price will be able to sell:

    def will_it_sell(size, price):  
      if(model.predict([[size, price]]))==0:  
          print('Will not sell!')  
      else:
          print('Will sell!')  

   #---do some prediction---
  will_it_sell(2500, 400)  # Will not sell!  
  will_it_sell(2500, 200)  # Will sell!

      Summary

 In this chapter, you learned about how Support Vector Machines help in 

classifi cation problems. You learned about the formula for fi nding the hyperplane, 

as well as the two accompanying margins. Fortunately, Scikit-learn provides 

the classes needed for training models using SVM, and with the parameters 

returned, you can plot the hyperplane and margins visually so that you can 

understand how SVM works. You also learned about the various kernels that you 

can apply to your SVM algorithms so that the dataset can be separated linearly.   
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    What Is K-Nearest Neighbors? 

 Up until this point, we have discussed three supervised learning algorithms: 

linear regression, logistics regression, and support vector machines. In this 

chapter, we will dive into another supervised machine learning algorithm 

known as  K-Nearest Neighbors (KNN). )
 KNN is a relatively simple algorithm compared to the other algorithms that we 

have discussed in previous chapters. It works by comparing the query instance ’ s 

distance to the other training samples and selecting the K-nearest neighbors 

(hence its name). It then takes the majority of these K-neighbor classes to be the 

prediction of the query instance. 

 Figure   9.1   sums this up nicely. When k = 3, the closest three neighbors of 

the circle are the two squares and the one triangle. Based on the simple rule of 

majority, the circle is classifi ed as a square. If k = 5, then the closest fi ve neigh-

bors are the two squares and the three triangles. Hence, the circle is classifi ed 

as a triangle.       

     Supervised Learning—
Classification Using KK-Nearest

Neighbors (KNN)ors (KNN)
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       T I P       KNN is also sometimes used for regression in addition to classification.
For example, it can be used to calculate the average of the numerical target of the
K-nearest neighbors. For this chapter, however, we are focusing solely on its more
common use as a classification algorithm.

  Implementing KNN in Python
 Now that you have seen how KNN works, let ’ s try to implement KNN from 

scratch using Python. As usual, fi rst let ’ s import the modules that we ’ ll need:

    import pandas as pd  
  import numpy as np  
  import operator  
  import seaborn as sns
  import matplotlib.pyplot as plt     

  Plotting the Points

 For this example, you will use a fi le named knn.csv  containing the following data:v

    x,y,c  
  1,1,A  
  2,2,A  
  4,3,B  
  3,3,A  
  3,5,B  
  5,6,B  
  5,4,B     

Deemed to be square Deemed to be triangle

k=3

gleeeeeeeee

k=5

 Figure 9.1  :      The classification of a point depends on the majority of its neighbors 
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 As we have done in the previous chapters, a good way is to plot the points 

using Seaborn:

    data = pd.read_csv("knn.csv")  
  sns.lmplot('x', 'y', data=data,  
             hue='c', palette='Set1',
             fit_reg=False, scatter_kws={"s": 70})
  plt.show()

 Figure   9.2   shows the distribution of the various points. Points that belong to 

class A are displayed in red while those belonging to class B are displayed in blue.       

  Calculating the Distance Between the Points 

 In order to fi nd the nearest neighbor of a given point, you need to calculate the 

Euclidean distance between two points.

       T I P       In geometry, Euclidean space encompasses the two-dimensional Euclidean 
plane, the three-dimensional space of Euclidean geometry, and similar spaces of 
higher dimension.

 Given two points, p p p , ,pn1 2,  and  q q q , ,qn1 2 , the distance between 

p and q is given by the following formula:
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 Figure 9.2  :      Plotting the points visually
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 Based on this formula, you can now defi ne a function named  euclidean _

distance()  as follows:

    #---to calculate the distance between two points---
  def euclidean_distance(pt1, pt2, dimension):  
      distance = 0  
      for x in range(dimension):  
          distance += np.square(pt1[x] - pt2[x])  
      return np.sqrt(distance)     

 The Euclidean _ distance()  function can fi nd the distance between two 

points in any dimension. For this example, the points that we are dealing with 

are in 2D.

  Implementing KNN 

 Next, defi ne a function named knn() , which takes in the training points, the

test point, and the value of k:

    #---our own KNN model---
  def knn(training_points, test_point, k):
      distances = {}  

       #---the number of axes we are dealing with---
      dimension = test_point.shape[1]

       #--calculating euclidean distance between each
      # point in the training data and test data  
      for x in range(len(training_points)):  
          dist = euclidean_distance(test_point, training_points.iloc[x], 
                                  dimension)  
          #---record the distance for each training points---  
          distances[x] = dist[0]  

       #---sort the distances---  
      sorted_d = sorted(distances.items(), key=operator.itemgetter(1))  

       #---to store the neighbors---  
      neighbors = []  

       #---extract the top k neighbors---
      for x in range(k):
          neighbors.append(sorted_d[x][0])

       #---for each neighbor found, find out its class---  
      class_counter = {}
      for x in range(len(neighbors)):
          #---find out the class for that particular point---  
          cls = training_points.iloc[neighbors[x]][-1]
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          if cls in class_counter:  
              class_counter[cls] += 1
          else:
              class_counter[cls] = 1

       #---sort the class_counter in descending order---
      sorted_counter = sorted(class_counter.items(),
                            key=operator.itemgetter(1),  
                              reverse=True)  

       #---return the class with the most count, as well as the 
    #neighbors found--- 
      return(sorted_counter[0][0], neighbors)     

 The function returns the class to which the test point belongs, as well as the 

indices of all the nearest k neighbors.  

  Making Predictions 

 With the knn()  function defi ned, you can now make some predictions:

    #---test point---  
  test_set = [[3,3.9]]  
  test = pd.DataFrame(test_set)  
  cls,neighbors = knn(data, test, 5)
  print("Predicted Class: " + cls)     

 The preceding code snippet will print out the following output:

    Predicted Class: B      

  Visualizing Different Values of K 

 It is useful to be able to visualize the effect of applying various values of k. The 

following code snippet draws a series of concentric circles around the test point 

based on the values of k, which range from 7 to 1, with intervals of –2:

    #---generate the color map for the scatter plot---
  #---if column 'c' is A, then use Red, else use Blue---  
  colors = ['r' if i == 'A' else 'b'  for i in data['c']]  
  ax = data.plot(kind='scatter', x='x', y='y', c = colors)  
  plt.xlim(0,7)
  plt.ylim(0,7)

   #---plot the test point---
  plt.plot(test_set[0][0],test_set[0][1], "yo", markersize='9')

   for k in range(7,0,-2):
      cls,neighbors = knn(data, test, k)
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      print("============")
      print("k = ", k)
      print("Class", cls)
      print("Neighbors")
      print(data.iloc[neighbors])  

       furthest_point = data.iloc[neighbors].tail(1)

       #---draw a circle connecting the test point 
    # and the furthest point--- 
      radius = euclidean_distance(test, furthest_point.iloc[0], 2)

       #---display the circle in red if classification is A,  
      # else display circle in blue---
      c = 'r' if cls=='A' else 'b'  
      circle = plt.Circle((test_set[0][0], test_set[0][1]),  
                          radius, color=c, alpha=0.3)
      ax.add_patch(circle)

   plt.gca().set_aspect('equal', adjustable='box')  
  plt.show()

 The preceding code snippet prints out the following output:

    ============
  k =  7  
  Class B  
  Neighbors
     x  y  c
  3  3  3  A  
  4  3  5  B
  2  4  3  B
  6  5  4  B
  1  2  2  A  
  5  5  6  B
  0  1  1  A  
  ============
  k =  5  
  Class B  
  Neighbors
     x  y  c
  3  3  3  A  
  4  3  5  B
  2  4  3  B
  6  5  4  B
  1  2  2  A  
  ============
  k =  3  
  Class B  
  Neighbors
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     x  y  c
  3  3  3  A  
  4  3  5  B
  2  4  3  B
  ============
  k =  1
  Class A  
  Neighbors
     x  y  c
  3  3  3  A     

 Figure   9.3   shows the series of circles centered around the test point, with 

varying values of k. The innermost circle is for k = 1, with the next outer ring 

for k = 3, and so on. As you can see, if k = 1, the circle is red, meaning that the 

yellow point has been classifi ed as class A. If the circle is blue, this means that 

the yellow point has been classifi ed as class B. This is evident in the outer three 

circles.        

  Using Scikit-Learn ’ s KNeighborsClassifier Class for KNN 
 Now that you have seen how KNN works and how it can be implemented man-

ually in Python, let ’ s use the implementation provided by Scikit-learn.

0 1

1

0

2

3

4

y

5

6

7

2 3
x

4 5 76

 Figure 9.3  :      The classification of the yellow point based on the different values of k 
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 The following code snippet loads the Iris dataset and plots it out using a 

scatter plot:

    %matplotlib inline  
  import pandas as pd  
  import numpy as np  
  import matplotlib.patches as mpatches
  from sklearn import svm, datasets
  import matplotlib.pyplot as plt  

   iris = datasets.load_iris()  

   X = iris.data[:, :2]       #  take the first two features  
  y = iris.target  

   #---plot the points---
  colors = ['red', 'green', 'blue']
  for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
      plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

   plt.xlabel('Sepal length')
  plt.ylabel('Sepal width')
  plt.legend(loc='best', shadow=False, scatterpoints=1)

   plt.title('Scatter plot of Sepal width against Sepal length')  
  plt.show()

 Figure   9.4   shows the scatter plot of the Sepal width against the Sepal length.      
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 Figure 9.4  :      Plotting out the Sepal width against the Sepal length in a scatter plot 
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  Exploring Different Values of K 

 We can now use Scikit-learn ’ s KNeighborsClassifier  class to help us train a 

model on the Iris dataset using KNN. For a start, let ’ s use a k of 1:

    from sklearn.neighbors import KNeighborsClassifier

   k = 1  
  #---instantiate learning model---  
  knn = KNeighborsClassifier(n_neighbors=k)  

   #---fitting the model---
  knn.fit(X, y)

   #---min and max for the first feature---
  x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

   #---min and max for the second feature---  
  y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

   #---step size in the mesh---  
  h = (x_max / x_min)/100

   #---make predictions for each of the points in xx,yy---  
  xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                       np.arange(y_min, y_max, h))

   Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])  

   #---draw the result using a color plot---  
  Z = Z.reshape(xx.shape)
  plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)  

   #---plot the training points---  
  colors = ['red', 'green', 'blue']  
  for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
      plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

   plt.xlabel('Sepal length')
  plt.ylabel('Sepal width')
  plt.title(f'KNN (k={k})')
  plt.legend(loc='best', shadow=False, scatterpoints=1)

   predictions = knn.predict(X)  

   #--classifications based on predictions---  
  print(np.unique(predictions, return_counts=True))
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 The preceding code snippet creates a meshgrid  (a rectangular grid of values)

of points scattered across the x- and y-axes. Each point is then used for predic-

tion, and the result is drawn using a color plot. 

 Figure   9.5   shows the classifi cation boundary using a k of 1. Notice that for 

k = 1, you perform your prediction based solely on a single sample—your nearest 

neighbor. This makes your prediction very sensitive to all sorts of distortions, 

such as outliers, mislabeling, and so on. In general, setting k = 1 usually leads 

to  overfi tting , and as a result your prediction is usually not very accurate.       gg

       T I P        Overfitting  in machine learning means that the model you have trained fits
the training data too well. This happens when all of the noises and fluctuations in your
training data are picked up during the training process. In simple terms, this means 
that your model is trying very hard to fit all of your data perfectly. The key problem 
with an overfitted model is that it will not work well with new, unseen data. 

Underfitting , on the other hand, occurs when a machine learning model cannot accu-
rately capture the underlying trend of the data. Specifically, the model does not fit the
data well enough.

 Figure   9.6   shows an easy way to understand overfitting, underfitting, and a generally
good fit.
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 Figure 9.5  :      The classification boundary based on k = 1
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  For KNN, setting k to a higher value tends to make your prediction more 

robust against noise in your data. 

 Using the same code snippet, let ’ s vary the values of k. Figure   9.7   shows the 

classifi cations based on four different values of k.

 Note that as k increases, the boundary becomes smoother. But it also means 

that more points will be classifi ed incorrectly. When k increases to a large value, 

underfi tting  occurs.

 The key issue with KNN is then how do you fi nd out the ideal value of k to use?  
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 Figure 9.6  :      Understanding the concept of overfitting, underfitting, and a good fit 
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  Cross-Validation

 In the previous few chapters, you have witnessed that we split our dataset into 

two individual sets—one for training and one for testing. However, the data 

in your dataset may not be distributed evenly, and as a result your test set may 

be too simple or too hard to predict, thereby making it very diffi cult to know 

if your model works well.

 Instead of using part of the data for training and part for testing, you can split 

the data into k-folds  and train the models k  times, rotating the training and test-k
ing sets. By doing so, each data point is now being used for training and testing.

       T I P       Do not confuse the  k  in k-folds with the k k  in KNN—they are not related.   k

 Figure   9.8   shows a dataset split into fi ve folds (blocks). For the fi rst run, blocks 

1, 2, 3, and 4 will be used to train the model. Block 0 will be used to test the 

model. In the next run, blocks 0, 2, 3, and 4 will be used for training, and block 

1 will be used for testing, and so on.

 At the end of each run, the model is scored. At the end of the k-runs, the score 

is averaged. This averaged score will give you a good indication of how well 

your algorithm performs.

       T I P       The purpose of  cross-validation is not for training your model, but rather it is 
for model checking. Cross-validation is useful when you need to compare different 
machine learning algorithms to see how they perform with the given dataset. Once 
the algorithm is selected, you will use all of the data for training the model.
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 Figure 9.8  :      How cross-validation works 
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  Parameter-Tuning K 

 Now that you understand cross-validation, let ’ s use it on our Iris dataset. We will 

train the model using all of the four features, and at the same time we shall use 

cross-validation on the dataset using 10 folds. We will do this for each value of k:

    from sklearn.model_selection import cross_val_score

   #---holds the cv (cross-validates) scores---  
  cv_scores = []  

   #---use all features---
  X = iris.data[:, :4]
  y = iris.target  

   #---number of folds---
  folds = 10

   #---creating odd list of K for KNN---
  ks = list(range(1,int(len(X) * ((folds - 1)/folds))))

   #---remove all multiples of 3---  
  ks = [k for k in ks if k % 3 != 0]

   #---perform k-fold cross validation---
  for k in ks:
      knn = KNeighborsClassifier(n_neighbors=k)  

       #---performs cross-validation and returns the average accuracy---  
      scores = cross_val_score(knn, X, y, cv=folds, scoring='accuracy')  
      mean = scores.mean()
      cv_scores.append(mean)
      print(k, mean)     

 The Scikit-learn library provides the  cross _ val _ score()  function that

performs cross-validation for you automatically, and it returns the metrics that 

you want (for example, accuracy).

 When using cross-validation, be aware that at any one time, there will be ((folds-
1)/folds) * total_rows  available for training. This is because  (1/folds) * total_rows
will be used for testing. 

 For KNN, there are three rules to which you must adhere:

■   The value of k cannot exceed the number of rows for training.

■  The value of k should be an odd number (so that you can avoid situations 

where there is a tie between the classes) for a two-class problem.

■  The value of k must not be a multiple of the number of classes (to avoid 

ties, similar to the previous point).
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 Hence, the ks  list in the preceding code snippet will contain the following 

values:
    [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 
29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 
56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 
83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106,
107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127, 
128, 130, 131, 133, 134]    

 After the training, the  cv _ scores  will contain a list of accuracies based on 

the different values of k:

    1 0.96  
  2 0.9533333333333334  
  4 0.9666666666666666  
  5 0.9666666666666668  
  7 0.9666666666666668  
  8 0.9666666666666668  
  10 0.9666666666666668  
  11 0.9666666666666668  
  13 0.9800000000000001  
  14 0.9733333333333334  
 ... 
  128 0.6199999999999999
  130 0.6066666666666667
  131 0.5933333333333332
  133 0.5666666666666667
  134 0.5533333333333333

  Finding the Optimal K 

 To fi nd the optimal k, you simply fi nd the value of k that gives the highest accu-

racy. Or, in this case, you will want to fi nd the lowest  misclassifi cation error (MSE). )
 The following code snippet fi nds the MSE for each k, and then fi nds the k

with the lowest MSE. It then plots a line chart of MSE against k (see Figure   9.9  ):

    #---calculate misclassification error for each k---
  MSE = [1 - x for x in cv_scores]  

   #---determining best k (min. MSE)---
  optimal_k = ks[MSE.index(min(MSE))]
  print(f"The optimal number of neighbors is {optimal_k}")  

   #---plot misclassification error vs k---
  plt.plot(ks, MSE)  
  plt.xlabel('Number of Neighbors K')
  plt.ylabel('Misclassification Error')
  plt.show()
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 The preceding code snippet prints out the following:

    The optimal number of neighbors is 13

 Figure   9.10   shows the classifi cation when k = 13.
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 Figure 9.9  :      The chart of miscalculations for each k 
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 Figure 9.10  :      The optimal value of k at 13
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  Summary

 Of the four algorithms that we have discussed in this book, KNN is considered 

one of the most straightforward. In this chapter, you learned how KNN works 

and how to derive the optimal k that minimizes the miscalculation of errors. 

 In the next chapter, you will learn a new type of algorithm—unsupervised 

learning. You will learn how to discover structures in your data by performing 

clustering using K-Means.



C H A P T E R

221

10

    What Is Unsupervised Learning? 

 So far, all of the machine learning algorithms that you have seen are supervised 

learning. That is, the datasets have all been labeled, classifi ed, or categorized. 

Datasets that have been labeled are known as labeled data , while datasets that 

have not been labeled are known as unlabeled data . Figure   10.1   shows an example 

of labeled data. 

      Based on the size of the house and the year in which it was built, you have 

the price at which the house was sold. The selling price of the house is the  label ,l
and your machine learning model can be trained to give the estimated worth 

of the house based on its size and the year in which it was built. 

     Unsupervised Learning—
Clustering Using K-Means   K-Means   
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Sold

Label

 Figure 10.1  :      Labeled data
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Unlabeled data , on the other hand, is data without label(s). For example,

Figure   10.2   shows a dataset containing a group of people ’ s waist circumference 

and corresponding leg length. Given this set of data, you can try to cluster them 

into groups based on the waist circumference and leg length, and from there 

you can fi gure out the average dimension in each group. This would be useful 

for clothing manufacturers to tailor different sizes of clothing to fi t its customers. 

       Unsupervised Learning Using K-Means 
 Since there is no label in unlabeled data, it is thus of interest to us that we are 

able to fi nd patterns in that unlabeled data. This technique of fi nding patterns 

in unlabeled data is known as  clustering . The main aim of clustering is to segre-gg
gate groups with similar traits and assign them into groups (commonly known 

as  clusters ).s
 One of the common algorithms used for clustering is the K-Means algorithm. 

K-Means clustering is a type of unsupervised learning:

■   Used when you have unlabeled data 

■  The goal is to fi nd groups in data, with the number of groups represented 

by K   

 The goal of K-Means clustering is to achieve the following:

■   K centroids representing the center of the clusters 

■  Labels for the training data

 In the next section, you will learn how clustering using K-Means works.  

  How Clustering in K-Means Works
 Let ’ s walk through a simple example so that you can see how clustering using 

K-Means works. Suppose you have a series of unlabeled points, as shown in 

Figure   10.3  .
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 Figure 10.2  :      Unlabeled data
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      Your job is to cluster all of these points into distinct groups so that you can 

discover a pattern among them. Suppose you want to separate them into two 

groups (that is, K=2 ). The end result would look like Figure   10.4  .

      First, you will randomly put K number of centroids on the graph. In Figure   10.5  , 

since K equals 2, we will randomly put two centroids on the graph: C0  and C 1 . 

For each point on the graph, measure the distance between itself and each of the 

centroids. As shown in the fi gure, the distance (represented by  d0 ) between a  and

C0  is shorter than the distance (represented by  d1 ) between  a  and  C1 . Hence, a  is 

now classifi ed as cluster 0. Likewise, for point  b , the distance between itself and b

C1  is shorter than the distance between itself and  C0 . Hence, point  b  is classifi ed

as cluster 1. You repeat this process for all the points in the graph.

      After the fi rst round, the points would be clustered, as shown in Figure   10.6  . 

 Figure 10.3  :      A set of unlabeled data points

2 Clusters

      Clustering the points into two distinct clusters 
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      Now take the average of all of the points in each cluster and reposition 

the centroids using the newly calculated average. Figure   10.7   shows the new 

positions of the two centroids. 

      You now measure the distance between each of the old centroids and the 

new centroids (see Figure   10.8  ). If the distance is 0, that means that the centroid 

did not change position and hence the centroid is found. You repeat the entire 

process until all the centroids do not change position anymore.

Planted centroid
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Classified as
cluster 0 as

d0<d1

Classified as
cluster 1 as

d1<d0

d0
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d1
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d1
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a c1

      Measuring the distance of each point with respect to each centroid and finding
the shortest distance 

c0

c1

 Figure 10.6  :      Groupings of the points after the first round of clustering



 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 225

        Implementing K-Means in Python 
 Now that you have a clear picture of how K-Means works, it is useful to imple-

ment this using Python. You will fi rst implement K-Means using Python, and 

then see how you can use Scikit-learn ’ s implementation of K-Means in the next 

section.

 Suppose you have a fi le named  kmeans.csv  with the following content:

    x,y  
  1,1  
  2,2  

New centroids

Old centroids

c0

c0

c1

c1

 Figure 10.7  :      Repositioning the centroids by taking the average of all the points in each cluster 

c0

c0

c1

c1

 Figure 10.8  :      Measuring the distance between each centroid; if the distance is 0, the centroid 
is found



226 Chapter 106 ■ Unsupervised Learning—Clustering Using K-Means

  2,3  
  1,4  
  3,3  
  6,7  
  7,8  
  6,8  
  7,6  
  6,9  
  2,5  
  7,8  
  8,9  
  6,7  
  7,8  
  3,1  
  8,4  
  8,6  
  8,9  

    Let ’ s fi rst import all of the necessary libraries:

    %matplotlib inline  
  import numpy as np  
  import pandas as pd  
  import matplotlib.pyplot as plt  

    Then load the CSV fi le into a Pandas dataframe, and plot a scatter plot 

showing the points:

    df = pd.read_csv("kmeans.csv")  
  plt.scatter(df['x'],df['y'], c='r', s=18)  

    Figure   10.9   shows the scatter plot with the points. 
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 Figure 10.9  :      The scatter plot showing all the points 
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      You can now generate some random centroids. You also need to decide 

on the value of K. Let ’ s assume K to be 3 for now. You will learn how to  determine 

the optimal K later in this chapter. The following code snippet generates three 

random centroids and marks them on the scatter plot:

    #---let k assume a value---  
  k = 3  

   #---create a matrix containing all points---  
  X = np.array(list(zip(df['x'],df['y'])))

   #---generate k random points (centroids)---  
  Cx = np.random.randint(np.min(X[:,0]), np.max(X[:,0]), size = k)
  Cy = np.random.randint(np.min(X[:,1]), np.max(X[:,1]), size = k)

   #---represent the k centroids as a matrix---  
  C = np.array(list(zip(Cx, Cy)), dtype=np.float64)
  print(C)

   #---plot the orginal points as well as the k centroids---  
  plt.scatter(df['x'], df['y'], c='r', s=8)  
  plt.scatter(Cx, Cy, marker='*', c='g', s=160)  
  plt.xlabel("x")  
  plt.ylabel("y")  

    Figure 10.10 shows the points, as well as the centroids on the scatter plot. 
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 Figure 10.10  :      The scatter plot with the points and the three random centroids 



228 Chapter 108 ■ Unsupervised Learning—Clustering Using K-Means

      Now comes the real meat of the program. The following code snippet imple-

ments the K-Means algorithm that we discussed earlier in the “How Clustering 

in K-Means Works” section:

    from copy import deepcopy

   #---to calculate the distance between two points---
  def euclidean_distance(a, b, ax=1):
      return np.linalg.norm(a - b, axis=ax)  

   #---create a matrix of 0 with same dimension as C (centroids)---
  C_prev = np.zeros(C.shape)

   #---to store the cluster each point belongs to---
  clusters = np.zeros(len(X))  

   #---C is the random centroids and C_prev is all 0s---
  #---measure the distance between the centroids and C_prev---  
  distance_differences = euclidean_distance(C, C_prev)

   #---loop as long as there is still a difference in
  # distance between the previous and current centroids---  
  while distance_differences.any() != 0:
      #---assign each value to its closest cluster---
      for i in range(len(X)):  
          distances = euclidean_distance(X[i], C)  

           #---returns the indices of the minimum values along an axis---  
          cluster = np.argmin(distances)
          clusters[i] = cluster  

       #---store the prev centroids---
      C_prev = deepcopy(C)

       #---find the new centroids by taking the average value---  
      for i in range(k):  #---k is the number of clusters---  
          #---take all the points in cluster i---  
          points = [X[j] for j in range(len(X)) if clusters[j] == i]
          if len(points) != 0:  
              C[i] = np.mean(points, axis=0)  

       #---find the distances between the old centroids and the new
centroids--- 
      distance_differences = euclidean_distance(C, C_prev)  

   #---plot the scatter plot---  
  colors = ['b','r','y','g','c','m']  
  for i in range(k):  
      points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])  
      if len(points) > 0:
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          plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])
      else:
          # this means that one of the clusters has no points  
          print("Plesae regenerate your centroids again.")  

       plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])  
      plt.scatter(C[:, 0], C[:, 1], marker='*', s=100, c='black')

    With the preceding code snippet, the centroids would now be computed and 

displayed on the scatter plot, as shown in Figure   10.11  .

             T I P       Due to the locations of the points, it is possible that the centroids you 
obtained may not be identical to the one shown in Figure   10.11  .

 Also, there may be cases where after the clustering, there are no points belonging to a
particular centroid. In this case, you have to regenerate the centroid and perform the 
clustering again. 

   You can now also print out the clusters to which each point belongs:

    for i, cluster in enumerate(clusters):
      print("Point " + str(X[i]),  
            "Cluster " + str(int(cluster)))  

    You should be able to see the following output:

    Point [1 1] Cluster 2
  Point [2 2] Cluster 2
  Point [2 3] Cluster 2
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 Figure 10.11  :      The scatter plot showing the clustering of the points as well as the new-
found centroids 
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  Point [1 4] Cluster 2
  Point [3 3] Cluster 2
  Point [6 7] Cluster 1
  Point [7 8] Cluster 1
  Point [6 8] Cluster 1
  Point [7 6] Cluster 0
  Point [6 9] Cluster 1
  Point [2 5] Cluster 2
  Point [7 8] Cluster 1
  Point [8 9] Cluster 1
  Point [6 7] Cluster 1
  Point [7 8] Cluster 1
  Point [3 1] Cluster 2
  Point [8 4] Cluster 0
  Point [8 6] Cluster 0
  Point [8 9] Cluster 1

         T I P       The cluster numbers that you will see may not be the same as the ones shown 
in the preceding code.

   More importantly, you want to know the location of each centroid. You can 

do so via printing out the value of  C :

    print(C)
  '''  
  [[ 7.66666667  5.33333333]
   [ 6.77777778  8.11111111]
   [ 2.          2.71428571]]  
  '''  

      Using K-Means in Scikit-learn
 Rather than implementing your own K-Means algorithm, you can use the KMeans

class in Scikit-learn to do clustering. Using the same dataset that you used in the 

previous section, the following code snippet creates an instance of the KMeans

class with a cluster size of 3:

    #---using sci-kit-learn---
  from sklearn.cluster import KMeans
  k=3  
  kmeans = KMeans(n_clusters=k)  

    You can now train the model using the fit()  function:

    kmeans = kmeans.fit(X)
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    To assign a label to all of the points, use the predict()  function:

    labels = kmeans.predict(X)

    To get the centroids, use the cluster_centers  property:

    centroids = kmeans.cluster_centers_

    Let ’ s print the clusters label and centroids and see what you got:

    print(labels)
  print(centroids)  

    You should see the following:

    [1 1 1 1 1 0 0 0 2 0 1 0 0 0 0 1 2 2 0]
  [[ 6.77777778  8.11111111]
   [ 2.          2.71428571]
   [ 7.66666667  5.33333333]]  

         T I P       Due to the locations of the points, it is possible that the centroids you 
obtained may not be identical to the one shown here in the text. 

   Let ’ s now plot the points and centroids on a scatter plot:

    #---map the labels to colors---  
  c = ['b','r','y','g','c','m']  
  colors = [c[i] for i in labels]  

   plt.scatter(df['x'],df['y'], c=colors, s=18)  
  plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')  

    Figure   10.12   shows the result. 

      Using the model that you have just trained, you can use it to predict the cluster 

to which a point will belong using the  predict()  function:

    #---making predictions---
  cluster = kmeans.predict([[3,4]])[0]
  print(c[cluster])  # r

   cluster = kmeans.predict([[7,5]])[0]
  print(c[cluster])  # y

    The preceding statements print the cluster in which a point is located using 

its color:  r  for red and y   for yellow.
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       T I P       You may get different colors for the predicted points, which is perfectly fine. 

     Evaluating Cluster Size Using the Silhouette Coefficient
 So far, we have been setting K to a fi xed value of 3. How do you ensure that the 

value of K that you have set is the optimal number for the number of clusters? 

With a small dataset, it is easy to deduce the value of K by visual inspection; 

however, with a large dataset, it will be a more challenging task. Also, regardless 

of the dataset size, you will need a scientifi c way to prove that the value of K 

you have selected is the optimal one. To do that, you will use the Silhouette 

Coeffi cient. 

 The Silhouette Coeffi cient  is a measure of the quality of clustering that you have 

achieved. It measures cluster cohesion, which is the space between clusters. The 

range of values for the Silhouette Coeffi cient is between –1 and 1.

 The Silhouette Coeffi cient formula is given as:

1 – /a b

  where:

■ a  is the average distance of a point to all other points in the same cluster;

if a  is small, cluster cohesion is good, as all of the points are close together 

■ b  is the  b lowest average distance of a point to all other points in the closest 

cluster; if b  is large, cluster separation is good, as the nearest cluster is far b

apart   

 If  a  is small and  b  is large, the Silhouette Coeffi cient is high. The value of kb

that yields the highest Silhouette Coeffi cient is known as the  optimal K. K
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 Figure 10.12  :      Using the KMeans class in Scikit-learn to do the clustering
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  Calculating the Silhouette Coefficient 

 Let ’ s walk through an example of how to calculate the Silhouette Coeffi cient of 

a point. Consider the seven points and the clusters ( K=3 ) to which they belong, 

as shown in Figure   10.13  . 

      Let ’ s calculate the Silhouette Coeffi cient of a particular point and walk through 

the math. Consider the point (10,10) in cluster 0:

■   Calculate its average distance to all other points in the same cluster:

■   (10,10) – (12,12) = √8 = 2.828

■  (10,10) – (10,13) = √9 = 3 

■  Average: (2.828 + 3.0) / 2 = 2.914

■  Calculate its average distance to all other points in cluster 1:

■   (10,10) – (25,20) = √325 = 18.028 

■  (10,10) – (26,21) = √377 = 19.416 

■  Average: (18.028 + 19.416) / 2 = 18.722

■  Calculate its average distance to all other points in cluster 2:

■   (10,10) – (25,5) = √250 = 15.811

■  (10,10) – (25,4) = √261= 16.155 

■  Average: (15.811 + 16.156) / 2 = 15.983   

■  Minimum average distance from (10,10) to all the points in cluster 1 and 

2 is min(18.722,15.983)  = 15.983

Cluster 1

Cluster 0

Cluster 2(12,12)

(10,13)

(10,10)

(25,20)

(25,5)

(25,4)

(26,21)

 Figure 10.13  :      The set of points and their positions
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 Therefore, the Silhouette Coeffi cient of point (10,10) is 1 – (a/b) = 1 – (2.914/15.983) 

= 0.817681—and this is just for one point in the dataset. You need to calculate 

the Silhouette Coeffi cients of the other six points in the dataset. Fortunately, 

Scikit-learn contains the metrics  module that automates this process. 

 Using the kmean.csv  example that you used earlier in this chapter, the fol-

lowing code snippet calculates the Silhouette Coeffi cient of all of the 19 points 

in the dataset and prints out the average of the Silhouette Coeffi cient:

    from sklearn import metrics  

   silhouette_samples = metrics.silhouette_samples(X, kmeans.labels_)
  print(silhouette_samples)

   print("Average of Silhouette Coefficients for k =", k)  
  print("============================================")
  print("Silhouette mean:", silhouette_samples.mean())

    You should see the following results:

    [ 0.67534567  0.73722797  0.73455072  0.66254937  0.6323039   0.33332111  
    0.63792468  0.58821402  0.29141777  0.59137721  0.50802377  0.63792468  
    0.52511161  0.33332111  0.63792468  0.60168807  0.51664787  0.42831295  
    0.52511161]

   Average of Silhouette Coefficients for k = 3  
  ============================================  
  Silhouette mean: 0.55780519852  

    In the preceding statements, you used the  metrics.silhouette_samples()

function to get an array of Silhouette Coeffi cients for the 19 points. You then 

called the mean()  function on the array to get the average Silhouette Coeffi -

cient. If you are just interested in the average Silhouette coeffi cient and not the 

Silhouette Coeffi cient for the individual points, you can simply call the metrics

.silhouette_score()  function, like this:

    print("Silhouette mean:", metrics.silhouette_score(X, kmeans.labels_))  
  # Silhouette mean: 0.55780519852  

      Finding the Optimal K 

 Now that you have seen how to calculate the mean Silhouette Coeffi cient for 

a dataset with K clusters, what you want to do next is to fi nd the optimal K 

that gives you the highest average Silhouette Coeffi cient. You can start with a 
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cluster size of 2, up to the cluster size of one less than the size of the dataset. 

The following code snippet does just that:

    silhouette_avgs = []  
  min_k = 2

   #---try k from 2 to maximum number of labels---
  for k in range(min_k, len(X)):  
      kmean = KMeans(n_clusters=k).fit(X)
      score = metrics.silhouette_score(X, kmean.labels_)  
      print("Silhouette Coefficients for k =", k, "is", score)  
      silhouette_avgs.append(score)  

   f, ax = plt.subplots(figsize=(7, 5))
  ax.plot(range(min_k, len(X)), silhouette_avgs)  

   plt.xlabel("Number of clusters")  
  plt.ylabel("Silhouette Coefficients")

   #---the optimal k is the one with the highest average silhouette---
  Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
  print("Optimal K is ", Optimal_K)  

    The code snippet will print out something similar to the following:

    Silhouette Coefficients for k = 2 is 0.689711206994
  Silhouette Coefficients for k = 3 is 0.55780519852
  Silhouette Coefficients for k = 4 is 0.443038181464
  Silhouette Coefficients for k = 5 is 0.442424857695
  Silhouette Coefficients for k = 6 is 0.408647742839
  Silhouette Coefficients for k = 7 is 0.393618055172
  Silhouette Coefficients for k = 8 is 0.459039364508
  Silhouette Coefficients for k = 9 is 0.447750636074
  Silhouette Coefficients for k = 10 is 0.512411340842
  Silhouette Coefficients for k = 11 is 0.469556467119
  Silhouette Coefficients for k = 12 is 0.440983139813
  Silhouette Coefficients for k = 13 is 0.425567707244
  Silhouette Coefficients for k = 14 is 0.383836485201
  Silhouette Coefficients for k = 15 is 0.368421052632
  Silhouette Coefficients for k = 16 is 0.368421052632
  Silhouette Coefficients for k = 17 is 0.368421052632
  Silhouette Coefficients for k = 18 is 0.368421052632
  Optimal K is  2  

    As you can see from the output, the optimal K is 2. Figure   10.14   shows the 

chart of the Silhouette Coeffi cients plotted against the number of clusters (k). 
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          Using K-Means to Solve Real-Life Problems 

 Suppose you are a clothing designer, and you have been tasked with designing 

a new series of Bermuda shorts. One of the design problems is that you need 

to come up with a series of sizes so that it can fi t most people. Essentially, you 

need to have a series of sizes of people with different:

■   Waist Circumference

■  Upper Leg Length   

 So, how do you fi nd the right combination of sizes? This is where the K-Means 

algorithm comes in handy. The fi rst thing you need to do is to get ahold of a 

dataset containing the measurements of a group of people (of a certain age 

range). Using this dataset, you can apply the K-Means algorithm to group these 

people into clusters based on the specifi c measurement of their body parts. Once 

the clusters are found, you would now have a very clear picture of the sizes for 

which you need to design. 

 For the dataset, you can use the Body Measurement dataset from https://

data.world/rhoyt/body-measurements . This dataset has 27 columns and 9338 

rows. Among the 27 columns, two columns are what you need:

BMXWAIST:  Waist Circumference (cm) 

BMXLEG:  Upper Leg Length (cm)   

 For this example, assume that the dataset has been saved locally with the 

fi lename BMX_G.csv. vv

0.40

0.45

0.50

Si
lh

ou
et

te
 C

oe
ffi

ci
en

ts

0.55

0.60

0.65

0.70

2 4 6 8 10
Number of clusters

12 14 16 18

 Figure 10.14  :      The chart showing the various values of K and their corresponding Silhouette
Coefficients
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  Importing the Data 
 First, import the data into a Pandas dataframe:

    %matplotlib inline  
  import numpy as np  
  import pandas as pd  

   df = pd.read_csv("BMX_G.csv")  

    Examine its shape, and you should see 9338 rows and 27 columns:

    print(df.shape)  
  # (9338, 27)

      Cleaning the Data 
 The dataset contains a number of missing values, so it is important to clean the 

data. To see how many empty fi elds each column contains, use the following 

statement:

    df.isnull().sum()  

    You should see the following:

    Unnamed: 0       0  
  seqn             0  
  bmdstats         0  
  bmxwt           95  
  bmiwt         8959  
  bmxrecum      8259  
  bmirecum      9307  
  bmxhead       9102  
  bmihead       9338  
  bmxht          723  
  bmiht         9070  
  bmxbmi         736  
  bmdbmic       5983  
bmxleg        2383
  bmileg        8984  
  bmxarml        512  
  bmiarml       8969  
  bmxarmc        512  
  bmiarmc       8965  
bmxwaist      1134
  bmiwaist      8882  
  bmxsad1       2543  
  bmxsad2       2543  
  bmxsad3       8940  
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  bmxsad4       8940  
  bmdavsad      2543  
  bmdsadcm      8853  
  dtype: int64

    Observe that the column bmxleg  has 2383 missing values and bmxwaist  has

1134 missing values, so you would need to remove them as follows:

    df = df.dropna(subset=['bmxleg','bmxwaist'])  # remove rows with NaNs  
  print(df.shape)  
  # (6899, 27)

    After removing the bmxleg  and bmxwaist  columns with missing values, there

are now 6899 rows remaining.

  Plotting the Scatter Plot
 With the data cleaned, let ’ s plot a scatter plot showing the distribution in upper 

leg length and waist circumference:

    import matplotlib.pyplot as plt  

   plt.scatter(df['bmxleg'],df['bmxwaist'], c='r', s=2)
  plt.xlabel("Upper leg Length (cm)")
  plt.ylabel("Waist Circumference (cm)")

    Figure   10.15   shows the scatter plot. 
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 Figure 10.15  :      The scatter plot showing the distribution of waist circumference and upper 
leg length
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        Clustering Using K-Means
 Assume that you want to create two sizes of Bermuda shorts. In this case, you 

would like to cluster the points into two clusters; that is, K=2 . Again, we can use

Scikit-learn ’ s  KMeans  class for this purpose:

    #---using sci-kit-learn---
  from sklearn.cluster import KMeans

   k = 2  
  X = np.array(list(zip(df['bmxleg'],df['bmxwaist'])))

   kmeans = KMeans(n_clusters=k)  
  kmeans = kmeans.fit(X)
  labels = kmeans.predict(X)
  centroids = kmeans.cluster_centers_

   #---map the labels to colors---  
  c = ['b','r','y','g','c','m']  
  colors = [c[i] for i in labels]  

   plt.scatter(df['bmxleg'],df['bmxwaist'], c=colors, s=2)  
  plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')  

    Figure   10.16   shows the points separated into two clusters, red and blue, together 

with the two centroids.
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 Figure 10.16  :      Clustering the points into two clusters 
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      For you, the most important information is the value of the two centroids:

    print(centroids)  

    You should get the following:

    [[  37.65663043   77.84326087]  
   [  38.81870146  107.9195713 ]]  

    This means that you can now design your Bermuda shorts with the follow-

ing dimensions:

■   Waist 77.8 cm, upper leg length 37.7 cm

■  Waist 107.9 cm, upper leg length 38.8 cm    

  Finding the Optimal Size Classes 
 Before deciding on the actual different sizes to make, you wanted to see if the 

K=2  is the optimal one, hence you try out different values of K from 2 to 10 and 

look for the optimal K:

    from sklearn import metrics  

   silhouette_avgs = []  
  min_k = 2

   #---try k from 2 to maximum number of labels---  
  for k in range(min_k, 10):
      kmean = KMeans(n_clusters=k).fit(X)
      score = metrics.silhouette_score(X, kmean.labels_)  
      print("Silhouette Coefficients for k =", k, "is", score)  
      silhouette_avgs.append(score)  

   #---the optimal k is the one with the highest average silhouette---
  Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
  print("Optimal K is", Optimal_K)  

    The results are as shown here:

    Silhouette Coefficients for k = 2 is 0.516551581494
  Silhouette Coefficients for k = 3 is 0.472269050688
  Silhouette Coefficients for k = 4 is 0.436102446644
  Silhouette Coefficients for k = 5 is 0.418064636123
  Silhouette Coefficients for k = 6 is 0.392927895139
  Silhouette Coefficients for k = 7 is 0.378340717032
  Silhouette Coefficients for k = 8 is 0.360716292593
  Silhouette Coefficients for k = 9 is 0.341592231958
  Optimal K is 2  
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    The result confi rms that the optimal K is 2. That is, you should have two dif-

ferent sizes for the Bermuda shorts that you are designing.

 However, the company wanted you to have more sizes so that it can accom-

modate a wider range of customers. In particular, the company feels that four 

sizes would be a better decision. To do so, you just need to run the  KMeans  code 

snippet that you saw in the “Clustering Using K-Means” section and set  k   =4 . 

 You should now see the clusters as shown in Figure   10.17  .

      The centroids locations are as follows:

    [[  38.73004292   85.05450644]  
   [  38.8849217   102.17011186]  
   [  36.04064872   67.30131125]  
   [  38.60124294  124.07853107]]  

    This means that you can now design your Bermuda shorts with the follow-

ing dimensions:

■   Waist 67.3 cm, upper leg length 36.0 cm

■  Waist 85.1 cm, upper leg length 38.7 cm

■  Waist 102.2 cm, upper leg length 38.9 cm

■  Waist 124.1 cm, upper leg length 38.6 cm     
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 Figure 10.17  :      Clustering the points into four clusters
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  Summary

 In this chapter, you learned about unsupervised learning. Unsupervised learning 

is a type of machine learning technique that allows you to fi nd patterns in data. 

In unsupervised learning, the data that is used by the algorithm (for example, 

K-Means, as discussed in this chapter) is not labeled, and your role is to discover 

its hidden structures and assign labels to them.
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    What Is Microsoft Azure Machine Learning Studio?

Microsoft Azure Machine Learning Studio  (henceforth referred to as MAML  ) is L
an online collaborative, drag-and-drop tool for building machine learning 

models. Instead of implementing machine learning algorithms in languages like 

Python or R, MAML encapsulates the most-commonly used machine learning 

algorithms as modules, and it lets you build learning models visually using 

your dataset. This shields the beginning data science practitioners from the 

details of the algorithms, while at the same time offering the ability to fi ne-tune 

the hyperparameters of the algorithm for advanced users. Once the learning 

model is tested and evaluated, you can publish your learning models as web 

services so that your custom apps or BI tools, such as Excel, can consume it. 

What ’ s more, MAML supports embedding your Python or R scripts within 

your learning models, giving advanced users the opportunity to write custom 

machine learning algorithms. 

 In this chapter, you will take a break from all of the coding that you have been 

doing in the previous few chapters. Instead of implementing machine learning 

using Python and Scikit-learn, you will take a look at how to use the MAML to 

perform machine learning visually using drag-and-drop. 

     Using Azure Machine Learning
Studio   
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  An Example Using the Titanic Experiment
 Now that you have a good sense of what machine learning is and what it can 

do, let ’ s get started with an experiment using MAML. For this experiment, you 

will be using a classic example in machine learning—predicting the survival 

of a passenger on the Titanic. 

 In case you are not familiar with the Titanic, on April 15, 1912, during her 

maiden voyage, the Titanic sank after colliding with an iceberg, killing 1,502 out 

of 2,224 passengers and crew. While the main reason for the deaths was due to 

insuffi cient lifeboats, of those who survived, most of them were women, chil-

dren, and the upper-class. As such, this presents a very interesting experiment 

in machine learning. If we are given a set of data points, containing the various 

profi les of passengers (such as gender, cabin class, age, and so forth) and whether 

they survived the sinking, it would be interesting for us to use machine learning 

to predict the survivability of a passenger based on his/her profi le. 

 Interestingly, you can get the Titanic data from Kaggle ( https://www.kaggle

.com/c/titanic/data ). Two sets of data are provided (see Figure   11.1  ):   a

■   Training set 

■   Testing set            

 Figure 11.1  :      You can download the training and testing datasets from Kaggle
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 You use the training set to train your learning model so that you can use it 

to make predictions. Once your learning model is trained, you will make use 

of the testing set to predict the survivability of passengers.

 Because the testing test does not contain a label specifying if a passenger 

survived, we will not use it for this experiment. Instead, we will only use the 

training set for training and testing our model.

 Once the training set is downloaded, examine its contents (see Figure   11.2  ).

 The training set should have the following fi elds:

PassengerId:  A running number indicating the row of records. 

Survived:  If the particular passenger survived the sinking. This is the label

of the dataset for our experiment. 

Pclass:  Ticket class that the passenger is holding.

Name:  Name of the passenger.

Sex:  Gender of the passenger.

Age:  Age of the passenger. 

SibSp:  Number of siblings/spouses aboard the Titanic. 

Parch:  Number of parents/children aboard the Titanic. 

Ticket:  Ticket number.

 Figure 11.2  :      Examining the data in Excel 
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Fare:  Fare paid by the passenger.

Cabin:  Cabin number of the passenger.

Embarked:  Place of embarkation. Note that C = Cherbourg, Q = Queenstown, 

and S = Southampton.    

  Using Microsoft Azure Machine Learning Studio
 We are now ready to load the data into MAML. Using your web browser, navigate 

to http://studio.azureml.net,  and click the “Sign up here” link (see Figure   11.3  ).      

 If you just want to experience MAML without any fi nancial commitment, 

choose the Free Workspace option and click Sign In (see Figure   11.4  ).

 Figure 11.3  :      Click the “Sign up here” link for first-time Azure Machine Learning users 

 Figure 11.4  :      You can choose from the various options available to use MAML
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 Once you are signed in, you should see a list of items on the left side of the 

page (see Figure   11.5  ). I will highlight some of the items on this panel as we 

move along.

  Uploading Your Dataset 

 To create learning models, you need datasets. For this example, we will use the 

dataset that you have just downloaded. 

 Click the  +  NEW item located at the bottom-left of the page. Select DATASET 

on the left (see Figure   11.6  ), and then click the item on the right labeled FROM 

LOCAL FILE.

 Figure 11.5  :      The left panel of MAML

 Figure 11.6  :      Uploading a dataset to the MAML 
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 Click the Choose File button (see Figure   11.7  ) and locate the training set 

downloaded earlier. When fi nished, click the tick button to upload the dataset 

to the MAML.       

  Creating an Experiment 

 You are now ready to create an experiment in MAML. Click the +  NEW button 

at the bottom-left of the page and select Blank Experiment (see Figure   11.8  ).

 Figure 11.7  :      Choose a file to upload as a dataset 

 Figure 11.8  :      Creating a new blank experiment in MAML 
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 You should now see the canvas, as shown in Figure   11.9  .      

 You can give a name to your experiment by typing it over the default experiment 

name at the top (see Figure   11.10  ).      

 Once that is done, let ’ s add our training dataset to the canvas. You can do 

so by typing the name of the training set in the search box on the left, and the 

matching dataset will now appear (see Figure   11.11  ).

 Drag and drop the  train.csv  dataset onto the canvas (see Figure   11.12  ).

 The train.csv  dataset has an output port (represented by a circle with a 1

inside). Clicking it will reveal a context menu (see Figure   11.13  ).      

 Click Visualize to view the content of the dataset. The dataset is now displayed, 

as shown in Figure   11.14  .

 Figure 11.9  :      The canvas representing your experiment

 Figure 11.10  :      Naming your experiment 
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 Figure 11.11  :      Using the dataset that you have uploaded 

 Figure 11.12  :      Dragging and dropping the dataset onto the canvas

 Figure 11.13  :      Visualizing the content of the dataset 
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 Take a minute to scroll through the data. Observe the following:

■   The  PassengerID  fi eld is simply a running number, and it does not pro-

vide any information with regard to the passenger. This fi eld should be 

discarded when training your model.

■  The Ticket  fi eld contains the ticket number of the passengers. In this case, 

however, a lot of these numbers seem to be randomly generated. Thus, it 

is not very useful in helping us to predict the survivability of a passenger 

and hence should be discarded.

■  The Cabin  fi eld contains a lot of missing data. Fields that have a lot of 

missing data do not provide insights to our learning model and hence 

should be discarded.

■  If you select the Survived fi eld, you will see the chart displayed on the 

bottom right of the window (see Figure   11.15  ). Because a passenger can 

either survive (represented by a 1) or die (represented by a 0), it does not 

make sense to have any values in between. However, since this value is 

represented as a numeric value, MAML would not be able to fi gure this 

 Figure 11.14  :      Viewing the dataset 
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out unless you tell it. To fi x this, you need to make this value a categorical 

value. A categorical value  is a value that can take on one of a limited, and 

usually fi xed, number of possible values. 

■   The  Pclass , SibSp , and pp Parch  fi elds should all be made categorical as well.

 All of the fi elds that are not discarded are useful in helping us to create a 

learning model. These fi elds are known as features .  

  Filtering the Data and Making Fields Categorical 

 Now that we have identifi ed the features we want, let ’ s add the Select Columns 

in Dataset module to the canvas (see Figure   11.16  ).

 In the Properties pane, click the Launch column selector and select the col-

umns, as shown in Figure   11.17  .

 The Select Columns in Dataset module will reduce the dataset to the columns 

that you have specifi ed. Next, we want to make some of the columns categorical. 

To do that, add the Edit Metadata module, as shown in Figure   11.18  , and connect 

it as shown. Click the Launch column selector button, and select the  Survived , 

Pclass ,  SibSp , and pp Parch  fi elds. In the Categorical section of the properties pane, 

select “Make categorical.”      

 Figure 11.15  :      Viewing the Survived column 
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 Figure 11.16  :      Use the Select Columns in Dataset module to filter columns

 Figure 11.17  :      Selecting the fields that you want to use as features 

 Figure 11.18  :      Making specific fields categorical
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 You can now run the experiment by clicking the RUN button located at the 

bottom of the MAML. Once the experiment is run, click the output port of 

the Edit Metadata module and select Visualize. Examine the dataset displayed.  

  Removing the Missing Data 

 If you examine the dataset returned by the Edit Metadata module carefully, 

you will see that the Age  column has some missing values. It is always good to

remove all those rows that have missing values so that those missing values will 

not affect the effi ciency of the learning model. To do that, add a Clean Missing 
Data  module to the canvas and connect it as shown in Figure   11.19  . In the prop-

erties pane, set the “Cleaning mode” to “Remove entire row.”

       T I P       You can also replace the missing values with the mean of the column, if you 
prefer.

 Click RUN. The dataset should now have no more missing values. Also notice 

that the number of rows has been reduced to 712 (see Figure   11.20  ).

  Splitting the Data for Training and Testing

 When building your learning model, it is essential that you test it with sample 

data after the training is done. If you only have one single set of data, you can 

split it into two parts—one for training and one for testing. This is accomplished

Figure 11.19  :      Removing rows that have missing values in the Age column
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by the Split Data module (see Figure   11.21  ). For this example, I am splitting 80 

percent of the dataset for training and the remaining 20 percent for testing.

 Figure 11.20  :      Viewing the cleaned and filtered dataset 

 Figure 11.21  :      Splitting the data into training and testing datasets 
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 The left output port of the Split Data module will return 80 percent of the 

dataset while the right output port will return the remaining 20 percent.   

  Training a Model 
 You are now ready to create the training model. Add the Two-Class Logistic 

Regression and Train Model modules to the canvas and connect them as shown 

in Figure   11.22  . The Train Model module takes in a learning algorithm and a 

training dataset. You will also need to tell the Train Model module the label for 

which you are training it. In this case, it is the Survived  column.      

 Once you have trained the model, it is essential that you verify its effective-

ness. To do so, use the Score Model module, as shown in Figure   11.23  . The  Score
Model  takes in a trained model (which is the output of the Train Model module)

and a testing dataset.      

 You are now ready to run the experiment again. Click RUN. Once it is com-

pleted, select the Scored Labels  column (see Figure   11.24  ). This column represents

the results of applying the test dataset against the learning model. The column 

next to it,  Scored Probabilities , indicates the confi dence of the prediction. With 

the  Scored Labels  column selected, look at the right side of the screen and above the 

chart, select Survived for the item named “compare to.” This will plot the con-

fusion matrix.      

 Figure 11.22  :      Training your model using the Two-Class Logistic Regression algorithm
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 Figure 11.23  :      Scoring your model using the testing dataset and the trained model

 Figure 11.24  :      Viewing the confusion matrix for the learning model
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 The y-axis of the confusion matrix shows the actual survival information of 

passengers: 1 for survived and 0 for did not survive. The x-axis shows the pre-

diction. As you can see, 75 were correctly predicted not to survive the disaster, 

and 35 were correctly predicted to survive the disaster. The two other boxes 

show the predictions that were incorrect. 

  Comparing Against Other Algorithms

 While the numbers for the predictions look pretty decent, it is not suffi cient 

to conclude at this moment that we have chosen the right algorithm for this 

problem. MAML comes with 25 machine learning algorithms for different 

types of problems. Now let ’ s use another algorithm provided by MAML, Two-

Class Decision Jungle, to train another model. Add the modules as shown in 

Figure   11.25  .       

       T I P       The Two-Class Decision Jungle algorithm is another machine learning 
algorithm that is based on decision trees. For this experiment, you can also use other
algorithms provided by MAML, such as the Two-Class Logistic Regression and Two-
Class Support Vector Machine.   

 Figure 11.25  :      Using another algorithm for training the alternative model
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 Click Run. You can click the output port of the second Score Model module to 

view the result of the model, just like the previous learning model. However, it 

would be more useful to be able to compare them directly. You can accomplish 

this using the Evaluate Model module (see Figure   11.26  ).      

 Click RUN to run the experiment. When done, click the output port of the 

Evaluate Model module and you should see something like Figure   11.27  .

 The blue line represents the algorithm on the left input port of the Evaluate 

Model module (Two-Class Logistic Regression), while the red line represents the 

algorithm on the right (Two-Class Decision Jungle). When you click either 

the blue or red box, you will see the various metrics for each algorithm displayed 

below the chart.  

 Figure 11.26  :      Evaluating the performance of the two models 
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  Evaluating Machine Learning Algorithms 

 Now that you have seen an experiment performed using two specifi c machine 

learning algorithms—Two-Class Logistic Regression and Two-Class Decision 

Jungle—let ’ s step back a little and examine the various metrics that were gen-

erated by the  Evaluate Model  module. Specifi cally, let ’ s defi ne the meaning of 

the following terms:

True Positive (TP)     The model correctly predicts the outcome as positive.

In this case, the number of TP indicates the number of correct predictions 

that a passenger survived (positive) the disaster.

 Figure 11.27  :      Viewing the metrics for the two learning algorithms 
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True Negative (TN)     The model correctly predicts the outcome as negative

(did not survive); that is, passengers were correctly predicted not to survive 

the disaster.

False Positive (FP)     The model incorrectly predicted the outcome as positive,

but the actual result is negative. In the Titanic example, it means that the 

passenger did not survive the disaster, but the model predicted the passenger 

to have survived.  

False Negative (FN)    The model incorrectly predicted the outcome as neg-

ative, but the actual result is positive. In this case, this means the model 

predicted that the passenger did not survive the disaster, but actually the 

passenger did.    

 This set of numbers is known as the  confusion matrix. The confusion matrixx
is discussed in detail in Chapter   7  , “Supervised Learning—Classifi cation Using 

Logistic Regression.” So if you are not familiar with it, be sure to read up on 

Chapter   7  .

  Publishing the Learning Model as a Web Service
 Once the most effective machine learning algorithm has been determined, you 

can publish the learning model as a web service. Doing so will allow you to 

build custom apps to consume the service. Imagine that you are building a 

learning model to help doctors diagnose breast cancer. Publishing as a web ser-

vice would allow you to build apps to pass the various features to the learning 

model to make the prediction. Best of all, by using MAML, there is no need to 

handle the details of publishing the web service—MAML will host it for you 

on the Azure cloud.

  Publishing the Experiment 

 To publish our experiment as a web service:   

■   Select the left Train Model module (since it has a better performance com-

pared to the other).

■  At the bottom of the page, hover your mouse over the item named  SET 

UP WEB SERVICE , and click  Predictive Web Service (Recommended) .

       T I P       For this experiment, the best algorithm is the one that gives the highest AUC 
(Area Under the Curve) score.   
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 This will create a new Predictive experiment, as shown in Figure   11.28  .      

 Figure 11.28  :      Publishing the learning model as a web service 
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 Click RUN, and then DEPLOY WEB SERVICE. The page seen in Figure   11.29   

will now be shown.

  Testing the Web Service 

 Click the Test hyperlink. The test page shown in Figure   11.30   is displayed. You 

can click the Enable button to fi ll the various fi elds from your training set. This 

will save you the chore of fi lling in the various fi elds.

 The fi elds should now be fi lled with values from the training data. At the 

bottom of the page, click Test Request/Response and the prediction will be 

shown on the right.  

  Programmatically Accessing the Web Service

 At the top of the Test page, you should see a Consume link as shown in Figure   11.31  . 

Click it.

 You will see the credentials that you need to use in order to access your web 

service, as well as the URLs for the web service. At the bottom of the page, you 

will see the sample code generated for you that you could use to access the web 

service programmatically (see Figure   11.32  ). The sample code is available in C#, 

Python 2, Python 3, and R.      

 Figure 11.29  :      The test page for the web service
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 Click the Python 3+ tab, and copy the code generated. Click the View in Studio 

link at the top-right of the page to return to MAML. Back in MAML, click the 

 + NEW  button at the bottom of the screen. Click  NOTEBOOK  on the left, and 

you should be able to see the various notebooks, as shown in Figure   11.33  .       

       T I P       The notebooks hosted by the MAML are the same as the Jupyter Notebook 
that you have installed on your local computer.   

 Click Python 3, give a name to your notebook, and paste in the Python code 

that you copied earlier (see Figure   11.34  ).

 Figure 11.30  :      Testing the web service with some data

 Figure 11.31  :      The Consume link at the top of the web service page 
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 Figure 11.32  :      The sample code for accessing the web service written in the three programming 
languages

 Figure 11.33  :      Creating a new notebook in MAML 
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 Be sure to replace the value of the api _ key  variable with that of your primary y

key. Press Ctrl+Enter to run the Python code. If the web service is deployed cor-

rectly, you should see the result at the bottom of the screen (see Figure   11.35  ).         

  Summary

 In this chapter, you have seen how you can use the MAML to create machine 

learning experiments. Instead of writing your code in Python, you can use the 

various algorithms provided by Microsoft and build your machine learning 

models visually using drag and drop. This is very useful for beginners who 

want to get started with machine learning without diving into the details. Best 

 Figure 11.34  :      Testing the code in the Python notebook 

 Figure 11.35  :      The result returned by the web service 
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of all, MAML helps you to deploy your machine learning as a web service auto-

matically—and it even provides the code for you to consume it.

 In the next chapter, you will learn how to deploy your machine learning 

models created in Python and Scikit-learn manually using Python and the 

Flask micro-framework.
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12

    Deploying ML 

 The main goal of machine learning is to create a model that you can use for 

making predictions. Over the past few chapters in this book, you learned about 

the various algorithms used to build an ideal machine learning model. At the 

end of the entire process, what you really want is to make your model accessible 

to users so that they can utilize it to do useful tasks, like making predictions 

(such as helping doctors with their diagnosis, and so forth).

 A good way to deploy your machine learning model is to build a  REST 
(REpresentational State Transfer) API , so that the model is accessible by others who I
may not be familiar with how machine learning works. Using REST, you can 

build multi-platform front-end applications (such as iOS, Android, Windows, 

and so forth) and pass the data to the model for processing. The result can then 

be returned back to the application. Figure   12.1   summarizes the architecture 

that we will use for deploying our machine learning model.

 In this chapter, we will go through a case study, build a machine learning 

model, and then deploy it as a REST service. Finally, we will build a console 

front-end application using Python to allow users to make some predictions.

     Deploying Machine Learning
Models
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  Case Study 

 For this case study, we are going to help predict the likelihood of a person 

being diagnosed with diabetes based on several diagnostic measurements of 

that person.

 The dataset that you will be using in this chapter is from this database: 

https://www.kaggle.com/uciml/pima-indians-diabetes-database . This dataset 

contains several medical independent predictors and one target. Its features 

consist of the following:

■ Pregnancies : Number of times pregnant

■ Glucose : Plasma glucose concentration after 2 hours in an oral glucose

tolerance test

■ BloodPressure : Diastolic blood pressure (mm Hg)

■ SkinThickness : Triceps skin fold thickness (mm)

■ Insulin : 2-Hour serum insulin (mu U/ml) 

■ BMI : Body mass index (weight in kg/(height in m)^2)I

■ DiabetesPedigreeFunction : Diabetes pedigree function

■ Age : Age (years) 

■ Outcome : 0 (non-diabetic) or 1 (diabetic)   

Internet

Frontend Clients

REST
API

Machine Learning Model

 Figure 12.1  :      Deploying your machine learning model as a REST API allows front-end applica-
tions to use it for predictions
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 The dataset has 768 records, and all patients are females at least 21 years of 

age and of Pima Indian descent.

   Loading the Data  
 For this example, the dataset has been downloaded locally and named  diabetes.csv .vv

 The following code snippet loads the dataset and prints out information about 

the DataFrame using the  info()   function:

    import numpy as np  
  import pandas as pd  

  df = pd.read_csv('diabetes.csv')  
  df.info()

 You should see the following output:

    <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 768 entries, 0 to 767  
  Data columns (total 9 columns):  
  Pregnancies                 768 non-null int64  
  Glucose                     768 non-null int64  
  BloodPressure               768 non-null int64  
  SkinThickness               768 non-null int64  
  Insulin                     768 non-null int64  
  BMI                         768 non-null float64
  DiabetesPedigreeFunction    768 non-null float64
  Age                         768 non-null int64  
  Outcome                     768 non-null int64  
  dtypes: float64(2), int64(7)  
  memory usage: 54.1 KB

   Cleaning the Data  
 As with all datasets, your fi rst job is to clean the data so that there are no missing 

or erroneous values. Let ’ s fi rst check for nulls in the dataset:

    #---check for null values---  
  print("Nulls")  
  print("=====")  
  print(df.isnull().sum())

 The result is as follows:

    Nulls  
  =====  
  Pregnancies                 0  
  Glucose                     0  
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  BloodPressure               0  
  SkinThickness               0  
  Insulin                     0  
  BMI                         0  
  DiabetesPedigreeFunction    0  
  Age                         0  
  Outcome                     0  
  dtype: int64

 There are no nulls. Next, let ’ s check for 0s:

    #---check for 0s---  
  print("0s")
  print("==")
  print(df.eq(0).sum())

 For features like Pregnancies and Outcome, having values of 0 is normal. 

For the other features, however, a value of 0 indicates that the values are not 

captured in the dataset.

    0s  
  ==  
  Pregnancies                 111  
  Glucose                       5  
  BloodPressure                35  
  SkinThickness               227  
  Insulin                     374  
  BMI                          11  
  DiabetesPedigreeFunction      0  
  Age                           0  
  Outcome                     500  
  dtype: int64

 There are many ways to deal with this case of 0 for features, but for simplicity, 

let ’ s just replace the 0 values with  NaN :N

    df[['Glucose','BloodPressure','SkinThickness',  
      'Insulin','BMI','DiabetesPedigreeFunction','Age']] = \  
      df[['Glucose','BloodPressure','SkinThickness',
          'Insulin','BMI','DiabetesPedigreeFunction','Age']].replace
(0,np.NaN)    

 Once the NaN values have replaced the 0s in the DataFrame, you can now 

replace them with the mean of each column as follows:

    df.fillna(df.mean(), inplace = True)   # replace NaN with the mean

 You can now check the DataFrame to verify that there are now no more 0s 

in the DataFrame:

    print(df.eq(0).sum())
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 You should see this output:

    Pregnancies                 111  
  Glucose                       0  
  BloodPressure                 0  
  SkinThickness                 0  
  Insulin                       0  
  BMI                           0  
  DiabetesPedigreeFunction      0  
  Age                           0  
  Outcome                     500  
  dtype: int64

   Examining the Correlation Between the Features
 The next step is to examine how the various independent features affect the 

outcome (whether a patient is diabetic or not). To do that, you can call the   corr()

function on the DataFrame:

    corr = df.corr()  
  print(corr)

 The  corr()  function computes the pairwise correlation of columns. For example, 

the following output shows that the glucose level of a patient after a 2-hour oral 

glucose tolerance test has little relationship to the number of pregnancies of a 

patient (0.127911), but it has a signifi cant relationship to the outcome (0.492928):

    Pregnancies   Glucose  BloodPressure  SkinThickness  \  
  Pregnancies             1.000000  0.127911       0.208522       0.082989  
Glucose                 0.127911  1.000000       0.218367       0.192991
  BloodPressure           0.208522  0.218367       1.000000       0.192816  
  SkinThickness           0.082989  0.192991       0.192816       1.000000  
  Insulin                 0.056027  0.420157       0.072517       0.158139  
  BMI                     0.021565  0.230941       0.281268       0.542398  
  DiabetesPedigree
Function               -0.033523  0.137060      -0.002763       0.100966  
  Age                     0.544341  0.266534       0.324595       0.127872  
  Outcome                 0.221898  0.492928       0.166074       0.215299  

                           Insulin      BMI  DiabetesPedigreeFunction  \  
  Pregnancies             0.056027  0.021565               -0.033523
Glucose                 0.420157  0.230941                0.137060
  BloodPressure           0.072517  0.281268               -0.002763
  SkinThickness           0.158139  0.542398                0.100966
  Insulin                 1.000000  0.166586                0.098634
  BMI                     0.166586  1.000000                0.153400
  DiabetesPedigree
Function                0.098634  0.153400                1.000000 
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  Age                     0.136734  0.025519                0.033561
  Outcome                 0.214411  0.311924                0.173844

                               Age   Outcome  
  Pregnancies             0.544341  0.221898  
Glucose                 0.266534  0.492928
  BloodPressure           0.324595  0.166074  
  SkinThickness           0.127872  0.215299  
  Insulin                 0.136734  0.214411  
  BMI                     0.025519  0.311924  
  DiabetesPedigree
Function                0.033561  0.173844  
  Age                     1.000000  0.238356  
  Outcome                 0.238356  1.000000     

 Our goal here is to fi nd out which features signifi cantly affect the outcome.  

   Plotting the Correlation Between Features  
 Rather than look at the various numbers representing the various correlations 

between the columns, it is useful to be able to picture it visually. The following 

code snippet uses the   matshow()  function to plot the results returned by the 

 corr()   function as a matrix. At the same time, the various correlation factors

are also shown in the matrix:

    %matplotlib inline  
  import matplotlib.pyplot as plt  

  fig, ax = plt.subplots(figsize=(10, 10))
  cax     = ax.matshow(corr,cmap='coolwarm', vmin=-1, vmax=1)  

  fig.colorbar(cax)  
  ticks = np.arange(0,len(df.columns),1)
  ax.set_xticks(ticks)  

  ax.set_xticklabels(df.columns)  
  plt.xticks(rotation = 90)

  ax.set_yticklabels(df.columns)  
  ax.set_yticks(ticks)  

  #---print the correlation factor---
  for i in range(df.shape[1]):  
      for j in range(9):
          text = ax.text(j, i, round(corr.iloc[i][j],2),  
                         ha="center", va="center", color="w")  
  plt.show()

 Figure   12.2   shows the matrix. The cubes that have colors closest to red rep-

resent the highest correlation factors, while those closest to blue represent the 

lowest correlation factors.
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 Another way to plot the correlation matrix is to use Seaborn ’ s  heatmap() 

function as follows:

    import seaborn as sns

  sns.heatmap(df.corr(),annot=True)

  #---get a reference to the current figure and set its size---
  fig = plt.gcf()  
  fig.set_size_inches(8,8)

 Figure   12.3   shows the heatmap produced by Seaborn.      

 Now let ’ s print out the top four features that have the highest correlation 

with the Outcome :

    #---get the top four features that has the highest correlation---
  print(df.corr().nlargest(4, 'Outcome').index)  
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 Figure 12.2  :     Matrix showing the various correlation factors 
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  #---print the top 4 correlation values---  
  print(df.corr().nlargest(4, 'Outcome').values[:,8])

 You should see the following output:

    Index(['Outcome', 'Glucose', 'BMI', 'Age'], dtype='object')  
  [1.         0.49292767 0.31192439 0.23835598]     

 You can now see that apart from the   Outcome  feature, the three most infl uen-

tial features are   Glucose ,  BMI  , and   Age  . We can use these three features to train 

our model. 
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 Figure 12.3  :     Heatmap produced by Seaborn showing the correlation factors
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   Evaluating the Algorithms  
 Before we train our model, it is always good to evaluate a few algorithms to 

fi nd the one that gives the best performance. Accordingly, we will try the fol-

lowing algorithms:

■   Logistic Regression 

■  K-Nearest Neighbors (KNN) 

■  Support Vector Machines (SVM)—Linear and RBF Kernels

  Logistic Regression 

 For the fi rst algorithm, we will use logistic regression. Instead of splitting the 

dataset into training and testing sets, we will use 10-fold cross-validation to 

obtain the average score of the algorithm used:

    from sklearn import linear_model  
  from sklearn.model_selection import cross_val_score

  #---features---  
  X = df[['Glucose','BMI','Age']]  

  #---label---
  y = df.iloc[:,8]  

  log_regress = linear_model.LogisticRegression()  
  log_regress_score = cross_val_score(log_regress, X, y, cv=10,
scoring='accuracy').mean() 

  print(log_regress_score)

 The result of training the model should use an average of 0.7617737525632263. 

 We will also save this result to a list so that we can use it to compare with 

the scores of other algorithms:

    result = []
  result.append(log_regress_score)      

  K-Nearest Neighbors 

 The next algorithm that we will use is the K-Nearest Neighbors (KNN). In 

addition to using the 10-fold cross-validation to obtain the average score of the 

algorithm, we also need to try out the various values of k to obtain the optimal 

k so that we can get the best accuracy:

    from sklearn.neighbors import KNeighborsClassifier

  #---empty list that will hold cv (cross-validates) scores---  
  cv_scores = []  
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  #---number of folds---
  folds = 10

  #---creating odd list of K for KNN---
  ks = list(range(1,int(len(X) * ((folds - 1)/folds)), 2))  

  #---perform k-fold cross validation---
  for k in ks:
      knn = KNeighborsClassifier(n_neighbors=k)  
      score = cross_val_score(knn, X, y, cv=folds, scoring='accuracy').mean()  
      cv_scores.append(score)  

  #---get the maximum score---  
  knn_score = max(cv_scores)

  #---find the optimal k that gives the highest score---  
  optimal_k = ks[cv_scores.index(knn_score)]  

  print(f"The optimal number of neighbors is {optimal_k}")  
  print(knn_score)  
  result.append(knn_score)

 You should get the following output:

    The optimal number of neighbors is 19
  0.7721462747778537      

  Support Vector Machines

 The next algorithm we will use is Support Vector Machine (SVM). We will use 

two types of kernels for SVM: linear and RBF. The following code snippet uses 

the linear kernel:

    from sklearn import svm

  linear_svm = svm.SVC(kernel='linear')
  linear_svm_score = cross_val_score(linear_svm, X, y,
                                     cv=10, scoring='accuracy').mean()  
  print(linear_svm_score)
  result.append(linear_svm_score)     

 You should get an accuracy of:

    0.7656527682843473     

 The next code snippet uses the RBF kernel:

    rbf = svm.SVC(kernel='rbf')  
  rbf_score = cross_val_score(rbf, X, y, cv=10, scoring='accuracy').mean()  
  print(rbf_score)  
  result.append(rbf_score)



 Chapter 12 ■ Deploying Machine Learning Models 279

 You should get an accuracy of:

    0.6353725222146275      

  Selecting the Best Performing Algorithm 

 Now that we have evaluated the four different algorithms, we can choose the 

best performing one:

    algorithms = ["Logistic Regression", "K Nearest Neighbors", "SVM Linear 
Kernel", "SVM RBF Kernel"] 
  cv_mean = pd.DataFrame(result,index = algorithms)
  cv_mean.columns=["Accuracy"]  
  cv_mean.sort_values(by="Accuracy",ascending=False)

 Figure   12.4   shows the output of the preceding code snippet.        

   Training and Saving the Model  
 Since the best performing algorithm for our dataset is KNN with k = 19, we can 

now go ahead and train our model using the entire dataset:

    knn = KNeighborsClassifier(n_neighbors=19)  
  knn.fit(X, y)

 Once the model is trained, you need to save it to disk so that the model can 

be retrieved later for prediction purposes:

    import pickle

  #---save the model to disk---  
  filename = 'diabetes.sav'

  #---write to the file using write and binary mode---
  pickle.dump(knn, open(filename, 'wb'))

 The trained model is now saved to a fi le named   diabetes.sav . Let ’ s load it tov v

ensure that it was saved properly:

    #---load the model from disk---  
  loaded_model = pickle.load(open(filename, 'rb'))

Accuracy

K Nearest Neighbors

Logistic Regression

SVM Linear Kernel

SVM RBF Kernel

0.772146

0.761774

0.765653

0.635373

 Figure 12.4  :     Ranking the performance of the various algorithms 
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 Once the model is loaded, let ’ s do some predictions:

    Glucose = 65
  BMI = 70
  Age = 50

  prediction = loaded_model.predict([[Glucose, BMI, Age]])  
  print(prediction)  
  if (prediction[0]==0):
      print("Non-diabetic")
  else:  
      print("Diabetic")

 The output prints the word “Non-Diabetic” if the return value of the prediction 

is a 0; else it prints the word “Diabetic”. You should see the following output:

    [0]  
  Non-diabetic

 We are also interested to know the probabilities of the prediction, and so you 

get the probabilities and convert them into percentages:

    proba = loaded_model.predict_proba([[Glucose, BMI, Age]])  
  print(proba)
  print("Confidence: " + str(round(np.amax(proba[0]) * 100 ,2)) + "%")     

 You should see the following:

    [[0.94736842 0.05263158]]
  Confidence: 94.74%     

 The probabilities printed show the probability of the result being 0, and the 

probability of the result being 1. The prediction is based on the one with the highest 

probability, and we use that probability and convert it into the confi dence percentage.   

  Deploying the Model 

 It is now time to deploy our machine learning model as a REST API. First, how-

ever, you need to install the Flask  micro-framework.k

       T I P        Flask  is a micro-framework for Python that allows you to build web-based k
applications. Micro-frameworks in Python have little to no dependencies to external 
libraries and are thus very lightweight. Flask is particularly useful for developing REST 
APIs. For more information on Flask, check out its documentation at  http://flask
.pocoo.org/docs/1.0/.   /
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 Type the following in Terminal or Command Prompt to install Flask:

    $ pip install flask     

 Once Flask is installed, create a text fi le named  REST _ API.py  , and enter the yy

following code snippet:

    import pickle
  from flask import Flask, request, json, jsonify  
  import numpy as np  

  app = Flask(__name__)

  #---the filename of the saved model---
  filename = 'diabetes.sav'

  #---load the saved model---  
  loaded_model = pickle.load(open(filename, 'rb'))

  @app.route('/diabetes/v1/predict', methods=['POST'])
  def predict():  
      #---get the features to predict---
      features = request.json  

      #---create the features list for prediction---
      features_list = [features["Glucose"],  
                       features["BMI"],
                       features["Age"]]

      #---get the prediction class---
      prediction = loaded_model.predict([features_list])  

      #---get the prediction probabilities---  
      confidence = loaded_model.predict_proba([features_list])  

      #---formulate the response to return to client---
      response = {}  
      response['prediction'] = int(prediction[0])  
      response['confidence'] = str(round(np.amax(confidence[0]) * 100 ,2))  

      return  jsonify(response)  

  if __name__ == '__main__':
      app.run(host='0.0.0.0', port=5000)

 The preceding code snippet accomplishes the following:

■   Creates a route   /diabetes/v1/predict   using the  route   decorator.

■  The route is accessible through the POST verb.
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■  To make a prediction, users make a call to this route and pass in the var-

ious features using a JSON string.

■  The result of the prediction is returned as a JSON string.  

       N OT E       A  decorator  in Python is a function that wraps and replaces another function.  r

   Testing the Model
 To test the REST API, run it in Terminal by entering the following command:

    $ python REST_API.py     

 You should see the following output:

    * Serving Flask app "REST_API" (lazy loading)  
   * Environment: production
     WARNING: Do not use the development server in a production environment.  
     Use a production WSGI server instead.
   * Debug mode: off  
   * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)     

 This indicates that the service is up and listening at port 5000. 

 The easiest way to test the API is to use the cURL command (installed by 

default on macOS) from a separate Terminal or Command Prompt window:

    $ curl -H "Content-type: application/json" -X POST
  http://127.0.0.1:5000/diabetes/v1/predict 
-d '{"BMI":30, "Age":29,"Glucose":100 }'    

 The preceding command sets the JSON header, and it uses the  POST  verb to 

connect to the REST API listening at port 5000. The features and their values 

to use for the prediction are sent as a JSON string.

       T I P       For Windows users, single quotes are not recognized by the cURL command. 
You have to use double quotes and turn off the special meaning of double quotes in 
the JSON string:  "{\"BMI\":30, \"Age\":29,\"Glucose\":100 }" .   

 When the REST API has received the data sent to it, it will use it to perform 

the prediction. You will see the prediction result returned as follows:

    {"confidence":"78.95","prediction":0}

 The result indicates that based on the data sent to it, it is not likely that the 

person has diabetes (78.95% confi dence). 

 Go ahead and try some other values, like this:

    $ curl -H "Content-type: application/json" -X POST
  http://127.0.0.1:5000/diabetes/v1/predict  
  -d '{"BMI":65, "Age":29,"Glucose":150 }'
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 This time around, the prediction indicates that the person is likely to be dia-

betic with 68.42% confi dence:

    {"confidence":"68.42","prediction":1} 

  Creating the Client Application to Use the Model 

 Once the REST API is up and running, and it has been tested to be working 

correctly, you can build the client side of things. Since this book revolves around 

Python, it is fi tting to build the client using Python. Obviously, in real life, you 

would most likely build your clients for the iOS, Android, macOS, and Windows 

platforms.

 Our Python client is pretty straightforward—formulate the JSON string to 

send to the service, get the result back in JSON, and then retrieve the details 

of the result:

    import json
  import requests  

  def predict_diabetes(BMI, Age, Glucose):
      url = 'http://127.0.0.1:5000/diabetes/v1/predict'
      data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
      data_json = json.dumps(data)  
      headers = {'Content-type':'application/json'}
      response = requests.post(url, data=data_json, headers=headers)
      result = json.loads(response.text)
      return result  

  if __name__ == "__main__":
      predictions = predict_diabetes(30,40,100)  
      print("Diabetic" if predictions["prediction"] == 1 else "Not
Diabetic") 
      print("Confidence: " + predictions["confidence"] + "%")     

 Running this in Jupyter Notebook yields the following result:

    Not Diabetic
  Confidence: 68.42%     

 Let ’ s save the preceding code snippet into a fi le and add the code to allow 

users to enter the various values for BMI, Age, and Glucose. Save the following 

code snippet in a fi le named   Predict _ Diabetes.py :y 

    import json
  import requests  

  def predict_diabetes(BMI, Age, Glucose):
      url = 'http://127.0.0.1:5000/diabetes/v1/predict'
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      data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
      data_json = json.dumps(data)  
      headers = {'Content-type':'application/json'}
      response = requests.post(url, data=data_json, headers=headers)
      result = json.loads(response.text)
      return result  

  if __name__ == "__main__":
        BMI = input( ' BMI? ' )

Age = input( ' Age? ' )
Glucose = input( ' Glucose? ' )

      predictions = predict_diabetes(BMI  ,  Age  ,  Glucose  )  
      print("Diabetic" if predictions["prediction"] == 1 else "Not
Diabetic") 
      print("Confidence: " + predictions["confidence"] + "%")     

 You can now run the application in Terminal:

    $ python Predict_Diabetes.py     

 You can now enter the values:

    BMI?  55
  Age?  29
  Glucose?120

 The result will now be shown:

    Not Diabetic
  Confidence: 52.63%      

  Summary

 In this fi nal chapter, you saw how to deploy your machine learning model using 

the Flask micro-framework. You also saw how you can view the correlations 

between the various features and then only use those most useful features for 

training your model. It is always useful to evaluate several machine learning 

algorithms and choose the best performing one so that you can choose the 

correct algorithm for your specifi c dataset. 

 I hope that this book has given you a good overview of machine learning, 

and that it has jumpstarted and inspired you to continue learning. As I have 

mentioned, this book is a gentle introduction to machine learning, and there 

are some details that were purposely omitted to make it easy to follow along. 

Nevertheless, if you have tried all of the exercises in each chapter, you should 

now have a pretty good understanding of the fundamentals of machine learning!   
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 logistic regression

  computing accuracy, recall, 

precision, and other metrics,

168–171 

 defined, 151–153

 evaluation of in ML case study, 277 

 examining relationship between

features, 156–161

 finding intercept and coefficient, 162 

 getting the confusion matrix, 

166–168

 logit function, 153–154 

 making predictions, 163–164

 plotting features in 2D, 157–158

 plotting in 3D, 158–160 

 plotting ROC and finding area under 

the curve (AUC), 174 

 plotting sigmoid curve, 162–163

 Receiver Operating Characteristic

(ROC) curve, 171–174

 sigmoid curve, 154–156 

 testing the model, 166

 training the model using all features,

164–174 

 training using one feature, 161–164 

 Two-Class Logistic Regression 

algorithm, 258, 259, 260

 understanding odds, 153

 using Breast Cancer Wisconsin 

(Diagnostic) Data Set, 156–174

LogisticRegression  class, 162

 logit function, 153–154 

 low variance, 143 

    M 
  machine learning (ML)

  case study

  cleaning data, 271–273 

 evaluating algorithms, 277–279
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 examining correlation between

features, 273–274

 introduction, 270–271 

 loading data, 271

 plotting correlation between

features, 274–276

 selecting best performing 

algorithm, 279

 training and saving the model, 

279–280 

    categories of algorithms in, 5 

 creating client application to use the 

model, 283–284 

 defined, 1, 3

 deployment of, 269–270 

 deployment of model of 

  introduction, 280–282 

 testing model, 282–283 

    described, 3

 disciplines of, 3 

 main goal of, 269

make _ blobs()  function, 98

make _ circles()  function, 100, 187

make _ regression()  function, 98

 mathematics, as discipline of machine 

learning, 3

 matplotlib

  defined, 67

 plotting bar charts

  adding another bar to chart, 

74–75 

 changing tick marks, 75–77 

 introduction, 73–74 

    plotting line charts

  adding legend, 72–73 

 adding title and labels, 69

 introduction, 68–69 

 plotting multiple lines in same

chart, 71–72 

 styling, 69–71

    plotting pie charts

  displaying custom colors, 79–80

 displaying legend, 81 

 exploding slices, 78–79

 introduction, 77–78 

 location strings and corresponding 

location codes, 82 

 rotating pie charts, 80

 saving chart, 82 

    plotting scatter plots

  combining plots, 83–84 

 introduction, 83 

 subplots, 84–85

    plotting using Seaborn

  displaying categorical plots, 

86–88

 displaying lmplots, 88–89 

 displaying swarmplots, 90–91 

 introduction, 85–86 

     matrix class, 30–31

 matrix multiplication, 30

matshow()  function, 274

mean()  function, 48, 234

 meshgrid, 214

metrics.silhouette _ samples()

function, 234

metrics.silhouette _ score()

function, 234

 Microsoft Azure Machine Learning

Studio (MAML)

  comparing against other algorithms,

258–260

 creating experiment, 248–252

 evaluating machine learning 

algorithms, 260–261

 example using Titanic experiment,

244–246 

 filtering data and making fields 

categorical, 252–254 

 introduction, 243 

 programmatically accessing web 

service, 263–266

 publishing experiment, 261–263

 publishing learning model as web 

service, 261–262

 removing missing data, 254

 splitting data for training and 

testing, 254–256

 testing web service, 263

 training a model, 256–258 
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 uploading dataset, 247–248 

 use of, 246–266 

MinMaxScaler  class, 112 

 misclassification error (MSE), 218

 model, a.k.a. program, 3

 multi-class classification problem, 4

 multiple linear regression, 120 

 multiple regression, 120, 128–130

    N 
ndarray  (n-dimensional array), 20, 31

 negative correlation, 127 

 normalization, 112–113 

np.add()  function, 28

np.concatenate()  function, 189

np.dot()  function, 31

np.where()  function, 114

 NumPy 

  array assignment, 34–38 

 array indexing, 22–26 

 array math, 27–34

 creating NumPy arrays, 20–21 

 described, 19–20

 NumPy slice as reference, 25

 reshaping arrays, 26–267

 slicing arrays, 23–25 

 sorting in, 32–34

     O
  odds, understanding of, 153

 optimal k, 218–219, 232, 234–236

 outliers, 113–117

outliers _ iqr()  function, 114, 115

outliers _ z _ score()  function, 116

 overfitting, 143, 214–215 

    P
  Pandas, described, 39–40 

 Pandas DataFrame

  adding/removing rows/columns in,

60–63 

 applying functions to, 57–60

 checking to see if result is 

DataFrame or Series, 55 

 common DataFrame operations, 65 

 creation of, 45–46 

 defined, 45

 examples of, 124

 extracting from, 49–54 

 generating crosstab, 63–64

 selecting based on cell value, 54 

 selecting single cell in, 54 

 sorting data in, 55–57 

 specifying index in, 46–47

 transformation of, 54–55 

    Pandas Series

  accessing elements in, 41–42

 creation of using specified index, 41

 date ranges, 43–44

 defined, 40

 generating descriptive statistics on, 

47–48

 specifying datetime range as index

of, 42–43 

    penalty parameter of the error term,

195 

 pie chart

  defined, 77

 plotting of, 77–82 

pie()  function, 81, 82

plot()  function, 68, 71, 85

plot _ surface()  function, 134, 190

 plotting

  of bar charts, 73–77

 of correlation between features in

ML case study, 274–276

 of hyperplane, 184–185, 189–191 

 of line charts, 68–73 

 of linear regression line, 102–103 

 of pie charts, 77–82 

 plotting features in 2D (logistic

regression), 157–158 

 of ROC and finding area under the 

curve (AUC) (logistic regression),

174

 of scatter plots, 83–85, 238 

 of sigmoid curve (logistic 

regression), 162–163 

 of 3D hyperplane (linear regression),

133–135, 146–147 
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 in 3D (logistic regression), 158–160 

 using Seaborn, 85–91, 182

    polynomial function, 120, 138, 139, 145,

149 

 polynomial kernel, 199–200 

 polynomial multiple regression, 120,

144–146 

 polynomial regression, 120, 135–147

PolynomialFeatures  class, 138 

 positive correlation, 127 

 precision, computing of, 168–171

predict()  function, 102, 163, 231

predict _ proba()  function, 163

 predictions 

  making of in KNN, 209

 making of in logistic regression,

163–164 

 making of in Scikit-learn, 102 

 making of in SVM, 185–186 

     Q
  quadratic regression, 138

    R
  Radial Basis function (RBF), 196–197,

277, 278–279 

randn()  function, 45

random()  function, 21

ravel()  function, 27, 106

read _ csv()  function, 46

 recall, computing of, 168–171

 Receiver Operating Characteristic

(ROC) curve, 171–174

 regression

  linear regression. See  linear 

regression

 logistic regression. See  logistic

regression

 multiple linear regression, 120 

 multiple regression, 120, 128–130

 polynomial multiple regression, 120,

144–146 

 polynomial regression, 120, 135–147

 problems with, 4 

 quadratic regression, 138

 Two-Class Logistic Regression 

algorithm, 258, 259, 260

    Regularization, 143 

reset _ index()  function, 109

reshape()  function, 26–27, 35

 Residual Sum of Squares (RSS),

104–105, 141, 143

 REST (REpresentational State 

Transfer) API, 269–270, 280, 283

 ROC (Receiver Operating

Characteristic) curve, 171–174

roc _ curve()  function, 173

 R-squared method, 105, 132 

    S 
savefig()  function, 82

scatter()  function, 85

 scatter plot 

  defined, 83

 examples of, 99, 129, 130, 132, 136, 158,

186, 193, 194, 201, 212, 226, 227, 

229, 238 

 plotting of, 83–85, 238 

    scientific computing, as discipline of 

machine learning, 3

 Scikit-learn 

  data cleansing 

  cleaning rows with NaNs, 108

 introduction, 106–107 

 normalizing columns, 112–113

 removing duplicate rows,

110–112 

 removing outliers, 113–117

 removing rows, 109 

 replacing NaN with mean of 

column, 109

    getting datasets 

  clustered dataset, 98–99 

 clustered dataset distributed in

circular fashion, 100

 generating your own, 98 

 introduction, 94 

 linearly distributed dataset, 98 

 using Kaggle dataset, 97 

 using Scikit-learn dataset, 94–97 
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 using UCI (University of California,

Irvine) Machine Learning 

Repository, 97–98

    getting started with

  evaluating model using test dataset, 

105–106 

 examining performance of model

by calculating Residual Sum of 

Squares (RSS), 104–105

 getting gradient and intercept of 

linear regression line, 103–104 

 introduction, 100–101 

 making predictions, 102

 persisting the model, 106–107

 plotting linear regression line,

102–103 

 using  LinearRegression  class for

fitting model, 101–102 

    introduction to, 93–100

 polynomial regression in, 138–141 

 use of for SVM, 181–183

 use of  KNeighborsClassified  class

for KNN, 211–219 

 using K-Means in, 230–232 

score()  function, 106, 170

 Score Model, 256

 Seaborn

  defined, 85

 plotting points using, 182

 plotting using, 85–91 

    Series, Pandas. See  Pandas Series 

Series  class, 41

 shallow copy, 36

 sigmoid curve, 154–156, 162–163 

 Sigmoid function, 155, 156 

 Silhouette Coefficient, 232–236 

 slope, 184 

sns.get _ dataset _ names()

function, 88

sort()  function, 33

sort _ index()  function, 55, 56, 61

sort _ values()  function, 55, 56

sq()  function, 57, 58

sq _ root()  function, 57, 58, 59 

 statistics, as discipline of machine 

learning, 3

 StatLib library, 120 

 Student Performance Data Set, 98 

subplot()  function, 85

sum()  function, 59

 supervised learning

  classification using K-Nearest 

Neighbors (KNN) 

  calculating distance between

points, 207–208

 cross-validation, 216 

 described, 205–219

 exploring different values of k, 

212–215 

 finding optimal k, 218–219 

 implementation of, 208–209

 implementing KNN in Python, 

206–211 

 making predictions, 209

 parameter-tuning k, 217–218 

 using Scikit-learn ’ s

KNeighborsClassifier  class 

for, 211–219 

 visualizing different values of k,

209–211 

    classification using Support Vector

Machines (SVM) 

  adding third dimension, 187–188

 C parameter, 194–196

 formula for hyperplane, 180–181

 Gamma, 197–199 

 introduction, 177–186 

 kernel trick, 186–191 

 making predictions, 185–186

 maximum separability, 178–179 

 plotting 3D hyperplane, 189–191

 plotting hyperplane and margins, 

184–185 

 polynomial kernel, 199–200 

 Radial Basis function (RBF),

196–197

 support vectors, 179–180 

 types of kernels, 191–200 
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 using Scikit-learn for, 181–183

 using SVM for real-life problems, 

200–203 

    linear regression

  data cleansing, 125–126 

 defined, 120

 feature selection, 126–128

 formula for polynomial regression,

138

 getting intercept and coefficients, 

133 

 multiple regression, 128–130

 plotting 3D hyperplane, 133–135,

146–147

 polynomial regression, 135–147

 polynomial regression in Scikit-

learn, 138–141

 training the model, 131–132

 types of, 119–120

 understanding bias and variance, 

141–144

 using Boston dataset, 120–124 

 using polynomial multiple 

regression on Boston dataset, 

144–146 

    logistic regression

  defined, 151–153

 examining relationship between

features, 156–161

 finding intercept and coefficient, 

162

 getting the confusion matrix, 

166–168

 logit function, 153–154 

 making predictions, 163–164

 plotting features in 2D, 157–158

 plotting in 3D, 158–160 

 plotting ROC and finding area 

under the curve (AUC), 174

 plotting sigmoid curve, 162–163

 Receiver Operating Characteristic

(ROC) curve, 171–174

 sigmoid curve, 154–156 

 testing the model, 166 

 training the model using all 

features, 164–174

 training using one feature, 161–164 

 understanding odds, 153 

 using Breast Cancer Wisconsin 

(Diagnostic) Data Set, 156–174

    supervised learning algorithms, 5–6 

    Support Vector Classification (SVC),

183

 Support Vector Machines (SVM) 

  adding third dimension, 187–188

 C parameter, 194–196

 formula for hyperplane, 180–181

 Gamma, 197–199 

 introduction, 177–186 

 kernel trick, 186–191 

 making predictions, 185–186

 maximum separability, 178–179 

 plotting 3D hyperplane, 189–191

 plotting hyperplane and margins, 

184–185 

 polynomial kernel, 199–200 

 Radial Basis function (RBF), 196–197,

277, 278–279

 support vectors, 179–180 

 types of kernels, 191–200 

 use of for real-life problems, 200–203 

 using Scikit-learn for, 181–183

    support vectors, 179–180 

SVC  class, 182, 192 

 swarmplots, 90–91

    T 
  tabular data, manipulation of using 

Pandas, 39–65 

tail()  function, 49

 targets, 120

 3D hyperplane, 133–135, 136, 146–147,

189–191

 threshold, 152, 163

 Titanic, use of as experiment, 

244–246 

title()  function, 69

 traditional programming, described, 2
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train _ test _ split()  function, 131,

164 

transpose()  function, 54

 True Negative (TN), 167, 261 

 True Positive Rate (TPR), 168, 171–172,

173 

 True Positive (TP), 167, 260

 Tukey Fences, 113–115

 two-class classification problem, 4

 Two-Class Decision Jungle algorithm,

258, 259, 260

 Two-Class Logistic Regression 

algorithm, 258, 259, 260

 Two-Class Support Vector Machine 

algorithm, 258

    U 
  UCI Machine Learning Repository, 

97–98 

 underfitting, 143, 214–215 

 unlabeled data, 221, 222 

 unsupervised learning

  clustering using K-Means

  calculating Silhouette Coefficient, 

233–234 

 cleaning data, 237–238 

 clustering using K-Means, 239–240

 evaluating cluster size using 

Silhouette Coefficient, 232–236 

 finding optimal k, 234–236 

 finding optimal size classes, 

240–241 

 how it works, 222–225

 implementing K-Means in Python,

225–230 

 importing data, 237 

 plotting scatter plot, 238

 unsupervised learning using 

K-Means, 222 

 using K-Means in Scikit-learn, 

230–232 

 using K-Means to solve real-life 

problems, 236–241

 what is unsupervised learning? 

221–226

    unsupervised learning algorithms,

5, 7 

     V 
  variables

  dependent variable, 119

 explanatory variable, 120

 independent variable, 119

    variance, 141–144

view()  function, 36

    W 
  Wilkinson, Leland (author) 

The Grammar of Graphics: Statistics and 
Computing, 70 gg

     X
xlabel()  function, 69

xticks()  function, 76–77

    Y
  y-intercept, 184 

ylabel()  function, 69

    Z
zeros()  function, 20

 Z-score, 116–117


