
(IS352)
SOFTWARE ENGINEERING I

Lecture 9

Player-Role, Proxy, &

General-Hierarchy Design

Patterns

LECTURE OBJECTIVES:

Discussing the following Design
Patterns:
 Proxy

 General Hierarchy

 Player-Role

2

PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

Context:
— Objects in a hierarchy can have one or more objects above them

(superiors), and one or more objects below them (subordinates).

— Some objects cannot have any subordinates.

Problem:
— How do you represent a hierarchy of objects, in which some

objects cannot have subordinates?

Forces:
— You need a flexible way of representing the hierarchy that

prevents certain objects from having subordinates.

— All the objects have many common properties and operations.

THE GENERAL HIERARCHY PATTERN

3PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE GENERAL HIERARCHY PATTERN

● Solution:
«subordinate»

*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1

4PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE GENERAL HIERARCHY PATTERN

«subordinate»

*«Node»

«SuperiorNode»«NonSuperiorNode»

* supervises

Manager

Employee

TechnicianSecretary

0..1

0..1

5PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE GENERAL HIERARCHY PATTERN

«subordinate»

*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1

* contains

Directory

FileSystemItem

File

0..1

6PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE GENERAL HIERARCHY PATTERN

Anti-pattern:

7PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE GENERAL HIERARCHY PATTERN

Anti-pattern:

RecordingCategory *

subcategory
description

Recording

hasCategory

title

artist

Better:

8PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

Context:

— An object may play different roles in different
contexts of an application.

— An object may need to change roles throughout the
course of the application.

— An object may not need to play one or both roles
simultaneously.

Problem:

— How do you best model players and roles so that a
player can change roles or possess multiple roles?

THE PLAYER-ROLE PATTERN

9PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

Forces:

— It is desirable to improve encapsulation by capturing the
information associated with each separate role in a class.

— Making two classes to describe the same object is not good OO
design.

— If you put the properties of each role in the same class, and if an
object needs to play only one of the roles, then the properties of
the other roles would not make sense in the class, since they
would never be used.

— You want to avoid multiple inheritance.

— You cannot allow an instance to change class.

THE PLAYER-ROLE PATTERN

10PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

Example 1: Class Design of Animals

Context:

– Aquatic and land animals have common and distinct properties.

– Should I create one class for aquatic animal and one class for land animal?

– Or, should I create one class for both aquatic and land animals?

– An animal’s role may need to change.

Issues:

– It is desirable to improve encapsulation by keeping information related to
aquatic properties in one class, and keep out land properties, and vice versa.

– Making two classes to describe a turtle is not good OO design.

– If you put the land and aquatic properties in the same class, and if Harry the
turtle object needs to play only the land role, then the aquatic properties would
not make sense in Harry, since they would never be used.

THE PLAYER-ROLE PATTERN

11PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN

Example of redundant hierarchy

Two or more objects are required if the animal needs to play different

roles, like aquatic and land carnivore, which is not good OO design.

12PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN

 Two or more objects are required if the animal needs to play different roles, like aquatic
carnivore and land carnivore, which is not good OO design.
 An animal inherits properties it may not need: e.g., if it doesn’t need to have habitat
properties.
 Too complex: the class diagram is hard to read, let alone analysing the code. 13PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN

Solution:

14PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN

Example 1:

An animal can be:

Carnivore

Herbivore

Omnivore

An animal can have:

No habitat role

An aquatic habit role

A land habitat role

An aquatic and land habitat roles.
15PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN
Example 2: Class Design of Students

Context:

– Part-time and full-time students have common and distinct properties.

– Should I create one class for part-time student and one class for full-time

student?

– Or, should I create one class for both part-time and full-time students?

– A student’s role may need to change.

Issues:

– It is desirable to improve encapsulation by keeping information related to only
one role in one class.

– Making two classes to represent the same student is not good OO design.

– If you put the properties of each role in the same class, and if an object needs to
play only one of the roles, then the properties of the other roles would not make
sense in the class, since they would never be used.

16PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN
Example 2:

A student can have:
 No attendance role.
 FT or PT, but not both.
 No Level role.
 GS or UG, but not both.

17PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PLAYER-ROLE PATTERN

Antipatterns:
 Merge all the properties and behaviours into a single «Player» class and not

have «Role» classes at all.

 Create roles as subclasses of the «Player» class.

18PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

Context:
— Often, it is time-consuming and complicated to create instances of a class

(heavyweight classes).

— There is a time delay and a complex mechanism involved in creating the object in
memory

Problem:
— How to reduce creating instances of a heavyweight class?

Forces:
— We want all the objects in a domain model to be available for programs to use when

they execute a system’s various responsibilities.

— It is also important for many objects to persist from run to run of the same
program

19PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

• Cache Proxy

• Security Proxy

• Virtual (Model) Proxy

20PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

CACHE PROXY

• A cache proxy improves performance when long‐running tasks return
seldom‐changing results.

• Obtaining data from a remote data server.

- The data seldom changes, but the size of each object is large, and the
network connection is slow.

- Recently requested data can be stored (cached) locally, and subsequent
calls for the same data are returned from the local cache.

• A method calculates and returns prime numbers.

- 1st call computes a large number or primes, and stores them in cache.

- Subsequent calls can be returned without recalculating the prime
numbers.

21PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

SECURITY PROXY

• A protection proxy adds a layer of security to the underlying

subject object.

• For example, the real object may access a database and

retrieve sensitive data.

• The protection proxy could add methods or properties that

allow the client object to provide appropriate authentication

before allowing the data to be returned.

• It could also filter the data according to the rights of the

authenticated user.
22PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN
MODEL PROXY (provides a form of lazy initialisation)

• A model proxy provides a simplified version of a complex object.

• Only when the detail of the object is required is the main object

actually populated, providing a form of lazy initialisation.

• For example, a document may have a large number of high

definition images, each of which is represented by an object

- The PC may not have enough memory to instantiate all of the
objects

- When opening the document, the thumbnail, size and other
easy‐to-retrieve information would be held in a proxy object
for each image.

- Only when an image needs to be displayed on the monitor
would the entire image object be created and displayed on the
monitor. 23PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

● Solution:

«Client» «HeavyWeight»

24PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

«interface»

«ClassIF»

* ******
«Client» «HeavyWeight»«Proxy»

● Solution:

25PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

● Solution:

26PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

«interface»

ListIF
The list elements will

be loaded into local

memory only when

needed.

ListProxy PersistentList

Example:

27PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

THE PROXY PATTERN

Example:
«interface»

Student

PersistentStudentStudentProxy

28PLAYER-ROLE, PROXY, & GENERAL-HIERARCHY DESIGN PATTERNS

