
PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

PYTHON®
MACHINE LEARNING
WEI-MENG LEE

A DEFINITIVE GUIDE TO
MACHINE LEARNING
USING PYTHON
Machine learning is a hot topic today, due in no small part to the
rapid increase in computing power that allows a host of tasks to be
performed on a desktop machine. However, machine learning can
be overwhelming to the inexperienced. That’s why Python Machine
Learning provides a step-by-step approach that first educates
you on the underlying technologies, enabling you to build on that
knowledge base as you develop your machine learning skills.

You’ll first explore the libraries used in Python to facilitate machine
learning, including NumPy, Pandas, and matplotlib. Once you have
a firm foundation in those, you’ll look at machine learning using
Python and the Scikit-Learn libraries, where you’ll discover how
various algorithms such as regression, clustering, and classification
work behind the scenes. There’s a chapter showing how to perform
machine learning using the Microsoft Azure Machine Learning
Studio, which lets you start building models without needing to
code. Finally, you’ll learn how to deploy the models you have built
to be used by client applications.

WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a company specializing in
hands-on training on the latest technologies. His training courses focus
on learning by doing, and his hands-on approach to learning programming
clearly makes the subject easier to grasp. Wei-Meng is frequently mentioned
in online and print publications such as DevX.com, MobiForge.com, and
CoDe Magazine.

P
Y
T
H
O
N

® M
A

C
H

IN
E

 LE
A

R
N

IN
G

LEEWritten for those
without a strong
background in
machine learning,
Python Machine
Learning covers:

• �Fundamental libraries
used in Python to
enable machine learning:
NumPy, Pandas, and
matplotlib

• �Common machine
learning algorithms
including regression,
classification, clustering,
and anomaly detection

• �Machine learning using
Python and the Scikit-
Learn libraries

• �Deploying machine
learning models as
web services

• �Machine learning using
Microsoft Azure Machine
Learning Studio

• �Real-world examples
showing how machine
learning creates
solutions

Software Development   /General

$42.00 USA/$50.00 CAN

Cover Design: Wiley
Cover Image: ©Lidiia Moor/iStockphoto-background texture,
©Rick_Jo/iStockphoto-digital robotic brain

www.wiley.com

Python® Machine Learning

Python® Maachine
gLeaarningLeaarning

Wei-MMeng Lee

Python ® Machine Learning

 Published by

 John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

 Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

 Published simultaneously in Canada

 ISBN: 978-1-119-54563-7

 ISBN: 978-1-119-54569-9 (ebk)

 ISBN: 978-1-119-54567-5 (ebk)

 Manufactured in the United States of America

 10 9 8 7 6 5 4 3 2 1

 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Per-

missions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,

or online at http://www.wiley.com/go/permissions .

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including

without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought. Nei-

ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site

is referred to in this work as a citation and/or a potential source of further information does not mean that the author

or the publisher endorses the information the organization or website may provide or recommendations it may make.

Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between

when this work was written and when it is read.

 For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

 Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com . For more information about Wiley products, visit www.wiley.com .

Library of Congress Control Number: 2019931301

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its

affiliates, in the United States and other countries, and may not be used without written permission. Python is a regis-

tered trademark of Python Software Foundation. All other trademarks are the property of their respective owners. John

Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

 I dedicate this book with love to my dearest wife (Sze Wa) and girl (Chloe),
who have to endure my irregular work schedule and for their companionship

when I am trying to meet writing deadlines!

vii

 About the Author he Author

Wei-Meng Lee is a technologist and founder of Developer Learning Solutions

(http://www.learn2develop.net), a company specializing in hands-on training t

on the latest technologies.

 Wei-Meng has many years of training experience, and his training courses place

special emphasis on the learning-by-doing approach. His hands-on approach

to learning programming makes understanding the subject much easier than

just reading books, tutorials, and documentations.

 Wei-Meng ’ s name regularly appears in online and print publications such

as DevX.com , m MobiForge.com , and CoDe Magazine. You can contact Wei-Meng m

at: weimenglee@learn2develop.net .

ix

 About the Technical Editorcal Editor

Doug Mahugh is a software developer who began his career in 1978 as a For-

tran programmer for Boeing. Doug has worked for Microsoft since 2005 in

a variety of roles including developer advocacy, standards engagement, and

content development. Since learning Python in 2008, Doug has written samples

and tutorials on topics ranging from caching and continuous integration to

Azure Active Directory authentication and Microsoft Graph. Doug has spoken

at industry events in over 20 countries, and he has been Microsoft ’ s technical

representative to standards bodies including ISO/IEC, Ecma International,

OASIS, CalConnect, and others.

 Doug currently lives in Seattle with his wife Megan and two Samoyeds

named Jamie and Alice.

xi

 Credits Credits

Acquisitions Editor

 Devon Lewis

 Associate Publisher

 Jim Minatel

 Editorial Manager

 Pete Gaughan

 Production Manager

 Katie Wisor

 Project Editor

 Gary Schwartz

 Production Editor

 Barath Kumar Rajasekaran

 Technical Editor

 Doug Mahugh

 Copy Editor

 Kim Cofer

 Proofreader

 Nancy Bell

 Indexer

 Potomac Indexing, LLC

 Cover Designer

 Wiley

 Cover Image

 ©Lidiia Moor/iStockphoto-

background texture

 © Rick_Jo/iStockphoto-digital

robotic brain

xiii

 Acknowledgmentsdgments

 Writing a book is always exciting, but along with it come long hours of hard

work, straining to get things done accurately and correctly. To make a book

possible, a lot of unsung heroes work tirelessly behind the scenes. For this, I

would like to take this opportunity to thank a number of special people who

made this book possible.

 First, I want to thank my acquisitions editor Devon Lewis, who was my fi rst

point of contact for this book. Thank you, Devon, for giving me this opportu-

nity and for your trust in me!

 Next, a huge thanks to Gary Schwartz, my project editor, who was always a

pleasure to work with. Gary is always contactable, even when he is at the air-

port! Gary has been very patient with me, even though I have missed several

of my deadlines for the book. I know it threw a spanner into his plan, but he is

always accommodating. Working with him, I know my book is in good hands.

Thank you very much, Gary!

 Equally important is my technical editor—Doug Mahugh. Doug has been

very eager-eyed editing and testing my code, and never fails to let me know

if things do not work the way I intended. Thanks for catching my errors and

making the book a better read, Doug! I would also like to take this opportunity

to thank my production editor—Barath Kumar Rajasekaran. Without his hard

work, this book would not be even possible. Thanks, Barath!

 Last, but not least, I want to thank my parents and my wife, Sze Wa, for all

the support they have given me. They have selfl essly adjusted their schedules to

accommodate my busy schedule when I was working on this book. I love you all!

xv

Contents at a glancet a glance

Introduction xxiii

Chapter 1 Introduction to Machine Learning 1

Chapter 2 Extending Python Using NumPy 19

Chapter 3 Manipulating Tabular Data Using Pandas 39

Chapter 4 Data Visualization Using matplotlib 67

Chapter 5 Getting Started with Scikit-learn for Machine Learning 93

Chapter 6 Supervised Learning—Linear Regression 119

Chapter 7 Supervised Learning—Classifi cation Using
Logistic Regression 151

Chapter 8 Supervised Learning—Classifi cation Using Support
Vector Machines 177

Chapter 9 Supervised Learning—Classifi cation Using K-Nearest
Neighbors (KNN) 205

Chapter 10 Unsupervised Learning—Clustering Using K-Means 221

Chapter 11 Using Azure Machine Learning Studio 243

Chapter 12 Deploying Machine Learning Models 269

Index 285

xvii

ContentsContents

Introduction xxiii

Chapter 1 Introduction to Machine Learning 1
What Is Machine Learning? 2

What Problems Will Machine Learning Be Solving in This Book? 3

Classification 4

Regression 4

Clustering 5

Types of Machine Learning Algorithms 5

Supervised Learning 5

Unsupervised Learning 7

Getting the Tools 8
Obtaining Anaconda 8

Installing Anaconda 9

Running Jupyter Notebook for Mac 9

Running Jupyter Notebook for Windows 10

Creating a New Notebook 11

Naming the Notebook 12

Adding and Removing Cells 13

Running a Cell 14

Restarting the Kernel 16

Exporting Your Notebook 16

Getting Help 17

Chapter 2 Extending Python Using NumPy 19
What Is NumPy? 19
Creating NumPy Arrays 20
Array Indexing 22

xviii Contents

Boolean Indexing 22

Slicing Arrays 23

NumPy Slice Is a Reference 25

Reshaping Arrays 26
Array Math 27

Dot Product 29

Matrix 30

Cumulative Sum 31

NumPy Sorting 32

Array Assignment 34
Copying by Reference 34

Copying by View (Shallow Copy) 36

Copying by Value (Deep Copy) 37

Chapter 3 Manipulating Tabular Data Using Pandas 39
What Is Pandas? 39
Pandas Series 40

Creating a Series Using a Specifi ed Index 41

Accessing Elements in a Series 41

Specifying a Datetime Range as the Index of a Series 42

Date Ranges 43

Pandas DataFrame 45
Creating a DataFrame 45

Specifying the Index in a DataFrame 46

Generating Descriptive Statistics on the DataFrame 47

Extracting from DataFrames 49

Selecting the First and Last Five Rows 49

Selecting a Specific Column in a DataFrame 50

Slicing Based on Row Number 50

Slicing Based on Row and Column Numbers 51

Slicing Based on Labels 52

Selecting a Single Cell in a DataFrame 54

Selecting Based on Cell Value 54

Transforming DataFrames 54

Checking to See If a Result Is a DataFrame or Series 55

Sorting Data in a DataFrame 55

Sorting by Index 55

Sorting by Value 56

Applying Functions to a DataFrame 57

Adding and Removing Rows and Columns in a DataFrame 60

Adding a Column 61

Removing Rows 61

Removing Columns 62

Generating a Crosstab 63

Chapter 4 Data Visualization Using matplotlib 67
What Is matplotlib? 67
Plotting Line Charts 68

 Contents xix

Adding Title and Labels 69

Styling 69

Plotting Multiple Lines in the Same Chart 71

Adding a Legend 72

Plotting Bar Charts 73
Adding Another Bar to the Chart 74

Changing the Tick Marks 75

Plotting Pie Charts 77
Exploding the Slices 78

Displaying Custom Colors 79

Rotating the Pie Chart 80

Displaying a Legend 81

Saving the Chart 82

Plotting Scatter Plots 83
Combining Plots 83

Subplots 84

Plotting Using Seaborn 85
Displaying Categorical Plots 86

Displaying Lmplots 88

Displaying Swarmplots 90

Chapter 5 Getting Started with Scikit-learn for Machine Learning 93
Introduction to Scikit-learn 93
Getting Datasets 94

Using the Scikit-learn Dataset 94

Using the Kaggle Dataset 97

Using the UCI (University of California, Irvine)

Machine Learning Repository 97

Generating Your Own Dataset 98

Linearly Distributed Dataset 98

Clustered Dataset 98

Clustered Dataset Distributed in Circular Fashion 100

Getting Started with Scikit-learn 100
Using the LinearRegression Class for Fitting the Model 101

Making Predictions 102

Plotting the Linear Regression Line 102

Getting the Gradient and Intercept of the Linear

Regression Line 103

Examining the Performance of the Model by Calculating the

Residual Sum of Squares 104

Evaluating the Model Using a Test Dataset 105

Persisting the Model 106

Data Cleansing 107
Cleaning Rows with NaNs 108

Replacing NaN with the Mean of the Column 109

Removing Rows 109

Removing Duplicate Rows 110

Normalizing Columns 112

xx Contentsx

Removing Outliers 113

Tukey Fences 113

Z-Score 116

Chapter 6 Supervised Learning—Linear Regression 119
Types of Linear Regression 119
Linear Regression 120

Using the Boston Dataset 120

Data Cleansing 125

Feature Selection 126

Multiple Regression 128

Training the Model 131

Getting the Intercept and Coeffi cients 133

Plotting the 3D Hyperplane 133

Polynomial Regression 135
Formula for Polynomial Regression 138

Polynomial Regression in Scikit-learn 138

Understanding Bias and Variance 141

Using Polynomial Multiple Regression on the Boston Dataset 144

Plotting the 3D Hyperplane 146

Chapter 7 Supervised Learning—Classifi cation Using
Logistic Regression 151

What Is Logistic Regression? 151
Understanding Odds 153

Logit Function 153

Sigmoid Curve 154

Using the Breast Cancer Wisconsin (Diagnostic) Data Set 156
Examining the Relationship Between Features 156

Plotting the Features in 2D 157

Plotting in 3D 158

Training Using One Feature 161

Finding the Intercept and Coefficient 162

Plotting the Sigmoid Curve 162

Making Predictions 163

Training the Model Using All Features 164

Testing the Model 166

Getting the Confusion Matrix 166

Computing Accuracy, Recall, Precision, and Other Metrics 168

Receiver Operating Characteristic (ROC) Curve 171

Plotting the ROC and Finding the Area Under the

Curve (AUC) 174

Chapter 8 Supervised Learning—Classifi cation Using Support
Vector Machines 177

What Is a Support Vector Machine? 177
Maximum Separability 178

Support Vectors 179

 Contents xxi

Formula for the Hyperplane 180

Using Scikit-learn for SVM 181

Plotting the Hyperplane and the Margins 184

Making Predictions 185

Kernel Trick 186
Adding a Third Dimension 187

Plotting the 3D Hyperplane 189

Types of Kernels 191
C 194

Radial Basis Function (RBF) Kernel 196

Gamma 197

Polynomial Kernel 199

Using SVM for Real-Life Problems 200

Chapter 9 Supervised Learning—Classifi cation Using K-Nearest
Neighbors (KNN) 205

What Is K-Nearest Neighbors? 205
Implementing KNN in Python 206

Plotting the Points 206

Calculating the Distance Between the Points 207

Implementing KNN 208

Making Predictions 209

Visualizing Different Values of K 209

Using Scikit-Learn’s KNeighborsClassifi er Class for KNN 211

Exploring Different Values of K 213

Cross-Validation 216

Parameter-Tuning K 217

Finding the Optimal K 218

Chapter 10 Unsupervised Learning—Clustering Using K-Means 221
What Is Unsupervised Learning? 221

Unsupervised Learning Using K-Means 222

How Clustering in K-Means Works 222

Implementing K-Means in Python 225

Using K-Means in Scikit-learn 230

Evaluating Cluster Size Using the Silhouette Coeffi cient 232

Calculating the Silhouette Coefficient 233

Finding the Optimal K 234

Using K-Means to Solve Real-Life Problems 236
Importing the Data 237

Cleaning the Data 237

Plotting the Scatter Plot 238

Clustering Using K-Means 239

Finding the Optimal Size Classes 240

Chapter 11 Using Azure Machine Learning Studio 243
What Is Microsoft Azure Machine Learning Studio? 243

An Example Using the Titanic Experiment 244

Using Microsoft Azure Machine Learning Studio 246

xxii Contents

Uploading Your Dataset 247

Creating an Experiment 248

Filtering the Data and Making Fields Categorical 252

Removing the Missing Data 254

Splitting the Data for Training and Testing 254

Training a Model 256

Comparing Against Other Algorithms 258

Evaluating Machine Learning Algorithms 260

Publishing the Learning Model as a Web Service 261

Publishing the Experiment 261

Testing the Web Service 263

Programmatically Accessing the Web Service 263

Chapter 12 Deploying Machine Learning Models 269
Deploying ML 269
Case Study 270

Loading the Data 271

Cleaning the Data 271

Examining the Correlation Between the Features 273

Plotting the Correlation Between Features 274

Evaluating the Algorithms 277

Logistic Regression 277

K-Nearest Neighbors 277

Support Vector Machines 278

Selecting the Best Performing Algorithm 279

Training and Saving the Model 279

Deploying the Model 280
Testing the Model 282

Creating the Client Application to Use the Model 283

Index 285

xxiii

 Introduction oduction

 This book covers machine learning, one of the hottest topics in more recent

years. With computing power increasing exponentially and prices decreasing

simultaneously, there is no better time for machine learning. With machine

learning, tasks that usually require huge processing power are now possible on

desktop machines. Nevertheless, machine learning is not for the faint of heart—it

requires a good foundation in statistics, as well as programming knowledge.

Most books on the market either are too superficial or go into too much depth

that often leaves beginning readers gasping for air.

 This book will take a gentle approach to this topic. First, it will cover some of

the fundamental libraries used in Python that make machine learning possible.

In particular, you will learn how to manipulate arrays of numbers using the

NumPy library, followed by using the Pandas library to deal with tabular data.

Once that is done, you will learn how to visualize data using the matplotlib

library, which allows you to plot different types of charts and graphs so that

you can visualize your data easily.

 Once you have a fi rm foundation in the basics, I will discuss machine learning

using Python and the Scikit-Learn libraries. This will give you a solid under-

standing of how the various machine learning algorithms work behind the scenes.

 For this book, I will cover the common machine learning algorithms, such

as regression, clustering, and classifi cation.

 This book also contains a chapter where you will learn how to perform machine

learning using the Microsoft Azure Machine Learning Studio, which allows

developers to start building machine learning models using drag-and-drop

without needing to code. And most importantly, without requiring a deep

knowledge of machine learning.

xxiv Introductionv

 Finally, I will discuss how you can deploy the models that you have built,

so that they can be used by client applications running on mobile and desktop

devices.

 It is my key intention to make this book accessible to as many developers as

possible. To get the most out of this book, you should have some basic knowledge

of Python programming, and some foundational understanding of basic statistics.

And just like you will never be able to learn how to swim just by reading a

book, I strongly suggest that you try out the sample code while you are going

through the chapters. Go ahead and modify the code and see how the output

varies, and very often you would be surprised by what you can do.

 All the sample code in this book are available as Jupyter Notebooks (avail-

able for download from Wiley’s support page for this book, www.wiley.com/go/

leepythonmachinelearning). So you could just download them and try them

out immediately.

 Without further delay, welcome to Python Machine Learning! g

C H A P T E R

1

1

 Welcome to Python Machine Learning ! The fact that you are reading this bookg
is a clear indication of your interest in this very interesting and exciting topic.

 This book covers machine learning , one of the hottest programming topics in gg
more recent years. Machine learning (ML) is a collection of algorithms and tech-

niques used to design systems that learn from data. These systems are then able

to perform predictions or deduce patterns from the supplied data.

 With computing power increasing exponentially and prices decreasing simulta-

neously, there is no better time for machine learning. Machine learning tasks that

usually require huge processing power are now possible on desktop machines.

Nevertheless, machine learning is not for the faint of heart—it requires a good

foundation in mathematics, statistics, as well as programming knowledge. The

majority of the books in the market on machine learning go into too much detail,

which often leaves beginning readers gasping for air. Most of the discussion on

machine learning revolves heavily around statistical theories and algorithms, so

unless you are a mathematician or a PhD candidate, you will likely fi nd them

diffi cult to digest. For most people, developers in particular, what they want

is to have a foundational understanding of how machine learning works, and

most importantly, how to apply machine learning in their applications. It is with

this motive in mind that I set out to write this book.

 Introduction to Machine LearningLearning

2 Chapter 1 ■ Introduction to Machine Learning

 This book will take a gentle approach to machine learning. I will attempt to

do the following:

➤ Cover the libraries in Python that lay the foundation for machine

learning, namely NumPy, Pandas, and matplotlib.

➤ Discuss machine learning using Python and the Scikit-learn libraries.

Where possible, I will manually implement the relevant machine learning

algorithm using Python. This will allow you to understand how the

various machine learning algorithms work behind the scenes. Once this

is done, I will show how to use the Scikit-learn libraries, which make it

really easy to integrate machine learning into your own apps.

➤ Cover the common machine learning algorithms—regressions, clustering,

and classifications.

 T I P It is not the intention of this book to go into a deep discussion of machine
learning algorithms. Although there are chapters that discuss some of the
mathematical concepts behind the algorithms, it is my intention to make the subject
easy to understand and hopefully motivate you to learn further.

 Machine learning is indeed a very complex topic. But instead of discussing the

complex mathematical theories behind it, I will cover it using easy-to-understand

examples and walk you through numerous code samples. This code-intensive book

encourages readers to try out the numerous examples in the various chapters, which

are designed to be independent, compact, and easy to follow and understand.

 What Is Machine Learning?

 If you have ever written a program, you will be familiar with the diagram shown

in Figure 1.1 . You write a program, feed some data into it, and get your output.

For example, you might write a program to perform some accounting tasks for

your business. In this case, the data collected would include your sales records,

your inventory lists, and so on. The program would then take in the data and

calculate your profi ts or loss based on your sales records. You may also perhaps

churn out some nice and fanciful charts showing your sales performance. In

this case, the output is the profi t/loss statement, as well as other charts.

Data

Program
Output

Traditional Programming

Computer

 Figure 1.1 : In traditional programming, the data and the program produce the output

 Chapter 1 ■ Introduction to Machine Learning 3

 For many years, traditional desktop and web programming have dominated

the landscape, and many algorithms and methodologies have evolved to make

programs run more effi ciently. In more recent years, however, machine learning

has taken over the programming world. Machine learning has transformed the

paradigm in Figure 1.1 to a new paradigm, which is shown in Figure 1.2 . Instead

of feeding the data to the program, you now use the data and the output that

you have collected to derive your program (also known as the model). Using the

same accounting example, with the machine learning paradigm, you would take

the detailed sales records (which are collectively both the data and output) and

use them to derive a set of rules to make predictions. You may use this model

to predict the most popular items that will sell next year, or which items will

be less popular going forward.

 T I P Machine learning is about finding patterns in data.

 What Problems Will Machine Learning Be Solving in This Book?
 So, what exactly is machine learning? Machine learning (ML) is a collection

of algorithms and techniques used to design systems that learn from data. ML

algorithms have a strong mathematical and statistical basis, but they do not

take into account domain knowledge. ML consists of the following disciplines:

■ Scientifi c computing

■ Mathematics

■ Statistics

 A good application of machine learning is trying to determine if a particular

credit card transaction is fraudulent. Given past transaction records, the data

scientist ’ s job is to clean up and transform the data based on domain knowledge

so that the right ML algorithm can be applied in order to solve the problem (in

this case determine if a transaction is fraudulent). A data scientist needs to know

about which method of machine learning will best help in completing this task

and how to apply it. The data scientist does not necessarily need to know how

that method works, although knowing this will always help in building a more

accurate learning model.

Data

Output
Program

Machine Learning

Computer

 Figure 1.2 : In machine learning, the data and the output produce the program

4 Chapter 1 ■ Introduction to Machine Learning

 In this book, there are three main types of problems that we want to solve

using machine learning. These problem types are as follows:

Classifi cation: Is this A or B?

Regression: How much or how many?

Clustering: How is this organized?

 Classification

 In machine learning, classifi cation is identifying to which set of categories a new

observation belongs based on the set of training data containing in the observed

categories. Here are some examples of classifi cation problems:

■ Predicting the winner for the U.S. 2020 Presidential Election

■ Predicting if a tumor is cancerous

■ Classifying the different types of fl owers

 A classifi cation problem with two classes is known as a two-class classifi cation
problem. Those with more than two classes are known as multi-class classifi cation
problems.

 The outcome of a classifi cation problem is a discrete value indicating the

predicted class in which an observation lies. The outcome of a classifi cation

problem can also be a continuous value, indicating the likelihood of an obser-

vation belonging to a particular class. For example, candidate A is predicted

to win the election with a probability of 0.65 (or 65 percent). Here, 0.65 is the

continuous value indicating the confi dence of the prediction, and it can be

converted to a class value (“win” in this case) by selecting the prediction with

the highest probability.

 Chapter 7 through Chapter 9 will discuss classifi cations in more detail.

 Regression

Regression helps in forecasting the future by estimating the relationship between

variables. Unlike classifi cation (which predicts the class to which an observa-

tion belongs), regression returns a continuous output variable. Here are some

examples of regression problems:

■ Predicting the sales number for a particular item for the next quarter

■ Predicting the temperatures for next week

■ Predicting the lifespan of a particular model of tire

 Chapter 5 and Chapter 6 will discuss regressions in more detail.

 Chapter 1 ■ Introduction to Machine Learning 5

 Clustering

Clustering helps in grouping similar data points into intuitive groups. Given a

set of data, clustering helps you discover how they are organized by grouping

them into natural clumps.

 Examples of clustering problems are as follows:

■ Which viewers like the same genre of movies

■ Which models of hard drives fail in the same way

 Clustering is very useful when you want to discover a specifi c pattern in the

data. Chapter 10 will discuss clustering in more detail.

 Types of Machine Learning Algorithms
 Machine learning algorithms fall into two broad categories:

■ Supervised learning algorithms are trained with labeled data. In other words,

data composed of examples of the desired answers. For instance, a model

that identifi es fraudulent credit card use would be trained from a dataset

with labeled data points of known fraudulent and valid charges. Most

machine learning is supervised.

■ Unsupervised learning algorithms are used on data with no labels, and

the goal is to fi nd relationships in the data. For instance, you might

want to fi nd groupings of customer demographics with similar buying

habits.

 Supervised Learning

 In supervised learning, a labeled dataset is used. A labeled dataset means that

a group of data has been tagged with a label. This label provides informative

meaning to the data. Using the label, unlabeled data can be predicted to obtain

a new label. For example, a dataset may contain a series of records containing

the following fi elds, which record the size of the various houses and the prices

for which they were sold:

 House Size, Price Sold

 In this very simple example, Price Sold is the label. When plotted on a chart

(see Figure 1.3), this dataset can help you predict the price of a house that is yet

to be sold. Predicting a price for the house is a regression problem.

6 Chapter 1 ■ Introduction to Machine Learning

 Using another example, suppose that you have a dataset containing the

following:

 Tumor Size, Age, Malignant

 The Malignant fi eld is a label indicating if a tumor is cancerous. When you

plot the dataset on a chart (see Figure 1.4), you will be able to classify it into two

distinct groups, with one group containing the cancerous tumors and the other

containing the benign tumors. Using this grouping, you can now predict if a new

tumor is cancerous or not. This type of problem is known as a classifi cation problem.

 T I P Chapter 6 through Chapter 9 will discuss supervised learning algorithms in
more detail.

500

400

300

Predict prices
Regression

200

100

500 1000 1500 2000

Size in square feet
2500

Pr
ic

e
in

 K
s

x

x x

x x

x
x

 Figure 1.3 : Using regression to predict the expected selling price of a house

Predict discrete value
Classification

Tumor Size

Ag
e x

x
x

x x

x

x

O
O

O
O

O

O

O
O

x

 Figure 1.4 : Using classification to categorize data into distinct classes

 Chapter 1 ■ Introduction to Machine Learning 7

 Unsupervised Learning

 In unsupervised learning, the dataset used is not labeled. An easy way to visu-

alize unlabeled data is to consider the dataset containing the waist size and leg

length of a group of people:

 Waist Size, Leg Length

 Using unsupervised learning, your job is to try to predict a pattern in the

dataset. You may plot the dataset in a chart, as shown in Figure 1.5 .

 You can then use some clustering algorithms to fi nd the patterns in the data-

set. The end result might be the discovery of three distinct groups of clusters

in the data, as shown in Figure 1.6 .

Le
g

Le
ng

th

Waist Size

OOO

O
O
O

O

O O

OOO

O O O O

OO
O

O O

O
O
O

OO

 Figure 1.5 : Plotting the unlabeled data

Le
g

Le
ng

th

Waist Size

O
O
O

O O

O

O

O O

O O O

O

OO O
O O

O O

O O

OO

O

O

 Figure 1.6 : Clustering the points into distinct groups

8 Chapter 1 ■ Introduction to Machine Learning

 T I P Chapter 10 will discuss unsupervised learning algorithms in more detail.

 Getting the Tools

 For this book, all of the examples are tested using Python 3 and the Scikit-learn

library, a Python library that implements the various types of machine learning

algorithms, such as classifi cation, regression, clustering, decision tree, and

more. Besides Scikit-learn, you will also be using some complementary Python

libraries—NumPy, Pandas, and matplotlib.

 While you can install the Python interpreter and the other libraries individ-

ually on your computer, the trouble-free way to install all of these libraries is

to install the Anaconda package. Anaconda is a free Python distribution that

comes with all of the necessary libraries that you need to create data science

and machine learning projects.

 Anaconda includes the following:

■ The core Python language

■ The various Python packages (libraries)

■ conda , Anaconda ’ s own package manager for updating Anaconda and

packages

■ Jupyter Notebook (formerly known as iPython Notebook), a web-based kk
editor for working with Python projects

 With Anaconda, you have the flexibility to install different languages

(R, JavaScript, Julia, and so on) to work in Jupyter Notebook.

 Obtaining Anaconda
 To download Anaconda, go to https://www.anaconda.com/download/ . You will/

be able to download Anaconda for these operating systems (see Figure 1.7):

■ Windows

■ macOS

■ Linux

 Download the Python 3 for the platform you are using.

 N OT E At the time of this writing, Python is in version 3.7.

 T I P For this book, we will be using Python 3. So be sure to download the correct
version of Anaconda containing Python 3.

 Chapter 1 ■ Introduction to Machine Learning 9

 Installing Anaconda
 Installing Anaconda is mostly a non-event process. Double-click the fi le that

you have downloaded, and follow the instructions displayed on the screen. In

particular, Anaconda for Windows has the option to be installed only for the

local user. This option does not require administrator rights, and hence it is very

useful for users who are installing Anaconda on company-issued computers,

which are usually locked down with limited user privileges.

 Once Anaconda is installed, you will want to launch Jupyter Notebook. Jupyter

Notebook is an open source web application, which allows you to create and

share documents that contain documentation, code, and more.

 Running Jupyter Notebook for Mac

 To launch Jupyter from macOS, launch Terminal and type the following command:

 $ jupyter notebook

 You will see the following:

 $ jupyter notebook
 [I 18:57:03.642 NotebookApp] JupyterLab extension loaded from
/Users/weimenglee/anaconda3/lib/python3.7/site-packages/jupyterlab
 [I 18:57:03.643 NotebookApp] JupyterLab application directory is
/Users/weimenglee/anaconda3/share/jupyter/lab
 [I 18:57:03.648 NotebookApp] Serving notebooks from local directory:
/Users/weimenglee/Python Machine Learning
 [I 18:57:03.648 NotebookApp] The Jupyter Notebook is running at:

 Figure 1.7 : Downloading Anaconda for Python 3

10 Chapter 10 ■ Introduction to Machine Learning

 [I 18:57:03.648 NotebookApp]
http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a68107399b07f89
b85fa
 [I 18:57:03.648 NotebookApp] Use Control-C to stop this server and shut
down all kernels (twice to skip confirmation).
 [C 18:57:03.649 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first
time,
 to login with a token:
 http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a681073
99b07f89b85fa
 [I 18:57:04.133 NotebookApp] Accepting one-time-token-authenticated
connection from ::1

 Essentially, Jupyter Notebook starts a web server listening at port 8888. After

a while, a web browser will launch (see Figure 1.8).

 T I P The Home page of Jupyter Notebook shows the content of the directory from
where it is launched. Hence, it is always useful to change to the directory that contains
your source code first, prior to launching Jupyter Notebook.

 Running Jupyter Notebook for Windows

 The best way to launch Jupyter Notebook in Windows is to launch it from the

Anaconda Prompt . The Anaconda Prompt automatically runs the batch fi le located t
at C:\Anaconda3\Scripts\activate.bat with the following argument:

 C:\Anaconda3\Scripts\activate.bat C:\Anaconda3

 Figure 1.8 : The Jupyter Notebook Home page

 Chapter 1 ■ Introduction to Machine Learning 11

 T I P Note that the exact location of the Anaconda3 folder can vary. For example,
by default Windows 10 will install Anaconda in C:\Users\<username>\AppData\
Local\Continuum\anaconda3 instead of C:\Anaconda3 .

 This sets up the necessary paths for accessing Anaconda and its libraries.

 To launch the Anaconda Prompt, type Anaconda Prompt in the Windows

Run textbox. To launch Jupyter Notebook from the Anaconda Prompt, type

the following:

 (base) C:\Users\Wei-Meng Lee\Python Machine Learning>jupyter notebook

 You will then see this:

 [I 21:30:48.048 NotebookApp] JupyterLab beta preview extension loaded from
C:\Anaconda3\lib\site-packages\jupyterlab
 [I 21:30:48.048 NotebookApp] JupyterLab application directory is
C:\Anaconda3\share\jupyter\lab
 [I 21:30:49.315 NotebookApp] Serving notebooks from local directory:
C:\Users\Wei-Meng Lee\Python Machine Learning
 [I 21:30:49.315 NotebookApp] 0 active kernels
 [I 21:30:49.322 NotebookApp] The Jupyter Notebook is running at:
 [I 21:30:49.323 NotebookApp]
http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e450ce5e1c4
d7b2f
 [I 21:30:49.324 NotebookApp] Use Control-C to stop this server and shut
down all kernels (twice to skip confirmation).
 [C 21:30:49.336 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first
time,
 to login with a token:
 http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e45
0ce5e1c4d7b2f
 [I 21:30:49.470 NotebookApp] Accepting one-time-token-authenticated
connection from ::1

 Essentially, Jupyter Notebook starts a web server listening at port 8888. It then

launches your web browser showing you the page in Figure 1.9 .

 Creating a New Notebook

 To create a new notebook, locate the New button on the right side of the screen

and click it. You should be able to see Python 3 in the dropdown (see Figure 1.10).

Click this option.

 Your new notebook will now appear (see Figure 1.11).

12 Chapter 1 ■ Introduction to Machine Learning

 Naming the Notebook

 By default, your notebook will be named “Untitled”. To give it a suitable name,

click “Untitled” and type in a new name. Your notebook will be saved in the

directory from which you have launched Jupyter Notebook. The notebook will be

saved with a fi lename that you have given it, together with the .ipynb extension.

 Figure 1.9 : Jupyter Notebook showing the Home page

 Figure 1.10 : Creating a new Python 3 notebook

 Chapter 1 ■ Introduction to Machine Learning 13

 T I P Jupyter Notebook was previously known as iPython Notebook; hence thek
.ipynb extension.

 Adding and Removing Cells

 A notebook contains one or more cells. You can type Python statements in each

cell. Using Jupyter Notebook, you can divide your code into multiple snippets

and put them into cells so that they can be run individually.

 To add more cells to your notebook, click the + button. You can also use

the Insert menu item and select the option Insert Cell Above to add a new

cell above the current cell, or select the Insert Cell Below option to add a

new cell below the current cell.

 Figure 1.12 shows the notebook containing two cells.

 Figure 1.11 : The Python 3 notebook created in Jupyter Notebook

 Figure 1.12 : The notebook with two cells

14 Chapter 14 ■ Introduction to Machine Learning

 Running a Cell

 Each cell in a Jupyter Notebook can be run independently. To execute (run) the

code in a cell, press Ctrl+Enter, or click the arrow icon displayed to the left of

the cell when you hover your mouse over it (see Figure 1.13).

 When cells are run, the order in which they were executed is displayed as

a running number. Figure 1.14 shows two cells executed in the order shown.

The number 1 in the fi rst cell indicates that this cell was executed fi rst, followed by

number 2 in the second cell. The output of the cell is displayed immediately after

the cell. If you go back to the fi rst cell and run it, the number will then change to 3.

 As you can see, code that was executed previously in another cell retains its

value in memory when you execute the current cell. However, you need to be

careful when you are executing cells in various orders. Consider the example

in Figure 1.15 . Here, we have three cells. In the fi rst cell, we initialize the value

of s to a string and print its value in the second cell. In the third cell, we change

the value of s to another string.

 Figure 1.13 : Running (executing) the code in the cell

 Figure 1.14 : The number displayed next to the cell indicates the order in which it was run

 Chapter 1 ■ Introduction to Machine Learning 15

 Very often, in the midst of testing your code, it is very common that you

may make modifi cations in one cell and go back to an earlier cell to retest the

code. In this example, suppose that you go back and rerun the second cell. In

this case, you would now print out the new value of s (see Figure 1.16). At fi rst

glance, you may be expecting to see the string “Welcome to Python Machine

Learning,” but since the second cell was rerun after the third cell, the value of

s will take on the “Python Machine Learning” string.

 Figure 1.15 : The notebook with three cells

 Figure 1.16 : Executing the cells in non-linear order

16 Chapter 16 ■ Introduction to Machine Learning

 To restart the execution from the fi rst cell, you need to restart the kernel, or

select Cell ⇨ Run All.

 Restarting the Kernel

 As you can run any cell in your notebook in any order, after a while things may

get a little messy. You may want to restart the execution and start all over again.

This is where restarting the kernel is necessary (see Figure 1.17).

 T I P When your code goes into an infinite loop, you need to restart the kernel.
There are two common scenarios for restarting the kernel:
Restart & Clear Output Restart the kernel and clear all of the outputs. You can now run

any of the cells in any order you like.
Restart & Run All Restart the kernel and run all of the cells from the first to the last. This

is very useful if you are satisfied with your code and want to test it in its entirety.

 Exporting Your Notebook

 Once you are done with your testing in Jupyter Notebook, you can now export

code from your notebook to a Python fi le. To do so, select File ⇨ Download as

⇨ python (.py). (See Figure 1.18 .)

 A fi le with the same name as your notebook, but now with the .py extension,

will be downloaded to your computer.

 T I P Make sure that you select the python (.py) option and not the Python (.py)
option. The latter option saves the file with an .html extension.

 Figure 1.17 : Restarting the kernel

 Chapter 1 ■ Introduction to Machine Learning 17

 Getting Help

 You can get help in Jupyter Notebook quite easily. To get help on a function in

Python, position your cursor on the function name and press Shift+Tab. This

will display a pop-up known as the tooltip (see Figure 1.19).

 To expand the tooltip (see Figure 1.20), click the + button on the upper-right

corner of the tooltip. You can also get the expanded version of the tooltip when

you press Shift+Tab+Tab.

 Figure 1.18 : Exporting your notebook to a Python file

18 Chapter 18 ■ Introduction to Machine Learning

 Summary

 In this chapter, you learned about machine learning and the types of problems

that it can solve. You also studied the main difference between supervised and

unsupervised learning. For developers who are new to Python programming,

I strongly advise you to install Anaconda, which will provide all of the libraries

and packages you ’ ll need to follow the examples in this book. I know that you

are all eager to start learning, so let ’ s move onward to Chapter 2 !

 Figure 1.19 : The tooltip displays help information

 Figure 1.20 : Expanding the tooltip to show more detail

C H A P T E R

19

2

 Extending Python Using NumPy g NumPy

 What Is NumPy?

 In Python, you usually use the list data type to store a collection of items. The

Python list is similar to the concept of arrays in languages like Java, C#, and

JavaScript. The following code snippet shows a Python list:

 list1 = [1,2,3,4,5]

 Unlike arrays, a Python list does not need to contain elements of the same

type. The following example is a perfectly legal list in Python:

 list2 = [1,"Hello",3.14,True,5]

 While this unique feature in Python provides fl exibility when handling

multiple types in a list, it has its disadvantages when processing large amounts

of data (as is typical in machine learning and data science projects). The key

problem with Python ’ s list data type is its effi ciency. To allow a list to have

non-uniform type items, each item in the list is stored in a memory location, with

the list containing an “array” of pointers to each of these locations. A Python

list requires the following:

■ At least 4 bytes per pointer.

■ At least 16 bytes for the smallest Python object—4 bytes for a pointer,

4 bytes for the reference count, 4 bytes for the value. All of these together

round up to 16 bytes.

20 Chapter 20 ■ Extending Python Using NumPy

 Due to the way that a Python list is implemented, accessing items in a large list

is computationally expensive. To solve this limitation with Python ’ s list feature,

Python programmers turn to NumPy , an extension to the Python programming yy
language that adds support for large, multidimensional arrays and matrices,

along with a large library of high-level mathematical functions to operate on

these arrays.

 In NumPy, an array is of type ndarray (n-dimensional array), and all ele-

ments must be of the same type. An ndarray object represents a multidimen-

sional, homogeneous array of fi xed-size items, and it is much more effi cient

than Python ’ s list. The ndarray object also provides functions that operate on

an entire array at once.

 Creating NumPy Arrays

 Before using NumPy, you fi rst need to import the NumPy package (you may

use its conventional alias np if you prefer):

 import numpy as np

 The fi rst way to make NumPy arrays is to create them intrinsically, using the

functions built right into NumPy. First, you can use the arange() function to

create an evenly spaced array with a given interval:

 a1 = np.arange(10) # creates a range from 0 to 9
 print(a1) # [0 1 2 3 4 5 6 7 8 9]
 print(a1.shape) # (10,)

 The preceding statement creates a rank 1 array (one-dimensional) of ten ele-

ments. To get the shape of the array, use the shape property. Think of a1 as a

10×1 matrix.

 You can also specify a step in the arange() function. The following code

snippet inserts a step value of 2:

 a2 = np.arange(0,10,2) # creates a range from 0 to 9, step 2
 print(a2) # [0 2 4 6 8]

 To create an array of a specifi c size fi lled with 0s, use the zeros() function:

 a3 = np.zeros(5) # create an array with all 0s
 print(a3) # [0. 0. 0. 0. 0.]
 print(a3.shape) # (5,)

 You can also create two-dimensional arrays using the zeros() function:

 a4 = np.zeros((2,3)) # array of rank 2 with all 0s; 2 rows and 3
 # columns
 print(a4.shape) # (2,3)

 Chapter 2 ■ Extending Python Using NumPy 21

 print(a4)
 '''
 [[0. 0. 0.]
 [0. 0. 0.]]
 '''

 If you want an array fi lled with a specifi c number instead of 0, use the full()

function:

 a5 = np.full((2,3), 8) # array of rank 2 with all 8s
 print(a5)
 '''
 [[8 8 8]
 [8 8 8]]
 '''

 Sometimes, you need to create an array that mirrors an identity matrix. In

NumPy, you can do so using the eye() function:

 a6 = np.eye(4) # 4x4 identity matrix
 print(a6)
 '''
 [[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]
 '''

 The eye() function returns a 2-D array with ones on the diagonal and zeros

elsewhere.

 To create an array fi lled with random numbers, you can use the random()

function from the numpy.random module:

 a7 = np.random.random((2,4)) # rank 2 array (2 rows 4 columns) with
 # random values
 # in the half-open interval [0.0, 1.0)
 print(a7)
 '''
 [[0.48255806 0.23928884 0.99861279 0.4624779]
 [0.18721584 0.71287041 0.84619432 0.65990083]]
 '''

 Another way to create a NumPy array is to create it from a Python list as

follows:

 list1 = [1,2,3,4,5] # list1 is a list in Python
 r1 = np.array(list1) # rank 1 array
 print(r1) # [1 2 3 4 5]

 The array created in this example is a rank 1 array.

22 Chapter 2 ■ Extending Python Using NumPy

 Array Indexing

 Accessing elements in the array is similar to accessing elements in a Python list:

 print(r1[0]) # 1
 print(r1[1]) # 2

 The following code snippet creates another array named r2 , which is

two-dimensional:

 list2 = [6,7,8,9,0]
 r2 = np.array([list1,list2]) # rank 2 array
 print(r2)
 '''
 [[1 2 3 4 5]
 [6 7 8 9 0]]
 '''
 print(r2.shape) # (2,5) - 2 rows and 5 columns
 print(r2[0,0]) # 1
 print(r2[0,1]) # 2
 print(r2[1,0]) # 6

 Here, r2 is a rank 2 array, with two rows and fi ve columns.

 Besides using an index to access elements in an array, you can also use a list

as the index as follows:

 list1 = [1,2,3,4,5]
 r1 = np.array(list1)
 print(r1[[2,4]]) # [3 5]

 Boolean Indexing
 In addition to using indexing to access elements in an array, there is another

very cool way to access elements in a NumPy array. Consider the following:

 print(r1>2) # [False False True True True]

 This statement prints out a list containing Boolean values. What it actually

does is to go through each element in r1 and check if each element is more than

two. The result is a Boolean value, and a list of Boolean values is created at the

end of the process. You can feed the list results back into the array as the index:

 print(r1[r1>2]) # [3 4 5]

 Chapter 2 ■ Extending Python Using NumPy 23

 This method of accessing elements in an array is known as Boolean Indexing. gg
This method is very useful. Consider the following example:

 nums = np.arange(20)
 print(nums) # [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19]

 If you want to retrieve all of the odd numbers from the list, you could simply

use Boolean Indexing as follows:

 odd_num = nums[nums % 2 == 1]
 print(odd_num) # [1 3 5 7 9 11 13 15 17 19]

 Slicing Arrays
 Slicing in NumPy arrays is similar to how it works with a Python list. Consider

the following example:

 a = np.array([[1,2,3,4,5],
 [4,5,6,7,8],
 [9,8,7,6,5]]) # rank 2 array
 print(a)
 '''
 [[1 2 3 4 5]
 [4 5 6 7 8]
 [9 8 7 6 5]]
 '''

 To extract the last two rows and fi rst two columns, you can use slicing:

 b1 = a[1:3, :3] # row 1 to 3 (not inclusive) and first 3 columns
 print(b1)

 The preceding code snippet will print out the following:

 [[4 5 6]
 [9 8 7]]

 Let ’ s dissect this code. Slicing has the following syntax: [start:stop] . For

two-dimensional arrays, the slicing syntax becomes [start:stop, start:stop] .

The start:stop before the comma (,) refers to the rows, and the start:stop after

the comma (,) refers to the columns. Hence for [1:3, :3] , this means that you

want to extract the rows with index 1 right up to 3 (but not including 3), and

24 Chapter 24 ■ Extending Python Using NumPy

columns starting from the fi rst column right up to index 3 (but not including 3).

The general confusion regarding slicing is the end index. You need to remember

that the end index is not included in the answer. A better way to visualize slicing

is to write the index of each row and column between the numbers, instead of

at the center of the number, as shown in Figure 2.1 .

 Using this approach, it is now much easier to visualize how slicing works

(see Figure 2.2).

 What about negative indices? For example, consider the following:

 b2 = a[-2:,-2:]
 print(b2)

 Using the method just described, you can now write the negative row and

column indices, as shown in Figure 2.3 .

 You should now be able to derive the answer quite easily, which is as follows:

 [[7 8]
 [6 5]]

 Figure 2.1 : Writing the index for row and column in between the numbers

 Figure 2.2 : Performing slicing using the new approach

 Chapter 2 ■ Extending Python Using NumPy 25

 NumPy Slice Is a Reference
 It is noteworthy that the result of a NumPy slice is a reference and not a copy

of the original array. Consider the following:

 b3 = a[1:, 2:] # row 1 onwards and column 2 onwards
 # b3 is now pointing to a subset of a
 print(b3)

 The result is as follows:

 [[6 7 8]
 [7 6 5]]

 Here, b3 is actually a reference to the original array a (see Figure 2.4).

 Hence, if you were to change one of the elements in b3 as follows:

 b3[0,2] = 88 # b3[0,2] is pointing to a[1,4]; modifying it will
 # modify the original array
 print(a)

 Figure 2.3 : Writing the negative indices for rows and columns

 Figure 2.4 : Slicing returns a reference to the original array and not a copy

26 Chapter 26 ■ Extending Python Using NumPy

 The result will affect the content of a like this:

 [[1 2 3 4 5]
 [4 5 6 7 88]
 [9 8 7 6 5]]

 Another salient point to note is that the result of the slicing is dependent on

how you slice it. Here is an example:

 b4 = a[2:, :] # row 2 onwards and all columns
 print(b4)
 print(b4.shape)

 In the preceding statement, you are getting rows with index 2 and above and

all of the columns. The result is a rank 2 array, like this:

 [[9 8 7 6 5]]
 (1,5)

 If you have the following instead . . .

 b5 = a[2, :] # row 2 and all columns
 print(b5) # b5 is rank 1

 . . . then the result would be a rank 1 array:

 [9 8 7 6 5]

 Printing the shape of the array confi rms this:

 print(b5.shape) # (5,)

 Reshaping Arrays

 You can reshape an array to another dimension using the reshape() function.

Using the b5 (which is a rank 1 array) example, you can reshape it to a rank 2

array as follows:

 b5 = b5.reshape(1,-1)
 print(b5)
 '''
 [[9 8 7 6 5]]
 '''

 In this example, you call the reshape() function with two arguments. The

fi rst 1 indicates that you want to convert it into rank 2 array with 1 row, and the

 Chapter 2 ■ Extending Python Using NumPy 27

-1 indicates that you will leave it to the reshape() function to create the correct

number of columns. Of course, in this example, it is clear that after reshaping

there will be fi ve columns, so you can call the reshape() function as reshape(1,5) .

In more complex cases, however, it is always convenient to be able to use -1 to

let the function decide on the number of rows or columns to create.

 Here is another example of how to reshape b4 (which is a rank 2 array) to rank 1:

 b4.reshape(-1,)
 '''
 [9 8 7 6 5]
 '''

 The -1 indicates that you let the function decide how many rows to create as

long as the end result is a rank 1 array.

 T I P To convert a rank 2 array to a rank 1 array, you can also use the flatten() or
ravel() functions. The flatten() function always returns a copy of the array, while
the ravel() and reshape() functions return a view (reference) of the original array.

 Array Math

 You can perform array math very easily on NumPy arrays. Consider the fol-

lowing two rank 2 arrays:

 x1 = np.array([[1,2,3],[4,5,6]])
 y1 = np.array([[7,8,9],[2,3,4]])

 To add these two arrays together, you use the + operator as follows:

 print(x1 + y1)

 The result is the addition of each individual element in the two arrays:

 [[8 10 12]
 [6 8 10]]

 Array math is important, as it can be used to perform vector calculations.

A good example is as follows:

 x = np.array([2,3])
 y = np.array([4,2])
 z = x + y
 '''
 [6 5]
 '''

28 Chapter 28 ■ Extending Python Using NumPy

 Figure 2.5 shows the use of arrays to represent vectors and uses array addition

to perform vector addition.

 Besides using the + operator, you can also use the np.add() function to add

two arrays:

 np.add(x1,y1)

 Apart from addition, you can also perform subtraction, multiplication, as well

as division with NumPy arrays:

 print(x1 - y1) # same as np.subtract(x1,y1)
 '''
 [[-6 -6 -6]
 [2 2 2]]
 '''

 print(x1 * y1) # same as np.multiply(x1,y1)
 '''
 [[7 16 27]
 [8 15 24]]
 '''

 print(x1 / y1) # same as np.divide(x1,y1)
 '''
 [[0.14285714 0.25 0.33333333]
 [2. 1.66666667 1.5]]
 '''

 What ’ s a practical use of the ability to multiply or divide two arrays? As an

example, suppose you have three arrays: one containing the names of a group

of people, another the corresponding heights of these individuals, and the last

one the corresponding weights of the individuals in the group:

 names = np.array(['Ann','Joe','Mark'])
 heights = np.array([1.5, 1.78, 1.6])
 weights = np.array([65, 46, 59])

 Figure 2.5 : Using array addition for vector addition

 Chapter 2 ■ Extending Python Using NumPy 29

 Now say that you want to calculate the Body Mass Index (BMI) of this group

of people. The formula to calculate BMI is as follows:

■ Divide the weight in kilograms (kg) by the height in meters (m)

■ Divide the answer by the height again

 Using the BMI, you can classify a person as healthy, overweight, or under-

weight using the following categories:

■ Underweight if BMI < 18.5

■ Overweight if BMI > 25

■ Normal weight if 18.5 <= BMI <= 25

 Using array division, you could simply calculate BMI using the following

statement:

 bmi = weights/heights **2 # calculate the BMI
 print(bmi) # [28.88888889 14.51836889
23.046875]

 Finding out who is overweight, underweight, or otherwise is now very easy:

 print("Overweight: " , names[bmi>25])
Overweight: ['Ann']
 print("Underweight: " , names[bmi<18.5])
Underweight: ['Joe']
 print("Healthy: " , names[(bmi>=18.5) & (bmi<=25)])
Healthy: ['Mark']

 Dot Product
 Note that when you multiply two arrays, you are actually multiplying each of

the corresponding elements in the two arrays. Very often, you want to perform

a scalar product (also commonly known as dot product). The dot product is ant
algebraic operation that takes two coordinate vectors of equal size and returns

a single number. The dot product of two vectors is calculated by multiplying

corresponding entries in each vector and adding up all of those products. For

example, given two vectors—a = [a 1 , a2 , . . ., a n] and b = [b n 1 , b2 , . . ., bn]—the dotn

product of these two vectors is a 1 b 1 + a2 b 2 + . . . + a n bn .

 In NumPy, dot product is accomplished using the dot() function:

 x = np.array([2,3])
 y = np.array([4,2])
 np.dot(x,y) # 2x4 + 3x2 = 14

30 Chapter 20 ■ Extending Python Using NumPy

 Dot products also work on rank 2 arrays. If you perform a dot product of two

rank 2 arrays, it is equivalent to the following matrix multiplication :

 x2 = np.array([[1,2,3],[4,5,6]])
 y2 = np.array([[7,8],[9,10], [11,12]])
 print(np.dot(x2,y2)) # matrix multiplication
 '''
 [[58 64]
 [139 154]]
 '''

 Figure 2.6 shows how matrix multiplication works. The fi rst result, 58, is

derived from the dot product of the fi rst row of the fi rst array and the fi rst

column of the second array—1 × 7 + 2 × 9 + 3 × 11 = 58. The second result of 64

is obtained by the dot product of the fi rst row of the fi rst array and the second

column of the second array—1 × 8 + 2 × 10 + 3 × 12 = 64. And so on.

 Matrix
 NumPy provides another class in addition to arrays (ndarray): y matrix . The

matrix class is a subclass of the ndarray , and it is basically identical to the yy ndar-

ray with one notable exception—a matrix is strictly two-dimensional, while an

ndarray can be multidimensional. Creating a matrix object is similar to creating

a NumPy array:

 x2 = np.matrix([[1,2],[4,5]])
 y2 = np.matrix([[7,8],[2,3]])

 You can also convert a NumPy array to a matrix using the asmatrix() function:

 x1 = np.array([[1,2],[4,5]])
 y1 = np.array([[7,8],[2,3]])
 x1 = np.asmatrix(x1)
 y1 = np.asmatrix(y1)

 Figure 2.6 : Performing matrix multiplication on two arrays

 Chapter 2 ■ Extending Python Using NumPy 31

 Another important difference between an ndarray and a matrix occurs when

you perform multiplications on them. When multiplying two ndarray objects,

the result is the element-by-element multiplication that we have seen earlier.

On the other hand, when multiplying two matrix objects, the result is the dot

product (equivalent to the np.dot() function):

 x1 = np.array([[1,2],[4,5]])
 y1 = np.array([[7,8],[2,3]])
 print(x1 * y1) # element-by-element multiplication
 '''
 [[7 16]
 [8 15]]
 '''

 x2 = np.matrix([[1,2],[4,5]])
 y2 = np.matrix([[7,8],[2,3]])
 print(x2 * y2) # dot product; same as np.dot()
 '''
 [[11 14]
 [38 47]]
 '''

 Cumulative Sum
 Very often, when dealing with numerical data, there is a need to fi nd the

cumulative sum of numbers in a NumPy array. Consider the following array:

 a = np.array([(1,2,3),(4,5,6), (7,8,9)])
 print(a)
 '''
 [[1 2 3]
 [4 5 6]
 [7 8 9]]
 '''

 You can call the cumsum() function to get the cumulative sum of the elements:

 print(a.cumsum()) # prints the cumulative sum of all the
 # elements in the array
 # [1 3 6 10 15 21 28 36 45]

 In this case, the cumsum() function returns a rank 1 array containing the

cumulative sum of all of the elements in the a array. The cumsum() function also

takes in an optional argument— axis . Specifying an axis of 0 indicates that you

want to get the cumulative sum of each column:

 print(a.cumsum(axis=0)) # sum over rows for each of the 3 columns
 '''

32 Chapter 2 ■ Extending Python Using NumPy

 [[1 2 3]
 [5 7 9]
 [12 15 18]]
 '''

 Specifying an axis of 1 indicates that you want to get the cumulative sum of

each row:

 print(a.cumsum(axis=1)) # sum over columns for each of the 3 rows
 '''
 [[1 3 6]
 [4 9 15]
 [7 15 24]]
 '''

 Figure 2.7 makes it easy to understand how the axis parameter affects the

way that cumulative sums are derived.

 NumPy Sorting
 NumPy provides a number of effi cient sorting functions that make it very easy

to sort an array. The fi rst function for sorting is sort() , which takes in an array

and returns a sorted array. Consider the following:

 ages = np.array([34,12,37,5,13])
 sorted_ages = np.sort(ages) # does not modify the original array
 print(sorted_ages) # [5 12 13 34 37]
 print(ages) # [34 12 37 5 13]

 Figure 2.7 : Performing cumulative sums on columns and rows

 Chapter 2 ■ Extending Python Using NumPy 33

 As you can see from the output, the sort() function does not modify the

original array. Instead it returns a sorted array. If you want to sort the original

array, call the sort() function on the array itself as follows:

 ages.sort() # modifies the array
 print(ages) # [5 12 13 34 37]

 There is another function used for sorting—argsort() . To understand how

it works, it is useful to examine the following code example:

 ages = np.array([34,12,37,5,13])
 print(ages.argsort()) # [3 1 4 0 2]

 The argsort() function returns the indices that will sort an array. In the

preceding example, the fi rst element (3) in the result of the argsort() function

means that the smallest element after the sort is in index 3 of the original array,

which is the number 5. The next number is in index 1 , which is the number 12,

and so on. Figure 2.8 shows the meaning of the sort indices.

 To print the sorted ages array, use the result of argsort() as the index to the

ages array:

 print(ages[ages.argsort()]) # [5 12 13 34 37]

 What is the real use of argsort() ? Imagine that you have three arrays repre-

senting a list of people, along with their ages and heights:

 persons = np.array(['Johnny','Mary','Peter','Will','Joe'])
 ages = np.array([34,12,37,5,13])
 heights = np.array([1.76,1.2,1.68,0.5,1.25])

 Suppose that you want to sort this group of people by age. If you simply sort

the ages array by itself, the other two arrays would not be sorted correctly based

on age. This is where argsort() comes in really handy:

 sort_indices = np.argsort(ages) # performs a sort based on ages
 # and returns an array of indices
 # indicating the sort order

 Figure 2.8 : Understanding the meaning of the result of the argsort() function

34 Chapter 24 ■ Extending Python Using NumPy

 Once the sort indices are obtained, simply feed them into the three arrays:

 print(persons[sort_indices]) # ['Will' 'Mary' 'Joe' 'Johnny'
'Peter']
 print(ages[sort_indices]) # [5 12 13 34 37]
 print(heights[sort_indices]) # [0.5 1.2 1.25 1.76 1.68]

 They would now be sorted based on age. As you can see, Will is the youngest,

followed by Mary, and so on. The corresponding height for each person would

also be in the correct order.

 If you wish to sort based on name, then simply use argsort() on the persons

array and feed the resulting indices into the three arrays:

 sort_indices = np.argsort(persons) # sort based on names
 print(persons[sort_indices]) # ['Joe' 'Johnny' 'Mary' 'Peter'
'Will']
 print(ages[sort_indices]) # [13 34 12 37 5]
 print(heights[sort_indices]) # [1.25 1.76 1.2 1.68 0.5]

 To reverse the order of the names and display them in descending order, use

the Python [::-1] notation:

 reverse_sort_indices = np.argsort(persons) [::-1] # reverse the order of a list
 print(persons[reverse_sort_indices]) # ['Will' 'Peter' 'Mary'
 # 'Johnny' 'Joe']
 print(ages[reverse_sort_indices]) # [5 37 12 34 13]
 print(heights[reverse_sort_indices]) # [0.5 1.68 1.2 1.76
 # 1.25]

 Array Assignment

 When assigning NumPy arrays, you have to take note of how arrays are assigned.

Following are a number of examples to illustrate this.

 Copying by Reference
 Consider an array named a1 :

 list1 = [[1,2,3,4], [5,6,7,8]]
 a1 = np.array(list1)
 print(a1)
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 Chapter 2 ■ Extending Python Using NumPy 35

 When you try to assign a1 to another variable, a2 , a copy of the array is created:2

 a2 = a1 # creates a copy by reference
 print(a1)
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 print(a2)
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 However, a2 is actually pointing to the original a1 . So, any changes made to

either array will affect the other as follows:

 a2[0][0] = 11 # make some changes to a2
 print(a1) # affects a1
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 print(a2)
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 T I P In the “Reshaping Arrays” section earlier in this chapter, you saw how to
change the shape of an ndarray using the reshape() function. In addition to using
the reshape() function, you can also use the shape property of the ndarray to
change its dimension.

 If a1 now changes shape, a2 will also be affected as follows:

 a1.shape = 1,-1 # reshape a1
 print(a1)
 '''
 [[11 2 3 4 5 6 7 8]]
 '''

 print(a2) # a2 also changes shape
 '''
 [[11 2 3 4 5 6 7 8]]
 '''

36 Chapter 26 ■ Extending Python Using NumPy

 Copying by View (Shallow Copy)
 NumPy has a view() function that allows you to create a copy of an array by ref-

erence, while at the same time ensuring that changing the shape of the original

array does not affect the shape of the copy. This is known as a shallow copy. Let ’ sy
take a look at an example to understand how this works:

 a2 = a1.view() # creates a copy of a1 by reference; but changes
 # in dimension in a1 will not affect a2
 print(a1)
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 print(a2)
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 As usual, modify a value in a1 and you will see the changes in a2:2

 a1[0][0] = 11 # make some changes in a1
 print(a1)
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 print(a2) # changes is also seen in a2
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 Up until now, the shallow copy is identical to the copying performed in the

previous section. But with shallow copying, when you change the shape of a1 ,

a2 is unaffected:

 a1.shape = 1,-1 # change the shape of a1
 print(a1)
 '''
 [[11 2 3 4 5 6 7 8]]
 '''

 Chapter 2 ■ Extending Python Using NumPy 37

 print(a2) # a2 does not change shape
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 Copying by Value (Deep Copy)
 If you want to copy an array by value, use the copy() function, as in the fol-

lowing example:

 list1 = [[1,2,3,4], [5,6,7,8]]
 a1 = np.array(list1)
 a2 = a1.copy() # create a copy of a1 by value (deep copy)

 The copy() function creates a deep copy of the array—it creates a complete

copy of the array and its data. When you assign the copy of the array to another

variable, any changes made to the shape of the original array will not affect its

copy. Here ’ s the proof:

 a1[0][0] = 11 # make some changes in a1
 print(a1)
 '''
 [[11 2 3 4]
 [5 6 7 8]]
 '''

 print(a2) # changes is not seen in a2
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

 a1.shape = 1,-1 # change the shape of a1
 print(a1)
 '''
 [[11 2 3 4 5 6 7 8]]
 '''

 print(a2) # a2 does not change shape
 '''
 [[1 2 3 4]
 [5 6 7 8]]
 '''

38 Chapter 28 ■ Extending Python Using NumPy

 Summary

 In this chapter, you learned about the use of NumPy as a way to represent data

of the same type. You also learned how to create arrays of different dimensions,

as well as how to access data stored within the arrays. An important feature of

NumPy arrays is their ability to perform array math very easily and effi ciently,

without requiring you to write lots of code.

 In the next chapter, you will learn about another important library that makes

dealing with tabular data easy—Pandas.

C H A P T E R

39

3

 What Is Pandas?

 While NumPy arrays are a much-improved N-dimensional array object ver-

sion over Python ’ s list, it is insuffi cient to meet the needs of data science. In the

real world, data are often presented in table formats. For example, consider the

content of the CSV fi le shown here:

 ,DateTime,mmol/L
 0,2016-06-01 08:00:00,6.1
 1,2016-06-01 12:00:00,6.5
 2,2016-06-01 18:00:00,6.7
 3,2016-06-02 08:00:00,5.0
 4,2016-06-02 12:00:00,4.9
 5,2016-06-02 18:00:00,5.5
 6,2016-06-03 08:00:00,5.6
 7,2016-06-03 12:00:00,7.1
 8,2016-06-03 18:00:00,5.9
 9,2016-06-04 09:00:00,6.6
 10,2016-06-04 11:00:00,4.1
 11,2016-06-04 17:00:00,5.9
 12,2016-06-05 08:00:00,7.6
 13,2016-06-05 12:00:00,5.1
 14,2016-06-05 18:00:00,6.9
 15,2016-06-06 08:00:00,5.0

Manipulating Tabular Daata Using
Pandas

40 Chapter 30 ■ Manipulating Tabular Data Using Pandas

 16,2016-06-06 12:00:00,6.1
 17,2016-06-06 18:00:00,4.9
 18,2016-06-07 08:00:00,6.6
 19,2016-06-07 12:00:00,4.1
 20,2016-06-07 18:00:00,6.9
 21,2016-06-08 08:00:00,5.6
 22,2016-06-08 12:00:00,8.1
 23,2016-06-08 18:00:00,10.9
 24,2016-06-09 08:00:00,5.2
 25,2016-06-09 12:00:00,7.1
 26,2016-06-09 18:00:00,4.9

 The CSV fi le contains rows of data that are divided into three columns—

index, date and time of recording, and blood glucose readings in mmol/L. To be

able to deal with data stored as tables, you need a new data type that is more

suited to deal with it— Pandas . While Python supports lists and dictionaries for

manipulating structured data, it is not well suited for manipulating numerical

tables, such as the one stored in the CSV fi le. Pandas is a Python package providing

fast, fl exible, and expressive data structures designed to make working with

“relational” or “labeled” data both easy and intuitive.

 N OT E Pandas stands for Panel Data Analysis .

 Pandas supports two key data structures: Series and DataFrame. In this

chapter, you will learn how to work with Series and DataFrames in Pandas.

 Pandas Series

 A Pandas Series is a one-dimensional NumPy-like array, with each element hav-

ing an index (0, 1, 2, . . . by default); a Series behaves very much like a dictionary

that includes an index. Figure 3.1 shows the structure of a Series in Pandas.

0 1

index element
SERIES

1 2

2 3

3 4

4 5

 Figure 3.1 : A Pandas Series

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 41

 To create a Series, you fi rst need to import the pandas library (the convention

is to use pd as the alias) and then use the Series class:

 import pandas as pd
 series = pd.Series([1,2,3,4,5])
 print(series)

 The preceding code snippet will print the following output:

 0 1
 1 2
 2 3
 3 4
 4 5
 dtype: int64

 By default, the index of a Series starts from 0.

 Creating a Series Using a Specified Index
 You can specify an optional index for a Series using the index parameter:

 series = pd.Series([1,2,3,4,5], index=['a','b','c','d','c'])
 print(series)

 The preceding code snippet prints out the following:

 a 1
 b 2
 c 3
 d 4
 c 5
 dtype: int64

 It is worth noting that the index of a Series need not be unique, as the

preceding output shows.

 Accessing Elements in a Series
 Accessing an element in a Series is similar to accessing an element in an array.

You can use the position of the element as follows:

 print(series[2]) # 3
 # same as
 print(series.iloc[2]) # 3 - based on the position of the index

 The iloc indexer allows you to specify an element via its position.

42 Chapter 3 ■ Manipulating Tabular Data Using Pandas

 Alternatively, you can also specify the value of the index of the element you

wish to access like this:

 print(series['d']) # 4
 # same as
 print(series.loc['d']) # 4 - based on the label in the index

 The loc indexer allows you to specify the label (value) of an index.

 Note that in the preceding two examples, the result is an integer (which is

the type of this Series). What happens if we do the following?

 print(series['c']) # more than 1 row has the index 'c'

 In this case, the result would be another Series:

 c 3
 c 5
 dtype: int64

 You can also perform slicing on a Series:

 print(series[2:]) # returns a Series
 print(series.iloc[2:]) # returns a Series

 The preceding code snippet generates the following output:

 c 3
 d 4
 c 5
 dtype: int64

 Specifying a Datetime Range as the Index of a Series
 Often, you want to create a timeseries, such as a running sequence of dates in

a month. You could use the date _ range() function for this purpose:

 dates1 = pd.date_range('20190525', periods=12)
 print(dates1)

 The preceding code snippet will display the following:

 DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',
 '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',
 '2019-06-02', '2019-06-03', '2019-06-04', '2019-06-05'],
 dtype='datetime64[ns]', freq='D')

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 43

 To assign the range of dates as the index of a Series, use the index property

of the Series like this:

 series = pd.Series([1,2,3,4,5,6,7,8,9,10,11,12])
 series.index = dates1
 print(series)

 You should see the following output:

 2019-05-25 1
 2019-05-26 2
 2019-05-27 3
 2019-05-28 4
 2019-05-29 5
 2019-05-30 6
 2019-05-31 7
 2019-06-01 8
 2019-06-02 9
 2019-06-03 10
 2019-06-04 11
 2019-06-05 12
 Freq: D, dtype: int64

 Date Ranges
 In the previous section, you saw how to create date ranges using the date _

range() function. The periods parameter specifi es how many dates you want

to create, and the default frequency is D (for Daily). If you want to change the

frequency to month, use the freq parameter and set it to M :

 dates2 = pd.date_range('2019-05-01', periods=12, freq='M')
 print(dates2)

 This will print out the following dates:

 DatetimeIndex(['2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
 '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31',
 '2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30'],
 dtype='datetime64[ns]', freq='M')

 Notice that when the frequency is set to month, the day of each date will be

the last day of the month. If you want the date to start with the fi rst day of the

month, set the freq parameter to MS :

 dates2 = pd.date_range('2019-05-01', periods=12, freq= ' MS ')
 print(dates2)

44 Chapter 34 ■ Manipulating Tabular Data Using Pandas

 You should now see that each of the dates starts with the fi rst day of every

month:

 DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
 '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',
 '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],
 dtype='datetime64[ns]', freq='MS')

 T I P For other date frequencies, check out the Offset Aliases section of the
documentation at:
http://pandas.pydata.org/pandas-docs/stable/timeseries

.html#offset-aliases

 Notice that Pandas automatically interprets the date you specifi ed. In this

case, 2019-05-01 is interpreted as 1 st May, 2019. In some regions, developers

will specify the date in the dd-mm-yyyy format. Thus to represent 5 th January,

2019, you would specify it as follows:

 dates2 = pd.date_range('05-01-2019', periods=12, freq='MS')
 print(dates2)

 Note however that in this case, Pandas will interpret 05 as the month, 01 as

the day, and 2019 as the year, as the following output proves:

 DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
 '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',
 '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],
 dtype='datetime64[ns]', freq='MS')

 In addition to setting dates, you can also set the time:

 dates3 = pd.date_range('2019/05/17 09:00:00', periods=8, freq='H')
 print(dates3)

 You should see the following output:

 DatetimeIndex(['2019-05-17 09:00:00', '2019-05-17 10:00:00',
 '2019-05-17 11:00:00', '2019-05-17 12:00:00',
 '2019-05-17 13:00:00', '2019-05-17 14:00:00',
 '2019-05-17 15:00:00', '2019-05-17 16:00:00'],
 dtype='datetime64[ns]', freq='H')

 T I P If you review each of the code snippets that you have seen in this section, you
will see that Pandas allows you to specify the date in different formats, such as mm-
dd-yyyy, yy yyyy-mm-dd , and d yyyy/mm/dd , and it will automatically try to make sense of d
the dates specified. When in doubt, it is always useful to print out the range of dates to
confirm.

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 45

 Pandas DataFrame

 A Pandas DataFrame is a two-dimensional NumPy-like array. You can think of

it as a table. Figure 3.2 shows the structure of a DataFrame in Pandas. It also

shows you that an individual column in a DataFrame (together with the index)

is a Series.

 A DataFrame is very useful in the world of data science and machine learning,

as it closely mirrors how data are stored in real-life. Imagine the data stored in a

spreadsheet, and you would have a very good visual impression of a DataFrame.

A Pandas DataFrame is often used when representing data in machine learning.

Hence, for the remaining sections in this chapter, we are going to invest signifi cant

time and effort in understanding how it works.

 Creating a DataFrame
 You can create a Pandas DataFrame using the DataFrame() class:

 import pandas as pd
 import numpy as np

 df = pd.DataFrame(np.random.randn(10,4),
 columns=list('ABCD'))
 print(df)

 In the preceding code snippet, a DataFrame of 10 rows and 4 columns was

created, and each cell is fi lled with a random number using the randn() function.

Each column has a label: “A”, “B”, “C”, and “D”:

 A B C D
 0 0.187497 1.122150 -0.988277 -1.985934

0 x x

index a b

columns

rows

Series

DataFrame

1 x

2 x

3 x

4 x

x

x

x

x

 Figure 3.2 : A Pandas DataFrame

46 Chapter 36 ■ Manipulating Tabular Data Using Pandas

 1 0.360803 -0.562243 -0.340693 -0.986988
 2 -0.040627 0.067333 -0.452978 0.686223
 3 -0.279572 -0.702492 0.252265 0.958977
 4 0.537438 -1.737568 0.714727 -0.939288
 5 0.070011 -0.516443 -1.655689 0.246721
 6 0.001268 0.951517 2.107360 -0.108726
 7 -0.185258 0.856520 -0.686285 1.104195
 8 0.387023 1.706336 -2.452653 0.260466
 9 -1.054974 0.556775 -0.945219 -0.030295

 N OT E Obviously, you will see a different set of numbers in your own DataFrame,
as the numbers are generated randomly.

 More often than not, a DataFrame is usually loaded from a text fi le, such

as a CSV fi le. Suppose that you have a CSV fi le named data.csv with the

following content:

 A,B,C,D
 0.187497,1.122150,-0.988277,-1.985934
 0.360803,-0.562243,-0.340693,-0.986988
 -0.040627,0.067333,-0.452978,0.686223
 -0.279572,-0.702492,0.252265,0.958977
 0.537438,-1.737568,0.714727,-0.939288
 0.070011,-0.516443,-1.655689,0.246721
 0.001268,0.951517,2.107360,-0.108726
 -0.185258,0.856520,-0.686285,1.104195
 0.387023,1.706336,-2.452653,0.260466
 -1.054974,0.556775,-0.945219,-0.030295

 You can load the content of the CSV fi le into a DataFrame using the read _

csv() function:

 df = pd.read_csv('data.csv')

 Specifying the Index in a DataFrame
 Notice that the DataFrame printed in the previous section has an index starting

from 0. This is similar to that of a Series. Like a Series, you can also set the index

for the DataFrame using the index property, as in the following code snippet:

 df = pd.read_csv('data.csv')
 days = pd.date_range('20190525', periods=10)
 df.index = days
 print(df)

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 47

 You should see the following output:

 A B C D
 2019-05-25 0.187497 1.122150 -0.988277 -1.985934
 2019-05-26 0.360803 -0.562243 -0.340693 -0.986988
 2019-05-27 -0.040627 0.067333 -0.452978 0.686223
 2019-05-28 -0.279572 -0.702492 0.252265 0.958977
 2019-05-29 0.537438 -1.737568 0.714727 -0.939288
 2019-05-30 0.070011 -0.516443 -1.655689 0.246721
 2019-05-31 0.001268 0.951517 2.107360 -0.108726
 2019-06-01 -0.185258 0.856520 -0.686285 1.104195
 2019-06-02 0.387023 1.706336 -2.452653 0.260466
 2019-06-03 -1.054974 0.556775 -0.945219 -0.030295

 To get the index of the DataFrame, use the index property as follows:

 print(df.index)

 You will see the following output:

 DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',
 '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',
 '2019-06-02', '2019-06-03'],
 dtype='datetime64[ns]', freq='D')

 If you want to get the values of the entire DataFrame as a two-dimensional

ndarray , use the yy values property:

 print(df.values)

 You should see the following output:

 [[1.874970e-01 1.122150e+00 -9.882770e-01 -1.985934e+00]
 [3.608030e-01 -5.622430e-01 -3.406930e-01 -9.869880e-01]
 [-4.062700e-02 6.733300e-02 -4.529780e-01 6.862230e-01]
 [-2.795720e-01 -7.024920e-01 2.522650e-01 9.589770e-01]
 [5.374380e-01 -1.737568e+00 7.147270e-01 -9.392880e-01]
 [7.001100e-02 -5.164430e-01 -1.655689e+00 2.467210e-01]
 [1.268000e-03 9.515170e-01 2.107360e+00 -1.087260e-01]
 [-1.852580e-01 8.565200e-01 -6.862850e-01 1.104195e+00]
 [3.870230e-01 1.706336e+00 -2.452653e+00 2.604660e-01]
 [-1.054974e+00 5.567750e-01 -9.452190e-01 -3.029500e-02]]

 Generating Descriptive Statistics on the DataFrame
 The Pandas DataFrame comes with a few useful functions to provide you with

some detailed statistics about the values in the DataFrame. For example, you

48 Chapter 38 ■ Manipulating Tabular Data Using Pandas

can use the describe() function to get values such as count, mean, standard

deviation, minimum and maximum, as well as the various quartiles:

 print(df.describe())

 Using the DataFrame that you have used in the previous section, you should

see the following values:

 A B C D
 count 10.000000 10.000000 10.000000 10.000000
 mean -0.001639 0.174188 -0.444744 -0.079465
 std 0.451656 1.049677 1.267397 0.971164
 min -1.054974 -1.737568 -2.452653 -1.985934
 25% -0.149100 -0.550793 -0.977513 -0.731647
 50% 0.035640 0.312054 -0.569632 0.108213
 75% 0.317477 0.927768 0.104026 0.579784
 max 0.537438 1.706336 2.107360 1.104195

 If you simply want to compute the mean in the DataFrame, you can use the

mean() function, indicating the axis:

 print(df.mean(0)) # 0 means compute the mean for each columns

 You should get the following output:

 A -0.001639
 B 0.174188
 C -0.444744
 D -0.079465
 dtype: float64

 If you want to get the mean for each row, set the axis to 1:

 print(df.mean(1)) # 1 means compute the mean for each row

 You should get the following output:

 2019-05-25 -0.416141
 2019-05-26 -0.382280
 2019-05-27 0.064988
 2019-05-28 0.057294
 2019-05-29 -0.356173
 2019-05-30 -0.463850
 2019-05-31 0.737855
 2019-06-01 0.272293
 2019-06-02 -0.024707
 2019-06-03 -0.368428
 Freq: D, dtype: float64

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 49

 Extracting from DataFrames
 In Chapter 2 , “Extending Python Using NumPy,” you learned about NumPy and

how slicing allows you to extract part of a NumPy array. Likewise, in Pandas,

slicing applies to both Series and DataFrames.

 Because extracting rows and columns in DataFrames is one of the most common

tasks that you will perform with DataFrames (and potentially can be confusing),

let ’ s walk through the various methods one step at a time so that you have time

to digest how they work.

 Selecting the First and Last Five Rows

 Sometimes, the DataFrame might be too lengthy, and you just want to take a

glimpse of the fi rst few rows in the DataFrame. For this purpose, you can use

the head() function:

 print(df.head())

 The head() function prints out the fi rst fi ve rows in the DataFrame:

 A B C D
 2019-05-25 0.187497 1.122150 -0.988277 -1.985934
 2019-05-26 0.360803 -0.562243 -0.340693 -0.986988
 2019-05-27 -0.040627 0.067333 -0.452978 0.686223
 2019-05-28 -0.279572 -0.702492 0.252265 0.958977
 2019-05-29 0.537438 -1.737568 0.714727 -0.939288

 If you want more than fi ve rows (or less than fi ve), you can indicate the number

of rows that you want in the head() function as follows:

 print(df.head(8)) # prints out the first 8 rows

 There is also a tail() function:

 print(df.tail())

 The tail() function prints the last fi ve rows:

 A B C D
 2019-05-30 0.070011 -0.516443 -1.655689 0.246721
 2019-05-31 0.001268 0.951517 2.107360 -0.108726
 2019-06-01 -0.185258 0.856520 -0.686285 1.104195
 2019-06-02 0.387023 1.706336 -2.452653 0.260466
 2019-06-03 -1.054974 0.556775 -0.945219 -0.030295

 Like the head() function, the tail() function allows you to specify the number

of rows to print:

 print(df.tail(8)) # prints out the last 8 rows

50 Chapter 30 ■ Manipulating Tabular Data Using Pandas

 Selecting a Specific Column in a DataFrame

 To obtain one or more columns in a DataFrame, you can specify the column

label as follows:

 print(df['A'])
 # same as
 print(df.A)

 This will print out the “A” column together with its index:

 2019-05-25 0.187497
 2019-05-26 0.360803
 2019-05-27 -0.040627
 2019-05-28 -0.279572
 2019-05-29 0.537438
 2019-05-30 0.070011
 2019-05-31 0.001268
 2019-06-01 -0.185258
 2019-06-02 0.387023
 2019-06-03 -1.054974
 Freq: D, Name: A, dtype: float64

 Essentially, what you get in return is a Series. If you want to retrieve more

than one column, pass in a list containing the column labels:

 print(df[['A', 'B']])

 You should see the following output:

 A B
 2019-05-25 0.187497 1.122150
 2019-05-26 0.360803 -0.562243
 2019-05-27 -0.040627 0.067333
 2019-05-28 -0.279572 -0.702492
 2019-05-29 0.537438 -1.737568
 2019-05-30 0.070011 -0.516443
 2019-05-31 0.001268 0.951517
 2019-06-01 -0.185258 0.856520
 2019-06-02 0.387023 1.706336
 2019-06-03 -1.054974 0.556775

 In this case, instead of a Series, you are now getting a DataFrame.

 Slicing Based on Row Number

 First, let ’ s extract a range of rows in the DataFrame:

 print(df[2:4])

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 51

 This extracts row numbers 2 through 4 (not including row 4) from the

DataFrame, and you should see the following output:

 A B C D
 2019-05-27 -0.040627 0.067333 -0.452978 0.686223
 2019-05-28 -0.279572 -0.702492 0.252265 0.958977

 You can also use the iloc indexer for extracting rows based on row number:

 print(df.iloc[2:4])

 This will produce the same output as the preceding code snippet.

 Note that if you wish to extract specifi c rows (and not a range of rows) using

row numbers, you need to use the iloc indexer like this:

 print(df.iloc[[2,4]])

 This will print the following output:

 A B C D
 2019-05-27 -0.040627 0.067333 -0.452978 0.686223
 2019-05-29 0.537438 -1.737568 0.714727 -0.939288

 Without using the iloc indexer, the following will not work:

 print(df[[2,4]]) # error; need to use the iloc indexer

 The same applies when extracting a single row using a row number; you

need to use iloc :

 print(df.iloc[2]) # prints out row number 2

 Slicing Based on Row and Column Numbers

 If you wish to extract specifi c rows and columns in a DataFrame, you need to

use the iloc indexer. The following code snippet extracts row numbers 2 to 3,

and column numbers 1 to 3:

 print(df.iloc[2:4, 1:4])

 You should get the following output:

 B C D
 2019-05-27 0.067333 -0.452978 0.686223
 2019-05-28 -0.702492 0.252265 0.958977

 You can also extract specifi c rows and columns using a list as follows:

 print(df.iloc[[2,4], [1,3]])

52 Chapter 3 ■ Manipulating Tabular Data Using Pandas

 The preceding statement prints out row numbers 2 and 4, and column num-

bers 1 and 3:

 B D
 2019-05-27 0.067333 0.686223
 2019-05-29 -1.737568 -0.939288

 T I P To summarize, if you want to extract a range of rows using slicing, you can
simply use the following syntax: df[start _ row: w end _ row]ww . If you want to extract
specific rows or columns, use the iloc indexer: df.iloc[[row _ 1, 1 row _ 2,..., 2 row

_ n],[n column _ 1, 1 column _ 2,...,2 column _ n]]n .

 Slicing Based on Labels

 Besides extracting rows and columns using their row and column numbers, you

can also extract them by label (value). For example, the following code snippet

extracts a range of rows using their index values (which is of DatetimeIndex type):

 print(df['20190601':'20190603'])

 This will print out the following output:

 A B C D
 2019-06-01 -0.185258 0.856520 -0.686285 1.104195
 2019-06-02 0.387023 1.706336 -2.452653 0.260466
 2019-06-03 -1.054974 0.556775 -0.945219 -0.030295

 You can also use the loc indexer as follows:

 print(df.loc['20190601':'20190603'])

 Using the loc indexer is mandatory if you want to extract the columns using

their values, as the following example shows:

 print(df.loc['20190601':'20190603', ' A ' : ' C '])

 The preceding statement prints out the following:

 A B C
 2019-06-01 -0.185258 0.856520 -0.686285
 2019-06-02 0.387023 1.706336 -2.452653
 2019-06-03 -1.054974 0.556775 -0.945219

 T I P Unlike slicing by number, where start : end means extracting row d start throught
row end but not including d end , slicing by value will include the d end row. d

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 53

 You can also extract specifi c columns:

 print(df.loc['20190601':'20190603', [' A ' , ' C ']])

 The preceding statement prints out the following:

 A C
 2019-06-01 -0.185258 -0.686285
 2019-06-02 0.387023 -2.452653
 2019-06-03 -1.054974 -0.945219

 If you want to extract a specifi c row, use the loc indexer as follows:

 print(df.loc['20190601'])

 It will print out the following:

 A -0.185258
 B 0.856520
 C -0.686285
 D 1.104195
 Name: 2019-06-01 00:00:00, dtype: float64

 Oddly, if you want to extract specifi c rows with datetime as the index, you

cannot simply pass the date value to the loc indexer as follows:

 print(df.loc[['20190601','20190603']]) # KeyError

 First, you need to convert the date into a datetime format:

 from datetime import datetime
 date1 = datetime(2019, 6, 1, 0, 0, 0)
 date2 = datetime(2019, 6, 3, 0, 0, 0)
 print(df.loc[[date1,date2]])

 You will now see the output like this:

 A B C D
 2019-06-01 -0.185258 0.856520 -0.686285 1.104195
 2019-06-03 -1.054974 0.556775 -0.945219 -0.030295

 If you want a specifi c row and specifi c columns, you can extract them as follows:

 print(df.loc[date1, ['A','C']])

 And the output will look like this:

 A -0.185258
 C -0.686285
 Name: 2019-06-01 00:00:00, dtype: float64

 In the preceding example, because there is only a single specifi ed date, the

result is a Series.

54 Chapter 34 ■ Manipulating Tabular Data Using Pandas

 T I P To summarize, if you want to extract a range of rows using their labels, you can
simply use the following syntax: df[start _ label: l end _ label]l . If you want to
extract specific rows or columns, use the loc indexer with the following syntax: df
.loc[[row _ 1 _ label, l row _ 2 _ label ,...,row _ n _ label],[l column _ 1 _

label , l column _ 2 _ label,..., l column _ n _ label]]l .

 Selecting a Single Cell in a DataFrame
 If you simply wish to access a single cell in a DataFrame, there is a function that

does just that: at() . Using the same example as in the previous section, if you

want to get the value of a specifi c cell, you can use the following code snippet:

 from datetime import datetime
 d = datetime(2019, 6, 3, 0, 0, 0)
 print(df.at[d,'B'])

 You should see the following output:

 0.556775

 Selecting Based on Cell Value
 If you want to select a subset of the DataFrame based on certain values in the

cells, you can use the Boolean Indexing method, as described in Chapter 2 . The

following code snippet prints out all of the rows that have positive values in

the A and B columns:

 print(df[(df.A > 0) & (df.B>0)])

 You should see the following output:

 A B C D
 2019-05-25 0.187497 1.122150 -0.988277 -1.985934
 2019-05-31 0.001268 0.951517 2.107360 -0.108726
 2019-06-02 0.387023 1.706336 -2.452653 0.260466

 Transforming DataFrames
 If you need to refl ect the DataFrame over its main diagonal (converting columns

to rows and rows to columns), you can use the transpose() function:

 print(df.transpose())

 Alternatively, you can just use the T property, which is an accessor to the

transpose() function:

 print(df.T)

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 55

 In either case, you will see the following output:

 2019-05-25 2019-05-26 2019-05-27 2019-05-28 2019-05-29 2019-05-30 \
 A 0.187497 0.360803 -0.040627 -0.279572 0.537438 0.070011
 B 1.122150 -0.562243 0.067333 -0.702492 -1.737568 -0.516443
 C -0.988277 -0.340693 -0.452978 0.252265 0.714727 -1.655689
 D -1.985934 -0.986988 0.686223 0.958977 -0.939288 0.246721

 2019-05-31 2019-06-01 2019-06-02 2019-06-03
 A 0.001268 -0.185258 0.387023 -1.054974
 B 0.951517 0.856520 1.706336 0.556775
 C 2.107360 -0.686285 -2.452653 -0.945219
 D -0.108726 1.104195 0.260466 -0.030295

 Checking to See If a Result Is a DataFrame or Series
 One of the common problems that you will face with Pandas is knowing if the

result that you have obtained is a Series or a DataFrame. To solve this mystery,

here is a function that can make your life easier:

 def checkSeriesOrDataframe(var):
 if isinstance(var, pd.DataFrame):
 return 'Dataframe'
 if isinstance(var, pd.Series):
 return 'Series'

 Sorting Data in a DataFrame
 There are two ways that you can sort the data in a DataFrame:

1. Sort by labels (axis) using the sort _ index() function

2. Sort by value using the sort _ values() function

 Sorting by Index

 To sort using the axis, you need to specify if you want to sort by index or column.

Setting the axis parameter to 0 indicates that you want to sort by index:

 print(df.sort_index(axis=0, ascending=False)) # axis = 0 means sort by
 # index

 Based on the preceding statement, the DataFrame is now sorted according

to the index in descending order:

 A B C D
2019-06-03 -1.054974 0.556775 -0.945219 -0.030295
2019-06-02 0.387023 1.706336 -2.452653 0.260466

56 Chapter 36 ■ Manipulating Tabular Data Using Pandas

2019-06-01 -0.185258 0.856520 -0.686285 1.104195
2019-05-31 0.001268 0.951517 2.107360 -0.108726
2019-05-30 0.070011 -0.516443 -1.655689 0.246721
2019-05-29 0.537438 -1.737568 0.714727 -0.939288
2019-05-28 -0.279572 -0.702492 0.252265 0.958977
2019-05-27 -0.040627 0.067333 -0.452978 0.686223
2019-05-26 0.360803 -0.562243 -0.340693 -0.986988
2019-05-25 0.187497 1.122150 -0.988277 -1.985934

 T I P Note that the sort _ index() function returns the sorted DataFrame. The
original DataFrame is not affected. If you want the original DataFrame to be sorted,
use the inplace parameter and set it to True . In general, most operations involving
DataFrames do not alter the original DataFrame. So inplace is by default set to
False . When inplace is set to True , the function returns None as the result.

 Setting the axis parameter to 1 indicates that you want to sort by column labels:

 print(df.sort_index(axis=1, ascending=False)) # axis = 1 means sort by
 # column

 The DataFrame is now sorted based on the column labels (in descending order):

D C B A
 2019-05-25 -1.985934 -0.988277 1.122150 0.187497
 2019-05-26 -0.986988 -0.340693 -0.562243 0.360803
 2019-05-27 0.686223 -0.452978 0.067333 -0.040627
 2019-05-28 0.958977 0.252265 -0.702492 -0.279572
 2019-05-29 -0.939288 0.714727 -1.737568 0.537438
 2019-05-30 0.246721 -1.655689 -0.516443 0.070011
 2019-05-31 -0.108726 2.107360 0.951517 0.001268
 2019-06-01 1.104195 -0.686285 0.856520 -0.185258
 2019-06-02 0.260466 -2.452653 1.706336 0.387023
 2019-06-03 -0.030295 -0.945219 0.556775 -1.054974

 Sorting by Value

 To sort by value, use the sort _ values() function. The following statement sorts

the DataFrame based on the values in column “A”:

 print(df.sort_values('A', axis=0))

 The output now is now sorted (in ascending order) based on the value of

column “A” (the values are highlighted). Notice that the index is now jumbled up:

 A B C D
 2019-06-03 -1.054974 0.556775 -0.945219 -0.030295
 2019-05-28 -0.279572 -0.702492 0.252265 0.958977

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 57

 2019-06-01 -0.185258 0.856520 -0.686285 1.104195
 2019-05-27 -0.040627 0.067333 -0.452978 0.686223
 2019-05-31 0.001268 0.951517 2.107360 -0.108726
 2019-05-30 0.070011 -0.516443 -1.655689 0.246721
 2019-05-25 0.187497 1.122150 -0.988277 -1.985934
 2019-05-26 0.360803 -0.562243 -0.340693 -0.986988
 2019-06-02 0.387023 1.706336 -2.452653 0.260466
 2019-05-29 0.537438 -1.737568 0.714727 -0.939288

 To sort based on a particular index, set the axis parameter to 1 :

 print(df.sort_values('20190601', axis=1))

 You can see that the DataFrame is now sorted (in ascending order) based on

the row whose index is 2019-06-01 (the values are highlighted):

 C A B D
 2019-05-25 -0.988277 0.187497 1.122150 -1.985934
 2019-05-26 -0.340693 0.360803 -0.562243 -0.986988
 2019-05-27 -0.452978 -0.040627 0.067333 0.686223
 2019-05-28 0.252265 -0.279572 -0.702492 0.958977
 2019-05-29 0.714727 0.537438 -1.737568 -0.939288
 2019-05-30 -1.655689 0.070011 -0.516443 0.246721
 2019-05-31 2.107360 0.001268 0.951517 -0.108726
 2019-06-01 -0.686285 -0.185258 0.856520 1.104195
 2019-06-02 -2.452653 0.387023 1.706336 0.260466
 2019-06-03 -0.945219 -1.054974 0.556775 -0.030295

 Applying Functions to a DataFrame
 You can also apply functions to values in a DataFrame using the apply() function.

First, let ’ s defi ne two lambda functions as follows:

 import math
 sq_root = lambda x: math.sqrt(x) if x > 0 else x
 sq = lambda x: x**2

 The fi rst function, sq _ root() , takes the square root of the value x if it is a

positive number. The second function, sq() , takes the square of the value x .

 It is important to note that objects passed to the apply() function are Series

objects whose index is either the DataFrame ’ s index (axis=0) or the DataFrame ’ s

columns (axis=1).1

 We can now apply the functions to the DataFrame. First, apply the sq _ root()

function to column “B”:

 print(df.B.apply(sq_root))

58 Chapter 38 ■ Manipulating Tabular Data Using Pandas

 Since the result of df.B is a Series, we can apply the sq _ root() function to

it and it will return the following results:

 2019-05-25 1.029231
 2019-05-26 -0.562243
 2019-05-27 0.509398
 2019-05-28 -0.702492
 2019-05-29 -1.737568
 2019-05-30 -0.516443
 2019-05-31 0.987652
 2019-06-01 0.962021
 2019-06-02 1.142921
 2019-06-03 0.863813
 Freq: D, Name: B, dtype: float64

 You can also apply the sq() function to df.B :

 print(df.B.apply(sq))

 You should see the following results:

 2019-05-25 1.122150
 2019-05-26 0.316117
 2019-05-27 0.067333
 2019-05-28 0.493495
 2019-05-29 3.019143
 2019-05-30 0.266713
 2019-05-31 0.951517
 2019-06-01 0.856520
 2019-06-02 1.706336
 2019-06-03 0.556775
 Freq: D, Name: B, dtype: float64

 If you apply the sq _ root() function to the DataFrame as shown here,

 df.apply(sq_root) # ValueError

 you will get the following error:

 ValueError: ('The truth value of a Series is ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().', 'occurred at index A')

 This is because the object passed into the apply() function in this case is a

DataFrame, not a Series. Interestingly, you can apply the sq() function to the

DataFrame:

 df.apply(sq)

 This will print out the following:

 A B C D
 2019-05-25 0.035155 1.259221 0.976691 3.943934
 2019-05-26 0.130179 0.316117 0.116072 0.974145

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 59

 2019-05-27 0.001651 0.004534 0.205189 0.470902
 2019-05-28 0.078161 0.493495 0.063638 0.919637
 2019-05-29 0.288840 3.019143 0.510835 0.882262
 2019-05-30 0.004902 0.266713 2.741306 0.060871
 2019-05-31 0.000002 0.905385 4.440966 0.011821
 2019-06-01 0.034321 0.733627 0.470987 1.219247
 2019-06-02 0.149787 2.911583 6.015507 0.067843
 2019-06-03 1.112970 0.309998 0.893439 0.000918

 If you want to apply the sq _ root() function to the entire DataFrame, you

can iterate through the columns and apply the function to each column:

 for column in df:
 df[column] = df[column].apply(sq_root)
 print(df)

 The result will now look like this:

 A B C D
 2019-05-25 0.433009 1.059316 -0.988277 -1.985934
 2019-05-26 0.600669 -0.562243 -0.340693 -0.986988
 2019-05-27 -0.040627 0.259486 -0.452978 0.828386
 2019-05-28 -0.279572 -0.702492 0.502260 0.979274
 2019-05-29 0.733102 -1.737568 0.845415 -0.939288
 2019-05-30 0.264596 -0.516443 -1.655689 0.496710
 2019-05-31 0.035609 0.975457 1.451675 -0.108726
 2019-06-01 -0.185258 0.925484 -0.686285 1.050807
 2019-06-02 0.622112 1.306268 -2.452653 0.510359
 2019-06-03 -1.054974 0.746174 -0.945219 -0.030295

 The apply() function can be applied on either axis: index (0; apply function to

each column) or column (1; apply function to each row). For the two particular

lambda functions that we have seen thus far, it does not matter which axis you

apply it to, and the result would be the same. However, for some functions, the

axis that you apply it to does matter. For example, the following statement uses

the sum() function from NumPy and applies it to the rows of the DataFrame:

 print(df.apply(np.sum, axis=0))

 Essentially, you are summing up all of the values in each column. You should

see the following:

 A 1.128665
 B 1.753438
 C -4.722444
 D -0.185696
 dtype: float64

60 Chapter 30 ■ Manipulating Tabular Data Using Pandas

 If you set axis to 1 as follows,

 print(df.apply(np.sum, axis=1))

 you will see the summation applied across each row:

 2019-05-25 -1.481886
 2019-05-26 -1.289255
 2019-05-27 0.594267
 2019-05-28 0.499470
 2019-05-29 -1.098339
 2019-05-30 -1.410826
 2019-05-31 2.354015
 2019-06-01 1.104747
 2019-06-02 -0.013915
 2019-06-03 -1.284314
 Freq: D, dtype: float64

 Adding and Removing Rows and Columns in a DataFrame
 So far, all of the previous sections have involved extracting rows and columns

from DataFrames, as well as how to sort DataFrames. In this section, we will

focus on how to add and remove columns in DataFrames.

 Consider the following code snippet, where a DataFrame is created from a

dictionary:

 import pandas as pd

 data = {'name': ['Janet', 'Nad', 'Timothy', 'June', 'Amy'],
 'year': [2012, 2012, 2013, 2014, 2014],
 'reports': [6, 13, 14, 1, 7]}

 df = pd.DataFrame(data, index =
 ['Singapore', 'China', 'Japan', 'Sweden', 'Norway'])
 print(df)

 The DataFrame looks like this:

 name reports year
 Singapore Janet 6 2012
 China Nad 13 2012
 Japan Timothy 14 2013
 Sweden June 1 2014
 Norway Amy 7 2014

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 61

 Adding a Column

 The following code snippet shows you how to add a new column named “school”

to the DataFrame:

 import numpy as np

 schools = np.array(["Cambridge","Oxford","Oxford","Cambridge","Oxford"])
 df["school"] = schools
 print(df)

 Printing the DataFrame will look like this:

 name reports year school
 Singapore Janet 6 2012 Cambridge
 China Nad 13 2012 Oxford
 Japan Timothy 14 2013 Oxford
 Sweden June 1 2014 Cambridge
 Norway Amy 7 2014 Oxford

 Removing Rows

 To remove one or more rows, use the drop() function. The following code snip-

pet removes the two rows whose index value is “China” and “Japan”:

 print(df.drop(['China', 'Japan'])) # drop rows based on value of index

 The following output proves that the two rows are removed:

 name reports year school
 Singapore Janet 6 2012 Cambridge
 Sweden June 1 2014 Cambridge
 Norway Amy 7 2014 Oxford

 T I P Like the sort _ index() function, by default the drop() function does not
affect the original DataFrame. Use the inplace parameter if you want to modify the
original DataFrame.

 If you want to drop a row based on a particular column value, specify the

column name and the condition like this:

 print(df[df.name != 'Nad']) # drop row based on column value

 The preceding statement drops the row whose name is “ Nad ”:

 name reports year school
 Singapore Janet 6 2012 Cambridge

62 Chapter 3 ■ Manipulating Tabular Data Using Pandas

 Japan Timothy 14 2013 Oxford
 Sweden June 1 2014 Cambridge
 Norway Amy 7 2014 Oxford

 You can also remove rows based on row number:

 print(df.drop(df.index[1]))

 The preceding statement drops row number 1 (the second row):

 name reports year school
 Singapore Janet 6 2012 Cambridge
 Japan Timothy 14 2013 Oxford
 Sweden June 1 2014 Cambridge
 Norway Amy 7 2014 Oxford

 Since df.index[1] returns “China”, the preceding statement is equivalent to

df.drop[' China '] .

 If you want to drop multiple rows, specify the row numbers represented as

a list:

 print(df.drop(df.index[[1,2]])) # remove the second and
third row

 The preceding statement removes row numbers 1 and 2 (the second and the

third row):

 name reports year school
 Singapore Janet 6 2012 Cambridge
 Sweden June 1 2014 Cambridge
 Norway Amy 7 2014 Oxford

 The following removes the second to last row:

 print(df.drop(df.index[-2])) # remove second last row

 You should see the following output:

 name reports year school
 Singapore Janet 6 2012 Cambridge
 China Nad 13 2012 Oxford
 Japan Timothy 14 2013 Oxford
 Norway Amy 7 2014 Oxford

 Removing Columns

 The drop() function drops rows by default, but if you want to drop columns

instead, set the axis parameter to 1 like this:

 print(df.drop('reports', axis=1)) # drop column

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 63

 The preceding code snippet drops the reports column:

 name year school
 Singapore Janet 2012 Cambridge
 China Nad 2012 Oxford
 Japan Timothy 2013 Oxford
 Sweden June 2014 Cambridge
 Norway Amy 2014 Oxford

 If you want to drop by column number, specify the column number using

the columns indexer:

 print(df.drop(df.columns[1], axis=1)) # drop using columns number

 This will drop the second column (“ reports ”):

 name year school
 Singapore Janet 2012 Cambridge
 China Nad 2012 Oxford
 Japan Timothy 2013 Oxford
 Sweden June 2014 Cambridge
 Norway Amy 2014 Oxford

 You can also drop multiple columns:

 print(df.drop(df.columns[[1,3]], axis=1)) # drop multiple columns

 This will drop the second and fourth columns (“ reports ” and “ school ”):

 name year
 Singapore Janet 2012
 China Nad 2012
 Japan Timothy 2013
 Sweden June 2014
 Norway Amy 2014

 Generating a Crosstab
 In statistics, a crosstab is used to aggregate and jointly display the distribution

of two or more variables. It shows the relationships between these variables.

Consider the following example:

 df = pd.DataFrame(
 {
 "Gender": ['Male','Male','Female','Female','Female'],
 "Team" : [1,2,3,3,1]
 })
 print(df)

64 Chapter 34 ■ Manipulating Tabular Data Using Pandas

 Here you are creating a DataFrame using a dictionary. When the DataFrame

is printed out, you will see the following:

 Gender Team
 0 Male 1
 1 Male 2
 2 Female 3
 3 Female 3
 4 Female 1

 This DataFrame shows the gender of each person and the team to which the

person belongs. Using a crosstab, you would be able to summarize the data and

generate a table to show the distribution of each gender for each team. To do

that, you use the crosstab() function:

 print("Displaying the distribution of genders in each team")
 print(pd.crosstab(df.Gender, df.Team))

 You will see the following output:
 Displaying the distribution of genders in each team

 Team 1 2 3
 Gender
 Female 1 0 2
 Male 1 1 0

 If you want to see the distribution of each team for each gender, you simply

reverse the argument:

 print(pd.crosstab(df.Team, df.Gender))

 You will see the following output:

 Gender Female Male
 Team
 1 1 1
 2 0 1
 3 2 0

 Summary

 In this chapter, you witnessed the use of Pandas to represent tabular data. You

learned about the two main Pandas data structures: Series and DataFrame. I

attempted to keep things simple and to show you some of the most common

operations that you would perform on these data structures. As extracting

rows and columns from DataFrames is so common, I have summarized some

of these operations in Table 3.1 .

 Chapter 3 ■ Manipulating Tabular Data Using Pandas 65

 Table 3.1 : Common DataFrame Operations

DESCRIPTION CODE EXAMPLES

Extract a range of rows using row numbers df[2:4]

df.iloc[2:4]

Extract a single row using row number df.iloc[2]

Extract a range of rows and range of columns df.iloc[2:4, 1:4]

Extract a range of rows and specifi c columns
using positional values

df.iloc[2:4, [1,3]]

Extract specifi c row(s) and column(s) df.iloc[[2,4], [1,3]]

Extract a range of rows using labels df[' 20190601 ' : ' 20190603 ']

Extract a single row based on its label df.loc[' 20190601 ']

Extract specifi c row(s) using their labels df.loc[[date1,date2]]

Extract specifi c row(s) and column(s) using their
labels

df.loc[[date1,date2], [' A ' , ' C ']]

df.loc[[date1,date2], ' A ' : ' C ']

Extract a range of rows and columns using their
labels

df.loc[date1:date2, ' A ' : ' C ']

C H A P T E R

67

4

 What Is matplotlib?

 As the adage goes, “A picture is worth a thousand words.” This is probably most

true in the world of machine learning. No matter how large or how small your

dataset, it is often very useful (and many times, essential) that you are able to

visualize the data and see the relationships between the various features within

it. For example, given a dataset containing a group of students with their family

details (such as examination results, family income, educational background of

parents, and so forth), you might want to establish a relationship between the

students ’ results with their family income. The best way to do this would be to

plot a chart displaying the related data. Once the chart is plotted, you can then

use it to draw your own conclusions and determine whether the results have a

positive relationship to family income.

 In Python, one of the most commonly used tools for plotting is matplotlib.

Matplotlib is a Python 2D plotting library that you can use to produce publication-

quality charts and fi gures. Using matplotlib, complex charts and fi gures can

be generated with ease, and its integration with Jupyter Notebook makes it an

ideal tool for machine learning.

 In this chapter, you will learn the basics of matplotlib. In addition, you will

also learn about Seaborn, a complementary data visualization library that is

based on matplotlib.

 Data Visualization Using
matplotlibmatplotlib

68 Chapter 48 ■ Data Visualization Using matplotlib

 Plotting Line Charts

 To see how easy it is to use matplotlib, let ’ s plot a line chart using Jupyter

Notebook. Here is a code snippet that plots a line chart:

 %matplotlib inline
 import matplotlib.pyplot as plt

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2]
)

 Figure 4.1 shows the line chart plotted.

 The fi rst statement tells matplotlib to display the output of the plotting com-

mands in line within front-ends likes Jupyter Notebook. In short, it means

display the chart within the same page as your Jupyter Notebook:

 %matplotlib inline

 To use matplotlib, you import the pyplot module and name it plt (its com-

monly used alias):

 import matplotlib.pyplot as plt

 To plot a line chart, you use the plot() function from the pyplot module,

supplying it with two arguments as follows:

1. A list of values representing the x-axis

2. A list of values representing the y-axis

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

2 4 6 8 10

 Figure 4.1 : A line graph plotted using matplotlib

 Chapter 4 ■ Data Visualization Using matplotlib 69

 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2]

 That ’ s it. The chart will be shown in your Jupyter Notebook when you run it.

 Adding Title and Labels
 A chart without title and labels does not convey meaningful information.

Matplotlib allows you to add a title and labels to the axes using the title() ,

xlabel() , and ylabel() functions as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2]
)
plt.title("Results") # sets the title for the chart
plt.xlabel("Semester") # sets the label to use for the x-axis
plt.ylabel("Grade") # sets the label to use for the y-axis

 Figure 4.2 shows the chart with the title, as well as the labels for the x- and

y-axes.

 Styling
 Matplotlib lets you adjust every aspect of your plot and create beautiful charts.

However, it is very time consuming to create really beautiful charts and plots.

To help with this, matplotlib ships with a number of predefi ned styles. Styles

2

4.5

4.0

3.5

3.0

Gr
ad

e

2.5

2.0

1.5

1.0

4
Semester

Results

6 8 10

 Figure 4.2 : The line chart with the title and the labels for the x- and y-axes added

70 Chapter 40 ■ Data Visualization Using matplotlib

allow you to create professional-looking charts using a predefi ned look-and-

feel without requiring you to customize each element of the chart individually.

 The following example uses the ggplot style, based on a popular data visu-

alization package for the statistical programming language R:

 T I P The “gg” in ggplot comes from Leland Wilkinson ’ s landmark 1999 book, The
Grammar of Graphics: Statistics and Computing , (Springer, 2005).

 %matplotlib inline
 import matplotlib.pyplot as plt

from matplotlib import style
style.use("ggplot")

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2]
)
 plt.title("Results") # sets the title for the chart
 plt.xlabel("Semester") # sets the label to use for the x-axis
 plt.ylabel("Grade") # sets the label to use for the y-axis

 The chart styled using ggplot is shown in Figure 4.3 .

 Figure 4.4 shows the same chart with the grayscale styled applied.

4.5

4.0

3.5

3.0

Gr
ad

e

2.5

2.0

1.5

1.0

Semester

Results

2 4 6 8 10

 Figure 4.3 : The chart with the ggplot style applied to it

 Chapter 4 ■ Data Visualization Using matplotlib 71

 You can use the style.available property to see the list of styles supported:

 print(style.available)

 Here is a sample output:

 ['seaborn-dark', 'seaborn-darkgrid', 'seaborn-ticks', 'fivethirtyeight',
'seaborn-whitegrid', 'classic', '_classic_test', 'fast', 'seaborn-talk',
'seaborn-dark-palette', 'seaborn-bright', 'seaborn-pastel', 'grayscale',
'seaborn-notebook', 'ggplot', 'seaborn-colorblind', 'seaborn-muted',
'seaborn', 'Solarize_Light2', 'seaborn-paper', 'bmh', 'seaborn-white',
'dark_background', 'seaborn-poster', 'seaborn-deep']

 Plotting Multiple Lines in the Same Chart
 You can plot multiple lines in the same chart by calling the plot() function one

more time, as the following example shows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 from matplotlib import style
 style.use("ggplot")

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2]
)

plt.plot(
[1,2,3,4,5,6,7,8,9,10],
[3,4,2,5,2,4,2.5,4,3.5,3]

)

4.5

4.0

3.5

3.0

Gr
ad

e

2.5

2.0

1.5

1.0
2 4 6

Semester

Results

8 10

 Figure 4.4 : The chart with the grayscale style applied to it

72 Chapter 4 ■ Data Visualization Using matplotlib

 plt.title("Results") # sets the title for the chart
 plt.xlabel("Semester") # sets the label to use for the x-axis
 plt.ylabel("Grade") # sets the label to use for the y-axis

 Figure 4.5 shows the chart now containing two line graphs.

 Adding a Legend
 As you add more lines to a chart, it becomes more important to have a way

to distinguish between the lines. Here is where a legend is useful. Using the

previous example, you can add a label to each line plot and then show a legend

using the legend() function as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 from matplotlib import style
 style.use("ggplot")

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2],

label="Jim"
)

 plt.plot(
 [1,2,3,4,5,6,7,8,9,10],
 [3,4,2,5,2,4,2.5,4,3.5,3],

label="Tom"
)

5.0

4.5

Gr
ad

e

4.0

3.5

3.0

2.5

2.0

1.5

1.0

2 4
Semester

Results

6 8 10

 Figure 4.5 : The chart with two line graphs

 Chapter 4 ■ Data Visualization Using matplotlib 73

 plt.title("Results") # sets the title for the chart
 plt.xlabel("Semester") # sets the label to use for the x-axis
 plt.ylabel("Grade") # sets the label to use for the y-axis
plt.legend()

 Figure 4.6 shows the chart with a legend displayed.

 Plotting Bar Charts

 Besides plotting line charts, you can also plot bar charts using matplotlib. Bar
charts are useful for comparing data. For example, you want to be able to com-

pare the grades of a student over a number of semesters.

 Using the same dataset that you used in the previous section, you can plot a

bar chart using the bar() function as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt
 from matplotlib import style

 style.use("ggplot")

 plt.bar(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2],
 label = "Jim",
 color = "m", # m for magenta
 align = "center"
)

5.0

4.5

Gr
ad

e

4.0

3.5

3.0

2.5

2.0

1.5

1.0

2 4
Semester

Results

6 8 10

Jimm
Toomm

 Figure 4.6 : The chart with a legend displayed

74 Chapter 44 ■ Data Visualization Using matplotlib

 plt.title("Results")
 plt.xlabel("Semester")
 plt.ylabel("Grade")

 plt.legend()
 plt.grid(True, color="y")

 Figure 4.7 shows the bar chart plotted using the preceding code snippet.

 Adding Another Bar to the Chart
 Just like adding an additional line chart to the chart, you can add another bar

graph to an existing chart. The following statements in bold do just that:

 %matplotlib inline
 import matplotlib.pyplot as plt
 from matplotlib import style

 style.use("ggplot")

 plt.bar(
 [1,2,3,4,5,6,7,8,9,10],
 [2,4.5,1,2,3.5,2,1,2,3,2],
 label = "Jim",
 color = "m", # for magenta
 align = "center",
 alpha = 0.5
)

4

3

2

Gr
ad

e

1

0
2 4

Semester

Results

6 8 10

Jim

 Figure 4.7 : Plotting a bar chart

 Chapter 4 ■ Data Visualization Using matplotlib 75

plt.bar(
[1,2,3,4,5,6,7,8,9,10],
[1.2,4.1,0.3,4,5.5,4.7,4.8,5.2,1,1.1],
label = "Tim",
color = "g", # for green
align = "center",
alpha = 0.5

)

 plt.title("Results")
 plt.xlabel("Semester")
 plt.ylabel("Grade")

 plt.legend()
 plt.grid(True, color="y")

 Because the bars might overlap each with other, it is important to be able

to distinguish them by setting their alpha to 0.5 (making them translucent).

Figure 4.8 shows the two bar graphs in the same chart.

 Changing the Tick Marks
 So far in our charts, the tick marks on the x-axis always displays the value that

was supplied (such as 2, 4, 6, and so on). But what if your x-axis label is in the

form of strings like this?

 rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
 months = ['Jan','Feb','Mar','Apr','May','Jun',
 'Jul','Aug','Sep','Oct','Nov','Dec']

4

Gr
ad

e

3

2

1

0
2 4 6

Semester

Results

8 10

Jim
Tim

 Figure 4.8 : Plotting two overlapping bar charts on the same figure

76 Chapter 46 ■ Data Visualization Using matplotlib

 In this case, you might be tempted to plot the chart directly as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
 months = ['Jan','Feb','Mar','Apr','May','Jun',
 'Jul','Aug','Sep','Oct','Nov','Dec']

 plt.bar(months, rainfall, align='center', color='orange')
 plt.show()

 The preceding code snippet will create the chart shown in Figure 4.9 .

 Look carefully at the x-axis: the labels have been sorted alphabetically, and

hence the chart does not show the amount of rainfall from Jan to Dec in the

correct order. To fi x this, create a range object matching the size of the rainfall

list, and use it to plot the chart. To ensure that the month labels are displayed

correctly on the x-axis, use the xticks() function:

 %matplotlib inline
 import matplotlib.pyplot as plt

 rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
 months = ['Jan','Feb','Mar','Apr','May','Jun',
 'Jul','Aug','Sep','Oct','Nov','Dec']

 plt.bar(range(len(rainfall)), rainfall, align='center', color='orange')
plt.xticks(range(len(rainfall)), months, rotation= ' vertical ')
 plt.show()

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0
Apr Aug Dec Feb Jan Jul Jun Mar May Nov Oct Sep

 Figure 4.9 : The bar chart with the alphabetically arranged x-axis

 Chapter 4 ■ Data Visualization Using matplotlib 77

 The xticks() function sets the tick labels on the x-axis, as well the positioning

of the ticks. In this case, the labels are displayed vertically, as shown in Figure 4.10 .

 Plotting Pie Charts

 Another chart that is popular is the pie chart. A pie chart is a circular statistical

graphic divided into slices to illustrate numerical proportions. A pie chart is

useful when showing percentage or proportions of data. Consider the following

sets of data representing the various browser market shares:

 labels = ["Chrome", "Internet Explorer", "Firefox",
 "Edge","Safari", "Sogou Explorer","Opera","Others"]
 marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]

 In this case, it would be really benefi cial to be able to represent the total

market shares as a complete circle, with each slice representing the percentage

held by each browser.

 The following code snippet shows how you can plot a pie chart using the

data that we have:

 %matplotlib inline
 import matplotlib.pyplot as plt

 labels = ["Chrome", "Internet Explorer",
 "Firefox", "Edge","Safari",
 "Sogou Explorer","Opera","Others"]

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Ja
n

Fe
b

M
ar Ap
r

M
ay Ju
n

Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

 Figure 4.10 : The bar chart with the correct x-axis

78 Chapter 48 ■ Data Visualization Using matplotlib

 marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
 explode = (0,0,0,0,0,0,0,0)

 plt.pie(marketshare,
 explode = explode, # fraction of the radius with which to
 # offset each wedge
 labels = labels,
 autopct="%.1f%%", # string or function used to label the
 # wedges with their numeric value
 shadow=True,
 startangle=45) # rotates the start of the pie chart by
 # angle degrees counterclockwise from the

x-axis

 plt.axis("equal") # turns off the axis lines and labels
 plt.title("Web Browser Marketshare - 2018")
 plt.show()

 Figure 4.11 shows the pie chart plotted. Note that matplotlib will decide on

the colors to use for each of the slices in the pie chart.

 Exploding the Slices
 The explode parameter specifi es the fraction of the radius with which to offset each r
wedge. In the preceding example, we have set the explode parameter to all zeros:

 explode = (0,0,0,0,0,0,0,0)

 Say that we need to highlight the market share of the Firefox and Safari

browsers. In that case, we could modify the explode list as follows:

 explode = (0,0, 0.5 ,0, 0.8 ,0,0,0)

61.6%

11.0%

4.2%
3.8%
11.6%6%

4.2%% 11.5%5%

Others
Chrome Opera

Sogou Explorer

Safari

Edge

Firefox

Internet Explorer

Web Browser Marketshare - 2018

12.0%

 Figure 4.11 : Plotting a pie chart

 Chapter 4 ■ Data Visualization Using matplotlib 79

 Refreshing the chart, you will see the two slices exploding (separating) from

the main pie (see Figure 4.12).

 Displaying Custom Colors
 By default, matplotlib will decide on the colors to use for each of the slices in

the pie chart. Sometimes the colors that are selected may not appeal to you.

But you can certainly customize the chart to display using your desired colors.

 You can create a list of colors and then pass it to the colors parameter:

 %matplotlib inline
 import matplotlib.pyplot as plt

 labels = ["Chrome", "Internet Explorer",
 "Firefox", "Edge","Safari",
 "Sogou Explorer","Opera","Others"]

 marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
 explode = (0,0,0.5,0,0.8,0,0,0)
colors = [' yellowgreen ' , ' gold ' , ' lightskyblue ' , ' lightcoral ']

 plt.pie(marketshare,
 explode = explode, # fraction of the radius with which to
 # offset each wedge
 labels = labels,

colors = colors,
 autopct="%.1f%%", # string or function used to label the
 # wedges with their numeric value
 shadow=True,

61.6%

11.0%

4.2%

3.8%%6%11.6%
4.2%%4 11.5%5%

Others
Chrome Opera

Sogou ExplorerExplorer Safari

Edge

Firefox

Internet Explorer

Web Browser Marketshare - 2018

12.0%

 Figure 4.12 : The pie chart with two exploded slices

80 Chapter 40 ■ Data Visualization Using matplotlib

 startangle=45) # rotates the start of the pie chart by
 # angle degrees counterclockwise from the

x-axis
 plt.axis("equal") # turns off the axis lines and labels
 plt.title("Web Browser Marketshare - 2018")
 plt.show()

 Since there are more slices than the colors you specifi ed, the colors will be

recycled. Figure 4.13 shows the pie chart with the new colors.

 Rotating the Pie Chart
 Observe that we have set the startangle parameter to 45. This parameter spec-

ifi es the degrees by which to rotate the start of the pie chart, counterclockwise

from the x-axis. Figure 4.14 shows the effect of setting the startangle to 0 versus 45.

Web Browser Marketshare - 2018

Chrome

61.6%

12.0% 11.0%

4.2%

%4.2%4 Safari

Edge

Firefox

Internet Explorer

6%.6%1.6%1 6

5%1.5%1

Others

Opera
Sogou Explou Explorer

33.8%3.8%

 Figure 4.13 : Displaying the pie chart with custom colors

Web Browser Marketshare - 2018Web Browser Marketshare - 2018
Chrome

Chrome

61.6%

61.6%

12.0%
12.0%

11.0%

11.0%

4.2%

4.2%4.4.2%

4 %4.2%

4.2%

Others

Others

Opera

ploreplorer

Sogou Explorer

Safari

Safari

Edge

Edge
Firefox

Firefox

Internet Explorer

Internet Explorer

3.8%

3.8%33.8%

6%.6%1.6%1 61

1.61.66%%1.6%

%%5%1.51 5

%1.5%1 5%1.

startangle = 0 startangle = 45

45º45OperaOpera
Sogou ExSogou ExEx
ppp

3 8%3

4 2%

8

44

Ed

%5%

 Figure 4.14 : Setting the start angle for the pie chart

 Chapter 4 ■ Data Visualization Using matplotlib 81

 Displaying a Legend
 Like the line and bar charts, you can also display a legend in your pie charts.

But before you can do that, you need to handle the return values from the pie()

function:

pie = plt.pie(marketshare,
 explode = explode, # fraction of the radius with which to
 # offset each wedge
 labels = labels,
 colors = colors,
 autopct="%.1f%%", # string or function used to label the
 # wedges with their numeric value
 shadow=True,
 startangle=45) # rotates the start of the pie chart by
 # angle degrees counterclockwise from the

x-axis

 The pie() function returns a tuple containing the following values:

patches : A list of matplotlib.patches.Wedge instances.

texts : A list of the label matplotlib.text.Text instances.

autotexts : A list of Text instances for the numeric labels. This will only be

returned if the parameter autopct is not None .

 To display the legend, use the legend() function as follows:

 plt.axis("equal") # turns off the axis lines and labels
 plt.title("Web Browser Marketshare - 2018")
plt.legend(pie[0], labels, loc="best")
 plt.show()

 Figure 4.15 shows the legend displaying on the pie chart.

Chromerome

61.6%

rr

Chrome
Internet Explt Explorer
Firefoxfox
EdgEdge
SSafari
Sogou Explorerou Expl

6 %1 6%Opera6

Others

12.0% 11.0%

4.2%

4 %4.2%4

Others

Opera
Sogou Explou Explorer Safari

Edge

Firefox

Internet Explorer

3.8%3.8%6%.6%1.6%1 6

5%1.5%1

 Figure 4.15 : Displaying the legend on the pie chart

82 Chapter 4 ■ Data Visualization Using matplotlib

 T I P If the autopct parameter is not set to None , the pie() function returns the
tuple (patches , texts , autotexts).

 The positioning of the legend can be modifi ed through the loc parameter. It

can take in either a string value or an integer value. Table 4.1 shows the various

values that you can use for the loc parameter.

 Saving the Chart
 So far, you have been displaying the charts in a browser. At times, it is useful

to be able to save the image to disk. You can do so using the savefig() function

as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 labels = ["Chrome", "Internet Explorer",
 "Firefox", "Edge","Safari",
 "Sogou Explorer","Opera","Others"]

 ...
 plt.axis("equal") # turns off the axis lines and labels
 plt.title("Web Browser Marketshare - 2018")
plt.savefig("Webbrowsers.png", bbox_inches="tight")
 plt.show()

 Setting the bbox_inches parameter to tight removes all of the extra white

space around your fi gure.

 Table 4.1 : Location Strings and Corresponding Location Codes

LOCATION STRING LOCATION CODE

 ’ best ’ 0

 ’ upper right ’ 1

 ’ upper left ’ 2

 ’ lower left ’ 3

 ’ lower right ’ 4

 ’ right ’ 5

 ’ center left ’ 6

 ’ center right ’ 7

 ’ lower center ’ 8

 ’ upper center ’ 9

 ’ center ’ 10

 Chapter 4 ■ Data Visualization Using matplotlib 83

 Plotting Scatter Plots

 A scatter plot is a two-dimensional chart that uses dots (or other shapes) to rep-

resent the values for two different variables. Scatter plots are often used to show

how much the value of one variable is affected by another.

 The following code snippet shows a scatter plot with the x-axis containing a

list of numbers from 1 to 4, and the y-axis showing the cube of the x-axis values:

 %matplotlib inline
 import matplotlib.pyplot as plt

 plt.plot([1,2,3,4], # x-axis
 [1,8,27,64], # y-axis
 'bo') # blue circle marker
 plt.axis([0, 4.5, 0, 70]) # xmin, xmax, ymin, ymax
 plt.show()

 Figure 4.16 shows the scatter plot.

 Combining Plots
 You can combine multiple scatter plots into one chart as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt

 import numpy as np

 a = np.arange(1,4.5,0.1) # 1.0, 1.1, 1.2, 1.3...4.4
 plt.plot(a, a**2, 'y^', # yellow triangle_up marker

0.0

70

60

50

40

30

20

10

0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

 Figure 4.16 : Plotting a scatter plot

84 Chapter 44 ■ Data Visualization Using matplotlib

 a, a**3, 'bo', # blue circle
 a, a**4, 'r--',) # red dashed line

 plt.axis([0, 4.5, 0, 70]) # xmin, xmax, ymin, ymax
 plt.show()

 Figure 4.17 shows the chart displaying three scatter plots. You can customize

the shape of the points to draw on the scatter plot. For example, y^ indicates a

yellow triangle-up marker, bo indicates a blue circle, and so on.

 Subplots
 You can also plot multiple scatter plots separately and combine them into a

single fi gure:

 %matplotlib inline
 import matplotlib.pyplot as plt
 import numpy as np

 a = np.arange(1,5,0.1)

 plt.subplot(121) # 1 row, 2 cols, chart 1
 plt.plot([1,2,3,4,5],
 [1,8,27,64,125],
 'y^')

 plt.subplot(122) # 1 row, 2 cols, chart 2
 plt.plot(a, a**2, 'y^',
 a, a**3, 'bo',
 a, a**4, 'r--',)

70

60

50

40

30

20

10

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

 Figure 4.17 : Combining multiple scatter plots into a single chart

 Chapter 4 ■ Data Visualization Using matplotlib 85

 plt.axis([0, 4.5, 0, 70]) # xmin, xmax, ymin, ymax
 plt.show()

 Figure 4.18 shows two charts displayed in a single fi gure.

 The subplot() function adds a subplot to the current fi gure. One of the argu-

ments it takes in has the following format: nrow,ncols,index . In the precedingx
example, the 121 means “1 row, 2 columns, and chart 1.” Using this format, you

can have up to a maximum of nine fi gures. The subplot() function can also be

called with the following syntax:

 plt.subplot(1,2,1) # 1 row, 2 cols, chart 1

 Using this syntax, you can now have more than 10 charts in a single fi gure.

 T I P The scatter() function draws points without lines connecting them,
whereas the plot() function may or may not plot the lines, depending on the
arguments.

 Plotting Using Seaborn

 While matplotlib allows you to plot a lot of interesting charts, it takes a bit of

effort to get the chart that you want. This is especially true if you are dealing

with a large amount of data and would like to examine the relationships be -

tween multiple variables.

 Introducing Seaborn , a complementary plotting library that is based on the

matplotlib data visualization library. Seaborn ’ s strength lies in its ability to

1

0

20

40

60

80

100

120
70

60

50

40

30

20

10

0
2 3 4 10 21 3 45

 Figure 4.18 : Combining two charts into a single figure

86 Chapter 46 ■ Data Visualization Using matplotlib

make statistical graphics in Python, and it is closely integrated with the Pandas

data structure (covered in Chapter 3). Seaborn provides high-level abstractions

to allow you to build complex visualizations for your data easily. In short, you

write less code with Seaborn than with matplotlib, while at the same time you get

more sophisticated charts.

 Displaying Categorical Plots
 The fi rst example that you will plot is called a categorical plot (formerly known

as a factorplot). It is useful in cases when you want to plot the distribution of a

certain group of data. Suppose that you have a CSV fi le named drivinglicense

.csv containing the following data:

 gender,group,license
 men,A,1
 men,A,0
 men,A,1
 women,A,1
 women,A,0
 women,A,0
 men,B,0
 men,B,0
 men,B,0
 men,B,1
 women,B,1
 women,B,1
 women,B,1
 women,B,1

 This CSV fi le shows the distribution of men and women in two groups, A and

B, with 1 indicating that the person has a driver ’ s license and a 0 indicating no

driver ’ s license. If you are tasked with plotting a chart to show the proportion

of men and women in each group that has a driver ’ s license, you can use Sea-

born ’ s categorical plot.

 First, import the relevant modules:

 import matplotlib.pyplot as plt
 import seaborn as sns
 import pandas as pd

 Load the data into a Pandas dataframe:

 #---load data---
 data = pd.read_csv('drivinglicense.csv')

 Chapter 4 ■ Data Visualization Using matplotlib 87

 Call the catplot() function with the following arguments:

 #---plot a factorplot---
 g = sns.catplot(x="gender", y="license", col="group",
 data=data, kind="bar", ci=None, aspect=1.0)

 You pass in the dataframe through the data parameter, and you specify the

gender as the x-axis. The y-axis will tabulate the proportion of men and women r

who have a driver ’ s license, and hence you set y to license . You want to separatee

the chart into two groups based on group, hence you set col to group. p

 Next, you set the labels on the chart:

 #---set the labels---
 g.set_axis_labels("", "Proportion with Driving license")
 g.set_xticklabels(["Men", "Women"])
 g.set_titles("{col_var} {col_name}")

 #---show plot---
 plt.show()

 Figure 4.19 shows the categorical plot drawn by Seaborn. As you can see, 2/3

of the men and 1/3 of the women have driver ’ s licenses in Group A, while in

Group B, 1/4 of the men and all the women have driver ’ s licenses. Neat, isn ’ t it?

 Let ’ s take a look at another example of catplot. Using the Titanic dataset, let ’ s

plot a chart and see what the survival rate of men, women, and children looks

like in each of the three classes.

1.0

0.8

0.6

Pr
op

or
tio

n
w

ith
 D

riv
in

g
lic

en
ce

0.4

0.2

0.0
Men Women

group A

1.0

0.8

0.6

0.4

0.2

0.0
Men Women

group B

 Figure 4.19 : Displaying a factorplot showing the distribution of men and women who have
driver ’ s licenses in each group

88 Chapter 48 ■ Data Visualization Using matplotlib

 T I P Seaborn has a built-in dataset that you can load directly using the load_
dataset() function. To see the names of the dataset that you can load, use the sns
.get_dataset_names() function. Alternatively, if you want to download the data-
set for offline use, check out https://github.com/mwaskom/seaborn-data .
Note that you would need to have an Internet connection, as the load_dataset()_
function loads the specified dataset from the online repository.

 import matplotlib.pyplot as plt
 import seaborn as sns

 titanic = sns.load_dataset("titanic")
 g = sns.catplot(x="who", y="survived", col="class",
 data=titanic, kind="bar", ci=None, aspect=1)

 g.set_axis_labels("", "Survival Rate")
 g.set_xticklabels(["Men", "Women", "Children"])
 g.set_titles("{col_name} {col_var}")

 #---show plot---
 plt.show()

 Figure 4.20 shows the distribution of the data based on classes. As you can

see, both women and children have a higher chance of survival if they are in

the fi rst- and second-class cabins.

 Displaying Lmplots
 Another plot that is popular in Seaborn is the lmplot. An lmplot is a scatter plot.

Using another built-in dataset from Seaborn, you can plot the relationships bet-

ween the petal width and petal length of an iris plant and use it to determine

the type of iris plants: setosa, versicolor, or virginica.

Men Women

First class Second class Third class

Children
0.0

0.2

0.4

0.6

Su
rv

iv
al

 R
at

e

0.8

1.0

Men Women Children
0.0

0.2

0.4

0.6

0.8

1.0

Men Women Children
0.0

0.2

0.4

0.6

0.8

1.0

 Figure 4.20 : A factorplot showing the survival rate of men, women, and children in each of the
cabin classes in the Titanic dataset

 Chapter 4 ■ Data Visualization Using matplotlib 89

 import seaborn as sns
 import matplotlib.pyplot as plt

 #---load the iris dataset---
 iris = sns.load_dataset("iris")

 #---plot the lmplot---
 sns.lmplot('petal_width', 'petal_length', data=iris,
 hue='species', palette='Set1',
 fit_reg=False, scatter_kws={"s": 70})

 #---get the current polar axes on the current figure---
 ax = plt.gca()
 ax.set_title("Plotting using the Iris dataset")

 #---show the plot---
 plt.show()

 Figure 4.21 shows the scatter plot created using the lmplot() function.

0.0

1

2

3

4

5

6

7

0.5 1.0 1.5

petal_width

species
setosa

versicolor

virginica

Plotting using the Iris dataset

pe
ta

l_
le

ng
th

2.0 2.5

 Figure 4.21 : An lmplot showing the relationship between the petal length and width of the
iris dataset

90 Chapter 40 ■ Data Visualization Using matplotlib

 Displaying Swarmplots
 A swarmplot is a categorical scatterplot with nonoverlapping points. It is useful

for discovering the distribution of data points in a dataset. Consider the follow-

ing CSV fi le named salary.csv , which contains the following content:v

 gender,salary
 men,100000
 men,120000
 men,119000
 men,77000
 men,83000
 men,120000
 men,125000
 women,30000
 women,140000
 women,38000
 women,45000
 women,23000
 women,145000
 women,170000

 You want to show the distribution of salaries for men and women. In this

case, a swarmplot is an ideal fi t. The following code snippet does just that:

 import matplotlib.pyplot as plt
 import seaborn as sns
 import pandas as pd

 sns.set_style("whitegrid")

 #---load data---
 data = pd.read_csv('salary.csv')

 #---plot the swarm plot---
 sns.swarmplot(x="gender", y="salary", data=data)

 ax = plt.gca()
 ax.set_title("Salary distribution")

 #---show plot---
 plt.show()

 Figure 4.22 shows that, in this group, even though women have the highest

salary, it also has the widest income disparity.

 Chapter 4 ■ Data Visualization Using matplotlib 91

 Summary

 In this chapter, you learned how to use matplotlib to plot the different types of

charts that are useful for discovering patterns and relationships in a dataset. A

complementary plotting library, Seaborn, simplifi es plotting more sophisticated

charts. While this chapter does not contain an exhaustive list of charts that you

can plot with matplotlib and Seaborn, subsequent chapters will provide more

samples and uses for them.

160000

140000

120000

100000

sa
la

ry

80000

60000

40000

20000
men women

gender

Salary distribution

 Figure 4.22 : A swarmplot showing the distribution of salaries for men and women

C H A P T E R

93

5

 Introduction to Scikit-learn

 In Chapters 2 – 4 , you learned how to use Python together with libraries such

as NumPy and Pandas to perform number crunching, data visualization, and

analysis. For machine learning, you can also use these libraries to build your

own learning models. However, doing so would require you to have a strong

appreciation of the mathematical foundation for the various machine learning

algorithms—not a trivial matter.

 Instead of implementing the various machine learning algorithms manually

by hand, fortunately, someone else has already done the hard work for you.

Introducing Scikit-learn , a Python library that implements the various types

of machine learning algorithms, such as classifi cation, regression, clustering,

decision tree, and more. Using Scikit-learn, implementing machine learning is

now simply a matter of calling a function with the appropriate data so that you

can fi t and train the model.

 In this chapter, fi rst you will learn the various venues where you can get the

sample datasets to learn how to perform machine learning. You will then learn

how to use Scikit-learn to perform simple linear regression on a simple dataset.

Finally, you will learn how to perform data cleansing.

 Getting Started with Sciikit-learn
for Machine LearningLearning

94 Chapter 54 ■ Getting Started with Scikit-learn for Machine Learning

 Getting Datasets

 Often, one of the challenges in machine learning is obtaining sample datasets

for experimentation. In machine learning, when you are just getting started

with an algorithm, it is often useful to get started with a simple dataset that you

can create yourself to test that the algorithm is working correctly according to

your understanding. Once you clear this stage, it is time to work with a large

dataset, and for this you would need to fi nd the relevant source so that your

machine learning model can be as realistic as possible.

 Here are some places where you can get the sample dataset to practice your

machine learning:

■ Scikit-learn ’ s built-in dataset

■ Kaggle dataset

■ UCI (University of California, Irvine) Machine Learning Repository

 Let ’ s take a look at each of these in the following sections.

 Using the Scikit-learn Dataset
 Scikit-learn comes with a few standard sample datasets, which makes learning

machine learning easy. To load the sample datasets, import the datasets module

and load the desired dataset. For example, the following code snippets load the

Iris dataset :

 from sklearn import datasets
 iris = datasets.load_iris() # raw data of type Bunch

 T I P The Iris flower dataset or Fisher ’ s Iris dataset is a multivariate dataset intro-
duced by the British statistician and biologist Ronald Fisher. The dataset consists of
50 samples from each of three species of Iris (Iris setosa, Iris virginica, and Iris versi-
color). Four features were measured from each sample: the length and the width
of the sepals and petals in centimeters. Based on the combination of these four
features, Fisher developed a linear discriminant model to distinguish the species
from each other.

 The dataset loaded is represented as a Bunch object, a Python dictionary

that provides attribute-style access. You can use the DESCR property to obtain

a description of the dataset:

 print(iris.DESCR)

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 95

 More importantly, however, you can obtain the features of the dataset using

the data property:

 print(iris.data) # Features

 The preceding statement prints the following:

 [[5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
 ...
 [6.2 3.4 5.4 2.3]
 [5.9 3. 5.1 1.8]]

 You can also use the feature_names property to print the names of the features:

 print(iris.feature_names) # Feature Names

 The preceding statement prints the following:

 ['sepal length (cm)', 'sepal width (cm)',
 'petal length (cm)', 'petal width (cm)']

 This means that the dataset contains four columns—sepal length, sepal width,

petal length, and petal width. If you are wondering what a petal and sepal are,

Figure 5.1 shows the Tetramerous fl ower of Ludwigia octovalvis showing petals

and sepals (source: https://en.wikipedia.org/wiki/Sepal).

 Figure 5.1 : The petal and sepal of a flower

96 Chapter 56 ■ Getting Started with Scikit-learn for Machine Learning

 To print the label of the dataset, use the target property. For the label names,

use the target_names property:

 print(iris.target) # Labels
 print(iris.target_names) # Label names

 This prints out the following:

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 2 2 2 2 2 2
 2 2]
 ['setosa' 'versicolor' 'virginica']

 In this case, 0 represents setosa , 1 represents versicolor , and 2 represents rr virginica .

 T I P Note that not all sample datasets in Scikit-learn support the feature_names
and target_names properties.

 Figure 5.2 summarizes what the dataset looks like.

 Often, it is useful to convert the data to a Pandas dataframe, so that you can

manipulate it easily:

 import pandas as pd
 df = pd.DataFrame(iris.data) # convert features
 # to dataframe in Pandas
 print(df.head())

 These statements print out the following:

 0 1 2 3
 0 5.1 3.5 1.4 0.2
 1 4.9 3.0 1.4 0.2
 2 4.7 3.2 1.3 0.2
 3 4.6 3.1 1.5 0.2
 4 5.0 3.6 1.4 0.2

sepal length
5.1
4.9
...
5.9

sepal width
3.5
3.0
...
3.0

petal length
1.4
1.4
...
5.1

0 represents setosa, 1 represents versicolor, 2 represents virginicarr

petal width
0.2
0.2
...
1.8

target
0
0
...
2

 Figure 5.2 : The fields in the Iris dataset and its target

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 97

 Besides the Iris dataset, you can also load some interesting datasets in Scikit-

learn, such as the following:

 # data on breast cancer
 breast_cancer = datasets.load_breast_cancer()

 # data on diabetes
 diabetes = datasets.load_diabetes()

 # dataset of 1797 8x8 images of hand-written digits
 digits = datasets.load_digits()

 For more information on the Scikit-learn dataset, check out the documenta-

tion at http://scikit-learn.org/stable/datasets/index.html .

 Using the Kaggle Dataset
Kaggle is the world ’ s largest community of data scientists and machine learners.

What started off as a platform for offering machine learning competitions, Kaggle

now also offers a public data platform, as well as a cloud-based workbench for

data scientists. Google acquired Kaggle in March 2017.

 For learners of machine learning, you can make use of the sample datasets

provided by Kaggle at https://www.kaggle.com/datasets/ . Some of the inter-/

esting datasets include:

■ Women ’ s Shoe Prices: A list of 10,000 women ’ s shoes and the prices at

which they are sold (https://www.kaggle.com/datafiniti/womens-

shoes-prices)

■ Fall Detection Data from China: Activity of elderly patients along with

their medical information (https://www.kaggle.com/pitasr/falldata) a

■ NYC Property Sales: A year ’ s worth of properties sold on the NYC real

estate market (https://www.kaggle.com/new-york-city/nyc-property-

sales#nyc-rolling-sales.csv) v

■ US Flight Delay: Flight Delays for year 2016 (https://www.kaggle.com/

niranjan0272/us-flight-delay)y

 Using the UCI (University of California, Irvine) Machine
Learning Repository
 The UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/

datasets.html) is a collection of databases, domain theories, and data generators l

that are used by the machine learning community for the empirical analysis

98 Chapter 58 ■ Getting Started with Scikit-learn for Machine Learning

of machine learning algorithms. Here are some interesting ones from the huge

dataset it contains:

■ Auto MPG Data Set: A collection of data about the fuel effi ciency of dif-

ferent types of cars (https://archive.ics.uci.edu/ml/datasets/Auto+MPG)G

■ Student Performance Data Set: Predict student performance in secondary

education (high school) (https://archive.ics.uci.edu/ml/datasets/

Student+Performance)e

■ Census Income Data Set: Predict whether income exceeds $50K/yr. based

on census data (https://archive.ics.uci.edu/ml/datasets/census+income)e

 Generating Your Own Dataset
 If you cannot fi nd a suitable dataset for experimentation, why not generate one

yourself? The sklearn.datasets.samples_generator module from the Scikit-

learn library contains a number of functions to let you generate different types

of datasets for different types of problems. You can use it to generate datasets of

different distributions, such as the following:

■ Linearly distributed datasets

■ Clustered datasets

■ Clustered datasets distributed in circular fashion

 Linearly Distributed Dataset

 The make_regression() function generates data that is linearly distributed.

You can specify the number of features that you want, as well as the standard

deviation of the Gaussian noise applied to the output:

 %matplotlib inline
 from matplotlib import pyplot as plt
 from sklearn.datasets.samples_generator import make_regression

 X, y = make_regression(n_samples=100, n_features=1, noise=5.4)
 plt.scatter(X,y)

 Figure 5.3 shows the scatter plot of the dataset generated.

 Clustered Dataset

 The make_blobs() function generates n number of clusters of random data. This

is very useful when performing clustering in unsupervised learning (Chapter 9 ,

“Supervised Learning—Classifi cation using K Nearest Neighbors (KNN)”):

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 99

 %matplotlib inline
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import make_blobs

 X, y = make_blobs(500, centers=3) # Generate isotropic Gaussian
 # blobs for clustering

 rgb = np.array(['r', 'g', 'b'])

 # plot the blobs using a scatter plot and use color coding
 plt.scatter(X[:, 0], X[:, 1], color=rgb[y])

 Figure 5.4 shows the scatter plot of the random dataset generated.

–1.5

–150

–100

–50

0

50

100

150

200

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0

 Figure 5.3 : Scatter plot showing the linearly distributed data points

–7.5
–6

–4

–2

0

2

4

6

8

–5.0 –2.5 0.0 2.5 5.0 7.5 10.0

 Figure 5.4 : Scatter plot showing the three clusters of data points generated

100 Chapter 50 ■ Getting Started with Scikit-learn for Machine Learning

 Clustered Dataset Distributed in Circular Fashion

 The make_circles()_ function generates a random dataset containing a large circle

embedding a smaller circle in two dimensions. This is useful when performing

classifi cations, using algorithms like SVM (Support Vector Machines). SVM will

be covered in Chapter 8 , “Supervised Learning—Classifi cation using SVM.”

 %matplotlib inline
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import make_circles

 X, y = make_circles(n_samples=100, noise=0.09)

 rgb = np.array(['r', 'g', 'b'])
 plt.scatter(X[:, 0], X[:, 1], color=rgb[y])

 Figure 5.5 shows the scatter plot of the random dataset generated.

 Getting Started with Scikit-learn

 The easiest way to get started with machine learning with Scikit-learn is to start

with linear regression. Linear regression is a linear approach for modeling the

relationship between a scalar dependent variable y and one or more explana-

tory variables (or independent variables). For example, imagine that you have

a set of data comprising the heights (in meters) of a group of people and their

corresponding weights (in kg):

 %matplotlib inline
 import matplotlib.pyplot as plt

–1.0

–1.0

–0.5

0.0

0.5

1.0

–0.5 0.0 0.5 1.0

 Figure 5.5 : Scatter plot showing the two clusters of data points distributed in circular fashion

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 101

 # represents the heights of a group of people in meters
 heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]

 # represents the weights of a group of people in kgs
 weights = [[60], [65], [72.3], [75], [80]]

 plt.title('Weights plotted against heights')
 plt.xlabel('Heights in meters')
 plt.ylabel('Weights in kilograms')

 plt.plot(heights, weights, 'k.')

 # axis range for x and y
 plt.axis([1.5, 1.85, 50, 90])
 plt.grid(True)

 When you plot a chart of weights against heights, you will see the chart as

shown in Figure 5.6 .

 From the chart, you can see that there is a positive correlation between the

weights and heights for this group of people. You could draw a straight line

through the points and use that to predict the weight of another person based

on their height.

 Using the LinearRegression Class for Fitting the Model
 So how do we draw the straight line that cuts though all of the points? It turns

out that the Scikit-learn library has the LinearRegression class that helps you

to do just that. All you need to do is to create an instance of this class and use

50
1.50 1.55 1.60 1.65

Heights in meters

Weights plotted against heights

1.70 1.75 1.80 1.85

55

60

65

70

W
ei

gh
ts

 in
 k

ilo
gr

am
s

75

80

85

90

 Figure 5.6 : Plotting the weights against heights for a group of people

102 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning

the heights and weights lists to create a linear regression model using the fit()

function, like this:

 from sklearn.linear_model import LinearRegression

 # Create and fit the model
 model = LinearRegression()
 model.fit(X=heights, y=weights)

 T I P Observe that the heights and weights are both represented as
two-dimensional lists. This is because the fit() function requires both the X and X y

arguments to be two-dimensional (of type list or ndarray). y

 Making Predictions
 Once you have fi tted (trained) the model, you can start to make predictions

using the predict() function, like this:

 # make prediction
 weight = model.predict([[1.75]])[0][0]
 print(round(weight,2)) # 76.04

 In the preceding example, you want to predict the weight for a person that is

1.75m tall. Based on the model, the weight is predicted to be 76.04kg.

 T I P In Scikit-learn, you typically use the fit() function to train a model. Once the
model is trained, you use the predict() function to make a prediction.

 Plotting the Linear Regression Line
 It would be useful to visualize the linear regression line that has been created

by the LinearRegression class. Let ’ s do this by fi rst plotting the original data

points and then sending the heights list to the model to predict the weights.

We then plot the series of forecasted weights to obtain the line. The following

code snippet shows how this is done:

 import matplotlib.pyplot as plt

 heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]
 weights = [[60], [65], [72.3], [75], [80]]

 plt.title('Weights plotted against heights')
 plt.xlabel('Heights in meters')
 plt.ylabel('Weights in kilograms')

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 103

 plt.plot(heights, weights, 'k.')

 plt.axis([1.5, 1.85, 50, 90])
 plt.grid(True)

 # plot the regression line
 plt.plot(heights, model.predict(heights), color='r')

 Figure 5.7 shows the linear regression line.

 Getting the Gradient and Intercept of the Linear
Regression Line
 From Figure 5.7 , it is not clear at what value the linear regression line intercepts

the y-axis. This is because we have adjusted the x-axis to start plotting at 1.5. A

better way to visualize this would be to set the x-axis to start from 0 and enlarge

the range of the y-axis. You then plot the line by feeding in two extreme values

of the height: 0 and 1.8. The following code snippet re-plots the points and the

linear regression line:

 plt.title('Weights plotted against heights')
 plt.xlabel('Heights in meters')
 plt.ylabel('Weights in kilograms')

 plt.plot(heights, weights, 'k.')

 plt.axis([0, 1.85, -200, 200])
 plt.grid(True)

50
1.50 1.55 1.60 1.65

Heights in meters

Weights plotted against heights

1.70 1.75 1.80 1.85

55

60

65

70

W
ei

gh
ts

 in
 k

ilo
gr

am
s

75

80

85

90

 Figure 5.7 : Plotting the linear regression line

104 Chapter 54 ■ Getting Started with Scikit-learn for Machine Learning

 # plot the regression line
 extreme_heights = [[0], [1.8]]
 plt.plot(extreme_heights, model.predict(extreme_heights), color='b')

 Figure 5.8 now shows the point where the line cuts the y-axis.

 While you can get the y-intercept by predicting the weight if the height is 0:

 round(model.predict([[0]])[0][0],2) # -104.75

 the model object provides the answer directly through the intercept_ property:

 print(round(model.intercept_[0],2)) # -104.75

 Using the model object, you can also get the gradient of the linear regression

line through the coef_ property:

print(round(model.coef_[0][0],2)) # 103.31

 Examining the Performance of the Model by Calculating the
Residual Sum of Squares
 To know if your linear regression line is well fi tted to all of the data points, we

use the Residual Sum of Squares (RSS) method. Figure 5.9 shows how the RSS is

calculated.

 The following code snippet shows how the RSS is calculated in Python:

 import numpy as np

 print('Residual sum of squares: %.2f' %
 np.sum((weights - model.predict(heights)) ** 2))
 # Residual sum of squares: 5.34

0.00
–200

–150

–100

–50

0

50

100

150

200

0.25 0.50 0.75
Heights in meters

Weights plotted against heights

1.00 1.25 1.50 1.75

W
ei

gh
ts

 in
 k

ilo
gr

am
s

 Figure 5.8 : The linear regression line

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 105

 The RSS should be as small as possible, with 0 indicating that the regression

line fi ts the points exactly (rarely achievable in the real world).

 Evaluating the Model Using a Test Dataset
 Now that our model is trained with our training data, we can put it to the test.

Assuming that we have the following test dataset:

 # test data
 heights_test = [[1.58], [1.62], [1.69], [1.76], [1.82]]
 weights_test = [[58], [63], [72], [73], [85]]

 we can measure how closely the test data fi ts the regression line using the

R-Squared method . The R-Squared method is also known as the coeffi cient of
determination , or the coeffi cient of multiple determinations for multiple regressions .

 The formula for calculating R-Squared is shown in Figure 5.10 .

 Using the formula shown for R-Squared, note the following:

■ R2 is R-squared

■ TSS is Total Sum of Squares

■ RSS is Residual Sum of Squares

Errors of prediction (E)

Residual Sum of Squares
= Sum of E2

 Figure 5.9 : Calculating the Residual Sum of Squares for linear regression

Σ

R2
= 1

RSS

RSS =

TSS

i =1i

n
(yiyy – i y)2TSS =

Σ
i =1i

n
(yiyy – i f (xix))2

 Figure 5.10 : The formula for calculating R-Squared

106 Chapter 56 ■ Getting Started with Scikit-learn for Machine Learning

 You can now calculate it in Python using the following code snippet:

 # Total Sum of Squares (TSS)
 weights_test_mean = np.mean(np.ravel(weights_test))
 TSS = np.sum((np.ravel(weights_test) -
 weights_test_mean) ** 2)
 print("TSS: %.2f" % TSS)

 # Residual Sum of Squares (RSS)
 RSS = np.sum((np.ravel(weights_test) -
 np.ravel(model.predict(heights_test)))
 ** 2)
 print("RSS: %.2f" % RSS)

 # R_squared
 R_squared = 1 - (RSS / TSS)
 print("R-squared: %.2f" % R_squared)

 T I P The ravel() function converts the two-dimensional list into a contiguous
flattened (one-dimensional) array.

 The preceding code snippet yields the following result:

 TSS: 430.80
 RSS: 24.62
 R-squared: 0.94

 Fortunately, you don ’ t have to calculate the R-Squared manually yourself—

Scikit-learn has the score() function to calculate the R-Squared automatically

for you:

 # using scikit-learn to calculate r-squared
 print('R-squared: %.4f' % model.score(heights_test,
 weights_test))

 # R-squared: 0.9429

 An R-Squared value of 0.9429 (94.29%) indicates a pretty good fi t for your

test data.

 Persisting the Model
 Once you have trained a model, it is often useful to be able to save it for later

use. Rather than retraining the model every time you have new data to test, a

saved model allows you to load the trained model and make predictions imme-

diately without the need to train the model again.

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 107

 There are two ways to save your trained model in Python:

■ Using the standard pickle module in Python to serialize and

deserialize objects

■ Using the joblib module in Scikit-learn that is optimized to save and load

Python objects that deal with NumPy data

 The fi rst example you will see is saving the model using the pickle module:

 import pickle

 # save the model to disk
 filename = 'HeightsAndWeights_model.sav'
 # write to the file using write and binary mode
 pickle.dump(model, open(filename, 'wb'))

 In the preceding code snippet, you fi rst opened a fi le in "wb " mode ("w " for w

write and "b " for binary). You then use the dump() function from the pickle

module to save the model into the fi le.

 To load the model from fi le, use the load() function:

 # load the model from disk
 loaded_model = pickle.load(open(filename, 'rb'))

 You can now use the model as usual:

 result = loaded_model.score(heights_test,
 weights_test)

 Using the joblib module is very similar to using the pickle module:

 from sklearn.externals import joblib

 # save the model to disk
 filename = 'HeightsAndWeights_model2.sav'
 joblib.dump(model, filename)

 # load the model from disk
 loaded_model = joblib.load(filename)
 result = loaded_model.score(heights_test,
 weights_test)
 print(result)

 Data Cleansing

 In machine learning, one of the fi rst tasks that you need to perform is data
cleansing . Very seldom would you have a dataset that you can use straightaway gg
to train your model. Instead, you have to examine the data carefully for any

108 Chapter 58 ■ Getting Started with Scikit-learn for Machine Learning

missing values and either remove them or replace them with some valid values,

or you have to normalize them if there are columns with wildly different values.

The following sections show some of the common tasks you need to perform

when cleaning your data.

 Cleaning Rows with NaNs
 Consider a CSV fi le named NaNDataset.csv with the following content:

 A,B,C
 1,2,3
 4,,6
 7,,9
 10,11,12
 13,14,15
 16,17,18

 Visually, you can spot that there are a few rows with empty fi elds. Specifi cally,

the second and third rows have missing values for the second columns. For

small sets of data, this is easy to spot. But if you have a large dataset, it becomes

almost impossible to detect. An effective way to detect for empty rows is to load

the dataset into a Pandas dataframe and then use the isnull() function to check

for null values in the dataframe:

 import pandas as pd
 df = pd.read_csv('NaNDataset.csv')
 df.isnull().sum()

 This code snippet will produce the following output:

 A 0
 B 2
 C 0
 dtype: int64

 You can see that column B has two null values. When Pandas loads a dataset

containing empty values, it will use NaN to represent those empty fi elds. The

following is the output of the dataframe when you print it out:

 A B C
 0 1 2.0 3
 1 4 NaN 6
 2 7 NaN 9
 3 10 11.0 12
 4 13 14.0 15
 5 16 17.0 18

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 109

 Replacing NaN with the Mean of the Column

 One of the ways to deal with NaN s in your dataset is to replace them with the

mean of the columns in which they are located. The following code snippet

replaces all of the NaN s in column B with the average value of column B:

 # replace all the NaNs in column B with the average of column B
 df.B = df.B.fillna(df.B.mean())
 print(df)

 The dataframe now looks like this:

 A B C
 0 1 2.0 3
 1 4 11.0 6
 2 7 11.0 9
 3 10 11.0 12
 4 13 14.0 15
 5 16 17.0 18

 Removing Rows

 Another way to deal with NaN s in your dataset is simply to remove the rows

containing them. You can do so using the dropna() function, like this:

 df = pd.read_csv('NaNDataset.csv')
 df = df.dropna() # drop all rows with NaN
 print(df)

 This code snippet will produce the following output:

 A B C
 0 1 2.0 3
 3 10 11.0 12
 4 13 14.0 15
 5 16 17.0 18

 Observe that after removing the rows containing NaN , the index is no longer inN

sequential order. If you need to reset the index, use the reset_index() function:

 df = df.reset_index(drop=True) # reset the index
 print(df)

 The dataframe with the reset index will now look like this:

 A B C
 0 1 2.0 3
 1 10 11.0 12
 2 13 14.0 15
 3 16 17.0 18

110 Chapter 50 ■ Getting Started with Scikit-learn for Machine Learning

 Removing Duplicate Rows
 Consider a CSV fi le named DuplicateRows.csv with the following content:

 A,B,C
 1,2,3
 4,5,6
 4,5,6
 7,8,9
 7,18,9
 10,11,12
 10,11,12
 13,14,15
 16,17,18

 To fi nd all of the duplicated rows, fi rst load the dataset into a dataframe and

then use the duplicated() function, like this:

 import pandas as pd
 df = pd.read_csv('DuplicateRows.csv')
 print(df.duplicated(keep=False))

 This will produce the following output:

 0 False
 1 True
 2 True
 3 False
 4 False
 5 True
 6 True
 7 False
 8 False
 dtype: bool

 It shows which rows are duplicated. In this example, rows with index 1, 2, 5,

and 6 are duplicates. The keep argument allows you to specify how to indicate

duplicates:

■ The default is ' first ' : All duplicates are marked as True except for the

fi rst occurrence

■ ' last ' : All duplicates are marked as True except for the last occurrence

■ False : All duplicates are marked as True

 So, if you set keep to ' first ' , you will see the following output:

 0 False
 1 False
 2 True

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 111

 3 False
 4 False
 5 False
 6 True
 7 False
 8 False
 dtype: bool

 Hence, if you want to see all duplicate rows, you can set keep to False and

use the result of the duplicated() function as the index into the dataframe:

 print(df[df.duplicated(keep=False)])

 The preceding statement will print all of the duplicate rows:

 A B C
 1 4 5 6
 2 4 5 6
 5 10 11 12
 6 10 11 12

 To drop duplicate rows, you can use the drop_duplicates()_ function, like this:

df.drop_duplicates(keep= ' first ' , inplace=True) # remove
duplicates and keep the first
print(df)

 T I P By default, the drop_pp duplicates()_ function will not modify the original
dataframe and will return the dataframe containing the dropped rows. If you want to
modify the original dataframe, set the inplace parameter to True , as shown in the
preceding code snippet.

 The preceding statements will print the following:

 A B C
 0 1 2 3
 1 4 5 6
 3 7 8 9
 4 7 18 9
 5 10 11 12
 7 13 14 15
 8 16 17 18

 T I P To remove all duplicates, set the keep parameter to False . To keep the last
occurrence of duplicate rows, set the keep parameter to ' last ' .

 Sometimes, you only want to remove duplicates that are found in certain

columns in the dataset. For example, if you look at the dataset that we have

112 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning

been using, observe that for row 3 and row 4, the values of column A and C

are identical:

 A B C
 3 7 8 9
 4 7 18 9

 You can remove duplicates in certain columns by specifying the subset

parameter:

 df.drop_duplicates(subset=['A', 'C'], keep='last',
 inplace=True) # remove all duplicates in
 # columns A and C and keep
 # the last
 print(df)

 This statement will yield the following:

 A B C
 0 1 2 3
 1 4 5 6
 4 7 18 9
 5 10 11 12
 7 13 14 15
 8 16 17 18

 Normalizing Columns
 Normalization is a technique often applied during the data cleansing process. The

aim of normalization is to change the values of numeric columns in the dataset to

use a common scale, without modifying the differences in the ranges of values.

 Normalization is crucial for some algorithms to model the data correctly. For

example, one of the columns in your dataset may contain values from 0 to 1,

while another column has values ranging from 400,000 to 500,000. The huge

disparity in the scale of the numbers could introduce problems when you use

the two columns to train your model. Using normalization, you could main-

tain the ratio of the values in the two columns while keeping them to a limited

range. In Pandas, you can use the MinMaxScaler class to scale each column to

a particular range of values.

 Consider a CSV fi le named NormalizeColumns.csv with the following content:

 A,B,C
 1000,2,3
 400,5,6
 700,6,9
 100,11,12
 1300,14,15
 1600,17,18

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 113

 The following code snippet will scale all the columns ’ values to the (0,1) range:

 import pandas as pd
 from sklearn import preprocessing

 df = pd.read_csv('NormalizeColumns.csv')
 x = df.values.astype(float)

 min_max_scaler = preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 df = pd.DataFrame(x_scaled, columns=df.columns)
 print(df)

 You should see the following output:

 A B C
 0 0.6 0.000000 0.0
 1 0.2 0.200000 0.2
 2 0.4 0.266667 0.4
 3 0.0 0.600000 0.6
 4 0.8 0.800000 0.8
 5 1.0 1.000000 1.0

 Removing Outliers
 In statistics, an outlier is a point that is distant from other observed points.

For example, given a set of values—234, 267, 1, 200, 245, 300, 199, 250, 8999, and

245—it is quite obvious that 1 and 8999 are outliers. They distinctly stand out

from the rest of the values, and they “lie outside” most of the other values in the

dataset; hence the word outlier . Outliers occur mainly due to errors in recording rr
or experimental error, and in machine learning it is important to remove them

prior to training your model as it may potentially distort your model if you don ’ t.

 There are a number of techniques to remove outliers, and in this chapter we

discuss two of them:

■ Tukey Fences

■ Z-Score

 Tukey Fences

 Tukey Fences is based on Interquartile Range (IQR). IQR is the difference between)
the fi rst and third quartiles of a set of values. The fi rst quartile, denoted Q1,

is the value in the dataset that holds 25% of the values below it. The third quartile,

114 Chapter 54 ■ Getting Started with Scikit-learn for Machine Learning

denoted Q3, is the value in the dataset that holds 25% of the values above it.

Hence, by defi nition, IQR = Q3 – Q1.

 Figure 5.11 shows an example of how IQR is obtained for datasets with even

and odd numbers of values.

 In Tukey Fences, outliers are values that are as follows:

■ Less than Q1 – (1.5 × IQR), or

■ More than Q3 + (1.5 × IQR)

 The following code snippet shows the implementation of Tukey Fences using

Python:

 import numpy as np

 def outliers_iqr(data):
 q1, q3 = np.percentile(data, [25, 75])
 iqr = q3 - q1
 lower_bound = q1 - (iqr * 1.5)
 upper_bound = q3 + (iqr * 1.5)
 return np.where((data > upper_bound) | (data < lower_bound))

 T I P The np.where() function returns the location of items satisfying the conditions.

 The outliers_iqr() function returns a tuple of which the fi rst element is an

array of indices of those rows that have outlier values.

Number of Items: 10

Number of Items: 11

1 3 4 5 6

Median is 6.5

Median is 7

Interquartile Range (IQR) is 11 – 4 = 7

Interquartile Range (IQR) is 12 – 4 = 8

First Quartile is 4

First Quartile is 4

Third Quartile is 11

Third Quartile is 12

7 10 11 12 14

1 3 4 5 6 7 10 11 12 14

 Examples of finding the Interquartile Range (IQR)

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 115

 To test the Tukey Fences, let ’ s use the famous Galton dataset on the heights

of parents and their children. The dataset contains data based on the famous

1885 study of Francis Galton exploring the relationship between the heights of

adult children and the heights of their parents. Each case is an adult child, and

the variables are as follows:

Family: The family that the child belongs to, labeled by the numbers from

1 to 204 and 136A

Father: The father ’ s height, in inches

Mother: The mother ’ s height, in inches

Gender: The gender of the child, male (M) or female (F)

Height: The height of the child, in inches

Kids: The number of kids in the family of the child

 The dataset has 898 cases.

 First, import the data:

 import pandas as pd
 df = pd.read_csv("http://www.mosaic-web.org/go/datasets/galton.csv")
 print(df.head())

 You should see the following:

 family father mother sex height nkids
 0 1 78.5 67.0 M 73.2 4
 1 1 78.5 67.0 F 69.2 4
 2 1 78.5 67.0 F 69.0 4
 3 1 78.5 67.0 F 69.0 4
 4 2 75.5 66.5 M 73.5 4

 If you want to fi nd the outliers in the height column, you can call the out-

liers_iqr() function as follows:

 print("Outliers using outliers_iqr()")
 print("=============================")
 for i in outliers_iqr(df.height)[0]:
 print(df[i:i+1])

 You should see the following output:

 Outliers using outliers_iqr()
 =============================
 family father mother sex height nkids
 288 72 70.0 65.0 M 79.0 7

 Using the Tukey Fences method, you can see that the height column has a

single outlier.

116 Chapter 56 ■ Getting Started with Scikit-learn for Machine Learning

 Z-Score

 The second method for determining outliers is to use the Z-score method. A

Z-score indicates how many standard deviations a data point is from the mean.

The Z-score has the following formula:

Z xi /

 where x i is the data point, μ is the mean of the dataset, and σ is the standard

deviation.

 This is how you interpret the Z-score:

■ A negative Z-score indicates that the data point is less than the mean, and

a positive Z-score indicates the data point in question is larger than

the mean

■ A Z-score of 0 tells you that the data point is right in the middle (mean),

and a Z-score of 1 tells you that your data point is 1 standard deviation

above the mean, and so on

■ Any Z-score greater than 3 or less than –3 is considered to be an outlier

 The following code snippet shows the implementation of the Z-score using

Python:

 def outliers_z_score(data):
 threshold = 3
 mean = np.mean(data)
 std = np.std(data)
 z_scores = [(y - mean) / std for y in data]
 return np.where(np.abs(z_scores) > threshold)

 Using the same Galton dataset that you used earlier, you can now fi nd the

outliers for the height column using the outliers_z_score() function:

 print("Outliers using outliers_z_score()")
 print("=================================")
 for i in outliers_z_score(df.height)[0]:
 print(df[i:i+1])
 print()

 You should see the following output:

 Outliers using outliers_z_score()
 =================================
 family father mother sex height nkids
 125 35 71.0 69.0 M 78.0 5
 family father mother sex height nkids
 288 72 70.0 65.0 M 79.0 7
 family father mother sex height nkids
 672 155 68.0 60.0 F 56.0 7

 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning 117

 Using the Z-score method, you can see that the height column has three

outliers.

 Summary

 In this chapter, you have seen how to get started with the Scikit-learn library

to solve a linear regression problem. In addition, you have also learned how to

get sample datasets, generate your own, perform data cleansing, as well as the

two techniques that you can use to remove outliers from your datasets.

 In subsequent chapters, you will learn more about the various machine learning

algorithms and how to use them to solve real-life problems.

C H A P T E R

119

6

 Types of Linear Regression

 In the previous chapter, you learned how to get started with machine learning

using simple linear regression, fi rst using Python, and then followed by using

the Scikit-learn library. In this chapter, we will look into linear regression in

more detail and discuss another variant of linear regression known as polyno-

mial regression .

 To recap, Figure 6.1 shows the Iris dataset used in Chapter 5 , “Getting Started

with Scikit-learn for Machine Learning.” The fi rst four columns are known as

the features , or also commonly referred to as the independent variables . The last

column is known as the label , or commonly called the dependent variable (or

dependent variables if there is more than one label).

 Supervised Learningg—Linear
Regression egression

(Dependent variable)
Features

(Independent variables)

sepal length sepal width petal length petal width target

 Figure 6.1 : Some terminologies for features and label

120 Chapter 60 ■ Supervised Learning—Linear Regression

 T I P Features are also sometimes called explanatory variables , while labels are also
sometimes called targets .

 In simple linear regression, we talked about the linear relationship between

one independent variable and one dependent variable. In this chapter, besides

simple linear regression, we will also discuss the following:

Multiple Regression Linear relationships between two or more independent

variables and one dependent variable.

Polynomial Regression Modeling the relationship between one independent

variable and one dependent variable using an nth degree polynomial

function.

Polynomial Multiple Regression Modeling the relationship between two

or more independent variables and one dependent variable using an nth

degree polynomial function.

 T I P There is another form of linear regression, called multivariate linear regres-
sion, where there is more than one correlated dependent variable in the relationship.
Multivariate linear regression is beyond the scope of this book.

 Linear Regression

 In machine learning, linear regression is one of the simplest algorithms that you

can apply to a dataset to model the relationships between features and labels.

In Chapter 5 , we started by exploring simple linear regression, where we could

explain the relationship between a feature and a label by using a straight line.

In the following section, you will learn about a variant of simple linear regres-

sion, called multiple linear regression , by predicting house prices based on mul-

tiple features.

 Using the Boston Dataset
 For this example, we will use the Boston dataset, which contains data

about the housing and price data in the Boston area. This dataset was taken

from the StatLib library, which is maintained at Carnegie Mellon University.

It is commonly used in machine learning, and it is a good candidate to learn

about regression problems. The Boston dataset is available from a number of

sources, but it is now available directly from the sklearn.datasets package.

This means you can load it directly in Scikit-learn without needing explicitly

to download it.

 Chapter 6 ■ Supervised Learning—Linear Regression 121

 First, let ’ s import the necessary libraries and then load the dataset using the

load_boston() function:

 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np

 from sklearn.datasets import load_boston
 dataset = load_boston()

 It is always good to examine the data before you work with it. The data prop-

erty contains the data for the various columns of the dataset:

 print(dataset.data)

 You should see the following:

 [[6.32000000e-03 1.80000000e+01 2.31000000e+00 ..., 1.53000000e+01
 3.96900000e+02 4.98000000e+00]
 [2.73100000e-02 0.00000000e+00 7.07000000e+00 ..., 1.78000000e+01
 3.96900000e+02 9.14000000e+00]
 [2.72900000e-02 0.00000000e+00 7.07000000e+00 ..., 1.78000000e+01
 3.92830000e+02 4.03000000e+00]
 ...,
 [6.07600000e-02 0.00000000e+00 1.19300000e+01 ..., 2.10000000e+01
 3.96900000e+02 5.64000000e+00]
 [1.09590000e-01 0.00000000e+00 1.19300000e+01 ..., 2.10000000e+01
 3.93450000e+02 6.48000000e+00]
 [4.74100000e-02 0.00000000e+00 1.19300000e+01 ..., 2.10000000e+01
 3.96900000e+02 7.88000000e+00]]

 The data is a two-dimensional array. To know the name of each column (fea-

ture), use the feature_names property:

 print(dataset.feature_names)

 You should see the following:

 ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']

 For the description of each feature, you can use the DESCR property:

 print(dataset.DESCR)

 The preceding statement will print out the following:

 Boston House Prices dataset
 ===========================

 Notes

122 Chapter 6 ■ Supervised Learning—Linear Regression

 Data Set Characteristics:

 :Number of Instances: 506

 :Number of Attributes: 13 numeric/categorical predictive

 :Median Value (attribute 14) is usually the target

 :Attribute Information (in order):
 - CRIM per capita crime rate by town
 - ZN proportion of residential land zoned for lots over
25,000 sq.ft.
 - INDUS proportion of non-retail business acres per town
 - CHAS Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise)
 - NOX nitric oxides concentration (parts per 10 million)
 - RM average number of rooms per dwelling
 - AGE proportion of owner-occupied units built prior to 1940
 - DIS weighted distances to five Boston employment centres
 - RAD index of accessibility to radial highways
 - TAX full-value property-tax rate per $10,000
 - PTRATIO pupil-teacher ratio by town
 - B 1000(Bk - 0.63)^2 where Bk is the proportion of
blacks by town
 - LSTAT % lower status of the population
 - MEDV Median value of owner-occupied homes in $1000's

 :Missing Attribute Values: None

 :Creator: Harrison, D. and Rubinfeld, D.L.

 This is a copy of UCI ML housing dataset: http://archive.ics.uci.edu/
ml/datasets/Housing

 This dataset was taken from the StatLib library which is maintained at
Carnegie Mellon University.

 The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
 prices and the demand for clean air', J. Environ. Economics & Management,
 vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression
diagnostics
 ...', Wiley, 1980. N.B. Various transformations are used in the table on
 pages 244-261 of the latter.

 The Boston house-price data has been used in many machine learning
papers that address regression
 problems.

 References

 Chapter 6 ■ Supervised Learning—Linear Regression 123

 - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying
Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
 - Quinlan,R. (1993). Combining Instance-Based and Model-Based
Learning. In Proceedings on the Tenth International Conference of
Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.
 - many more! (see http://archive.ics.uci.edu/ml/datasets/
Housing)

 The prices of houses is the information we are seeking, and it can be accessed

via the target property:

 print(dataset.target)

 You will see the following:

 [24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9
 21.7 20.4 18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5
 15.6 13.9 16.6 14.8 18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9
 20. 21. 24.7 30.8 34.9 26.6 25.3 24.7 21.2 19.3 20. 16.6
 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4 24.7 31.6 23.3 19.6
 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9 24.2 21.7
 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
 23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4
 21.4 38.7 43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4
 19.8 19.4 21.7 22.8 18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3
 22. 20.3 20.5 17.3 18.8 21.4 15.7 16.2 18. 14.3 19.2 19.6
 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8 14. 14.4 13.4 15.6
 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4 17. 15.6
 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
 23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2
 39.8 36.2 37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5
 36.4 31.1 29.1 50. 33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5
 50. 22.6 24.4 22.5 24.4 20. 21.7 19.3 22.4 28.1 23.7 25.
 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1 44.8 50. 37.6 31.6
 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5 23.7 23.3
 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
 29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31.
 36.5 22.8 30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32.
 33.2 33.1 29.1 35.1 45.4 35.4 46. 50. 32.2 22. 20.1 23.2
 22.3 24.8 28.5 37.3 27.9 23.9 21.7 28.6 27.1 20.3 22.5 29.
 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2 22.8 20.3 16.1 22.1
 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1 20.4 18.5
 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
 19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1
 24.5 26.6 22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6
 25. 19.9 20.8 16.8 21.9 27.5 21.9 23.1 50. 50. 50. 50.
 50. 13.8 13.8 15. 13.9 13.3 13.1 10.2 10.4 10.9 11.3 12.3
 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2 9.7 13.8 12.7 13.1
 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5. 11.9 27.9
 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4

124 Chapter 64 ■ Supervised Learning—Linear Regression

 16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1
 16.1 14.3 11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4
 10.8 11.8 14.9 12.6 14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1
 12.7 13.5 14.9 20. 16.4 17.7 19.5 20.2 21.4 19.9 19. 19.1
 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3 16.7 12. 14.6 21.4
 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7. 8.1 13.6
 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
 22. 11.9]

 Now let ’ s load the data into a Pandas DataFrame:

 df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
 df.head()

 The DataFrame would look like the one shown in Figure 6.2 .

 You would also want to add the prices of the houses to the DataFrame, so

let ’ s add a new column to the DataFrame and call it MEDV :V

 df['MEDV'] = dataset.target
 df.head()

 Figure 6.3 shows the complete DataFrame with the features and label.

CRIM

0 1.0

2.0

2.0

3.0

3.0

296.0

242.0

242.0

222.0

222.0

15.3

17.8

17.8

18.7

18.7

4.98

9.14

4.03

2.94

5.33

396.90

396.90

392.83

394.63

396.90

4.0900

4.9671

4.9671

6.0622

6.0622

65.2

78.9

61.1

45.8

54.2

6.575

6.421

7.185

6.998

7.147

0.538

0.469

0.469

0.458

0.458

0.0

0.0

0.0

0.0

0.0

2.31

7.07

7.07

2.18

2.18

18.0

0.0

0.0

0.0

0.0

0.00632

0.02731

0.02729

0.03237

0.06905

1

2

3

4

ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

 Figure 6.2 : The DataFrame containing all of the features

CRIM

0 1.0

2.0

2.0

3.0

3.0

296.0

242.0

242.0

222.0

222.0

15.3

17.8

17.8

18.7

18.7

4.98

9.14

4.03

2.94

5.33

24.0

21.6

34.7

33.4

36.2

396.90

396.90

392.83

394.63

396.90

4.0900

4.9671

4.9671

6.0622

6.0622

65.2

78.9

61.1

45.8

54.2

6.575

6.421

7.185

6.998

7.147

0.538

0.469

0.469

0.458

0.458

0.0

0.0

0.0

0.0

0.0

2.31

7.07

7.07

2.18

2.18

18.0

0.0

0.0

0.0

0.0

0.00632

0.02731

0.02729

0.03237

0.06905

1

2

3

4

ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV

 Figure 6.3 : The DataFrame containing all of the features and the label

 Chapter 6 ■ Supervised Learning—Linear Regression 125

 Data Cleansing
 The next step would be to clean the data and perform any conversion if necessary.

First, use the info() function to check the data type of each fi eld:

df.info ()

 You should see the following:

 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 506 entries, 0 to 505
 Data columns (total 14 columns):
 CRIM 506 non-null float64
 ZN 506 non-null float64
 INDUS 506 non-null float64
 CHAS 506 non-null float64
 NOX 506 non-null float64
 RM 506 non-null float64
 AGE 506 non-null float64
 DIS 506 non-null float64
 RAD 506 non-null float64
 TAX 506 non-null float64
 PTRATIO 506 non-null float64
 B 506 non-null float64
 LSTAT 506 non-null float64
 MEDV 506 non-null float64
 dtypes: float64(14)
 memory usage: 55.4 KB

 As Scikit-learn only works with fi elds that are numeric, you need to encode

string values into numeric values. Fortunately, the dataset contains all numerical

values, and so no encoding is necessary.

 Next, we need to check to see if there are any missing values. To do so, use

the isnull() function:

 print(df.isnull().sum())

 Again, the dataset is good, as it does not have any missing values:

 CRIM 0
 ZN 0
 INDUS 0
 CHAS 0
 NOX 0
 RM 0
 AGE 0
 DIS 0
 RAD 0
 TAX 0
 PTRATIO 0
 B 0

126 Chapter 66 ■ Supervised Learning—Linear Regression

 LSTAT 0
 MEDV 0
 dtype: int64

 Feature Selection
 Now that the data is good to go, we are ready to move on to the next step of

the process. As there are 13 features in the dataset, we do not want to use all

of these features for training our model, because not all of them are relevant.

Instead, we want to choose those features that directly infl uence the result (that

is, prices of houses) to train the model. For this, we can use the corr() function.

The corr() function computes the pairwise correlation of columns:

 corr = df.corr()
 print(corr)

 You will see the following:

 CRIM ZN INDUS CHAS NOX RM AGE \
 CRIM 1.000000 -0.199458 0.404471 -0.055295 0.417521 -0.219940
0.350784
 ZN -0.199458 1.000000 -0.533828 -0.042697 -0.516604 0.311991
-0.569537
 INDUS 0.404471 -0.533828 1.000000 0.062938 0.763651 -0.391676
0.644779
 CHAS -0.055295 -0.042697 0.062938 1.000000 0.091203 0.091251
0.086518
 NOX 0.417521 -0.516604 0.763651 0.091203 1.000000 -0.302188
0.731470
 RM -0.219940 0.311991 -0.391676 0.091251 -0.302188 1.000000
-0.240265
 AGE 0.350784 -0.569537 0.644779 0.086518 0.731470 -0.240265
1.000000
 DIS -0.377904 0.664408 -0.708027 -0.099176 -0.769230 0.205246
-0.747881
 RAD 0.622029 -0.311948 0.595129 -0.007368 0.611441 -0.209847
0.456022
 TAX 0.579564 -0.314563 0.720760 -0.035587 0.668023 -0.292048
0.506456
 PTRATIO 0.288250 -0.391679 0.383248 -0.121515 0.188933 -0.355501
0.261515
 B -0.377365 0.175520 -0.356977 0.048788 -0.380051 0.128069
-0.273534
 LSTAT 0.452220 -0.412995 0.603800 -0.053929 0.590879 -0.613808
0.602339
 MEDV -0.385832 0.360445 -0.483725 0.175260 -0.427321 0.695360
-0.376955

 Chapter 6 ■ Supervised Learning—Linear Regression 127

 DIS RAD TAX PTRATIO B LSTAT
MEDV
 CRIM -0.377904 0.622029 0.579564 0.288250 -0.377365 0.452220
-0.385832
 ZN 0.664408 -0.311948 -0.314563 -0.391679 0.175520 -0.412995
0.360445
 INDUS -0.708027 0.595129 0.720760 0.383248 -0.356977 0.603800
-0.483725
 CHAS -0.099176 -0.007368 -0.035587 -0.121515 0.048788 -0.053929
0.175260
 NOX -0.769230 0.611441 0.668023 0.188933 -0.380051 0.590879
-0.427321
 RM 0.205246 -0.209847 -0.292048 -0.355501 0.128069 -0.613808
0.695360
 AGE -0.747881 0.456022 0.506456 0.261515 -0.273534 0.602339
-0.376955
 DIS 1.000000 -0.494588 -0.534432 -0.232471 0.291512 -0.496996
0.249929
 RAD -0.494588 1.000000 0.910228 0.464741 -0.444413 0.488676
-0.381626
 TAX -0.534432 0.910228 1.000000 0.460853 -0.441808 0.543993
-0.468536
 PTRATIO -0.232471 0.464741 0.460853 1.000000 -0.177383 0.374044
-0.507787
 B 0.291512 -0.444413 -0.441808 -0.177383 1.000000 -0.366087
0.333461
 LSTAT -0.496996 0.488676 0.543993 0.374044 -0.366087 1.000000
-0.737663
 MEDV 0.249929 -0.381626 -0.468536 -0.507787 0.333461 -0.737663
1.000000

 A positive correlation is a relationship between two variables in which both

variables move in tandem. A positive correlation exists when one variable

decreases as the other variable decreases, or one variable increases while the

other variable increases. Similarly, a negative correlation is a relationship between

two variables in which one variable increases as the other decreases. A perfect

negative correlation is represented by the value –1.00: a 0.00 indicates no corre-

lation and a +1.00 indicates a perfect positive correlation.

 From the MEDV column in the output, you can see that the V RM and LSTAT features

have high correlation factors (positive and negative correlations) with the MEDV :V

 MEDV
 CRIM -0.385832
 ZN 0.360445
 INDUS -0.483725
 CHAS 0.175260
 NOX -0.427321
RM 0.695360
 AGE -0.376955

128 Chapter 68 ■ Supervised Learning—Linear Regression

 DIS 0.249929
 RAD -0.381626
 TAX -0.468536
 PTRATIO -0.507787
 B 0.333461
LSTAT -0.737663
 MEDV 1.000000

 This means that as LSTAT (“% of lower status of the population”) increases, the

prices of houses go down. When LSTAT decreases, the prices go up. Similarly, as

RM (“average number of rooms per dwelling”) increases, so will the price. And

when RM goes down, the prices go down as well.

 Instead of visually fi nding the top two features with the highest correlation

factors, we can do it programmatically as follows:

 #---get the top 3 features that has the highest correlation---
 print(df.corr().abs().nlargest(3, 'MEDV').index)

 #---print the top 3 correlation values---
 print(df.corr().abs().nlargest(3, 'MEDV').values[:,13])

 The result confi rms our fi ndings:

 Index(['MEDV', 'LSTAT', 'RM'], dtype='object')
 [1. 0.73766273 0.69535995]

 T I P We will ignore the first result, as MEDV definitely has a perfect correlation
with itself!

 Since RM and LSTAT have high correlation values, we will use these two fea-

tures to train our model.

 Multiple Regression
 In the previous chapter, you saw how to perform a simple linear regression

using a single feature and a label. Often, you might want to train your model

using more than one independent variable and a label. This is known as multiple
regression . In multiple regression, two or more independent variables are used

to predict the value of a dependent variable (label).

 Now let ’ s plot a scatter plot showing the relationship between the LSTAT fea-

ture and the MEDV label:

 plt.scatter(df['LSTAT'], df['MEDV'], marker='o')
 plt.xlabel('LSTAT')
 plt.ylabel('MEDV')

 Chapter 6 ■ Supervised Learning—Linear Regression 129

 Figure 6.4 shows the scatter plot. It appears that there is a linear correlation

between the two.

 Let ’ s also plot a scatter plot showing the relationship between the RM feature

and the MEDV label:

 plt.scatter(df['RM'], df['MEDV'], marker='o')
 plt.xlabel('RM')
 plt.ylabel('MEDV')

 Figure 6.5 shows the scatter plot. Again, it appears that there is a linear cor-

relation between the two, albeit with some outliers.

50

40

30

20

10

0 5 10 15 20 25
LSTAT

M
ED

V

30 35

 Figure 6.4 : Scatter plot showing the relationship between LSTAT and MEDV

50

40

30

20

10

4

M
ED

V

5 6
RM

7 8 9

 Figure 6.5 : Scatter plot showing the relationship between RM and MEDV

130 Chapter 60 ■ Supervised Learning—Linear Regression

 Better still, let ’ s plot the two features and the label on a 3D chart:

 from mpl_toolkits.mplot3d import Axes3D

 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection='3d')

 ax.scatter(df['LSTAT'],
 df['RM'],
 df['MEDV'],
 c='b')

 ax.set_xlabel("LSTAT")
 ax.set_ylabel("RM")
 ax.set_zlabel("MEDV")
 plt.show()

 Figure 6.6 shows the 3D chart of LSTAT and RM plotted against MEDV . VV

50

40

30

20

10

9

8

7

6

5

4
35

30
25LSTAT

20
15

10
5

0
RM

MEDV

 Figure 6.6 : The 3D scatter plot showing the relationship between LSTAT, RM, and MEDV

 Chapter 6 ■ Supervised Learning—Linear Regression 131

 Training the Model
 We can now train the model. First, create two DataFrames: x and Y . The Y x

DataFrame will contain the combination of the LSTAT and RM features, while

the Y DataFrame will contain the MEDV label:

 x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
 Y = df['MEDV']

 We will split the dataset into 70 percent for training and 30 percent for testing:

 from sklearn.model_selection import train_test_split
 x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,
 random_state=5)

 T I P Chapter 7 , “Supervised Learning—Classification Using Logistic Regression,”
will discuss more about the train_test_split() function.

 After the split, let ’ s print out the shape of the training sets:

 print(x_train.shape)
 print(Y_train.shape)

 You will see the following:

 (354, 2)
 (354,)

 This means that the x training set now has 354 rows and 2 columns, while

the Y training set (which contains the label) has 354 rows and 1 column.

 Let ’ s also print out the testing set:

 print(x_test.shape)
 print(Y_test.shape)

 This time, the testing set has 152 rows:

 (152, 2)
 (152,)

 We are now ready to begin the training. As you learned from the previous

chapter, you can use the LinearRegression class to perform linear regression.

In this case, we will use it to train our model:

 from sklearn.linear_model import LinearRegression

 model = LinearRegression()
 model.fit(x_train, Y_train)

132 Chapter 6 ■ Supervised Learning—Linear Regression

 Once the model is trained, we will use the testing set to perform some

predictions:

 price_pred = model.predict(x_test)

 To learn how well our model performed, we use the R-Squared method that

you learned in the previous chapter. The R-Squared method lets you know how

close the test data fi ts the regression line. A value of 1.0 means a perfect fi t. So,

you aim for a value of R-Squared that is close to 1:

 print('R-Squared: %.4f' % model.score(x_test,
 Y_test))

 For our model, it returns an R-Squared value as follows:

 R-Squared: 0.6162

 We will also plot a scatter plot showing the actual price vs. the predicted price:

 from sklearn.metrics import mean_squared_error

 mse = mean_squared_error(Y_test, price_pred)
 print(mse)

 plt.scatter(Y_test, price_pred)
 plt.xlabel("Actual Prices")
 plt.ylabel("Predicted prices")
 plt.title("Actual prices vs Predicted prices")

 Figure 6.7 shows the plot. Ideally, it should be a straight line, but for now it

is good enough.

0

10

5

10

15

20

25

30

35

40

20 30 40
Actual Prices

Actual prices vs Predicted prices

Pr
ed

ic
te

d
pr

ic
es

50

 Figure 6.7 : A scatter plot showing the predicted prices vs. the actual prices

 Chapter 6 ■ Supervised Learning—Linear Regression 133

 Getting the Intercept and Coefficients
 The formula for multiple regression is as follows:

Y x x0 1 1 2 2

 where Y is the dependent variable, β0 is the intercept, and β1 and β2 are the coef-

fi cient of the two features x 1 and x 2 , respectively.

 With the model trained, we can obtain the intercept as well as the coeffi cients

of the features:

 print(model.intercept_)
 print(model.coef_)

 You should see the following:

 0.3843793678034899
 [-0.65957972 4.83197581]

 We can use the model to make a prediction for the house price when LSTAT

is 30 and RM is 5:

 print(model.predict([[30,5]]))

 You should see the following:

 [4.75686695]

 You can verify the predicted value by using the formula that was given earlier:

 Y x x0 1 1 2 2

 Y = 0.3843793678034899 30 0 65957972 5 4 83197581

 Y 4 7568

 Plotting the 3D Hyperplane
 Let ’ s plot a 3D regression hyperplane showing the predictions:

 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np
 from mpl_toolkits.mplot3d import Axes3D

 from sklearn.datasets import load_boston
 dataset = load_boston()

 df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
 df['MEDV'] = dataset.target

134 Chapter 64 ■ Supervised Learning—Linear Regression

 x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
 Y = df['MEDV']

 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection='3d')

 ax.scatter(x['LSTAT'],
 x['RM'],
 Y,
 c='b')

 ax.set_xlabel("LSTAT")
 ax.set_ylabel("RM")
 ax.set_zlabel("MEDV")

 #---create a meshgrid of all the values for LSTAT and RM---
 x_surf = np.arange(0, 40, 1) #---for LSTAT---
 y_surf = np.arange(0, 10, 1) #---for RM---
 x_surf, y_surf = np.meshgrid(x_surf, y_surf)

 from sklearn.linear_model import LinearRegression
 model = LinearRegression()
 model.fit(x, Y)

 #---calculate z(MEDC) based on the model---
 z = lambda x,y: (model.intercept_ + model.coef_[0] * x + model.coef_[1] * y)

 ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
 rstride=1,
 cstride=1,
 color='None',
 alpha = 0.4)

 plt.show()

 Here, we are training the model using the entire dataset. We then make pre-

dictions by passing a combination of values for LSTAT (x _ surf) and f RM (y_surf) f

and calculating the predicted values using the model ’ s intercept and coeffi cients.

The hyperplane is then plotted using the plot_surface() function. The end

result is shown in Figure 6.8 .

 As the chart shown in Jupyter Notebook is static, save the preceding code

snippet in a fi le named boston.py and run it in Terminal, like this:

 $ python boston.py

 Chapter 6 ■ Supervised Learning—Linear Regression 135

 You will now be able to rotate the chart and move it around to have a better

perspective, as shown in Figure 6.9 .

 Polynomial Regression

 In the previous section, you saw how to apply linear regression to predict the

prices of houses in the Boston area. While the result is somewhat acceptable, it

is not very accurate. This is because sometimes a linear regression line might

not be the best solution to capture the relationships between the features and

label accurately. In some cases, a curved line might do better.

 Consider the series of points shown in Figure 6.10 .

 The series of points are stored in a fi le named polynomial.csv :

 x,y
 1.5,1.5
 2,2.5
 3,4
 4,4
 5,4.5
 6,5

50

40

30

20

0

10

–10

–20

–30

8

6

4

2

0
40

35
30

25LSTAT
20

15
10

5
0

RM

MEDV

 Figure 6.8 : The hyperplane showing the predictions for the two features—LSTAT and RM

136 Chapter 66 ■ Supervised Learning—Linear Regression

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.10 : A scatter plot of points

Figure 6.9 : Rotating the chart to have a better view of the hyperplane

 Chapter 6 ■ Supervised Learning—Linear Regression 137

 And plotted using a scatter plot:

 df = pd.read_csv('polynomial.csv')
 plt.scatter(df.x,df.y)

 Using linear regression, you can try to plot a straight line cutting through

most of the points:

 model = LinearRegression()

 x = df.x[0:6, np.newaxis] #---convert to 2D array---
 y = df.y[0:6, np.newaxis] #---convert to 2D array---

 model.fit(x,y)

 #---perform prediction---
 y_pred = model.predict(x)

 #---plot the training points---
 plt.scatter(x, y, s=10, color='b')

 #---plot the straight line---
 plt.plot(x, y_pred, color='r')
 plt.show()

 #---calculate R-Squared---
 print('R-Squared for training set: %.4f' % model.score(x,y))

 You will see the straight regression line, as shown in Figure 6.11 .

 The R-Squared value for the training set is:

 R-Squared for training set: 0.8658

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.11 : The regression line fitting the points

138 Chapter 68 ■ Supervised Learning—Linear Regression

 We want to see if there is a more accurate way to fi t the points. For instance,

instead of a straight line, we want to investigate the possibility of a curved line.

This is where polynomial regression comes in.

 Formula for Polynomial Regression
Polynomial regression is an attempt to create a polynomial function that fi ts a set

of data points.

 A polynomial function of degree 1 has the following form:

Y x0 1

 This is the simple linear regression that we have seen in the previous chapter.

Quadratic regression is a degree 2 polynomial:

Y x x0 1 2
2

 For a polynomial of degree 3, the formula is as follows:

Y x x x0 1 2
2

3
3

 In general, a polynomial of degree n has the formula of:

Y x x x x0 1 2
2

3
3

n
n

polynomial function that best fi ts the data.

 Polynomial Regression in Scikit-learn
 The Scikit-learn library contains a number of classes and functions for solving

polynomial regression. The PolynomialFeatures class takes in a number spec-

ifying the degree of the polynomial features. In the following code snippet, we

are creating a quadratic equation (polynomial function of degree 2):

 from sklearn.preprocessing import PolynomialFeatures
 degree = 2
 polynomial_features = PolynomialFeatures(degree = degree)

 Using this PolynomialFeatures object, you can generate a new feature matrix

consisting of all polynomial combinations of the features with a degree of less

than or equal to the specifi ed degree:

 x_poly = polynomial_features.fit_transform(x)
 print(x_poly)

 Chapter 6 ■ Supervised Learning—Linear Regression 139

 You should see the following:

 [[1. 1.5 2.25]
 [1. 2. 4.]
 [1. 3. 9.]
 [1. 4. 16.]
 [1. 5. 25.]
 [1. 6. 36.]]

 The matrix that you see is generated as follows:

■ The fi rst column is always 1.

■ The second column is the value of x.

■ The third column is the value of x 2 .

 This can be verifi ed using the get_feature_names() function:

 print(polynomial_features.get_feature_names('x'))

 It prints out the following:

 ['1', 'x', 'x^2']

 T I P The math behind finding the coefficients of a polynomial function is beyond
the scope of this book. For those who are interested, however, check out the following
link on the math behind polynomial regression: http://polynomialregression.
drque.net/math.html .

 You will now use this generated matrix with the LinearRegression class to

train your model:

 model = LinearRegression()
 model.fit(x_poly, y)
 y_poly_pred = model.predict(x_poly)

 #---plot the points---
 plt.scatter(x, y, s=10)

 #---plot the regression line---
 plt.plot(x, y_poly_pred)
 plt.show()

 Figure 6.12 now shows the regression line, a nice curve trying to fi t the points.

 You can print out the intercept and coeffi cients of the polynomial function:

 print(model.intercept_)
 print(model.coef_)

140 Chapter 60 ■ Supervised Learning—Linear Regression

 You should see the following:

 [-0.87153912]
 [[0. 1.98293207 -0.17239897]]

 By plugging these numbers Y 0 87153912 1 98293207 x 0 17239897 x2

into the formula Y x x0 1 2
2 , you can make predictions using the pre-

ceding formula.

 If you evaluate the regression by printing its R-Squared value,

 print('R-Squared for training set: %.4f' % model.score(x_poly,y))

 you should get a value of 0.9474:

 R-Squared for training set: 0.9474

 Can the R-Squared value be improved? Let ’ s try a degree 3 polynomial. Using

the same code and changing degree to 3 , you should get the curve shown in

Figure 6.13 and a value of 0.9889 for R-Squared.

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.12 : A curved line trying to fit the points

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.13 : A curved line trying to fit most of the points

 Chapter 6 ■ Supervised Learning—Linear Regression 141

 You now see a curve that more closely fi ts the points and a much-improved

R-Squared value. Moreover, since raising the polynomial degree by 1 improves

the R-Squared value, you might be tempted to increase it further. In fact, Figure 6.14

shows the curve when the degree is set to 4 . It fi ts all the points perfectly.

 And guess what? You get an R-Squared value of 1! However, before you cel-

ebrate your success in fi nding the perfect algorithm in your prediction, you

need to realize that while your algorithm may fi t the training data perfectly, it

is unlikely to perform well with new data. This is a known as overfi tting, and gg
the next section will discuss this topic in more detail.

 Understanding Bias and Variance
 The inability for a machine learning algorithm to capture the true relationship

between the variables and the outcome is known as the bias . Figure 6.15 shows

a straight line trying to fi t all the points. Because it doesn ’ t cut through all of

the points, it has a high bias.

 The curvy line in Figure 6.16 , however, is able to fi t all of the points and thus

has a low bias.

 While the straight line can ’ t fi t through all of the points and has high

bias, when it comes to applying unseen observations, it gives a pretty good

estimate. Figure 6.17 shows the testing points (in pink). The RSS (Residual

Sum of Squares), which is the sum of the errors of prediction, is pretty low

compared to that of the curvy line when using the same test points (see

Figure 6.18).

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.14 : The line now fits the points perfectly

142 Chapter 6 ■ Supervised Learning—Linear Regression

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.16 : The curvy line fits all of the points, so the bias is low

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4

Errors of prediction

Test points

5 6

 Figure 6.17 : The straight line works well with unseen data, and its result does not vary much
with different datasets. Hence, it has low variance.

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.15 : The straight line can ’ t fit all of the points, so the bias is high

 Chapter 6 ■ Supervised Learning—Linear Regression 143

 In machine learning, the fi t between the datasets is known as variance . In thise
example, the curvy line has high variance because it will result in vastly differ-

ent RSS for different datasets. That is, you can ’ t really predict how well it will

perform with future datasets—sometimes it will do well with certain datasets

and at other times it may fail badly. On the other hand, the straight line has a

low variance , as the RSS is similar for different datasets.e

 T I P In machine learning, when we try to find a curve that tries to fit all of the
points perfectly, it is known as overfitting . On the other hand, if we have a line that
does not fit most points, it is known as underfitting .

 Ideally, we should fi nd a line that accurately expresses the relationships

between the independent variables and that of the outcome. Expressed in terms

of bias and variance, the ideal algorithm should have the following:

High bias , with the line hugging as many points as possible

Low variance , with the line resulting in consistent predictions using differ-e
ent datasets

 Figure 6.19 shows such an ideal curve—high bias and low variance.

 To strike a balance between fi nding a simple model and a complex model,

you can use techniques such as Regularization , Bagging , and gg Boosting:g

■ Regularization is a technique that automatically penalizes the extra features

you used in your modeling.

■ Bagging (or bootstrap aggregation) is a specifi c type of machine learningn
process that uses ensemble learning to evolve machine learning models.

Bagging uses a subset of the data and each sample trains a weaker learner.

The weak learners can then be combined (through averaging or max vote)

to create a strong learner that can make accurate predictions.

Errors of prediction

Test points

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 The curvy line does not work well with unseen data, and its result varies with
different datasets. Hence, it has high variance.

144 Chapter 64 ■ Supervised Learning—Linear Regression

■ Boosting is also similar to Bagging, except that it uses all of the data to

train each learner, but data points that were misclassifi ed by previous

learners are given more weight so that subsequent learners will give more

focus to them during training.

 T I P Ensemble learning is a technique where you use several models working
together on a single dataset and then combine its result.

 Using Polynomial Multiple Regression on the Boston Dataset
 Earlier in this chapter, you used multiple linear regression and trained a model

based on the Boston dataset. After learning about the polynomial regression

in the previous section, now let ’ s try to apply it to the Boston dataset and see if

we can improve the model.

 As usual, let ’ s load the data and split the dataset into training and testing sets:

 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np

 from sklearn.preprocessing import PolynomialFeatures
 from sklearn.linear_model import LinearRegression
 from sklearn.datasets import load_boston

 dataset = load_boston()

 df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
 df['MEDV'] = dataset.target

 x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
 Y = df['MEDV']

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4 5 6

 Figure 6.19 : You should aim for a line that has high bias and low variance

 Chapter 6 ■ Supervised Learning—Linear Regression 145

 from sklearn.model_selection import train_test_split
 x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,
 random_state=5)

 You then use the polynomial function with degree 2:

 #---use a polynomial function of degree 2---
 degree = 2
 polynomial_features= PolynomialFeatures(degree = degree)
 x_train_poly = polynomial_features.fit_transform(x_train)

 When using a polynomial function of degree 2 on two independent variables

x 1 and x 2 , the formula becomes:

 Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2

where Y is the dependent variable, β0 is the intercept, and β1 , β2 , β3 , and β4 are the

coeffi cients of the various combinations of the two features x 1 and x 2 , respectively.

 You can verify this by printing out the feature names:

 #---print out the formula---
 print(polynomial_features.get_feature_names(['x','y']))

 You should see the following, which coincides with the formula:

 # ['1', 'x', 'y', 'x^2', 'x y', 'y^2']

 T I P Knowing the polynomial function formula is useful when plotting the 3D
hyperplane, which you will do shortly.

 You can then train your model using the LinearRegression class:

 model = LinearRegression()
 model.fit(x_train_poly, Y_train)

 Now let ’ s evaluate the model using the testing set:

 x_test_poly = polynomial_features.fit_transform(x_test)
 print('R-Squared: %.4f' % model.score(x_test_poly,
 Y_test))

 You will see the result as follows:

 R-Squared: 0.7340

 You can also print the intercept and coeffi cients:

 print(model.intercept_)
 print(model.coef_)

146 Chapter 66 ■ Supervised Learning—Linear Regression

 You should see the following:

 26.9334305238
 [0.00000000e+00 1.47424550e+00 -6.70204730e+00 7.93570743e-04
 -3.66578385e-01 1.17188007e+00]

 With these values, the formula now becomes:

 Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2

Y 26 9334305238 1 47424550e 00 x 6 70204730e 00 x 7 9351 2 770743e

04 x 3 66578385e 01 x x 17188007e 00 x1
2

1 2 2
21

 Plotting the 3D Hyperplane
 Since you know the intercept and coeffi cients of the polynomial multiple regres-

sion function, you can plot out the 3D hyperplane of function easily. Save the

following code snippet as a fi le named boston2.py:y

 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np

 from mpl_toolkits.mplot3d import Axes3D
 from sklearn.preprocessing import PolynomialFeatures
 from sklearn.linear_model import LinearRegression
 from sklearn.datasets import load_boston

 dataset = load_boston()

 df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
 df['MEDV'] = dataset.target

 x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
 Y = df['MEDV']

 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection='3d')

 ax.scatter(x['LSTAT'],
 x['RM'],
 Y,
 c='b')

 Chapter 6 ■ Supervised Learning—Linear Regression 147

 ax.set_xlabel("LSTAT")
 ax.set_ylabel("RM")
 ax.set_zlabel("MEDV")

 #---create a meshgrid of all the values for LSTAT and RM---
 x_surf = np.arange(0, 40, 1) #---for LSTAT---
 y_surf = np.arange(0, 10, 1) #---for RM---
 x_surf, y_surf = np.meshgrid(x_surf, y_surf)

 #---use a polynomial function of degree 2---
 degree = 2
 polynomial_features= PolynomialFeatures(degree = degree)
 x_poly = polynomial_features.fit_transform(x)
 print(polynomial_features.get_feature_names(['x','y']))

 #---apply linear regression---
 model = LinearRegression()
 model.fit(x_poly, Y)

 #---calculate z(MEDC) based on the model---
 z = lambda x,y: (model.intercept_ +
 (model.coef_[1] * x) +
 (model.coef_[2] * y) +
 (model.coef_[3] * x**2) +
 (model.coef_[4] * x*y) +
 (model.coef_[5] * y**2))

 ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
 rstride=1,
 cstride=1,
 color='None',
 alpha = 0.4)

 plt.show()

 To run the code, type the following in Terminal:

 $ python boston2.py

 You will see the 3D chart, as shown in Figure 6.20 .

 You can drag to rotate the chart. Figure 6.21 shows the different perspectives

of the hyperplane.

148 Chapter 68 ■ Supervised Learning—Linear Regression

 Figure 6.20 : The hyperplane in the polynomial multiple regression

 Figure 6.21 : Rotate the chart to see the different perspectives of the hyperplane

 Chapter 6 ■ Supervised Learning—Linear Regression 149

 Summary

 In this chapter, you learned about the various types of linear regression. In

particular, you learned about the following:

Multiple Regression Linear relationships between two or more independent

variables and one dependent variable.

Polynomial Regression Modeling the relationship between one independent

variable and one dependent variable using an nth degree polynomial

function.

Polynomial Multiple Regression Modeling the relationship between two

or more independent variables and one dependent variable using an nth

degree polynomial function.

 You also learned how to plot the hyperplane showing the relationships between

two independent variables and the label.

C H A P T E R

151

7

 What Is Logistic Regression?

 In the previous chapter, you learned about linear regression and how you can

use it to predict future values. In this chapter, you will learn another super-

vised machine learning algorithm—logistic regression . Unlike linear regression,

logistic regression does not try to predict the value of a numeric variable given

a set of inputs. Instead, the output of logistic regression is the probability of a

given input point belonging to a specifi c class. The output of logistic regression

always lies in [0,1].

 To understand the use of logistic regression, consider the example shown in

Figure 7.1 . Suppose that you have a dataset containing information about voter

income and voting preferences. For this dataset, you can see that low-income

voters tend to vote for candidate B, while high-income voters tend to favor

candidate A.

 With this dataset, you would be very interested in trying to predict which

candidate future voters will vote for based on their income level. At fi rst glance,

you might be tempted to apply what you have just learned to this problem; that

is, using linear regression. Figure 7.2 shows what it looks like when you apply

linear regression to this problem.

 Supervised Learning—
Classification Usingg Logistic

Regression egression

152 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression

 The main problem with linear regression is that the predicted value does not

always fall within the expected range. Consider the case of a very low-income

voter (near to 0), and you can see from the chart that the predicted result is a

negative value. What you really want is a way to return the prediction as a value

from 0 to 1, where this value represents the probability of an event happening.

 Figure 7.3 shows how logistic regression solves this problem. Instead of drawing

a straight line cutting through the points, you now use a curved line to try to

fi t all of the points on the chart.

 Using logistic regression, the output will be a value from 0 to 1, where anything

less than (or equal to) 0.5 (known as the threshold) will be considered as voting

for candidate B, and anything greater than 0.5 will be considered as voting for

candidate A.

Income of voters

XX X X X X

X XXX XX X

Candidate B

Candidate A

 Figure 7.1 : Some problems have binary outcomes

Income of voters x

y

Candidate B

Candidate A X XXX XX X

XX X X X X

 Figure 7.2 : Using linear regression to solve the voting preferences problem leads
to strange values

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 153

 Understanding Odds
 Before we discuss the details of the logistic regression algorithm, we fi rst need

to discuss one important term—odds . Odds are defi ned as the ratio of the prob-

ability of success to the probability of failure (see Figure 7.4).

 For example, the odds of landing a head when you fl ip a coin are 1. This is

because you have a 0.5 probability of landing a head and a 0.5 probability of

landing a tail. When you say that the odds of landing a head are 1, this means

you have a 50 percent chance of landing a head.

 But if the coin is rigged in such a way that the probability of landing a head is

0.8 and the probability of landing a tail is 0.2, then the odds of landing a head

is 0.8/0.2 = 4. That is, you are 4 times more likely to land a head than a tail.

Likewise, the odds of getting a tail are 0.2/0.8 = 0.25.

 Logit Function
 When you apply the natural logarithm function to the odds, you get the logit
function . The logit function is the logarithm of the odds (see Figure 7.5).

Income of voters x

y

XX X X X X

X XXX X X X

Candidate B

Candidate A

 Figure 7.3 : Logistic regression predicts the probability of an outcome, rather than
a specific value

Chances of something happening

Chances of something not happening

Probability of success

Probability of failure
P

(1 – P)

 Figure 7.4 : How to calculate the odds of an event happening

154 Chapter 74 ■ Supervised Learning—Classification Using Logistic Regression

 The logit function transfers a variable on (0, 1) into a new variable on (–∞, ∞).

To see this relationship, you can use the following code snippet:

 %matplotlib inline
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt

 def logit(x):
 return np.log(x / (1 - x))

 x = np.arange(0.001,0.999, 0.0001)
 y = [logit(n) for n in x]
 plt.plot(x,y)
 plt.xlabel("Probability")
 plt.ylabel("Logit - L")

 Figure 7.6 shows the logit curve plotted using the preceding code snippet.

 Sigmoid Curve
 For the logit curve, observe that the x-axis is the probability and the y-axis is the

real-number range. For logistic regression, what you really want is a function

that maps numbers on the real-number system to the probabilities, which is

exactly what you get when you fl ip the axes of the logit curve (see Figure 7.7).

PL = In 1 – P()
 Figure 7.5 : The formula for the logit function

Probability

6

4

2

0

Lo
gi

t -
 L

–2

–4

–6

0.0 0.40.2 0.6 0.8 1.0

 Figure 7.6 : The logit curve

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 155

 When you fl ip the axes, the curve that you get is called the sigmoid curve. Thee
sigmoid curve is obtained using the Sigmoid function , which is the inverse of the

logit function. The Sigmoid function is used to transform values on (–∞, ∞) into

numbers on (0, 1). The Sigmoid function is shown in Figure 7.8 .

 The following code snippet shows how the sigmoid curve is obtained:

 def sigmoid(x):
 return (1 / (1 + np.exp(-x)))

 x = np.arange(-10, 10, 0.0001)
 y = [sigmoid(n) for n in x]
 plt.plot(x,y)
 plt.xlabel("Logit - L")
 plt.ylabel("Probability")

 Figure 7.9 shows the sigmoid curve.

 Just like you try to plot a straight line that fi ts through all of the points in

linear regression (as explain in Chapter 5), in logistics regression, we would also

like to plot a sigmoid curve that fi ts through all of the points. Mathematically,

this can be expressed by the formula shown in Figure 7.10 .

Probability

Logit Function Sigmoid curve

6

4

2

0

–2

–4

–6

0.0 0.40.2 0.6 0.8 1.0

Pr
ob
ab
ili
ty

6420–2–4–6

0.
0

0.
4

0.
2

0.
6

0.
8

1.
0

 Figure 7.7 : Flipping the logit curve into a Sigmoid curve

1P =
(1 + e–(L))

 Figure 7.8 : The formula for the Sigmoid function

156 Chapter 76 ■ Supervised Learning—Classification Using Logistic Regression

 Notice that the key difference between the formula shown in Figure 7.8

and 7.10 is that now L has been replaced by β0 and xβ . The coeffi cients β β0 and β
are unknown, and they must be estimated based on the available training data

using a technique known as Maximum Likelihood Estimation (MLE) . In logistics)
regression, β0 is known as the intercept and xβ is known as the coeffi cient.

 Using the Breast Cancer Wisconsin (Diagnostic) Data Set

 Scikit-learn ships with the Breast Cancer Wisconsin (Diagnostic) Data Set. It

is a classic dataset that is often used to illustrate binary classifi cations. This

dataset contains 30 features, and they are computed from a digitized image of

a fi ne needle aspirate (FNA) of a breast mass. The label of the dataset is a binary

classifi cation—M for malignant or B for benign. Interested readers can check

out more information at https://archive.ics.uci.edu/ml/datasets/Breast+

Cancer+Wisconsin+(Diagnostic) .

 Examining the Relationship Between Features
 You can load the Breast Cancer dataset by fi rst importing the datasets module

from sklearn . Then use the load _ breast _ cancer() function as follows:

 from sklearn.datasets import load_breast_cancer
 cancer = load_breast_cancer()

Logit - L

1.0

0.8

0.6

Pr
ob

ab
ili

ty

0.4

0.2

0.0

–10.0 –2.5 0.0–7.5 –5.0 2.5 7.55.0 10.0

 Figure 7.9 : The sigmoid curve plotted using matplotlib

1P =
(1 + e–(β0 + xβ))

 Figure 7.10 : Expressing the sigmoid function using the intercept and coefficient

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 157

 Now that the Breast Cancer dataset has been loaded, it is useful to examine

the relationships between some of its features.

 Plotting the Features in 2D

 For a start, let ’ s plot the fi rst two features of the dataset in 2D and examine their

relationships. The following code snippet:

■ Loads the Breast Cancer dataset

■ Copies the fi rst two features of the dataset into a two-dimensional list

■ Plots a scatter plot showing the distribution of points for the two

features

■ Displays malignant growths in red and benign growths in blue

 %matplotlib inline

 import matplotlib.pyplot as plt
 from sklearn.datasets import load_breast_cancer

 cancer = load_breast_cancer()

 #---copy from dataset into a 2-d list---
 X = []
 for target in range(2):
 X.append([[], []])
 for i in range(len(cancer.data)): # target is 0 or 1
 if cancer.target[i] == target:
 X[target][0].append(cancer.data[i][0]) # first feature -
mean radius
 X[target][1].append(cancer.data[i][1]) # second feature —
mean texture

 colours = ("r", "b") # r: malignant, b: benign
 fig = plt.figure(figsize=(10,8))
 ax = fig.add_subplot(111)
 for target in range(2):
 ax.scatter(X[target][0],
 X[target][1],
 c=colours[target])

 ax.set_xlabel("mean radius")
 ax.set_ylabel("mean texture")
 plt.show()

 Figure 7.11 shows the scatter plot of the points.

158 Chapter 78 ■ Supervised Learning—Classification Using Logistic Regression

 From this scatter plot, you can gather that as the tumor grows in radius and

increases in texture, the more likely that it would be diagnosed as malignant.

 Plotting in 3D

 In the previous section, you plotted the points based on two features using a

scatter plot. It would be interesting to be able to visualize more than two fea-

tures. In this case, let ’ s try to visualize the relationships between three features.

You can use matplotlib to plot a 3D plot. The following code snippet shows how

this is done. It is very similar to the code snippet in the previous section, with

the additional statements in bold:

 %matplotlib inline

 import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 from sklearn.datasets import load_breast_cancer

 cancer = load_breast_cancer()

 #---copy from dataset into a 2-d array---
 X = []
 for target in range(2):
 X.append([[], [], []])
 for i in range(len(cancer.data)): # target is 0,1
 if cancer.target[i] == target:

m
ea

n
te

xt
ur

e

10

10 15
mean radius

20 25

15

20

25

30

35

40

 Figure 7.11 : The scatter plot showing the relationships between the mean radius and mean
texture of the tumor

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 159

 X[target][0].append(cancer.data[i][0])
 X[target][1].append(cancer.data[i][1])

X[target][2].append(cancer.data[i][2])

 colours = ("r", "b") # r: malignant, b: benign
 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection= ' 3d ')
 for target in range(2):
 ax.scatter(X[target][0],
 X[target][1],

X[target][2],
 c=colours[target])

 ax.set_xlabel("mean radius")
 ax.set_ylabel("mean texture")
ax.set_zlabel("mean perimeter")
 plt.show()

 Instead of plotting using two features, you now have a third feature: mean

perimeter. Figure 7.12 shows the 3D plot.

mean
 te

xtu
re

m
ea

n
pe

rim
et

er

10

10
15
mean radius

20
25

15

20

25

30

35

40

40

60

80

100

120

140

160

180

 Figure 7.12 : Plotting three features using a 3D map

160 Chapter 70 ■ Supervised Learning—Classification Using Logistic Regression

 Jupyter Notebook displays the 3D plot statically. As you can see from Figure 7.12 ,

you can ’ t really have a good look at the relationships between the three features.

A much better way to display the 3D plot would be to run the preceding code

snippet outside of Jupyter Notebook. To do so, save the code snippet (minus the

fi rst line containing the statement “ %matplotlib inline ”) to a fi le named, say,

3dplot.py . Then run the fi le in Terminal using the yy python command, as follows:

 $ python 3dplot.py

 Once you do that, matplotlib will open a separate window to display the 3D

plot. Best of all, you will be able to interact with it. Use your mouse to drag the

plot, and you are able to visualize the relationships better between the three

features. Figure 7.13 gives you a better perspective: as the mean perimeter of the

tumor growth increases, the chance of the growth being malignant also increases.

 Figure 7.13 : You can interact with the 3D plot when you run the application outside of Jupyter
Notebook

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 161

 Training Using One Feature
 Let ’ s now use logistic regression to try to predict if a tumor is cancerous. To get

started, let ’ s use only the fi rst feature of the dataset: mean radius. The follow-

ing code snippet plots a scatter plot showing if a tumor is malignant or benign

based on the mean radius:

 %matplotlib inline
 import pandas as pd
 import matplotlib.pyplot as plt
 import matplotlib.patches as mpatches

 from sklearn.datasets import load_breast_cancer

 cancer = load_breast_cancer() # Load dataset
 x = cancer.data[:,0] # mean radius
 y = cancer.target # 0: malignant, 1: benign
 colors = {0:'red', 1:'blue'} # 0: malignant, 1: benign

 plt.scatter(x,y,
 facecolors='none',
 edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x:
colors[x]),
 cmap=colors)

 plt.xlabel("mean radius")
 plt.ylabel("Result")

 red = mpatches.Patch(color='red', label='malignant')
 blue = mpatches.Patch(color='blue', label='benign')

 plt.legend(handles=[red, blue], loc=1)

 Figure 7.14 shows the scatter plot.

Re
su

lt

0.0

10 15
mean radius

20 25

malignant
benign

0.2

0.4

0.6

0.8

1.0

 Figure 7.14 : Plotting a scatter plot based on one feature

162 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression

 As you can see, this is a good opportunity to use logistic regression to pre-

dict if a tumor is cancerous. You could try to plot an “s” curve (albeit fl ipped

horizontally).

 Finding the Intercept and Coefficient

 Scikit-learn comes with the LogisticRegression class that allows you to apply

logistic regression to train a model. Thus, in this example, you are going to train

a model using the fi rst feature of the dataset:

 from sklearn import linear_model
 import numpy as np

 log_regress = linear_model.LogisticRegression()

 #---train the model---
 log_regress.fit(X = np.array(x).reshape(len(x),1),
 y = y)

 #---print trained model intercept---
 print(log_regress.intercept_) # [8.19393897]

 #---print trained model coefficients---
 print(log_regress.coef_) # [[-0.54291739]]

 Once the model is trained, what we are most interested in at this point is

the intercept and coeffi cient. If you recall from the formula in Figure 7.10 , the

intercept is β0 and the coeffi cient is xβ . Knowing these two values allows us to β
plot the sigmoid curve that tries to fi t the points on the chart.

 Plotting the Sigmoid Curve

 With the values of β0 and x β obtained, you can now plot the sigmoid curve using

the following code snippet:

 def sigmoid(x):
 return (1 / (1 +
 np.exp(-(log_regress.intercept_[0] +
 (log_regress.coef_[0][0] * x)))))

 x1 = np.arange(0, 30, 0.01)
 y1 = [sigmoid(n) for n in x1]

 plt.scatter(x,y,
 facecolors='none',

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 163

 edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x:
colors[x]),
 cmap=colors)

 plt.plot(x1,y1)
 plt.xlabel("mean radius")
 plt.ylabel("Probability")

 Figure 7.15 shows the sigmoid curve.

 Making Predictions

 Using the trained model, let ’ s try to make some predictions. Let ’ s try to predict

the result if the mean radius is 20:

 print(log_regress.predict_proba(20)) # [[0.93489354 0.06510646]]
 print(log_regress.predict(20)[0]) # 0

 As you can see from the output, the predict _ proba() function in the fi rst

statement returns a two-dimensional array. The result of 0.93489354 indicates

the probability that the prediction is 0 (malignant) while the result of 0.06510646

indicates the probability that the prediction is 1. Based on the default threshold of

0.5, the prediction is that the tumor is malignant (value of 0), since its predicted

probability (0.93489354) of 0 is more than 0.5.

 The predict() function in the second statement returns the class that the

result lies in (which in this case can be a 0 or 1). The result of 0 indicates that

Pr
ob

ab
ili

ty

0.0

5 1510
mean radius

20 25 30

0.2

0.4

0.6

0.8

1.0

0

 Figure 7.15 : The sigmoid curve fitting to the two sets of points

164 Chapter 74 ■ Supervised Learning—Classification Using Logistic Regression

the prediction is that the tumor is malignant. Try another example with the

mean radius of 8 this time:

 print(log_regress.predict_proba(8)) # [[0.02082411 0.97917589]]
 print(log_regress.predict(8)[0]) # 1

 As you can see from the result, the prediction is that the tumor is benign.

 Training the Model Using All Features
 In the previous section, you specifi cally trained the model using one feature.

Let ’ s now try to train the model using all of the features and then see how well

it can accurately perform the prediction.

 First, load the dataset:

 from sklearn.datasets import load_breast_cancer
 cancer = load_breast_cancer() # Load dataset

 Instead of training the model using all of the rows in the dataset, you are

going to split it into two sets, one for training and one for testing. To do so, you

use the train _ test _ split() function. This function allows you to split your

data into random train and test subsets. The following code snippet splits the

dataset into a 75 percent training and 25 percent testing set:

 from sklearn.model_selection import train_test_split
 train_set, test_set, train_labels, test_labels = train_test_split(
 cancer.data, # features
 cancer.target, # labels
 test_size = 0.25, # split ratio
 random_state = 1, # set random
seed
 stratify = cancer.target) # randomize
based on labels

 Figure 7.16 shows how the dataset is split. The random _ state parameter

of the train _ test _ split() function specifi es the seed used by the random

number generator. If this is not specifi ed, every time you run this function you

will get a different training and testing set. The stratify parameter allows you to y

specify which column (feature/label) to use so that the split is proportionate.

For example, if the column specifi ed is a categorical variable with 80 percent 0s

and 20 percent 1s, then the training and test sets would each have 80 percent

of 0s and 20 percent of 1s.

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 165

 Once the dataset is split, it is now time to train the model. The following code

snippet trains the model using logistic regression:

 from sklearn import linear_model
 x = train_set[:,0:30] # mean radius
 y = train_labels # 0: malignant, 1: benign
 log_regress = linear_model.LogisticRegression()
 log_regress.fit(X = x,
 y = y)

 In this example, we are training it with all of the 30 features in the dataset.

When the training is done, let ’ s print out the intercept and model coeffi cients:

 print(log_regress.intercept_) #
 print(log_regress.coef_) #

 The following output shows the intercept and coeffi cients:

 [0.34525124]
 [[1.80079054e+00 2.55566824e-01 -3.75898452e-02 -5.88407941e-03
 -9.57624689e-02 -3.16671611e-01 -5.06608094e-01 -2.53148889e-01
 -2.26083101e-01 -1.03685977e-02 4.10103139e-03 9.75976632e-01
 2.02769521e-01 -1.22268760e-01 -8.25384020e-03 -1.41322029e-02
 -5.49980366e-02 -3.32935262e-02 -3.05606774e-02 1.09660157e-04
 1.62895414e+00 -4.34854352e-01 -1.50305237e-01 -2.32871932e-02
 -1.94311394e-01 -9.91201314e-01 -1.42852648e+00 -5.40594994e-01
 -6.28475690e-01 -9.04653541e-02]]

 Because we have trained the model using 30 features, there are 30 coeffi cients.

train_set

LabelsFeatures

75%

25%

tra
in

_l
ab

el
s

te
st

_l
ab

el
s

test_set

 Figure 7.16 : Splitting the dataset into training and test sets

166 Chapter 76 ■ Supervised Learning—Classification Using Logistic Regression

 Testing the Model

 It ’ s time to make a prediction. The following code snippet uses the test set and

feeds it into the model to obtain the predictions:

 import pandas as pd

 #---get the predicted probablities and convert into a dataframe---
 preds_prob = pd.DataFrame(log_regress.predict_proba(X=test_set))

 #---assign column names to prediction---
 preds_prob.columns = ["Malignant", "Benign"]

 #---get the predicted class labels---
 preds = log_regress.predict(X=test_set)
 preds_class = pd.DataFrame(preds)
 preds_class.columns = ["Prediction"]

 #---actual diagnosis---
 original_result = pd.DataFrame(test_labels)
 original_result.columns = ["Original Result"]

 #---merge the three dataframes into one---
 result = pd.concat([preds_prob, preds_class, original_result], axis=1)
 print(result.head())

 The results of the predictions are then printed out. The predictions and original

diagnosis are displayed side-by-side for easy comparison:

 Malignant Benign Prediction Original Result
 0 0.999812 1.883317e-04 0 0
 1 0.998356 1.643777e-03 0 0
 2 0.057992 9.420079e-01 1 1
 3 1.000000 9.695339e-08 0 0
 4 0.207227 7.927725e-01 1 0

 Getting the Confusion Matrix

 While it is useful to print out the predictions together with the original diag-

nosis from the test set, it does not give you a clear picture of how good the

model is in predicting if a tumor is cancerous. A more scientifi c way would be

to use the confusion matrix. The confusion matrix shows the number of actual x
and predicted labels and how many of them are classifi ed correctly. You can

use Pandas ’ s crosstab() function to print out the confusion matrix:

 #---generate table of predictions vs actual---
 print("---Confusion Matrix---")
 print(pd.crosstab(preds, test_labels))

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 167

 The crosstab() function computes a simple cross-tabulation of two factors.

The preceding code snippet prints out the following:

 ---Confusion Matrix---
 col_0 0 1
 row_0
 0 48 3
 1 5 87

 The output is interpreted as shown in Figure 7.17 .

 The columns represent the actual diagnosis (0 for malignant and 1 for benign).

The rows represent the prediction. Each individual box represents one of the

following:

■ True Positive (TP) : The model correctly predicts the outcome as positive.

In this example, the number of TP (87) indicates the number of correct

predictions that a tumor is benign.

■ True Negative (TN) : The model correctly predicts the outcome as negative.

In this example, tumors were correctly predicted to be malignant.

■ False Positive (FP) : The model incorrectly predicted the outcome as positive,

but the actual result is negative. In this example, it means that the tumor

is actually malignant, but the model predicted the tumor to be benign.

■ False Negative (FN) : The model incorrectly predicted the outcome as neg-

ative, but the actual result is positive. In this example, it means that the

tumor is actually benign, but the model predicted the tumor to be

malignant.

 This set of numbers is known as the confusion matrix. x

0 - Malignant
1 - Benign

0
TN

(48)
FN
(3)

TP
(87)

FP
(5)

0
Actual

Pr
ed
ic
tio
n

1

1

 Figure 7.17 : The confusion matrix for the prediction

168 Chapter 78 ■ Supervised Learning—Classification Using Logistic Regression

 Besides using the crosstab() function, you can also use the confusion _

matrix() function to print out the confusion matrix:

 from sklearn import metrics
 #---view the confusion matrix---
 print(metrics.confusion_matrix(y_true = test_labels, # True labels
 y_pred = preds)) # Predicted labels

 Note that the output is switched for the rows and columns.

 [[48 5]
 [3 87]]

 Computing Accuracy, Recall, Precision, and Other Metrics

 Based on the confusion matrix, you can calculate the following metrics:

■ Accuracy : This is defi ned as the sum of all correct predictions divided

by the total number of predictions, or mathematically:

TP TN TP TN FP FN/ /

■ This metric is easy to understand. After all, if the model correctly predicts

99 out of 100 samples, the accuracy is 0.99, which would be very impres-

sive in the real world. But consider the following situation: Imagine that

you ’ re trying to predict the failure of equipment based on the sample data.

Out of 1,000 samples, only three are defective. If you use a dumb algorithm

that always returns negative (meaning no failure) for all results, then the

accuracy is 997/1000, which is 0.997. This is very impressive, but does this

mean it ’ s a good algorithm? No. If there are 500 defective items in

the dataset of 1,000 items, then the accuracy metric immediately indicates the

fl aw of the algorithm. In short, accuracy works best with evenly distrib-

uted data points, but it works really badly for a skewed dataset. Figure 7.18

summarizes the formula for accuracy.

■ Precision : This metric is defi ned to be TP / (TP + FP). This metric is

concerned with number of correct positive predictions. You can think of

precision as “of those predicted to be positive, how many were actually

predicted correctly?” Figure 7.19 summarizes the formula for precision.

■ Recall (also known as True Positive Rate (TPR)): This metric is defi ned

to be TP / (TP + FN). This metric is concerned with the number of cor-

rectly predicted positive events. You can think of recall as “of those positive

events, how many were predicted correctly?” Figure 7.20 summarizes the

formula for recall.

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 169

0 - Malignant
1 - Benign

0 TN FN

TPFP

0
Actual
Accuracy

Pr
ed
ic
tio
n

1

1

Accuracy = (TN+TP)
(TN+FN+FP+TP)

 Figure 7.18 : Formula for calculating accuracy

0 - Malignant
1 - Benign

0 TN FN

TPFP

0
Actual

Precision

Pr
ed
ic
tio
n

1

1

Precision = TP
(FP+TP)

 Figure 7.19 : Formula for calculating precision

0 - Malignant
1 - Benign

0 TN FN

TPFP

0
Actual
Recallll

Pr
ed
ic
tio
n

1

1

Recall = TP
(FN+TP)

 Figure 7.20 : Formula for calculating recall

170 Chapter 70 ■ Supervised Learning—Classification Using Logistic Regression

■ F1 Score : This metric is defi ned to be 2 * (precision * recall) / (precision

+ recall). This is known as the harmonic mean of precision and recall, and itl
is a good way to summarize the evaluation of the algorithm in a single

number.

■ False Positive Rate (FPR) : This metric is defi ned to be FP / (FP+TN).

FPR corresponds to the proportion of negative data points that are mis-

takenly considered as positive, with respect to all negative data points. In

other words, the higher FPR, the more negative data points you ’ ll

misclassify.

 The concept of precision and recall may not be apparent immediately, but if

you consider the following scenario, it will be much clearer. Consider the case

of breast cancer diagnosis. If a malignant tumor is represented as negative and

a benign tumor is represented as positive, then:

■ If the precision or recall is high, it means that more patients with benign

tumors are diagnosed correctly, which indicates that the algorithm is

good.

■ If the precision is low, it means that more patients with malignant tumors

are diagnosed as benign.

■ If the recall is low, it means that more patients with benign tumors are

diagnosed as malignant.

 For the last two points, having a low precision is more serious than a low

recall (although wrongfully diagnosed as having breast cancer when you do not

have it will likely result in unnecessary treatment and mental anguish) because

it causes the patient to miss treatment and potentially causes death. Hence, for

cases like diagnosing breast cancer, it ’ s important to consider both the preci-

sion and recall metrics when evaluating the effectiveness of an ML algorithm.

 To get the accuracy of the model, you can use the score() function of the model:

 #---get the accuracy of the prediction---
 print("---Accuracy---")
 print(log_regress.score(X = test_set ,
 y = test_labels))

 You should see the following result:

 ---Accuracy---
 0.9440559440559441

 To get the precision, recall, and F1-score of the model, use the classification _

report() function of the metrics module:

 # View summary of common classification metrics
 print("---Metrices---")

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 171

 print(metrics.classification_report(
 y_true = test_labels,
 y_pred = preds))

 You will see the following results:

 ---Metrices---
 precision recall f1-score support

 0 0.94 0.91 0.92 53
 1 0.95 0.97 0.96 90

 avg / total 0.94 0.94 0.94 143

 Receiver Operating Characteristic (ROC) Curve

 With so many metrics available, what is an easy way to examine the effective-

ness of an algorithm? One way would be to plot a curve known as the Receiver
Operating Characteristic (ROC) curve . The ROC curve is created by plotting the e
TPR against the FPR at various threshold settings.

 So how does it work? Let ’ s run through a simple example. Using the existing

project that you have been working on, you have derived the confusion matrix

based on the default threshold of 0.5 (meaning that all of those predicted proba-

bilities less than or equal to 0.5 belong to one class, while those greater than 0.5

belong to another class). Using this confusion matrix, you then fi nd the recall,

precision, and subsequently FPR and TPR. Once the FPR and TPR are found,

you can plot the point on the chart, as shown in Figure 7.21 .

 Then you regenerate the confusion matrix for a threshold of 0, and recalcu-

late the recall, precision, FPR, and TPR. Using the new FPR and TPR, you plot

0.0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0

1.0 (0.97,0.09)

1.0

 Figure 7.21 : The point at threshold 0.5

172 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression

another point on the chart. You then repeat this process for thresholds of 0.1,

0.2, 0.3, and so on, all the way to 1.0.

 At threshold 0, in order for a tumor to be classifi ed as benign (1), the predicted

probability must be greater than 0. Hence, all of the predictions would be clas-

sifi ed as benign (1). Figure 7.22 shows how to calculate the TPR and FPR. For a

threshold of 0, both the TPR and FPR are 1.

 At threshold 1.0, in order for a tumor to be classifi ed as benign (1), the predicted

probability must be equal to exactly 1. Hence, all of the predictions would be

classifi ed as malignant (0). Figure 7.23 shows how to calculate the TPR and FPR

when the threshold is 1.0. For a threshold of 1.0, both the TPR and FPR are 0.

0 - Malignant
1 - Benign

0
TN
(0)

FN
(0)

TPFP

0
Actual

Threshold 0

No predictions for 0

All predictions would be 1

TPR = TP / (TP + FN)
Since FN is 0, = TP/TP

= 1
FPR = FP / (FP + TN)
Since TN is 0, = FP/FP

= 1

Pr
ed
ic
tio
n

1

1

 Figure 7.22 : The value of TPR and FPR for threshold 0

0 - Malignant
1 - Benign

0 TN FN

TP
(0)

FP
(0)

0
Actual

Threshold 1.0

All predictions would be 0

No predictions for 1

TPR = TP / (TP + FN)
Since TP = 0, therefore

= 0
FPR = FP / (FP + TN)

Since FP = 0, therefore
= 0

Pr
ed
ic
tio
n

1

1

 Figure 7.23 : The value of TPR and FPR for threshold 1

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 173

 We can now plot two more points on our chart (see Figure 7.24).

 You then calculate the metrics for the other threshold values. Calculating

all of the metrics based on different threshold values is a very tedious process.

Fortunately, Scikit-learn has the roc _ curve() function, which will calculate

the FPR and TPR automatically for you based on the supplied test labels and

predicted probabilities:

 from sklearn.metrics import roc_curve, auc

 #---find the predicted probabilities using the test set
 probs = log_regress.predict_proba(test_set)
 preds = probs[:,1]

 #---find the FPR, TPR, and threshold---
 fpr, tpr, threshold = roc_curve(test_labels, preds)

 The roc _ curve() function returns a tuple containing the FPR, TPR, and

threshold. You can print them out to see the values:

 print(fpr)
 print(tpr)
 print(threshold)

 You should see the following:

 [0. 0. 0.01886792 0.01886792 0.03773585 0.03773585
 0.09433962 0.09433962 0.11320755 0.11320755 0.18867925 0.18867925
 1.]

 [0.01111111 0.88888889 0.88888889 0.91111111 0.91111111 0.94444444
 0.94444444 0.96666667 0.96666667 0.98888889 0.98888889 1.
 1.]

 [9.99991063e-01 9.36998422e-01 9.17998921e-01 9.03158173e-01
 8.58481867e-01 8.48217940e-01 5.43424515e-01 5.26248925e-01

0.0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
Threshold 0.5

Threshold 0

Threshold 1.0

0.0

1.0

1.0

(0.97,0.09)

(1,1)

(0,0)

 Figure 7.24 : Plotting the points for threshold 0, 0.5, and 1.0.

174 Chapter 74 ■ Supervised Learning—Classification Using Logistic Regression

 3.72174142e-01 2.71134211e-01 1.21486104e-01 1.18614069e-01
 1.31142589e-21]

 As you can see from the output, the threshold starts at 0.99999 (9.99e-01) and

goes down to 1.311e-21.

 Plotting the ROC and Finding the Area Under the Curve (AUC)

 To plot the ROC, you can use matplotlib to plot a line chart using the values

stored in the fpr and r tpr variables. You can use the r auc() function to fi nd the

area under the ROC:

 #---find the area under the curve---
 roc_auc = auc(fpr, tpr)

 import matplotlib.pyplot as plt
 plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
 plt.plot([0, 1], [0, 1],'r--')
 plt.xlim([0, 1])
 plt.ylim([0, 1])
 plt.ylabel('True Positive Rate (TPR)')
 plt.xlabel('False Positive Rate (FPR)')
 plt.title('Receiver Operating Characteristic (ROC)')
 plt.legend(loc = 'lower right')
 plt.show()

 The area under an ROC curve is a measure of the usefulness of a test in

general, where a greater area means a more useful test and the areas under

ROC curves are used to compare the usefulness of tests. Generally, aim for the

algorithm with the highest AUC.

 Figure 7.25 shows the ROC curve as well as the AUC.

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4
False Positive Rate (FPR)

Receiver Operating Characteristic (ROC)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

0.6 0.8 1.0

AUC = 0.99

 Figure 7.25 : Plotting the ROC curve and calculating the AUC

 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression 175

 Summary

 In this chapter, you learned about another supervised machine learning

algorithm—logistics regression. You fi rst learned about the logit function and

how to transform it into a sigmoid function. You then applied the logistic regres-

sion to the breast cancer dataset and used it to predict if a tumor is malignant

or benign. More importantly, this chapter discussed some of the metrics that

are useful in determining the effectiveness of a machine learning algorithm.

In addition, you learned about what an ROC curve is, how to plot it, and how

to calculate the area under the curve.

C H A P T E R

177

8

 What Is a Support Vector Machine?

 In the previous chapter, you saw how to perform classifi cation using logistics

regression. In this chapter, you will learn another supervised machine learning

algorithm that is also very popular among data scientists— Support Vector Machines
(SVM) . Like logistics regression, SVM is also a classifi cation algorithm.)

 The main idea behind SVM is to draw a line between two or more classes in

the best possible manner (see Figure 8.1).

 Supervised Learning—
Classification Usingg Support

Vector MMachines

Ea
r G

eo
m

et
ry

Snout Length

Dividing line

 Figure 8.1 : Using SVM to separate two classes of animals

178 Chapter 88 ■ Supervised Learning—Classification Using Support Vector Machines

 Once the line is drawn to separate the classes, you can then use it to predict

future data. For example, given the snout length and ear geometry of a new

unknown animal, you can now use the dividing line as a classifi er to predict

if the animal is a dog or a cat.

 In this chapter, you will learn how SVM works and the various techniques

you can use to adapt SVM for solving nonlinearly-separable datasets.

 Maximum Separability
 How does SVM separate two or more classes? Consider the set of points in

Figure 8.2 . Before you look at the next fi gure, visually think of a straight line

dividing the points into two groups.

 Now look at Figure 8.3 , which shows two possible lines separating the two

groups of points. Is this what you had in mind?

 Though both lines separate the points into two distinct groups, which one

is the right one? For SVM, the right line is the one that has the widest margins

(with each margin touching at least a point in each class), as shown in Figure 8.4 .

In that fi gure, d1 and d2 are the width of the margins. The goal is to fi nd the

largest possible width for the margin that can separate the two groups. Hence,

in this case d2 is the largest. Thus the line chosen is the one on the right.

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

 Figure 8.2 : A set of points that can be separated using SVM

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 179

 Each of the two margins touches the closest point(s) to each group of points,

and the center of the two margins is known as the hyperplane . The hyperplane

is the line separating the two groups of points. We use the term “hyperplane”

instead of “line” because in SVM we typically deal with more than two dimen-

sions, and using the word “hyperplane” more accurately conveys the idea of a

plane in a multidimensional space.

 Support Vectors
 A key term in SVM is support vectors . Support vectors are the points that lie

on the two margins. Using the example from the previous section, Figure 8.5

shows the two support vectors lying on the two margins.

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

 Figure 8.3 : Two possible ways to split the points into two classes

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

d1

d2

d2>d1
 Figure 8.4 : SVM seeks to split the two classes with the widest margin

180 Chapter 80 ■ Supervised Learning—Classification Using Support Vector Machines

 In this case, we say that there are two support vectors—one for each class.

 Formula for the Hyperplane
 With the series of points, the next question would be to fi nd the formula

for the hyperplane, together with the two margins. Without delving too much into

the math behind this, Figure 8.6 shows the formula for getting the hyperplane.

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

Support Vectors

 Figure 8.5 : Support vectors are points that lie on the margins

Total Margin = 2d
x1

Class 2

Class 1

x1

x2

d
d

= 2
∣∣w∣∣

w→0x1 + w→1x2 + b = –1

w→0x1 + w→1x2 + b = 1

w→0x1 + w→1x2 + b = 0

 Figure 8.6 : The formula for the hyperplane and its accompanying two margins

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 181

 As you can see from Figure 8.6 , the formula for hyperplane (g) is given as:

g x x x b
� �

W W0 1 1 2

 where x 1 and x2 are the inputs,
�

W0 and
�

W1 are the weight vectors, and b is the bias. 1

 If the value of g is 1, then the point specifi ed is in Class 1, and if the value

of g is 1, then the point specifi ed is in Class 2. As mentioned, the goal of

SVM is to fi nd the widest margins that divide the classes, and the total margin

(2d) is defi ned by:

2/ w

 where w is the normalized weight vectors (
�

W0 and
�

W1). Using the training

set, the goal is to minimize the value of w so that you can get the maximum

separability between the classes. Once this is done, you will be able to get the

values of
�

W0,
�

W1, and b.

 Finding the margin is a Constrained Optimization problem, which can be solved

using the Larange Multipliers technique. It is beyond the scope of this book to

discuss how to fi nd the margin based on the dataset, but suffi ce it to say that

we will make use of the Scikit-learn library to fi nd them.

 Using Scikit-learn for SVM
 Now let ’ s work on an example to see how SVM works and how to implement it

using Scikit-learn. For this example, we have a fi le named svm.csv containing

the following data:

 x1,x2,r
 0,0,A
 1,1,A
 2,3,B
 2,0,A
 3,4,B

 The fi rst thing that we will do is to plot the points using Seaborn:

 %matplotlib inline
 import pandas as pd
 import numpy as np
 import seaborn as sns; sns.set(font_scale=1.2)
 import matplotlib.pyplot as plt

 data = pd.read_csv('svm.csv')
 sns.lmplot('x1', 'x2',
 data=data,
 hue='r',
 palette='Set1',
 fit_reg=False,
 scatter_kws={"s": 50});

182 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines

 Figure 8.7 shows the points plotted using Seaborn.

 Using the data points that we have previously loaded, now let ’ s use Scikit-

learn ’ s svm module ’ s SVC class to help us derive the value for the various vari-

ables that we need to compute otherwise. The following code snippet uses the

linear kernel to solve the problem. The linear kernel assumes that the dataset

can be separated linearly.

 from sklearn import svm
 #---Converting the Columns as Matrices---
 points = data[['x1','x2']].values
 result = data['r']

 clf = svm.SVC(kernel = 'linear')
 clf.fit(points, result)

 print('Vector of weights (w) = ',clf.coef_[0])
 print('b = ',clf.intercept_[0])
 print('Indices of support vectors = ', clf.support_)
 print('Support vectors = ', clf.support_vectors_)
 print('Number of support vectors for each class = ', clf.n_support_)
 print('Coefficients of the support vector in the decision function = ',
 np.abs(clf.dual_coef_))

0.0

0.0

0.5

1.0

1.5

2.0

x
2

2.5

3.0

3.5

4.0

0.5 1.0 1.5

x1

2.0 2.5 3.0

A

r

B

 Figure 8.7 : Plotting the points using Seaborn

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 183

 The SVC stands for Support Vector Classifi cation . The svm module contains a

series of classes that implement SVM for different purposes:

 svm.LinearSVC : Linear Support Vector Classifi cation

 svm.LinearSVR : Linear Support Vector Regression

 svm.NuSVC : Nu-Support Vector Classifi cation

 svm.NuSVR : Nu-Support Vector Regression

 svm.OneClassSVM : Unsupervised Outlier Detection

 svm.SVC : C-Support Vector Classifi cation

 svm.SVR : Epsilon-Support Vector Regression

 T I P For this chapter, our focus is on using SVM for classification, even though SVM
can also be used for regression.

 The preceding code snippet yields the following output:

 Vector of weights (w) = [0.4 0.8]
 b = -2.2
 Indices of support vectors = [1 2]
 Support vectors = [[1. 1.]
 [2. 3.]]
 Number of support vectors for each class = [1 1]
 Coefficients of the support vector in the decision function = [[0.4 0.4]]

 As you can see, the vector of weights has been found to be [0.4 0.8], meaning

that
�

W0 is now 0.4 and
�

W1 is now 0.8. The value of b is –2.2, and there are two

support vectors. The index of the support vectors is 1 and 2, meaning that the

points are the ones in bold:

 x1 x2 r
 0 0 0 A
1 1 1 A
2 2 3 B
 3 2 0 A
 4 3 4 B

 Figure 8.8 shows the relationship between the various variables in the for-

mula and the variables in the code snippet.

g(x) = w→ww0x1 + w→ww1x2 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.intercept_[0]

 Figure 8.8 : Relationships between the variables in the formula and the variables in the code snippet

184 Chapter 84 ■ Supervised Learning—Classification Using Support Vector Machines

 Plotting the Hyperplane and the Margins
 With the values of the variables all obtained, it is now time to plot the hyper-

plane and its two accompanying margins. Do you remember the formula for

the hyperplane? It is as follows:

 g x W W b,X X

� �
0 11 2

 To plot the hyperplane, set
� �
W W bX X0 11 2

 to 0, like this:
� �
W W bX X0 11 2

0

 In order to plot the hyperplane (which is a straight line in this case), we need

two points: one on the x-axis and one on the y-axis.

 Using the preceding formula, when x1 0, we can solve for x2 as follows:
�
W0 (0) +

�
W1X2 + b = 0�

W1X2 = -b
 x 2 = -b/

�
W1

 When x2 = 0, we can solve for x 1 as follows:
�
W0X1 +

�
W1 (0) + b = 0�

W0X1 = -b
 x 1 = -b/

�
W0

 The point (0,-b/
�
W1) is the y-intercept of the straight line. Figure 8.9 shows the

two points on the two axes.

 Once the points on each axis are found, you can now calculate the slope as

follows:

 Slope = (-b/
�
W1) / (b/

�
W0)

 Slope = -(
�
W0 /

�
W1)

x1

x2

(0, –b/w→1)

(–b/w→0,0)

 The two intercepts for the hyperplane

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 185

 With the slope and y-intercept of the line found, you can now go ahead and

plot the hyperplane. The following code snippet does just that:

 #---w is the vector of weights---
 w = clf.coef_[0]

 #---find the slope of the hyperplane---
 slope = -w[0] / w[1]

 b = clf.intercept_[0]

 #---find the coordinates for the hyperplane---
 xx = np.linspace(0, 4)
 yy = slope * xx - (b / w[1])

 #---plot the margins---
 s = clf.support_vectors_[0] #---first support vector---
 yy_down = slope * xx + (s[1] - slope * s[0])

 s = clf.support_vectors_[-1] #---last support vector---
 yy_up = slope * xx + (s[1] - slope * s[0])

 #---plot the points---
 sns.lmplot('x1', 'x2', data=data, hue='r', palette='Set1',
fit_reg=False, scatter_kws={"s": 70})

 #---plot the hyperplane---
 plt.plot(xx, yy, linewidth=2, color='green');

 #---plot the 2 margins---
 plt.plot(xx, yy_down, 'k--')
 plt.plot(xx, yy_up, 'k--')

 Figure 8.10 shows the hyperplane and the two margins.

 Making Predictions
 Remember, the goal of SVM is to separate the points into two or more classes,

so that you can use it to predict the classes of future points. Having trained your

model using SVM, you can now perform some predictions using the model.

 The following code snippet uses the model that you have trained to perform

some predictions:

 print(clf.predict([[3,3]])[0]) # 'B'
 print(clf.predict([[4,0]])[0]) # 'A'
 print(clf.predict([[2,2]])[0]) # 'B'
 print(clf.predict([[1,2]])[0]) # 'A'

 Check the points against the chart shown in Figure 8.10 and see if it makes

sense to you.

186 Chapter 86 ■ Supervised Learning—Classification Using Support Vector Machines

 Kernel Trick

 Sometimes, the points in a dataset are not always linearly separable. Consider

the points shown in Figure 8.11 .

1.0

0.5

0.0

–0.5

–1.0

0.0–1.0 –0.5 0.5 1.0

 Figure 8.11 : A scatter plot of two groups of points distributed in circular fashion

0

0

1

2

x
2

3

4

1 2

x1

3 4

A

r

B

 Figure 8.10 : The hyperplane and the two margins

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 187

 You can see that it is not possible to draw a straight line to separate the two

sets of points. With some manipulation, however, you can make this set of points

linearly separable. This technique is known as the kernel trick . The kernel trick is k
a technique in machine learning that transforms data into a higher dimension

space so that, after the transformation, it has a clear dividing margin between

classes of data.

 Adding a Third Dimension
 To do so, we can add a third dimension, say the z-axis, and defi ne z to be:

 z x y2 2

 Once we plot the points using a 3D chart, the points are now linearly sepa-

rable. It is diffi cult to visualize this unless you plot the points out. The following

code snippet does just that:

 %matplotlib inline

 from mpl_toolkits.mplot3d import Axes3D
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import make_circles

 #---X is features and c is the class labels---
 X, c = make_circles(n_samples=500, noise=0.09)

 rgb = np.array(['r', 'g'])
 plt.scatter(X[:, 0], X[:, 1], color=rgb[c])
 plt.show()

 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection='3d')
 z = X[:,0]**2 + X[:,1]**2
 ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])
 plt.xlabel("x-axis")
 plt.ylabel("y-axis")
 plt.show()

 We fi rst create two sets of random points (a total of 500 points) distributed

in circular fashion using the make_circles() function. We then plot them out

on a 2D chart (as what was shown in Figure 8.11). We then add the third axis,

the z-axis, and plot the chart in 3D (see Figure 8.12).

188 Chapter 88 ■ Supervised Learning—Classification Using Support Vector Machines

 T I P If you run the preceding code in Terminal (just remove the %matplotlib
inline statement at the top of the code snippet) using the python command, you
will be able to rotate and interact with the chart. Figure 8.13 shows the different per-
spectives of the 3D chart.

1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.5

0.0

–0.5

–1.0

0.0
x-axis

y-a
xis

–1.0
–0.5

0.5
1.0

 Figure 8.12 : Plotting the points in the three dimensions

1.0
0.4

0.6

0.8

1.0

1.2

1.4

0.40.60.81.01.21.4

0.5

0.0

–0.5

–1.0

0.0
y-axis y-axis

x-
ax

is

–1.0 –0.5 0.5 1.0
0.0 –1.0–0.50.51.00.0–1.0–0.50.51.0
x-axis

 Figure 8.13 : The various perspectives on the same dataset in 3D

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 189

 Plotting the 3D Hyperplane
 With the points plotted in a 3D chart, let ’ s now train the model using the third

dimension:

 #---combine X (x-axis,y-axis) and z into single ndarray---
 features = np.concatenate((X,z.reshape(-1,1)), axis=1)

 #---use SVM for training---
 from sklearn import svm

 clf = svm.SVC(kernel = 'linear')
 clf.fit(features, c)

 First, we combined the three axes into a single ndarray using the np.concat-

enate() function. We then trained the model as usual. For a linearly-separable

set of points in two dimensions, the formula for the hyperplane is as follows:

 g(x) =
�
W0X1 +

�
W1X2 + b

 For the set of points now in three dimensions, the formula now becomes the

following:

 g(x) =
�
W0X1 +

�
W1X2 +

�
W2X3 + b

 In particular,
�

W2 is now represented by clf.coef_[0][2] , as shown in Figure 8.14 .

 The next step is to draw the hyperplane in 3D. In order to do that, you need

to fi nd the value of x3 , which can be derived, as shown in Figure 8.15 .

g(x) = w→ww0x1 + w→ww1x2 + w→ww2x3 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.coef_[0][2]

clf.intercept_[0]

 Figure 8.14 : The formula for the hyperplane in 3D and its corresponding variables in the
code snippet

w→ww0x1 + w→ww1x2 + w→ww2x3 + b = 0

w→ww2x3 = –w→ww0x1 – w→ww1x2 – b

x3 = –w→ww0x1 – w→ww1x2 – b

w→ww2

 Figure 8.15 : Formula for finding the hyperplane in 3D

190 Chapter 80 ■ Supervised Learning—Classification Using Support Vector Machines

 This can be expressed in code as follows:

 x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1] * y) /
 clf.coef_[0][2]

 To plot the hyperplane in 3D, use the plot_surface() function:

 tmp = np.linspace(-1.5,1.5,100)
 x,y = np.meshgrid(tmp,tmp)

 ax.plot_surface(x, y, x3(x,y))
 plt.show()

 The entire code snippet is as follows:

 from mpl_toolkits.mplot3d import Axes3D
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import make_circles

 #---X is features and c is the class labels---
 X, c = make_circles(n_samples=500, noise=0.09)
 z = X[:,0]**2 + X[:,1]**2

 rgb = np.array(['r', 'g'])

 fig = plt.figure(figsize=(18,15))
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])
 plt.xlabel("x-axis")
 plt.ylabel("y-axis")
plt.show()

#---combine X (x-axis,y-axis) and z into single ndarray---
features = np.concatenate((X,z.reshape(-1,1)), axis=1)

#---use SVM for training---
from sklearn import svm

clf = svm.SVC(kernel = ' linear ')
clf.fit(features, c)
x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1]
 * y) / clf.coef_[0][2]

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 191

tmp = np.linspace(-1.5,1.5,100)
x,y = np.meshgrid(tmp,tmp)

ax.plot_surface(x, y, x3(x,y))
plt.show()

 Figure 8.16 shows the hyperplane, as well as the points, plotted in 3D.

 Types of Kernels

 Up to this point, we only discussed one type of SVM—linear SVM. As the name

implies, linear SVM uses a straight line to separate the points. In the previous sec-

tion, you also learned about the use of kernel tricks to separate two sets of data that

are distributed in a circular fashion and then used linear SVM to separate them.

 Sometimes, not all points can be separated linearly, nor can they be separated

using the kernel tricks that you observed in the previous section. For this type

of data, you need to “bend” the lines to separate them. In machine learning,

kernels are functions that transform your data from nonlinear spaces to linear

ones (see Figure 8.17).

 To understand how kernels work, let ’ s use the Iris dataset as an example.

The following code snippet loads the Iris dataset and prints out the features,

target, and target names:

 %matplotlib inline
 import pandas as pd
 import numpy as np

1.0 1.5

0.4

0.2

0.6

0.8

1.0

1.2

1.4

0.50.0–0.5–1.0–1.5

0.0x-axis

y-axis

–1.0–1.5
–0.5

0.51.01.5

 Figure 8.16 : The hyperplane in 3D cutting through the two sets of points

192 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines

 from sklearn import svm, datasets
 import matplotlib.pyplot as plt

 iris = datasets.load_iris()
 print(iris.data[0:5]) # print first 5 rows
 print(iris.feature_names) # ['sepal length (cm)', 'sepal width (cm)',
 # 'petal length (cm)', 'petal width (cm)']
 print(iris.target[0:5]) # print first 5 rows
 print(iris.target_names) # ['setosa' 'versicolor' 'virginica']

 To illustrate, we will only use the fi rst two features of the Iris dataset:

 X = iris.data[:, :2] # take the first two features
 y = iris.target

 We will plot the points using a scatter plot (see Figure 8.18):

 #---plot the points---
 colors = ['red', 'green', 'blue']
 for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
 plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

 plt.xlabel('Sepal length')
 plt.ylabel('Sepal width')
 plt.legend(loc='best', shadow=False, scatterpoints=1)

 plt.title('Scatter plot of Sepal width against Sepal length')
 plt.show()

 Next, we will use the SVC class with the linear kernel:

 C = 1 # SVM regularization parameter
 clf = svm.SVC(kernel='linear', C=C).fit(X, y)
 title = 'SVC with linear kernel'

x1

Kernel Function

O

f(O)

f(O)

f(O)

f(O)

f(O)

f(O)
f(x)

f(x)

f(x)

f(x)

O

O O
O

x

xx
x

O

x2

O

x1

x2

 Figure 8.17 : A kernel function transforms your data from nonlinear spaces to linear ones

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 193

 T I P Notice that this time around, we have a new parameter C. We will discuss this
in a moment.

 Instead of drawing lines to separate the three groups of Iris fl owers, this time

we will paint the groups in colors using the contourf() function:

 #---min and max for the first feature---
 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

 #---min and max for the second feature---
 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 #---step size in the mesh---
 h = (x_max / x_min)/100

 #---make predictions for each of the points in xx,yy---
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))

 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

 #---draw the result using a color plot---
 Z = Z.reshape(xx.shape)
 plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)

 #---plot the training points---
 colors = ['red', 'green', 'blue']
 for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
 plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

Sepal length

Scatter plot of Sepal width against Sepal length

Se
pa

l w
id

th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

setosa
versicolor
virginica

4.5

4.0

3.5

3.0

2.5

2.0

 Figure 8.18 : Scatter plot of the Iris dataset ’ s first two features

194 Chapter 84 ■ Supervised Learning—Classification Using Support Vector Machines

 plt.xlabel('Sepal length')
 plt.ylabel('Sepal width')
 plt.title(title)
 plt.legend(loc='best', shadow=False, scatterpoints=1)

 Figure 8.19 shows the scatter plots as well as the groups determined by the

SVM linear kernel.

 Once the training is done, we will perform some predictions:

 predictions = clf.predict(X)
 print(np.unique(predictions, return_counts=True))

 The preceding code snippet returns the following:

 (array([0, 1, 2]), array([50, 53, 47]))

 This means that after the feeding the model with the Iris dataset, 50 are

classifi ed as “setosa,” 53 are classifi ed as “versicolor,” and 47 are classifi ed as

“virginica.”

 C
 In the previous section, you saw the use of the C parameter:

 C = 1
 clf = svm.SVC(kernel='linear', C=C).fit(X, y)

Sepal length

SVC with linear kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

 Using the SVM linear kernel

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 195

 C is known as the penalty parameter of the error term . It controls the tradeoff

between the smooth decision boundary and classifying the training points cor-

rectly. For example, if the value of C is high, then the SVM algorithm will seek

to ensure that all points are classifi ed correctly. The downside to this is that it

may result in a narrower margin, as shown in Figure 8.20 .

 In contrast, a lower C will aim for the widest margin possible, but it will result

in some points being classifi ed incorrectly (see Figure 8.21).

 Figure 8.22 shows the effects of varying the value of C when applying the

SVM linear kernel algorithm. The result of the classification appears at

the bottom of each chart.

More concerned about getting the points correctly classified
(prioritizes making lesser mistakes)

High C

 Figure 8.20 : A high C focuses more on getting the points correctly classified

More concerned about maximizing the margin
(prioritizes simplicity)

Low C

 Figure 8.21 : A low C aims for the widest margin, but may classify some points incorrectly

196 Chapter 86 ■ Supervised Learning—Classification Using Support Vector Machines

 Note that when C is 1 or 10 10 , there isn ’ t too much difference among the

classifi cation results. However, when C is small (10–10), you can see that a number

of points (belonging to “versicolor” and “virginica”) are now misclassifi ed as

“setosa.”

 T I P In short, a low C makes the decision surface smooth while trying to classify
most points, while a high C tries to classify t all of the points correctly.l

 Radial Basis Function (RBF) Kernel
 Besides the linear kernel that we have seen so far, there are some commonly

used nonlinear kernels:

■ Radial Basis function (RBF), also known as) Gaussian Kernel

■ Polynomial

Sepal length
(array([0, 1, 2]), array([50, 53, 47]))

SVC with linear kernel

Default C
C=1

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length
(array([0, 1, 2]), array([50, 55, 45]))

SVC with linear kernel

High C
C=1010

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length
(array([0, 1, 2]), array([56, 55, 39]))

SVC with linear kernel

Low C
C=10–10

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

 Figure 8.22 : Using SVM with varying values of C

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 197

 The fi rst, RBF, gives value to each point based on its distance from the origin

or a fi xed center, commonly on a Euclidean space. Let ’ s use the same example

that we used in the previous section, but this time modify the kernel to use rbf :

 C = 1
 clf = svm.SVC(kernel= ' rbf ' , gamma='auto', C=C).fit(X, y)
 title = 'SVC with RBF kernel'

 Figure 8.23 shows the same sample trained using the RBF kernel.

 Gamma
 If you look at the code snippet carefully, you will discover a new parame-

ter— gamma . Gamma defi nes how far the infl uence of a single training example

reaches. Consider the set of points shown in Figure 8.24 . There are two classes

of points—x ’ s and o ’ s.

 A low Gamma value indicates that every point has a far reach (see Figure 8.25).

 On the other hand, a high Gamma means that the points closest to the decision

boundary have a close reach. The higher the value of Gamma, the more it will

try to fi t the training dataset exactly, resulting in overfi tting (see Figure 8.26).

 Figure 8.27 shows the classifi cation of the points using RBF, with varying

values of C and Gamma.

 Note that if Gamma is high (10), overfi tting occurs. You can also see from this

fi gure that the value of C controls the smoothness of the curve.

Sepal length

SVC with RBF kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

 Figure 8.23 : The Iris dataset trained using the RBF kernel

198 Chapter 88 ■ Supervised Learning—Classification Using Support Vector Machines

Low Gamma

x

x x

x
x

x

x
x

OOO
O
OO

O
O

O

x
x

x

 Figure 8.25 : A low Gamma value allows every point to have equal reach

High Gamma

x

x x

x
x

x

x
x

OOO
O
OO

O
O

O

x
x

x

 Figure 8.26 : A high Gamma value focuses more on points close to the boundary

O

O O O
OO

O O O

x x
x

x

x

x x
x

x
x

x

 Figure 8.24 : A set of points belonging to two classes

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 199

 T I P To summarize, C controls the smoothness of the boundary and Gamma deter-
mines if the points are overfitted.

 Polynomial Kernel
 Another type of kernel is called the polynomial kernel . A polynomial kernel of

degree 1 is similar to that of the linear kernel. Higher-degree polynomial kernels

afford a more fl exible decision boundary. The following code snippet shows the

Iris dataset trained using the polynomial kernel with degree 4:

 C = 1 # SVM regularization parameter
 clf = svm.SVC(kernel='poly', degree=4, C=C, gamma='auto').fit(X, y)
 title = 'SVC with polynomial (degree 4) kernel'

 Figure 8.28 shows the dataset separated with polynomial kernels of degree

1 to 4.

Sepal length

SVC with RBF kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length

SVC with RBF kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length

SVC with RBF kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length

SVC with RBF kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Gamma = 10
C = 10–10

Gamma = 0.1
C = 1010

Gamma = 10
C = 1

Gamma = 0.1
C = 1

 Figure 8.27 : The effects of classifying the points using varying values of C and Gamma

200 Chapter 80 ■ Supervised Learning—Classification Using Support Vector Machines

 Using SVM for Real-Life Problems

 We will end this chapter by applying SVM to a common problem in our daily lives.

Consider the following dataset (saved in a fi le named house_sizes_prices_svm

.csv) containing the size of houses and their asking prices (in thousands) for v

a particular area:

 size,price,sold
 550,50,y
 1000,100,y
 1200,123,y
 1500,350,n
 3000,200,y
 2500,300,y
 750, 45,y
 1500,280,n
 780,400,n
 1200, 450,n
 2750, 500,n

 The third column indicates if the house was sold. Using this dataset, you want

to know if a house with a specifi c asking price would be able to sell.

Sepal length

SVC with polynomial (degree 1) kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length

SVC with polynomial (degree 3) kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sepal length

SVC with polynomial (degree 4) kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sepal length

SVC with polynomial (degree 2) kernel

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

setosa
versicolor
virginica

setosa
versicolor
virginica

Figure 8.28 : The classification of the Iris dataset using polynomial kernel of varying degrees

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 201

 First, let ’ s plot out the points:

 %matplotlib inline

 import pandas as pd
 import numpy as np
 from sklearn import svm
 import matplotlib.pyplot as plt
 import seaborn as sns; sns.set(font_scale=1.2)

 data = pd.read_csv('house_sizes_prices_svm.csv')

 sns.lmplot('size', 'price',
 data=data,
 hue='sold',
 palette='Set2',
 fit_reg=False,
 scatter_kws={"s": 50});

 Figure 8.29 shows the points plotted as a scatter plot.

 Visually, you can see that this is a problem that can be solved with SVM ’ s

linear kernel:

 X = data[['size','price']].values
 y = np.where(data['sold']=='y', 1, 0) #--1 for Y and 0 for N---
 model = svm.SVC(kernel='linear').fit(X, y)

500

100

200

300 sold

y

n

p
ri
c
e

400

500

1000 1500 2000 30002500

size

 Figure 8.29 : Plotting the points on a scatter plot

202 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines

 With the trained model, you can now perform predictions and paint the two

classes:

 #---min and max for the first feature---
 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

 #---min and max for the second feature---
 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 #---step size in the mesh---
 h = (x_max / x_min) / 20

 #---make predictions for each of the points in xx,yy---
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))

 Z = model.predict(np.c_[xx.ravel(), yy.ravel()])

 #---draw the result using a color plot---
 Z = Z.reshape(xx.shape)
 plt.contourf(xx, yy, Z, cmap=plt.cm.Blues, alpha=0.3)

 plt.xlabel('Size of house')
 plt.ylabel('Asking price (1000s)')
 plt.title("Size of Houses and Their Asking Prices")

 Figure 8.30 shows the points and the classes to which they belong.

500

100

200

300 sold

y

n

A
s
k
in

g
 p

ri
c
e

 (
1

0
0

0
s
)

400

500

1000 1500 2000 30002500

Size of house

Size of Houses and Their Asking Prices

 Figure 8.30 : Separating the points into two classes

 Chapter 8 ■ Supervised Learning—Classification Using Support Vector Machines 203

 You can now try to predict if a house of a certain size with a specifi c selling

price will be able to sell:

 def will_it_sell(size, price):
 if(model.predict([[size, price]]))==0:
 print('Will not sell!')
 else:
 print('Will sell!')

 #---do some prediction---
 will_it_sell(2500, 400) # Will not sell!
 will_it_sell(2500, 200) # Will sell!

 Summary

 In this chapter, you learned about how Support Vector Machines help in

classifi cation problems. You learned about the formula for fi nding the hyperplane,

as well as the two accompanying margins. Fortunately, Scikit-learn provides

the classes needed for training models using SVM, and with the parameters

returned, you can plot the hyperplane and margins visually so that you can

understand how SVM works. You also learned about the various kernels that you

can apply to your SVM algorithms so that the dataset can be separated linearly.

C H A P T E R

205

9

 What Is K-Nearest Neighbors?

 Up until this point, we have discussed three supervised learning algorithms:

linear regression, logistics regression, and support vector machines. In this

chapter, we will dive into another supervised machine learning algorithm

known as K-Nearest Neighbors (KNN).)
 KNN is a relatively simple algorithm compared to the other algorithms that we

have discussed in previous chapters. It works by comparing the query instance ’ s

distance to the other training samples and selecting the K-nearest neighbors

(hence its name). It then takes the majority of these K-neighbor classes to be the

prediction of the query instance.

 Figure 9.1 sums this up nicely. When k = 3, the closest three neighbors of

the circle are the two squares and the one triangle. Based on the simple rule of

majority, the circle is classifi ed as a square. If k = 5, then the closest fi ve neigh-

bors are the two squares and the three triangles. Hence, the circle is classifi ed

as a triangle.

 Supervised Learning—
Classification Using KK-Nearest

Neighbors (KNN)ors (KNN)

206 Chapter 96 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 T I P KNN is also sometimes used for regression in addition to classification.
For example, it can be used to calculate the average of the numerical target of the
K-nearest neighbors. For this chapter, however, we are focusing solely on its more
common use as a classification algorithm.

 Implementing KNN in Python
 Now that you have seen how KNN works, let ’ s try to implement KNN from

scratch using Python. As usual, fi rst let ’ s import the modules that we ’ ll need:

 import pandas as pd
 import numpy as np
 import operator
 import seaborn as sns
 import matplotlib.pyplot as plt

 Plotting the Points

 For this example, you will use a fi le named knn.csv containing the following data:v

 x,y,c
 1,1,A
 2,2,A
 4,3,B
 3,3,A
 3,5,B
 5,6,B
 5,4,B

Deemed to be square Deemed to be triangle

k=3

gleeeeeeeee

k=5

 Figure 9.1 : The classification of a point depends on the majority of its neighbors

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 207

 As we have done in the previous chapters, a good way is to plot the points

using Seaborn:

 data = pd.read_csv("knn.csv")
 sns.lmplot('x', 'y', data=data,
 hue='c', palette='Set1',
 fit_reg=False, scatter_kws={"s": 70})
 plt.show()

 Figure 9.2 shows the distribution of the various points. Points that belong to

class A are displayed in red while those belonging to class B are displayed in blue.

 Calculating the Distance Between the Points

 In order to fi nd the nearest neighbor of a given point, you need to calculate the

Euclidean distance between two points.

 T I P In geometry, Euclidean space encompasses the two-dimensional Euclidean
plane, the three-dimensional space of Euclidean geometry, and similar spaces of
higher dimension.

 Given two points, p p p , ,pn1 2, and q q q , ,qn1 2 , the distance between

p and q is given by the following formula:

q p q p q pn n1 1

2

2 2

2 2

c
A
B

1

1

2

3

4

y

5

6

2 3
x

4 5

 Figure 9.2 : Plotting the points visually

208 Chapter 98 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 Based on this formula, you can now defi ne a function named euclidean _

distance() as follows:

 #---to calculate the distance between two points---
 def euclidean_distance(pt1, pt2, dimension):
 distance = 0
 for x in range(dimension):
 distance += np.square(pt1[x] - pt2[x])
 return np.sqrt(distance)

 The Euclidean _ distance() function can fi nd the distance between two

points in any dimension. For this example, the points that we are dealing with

are in 2D.

 Implementing KNN

 Next, defi ne a function named knn() , which takes in the training points, the

test point, and the value of k:

 #---our own KNN model---
 def knn(training_points, test_point, k):
 distances = {}

 #---the number of axes we are dealing with---
 dimension = test_point.shape[1]

 #--calculating euclidean distance between each
 # point in the training data and test data
 for x in range(len(training_points)):
 dist = euclidean_distance(test_point, training_points.iloc[x],
 dimension)
 #---record the distance for each training points---
 distances[x] = dist[0]

 #---sort the distances---
 sorted_d = sorted(distances.items(), key=operator.itemgetter(1))

 #---to store the neighbors---
 neighbors = []

 #---extract the top k neighbors---
 for x in range(k):
 neighbors.append(sorted_d[x][0])

 #---for each neighbor found, find out its class---
 class_counter = {}
 for x in range(len(neighbors)):
 #---find out the class for that particular point---
 cls = training_points.iloc[neighbors[x]][-1]

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 209

 if cls in class_counter:
 class_counter[cls] += 1
 else:
 class_counter[cls] = 1

 #---sort the class_counter in descending order---
 sorted_counter = sorted(class_counter.items(),
 key=operator.itemgetter(1),
 reverse=True)

 #---return the class with the most count, as well as the
 #neighbors found---
 return(sorted_counter[0][0], neighbors)

 The function returns the class to which the test point belongs, as well as the

indices of all the nearest k neighbors.

 Making Predictions

 With the knn() function defi ned, you can now make some predictions:

 #---test point---
 test_set = [[3,3.9]]
 test = pd.DataFrame(test_set)
 cls,neighbors = knn(data, test, 5)
 print("Predicted Class: " + cls)

 The preceding code snippet will print out the following output:

 Predicted Class: B

 Visualizing Different Values of K

 It is useful to be able to visualize the effect of applying various values of k. The

following code snippet draws a series of concentric circles around the test point

based on the values of k, which range from 7 to 1, with intervals of –2:

 #---generate the color map for the scatter plot---
 #---if column 'c' is A, then use Red, else use Blue---
 colors = ['r' if i == 'A' else 'b' for i in data['c']]
 ax = data.plot(kind='scatter', x='x', y='y', c = colors)
 plt.xlim(0,7)
 plt.ylim(0,7)

 #---plot the test point---
 plt.plot(test_set[0][0],test_set[0][1], "yo", markersize='9')

 for k in range(7,0,-2):
 cls,neighbors = knn(data, test, k)

210 Chapter 90 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 print("============")
 print("k = ", k)
 print("Class", cls)
 print("Neighbors")
 print(data.iloc[neighbors])

 furthest_point = data.iloc[neighbors].tail(1)

 #---draw a circle connecting the test point
 # and the furthest point---
 radius = euclidean_distance(test, furthest_point.iloc[0], 2)

 #---display the circle in red if classification is A,
 # else display circle in blue---
 c = 'r' if cls=='A' else 'b'
 circle = plt.Circle((test_set[0][0], test_set[0][1]),
 radius, color=c, alpha=0.3)
 ax.add_patch(circle)

 plt.gca().set_aspect('equal', adjustable='box')
 plt.show()

 The preceding code snippet prints out the following output:

 ============
 k = 7
 Class B
 Neighbors
 x y c
 3 3 3 A
 4 3 5 B
 2 4 3 B
 6 5 4 B
 1 2 2 A
 5 5 6 B
 0 1 1 A
 ============
 k = 5
 Class B
 Neighbors
 x y c
 3 3 3 A
 4 3 5 B
 2 4 3 B
 6 5 4 B
 1 2 2 A
 ============
 k = 3
 Class B
 Neighbors

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 211

 x y c
 3 3 3 A
 4 3 5 B
 2 4 3 B
 ============
 k = 1
 Class A
 Neighbors
 x y c
 3 3 3 A

 Figure 9.3 shows the series of circles centered around the test point, with

varying values of k. The innermost circle is for k = 1, with the next outer ring

for k = 3, and so on. As you can see, if k = 1, the circle is red, meaning that the

yellow point has been classifi ed as class A. If the circle is blue, this means that

the yellow point has been classifi ed as class B. This is evident in the outer three

circles.

 Using Scikit-Learn ’ s KNeighborsClassifier Class for KNN
 Now that you have seen how KNN works and how it can be implemented man-

ually in Python, let ’ s use the implementation provided by Scikit-learn.

0 1

1

0

2

3

4

y

5

6

7

2 3
x

4 5 76

 Figure 9.3 : The classification of the yellow point based on the different values of k

212 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 The following code snippet loads the Iris dataset and plots it out using a

scatter plot:

 %matplotlib inline
 import pandas as pd
 import numpy as np
 import matplotlib.patches as mpatches
 from sklearn import svm, datasets
 import matplotlib.pyplot as plt

 iris = datasets.load_iris()

 X = iris.data[:, :2] # take the first two features
 y = iris.target

 #---plot the points---
 colors = ['red', 'green', 'blue']
 for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
 plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

 plt.xlabel('Sepal length')
 plt.ylabel('Sepal width')
 plt.legend(loc='best', shadow=False, scatterpoints=1)

 plt.title('Scatter plot of Sepal width against Sepal length')
 plt.show()

 Figure 9.4 shows the scatter plot of the Sepal width against the Sepal length.

Sepal length

Scatter plot of Sepal width against Sepal length

Se
pa

l w
id

th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

setosa
versicolor
virginica

4.5

4.0

3.5

3.0

2.5

2.0

 Figure 9.4 : Plotting out the Sepal width against the Sepal length in a scatter plot

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 213

 Exploring Different Values of K

 We can now use Scikit-learn ’ s KNeighborsClassifier class to help us train a

model on the Iris dataset using KNN. For a start, let ’ s use a k of 1:

 from sklearn.neighbors import KNeighborsClassifier

 k = 1
 #---instantiate learning model---
 knn = KNeighborsClassifier(n_neighbors=k)

 #---fitting the model---
 knn.fit(X, y)

 #---min and max for the first feature---
 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

 #---min and max for the second feature---
 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 #---step size in the mesh---
 h = (x_max / x_min)/100

 #---make predictions for each of the points in xx,yy---
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))

 Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])

 #---draw the result using a color plot---
 Z = Z.reshape(xx.shape)
 plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)

 #---plot the training points---
 colors = ['red', 'green', 'blue']
 for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
 plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)

 plt.xlabel('Sepal length')
 plt.ylabel('Sepal width')
 plt.title(f'KNN (k={k})')
 plt.legend(loc='best', shadow=False, scatterpoints=1)

 predictions = knn.predict(X)

 #--classifications based on predictions---
 print(np.unique(predictions, return_counts=True))

214 Chapter 94 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 The preceding code snippet creates a meshgrid (a rectangular grid of values)

of points scattered across the x- and y-axes. Each point is then used for predic-

tion, and the result is drawn using a color plot.

 Figure 9.5 shows the classifi cation boundary using a k of 1. Notice that for

k = 1, you perform your prediction based solely on a single sample—your nearest

neighbor. This makes your prediction very sensitive to all sorts of distortions,

such as outliers, mislabeling, and so on. In general, setting k = 1 usually leads

to overfi tting , and as a result your prediction is usually not very accurate. gg

 T I P Overfitting in machine learning means that the model you have trained fits
the training data too well. This happens when all of the noises and fluctuations in your
training data are picked up during the training process. In simple terms, this means
that your model is trying very hard to fit all of your data perfectly. The key problem
with an overfitted model is that it will not work well with new, unseen data.

Underfitting , on the other hand, occurs when a machine learning model cannot accu-
rately capture the underlying trend of the data. Specifically, the model does not fit the
data well enough.

 Figure 9.6 shows an easy way to understand overfitting, underfitting, and a generally
good fit.

Sepal length

KNN (k=1)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

 Figure 9.5 : The classification boundary based on k = 1

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 215

 For KNN, setting k to a higher value tends to make your prediction more

robust against noise in your data.

 Using the same code snippet, let ’ s vary the values of k. Figure 9.7 shows the

classifi cations based on four different values of k.

 Note that as k increases, the boundary becomes smoother. But it also means

that more points will be classifi ed incorrectly. When k increases to a large value,

underfi tting occurs.

 The key issue with KNN is then how do you fi nd out the ideal value of k to use?

y

x
Overfitting

y

x
Underfitting

y

x
Good Fit

 Figure 9.6 : Understanding the concept of overfitting, underfitting, and a good fit

Sepal length

KNN (k=3)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

Sepal length

KNN (k=49)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sepal length

KNN (k=99)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sepal length

KNN (k=7)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

setosa
versicolor
virginica

setosa
versicolor
virginica

 The effects of varying the values of k

216 Chapter 96 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 Cross-Validation

 In the previous few chapters, you have witnessed that we split our dataset into

two individual sets—one for training and one for testing. However, the data

in your dataset may not be distributed evenly, and as a result your test set may

be too simple or too hard to predict, thereby making it very diffi cult to know

if your model works well.

 Instead of using part of the data for training and part for testing, you can split

the data into k-folds and train the models k times, rotating the training and test-k
ing sets. By doing so, each data point is now being used for training and testing.

 T I P Do not confuse the k in k-folds with the k k in KNN—they are not related. k

 Figure 9.8 shows a dataset split into fi ve folds (blocks). For the fi rst run, blocks

1, 2, 3, and 4 will be used to train the model. Block 0 will be used to test the

model. In the next run, blocks 0, 2, 3, and 4 will be used for training, and block

1 will be used for testing, and so on.

 At the end of each run, the model is scored. At the end of the k-runs, the score

is averaged. This averaged score will give you a good indication of how well

your algorithm performs.

 T I P The purpose of cross-validation is not for training your model, but rather it is
for model checking. Cross-validation is useful when you need to compare different
machine learning algorithms to see how they perform with the given dataset. Once
the algorithm is selected, you will use all of the data for training the model.

Training Set

Run 1

Run 2

Run 3

Run 4

Run 5

Folds = 5

Testing Set

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

 Figure 9.8 : How cross-validation works

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 217

 Parameter-Tuning K

 Now that you understand cross-validation, let ’ s use it on our Iris dataset. We will

train the model using all of the four features, and at the same time we shall use

cross-validation on the dataset using 10 folds. We will do this for each value of k:

 from sklearn.model_selection import cross_val_score

 #---holds the cv (cross-validates) scores---
 cv_scores = []

 #---use all features---
 X = iris.data[:, :4]
 y = iris.target

 #---number of folds---
 folds = 10

 #---creating odd list of K for KNN---
 ks = list(range(1,int(len(X) * ((folds - 1)/folds))))

 #---remove all multiples of 3---
 ks = [k for k in ks if k % 3 != 0]

 #---perform k-fold cross validation---
 for k in ks:
 knn = KNeighborsClassifier(n_neighbors=k)

 #---performs cross-validation and returns the average accuracy---
 scores = cross_val_score(knn, X, y, cv=folds, scoring='accuracy')
 mean = scores.mean()
 cv_scores.append(mean)
 print(k, mean)

 The Scikit-learn library provides the cross _ val _ score() function that

performs cross-validation for you automatically, and it returns the metrics that

you want (for example, accuracy).

 When using cross-validation, be aware that at any one time, there will be ((folds-
1)/folds) * total_rows available for training. This is because (1/folds) * total_rows
will be used for testing.

 For KNN, there are three rules to which you must adhere:

■ The value of k cannot exceed the number of rows for training.

■ The value of k should be an odd number (so that you can avoid situations

where there is a tie between the classes) for a two-class problem.

■ The value of k must not be a multiple of the number of classes (to avoid

ties, similar to the previous point).

218 Chapter 98 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 Hence, the ks list in the preceding code snippet will contain the following

values:
 [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28,
29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55,
56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82,
83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106,
107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127,
128, 130, 131, 133, 134]

 After the training, the cv _ scores will contain a list of accuracies based on

the different values of k:

 1 0.96
 2 0.9533333333333334
 4 0.9666666666666666
 5 0.9666666666666668
 7 0.9666666666666668
 8 0.9666666666666668
 10 0.9666666666666668
 11 0.9666666666666668
 13 0.9800000000000001
 14 0.9733333333333334
 ...
 128 0.6199999999999999
 130 0.6066666666666667
 131 0.5933333333333332
 133 0.5666666666666667
 134 0.5533333333333333

 Finding the Optimal K

 To fi nd the optimal k, you simply fi nd the value of k that gives the highest accu-

racy. Or, in this case, you will want to fi nd the lowest misclassifi cation error (MSE).)
 The following code snippet fi nds the MSE for each k, and then fi nds the k

with the lowest MSE. It then plots a line chart of MSE against k (see Figure 9.9):

 #---calculate misclassification error for each k---
 MSE = [1 - x for x in cv_scores]

 #---determining best k (min. MSE)---
 optimal_k = ks[MSE.index(min(MSE))]
 print(f"The optimal number of neighbors is {optimal_k}")

 #---plot misclassification error vs k---
 plt.plot(ks, MSE)
 plt.xlabel('Number of Neighbors K')
 plt.ylabel('Misclassification Error')
 plt.show()

 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors 219

 The preceding code snippet prints out the following:

 The optimal number of neighbors is 13

 Figure 9.10 shows the classifi cation when k = 13.

0
0.0

0.1

0.2

0.3

M
is

cl
as

si
fic

at
io

n
Er

ro
r

0.4

20 40 60

Number of Neighbors K

80 100 120 140

 Figure 9.9 : The chart of miscalculations for each k

Sepal length

KNN (k=13)

Se
pa

l w
id

th

4 5 6 7 8

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

setosa
versicolor
virginica

 Figure 9.10 : The optimal value of k at 13

220 Chapter 90 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 Summary

 Of the four algorithms that we have discussed in this book, KNN is considered

one of the most straightforward. In this chapter, you learned how KNN works

and how to derive the optimal k that minimizes the miscalculation of errors.

 In the next chapter, you will learn a new type of algorithm—unsupervised

learning. You will learn how to discover structures in your data by performing

clustering using K-Means.

C H A P T E R

221

10

 What Is Unsupervised Learning?

 So far, all of the machine learning algorithms that you have seen are supervised

learning. That is, the datasets have all been labeled, classifi ed, or categorized.

Datasets that have been labeled are known as labeled data , while datasets that

have not been labeled are known as unlabeled data . Figure 10.1 shows an example

of labeled data.

 Based on the size of the house and the year in which it was built, you have

the price at which the house was sold. The selling price of the house is the label ,l
and your machine learning model can be trained to give the estimated worth

of the house based on its size and the year in which it was built.

 Unsupervised Learning—
Clustering Using K-Means K-Means

Features

Size of
House

Year
Built

Price
Sold

Label

 Figure 10.1 : Labeled data

222 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means

Unlabeled data , on the other hand, is data without label(s). For example,

Figure 10.2 shows a dataset containing a group of people ’ s waist circumference

and corresponding leg length. Given this set of data, you can try to cluster them

into groups based on the waist circumference and leg length, and from there

you can fi gure out the average dimension in each group. This would be useful

for clothing manufacturers to tailor different sizes of clothing to fi t its customers.

 Unsupervised Learning Using K-Means
 Since there is no label in unlabeled data, it is thus of interest to us that we are

able to fi nd patterns in that unlabeled data. This technique of fi nding patterns

in unlabeled data is known as clustering . The main aim of clustering is to segre-gg
gate groups with similar traits and assign them into groups (commonly known

as clusters).s
 One of the common algorithms used for clustering is the K-Means algorithm.

K-Means clustering is a type of unsupervised learning:

■ Used when you have unlabeled data

■ The goal is to fi nd groups in data, with the number of groups represented

by K

 The goal of K-Means clustering is to achieve the following:

■ K centroids representing the center of the clusters

■ Labels for the training data

 In the next section, you will learn how clustering using K-Means works.

 How Clustering in K-Means Works
 Let ’ s walk through a simple example so that you can see how clustering using

K-Means works. Suppose you have a series of unlabeled points, as shown in

Figure 10.3 .

Features

Waist
Circumference

Leg length

 Figure 10.2 : Unlabeled data

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 223

 Your job is to cluster all of these points into distinct groups so that you can

discover a pattern among them. Suppose you want to separate them into two

groups (that is, K=2). The end result would look like Figure 10.4 .

 First, you will randomly put K number of centroids on the graph. In Figure 10.5 ,

since K equals 2, we will randomly put two centroids on the graph: C0 and C 1 .

For each point on the graph, measure the distance between itself and each of the

centroids. As shown in the fi gure, the distance (represented by d0) between a and

C0 is shorter than the distance (represented by d1) between a and C1 . Hence, a is

now classifi ed as cluster 0. Likewise, for point b , the distance between itself and b

C1 is shorter than the distance between itself and C0 . Hence, point b is classifi ed

as cluster 1. You repeat this process for all the points in the graph.

 After the fi rst round, the points would be clustered, as shown in Figure 10.6 .

 Figure 10.3 : A set of unlabeled data points

2 Clusters

 Clustering the points into two distinct clusters

224 Chapter 104 ■ Unsupervised Learning—Clustering Using K-Means

 Now take the average of all of the points in each cluster and reposition

the centroids using the newly calculated average. Figure 10.7 shows the new

positions of the two centroids.

 You now measure the distance between each of the old centroids and the

new centroids (see Figure 10.8). If the distance is 0, that means that the centroid

did not change position and hence the centroid is found. You repeat the entire

process until all the centroids do not change position anymore.

Planted centroid

Cluster 0

Cluster 1

Planted centroid

Classified as
cluster 0 as

d0<d1

Classified as
cluster 1 as

d1<d0

d0

d0

d1

c0

d1

b

a c1

 Measuring the distance of each point with respect to each centroid and finding
the shortest distance

c0

c1

 Figure 10.6 : Groupings of the points after the first round of clustering

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 225

 Implementing K-Means in Python
 Now that you have a clear picture of how K-Means works, it is useful to imple-

ment this using Python. You will fi rst implement K-Means using Python, and

then see how you can use Scikit-learn ’ s implementation of K-Means in the next

section.

 Suppose you have a fi le named kmeans.csv with the following content:

 x,y
 1,1
 2,2

New centroids

Old centroids

c0

c0

c1

c1

 Figure 10.7 : Repositioning the centroids by taking the average of all the points in each cluster

c0

c0

c1

c1

 Figure 10.8 : Measuring the distance between each centroid; if the distance is 0, the centroid
is found

226 Chapter 106 ■ Unsupervised Learning—Clustering Using K-Means

 2,3
 1,4
 3,3
 6,7
 7,8
 6,8
 7,6
 6,9
 2,5
 7,8
 8,9
 6,7
 7,8
 3,1
 8,4
 8,6
 8,9

 Let ’ s fi rst import all of the necessary libraries:

 %matplotlib inline
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt

 Then load the CSV fi le into a Pandas dataframe, and plot a scatter plot

showing the points:

 df = pd.read_csv("kmeans.csv")
 plt.scatter(df['x'],df['y'], c='r', s=18)

 Figure 10.9 shows the scatter plot with the points.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

 Figure 10.9 : The scatter plot showing all the points

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 227

 You can now generate some random centroids. You also need to decide

on the value of K. Let ’ s assume K to be 3 for now. You will learn how to determine

the optimal K later in this chapter. The following code snippet generates three

random centroids and marks them on the scatter plot:

 #---let k assume a value---
 k = 3

 #---create a matrix containing all points---
 X = np.array(list(zip(df['x'],df['y'])))

 #---generate k random points (centroids)---
 Cx = np.random.randint(np.min(X[:,0]), np.max(X[:,0]), size = k)
 Cy = np.random.randint(np.min(X[:,1]), np.max(X[:,1]), size = k)

 #---represent the k centroids as a matrix---
 C = np.array(list(zip(Cx, Cy)), dtype=np.float64)
 print(C)

 #---plot the orginal points as well as the k centroids---
 plt.scatter(df['x'], df['y'], c='r', s=8)
 plt.scatter(Cx, Cy, marker='*', c='g', s=160)
 plt.xlabel("x")
 plt.ylabel("y")

 Figure 10.10 shows the points, as well as the centroids on the scatter plot.

0

2

4

y

6

8

10 2 3 4
x

5 6 7 8

 Figure 10.10 : The scatter plot with the points and the three random centroids

228 Chapter 108 ■ Unsupervised Learning—Clustering Using K-Means

 Now comes the real meat of the program. The following code snippet imple-

ments the K-Means algorithm that we discussed earlier in the “How Clustering

in K-Means Works” section:

 from copy import deepcopy

 #---to calculate the distance between two points---
 def euclidean_distance(a, b, ax=1):
 return np.linalg.norm(a - b, axis=ax)

 #---create a matrix of 0 with same dimension as C (centroids)---
 C_prev = np.zeros(C.shape)

 #---to store the cluster each point belongs to---
 clusters = np.zeros(len(X))

 #---C is the random centroids and C_prev is all 0s---
 #---measure the distance between the centroids and C_prev---
 distance_differences = euclidean_distance(C, C_prev)

 #---loop as long as there is still a difference in
 # distance between the previous and current centroids---
 while distance_differences.any() != 0:
 #---assign each value to its closest cluster---
 for i in range(len(X)):
 distances = euclidean_distance(X[i], C)

 #---returns the indices of the minimum values along an axis---
 cluster = np.argmin(distances)
 clusters[i] = cluster

 #---store the prev centroids---
 C_prev = deepcopy(C)

 #---find the new centroids by taking the average value---
 for i in range(k): #---k is the number of clusters---
 #---take all the points in cluster i---
 points = [X[j] for j in range(len(X)) if clusters[j] == i]
 if len(points) != 0:
 C[i] = np.mean(points, axis=0)

 #---find the distances between the old centroids and the new
centroids---
 distance_differences = euclidean_distance(C, C_prev)

 #---plot the scatter plot---
 colors = ['b','r','y','g','c','m']
 for i in range(k):
 points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
 if len(points) > 0:

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 229

 plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])
 else:
 # this means that one of the clusters has no points
 print("Plesae regenerate your centroids again.")

 plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])
 plt.scatter(C[:, 0], C[:, 1], marker='*', s=100, c='black')

 With the preceding code snippet, the centroids would now be computed and

displayed on the scatter plot, as shown in Figure 10.11 .

 T I P Due to the locations of the points, it is possible that the centroids you
obtained may not be identical to the one shown in Figure 10.11 .

 Also, there may be cases where after the clustering, there are no points belonging to a
particular centroid. In this case, you have to regenerate the centroid and perform the
clustering again.

 You can now also print out the clusters to which each point belongs:

 for i, cluster in enumerate(clusters):
 print("Point " + str(X[i]),
 "Cluster " + str(int(cluster)))

 You should be able to see the following output:

 Point [1 1] Cluster 2
 Point [2 2] Cluster 2
 Point [2 3] Cluster 2

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

 Figure 10.11 : The scatter plot showing the clustering of the points as well as the new-
found centroids

230 Chapter 100 ■ Unsupervised Learning—Clustering Using K-Means

 Point [1 4] Cluster 2
 Point [3 3] Cluster 2
 Point [6 7] Cluster 1
 Point [7 8] Cluster 1
 Point [6 8] Cluster 1
 Point [7 6] Cluster 0
 Point [6 9] Cluster 1
 Point [2 5] Cluster 2
 Point [7 8] Cluster 1
 Point [8 9] Cluster 1
 Point [6 7] Cluster 1
 Point [7 8] Cluster 1
 Point [3 1] Cluster 2
 Point [8 4] Cluster 0
 Point [8 6] Cluster 0
 Point [8 9] Cluster 1

 T I P The cluster numbers that you will see may not be the same as the ones shown
in the preceding code.

 More importantly, you want to know the location of each centroid. You can

do so via printing out the value of C :

 print(C)
 '''
 [[7.66666667 5.33333333]
 [6.77777778 8.11111111]
 [2. 2.71428571]]
 '''

 Using K-Means in Scikit-learn
 Rather than implementing your own K-Means algorithm, you can use the KMeans

class in Scikit-learn to do clustering. Using the same dataset that you used in the

previous section, the following code snippet creates an instance of the KMeans

class with a cluster size of 3:

 #---using sci-kit-learn---
 from sklearn.cluster import KMeans
 k=3
 kmeans = KMeans(n_clusters=k)

 You can now train the model using the fit() function:

 kmeans = kmeans.fit(X)

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 231

 To assign a label to all of the points, use the predict() function:

 labels = kmeans.predict(X)

 To get the centroids, use the cluster_centers property:

 centroids = kmeans.cluster_centers_

 Let ’ s print the clusters label and centroids and see what you got:

 print(labels)
 print(centroids)

 You should see the following:

 [1 1 1 1 1 0 0 0 2 0 1 0 0 0 0 1 2 2 0]
 [[6.77777778 8.11111111]
 [2. 2.71428571]
 [7.66666667 5.33333333]]

 T I P Due to the locations of the points, it is possible that the centroids you
obtained may not be identical to the one shown here in the text.

 Let ’ s now plot the points and centroids on a scatter plot:

 #---map the labels to colors---
 c = ['b','r','y','g','c','m']
 colors = [c[i] for i in labels]

 plt.scatter(df['x'],df['y'], c=colors, s=18)
 plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')

 Figure 10.12 shows the result.

 Using the model that you have just trained, you can use it to predict the cluster

to which a point will belong using the predict() function:

 #---making predictions---
 cluster = kmeans.predict([[3,4]])[0]
 print(c[cluster]) # r

 cluster = kmeans.predict([[7,5]])[0]
 print(c[cluster]) # y

 The preceding statements print the cluster in which a point is located using

its color: r for red and y for yellow.

232 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means

 T I P You may get different colors for the predicted points, which is perfectly fine.

 Evaluating Cluster Size Using the Silhouette Coefficient
 So far, we have been setting K to a fi xed value of 3. How do you ensure that the

value of K that you have set is the optimal number for the number of clusters?

With a small dataset, it is easy to deduce the value of K by visual inspection;

however, with a large dataset, it will be a more challenging task. Also, regardless

of the dataset size, you will need a scientifi c way to prove that the value of K

you have selected is the optimal one. To do that, you will use the Silhouette

Coeffi cient.

 The Silhouette Coeffi cient is a measure of the quality of clustering that you have

achieved. It measures cluster cohesion, which is the space between clusters. The

range of values for the Silhouette Coeffi cient is between –1 and 1.

 The Silhouette Coeffi cient formula is given as:

1 – /a b

 where:

■ a is the average distance of a point to all other points in the same cluster;

if a is small, cluster cohesion is good, as all of the points are close together

■ b is the b lowest average distance of a point to all other points in the closest

cluster; if b is large, cluster separation is good, as the nearest cluster is far b

apart

 If a is small and b is large, the Silhouette Coeffi cient is high. The value of kb

that yields the highest Silhouette Coeffi cient is known as the optimal K. K

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

 Figure 10.12 : Using the KMeans class in Scikit-learn to do the clustering

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 233

 Calculating the Silhouette Coefficient

 Let ’ s walk through an example of how to calculate the Silhouette Coeffi cient of

a point. Consider the seven points and the clusters (K=3) to which they belong,

as shown in Figure 10.13 .

 Let ’ s calculate the Silhouette Coeffi cient of a particular point and walk through

the math. Consider the point (10,10) in cluster 0:

■ Calculate its average distance to all other points in the same cluster:

■ (10,10) – (12,12) = √8 = 2.828

■ (10,10) – (10,13) = √9 = 3

■ Average: (2.828 + 3.0) / 2 = 2.914

■ Calculate its average distance to all other points in cluster 1:

■ (10,10) – (25,20) = √325 = 18.028

■ (10,10) – (26,21) = √377 = 19.416

■ Average: (18.028 + 19.416) / 2 = 18.722

■ Calculate its average distance to all other points in cluster 2:

■ (10,10) – (25,5) = √250 = 15.811

■ (10,10) – (25,4) = √261= 16.155

■ Average: (15.811 + 16.156) / 2 = 15.983

■ Minimum average distance from (10,10) to all the points in cluster 1 and

2 is min(18.722,15.983) = 15.983

Cluster 1

Cluster 0

Cluster 2(12,12)

(10,13)

(10,10)

(25,20)

(25,5)

(25,4)

(26,21)

 Figure 10.13 : The set of points and their positions

234 Chapter 104 ■ Unsupervised Learning—Clustering Using K-Means

 Therefore, the Silhouette Coeffi cient of point (10,10) is 1 – (a/b) = 1 – (2.914/15.983)

= 0.817681—and this is just for one point in the dataset. You need to calculate

the Silhouette Coeffi cients of the other six points in the dataset. Fortunately,

Scikit-learn contains the metrics module that automates this process.

 Using the kmean.csv example that you used earlier in this chapter, the fol-

lowing code snippet calculates the Silhouette Coeffi cient of all of the 19 points

in the dataset and prints out the average of the Silhouette Coeffi cient:

 from sklearn import metrics

 silhouette_samples = metrics.silhouette_samples(X, kmeans.labels_)
 print(silhouette_samples)

 print("Average of Silhouette Coefficients for k =", k)
 print("==")
 print("Silhouette mean:", silhouette_samples.mean())

 You should see the following results:

 [0.67534567 0.73722797 0.73455072 0.66254937 0.6323039 0.33332111
 0.63792468 0.58821402 0.29141777 0.59137721 0.50802377 0.63792468
 0.52511161 0.33332111 0.63792468 0.60168807 0.51664787 0.42831295
 0.52511161]

 Average of Silhouette Coefficients for k = 3
 ==
 Silhouette mean: 0.55780519852

 In the preceding statements, you used the metrics.silhouette_samples()

function to get an array of Silhouette Coeffi cients for the 19 points. You then

called the mean() function on the array to get the average Silhouette Coeffi -

cient. If you are just interested in the average Silhouette coeffi cient and not the

Silhouette Coeffi cient for the individual points, you can simply call the metrics

.silhouette_score() function, like this:

 print("Silhouette mean:", metrics.silhouette_score(X, kmeans.labels_))
 # Silhouette mean: 0.55780519852

 Finding the Optimal K

 Now that you have seen how to calculate the mean Silhouette Coeffi cient for

a dataset with K clusters, what you want to do next is to fi nd the optimal K

that gives you the highest average Silhouette Coeffi cient. You can start with a

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 235

cluster size of 2, up to the cluster size of one less than the size of the dataset.

The following code snippet does just that:

 silhouette_avgs = []
 min_k = 2

 #---try k from 2 to maximum number of labels---
 for k in range(min_k, len(X)):
 kmean = KMeans(n_clusters=k).fit(X)
 score = metrics.silhouette_score(X, kmean.labels_)
 print("Silhouette Coefficients for k =", k, "is", score)
 silhouette_avgs.append(score)

 f, ax = plt.subplots(figsize=(7, 5))
 ax.plot(range(min_k, len(X)), silhouette_avgs)

 plt.xlabel("Number of clusters")
 plt.ylabel("Silhouette Coefficients")

 #---the optimal k is the one with the highest average silhouette---
 Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
 print("Optimal K is ", Optimal_K)

 The code snippet will print out something similar to the following:

 Silhouette Coefficients for k = 2 is 0.689711206994
 Silhouette Coefficients for k = 3 is 0.55780519852
 Silhouette Coefficients for k = 4 is 0.443038181464
 Silhouette Coefficients for k = 5 is 0.442424857695
 Silhouette Coefficients for k = 6 is 0.408647742839
 Silhouette Coefficients for k = 7 is 0.393618055172
 Silhouette Coefficients for k = 8 is 0.459039364508
 Silhouette Coefficients for k = 9 is 0.447750636074
 Silhouette Coefficients for k = 10 is 0.512411340842
 Silhouette Coefficients for k = 11 is 0.469556467119
 Silhouette Coefficients for k = 12 is 0.440983139813
 Silhouette Coefficients for k = 13 is 0.425567707244
 Silhouette Coefficients for k = 14 is 0.383836485201
 Silhouette Coefficients for k = 15 is 0.368421052632
 Silhouette Coefficients for k = 16 is 0.368421052632
 Silhouette Coefficients for k = 17 is 0.368421052632
 Silhouette Coefficients for k = 18 is 0.368421052632
 Optimal K is 2

 As you can see from the output, the optimal K is 2. Figure 10.14 shows the

chart of the Silhouette Coeffi cients plotted against the number of clusters (k).

236 Chapter 106 ■ Unsupervised Learning—Clustering Using K-Means

 Using K-Means to Solve Real-Life Problems

 Suppose you are a clothing designer, and you have been tasked with designing

a new series of Bermuda shorts. One of the design problems is that you need

to come up with a series of sizes so that it can fi t most people. Essentially, you

need to have a series of sizes of people with different:

■ Waist Circumference

■ Upper Leg Length

 So, how do you fi nd the right combination of sizes? This is where the K-Means

algorithm comes in handy. The fi rst thing you need to do is to get ahold of a

dataset containing the measurements of a group of people (of a certain age

range). Using this dataset, you can apply the K-Means algorithm to group these

people into clusters based on the specifi c measurement of their body parts. Once

the clusters are found, you would now have a very clear picture of the sizes for

which you need to design.

 For the dataset, you can use the Body Measurement dataset from https://

data.world/rhoyt/body-measurements . This dataset has 27 columns and 9338

rows. Among the 27 columns, two columns are what you need:

BMXWAIST: Waist Circumference (cm)

BMXLEG: Upper Leg Length (cm)

 For this example, assume that the dataset has been saved locally with the

fi lename BMX_G.csv. vv

0.40

0.45

0.50

Si
lh

ou
et

te
 C

oe
ffi

ci
en

ts

0.55

0.60

0.65

0.70

2 4 6 8 10
Number of clusters

12 14 16 18

 Figure 10.14 : The chart showing the various values of K and their corresponding Silhouette
Coefficients

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 237

 Importing the Data
 First, import the data into a Pandas dataframe:

 %matplotlib inline
 import numpy as np
 import pandas as pd

 df = pd.read_csv("BMX_G.csv")

 Examine its shape, and you should see 9338 rows and 27 columns:

 print(df.shape)
 # (9338, 27)

 Cleaning the Data
 The dataset contains a number of missing values, so it is important to clean the

data. To see how many empty fi elds each column contains, use the following

statement:

 df.isnull().sum()

 You should see the following:

 Unnamed: 0 0
 seqn 0
 bmdstats 0
 bmxwt 95
 bmiwt 8959
 bmxrecum 8259
 bmirecum 9307
 bmxhead 9102
 bmihead 9338
 bmxht 723
 bmiht 9070
 bmxbmi 736
 bmdbmic 5983
bmxleg 2383
 bmileg 8984
 bmxarml 512
 bmiarml 8969
 bmxarmc 512
 bmiarmc 8965
bmxwaist 1134
 bmiwaist 8882
 bmxsad1 2543
 bmxsad2 2543
 bmxsad3 8940

238 Chapter 108 ■ Unsupervised Learning—Clustering Using K-Means

 bmxsad4 8940
 bmdavsad 2543
 bmdsadcm 8853
 dtype: int64

 Observe that the column bmxleg has 2383 missing values and bmxwaist has

1134 missing values, so you would need to remove them as follows:

 df = df.dropna(subset=['bmxleg','bmxwaist']) # remove rows with NaNs
 print(df.shape)
 # (6899, 27)

 After removing the bmxleg and bmxwaist columns with missing values, there

are now 6899 rows remaining.

 Plotting the Scatter Plot
 With the data cleaned, let ’ s plot a scatter plot showing the distribution in upper

leg length and waist circumference:

 import matplotlib.pyplot as plt

 plt.scatter(df['bmxleg'],df['bmxwaist'], c='r', s=2)
 plt.xlabel("Upper leg Length (cm)")
 plt.ylabel("Waist Circumference (cm)")

 Figure 10.15 shows the scatter plot.

W
ai

st
 C

irc
um

fe
re

nc
e

(c
m

)

60

80

100

120

140

160

180

25 30 35 40
Upper leg Length (cm)

45 50

 Figure 10.15 : The scatter plot showing the distribution of waist circumference and upper
leg length

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 239

 Clustering Using K-Means
 Assume that you want to create two sizes of Bermuda shorts. In this case, you

would like to cluster the points into two clusters; that is, K=2 . Again, we can use

Scikit-learn ’ s KMeans class for this purpose:

 #---using sci-kit-learn---
 from sklearn.cluster import KMeans

 k = 2
 X = np.array(list(zip(df['bmxleg'],df['bmxwaist'])))

 kmeans = KMeans(n_clusters=k)
 kmeans = kmeans.fit(X)
 labels = kmeans.predict(X)
 centroids = kmeans.cluster_centers_

 #---map the labels to colors---
 c = ['b','r','y','g','c','m']
 colors = [c[i] for i in labels]

 plt.scatter(df['bmxleg'],df['bmxwaist'], c=colors, s=2)
 plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')

 Figure 10.16 shows the points separated into two clusters, red and blue, together

with the two centroids.

60

80

100

120

140

160

180

25 30 35 40 45 50

 Figure 10.16 : Clustering the points into two clusters

240 Chapter 100 ■ Unsupervised Learning—Clustering Using K-Means

 For you, the most important information is the value of the two centroids:

 print(centroids)

 You should get the following:

 [[37.65663043 77.84326087]
 [38.81870146 107.9195713]]

 This means that you can now design your Bermuda shorts with the follow-

ing dimensions:

■ Waist 77.8 cm, upper leg length 37.7 cm

■ Waist 107.9 cm, upper leg length 38.8 cm

 Finding the Optimal Size Classes
 Before deciding on the actual different sizes to make, you wanted to see if the

K=2 is the optimal one, hence you try out different values of K from 2 to 10 and

look for the optimal K:

 from sklearn import metrics

 silhouette_avgs = []
 min_k = 2

 #---try k from 2 to maximum number of labels---
 for k in range(min_k, 10):
 kmean = KMeans(n_clusters=k).fit(X)
 score = metrics.silhouette_score(X, kmean.labels_)
 print("Silhouette Coefficients for k =", k, "is", score)
 silhouette_avgs.append(score)

 #---the optimal k is the one with the highest average silhouette---
 Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
 print("Optimal K is", Optimal_K)

 The results are as shown here:

 Silhouette Coefficients for k = 2 is 0.516551581494
 Silhouette Coefficients for k = 3 is 0.472269050688
 Silhouette Coefficients for k = 4 is 0.436102446644
 Silhouette Coefficients for k = 5 is 0.418064636123
 Silhouette Coefficients for k = 6 is 0.392927895139
 Silhouette Coefficients for k = 7 is 0.378340717032
 Silhouette Coefficients for k = 8 is 0.360716292593
 Silhouette Coefficients for k = 9 is 0.341592231958
 Optimal K is 2

 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means 241

 The result confi rms that the optimal K is 2. That is, you should have two dif-

ferent sizes for the Bermuda shorts that you are designing.

 However, the company wanted you to have more sizes so that it can accom-

modate a wider range of customers. In particular, the company feels that four

sizes would be a better decision. To do so, you just need to run the KMeans code

snippet that you saw in the “Clustering Using K-Means” section and set k =4 .

 You should now see the clusters as shown in Figure 10.17 .

 The centroids locations are as follows:

 [[38.73004292 85.05450644]
 [38.8849217 102.17011186]
 [36.04064872 67.30131125]
 [38.60124294 124.07853107]]

 This means that you can now design your Bermuda shorts with the follow-

ing dimensions:

■ Waist 67.3 cm, upper leg length 36.0 cm

■ Waist 85.1 cm, upper leg length 38.7 cm

■ Waist 102.2 cm, upper leg length 38.9 cm

■ Waist 124.1 cm, upper leg length 38.6 cm

60

80

100

120

140

160

180

25 30 35 40 45 50

 Figure 10.17 : Clustering the points into four clusters

242 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means

 Summary

 In this chapter, you learned about unsupervised learning. Unsupervised learning

is a type of machine learning technique that allows you to fi nd patterns in data.

In unsupervised learning, the data that is used by the algorithm (for example,

K-Means, as discussed in this chapter) is not labeled, and your role is to discover

its hidden structures and assign labels to them.

C H A P T E R

243

11

 What Is Microsoft Azure Machine Learning Studio?

Microsoft Azure Machine Learning Studio (henceforth referred to as MAML) is L
an online collaborative, drag-and-drop tool for building machine learning

models. Instead of implementing machine learning algorithms in languages like

Python or R, MAML encapsulates the most-commonly used machine learning

algorithms as modules, and it lets you build learning models visually using

your dataset. This shields the beginning data science practitioners from the

details of the algorithms, while at the same time offering the ability to fi ne-tune

the hyperparameters of the algorithm for advanced users. Once the learning

model is tested and evaluated, you can publish your learning models as web

services so that your custom apps or BI tools, such as Excel, can consume it.

What ’ s more, MAML supports embedding your Python or R scripts within

your learning models, giving advanced users the opportunity to write custom

machine learning algorithms.

 In this chapter, you will take a break from all of the coding that you have been

doing in the previous few chapters. Instead of implementing machine learning

using Python and Scikit-learn, you will take a look at how to use the MAML to

perform machine learning visually using drag-and-drop.

 Using Azure Machine Learning
Studio

244 Chapter 114 ■ Using Azure Machine Learning Studio

 An Example Using the Titanic Experiment
 Now that you have a good sense of what machine learning is and what it can

do, let ’ s get started with an experiment using MAML. For this experiment, you

will be using a classic example in machine learning—predicting the survival

of a passenger on the Titanic.

 In case you are not familiar with the Titanic, on April 15, 1912, during her

maiden voyage, the Titanic sank after colliding with an iceberg, killing 1,502 out

of 2,224 passengers and crew. While the main reason for the deaths was due to

insuffi cient lifeboats, of those who survived, most of them were women, chil-

dren, and the upper-class. As such, this presents a very interesting experiment

in machine learning. If we are given a set of data points, containing the various

profi les of passengers (such as gender, cabin class, age, and so forth) and whether

they survived the sinking, it would be interesting for us to use machine learning

to predict the survivability of a passenger based on his/her profi le.

 Interestingly, you can get the Titanic data from Kaggle (https://www.kaggle

.com/c/titanic/data). Two sets of data are provided (see Figure 11.1): a

■ Training set

■ Testing set

 Figure 11.1 : You can download the training and testing datasets from Kaggle

 Chapter 11 ■ Using Azure Machine Learning Studio 245

 You use the training set to train your learning model so that you can use it

to make predictions. Once your learning model is trained, you will make use

of the testing set to predict the survivability of passengers.

 Because the testing test does not contain a label specifying if a passenger

survived, we will not use it for this experiment. Instead, we will only use the

training set for training and testing our model.

 Once the training set is downloaded, examine its contents (see Figure 11.2).

 The training set should have the following fi elds:

PassengerId: A running number indicating the row of records.

Survived: If the particular passenger survived the sinking. This is the label

of the dataset for our experiment.

Pclass: Ticket class that the passenger is holding.

Name: Name of the passenger.

Sex: Gender of the passenger.

Age: Age of the passenger.

SibSp: Number of siblings/spouses aboard the Titanic.

Parch: Number of parents/children aboard the Titanic.

Ticket: Ticket number.

 Figure 11.2 : Examining the data in Excel

246 Chapter 116 ■ Using Azure Machine Learning Studio

Fare: Fare paid by the passenger.

Cabin: Cabin number of the passenger.

Embarked: Place of embarkation. Note that C = Cherbourg, Q = Queenstown,

and S = Southampton.

 Using Microsoft Azure Machine Learning Studio
 We are now ready to load the data into MAML. Using your web browser, navigate

to http://studio.azureml.net, and click the “Sign up here” link (see Figure 11.3).

 If you just want to experience MAML without any fi nancial commitment,

choose the Free Workspace option and click Sign In (see Figure 11.4).

 Figure 11.3 : Click the “Sign up here” link for first-time Azure Machine Learning users

 Figure 11.4 : You can choose from the various options available to use MAML

 Chapter 11 ■ Using Azure Machine Learning Studio 247

 Once you are signed in, you should see a list of items on the left side of the

page (see Figure 11.5). I will highlight some of the items on this panel as we

move along.

 Uploading Your Dataset

 To create learning models, you need datasets. For this example, we will use the

dataset that you have just downloaded.

 Click the + NEW item located at the bottom-left of the page. Select DATASET

on the left (see Figure 11.6), and then click the item on the right labeled FROM

LOCAL FILE.

 Figure 11.5 : The left panel of MAML

 Figure 11.6 : Uploading a dataset to the MAML

248 Chapter 118 ■ Using Azure Machine Learning Studio

 Click the Choose File button (see Figure 11.7) and locate the training set

downloaded earlier. When fi nished, click the tick button to upload the dataset

to the MAML.

 Creating an Experiment

 You are now ready to create an experiment in MAML. Click the + NEW button

at the bottom-left of the page and select Blank Experiment (see Figure 11.8).

 Figure 11.7 : Choose a file to upload as a dataset

 Figure 11.8 : Creating a new blank experiment in MAML

 Chapter 11 ■ Using Azure Machine Learning Studio 249

 You should now see the canvas, as shown in Figure 11.9 .

 You can give a name to your experiment by typing it over the default experiment

name at the top (see Figure 11.10).

 Once that is done, let ’ s add our training dataset to the canvas. You can do

so by typing the name of the training set in the search box on the left, and the

matching dataset will now appear (see Figure 11.11).

 Drag and drop the train.csv dataset onto the canvas (see Figure 11.12).

 The train.csv dataset has an output port (represented by a circle with a 1

inside). Clicking it will reveal a context menu (see Figure 11.13).

 Click Visualize to view the content of the dataset. The dataset is now displayed,

as shown in Figure 11.14 .

 Figure 11.9 : The canvas representing your experiment

 Figure 11.10 : Naming your experiment

250 Chapter 110 ■ Using Azure Machine Learning Studio

 Figure 11.11 : Using the dataset that you have uploaded

 Figure 11.12 : Dragging and dropping the dataset onto the canvas

 Figure 11.13 : Visualizing the content of the dataset

 Chapter 11 ■ Using Azure Machine Learning Studio 251

 Take a minute to scroll through the data. Observe the following:

■ The PassengerID fi eld is simply a running number, and it does not pro-

vide any information with regard to the passenger. This fi eld should be

discarded when training your model.

■ The Ticket fi eld contains the ticket number of the passengers. In this case,

however, a lot of these numbers seem to be randomly generated. Thus, it

is not very useful in helping us to predict the survivability of a passenger

and hence should be discarded.

■ The Cabin fi eld contains a lot of missing data. Fields that have a lot of

missing data do not provide insights to our learning model and hence

should be discarded.

■ If you select the Survived fi eld, you will see the chart displayed on the

bottom right of the window (see Figure 11.15). Because a passenger can

either survive (represented by a 1) or die (represented by a 0), it does not

make sense to have any values in between. However, since this value is

represented as a numeric value, MAML would not be able to fi gure this

 Figure 11.14 : Viewing the dataset

252 Chapter 11 ■ Using Azure Machine Learning Studio

out unless you tell it. To fi x this, you need to make this value a categorical

value. A categorical value is a value that can take on one of a limited, and

usually fi xed, number of possible values.

■ The Pclass , SibSp , and pp Parch fi elds should all be made categorical as well.

 All of the fi elds that are not discarded are useful in helping us to create a

learning model. These fi elds are known as features .

 Filtering the Data and Making Fields Categorical

 Now that we have identifi ed the features we want, let ’ s add the Select Columns

in Dataset module to the canvas (see Figure 11.16).

 In the Properties pane, click the Launch column selector and select the col-

umns, as shown in Figure 11.17 .

 The Select Columns in Dataset module will reduce the dataset to the columns

that you have specifi ed. Next, we want to make some of the columns categorical.

To do that, add the Edit Metadata module, as shown in Figure 11.18 , and connect

it as shown. Click the Launch column selector button, and select the Survived ,

Pclass , SibSp , and pp Parch fi elds. In the Categorical section of the properties pane,

select “Make categorical.”

 Figure 11.15 : Viewing the Survived column

 Chapter 11 ■ Using Azure Machine Learning Studio 253

 Figure 11.16 : Use the Select Columns in Dataset module to filter columns

 Figure 11.17 : Selecting the fields that you want to use as features

 Figure 11.18 : Making specific fields categorical

254 Chapter 114 ■ Using Azure Machine Learning Studio

 You can now run the experiment by clicking the RUN button located at the

bottom of the MAML. Once the experiment is run, click the output port of

the Edit Metadata module and select Visualize. Examine the dataset displayed.

 Removing the Missing Data

 If you examine the dataset returned by the Edit Metadata module carefully,

you will see that the Age column has some missing values. It is always good to

remove all those rows that have missing values so that those missing values will

not affect the effi ciency of the learning model. To do that, add a Clean Missing
Data module to the canvas and connect it as shown in Figure 11.19 . In the prop-

erties pane, set the “Cleaning mode” to “Remove entire row.”

 T I P You can also replace the missing values with the mean of the column, if you
prefer.

 Click RUN. The dataset should now have no more missing values. Also notice

that the number of rows has been reduced to 712 (see Figure 11.20).

 Splitting the Data for Training and Testing

 When building your learning model, it is essential that you test it with sample

data after the training is done. If you only have one single set of data, you can

split it into two parts—one for training and one for testing. This is accomplished

Figure 11.19 : Removing rows that have missing values in the Age column

 Chapter 11 ■ Using Azure Machine Learning Studio 255

by the Split Data module (see Figure 11.21). For this example, I am splitting 80

percent of the dataset for training and the remaining 20 percent for testing.

 Figure 11.20 : Viewing the cleaned and filtered dataset

 Figure 11.21 : Splitting the data into training and testing datasets

256 Chapter 116 ■ Using Azure Machine Learning Studio

 The left output port of the Split Data module will return 80 percent of the

dataset while the right output port will return the remaining 20 percent.

 Training a Model
 You are now ready to create the training model. Add the Two-Class Logistic

Regression and Train Model modules to the canvas and connect them as shown

in Figure 11.22 . The Train Model module takes in a learning algorithm and a

training dataset. You will also need to tell the Train Model module the label for

which you are training it. In this case, it is the Survived column.

 Once you have trained the model, it is essential that you verify its effective-

ness. To do so, use the Score Model module, as shown in Figure 11.23 . The Score
Model takes in a trained model (which is the output of the Train Model module)

and a testing dataset.

 You are now ready to run the experiment again. Click RUN. Once it is com-

pleted, select the Scored Labels column (see Figure 11.24). This column represents

the results of applying the test dataset against the learning model. The column

next to it, Scored Probabilities , indicates the confi dence of the prediction. With

the Scored Labels column selected, look at the right side of the screen and above the

chart, select Survived for the item named “compare to.” This will plot the con-

fusion matrix.

 Figure 11.22 : Training your model using the Two-Class Logistic Regression algorithm

 Chapter 11 ■ Using Azure Machine Learning Studio 257

 Figure 11.23 : Scoring your model using the testing dataset and the trained model

 Figure 11.24 : Viewing the confusion matrix for the learning model

258 Chapter 118 ■ Using Azure Machine Learning Studio

 The y-axis of the confusion matrix shows the actual survival information of

passengers: 1 for survived and 0 for did not survive. The x-axis shows the pre-

diction. As you can see, 75 were correctly predicted not to survive the disaster,

and 35 were correctly predicted to survive the disaster. The two other boxes

show the predictions that were incorrect.

 Comparing Against Other Algorithms

 While the numbers for the predictions look pretty decent, it is not suffi cient

to conclude at this moment that we have chosen the right algorithm for this

problem. MAML comes with 25 machine learning algorithms for different

types of problems. Now let ’ s use another algorithm provided by MAML, Two-

Class Decision Jungle, to train another model. Add the modules as shown in

Figure 11.25 .

 T I P The Two-Class Decision Jungle algorithm is another machine learning
algorithm that is based on decision trees. For this experiment, you can also use other
algorithms provided by MAML, such as the Two-Class Logistic Regression and Two-
Class Support Vector Machine.

 Figure 11.25 : Using another algorithm for training the alternative model

 Chapter 11 ■ Using Azure Machine Learning Studio 259

 Click Run. You can click the output port of the second Score Model module to

view the result of the model, just like the previous learning model. However, it

would be more useful to be able to compare them directly. You can accomplish

this using the Evaluate Model module (see Figure 11.26).

 Click RUN to run the experiment. When done, click the output port of the

Evaluate Model module and you should see something like Figure 11.27 .

 The blue line represents the algorithm on the left input port of the Evaluate

Model module (Two-Class Logistic Regression), while the red line represents the

algorithm on the right (Two-Class Decision Jungle). When you click either

the blue or red box, you will see the various metrics for each algorithm displayed

below the chart.

 Figure 11.26 : Evaluating the performance of the two models

260 Chapter 110 ■ Using Azure Machine Learning Studio

 Evaluating Machine Learning Algorithms

 Now that you have seen an experiment performed using two specifi c machine

learning algorithms—Two-Class Logistic Regression and Two-Class Decision

Jungle—let ’ s step back a little and examine the various metrics that were gen-

erated by the Evaluate Model module. Specifi cally, let ’ s defi ne the meaning of

the following terms:

True Positive (TP) The model correctly predicts the outcome as positive.

In this case, the number of TP indicates the number of correct predictions

that a passenger survived (positive) the disaster.

 Figure 11.27 : Viewing the metrics for the two learning algorithms

 Chapter 11 ■ Using Azure Machine Learning Studio 261

True Negative (TN) The model correctly predicts the outcome as negative

(did not survive); that is, passengers were correctly predicted not to survive

the disaster.

False Positive (FP) The model incorrectly predicted the outcome as positive,

but the actual result is negative. In the Titanic example, it means that the

passenger did not survive the disaster, but the model predicted the passenger

to have survived.

False Negative (FN) The model incorrectly predicted the outcome as neg-

ative, but the actual result is positive. In this case, this means the model

predicted that the passenger did not survive the disaster, but actually the

passenger did.

 This set of numbers is known as the confusion matrix. The confusion matrixx
is discussed in detail in Chapter 7 , “Supervised Learning—Classifi cation Using

Logistic Regression.” So if you are not familiar with it, be sure to read up on

Chapter 7 .

 Publishing the Learning Model as a Web Service
 Once the most effective machine learning algorithm has been determined, you

can publish the learning model as a web service. Doing so will allow you to

build custom apps to consume the service. Imagine that you are building a

learning model to help doctors diagnose breast cancer. Publishing as a web ser-

vice would allow you to build apps to pass the various features to the learning

model to make the prediction. Best of all, by using MAML, there is no need to

handle the details of publishing the web service—MAML will host it for you

on the Azure cloud.

 Publishing the Experiment

 To publish our experiment as a web service:

■ Select the left Train Model module (since it has a better performance com-

pared to the other).

■ At the bottom of the page, hover your mouse over the item named SET

UP WEB SERVICE , and click Predictive Web Service (Recommended) .

 T I P For this experiment, the best algorithm is the one that gives the highest AUC
(Area Under the Curve) score.

262 Chapter 11 ■ Using Azure Machine Learning Studio

 This will create a new Predictive experiment, as shown in Figure 11.28 .

 Figure 11.28 : Publishing the learning model as a web service

 Chapter 11 ■ Using Azure Machine Learning Studio 263

 Click RUN, and then DEPLOY WEB SERVICE. The page seen in Figure 11.29

will now be shown.

 Testing the Web Service

 Click the Test hyperlink. The test page shown in Figure 11.30 is displayed. You

can click the Enable button to fi ll the various fi elds from your training set. This

will save you the chore of fi lling in the various fi elds.

 The fi elds should now be fi lled with values from the training data. At the

bottom of the page, click Test Request/Response and the prediction will be

shown on the right.

 Programmatically Accessing the Web Service

 At the top of the Test page, you should see a Consume link as shown in Figure 11.31 .

Click it.

 You will see the credentials that you need to use in order to access your web

service, as well as the URLs for the web service. At the bottom of the page, you

will see the sample code generated for you that you could use to access the web

service programmatically (see Figure 11.32). The sample code is available in C#,

Python 2, Python 3, and R.

 Figure 11.29 : The test page for the web service

264 Chapter 114 ■ Using Azure Machine Learning Studio

 Click the Python 3+ tab, and copy the code generated. Click the View in Studio

link at the top-right of the page to return to MAML. Back in MAML, click the

 + NEW button at the bottom of the screen. Click NOTEBOOK on the left, and

you should be able to see the various notebooks, as shown in Figure 11.33 .

 T I P The notebooks hosted by the MAML are the same as the Jupyter Notebook
that you have installed on your local computer.

 Click Python 3, give a name to your notebook, and paste in the Python code

that you copied earlier (see Figure 11.34).

 Figure 11.30 : Testing the web service with some data

 Figure 11.31 : The Consume link at the top of the web service page

 Chapter 11 ■ Using Azure Machine Learning Studio 265

 Figure 11.32 : The sample code for accessing the web service written in the three programming
languages

 Figure 11.33 : Creating a new notebook in MAML

266 Chapter 116 ■ Using Azure Machine Learning Studio

 Be sure to replace the value of the api _ key variable with that of your primary y

key. Press Ctrl+Enter to run the Python code. If the web service is deployed cor-

rectly, you should see the result at the bottom of the screen (see Figure 11.35).

 Summary

 In this chapter, you have seen how you can use the MAML to create machine

learning experiments. Instead of writing your code in Python, you can use the

various algorithms provided by Microsoft and build your machine learning

models visually using drag and drop. This is very useful for beginners who

want to get started with machine learning without diving into the details. Best

 Figure 11.34 : Testing the code in the Python notebook

 Figure 11.35 : The result returned by the web service

 Chapter 11 ■ Using Azure Machine Learning Studio 267

of all, MAML helps you to deploy your machine learning as a web service auto-

matically—and it even provides the code for you to consume it.

 In the next chapter, you will learn how to deploy your machine learning

models created in Python and Scikit-learn manually using Python and the

Flask micro-framework.

C H A P T E R

269

12

 Deploying ML

 The main goal of machine learning is to create a model that you can use for

making predictions. Over the past few chapters in this book, you learned about

the various algorithms used to build an ideal machine learning model. At the

end of the entire process, what you really want is to make your model accessible

to users so that they can utilize it to do useful tasks, like making predictions

(such as helping doctors with their diagnosis, and so forth).

 A good way to deploy your machine learning model is to build a REST
(REpresentational State Transfer) API , so that the model is accessible by others who I
may not be familiar with how machine learning works. Using REST, you can

build multi-platform front-end applications (such as iOS, Android, Windows,

and so forth) and pass the data to the model for processing. The result can then

be returned back to the application. Figure 12.1 summarizes the architecture

that we will use for deploying our machine learning model.

 In this chapter, we will go through a case study, build a machine learning

model, and then deploy it as a REST service. Finally, we will build a console

front-end application using Python to allow users to make some predictions.

 Deploying Machine Learning
Models

270 Chapter 120 ■ Deploying Machine Learning Models

 Case Study

 For this case study, we are going to help predict the likelihood of a person

being diagnosed with diabetes based on several diagnostic measurements of

that person.

 The dataset that you will be using in this chapter is from this database:

https://www.kaggle.com/uciml/pima-indians-diabetes-database . This dataset

contains several medical independent predictors and one target. Its features

consist of the following:

■ Pregnancies : Number of times pregnant

■ Glucose : Plasma glucose concentration after 2 hours in an oral glucose

tolerance test

■ BloodPressure : Diastolic blood pressure (mm Hg)

■ SkinThickness : Triceps skin fold thickness (mm)

■ Insulin : 2-Hour serum insulin (mu U/ml)

■ BMI : Body mass index (weight in kg/(height in m)^2)I

■ DiabetesPedigreeFunction : Diabetes pedigree function

■ Age : Age (years)

■ Outcome : 0 (non-diabetic) or 1 (diabetic)

Internet

Frontend Clients

REST
API

Machine Learning Model

 Figure 12.1 : Deploying your machine learning model as a REST API allows front-end applica-
tions to use it for predictions

 Chapter 12 ■ Deploying Machine Learning Models 271

 The dataset has 768 records, and all patients are females at least 21 years of

age and of Pima Indian descent.

 Loading the Data
 For this example, the dataset has been downloaded locally and named diabetes.csv .vv

 The following code snippet loads the dataset and prints out information about

the DataFrame using the info() function:

 import numpy as np
 import pandas as pd

 df = pd.read_csv('diabetes.csv')
 df.info()

 You should see the following output:

 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 768 entries, 0 to 767
 Data columns (total 9 columns):
 Pregnancies 768 non-null int64
 Glucose 768 non-null int64
 BloodPressure 768 non-null int64
 SkinThickness 768 non-null int64
 Insulin 768 non-null int64
 BMI 768 non-null float64
 DiabetesPedigreeFunction 768 non-null float64
 Age 768 non-null int64
 Outcome 768 non-null int64
 dtypes: float64(2), int64(7)
 memory usage: 54.1 KB

 Cleaning the Data
 As with all datasets, your fi rst job is to clean the data so that there are no missing

or erroneous values. Let ’ s fi rst check for nulls in the dataset:

 #---check for null values---
 print("Nulls")
 print("=====")
 print(df.isnull().sum())

 The result is as follows:

 Nulls
 =====
 Pregnancies 0
 Glucose 0

272 Chapter 12 ■ Deploying Machine Learning Models

 BloodPressure 0
 SkinThickness 0
 Insulin 0
 BMI 0
 DiabetesPedigreeFunction 0
 Age 0
 Outcome 0
 dtype: int64

 There are no nulls. Next, let ’ s check for 0s:

 #---check for 0s---
 print("0s")
 print("==")
 print(df.eq(0).sum())

 For features like Pregnancies and Outcome, having values of 0 is normal.

For the other features, however, a value of 0 indicates that the values are not

captured in the dataset.

 0s
 ==
 Pregnancies 111
 Glucose 5
 BloodPressure 35
 SkinThickness 227
 Insulin 374
 BMI 11
 DiabetesPedigreeFunction 0
 Age 0
 Outcome 500
 dtype: int64

 There are many ways to deal with this case of 0 for features, but for simplicity,

let ’ s just replace the 0 values with NaN :N

 df[['Glucose','BloodPressure','SkinThickness',
 'Insulin','BMI','DiabetesPedigreeFunction','Age']] = \
 df[['Glucose','BloodPressure','SkinThickness',
 'Insulin','BMI','DiabetesPedigreeFunction','Age']].replace
(0,np.NaN)

 Once the NaN values have replaced the 0s in the DataFrame, you can now

replace them with the mean of each column as follows:

 df.fillna(df.mean(), inplace = True) # replace NaN with the mean

 You can now check the DataFrame to verify that there are now no more 0s

in the DataFrame:

 print(df.eq(0).sum())

 Chapter 12 ■ Deploying Machine Learning Models 273

 You should see this output:

 Pregnancies 111
 Glucose 0
 BloodPressure 0
 SkinThickness 0
 Insulin 0
 BMI 0
 DiabetesPedigreeFunction 0
 Age 0
 Outcome 500
 dtype: int64

 Examining the Correlation Between the Features
 The next step is to examine how the various independent features affect the

outcome (whether a patient is diabetic or not). To do that, you can call the corr()

function on the DataFrame:

 corr = df.corr()
 print(corr)

 The corr() function computes the pairwise correlation of columns. For example,

the following output shows that the glucose level of a patient after a 2-hour oral

glucose tolerance test has little relationship to the number of pregnancies of a

patient (0.127911), but it has a signifi cant relationship to the outcome (0.492928):

 Pregnancies Glucose BloodPressure SkinThickness \
 Pregnancies 1.000000 0.127911 0.208522 0.082989
Glucose 0.127911 1.000000 0.218367 0.192991
 BloodPressure 0.208522 0.218367 1.000000 0.192816
 SkinThickness 0.082989 0.192991 0.192816 1.000000
 Insulin 0.056027 0.420157 0.072517 0.158139
 BMI 0.021565 0.230941 0.281268 0.542398
 DiabetesPedigree
Function -0.033523 0.137060 -0.002763 0.100966
 Age 0.544341 0.266534 0.324595 0.127872
 Outcome 0.221898 0.492928 0.166074 0.215299

 Insulin BMI DiabetesPedigreeFunction \
 Pregnancies 0.056027 0.021565 -0.033523
Glucose 0.420157 0.230941 0.137060
 BloodPressure 0.072517 0.281268 -0.002763
 SkinThickness 0.158139 0.542398 0.100966
 Insulin 1.000000 0.166586 0.098634
 BMI 0.166586 1.000000 0.153400
 DiabetesPedigree
Function 0.098634 0.153400 1.000000

274 Chapter 124 ■ Deploying Machine Learning Models

 Age 0.136734 0.025519 0.033561
 Outcome 0.214411 0.311924 0.173844

 Age Outcome
 Pregnancies 0.544341 0.221898
Glucose 0.266534 0.492928
 BloodPressure 0.324595 0.166074
 SkinThickness 0.127872 0.215299
 Insulin 0.136734 0.214411
 BMI 0.025519 0.311924
 DiabetesPedigree
Function 0.033561 0.173844
 Age 1.000000 0.238356
 Outcome 0.238356 1.000000

 Our goal here is to fi nd out which features signifi cantly affect the outcome.

 Plotting the Correlation Between Features
 Rather than look at the various numbers representing the various correlations

between the columns, it is useful to be able to picture it visually. The following

code snippet uses the matshow() function to plot the results returned by the

 corr() function as a matrix. At the same time, the various correlation factors

are also shown in the matrix:

 %matplotlib inline
 import matplotlib.pyplot as plt

 fig, ax = plt.subplots(figsize=(10, 10))
 cax = ax.matshow(corr,cmap='coolwarm', vmin=-1, vmax=1)

 fig.colorbar(cax)
 ticks = np.arange(0,len(df.columns),1)
 ax.set_xticks(ticks)

 ax.set_xticklabels(df.columns)
 plt.xticks(rotation = 90)

 ax.set_yticklabels(df.columns)
 ax.set_yticks(ticks)

 #---print the correlation factor---
 for i in range(df.shape[1]):
 for j in range(9):
 text = ax.text(j, i, round(corr.iloc[i][j],2),
 ha="center", va="center", color="w")
 plt.show()

 Figure 12.2 shows the matrix. The cubes that have colors closest to red rep-

resent the highest correlation factors, while those closest to blue represent the

lowest correlation factors.

 Chapter 12 ■ Deploying Machine Learning Models 275

 Another way to plot the correlation matrix is to use Seaborn ’ s heatmap()

function as follows:

 import seaborn as sns

 sns.heatmap(df.corr(),annot=True)

 #---get a reference to the current figure and set its size---
 fig = plt.gcf()
 fig.set_size_inches(8,8)

 Figure 12.3 shows the heatmap produced by Seaborn.

 Now let ’ s print out the top four features that have the highest correlation

with the Outcome :

 #---get the top four features that has the highest correlation---
 print(df.corr().nlargest(4, 'Outcome').index)

Pregnancies

Glucose

BloodPressure

SkinThickness

Insulin

BMI

DiabetesPedigreeFunction

Age

Outcome

Pr
eg
na
nc
ie
s

Gl
uc
os
e

Bl
oo
dP

re
ss
ur
e

Sk
in
Th
ic
kn
es
s

In
su
lin

BM
I

Di
ab
et
es
Pe
di
gr
ee
Fu
nc
tio
n

Ag
e

Ou
tc
om

e

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

1.0 0.13

1.0

0.22

0.19

0.42

0.23

0.14

0.27

0.49

0.08

0.19

0.19

1.0

0.16

0.54

0.1

0.13

0.22

0.06

0.42

0.07

0.16

1.0

0.17

0.1

0.14

0.21

0.02

0.23

0.28

0.54

0.17

1.0

0.15

0.03

0.31

0.54

0.27

0.32

0.13

0.14

0.03

0.03

1.0

0.24

0.22

0.49

0.17

0.22

0.21

0.31

0.17

0.24

1.0

–0.03

0.14

–0.0

0.1

0.1

0.15

1.0

0.03

0.17

0.21

0.22

1.0

0.19

0.07

0.28

–0.0

0.32

0.17

0.13

0.21

0.08

0.06

0.02

0.54

0.22

–0.03

 Figure 12.2 : Matrix showing the various correlation factors

276 Chapter 126 ■ Deploying Machine Learning Models

 #---print the top 4 correlation values---
 print(df.corr().nlargest(4, 'Outcome').values[:,8])

 You should see the following output:

 Index(['Outcome', 'Glucose', 'BMI', 'Age'], dtype='object')
 [1. 0.49292767 0.31192439 0.23835598]

 You can now see that apart from the Outcome feature, the three most infl uen-

tial features are Glucose , BMI , and Age . We can use these three features to train

our model.

Pregnancies 1

0.13

0.21

0.083

0.056

0.022

0.54

0.22

–0.034

0.13

1

0.22

0.19

0.42

0.23

0.27

0.49

0.14

0.083

0.19

0.19

1

0.16

0.54

0.13

0.22

0.1

0.056

0.42

0.073

0.16

1

0.17

0.14

0.21

0.099

0.022

0.23

0.28

0.54

0.17

1

0.026

0.31

0.15

0.54

0.27

0.32

0.13

0.14

0.026

1

0.24

0.034

0.22

0.49

0.17

0.22

0.21

0.31

0.24

1

0.17

–0.034

0.14

–0.0028

0.1

0.099

0.15

0.034

0.17

1

0.21

0.22

1

0.19

0.073

0.28

0.32

0.17

–0.0028

Glucose

BloodPressure

SkinThickness

Insulin

BMI

DiabetesPedigreeFunction

Age

Outcome

Pr
eg
na
nc
ie
s

Gl
uc
os
e

Bl
oo
dP

re
ss
ur
e

Sk
in
Th
ic
kn
es
s

In
su
lin

BM
I

Di
ab
et
es
Pe
di
gr
ee
Fu
nc
tio
n

Ag
e

Ou
tc
om

e

0.0

0.2

0.4

0.6

0.8

1.0

 Figure 12.3 : Heatmap produced by Seaborn showing the correlation factors

 Chapter 12 ■ Deploying Machine Learning Models 277

 Evaluating the Algorithms
 Before we train our model, it is always good to evaluate a few algorithms to

fi nd the one that gives the best performance. Accordingly, we will try the fol-

lowing algorithms:

■ Logistic Regression

■ K-Nearest Neighbors (KNN)

■ Support Vector Machines (SVM)—Linear and RBF Kernels

 Logistic Regression

 For the fi rst algorithm, we will use logistic regression. Instead of splitting the

dataset into training and testing sets, we will use 10-fold cross-validation to

obtain the average score of the algorithm used:

 from sklearn import linear_model
 from sklearn.model_selection import cross_val_score

 #---features---
 X = df[['Glucose','BMI','Age']]

 #---label---
 y = df.iloc[:,8]

 log_regress = linear_model.LogisticRegression()
 log_regress_score = cross_val_score(log_regress, X, y, cv=10,
scoring='accuracy').mean()

 print(log_regress_score)

 The result of training the model should use an average of 0.7617737525632263.

 We will also save this result to a list so that we can use it to compare with

the scores of other algorithms:

 result = []
 result.append(log_regress_score)

 K-Nearest Neighbors

 The next algorithm that we will use is the K-Nearest Neighbors (KNN). In

addition to using the 10-fold cross-validation to obtain the average score of the

algorithm, we also need to try out the various values of k to obtain the optimal

k so that we can get the best accuracy:

 from sklearn.neighbors import KNeighborsClassifier

 #---empty list that will hold cv (cross-validates) scores---
 cv_scores = []

278 Chapter 128 ■ Deploying Machine Learning Models

 #---number of folds---
 folds = 10

 #---creating odd list of K for KNN---
 ks = list(range(1,int(len(X) * ((folds - 1)/folds)), 2))

 #---perform k-fold cross validation---
 for k in ks:
 knn = KNeighborsClassifier(n_neighbors=k)
 score = cross_val_score(knn, X, y, cv=folds, scoring='accuracy').mean()
 cv_scores.append(score)

 #---get the maximum score---
 knn_score = max(cv_scores)

 #---find the optimal k that gives the highest score---
 optimal_k = ks[cv_scores.index(knn_score)]

 print(f"The optimal number of neighbors is {optimal_k}")
 print(knn_score)
 result.append(knn_score)

 You should get the following output:

 The optimal number of neighbors is 19
 0.7721462747778537

 Support Vector Machines

 The next algorithm we will use is Support Vector Machine (SVM). We will use

two types of kernels for SVM: linear and RBF. The following code snippet uses

the linear kernel:

 from sklearn import svm

 linear_svm = svm.SVC(kernel='linear')
 linear_svm_score = cross_val_score(linear_svm, X, y,
 cv=10, scoring='accuracy').mean()
 print(linear_svm_score)
 result.append(linear_svm_score)

 You should get an accuracy of:

 0.7656527682843473

 The next code snippet uses the RBF kernel:

 rbf = svm.SVC(kernel='rbf')
 rbf_score = cross_val_score(rbf, X, y, cv=10, scoring='accuracy').mean()
 print(rbf_score)
 result.append(rbf_score)

 Chapter 12 ■ Deploying Machine Learning Models 279

 You should get an accuracy of:

 0.6353725222146275

 Selecting the Best Performing Algorithm

 Now that we have evaluated the four different algorithms, we can choose the

best performing one:

 algorithms = ["Logistic Regression", "K Nearest Neighbors", "SVM Linear
Kernel", "SVM RBF Kernel"]
 cv_mean = pd.DataFrame(result,index = algorithms)
 cv_mean.columns=["Accuracy"]
 cv_mean.sort_values(by="Accuracy",ascending=False)

 Figure 12.4 shows the output of the preceding code snippet.

 Training and Saving the Model
 Since the best performing algorithm for our dataset is KNN with k = 19, we can

now go ahead and train our model using the entire dataset:

 knn = KNeighborsClassifier(n_neighbors=19)
 knn.fit(X, y)

 Once the model is trained, you need to save it to disk so that the model can

be retrieved later for prediction purposes:

 import pickle

 #---save the model to disk---
 filename = 'diabetes.sav'

 #---write to the file using write and binary mode---
 pickle.dump(knn, open(filename, 'wb'))

 The trained model is now saved to a fi le named diabetes.sav . Let ’ s load it tov v

ensure that it was saved properly:

 #---load the model from disk---
 loaded_model = pickle.load(open(filename, 'rb'))

Accuracy

K Nearest Neighbors

Logistic Regression

SVM Linear Kernel

SVM RBF Kernel

0.772146

0.761774

0.765653

0.635373

 Figure 12.4 : Ranking the performance of the various algorithms

280 Chapter 120 ■ Deploying Machine Learning Models

 Once the model is loaded, let ’ s do some predictions:

 Glucose = 65
 BMI = 70
 Age = 50

 prediction = loaded_model.predict([[Glucose, BMI, Age]])
 print(prediction)
 if (prediction[0]==0):
 print("Non-diabetic")
 else:
 print("Diabetic")

 The output prints the word “Non-Diabetic” if the return value of the prediction

is a 0; else it prints the word “Diabetic”. You should see the following output:

 [0]
 Non-diabetic

 We are also interested to know the probabilities of the prediction, and so you

get the probabilities and convert them into percentages:

 proba = loaded_model.predict_proba([[Glucose, BMI, Age]])
 print(proba)
 print("Confidence: " + str(round(np.amax(proba[0]) * 100 ,2)) + "%")

 You should see the following:

 [[0.94736842 0.05263158]]
 Confidence: 94.74%

 The probabilities printed show the probability of the result being 0, and the

probability of the result being 1. The prediction is based on the one with the highest

probability, and we use that probability and convert it into the confi dence percentage.

 Deploying the Model

 It is now time to deploy our machine learning model as a REST API. First, how-

ever, you need to install the Flask micro-framework.k

 T I P Flask is a micro-framework for Python that allows you to build web-based k
applications. Micro-frameworks in Python have little to no dependencies to external
libraries and are thus very lightweight. Flask is particularly useful for developing REST
APIs. For more information on Flask, check out its documentation at http://flask
.pocoo.org/docs/1.0/. /

 Chapter 12 ■ Deploying Machine Learning Models 281

 Type the following in Terminal or Command Prompt to install Flask:

 $ pip install flask

 Once Flask is installed, create a text fi le named REST _ API.py , and enter the yy

following code snippet:

 import pickle
 from flask import Flask, request, json, jsonify
 import numpy as np

 app = Flask(__name__)

 #---the filename of the saved model---
 filename = 'diabetes.sav'

 #---load the saved model---
 loaded_model = pickle.load(open(filename, 'rb'))

 @app.route('/diabetes/v1/predict', methods=['POST'])
 def predict():
 #---get the features to predict---
 features = request.json

 #---create the features list for prediction---
 features_list = [features["Glucose"],
 features["BMI"],
 features["Age"]]

 #---get the prediction class---
 prediction = loaded_model.predict([features_list])

 #---get the prediction probabilities---
 confidence = loaded_model.predict_proba([features_list])

 #---formulate the response to return to client---
 response = {}
 response['prediction'] = int(prediction[0])
 response['confidence'] = str(round(np.amax(confidence[0]) * 100 ,2))

 return jsonify(response)

 if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

 The preceding code snippet accomplishes the following:

■ Creates a route /diabetes/v1/predict using the route decorator.

■ The route is accessible through the POST verb.

282 Chapter 12 ■ Deploying Machine Learning Models

■ To make a prediction, users make a call to this route and pass in the var-

ious features using a JSON string.

■ The result of the prediction is returned as a JSON string.

 N OT E A decorator in Python is a function that wraps and replaces another function. r

 Testing the Model
 To test the REST API, run it in Terminal by entering the following command:

 $ python REST_API.py

 You should see the following output:

 * Serving Flask app "REST_API" (lazy loading)
 * Environment: production
 WARNING: Do not use the development server in a production environment.
 Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

 This indicates that the service is up and listening at port 5000.

 The easiest way to test the API is to use the cURL command (installed by

default on macOS) from a separate Terminal or Command Prompt window:

 $ curl -H "Content-type: application/json" -X POST
 http://127.0.0.1:5000/diabetes/v1/predict
-d '{"BMI":30, "Age":29,"Glucose":100 }'

 The preceding command sets the JSON header, and it uses the POST verb to

connect to the REST API listening at port 5000. The features and their values

to use for the prediction are sent as a JSON string.

 T I P For Windows users, single quotes are not recognized by the cURL command.
You have to use double quotes and turn off the special meaning of double quotes in
the JSON string: "{\"BMI\":30, \"Age\":29,\"Glucose\":100 }" .

 When the REST API has received the data sent to it, it will use it to perform

the prediction. You will see the prediction result returned as follows:

 {"confidence":"78.95","prediction":0}

 The result indicates that based on the data sent to it, it is not likely that the

person has diabetes (78.95% confi dence).

 Go ahead and try some other values, like this:

 $ curl -H "Content-type: application/json" -X POST
 http://127.0.0.1:5000/diabetes/v1/predict
 -d '{"BMI":65, "Age":29,"Glucose":150 }'

 Chapter 12 ■ Deploying Machine Learning Models 283

 This time around, the prediction indicates that the person is likely to be dia-

betic with 68.42% confi dence:

 {"confidence":"68.42","prediction":1}

 Creating the Client Application to Use the Model

 Once the REST API is up and running, and it has been tested to be working

correctly, you can build the client side of things. Since this book revolves around

Python, it is fi tting to build the client using Python. Obviously, in real life, you

would most likely build your clients for the iOS, Android, macOS, and Windows

platforms.

 Our Python client is pretty straightforward—formulate the JSON string to

send to the service, get the result back in JSON, and then retrieve the details

of the result:

 import json
 import requests

 def predict_diabetes(BMI, Age, Glucose):
 url = 'http://127.0.0.1:5000/diabetes/v1/predict'
 data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
 data_json = json.dumps(data)
 headers = {'Content-type':'application/json'}
 response = requests.post(url, data=data_json, headers=headers)
 result = json.loads(response.text)
 return result

 if __name__ == "__main__":
 predictions = predict_diabetes(30,40,100)
 print("Diabetic" if predictions["prediction"] == 1 else "Not
Diabetic")
 print("Confidence: " + predictions["confidence"] + "%")

 Running this in Jupyter Notebook yields the following result:

 Not Diabetic
 Confidence: 68.42%

 Let ’ s save the preceding code snippet into a fi le and add the code to allow

users to enter the various values for BMI, Age, and Glucose. Save the following

code snippet in a fi le named Predict _ Diabetes.py :y

 import json
 import requests

 def predict_diabetes(BMI, Age, Glucose):
 url = 'http://127.0.0.1:5000/diabetes/v1/predict'

284 Chapter 124 ■ Deploying Machine Learning Models

 data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
 data_json = json.dumps(data)
 headers = {'Content-type':'application/json'}
 response = requests.post(url, data=data_json, headers=headers)
 result = json.loads(response.text)
 return result

 if __name__ == "__main__":
 BMI = input(' BMI? ')

Age = input(' Age? ')
Glucose = input(' Glucose? ')

 predictions = predict_diabetes(BMI , Age , Glucose)
 print("Diabetic" if predictions["prediction"] == 1 else "Not
Diabetic")
 print("Confidence: " + predictions["confidence"] + "%")

 You can now run the application in Terminal:

 $ python Predict_Diabetes.py

 You can now enter the values:

 BMI? 55
 Age? 29
 Glucose?120

 The result will now be shown:

 Not Diabetic
 Confidence: 52.63%

 Summary

 In this fi nal chapter, you saw how to deploy your machine learning model using

the Flask micro-framework. You also saw how you can view the correlations

between the various features and then only use those most useful features for

training your model. It is always useful to evaluate several machine learning

algorithms and choose the best performing one so that you can choose the

correct algorithm for your specifi c dataset.

 I hope that this book has given you a good overview of machine learning,

and that it has jumpstarted and inspired you to continue learning. As I have

mentioned, this book is a gentle introduction to machine learning, and there

are some details that were purposely omitted to make it easy to follow along.

Nevertheless, if you have tried all of the exercises in each chapter, you should

now have a pretty good understanding of the fundamentals of machine learning!

285

 A
 accuracy, computing of, 168–171

 algorithms

 categories of in ML, 5

 comparing ML algorithms, 258–260

 evaluating ML algorithms, 260–261,

277–279

 supervised learning algorithms, 5

 Two-Class Decision Jungle

algorithm, 258, 259, 260

 Two-Class Logistic Regression

algorithm, 258, 259, 260

 Two-Class Support Vector Machine

algorithm, 258

 unsupervised learning algorithms, 5,

7

 Anaconda, 8–18

apply() function, 57, 58, 59

 area under the curve (AUC), 174

argsort() function, 33

arrange() function, 20

 array assignment, 34–38

 array indexing, 22–26

 array math, 27–34

 arrays

 copying by reference, 34–35

 copying by value (deep copy), 37

 copying by view (shallow copy),

36–37

 creating NumPy arrays, 20–21

 reshaping of, 26–27

 slicing of, 23–25

asmatrix() function, 30

auc() function, 174

 Auto MPG Data Set, 98

 Azure Machine Learning Studio

(MAML)

 comparing against other algorithms,

258–260

 creating experiment, 248–252

 evaluating machine learning

algorithms, 260–261

 example using Titanic experiment,

244–246

 filtering data and making fields

categorical, 252–254

 introduction, 243

 programmatically accessing web

service, 263–266

 publishing experiment, 261–263

 publishing learning model as web

service, 261–262

 Index

286 Index 6 ■ B–C

 removing missing data, 254

 splitting data for training and

testing, 254–256

 testing web service, 263

 training a model, 256–258

 uploading dataset, 247–248

 use of, 246–266

 B
 Bagging, 143

 bar chart

 defined, 73

 plotting of, 73–77

bar() function, 73

 bias, 141–144

 Boolean indexing, 22–23

 Boosting, 143, 144

 bootstrap aggregation, 143

 Boston dataset, 120–124, 144–146

 Breast Cancer Wisconsin (Diagnostic)

Data Set, 156–174

 C
 C parameter, 194–196

 case study in machine learning (ML)

 cleaning data, 271–273

 evaluating algorithms, 277–279

 examining correlation between

features, 273–274

 introduction, 270–271

 loading data, 271

 plotting correlation between

features, 274–276

 selecting best performing algorithm,

279

 training and saving the model,

279–282

catplot() function, 87

 Census Income Data Set, 98

 charts

 bar chart, 73–77

 line chart, 68–73

 pie chart, 77–82

 classes

DataFrame() class, 45

KMeans class, 230, 232, 239

KNeighborsClassifier class, 213

LinearRegression class, 101–102,

131, 139, 145

LogisticRegression class, 162

MinMaxScaler class, 112

PolynomialFeatures class, 138

Series class, 41

SVC class, 182, 192

 classification problems, described, 4

classification _ report() function,

170

 clustering

 defined/described, 4, 5, 222

 using K-Means. See K-Means,

clustering using

 clusters, defined, 222

 coefficient of determination, 105

 coefficient of multiple determinations

for multiple regressions, 105

 conda, 8

 confusion matrix, 166–168, 261

confusion _ matrix() function, 168

 Constrained Optimization, 181

contourf() function, 193

copy() function, 37

corr() function, 126, 273, 274

 correlation

 examining correlation between

features in ML case study,

273–274

 negative correlation, 127

 plotting correlation between features

in ML case study, 274–276

 positive correlation, 127

cross _ val _ score() function, 217

 crosstab, 63–64

crosstab() function, 64, 166, 167

 cross-validation, 216

cumsum() function, 31

 cumulative sum, 31–32

 Index ■ D–F 287

 D
 data

 cleaning data in clustering using

K-Means, 237–238

 cleaning data in ML case study,

271–273

 data cleansing in linear regression,

125–126

 data cleansing in Scikit-learn,

106–117

 filtering data and making fields

categorical in MAML, 252–254

 importing data in clustering using

K-Means, 237

 labeled data, 221

 loading data in ML case study, 271

 manipulation of tabular data using

Pandas, 39–65

 removing missing data in MAML,

254

 sorting of in Pandas DataFrame,

55–57

 splitting data for training and testing

in MAML, 254–256

 unlabeled data, 221, 222

 data cleansing, 107–117, 125

 data visualization, using matplotlib,

67–91

 DataFrame, Pandas. See Pandas

DataFrame

DataFrame() class, 45

 datasets

 Boston dataset, 120–124, 144–146

 getting datasets in Scikit-learn,

94–100

 Iris dataset. See Iris dataset

 Kaggle dataset, 97, 244, 270

 labeled dataset, 5

 uploading of in MAML, 247–248

date _ range() function, 42, 43

 decorator, defined, 282

 dependent variable, 119

describe() function, 48

dot() function, 29

 dot product, 29–30

drop() function, 61, 62

drop _ duplicates() function, 111

dropna() function, 109

dump() function, 107

duplicated() function, 110, 111

 E
 ensemble learning, 143, 144

euclidean _ distance() function, 208

 Evaluate Model, 260

 explanatory variable, 120

 explode parameter, 78–79

eye() function, 21

 F
 F1 Score, 170

 False Negative (FN), 167, 261

 False Positive (FP), 167, 261

 False Positive Rate (FPR), 170, 171–172,

173

 features

 in case study, 273–276

 independent variables as, 119

 in linear regression, 126–128

 in logistic regression, 156–174

 in Titanic experiment with MAML,

252

 Fisher, Ronald (biologist), 94

fit() function, 102, 230

 Flask micro-framework, 280

flatten() function, 27

full() function, 21

 functions

apply() function, 57, 58, 59

 applying of to DataFrame, 57–60

argsort() function, 33

arrange() function, 20

asmatrix() function, 30

auc() function, 174

bar() function, 73

catplot() function, 87

288 Index 8 ■ F–F

classification _ report()

function, 170

confusion _ matrix() function, 168

contourf() function, 193

copy() function, 37

corr() function, 126, 273, 274

cross _ val _ score() function, 217

crosstab() function, 64, 166, 167

cumsum() function, 31

date _ range() function, 42, 43

describe() function, 48

dot() function, 29

drop() function, 61, 62

drop _ duplicates() function, 111

dropna() function, 109

dump() function, 107

duplicated() function, 110, 111

euclidean _ distance() function,

208

eye() function, 21

fit() function, 102, 230

flatten() function, 27

full() function, 21

get _ feature _ names() function,

139

head() function, 49

heatmap() function, 275

info() function, 125, 271

isnull() function, 108, 125

 kernel function, 192

knn() function, 208, 209

legend() function, 72, 81

lmplot() function, 89

load() function, 107

load _ boston() function, 121

load _ breast _ cancer() function,

156

load _ dataset() function, 88

 logit function, 153–154

make _ blobs() function, 98

make _ circles() function, 100, 187

make _ regression() function, 98

matshow() function, 274

mean() function, 48, 234

metrics.silhouette _ samples()

function, 234

metrics.silhouette _ score()

function, 234

np.add() function, 28

np.concatenate() function, 189

np.dot() function, 31

np.where() function, 114

outliers _ iqr() function, 114, 115

outliers _ z _ score() function, 116

pie() function, 81, 82

plot() function, 68, 71, 85

plot _ surface() function, 134, 190

 polynomial function, 120, 138, 139,

145, 149

predict() function, 102, 163, 231

predict _ proba() function, 163

 Radial Basis function (RBF), 196–197,

277, 278–279

randn() function, 45

random() function, 21

ravel() function, 27, 106

read _ csv() function, 46

reset _ index() function, 109

reshape() function, 26–27, 35

roc _ curve() function, 173

savefig() function, 82

scatter() function, 85

score() function, 106, 170

 Sigmoid function, 155, 156

sns.get _ dataset _ names()

function, 88

sort() function, 33

sort _ index() function, 55, 56, 61

sort _ values() function, 55, 56

sq() function, 57, 58

sq _ root() function, 57, 58, 59

subplot() function, 85

sum() function, 59

tail() function, 49

title() function, 69

train _ test _ split() function,

131, 164

transpose() function, 54

 Index ■ G–K 289

view() function, 36

xlabel() function, 69

xticks() function, 76–77

ylabel() function, 69

zeros() function, 20

 G
 Gamma, 197–199

 Gaussian Kernel, 196–197

get _ feature _ names() function, 139

The Grammar of Graphics: Statistics and
Computing (Wilkinson), 70

 H
 harmonic mean of precision and

recall, 170

head() function, 49

heatmap() function, 275

 high bias, 143

 high variance, 143

 hyperplane

 defined, 179

 formula for in SVM, 180–181

 plotting of, 184–185, 189–191

 3D hyperplane, 133–135, 136, 146–147,

189–191

 I
 independent variable, 119

info() function, 125, 271

 Interquartile Range (IQR), 113

 Iris dataset, 89, 94, 96, 119, 191–194, 197,

199, 200, 212, 213, 217

isnull() function, 108, 125

 J
 Jupyter Notebook (formerly known as

iPython Notebook), 8, 9–18, 67, 68, 69, kk
134, 160, 264, 283

 K
 k

 exploring different values of, 212–215

 finding optimal k, 218–219, 234–236

 visualizing different values of,

209–211

 Kaggle dataset, 97, 244, 270

 kernel function, 192

 kernel trick, 186–191

 kernels

 defined, 191

 Gaussian Kernel, 196–197

 linear kernel, 182, 192, 194, 195, 196,

199, 201, 278, 279

 polynomial kernel, 199–200

 types of, 191–200

 k-folds, 216

 K-Means

 calculating Silhouette Coefficient,

233–234

 cleaning data, 237–238

 clustering using, 239–240

 evaluating cluster size using

Silhouette Coefficient, 232–236

 finding optimal k, 234–236

 finding optimal size classes, 240–241

 how it works, 222–225

 implementing of in Python, 225–230

 importing data, 237

 plotting scatter plot, 238

 unsupervised learning using, 222

 using of in Scikit-learn, 230–232

 using of to solve real-life problems,

236–241

 what is unsupervised learning?

221–226

KMeans class, 230, 232, 239

 K-Nearest Neighbors (KNN)

 calculating distance between points,

207–208

 cross-validation, 216

 described, 205–219

 evaluation of in ML case study,

277–278

 exploring different values of k,

212–215

 finding optimal k, 218–219

 implementing of in Python, 206–211

290 Index 0 ■ L–M

 making predictions, 209

 parameter-tuning k, 217–218

 using Scikit-learn ’ s

KNeighborsClassifier class for,

211–219

 visualizing different values of k,

209–211

KNeighborsClassifier class, 213

knn() function, 208, 209

 L
 label (dependent variable), 119

 labeled data, 221

 labeled dataset, 5

 Larange Multipliers, 181

legend() function, 72, 81

 line chart, plotting of, 68–73

 linear kernel, 182, 192, 194, 195, 196,

199, 201, 278, 279

 linear regression

 data cleansing, 125–126

 defined, 100, 120

 feature selection, 126–128

 formula for polynomial regression,

138

 getting gradient and intercept of

linear regression line, 103–104

 getting intercept and coefficients, 133

 multiple regression, 128–130

 plotting 3D hyperplane, 133–135,

146–147

 plotting linear regression line,

102–103

 polynomial regression, 135–147

 training the model, 131–132

 types of, 119–120

 understanding bias and variance,

141–144

 using polynomial multiple

regression on Boston dataset,

144–146

LinearRegression class, 101–102, 131,

139, 145

list data type, 19–20

 lmplot, 88–89

lmplot() function, 89

load() function, 107

load _ boston() function, 121

load _ breast _ cancer() function,

156

load _ dataset() function, 88

 logistic regression

 computing accuracy, recall,

precision, and other metrics,

168–171

 defined, 151–153

 evaluation of in ML case study, 277

 examining relationship between

features, 156–161

 finding intercept and coefficient, 162

 getting the confusion matrix,

166–168

 logit function, 153–154

 making predictions, 163–164

 plotting features in 2D, 157–158

 plotting in 3D, 158–160

 plotting ROC and finding area under

the curve (AUC), 174

 plotting sigmoid curve, 162–163

 Receiver Operating Characteristic

(ROC) curve, 171–174

 sigmoid curve, 154–156

 testing the model, 166

 training the model using all features,

164–174

 training using one feature, 161–164

 Two-Class Logistic Regression

algorithm, 258, 259, 260

 understanding odds, 153

 using Breast Cancer Wisconsin

(Diagnostic) Data Set, 156–174

LogisticRegression class, 162

 logit function, 153–154

 low variance, 143

 M
 machine learning (ML)

 case study

 cleaning data, 271–273

 evaluating algorithms, 277–279

 Index ■ M–M 291

 examining correlation between

features, 273–274

 introduction, 270–271

 loading data, 271

 plotting correlation between

features, 274–276

 selecting best performing

algorithm, 279

 training and saving the model,

279–280

 categories of algorithms in, 5

 creating client application to use the

model, 283–284

 defined, 1, 3

 deployment of, 269–270

 deployment of model of

 introduction, 280–282

 testing model, 282–283

 described, 3

 disciplines of, 3

 main goal of, 269

make _ blobs() function, 98

make _ circles() function, 100, 187

make _ regression() function, 98

 mathematics, as discipline of machine

learning, 3

 matplotlib

 defined, 67

 plotting bar charts

 adding another bar to chart,

74–75

 changing tick marks, 75–77

 introduction, 73–74

 plotting line charts

 adding legend, 72–73

 adding title and labels, 69

 introduction, 68–69

 plotting multiple lines in same

chart, 71–72

 styling, 69–71

 plotting pie charts

 displaying custom colors, 79–80

 displaying legend, 81

 exploding slices, 78–79

 introduction, 77–78

 location strings and corresponding

location codes, 82

 rotating pie charts, 80

 saving chart, 82

 plotting scatter plots

 combining plots, 83–84

 introduction, 83

 subplots, 84–85

 plotting using Seaborn

 displaying categorical plots,

86–88

 displaying lmplots, 88–89

 displaying swarmplots, 90–91

 introduction, 85–86

 matrix class, 30–31

 matrix multiplication, 30

matshow() function, 274

mean() function, 48, 234

 meshgrid, 214

metrics.silhouette _ samples()

function, 234

metrics.silhouette _ score()

function, 234

 Microsoft Azure Machine Learning

Studio (MAML)

 comparing against other algorithms,

258–260

 creating experiment, 248–252

 evaluating machine learning

algorithms, 260–261

 example using Titanic experiment,

244–246

 filtering data and making fields

categorical, 252–254

 introduction, 243

 programmatically accessing web

service, 263–266

 publishing experiment, 261–263

 publishing learning model as web

service, 261–262

 removing missing data, 254

 splitting data for training and

testing, 254–256

 testing web service, 263

 training a model, 256–258

292 Index ■ N–P

 uploading dataset, 247–248

 use of, 246–266

MinMaxScaler class, 112

 misclassification error (MSE), 218

 model, a.k.a. program, 3

 multi-class classification problem, 4

 multiple linear regression, 120

 multiple regression, 120, 128–130

 N
ndarray (n-dimensional array), 20, 31

 negative correlation, 127

 normalization, 112–113

np.add() function, 28

np.concatenate() function, 189

np.dot() function, 31

np.where() function, 114

 NumPy

 array assignment, 34–38

 array indexing, 22–26

 array math, 27–34

 creating NumPy arrays, 20–21

 described, 19–20

 NumPy slice as reference, 25

 reshaping arrays, 26–267

 slicing arrays, 23–25

 sorting in, 32–34

 O
 odds, understanding of, 153

 optimal k, 218–219, 232, 234–236

 outliers, 113–117

outliers _ iqr() function, 114, 115

outliers _ z _ score() function, 116

 overfitting, 143, 214–215

 P
 Pandas, described, 39–40

 Pandas DataFrame

 adding/removing rows/columns in,

60–63

 applying functions to, 57–60

 checking to see if result is

DataFrame or Series, 55

 common DataFrame operations, 65

 creation of, 45–46

 defined, 45

 examples of, 124

 extracting from, 49–54

 generating crosstab, 63–64

 selecting based on cell value, 54

 selecting single cell in, 54

 sorting data in, 55–57

 specifying index in, 46–47

 transformation of, 54–55

 Pandas Series

 accessing elements in, 41–42

 creation of using specified index, 41

 date ranges, 43–44

 defined, 40

 generating descriptive statistics on,

47–48

 specifying datetime range as index

of, 42–43

 penalty parameter of the error term,

195

 pie chart

 defined, 77

 plotting of, 77–82

pie() function, 81, 82

plot() function, 68, 71, 85

plot _ surface() function, 134, 190

 plotting

 of bar charts, 73–77

 of correlation between features in

ML case study, 274–276

 of hyperplane, 184–185, 189–191

 of line charts, 68–73

 of linear regression line, 102–103

 of pie charts, 77–82

 plotting features in 2D (logistic

regression), 157–158

 of ROC and finding area under the

curve (AUC) (logistic regression),

174

 of scatter plots, 83–85, 238

 of sigmoid curve (logistic

regression), 162–163

 of 3D hyperplane (linear regression),

133–135, 146–147

 Index ■ Q–S 293

 in 3D (logistic regression), 158–160

 using Seaborn, 85–91, 182

 polynomial function, 120, 138, 139, 145,

149

 polynomial kernel, 199–200

 polynomial multiple regression, 120,

144–146

 polynomial regression, 120, 135–147

PolynomialFeatures class, 138

 positive correlation, 127

 precision, computing of, 168–171

predict() function, 102, 163, 231

predict _ proba() function, 163

 predictions

 making of in KNN, 209

 making of in logistic regression,

163–164

 making of in Scikit-learn, 102

 making of in SVM, 185–186

 Q
 quadratic regression, 138

 R
 Radial Basis function (RBF), 196–197,

277, 278–279

randn() function, 45

random() function, 21

ravel() function, 27, 106

read _ csv() function, 46

 recall, computing of, 168–171

 Receiver Operating Characteristic

(ROC) curve, 171–174

 regression

 linear regression. See linear

regression

 logistic regression. See logistic

regression

 multiple linear regression, 120

 multiple regression, 120, 128–130

 polynomial multiple regression, 120,

144–146

 polynomial regression, 120, 135–147

 problems with, 4

 quadratic regression, 138

 Two-Class Logistic Regression

algorithm, 258, 259, 260

 Regularization, 143

reset _ index() function, 109

reshape() function, 26–27, 35

 Residual Sum of Squares (RSS),

104–105, 141, 143

 REST (REpresentational State

Transfer) API, 269–270, 280, 283

 ROC (Receiver Operating

Characteristic) curve, 171–174

roc _ curve() function, 173

 R-squared method, 105, 132

 S
savefig() function, 82

scatter() function, 85

 scatter plot

 defined, 83

 examples of, 99, 129, 130, 132, 136, 158,

186, 193, 194, 201, 212, 226, 227,

229, 238

 plotting of, 83–85, 238

 scientific computing, as discipline of

machine learning, 3

 Scikit-learn

 data cleansing

 cleaning rows with NaNs, 108

 introduction, 106–107

 normalizing columns, 112–113

 removing duplicate rows,

110–112

 removing outliers, 113–117

 removing rows, 109

 replacing NaN with mean of

column, 109

 getting datasets

 clustered dataset, 98–99

 clustered dataset distributed in

circular fashion, 100

 generating your own, 98

 introduction, 94

 linearly distributed dataset, 98

 using Kaggle dataset, 97

 using Scikit-learn dataset, 94–97

294 Index 4 ■ S–S

 using UCI (University of California,

Irvine) Machine Learning

Repository, 97–98

 getting started with

 evaluating model using test dataset,

105–106

 examining performance of model

by calculating Residual Sum of

Squares (RSS), 104–105

 getting gradient and intercept of

linear regression line, 103–104

 introduction, 100–101

 making predictions, 102

 persisting the model, 106–107

 plotting linear regression line,

102–103

 using LinearRegression class for

fitting model, 101–102

 introduction to, 93–100

 polynomial regression in, 138–141

 use of for SVM, 181–183

 use of KNeighborsClassified class

for KNN, 211–219

 using K-Means in, 230–232

score() function, 106, 170

 Score Model, 256

 Seaborn

 defined, 85

 plotting points using, 182

 plotting using, 85–91

 Series, Pandas. See Pandas Series

Series class, 41

 shallow copy, 36

 sigmoid curve, 154–156, 162–163

 Sigmoid function, 155, 156

 Silhouette Coefficient, 232–236

 slope, 184

sns.get _ dataset _ names()

function, 88

sort() function, 33

sort _ index() function, 55, 56, 61

sort _ values() function, 55, 56

sq() function, 57, 58

sq _ root() function, 57, 58, 59

 statistics, as discipline of machine

learning, 3

 StatLib library, 120

 Student Performance Data Set, 98

subplot() function, 85

sum() function, 59

 supervised learning

 classification using K-Nearest

Neighbors (KNN)

 calculating distance between

points, 207–208

 cross-validation, 216

 described, 205–219

 exploring different values of k,

212–215

 finding optimal k, 218–219

 implementation of, 208–209

 implementing KNN in Python,

206–211

 making predictions, 209

 parameter-tuning k, 217–218

 using Scikit-learn ’ s

KNeighborsClassifier class

for, 211–219

 visualizing different values of k,

209–211

 classification using Support Vector

Machines (SVM)

 adding third dimension, 187–188

 C parameter, 194–196

 formula for hyperplane, 180–181

 Gamma, 197–199

 introduction, 177–186

 kernel trick, 186–191

 making predictions, 185–186

 maximum separability, 178–179

 plotting 3D hyperplane, 189–191

 plotting hyperplane and margins,

184–185

 polynomial kernel, 199–200

 Radial Basis function (RBF),

196–197

 support vectors, 179–180

 types of kernels, 191–200

 Index ■ T–T 295

 using Scikit-learn for, 181–183

 using SVM for real-life problems,

200–203

 linear regression

 data cleansing, 125–126

 defined, 120

 feature selection, 126–128

 formula for polynomial regression,

138

 getting intercept and coefficients,

133

 multiple regression, 128–130

 plotting 3D hyperplane, 133–135,

146–147

 polynomial regression, 135–147

 polynomial regression in Scikit-

learn, 138–141

 training the model, 131–132

 types of, 119–120

 understanding bias and variance,

141–144

 using Boston dataset, 120–124

 using polynomial multiple

regression on Boston dataset,

144–146

 logistic regression

 defined, 151–153

 examining relationship between

features, 156–161

 finding intercept and coefficient,

162

 getting the confusion matrix,

166–168

 logit function, 153–154

 making predictions, 163–164

 plotting features in 2D, 157–158

 plotting in 3D, 158–160

 plotting ROC and finding area

under the curve (AUC), 174

 plotting sigmoid curve, 162–163

 Receiver Operating Characteristic

(ROC) curve, 171–174

 sigmoid curve, 154–156

 testing the model, 166

 training the model using all

features, 164–174

 training using one feature, 161–164

 understanding odds, 153

 using Breast Cancer Wisconsin

(Diagnostic) Data Set, 156–174

 supervised learning algorithms, 5–6

 Support Vector Classification (SVC),

183

 Support Vector Machines (SVM)

 adding third dimension, 187–188

 C parameter, 194–196

 formula for hyperplane, 180–181

 Gamma, 197–199

 introduction, 177–186

 kernel trick, 186–191

 making predictions, 185–186

 maximum separability, 178–179

 plotting 3D hyperplane, 189–191

 plotting hyperplane and margins,

184–185

 polynomial kernel, 199–200

 Radial Basis function (RBF), 196–197,

277, 278–279

 support vectors, 179–180

 types of kernels, 191–200

 use of for real-life problems, 200–203

 using Scikit-learn for, 181–183

 support vectors, 179–180

SVC class, 182, 192

 swarmplots, 90–91

 T
 tabular data, manipulation of using

Pandas, 39–65

tail() function, 49

 targets, 120

 3D hyperplane, 133–135, 136, 146–147,

189–191

 threshold, 152, 163

 Titanic, use of as experiment,

244–246

title() function, 69

 traditional programming, described, 2

296 Index 6 ■ U–Z

train _ test _ split() function, 131,

164

transpose() function, 54

 True Negative (TN), 167, 261

 True Positive Rate (TPR), 168, 171–172,

173

 True Positive (TP), 167, 260

 Tukey Fences, 113–115

 two-class classification problem, 4

 Two-Class Decision Jungle algorithm,

258, 259, 260

 Two-Class Logistic Regression

algorithm, 258, 259, 260

 Two-Class Support Vector Machine

algorithm, 258

 U
 UCI Machine Learning Repository,

97–98

 underfitting, 143, 214–215

 unlabeled data, 221, 222

 unsupervised learning

 clustering using K-Means

 calculating Silhouette Coefficient,

233–234

 cleaning data, 237–238

 clustering using K-Means, 239–240

 evaluating cluster size using

Silhouette Coefficient, 232–236

 finding optimal k, 234–236

 finding optimal size classes,

240–241

 how it works, 222–225

 implementing K-Means in Python,

225–230

 importing data, 237

 plotting scatter plot, 238

 unsupervised learning using

K-Means, 222

 using K-Means in Scikit-learn,

230–232

 using K-Means to solve real-life

problems, 236–241

 what is unsupervised learning?

221–226

 unsupervised learning algorithms,

5, 7

 V
 variables

 dependent variable, 119

 explanatory variable, 120

 independent variable, 119

 variance, 141–144

view() function, 36

 W
 Wilkinson, Leland (author)

The Grammar of Graphics: Statistics and
Computing, 70 gg

 X
xlabel() function, 69

xticks() function, 76–77

 Y
 y-intercept, 184

ylabel() function, 69

 Z
zeros() function, 20

 Z-score, 116–117

