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Abstract

In this work we use the available information
about the Great Rabbit to model it’s population
growth. The model assumes the population growth
is limited only by food availability and divides
it into two regimes: external feeding regime (in
which rabbits eat animals in their surrounding
area) and internal feeding regime (in which rab-
bits multiply and eat themselves). The model pre-
dicts a maximum number of rabbits, which de-
pends on the relation between three measurable
numbers and sheds some light which kind of coun-
termeasures could be taken to confront them. This
is a novel approach that opens the way for further
studies and eventually being able to exterminate
this mabeast.

1 Introduction

The Great Rabbit is one of the Three Great Mabeasts that
plague this world. They consist of a near limitless horde
of fist sized white rabbits that travel together and seem to
act in perfect coordination [1].

The rabbits are carnivorous and eat any living animal
in their way, not leaving any traces. This, in combina-
tion to their staggering numbers, is why this rabbits are
considered a unstoppable calamity.

Reports of the Great Rabbit date as far back as 350
years ago. The tales are always similar, with the Rab-
bit appearing seemingly out of nowhere and wiping whole
villages out of existence. Its activity does not seem to be
decreasing over time, with the recent record we have being
from just two years ago, in Karsten territory [2].

Little has been achieved in regards to facing the Great
Rabbit. Usually when a population finds out the horde
is coming for them, they evacuate and hope for the best.
There have been successful attempts at driving them away
from populated areas [2], but trying to exterminate them
with our current methods has proved to be futile.

We believe that the first step towards a more permanent
solution about the Great Rabbit is understanding it. With
this in mind, we have used the knowledge available about
it to model its growth. In the next section we detail the
hypothesis used for the model, which is described in detail
in section 3. Then, in section 4 we see the model at work
with some examples we deemed insightful.

Figure 1: The Great Rabbit

2 What we know about the Great
Rabbit

Little is known about the Great Rabbit, as collecting field
data about them can prove unusually dangerous. There-
fore, a lot of the information we have is gathered through
folklore or the study of incidents involving this particular
mabeast. That being said, we will use what we do know
about it to form a set of hypothesis for our model.

As stated before, Great Rabbit is a horde of rabbits
which eat whatever living animal they find in their way. It
has been reported that they leave the plant life in their way
intact, suggesting that they are exclusively carnivorous.
There are also reports of rabbits eating each other [3].

A defining characteristic of the Great Rabbit is the abil-
ity to multiply themselves in a very short span of time
[1,2,3,4]. This makes them particularly hard to get rid
of. However, we know for a fact that they can’t multiply
indefinitely and that there is some limit to their number.
Some sources report numbers going up to around 80.000
seen at the same time [4].

With this information in mind, we can start forming our
hypothesis. We will list them as follows.

1. The rabbits need some kind of energy to survive.
They get this energy by eating animals.

2. Their multiplication ability is not tied to their need
for food. In other words, they can multiply them-
selves even if they are starving.

3. Since they need to eat and food is limited, their num-
ber is limited by external factors (like food availabil-
ity).

4. They do not waste any energy. All energy available
from their food source is taken by the Great Rabbit,
without loss.
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They key hypothesis (and the one we are assuming with
the least empirical backup) is the first one. As they are
no ordinary beasts, we are not sure they need to eat in
order to survive. But for the purposes of this model, we
will assume they do.

The second hypothesis is based on the fact that the rab-
bits eat themselves. If they need to eat to survive and they
create copies of themselves to consume them, it follows
that multiplying does not cost them any of the energy
they get from eating. Otherwise, the amount of energy
would remain constant throughout the whole multiplica-
tion and consumption process and the rabbits would gain
nothing from it.

The third hypothesis is based on the fact that they can’t
multiply indefinitely. We assume that this limit is based on
their need for food or other environmental factors, rather
than a magically imposed limit.

Finally, the fourth hypothesis is taken to make the math
easier. But it is not key to the model and can be modified
if needed.

3 Model

3.1 External feeding regime

Let us have an N number of rabbits. Following hypothe-
sis 1, we will propose that during a certain time interval
∆t each individual rabbit will need an intake of a certain
amount of energy to survive (ER). Also, during the same
time interval they will be able to move to any point on
a certain area (AR). Now, this area has to have some
amount of edible animals for the rabbits; to simplify the
model we will use hypothesis 4 and think of them as en-
ergy the rabbits can consume, which allows us to define
an energy density ρE for the area AR.

Figure 2: Diagram of the area covered by a single rabbit
in a given ∆t time. Said area (AR) is shown in red, while
the area the rabbit can’t reach yet is shown in a striped
pattern.

Next, it is important to recognize that the ammount of

rabbits should change over time. We will incorporate this
into our model by thinking of N iteratively. So, suppose
we start with a certain number N0 of rabbits. After a
time interval ∆t (the same we mentioned before) these
rabbits will have multiplied themselves and we will have
a different amount of them, which we’ll call N1. We can
continue this process indefinitely: after two time intervals
we will have N2 rabbits, after three we’ll have N3, and so
on. Generalizing, after i time intervals we will have Ni
rabbits.

Figure 3: How the iteration works. We start with N0 rab-
bits. After a ∆t time, we go to N1 rabbits, then to N2 and
so on. Repeat this process i times and we get Ni rabbits.

Now we can start assembling our model. If the energy
needed by one rabbit to survive a ∆t time is ER, it follows
that the energy needed for Ni rabbits to survive that same
time is

EN = ERNi (1)

Now we have to consider how much energy the rabbits
are able to consume in that span of time. We know that
a single rabbit can cover an area AR and that that area
has an energy density ρE . Assuming the rabbits do not
overlap their search areas (meaning they cover the biggest
area possible) the total energy available for consumption
by Ni rabbits is given by ρEARNi. But we have to take
into account the energy already consumed by the rabbit
horde (and so, not available for intake); we will do this
by subtracting ρEARNi−1 from our total available energy.
So, in the end, the amount of energy Ni rabbits can con-
sume in a ∆t span of time is given by

EA = ρEARNi − ρEARNi−1

which can be reorganized into the expression

EA = ρEAR(Ni −Ni−1) (2)

We can see that the energy available depends on how
many rabbits are alive at the current iteration (Ni) and
how many there were in the past iteration (Ni−1). Figure
4 shows gives a visual representation of the first iteration
as an example of how this works.

Now we impose that the energy available for consump-
tion has to be greater or equal to the amount of energy
needed by the rabbits to survive

EN ≤ EA

We can use this condition with equations 1 and 2 (and
assume ρE and AR are not zero) to reach the following
expression

ER
ρEAR

≤ 1 − Ni−1

Ni
(3)

Finally, we have to take into account that the presence
of the Great Rabbit implies changes on its environment.
Specifically, while we can assume ER and AR constant, we
can’t do the same for ρE ; the growing size of a carnivore
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Figure 4: First iteration of how the area available for con-
sumption evolves. We start with an N0AR area; after a
time ∆t passes, the rabbits can cover an N1AR area. But
the area they covered before has already been depleted of
energy, so there is nothing for the Great Rabbit to con-
sume there.

rabbit horde is sure to scare animals nearby, reducing the
energy available for consumption. For this reason we pro-
pose that the energy density is inversely proportional to
the number of rabbits: ρE = ρE0

Ni
, where ρE0 is the density

with no rabbits present. Inserting this into ecuation 3 we
get

ER
ρE0AR

≤ 1

Ni
− Ni−1

N2
i

(4)

which we will call from now on the “Witch’s condition”,
which has to be true for every amount Ni of rabbits in or-
der for the Great Rabbit to keep on growing. This relation
is characterized by two factors: the way the rabbits multi-
ply (how we go from Ni to Ni+1) and the number ER

ρE0Ac
.

Thus, we will define the “Witch’s number” as

W
def
=

ER
ρE0AR

(5)

Note that W depends on the interval ∆t we are taking,
because each of the parameters that composes it has that
dependency. For example, if ∆t is a year, the rabbits will
need more energy (ER) to survive that time and will be
able to travel longer distances (AR) than if ∆t was a few
seconds, giving us different Witch’s numbers for different
time intervals.

It is also important to notice that we discarded the cases
of ρE0 = 0 and AR = 0 in order to reach equation 3.
However, these cases are trivial: if either ρE0 or AR is
zero, then it follows from equation 2 that EA = 0. Since
EN > 0 (because we are assuming the rabbits need energy
to survive) the inequality EN ≤ EA is always false and
thus the rabbit population is unable to grow.

We have deduced a condition for the Great Rabbit to
keep on growing, but we have yet to address how that
growth specifically happens. Several research attempts
have been made to study this phenomenon, leading to
many unfortunate losses [5] and no reliable information
about it. So for the purposes of this research we will as-
sume each rabbit creates C copies of itself during a ∆t in-
terval of time. So, if we start with a single rabbit (N0 = 1),
after a ∆t time we will have N1 = (C + 1) rabbits and af-
ter two ∆t intervals we will have N2 = (C + 1)2 of them.
We can generalize and say that after i time intervals we
will have Ni = (C+1)i rabbits. This is what is commonly
known as “exponential growth”.

3.2 Internal feeding regime

We have already established that the Witch’s condition
(equation 4) has to be fulfilled for the Great Rabbit to
grow. Then, we can ask ourselves: What happens when
that relation is not fulfilled?

As mentioned in section 2, the Great Rabbit will start
eating itself if no other food source is available. We can
quantify this phenomenon in terms of two factors: the
number of rabbits each individual rabbit has to eat to
survive a ∆t time (K) and the number C we defined be-
fore.

During this regime, two things will happen in sequence.
First, a certain number of rabbits will be created. After
that, a different number a rabbits will be eaten. If each
rabbit creates C copies of itself, then the first step of the
sequence will leave us with (C + 1)Ni rabbits. Then, if
each rabbits eats a K number of its kind, we will end up

with a (C+1)Ni

(K+1) number of rabbits. Figure 5 shows a brief

example of this mechanism at work.

We can use the iterative notation introduced before and
say that on the i-th step we will have

Ni =
C + 1

K + 1
Ni−1 (6)

C+1
K+1 is also an important number, so we will give it a

name. The “Starvation number” is defined as

S
def
=

C + 1

K + 1
(7)

Figure 5: Example of the internal feeding regime. In this
particular case, we have C = 1 and K = 1. This way,
each rabbit creates a copy of itself, and then proceeds to
eat a single rabbit in order to avoid starvation.

Note that there are three possible scenarios regarding S:
it could be equal, greater or lower than one. If S > 1 we see
from equation 6 that the Great Rabbit keeps on growing
(because Ni > Ni−1. If S = 1 then Ni = Ni−1 and so the
population does not grow nor decrease. If S < 1, it follows
that Ni < Ni−1 and we get a decreasing population.

Once again, we highlight that both C and K (and, in
consequence, S) are in reality dependant on the ∆t interval
we are talking about.

4 Using the model

With the two regimes understood, we can start plugging in
numbers and seeing how this model works. We will focus
our work on the W , S and C numbers, as they characterize
the behaviour of the system.
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4.1 Does the Great Rabbit ever stop
growing?

As we did before, let us imagine we start with a single
rabbit which starts creating copies of itself. Let also W
be so that the Witch’s condition is met for that single
rabbit. This way, we are on the external feeding regime
and the Great Rabbit starts growing.

For the growth to stop, two things have to happen in
sequence:

1. The Witch’s condition has to stop being fulfilled for
some Ni amount of rabbits, so that the Great Rab-
bit is forced change from external feeding to internal
feeding.

2. The internal feeding regime has to be so that the rab-
bit population decreases.

To analyze the first condition, we can take a look at
equation 4. It is easy to see that the right side of the in-
equality tends to zero as Ni grows. Since W is necessarily
greater than zero (because ED, ρE0 and AR are all posi-
tive numbers) this means that the Witch’s condition will
not be met starting from a certain Ni number of rabbits.
Which specific Ni is the limit number depends on C, as
shown in Figure 6.

Figure 6: Right side of the Witch’s condition (Upper limit)
as a function of the iteration for different C numbers. An
arbitrary number W (dotted line) was drawn to show when
the Witch’s condition stops being true. The red dots in the
inset show that precise moment.

We see then that C and the Witch’s number are what
determines when the feeding regime changes. W is the
threshold starting from which we get a change in the feed-
ing regime and C determines when we reach that thresh-
old. A bigger C implies an earlier change in regimes: this
makes sense, since more rabbits per iteration mean less
food for each one.

Now that we have changed regimes let us direct our
attention to equation 6, which gives us the evolution of
the rabbit quantity. We can see that S is what determines
how this evolution goes. As stated before, there are three
possible situations: S > 1, S = 1 and S < 1.

Figure 7 shows five curves with the same C and W ,
but different S numbers. Because C and W are the equal
for all curves, all five of them stay the same until the

regime change happens. In that moment we see the effect
of S: if S > 1 the growth continues (with faster growth
corresponding to bigger S numbers), if S = 1 the curve
stays as a constant, and if S < 1 the rabbit amount start
decreasing (with faster decrease belonging to lower S).

Figure 7: Rabbit growth for different S values. C and W
are the same for all the curves. In the inset the point
where the regime change happens is shown.

However, as stated in section 2, we know that there is
a limit to the number of rabbits alive at the same time.
What this means is that the Great Rabbit can’t grow dur-
ing the internal feeding regime (if it could, the Rabbit
could grow forever without the need of an external food
source). For that reason we can discard the S > 1 sce-
nario and keep just the other two as possibilities. Note
that discarding this case makes it so the maximum rabbit
amount is reached at the point of regime change.

In summary, we have characterized the general be-
haviour of the rabbit population according to this model.
We start with a growing population on the external feed-
ing regime which lasts until the Witch’s condition (which
depends on W and C) is no longer met. When that hap-
pens we enter the internal feeding regime and have three
possible scenarios: the population can continue increasing,
stay constant or start decreasing. Which scenario we get
depends on S, but empirical evidence allows us to discard
an S > 1 case.

4.2 Can we predict the Great Rabbit’s
size?

We have determined that the Great Rabbit reaches its
maximum size when the regime change happens. Said
moment is determined by W and C. Furthermore, if we
know C, we know the size of the Great Rabbit for any
iteration. That brings us to the question: Can we predict
this maximum size knowing only W and C?

To answer this question, we direct our attention to equa-
tion 4. We wrote the Witch’s condition for any Ni, but
after that we took Ni = (C + 1)i. Replacing this Ni into
equation 4 leaves us with

W ≤ 1

(C + 1)i
− 1

(C + 1)i+1

From this inequality we can get a condition for i
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i ≤
log( C

(C+1)W )

log(C + 1)
(8)

which is what we were looking for. The moment i

becomes greater than
log( C

(C+1)W
)

log(C+1) , the Witch’s condition

stops being met and the growth regime changes.

A detail to have in mind is that this is a discrete
model, meaning that i is necessarily a natural number.
log( C

(C+1)W
)

log(C+1) , on the other hand, can be any real number

greater than zero. What this means is that if the condi-
tion is fulfilled for some i but not for i + 1, we are going
to see the regime change on the i+ 1 step.

4.3 An application example

We can now try to put this model to use. The four factors
we have to determine in order to do that are C, W , S and
∆t.

Unfortunately, are many unknown variables and deter-
mining those three numbers for the real Great Rabbit is
something we can’t do due to the lack of empirical ev-
idence. However, we can do some good guesses. We
know that the Great Rabbit’s maximum size ever recorded
is around 80.000 rabbits. We also know exponentiation,
which allows us to notice that 57 = (4+1)7 = 78.125 gives
us a pretty close match to those 80.000 rabbits. We will
take C = 4 then: each rabbit creates four copies of itself
in a ∆t time.

As for W , we can use equation 4 with i = 7 and C = 4
to notice that W = 0.00001024 is the threshold we are
looking for.

We also need S. As discussed in section 4.1, there are
two possible scenarios: either the Great Rabbit’s size stays
constant or it starts decreasing. Either one is possible.
The rabbit horde could just stay the same size and that
is it (S = 1), or it could start decreasing in population
(S < 1) and be forced to move and find a new food source.
For the sake of argument we will take both situations into
account. Taking S = 1 would mean that each rabbit has
to eat four of its brothers to survive a ∆t time, and S < 1
would mean that they have to eat more than that.

Finally, we need to turn iterations into time: we need to
decide on a ∆t. Once again we only have guesswork to rely
on here. We know that a standard rabbit weights around
two kilograms, so we will assume each one of the Great
Rabbit’s members weights that much. We also have evi-
dence to suggest that they can eat (roughly) one kilogram
of food per minute [6]. This would mean that each rabbit
would need about eight minutes to eat four other rabbits
in the internal feeding regime. With that reasoning we
will settle on ∆t = 4 minutes.

The resulting simulation is shown in Figure 8. We see
that it takes 28 minutes for the Great Rabbit to reach its
maximum size. In the case of S < 1 we can also predict a
time before they starve, defined as the time it will take for
the population to fall under one rabbit. This time depends
on the specific Starvation number. It can range from a few
minutes (S very close to 0) to hours (S close to but lower
than 1).

Figure 8: Rabbit population evolution for the parameters
mentioned earlier, using three different S numbers. Zoom
1 shows that the population reaches its peak at 28 minutes.
Zooms 2 and 3 show when the population falls under one
rabbit for each of the S used.

Here we took a known number (the Great Rabbit’s max-
imum recorded size) and induced a few things from there.
But it is easy to see that we can to the opposite: if we
measure C, S, W for a certain ∆t then we can predict the
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Great Rabbit’s size, how long it would take for them to
starve (if that even happens) and such.

5 Conclusions

Over the course of this work we were able to create a model
for the growth of the Great Rabbit. With the input of
three measurable parameters (W , C and S) and deciding
on a ∆t interval, this model is able to make quantitative
predictions about the size of the Great Rabbit in a certain
area. It can also predict if (and when) will the rabbits
go extinct, given there are no significant changes in their
environment.

It is also important to note the qualitative information
we can extract from the model. We know that there are
two regimes: one in which the Great Rabbit grows by con-
suming the animals in its way (external feeding regime),
and one where its size stays constant or decreases (internal
feeding regime). The Rabbit reaches its maximum size at
the point where the regime changes.

And we think that last piece of information is of par-
ticular importance. If we want to stop the Great Rabbit,
the first thing we need to do is stop it from multiplying.
According to this model, a higher Witch’s number means
an earlier change in regimes: thus, limiting the area the
rabbits can travel (lowering AR), making the rabbits con-
sume more energy (increasing EC) or limiting the amount
of potential prey in areas nearby the Great Rabbit (low-
ering ρE0) could have a significant impact in limiting its
growth. Other measures could be thought out using this
model as a starting point.

This model is not without its limitations, however. First
and foremost, some of its base assumptions (particularly,
the rabbit’s need to eat) have yet to be confirmed ex-
perimentally. Also, it does not account for changes in the
rabbits environment (as would be the rabbits moving from
one ecosystem to another). With more field data it should
be able to improve this model and make it more reliable.
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