
Discrete Mathematics Cheat Sheet

Set Theory
Definitions
Set Definition: A set is a collection of objects called elements

Visual Representation:

1
2

3

List Notation: {1, 2, 3}

Characteristics
Sets can be finite or infinite.

Finite: A = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Infinite: Z+ = {1, 2, 3, 4, . . . }

Dots represent an implied pattern that continues infinitely

Repeated Elements are only listed once: {a, b, a, c, b, a} = {a, b, c}

Sets are Unordered:
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3
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{3, 2, 1} = {1, 2, 3} = {2, 1, 3}

Common Sets
Natural Numbers: N = {0, 1, 2, 3, . . . }

Positive Integers: Z+ = {1, 2, 3, . . . }

Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Rational Numbers: Q = {. . . , 1
1
, 1
2
, 1
3
, 2
3
, . . . }

Elements and Cardinality
Elements are the things contained in the set.
Let C = {Y ellow,Blue,Red}

Y ellow ∈ C: Yellow is an element of C.

Green ̸∈ C: Green is not an element of C.

Cardinality refers to the number of elements in the set.

|C| = 3: The Cardinality (size) of C is 3.

The Empty Set
∅ = {}: The empty set is a set with no elements.

|∅| = |{}| = 0: The cardinality of the empty set is 0.

{∅} ̸= ∅:

{∅} = {{}}

|{∅}| = 1: The set contains the empty set.

Set Builder Notation
Elements in the list are defined as variables.

X = {expression | rule}

If Desk = {drink, laptop,microphone}

Set Builder Notation defines the set as:
Desk = {x | x is on the desk}

Let E = {2n | n ∈ Z}

Reads as: The set of all things with form 2n such that n is an
element of Z

2n is an expression that defines the form of the elements.

n ∈ Z defines a rule for elements appearing in the set.

| is read ”such that” and separates the expression from the rule.

Examples:

E = {2n | n ∈ Z}: A set containing even integers

Q = {m
n

| m,n ∈ Z, n ̸= 0}: A set containing rational numbers (m
and n are integers and n is not zero)

Ordered Pairs
An Ordered Pair is any list of things enclosed in parentheses: (x, y).

(1, 2) ̸= (2, 1)

Cartesian Products
AKA Cross Product
Given 2 sets, A and B, a Cartesian Product is denoted by A×B.
The Cartesian Product is a set of Ordered Pairs where the first element
comes from A and the second element comes from B.

A×B = {(a, b) | a ∈ A, b ∈ B}
Let X = {0, 1, 2} and Y = {0, 1}

X × Y = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
Y ×X = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

3-tuple: A×B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}
n-tuple:
A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}
∅ ×A = ∅

Cartesian Product Cardinality

The cardinality of a cross product is the product of the cardinalities of
each set.
If |A| = m and |B| = n, then |A×B| = m× n
Let |X| = 3 and |Y | = 2.

|X × Y | = 3× 2 = 6

|∅| × |A| = 0

Subsets
A is a subset of B if every element in A is also in B.

B

A
or

A = B

A ⊆ B: A is a subset of B.

{a, b} ⊆ {a, b, c}
{c, d} ⊆ {c, d}
{a} ̸⊆ {{a}}: The element a is not an element of the second set.

∅ ⊆ {x, y, z}: The empty set is a subset of every set.

Proper Subsets
A is a proper subset of B if every element in A is also in B and A is
smaller than B

B

A

A ⊂ B: A is a proper subset of B.

{a, b} ⊂ {a, b, c}
{c, d} ̸⊂ {c, d}
∅ ⊂ {x, y, z}

Power Sets
A Power Set of a set A is the set containing all possible subsets of A.
Let A = {a, b}

P(A) = {∅, {a}, {b}, {a, b}}
P(∅) = ∅

Power Sets Cardinality

If |A| = n, then|P(A)| = 2n

Let |A| = 2

|P(A)| = 22 = 4

Set Operations

Universes

Every set A exists within some universe U.

U

A

Complement

The complement of a set A is everything outside of A that is in the
Universe.
Ac (or Ā) = {a ∈ U and a ̸∈ A}
Let A = {1} and U = {1, 2, 3}.

Ac = {2, 3}
2 3
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Intersection

The intersection of sets A and B is every element that occurs in both A
and B.
A ∩B = {x | x ∈ A and x ∈ B}
Let A = {1, 2, 3} and B = {3, 4, 5}

A ∩B = {3}
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Union

The union of sets A and B is every element that occurs in either A or B.
A ∪B = {x | x ∈ A or x ∈ B}
Let A = {1, 2, 3} and B = {3, 4, 5}

A ∪B = {1, 2, 3, 4, 5}
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Difference

The difference between two sets, A-B, is every element from A minus any
element that appears in B.
A \B = {x | x ∈ A and x ̸∈ B}
Let A = {1, 2, 3} and B = {3, 4, 5}

A \B = {1, 2}
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Symmetric Difference

The symmetric difference of sets A and B is every element that is
exclusively in A or B (i.e. every element from A or B that is not in
both).
A⊕B = {x | x ∈ A xor x ∈ B}
Let A = {1, 2, 3} and B = {3, 4, 5}

A⊕B = {1, 2, 4, 5}
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Indexed Sets
Indexed Set Notation is used to shorten long strings of intersections and
unions.
n⋂

i=1
Ai = A1 ∩A1 ∩A2 ∩ · · · ∩An

n⋃
i=1

Ai = A1 ∪A1 ∪A2 ∪ · · · ∪An

Well Ordering Principle
An Axiom: Any non-empty subset of the natural numbers (N) has a least
element.
N = {1, 2, 3, ...,∞}
Let A = {1, 4, 9}(NotethatA ⊂ N)

1 is the least element.

B = {i, j, k | i, j, k ∈ N}
i, j, or k will be the least element.

When extended to Z, the axiom does not hold since Z contains −∞.

Logic
Definitions
A statement is a declarative sentence that is either true (1) or false (0).
Examples:

Milk is white.

|∅| = 0

Humans are just fish with legs.

A proposition represents the idea behind a statement.
A single proposition can be expressed by multiple statements.
Example:

The statements ”It is cloudy.” and ”It is not sunny.” both capture
the same proposition.

Notation:

Capital letters (P, Q, R, etc.) are used to represent a specific
proposition.

Lowercase letters (p, q, r, etc.) are used for general proofs and do
not represent a specific proposition.

A well-formed formula (WFF) is an expression involving propositions
and compound propositions that conform to the syntax of propositional
logic.

Example:

The statements ”It is cloudy.” and ”It is not sunny.” both capture
the same proposition.

Connectives and Truth Tables

All connectives take a truth value and output a new truth value.

A truth table shows all possible combinations of truth conditions.

A proposition, P, can either be true (1) or false (0).

P
1
0

Negation (¬)

¬P is read as ”Not P” and negates the truth value of P.

If P is ”It is raining”, then ¬P is ”It is not raining.”

P ¬P
1 0
0 1

Mathematically: ¬P = 1− P

Conjunction (∧)

P ∧Q is read as ”P and Q”.

If P is ”It is raining” and Q is ”It is cloudy”, then P ∧Q is only
true if if is raining and it is cloudy.

P Q P ∧Q
1 1 1
1 0 0
0 1 0
0 0 0

Mathematically: P ∧Q = min(P,Q)

Disjunction (∨)

P ∨Q (or P +Q) is read as ”P or Q”.

If P is ”It is raining” and Q is ”It is cloudy”, then P ∨Q is true if it
is raining or it is cloudy.

P Q P ∨Q
1 1 1
1 0 1
0 1 1
0 0 0

Mathematically: P ∨Q = max(P,Q)



Conditional (⇒)

P ⇒ Q is read as ”If P, then Q”.

If P is ”It is sunny” and Q is ”I’m wearing sunscreen”, then P ⇒ Q
means ”If it is sunny then I’m wearing sunscreen.”

Ask the question: When am I lying about wearing sunscreen?

If it is sunny (P = 1) and I’m not wearing sunscreen (Q = 0), then
I have lied.

P Q P ⇒ Q
1 1 1
1 0 0
0 1 1
0 0 1

Grammatically:

If P, then Q.
Whenever P, then also Q.
For P, it is necessary that Q.
P is a sufficient condition for Q.
Q if/whenever P.

Q, provided that P.

For Q, it is sufficient that P.

Q is a necessary condition for P.

P only if Q.

Note that P ⇒ Q ̸= Q ⇒ P

P Q Q ⇒ P
1 1 1
1 0 1
0 1 0
0 0 1

Mathematically: P ⇒ Q iff P ≤ Q

Biconditional ( ⇐⇒ )

P ⇐⇒ Q is read as ”P if and only if Q”.

If P is ”a is even” and Q is ”a is divisible by 2”, then P ⇐⇒ Q is
true if both P and Q are true or if Q and P are false.

Equivalent to (P ⇒ Q) ∧ (Q ⇒ P )

P Q P ⇐⇒ Q
1 1 1
1 0 0
0 1 0
0 0 1

Mathematically: P ⇐⇒ Q iff P = Q

Sheffer Stroke (↑)
P ↑ Q is read as ”P nand Q”.

Equivalent to ¬(P ∧Q)

P Q P ↑ Q
1 1 0
1 0 1
0 1 1
0 0 1

Logic Laws
Logical equivalences can be used to reduce complex formulas into simpler
ones.

⊤ : A Tautology is always true:
p ∨ ¬p
⊥: A Contradiction is always false:
p ∧ ¬p

⊤ ⊥
1 0
1 0
. .
. .
1 0

Identity Law

The identity of the proposition remains.

p ∧ ⊤ = p
p ∨ ⊥ = p

p ⊤ ⊥ p ∧ ⊤ p ∨ ⊥
1 1 0 1 1
1 1 0 1 1
0 1 0 0 0
0 1 0 0 0

Domination Law

The ⊤ or ⊥ dominates the proposition.

p ∨ ⊤ = ⊤
p ∧ ⊥ = ⊥

P ⊤ ⊥ p ∨ ⊤ p ∧ ⊥
1 1 0 1 0
1 1 0 1 0
0 1 0 1 0
0 1 0 1 0

Double Negation Law

¬¬p = p
p ¬p ¬¬p
1 0 1
1 0 1
0 1 0
0 1 0

DeMorgan’s Law

¬(p ∧ q) = ¬p ∨ ¬q

¬(p ∨ q) = ¬p ∧ ¬q

Distribute the negation (¬) and flip the connective (∧ or ∨)

p q ¬p ¬q (p ∧ q) ¬(p ∧ q) (¬p ∨ ¬q)
1 1 0 0 1 0 0
1 0 0 1 0 1 1
0 1 1 0 0 1 1
0 0 1 1 0 1 1

Distributive Law

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

When the ∧ is outside the parentheses and the ∨ is inside, or vice
versa.

Absorption Law

p ∧ (p ∨ r) = p

p ∨ (p ∧ r) = p

When the connectives are flipped and the p is in both.

Commutative Law

p ∧ q = q ∧ p

p ∨ q = q ∨ p

Associative Law

p ∧ (q ∧ r) = (p ∧ q) ∧ r

p ∨ (q ∨ r) = (p ∨ q) ∨ r

Order can be changed when the connectives are the same (when the
connectives are different, the Distributive law applies)

Inverse Law

p ∧ ¬p = ⊥

p ∨ ¬p−⊤

The inverses result in a contradiction or tautology.

Conditional Law

p ⇒ q = ¬p ∨ q

The inverses result in a contradiction or tautology.

p ¬p q p ⇒ q ¬p ∨ q
1 0 1 1 1
1 0 0 0 0
0 1 1 1 1
0 1 0 1 1



Converse, Inverse, and Contrapositive
There are three terms related to conditionals ().
Converse:

If p ⇒ q, then the converse is q ⇒ p

Reverse the order of the propositions.

Inverse:

If p ⇒ q, then the inverse is ¬p ⇒ ¬q
Negate each proposition.

Contrapositive:

If p ⇒ q, then the inverse is ¬a ⇒ ¬p
Reverse the order and negate each proposition.

Take the contrapositive and the inverse.

Converse, Inverse, and Contrapositive Logical Equivalence

The conditional is logically equivalent to the contrapositive

p ⇒ q ¬q ⇒ ¬p Steps
¬p ∨ q ¬¬q ∨ ¬p Conditional Law

q ∨ ¬p Double Negative
¬p ∨ q Associative Law

¬p ∨ q ¬p ∨ q qed

The converse is logically equivalent to the inverse.

q ⇒ p ¬p ⇒ ¬q Steps
¬q ∨ p ¬¬p ∨ ¬q Conditional Law

p ∨ ¬q Double Negative
¬q∨ Associative Law

¬q ∨ p ¬q ∨ p qed

Rules of Inference
The primary method of proofs in philosophical logic.

Definitions

A set of premises (p1, p2, . . . , pn) prove some conclusion (q) in an
argument:

(p1 ∧ p2 ∧ · · · ∧ pn) ⇒ q

The argument is valid if whenever each premise is true, the conclusion is
also true.
Example:

Let R = ”It is raining.” and W = ”I will get wet.”

Premise 1: If it is raining, I will get wet (R ⇒ W ).

Premise 2: It is raining (R).

Conclusion: I will get wet (W ).

Step Grammatically Logically
Premise 1 If it is raining, I will get wet. R ⇒ W
Premise 2 It is raining. R
Conclusion I will get wet. W

The truth table of a valid argument is a tautology.

R W R ⇒ W ((R ⇒ W ) ∧R) ((R ⇒ W ) ∧R) ⇒ W )
P2 Q P1 P1 ∧ P2 (P1 ∧ P2) ⇒ Q
1 1 1 1 1
1 0 0 0 1
0 1 1 1 1
0 0 1 0 1

Modus Ponens (MPP)

Affirming the antecedent.

p ⇒ q
p
∴ q

Modus Tollens (MTT)

Denying the consequent.

p ⇒ q
¬q
∴ ¬p

Since p ⇒ q is equivalent to ¬q ⇒ ¬p, MTT is equivalent to MPP
on the contrapositive.

¬q ⇒ ¬p
¬q
∴ ¬p

Hypothetical Syllogism (HS)

Transitivity.

p ⇒ q
q ⇒ r
∴ p ⇒ r

Disjuntive Syllogism (DS)

p ∨ q
¬q
∴ p

Addition

Or Induction.

p
∴ p ∨ q

Simplification

And Elimination.

p ∧ q
∴ p
∴ q

Conjunction

And Introduction.

p
q
∴ p ∧ q

Predicate Logic
Predicate logic uses variables and allows forms that are not statements.
The truth value of predicates depends on the value of variable terms.
G(x, y) x is greater than y.

G(x, y) is an open statement since it does not have a truth value.

G(2, 1) is a closed statement and is true since 2 is greater than 1.

G(3, 6 is a closed statement and is false.

Quantifiers
∀x: Universal Quantifier

For all x, x is P.

∀xP (x) = (P (1) ∧ P (2) ∧ · · · ∧ P (n))

∃x: Existential Quantifier

There exists some x such that x is P.

∃xP (x) = (P (1) ∨ P (2) ∨ · · · ∨ P (n))

Sentences

For every real number n, there exists a real number m such that
m2 = n.

∀x ∈ R ∃m ∈ R | m2 = n

Given two rationals x and y,
√
xy will be rational.

∀x ∈ Q ∀y ∈ Q
√
xy ∈ Q

Negating Quantifiers

∀xP (x) = ¬∃x¬[P (x)]

∃xP (x) = ¬∀x¬[P (x)]

¬∀xP (x) = ∃x¬[p(x)]
¬∃xP (x) = ∀x¬[P (x)]

Equivalence trick:

¬∀xP (X)

−∀x + P (x)

+∃x − P (x)

∃x¬P (X)

Counting
To do

Proofs
To do



Relations and Functions

To do

Number Theory
To do
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