# Set Theory

# Definitions

Set Definition: A set is a collection of objects called elements

Visual Representation: 
$$\begin{pmatrix} 1\\2\\ \end{pmatrix}$$

List Notation:  $\{1, 2, 3\}$ 

# Characteristics

Sets can be finite or infinite.

Finite:  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Infinite:  $\mathbb{Z}^+ = \{1, 2, 3, 4, \dots\}$ 

Dots represent an implied pattern that continues infinitely

# **Repeated Elements** are only listed once: $\{a, b, a, c, b, a\} = \{a, b, c\}$

Sets are **Unordered**:  $\begin{pmatrix} 1 & 3 \\ 2 & \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}$ 

 $\{3,2,1\}=\{1,2,3\}=\{2,1,3\}$ 

# **Common Sets**

Natural Numbers:  $\mathbb{N} = \{0, 1, 2, 3, ...\}$ Positive Integers:  $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ Integers:  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Rational Numbers:  $\mathbb{Q} = \{..., \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, ...\}$ 

# **Elements and Cardinality**

**Elements** are the things contained in the set. Let  $C = \{Yellow, Blue, Red\}$ 

 $Yellow \in C$ : **Yellow** is an element of C.

Green  $\notin C$ : Green is not an element of C.

Cardinality refers to the number of elements in the set.

|C| = 3: The **Cardinality** (size) of C is 3.

# The Empty Set

 $\emptyset = \{\}:$  The empty set is a set with no elements.

 $|\emptyset|=|\{\}|=0:$  The cardinality of the empty set is 0.

 $\{\emptyset\} \neq \emptyset$ :

 $\{\emptyset\} = \{\{\}\}$ 

 $|\{\emptyset\}|=1$ : The set contains the empty set.

# Set Builder Notation

Elements in the list are defined as variables.

 $X = \{expression \mid rule\}$ 

If  $Desk = \{drink, laptop, microphone\}$ 

Set Builder Notation defines the set as:

 $Desk = \{x \mid x \text{ is on the } desk\}$ 

Let  $E = \{2n \mid n \in \mathbb{Z}\}$ 

Reads as: The set of all things with form 2n such that n is an element of  $\mathbb Z$ 

2n is an expression that defines the **form** of the elements.

 $n \in \mathbb{Z}$  defines a rule for elements appearing in the set.

| is read "such that" and separates the expression from the rule.

Examples:

 $E = \{2n \mid n \in \mathbb{Z}\}$ : A set containing even integers

 $\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$ : A set containing rational numbers (m and n are integers and n is not zero)

# **Ordered Pairs**

An **Ordered Pair** is any *list* of things enclosed in parentheses: (x, y).  $(1, 2) \neq (2, 1)$ 

# **Cartesian Products**

#### AKA Cross Product

Given 2 sets, A and B, a Cartesian Product is denoted by  $A \times B$ . The Cartesian Product is a *set* of Ordered Pairs where the first element comes from A and the second element comes from B.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Let 
$$X = \{0, 1, 2\}$$
 and  $Y = \{0, 1\}$   
 $X \times Y = \{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)\}$   
 $Y \times X = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$   
**3-tuple:**  $A \times B \times C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}$   
**n-tuple:**

## **Cartesian Product Cardinality**

The cardinality of a cross product is the product of the cardinalities of each set.

 $\begin{array}{l} \text{If} \ |A|=m \ \text{and} \ |B|=n, \ \text{then} \ |A\times B|=m\times n \\ \text{Let} \ |X|=3 \ \text{and} \ |Y|=2. \\ |X\times Y|=3\times 2=6 \\ |\emptyset|\times |A|=0 \end{array}$ 

# Subsets

A is a subset of B if every element in A is also in B.

$$\begin{pmatrix} B \\ A \end{pmatrix}_{\text{or}} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} B \\ B \end{pmatrix}$$

$$A \subseteq B$$
: A is a subset of B.

 $\{a,b\}\subseteq\{a,b,c\}$ 

$$\{c,d\} \subseteq \{c,d\}$$

 $\{a\} \not\subseteq \{\{a\}\}$ : The element a is not an element of the second set.  $\emptyset \subseteq \{x, y, z\}$ : The empty set is a subset of every set.

## **Proper Subsets**

A is a  $\mathbf{proper}$  subset of B if every element in A is also in B and A is smaller than B

 $A \subset B$ : A is a *proper* subset of B.

# Power Sets

A Power Set of a set A is the set containing all possible subsets of A. Let  $A = \{a, b\}$ 

$$\mathbb{P}(A) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}$$

$$\mathbb{P}(\emptyset) = \emptyset$$

### Power Sets Cardinality

If |A| = n, then  $|\mathbb{P}(A)| = 2^n$ Let |A| = 2 $|\mathbb{P}(A)| = 2^2 = 4$ 

# Set Operations

### Universes

Every set A exists within some universe U.



## Complement

The complement of a set A is everything outside of A that is in the Universe.

 $\begin{array}{l} A^c \ (\text{or } \bar{A}) = \{ a \in U \ and \ a \not\in A \} \\ \text{Let } A = \{ 1 \} \ \text{and} \ U = \{ 1, 2, 3 \}. \\ A^c = \{ 2, 3 \} \end{array}$ 



# Intersection

The intersection of sets A and B is every element that occurs in both A and B.

 $\begin{array}{l} A \cap B = \{x \mid x \in A \mbox{ and } x \in B\} \\ \mbox{Let } A = \{1,2,3\} \mbox{ and } B = \{3,4,5\} \\ A \cap B = \{3\} \end{array}$ 

$$\begin{pmatrix} 1\\ 2\\ 3\\ 5 \end{pmatrix}$$

# Union

The union of sets A and B is every element that occurs in either A or B.  $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ Let  $A = \{1, 2, 3\}$  and  $B = \{3, 4, 5\}$ 



# Difference

The difference between two sets, A-B, is every element from A **minus** any element that appears in B.

 $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$ Let  $A = \{1, 2, 3\}$  and  $B = \{3, 4, 5\}$  $A \setminus B = \{1, 2\}$ 



## Symmetric Difference

The symmetric difference of sets A and B is every element that is **exclusively** in A **or** B (i.e. every element from A or B that is not in both).

 $A \oplus B = \{x \mid x \in A \text{ xor } x \in B\}$ Let  $A = \{1, 2, 3\}$  and  $B = \{3, 4, 5\}$ 



### Indexed Sets

Indexed Set Notation is used to shorten long strings of intersections and unions.

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_1 \cap A_2 \cap \dots \cap A_n$$
$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_1 \cup A_2 \cup \dots \cup A_n$$

# Well Ordering Principle

An Axiom: Any non-empty subset of the natural numbers ( $\mathbb{N}$ ) has a *least* element.  $\mathbb{N} = \{1, 2, 3, ..., \infty\}$ 

Let  $A = \{1, 4, 9\}$  (Note that  $A \subset \mathbb{N}$ ) 1 is the least element.

 $B = \{i, j, k \mid i, j, k \in \mathbb{N}\}$ 

i, j, or k will be the least element.

When extended to  $\mathbb{Z}$ , the axiom does not hold since  $\mathbb{Z}$  contains  $-\infty$ .

# Logic

# Definitions

A statement is a declarative sentence that is either true (1) or false (0). Examples:

Milk is white.

 $|\emptyset| = 0$ 

Humans are just fish with legs.

A **proposition** represents the idea behind a statement.

A single proposition can be expressed by multiple statements. Example:

The statements "It is cloudy." and "It is not sunny." both capture the same proposition.

#### Notation:

Capital letters (P, Q, R, etc.) are used to represent a specific proposition.

Lowercase letters (p, q, r, etc.) are used for general proofs and do not represent a specific proposition.

A well-formed formula (WFF) is an expression involving propositions and compound propositions that conform to the syntax of propositional logic.

Example:

The statements "It is cloudy." and "It is not sunny." both capture the same proposition.

# **Connectives and Truth Tables**

All **connectives** take a truth value and output a new truth value. A **truth table** shows all possible combinations of truth conditions.

A proposition, P, can either be true (1) or false (0).

Negation  $(\neg)$ 

1

 $\neg P$  is read as "Not P" and negates the truth value of P.

If P is "It is raining", then  $\neg P$  is "It is not raining."

$$\begin{array}{c|c} P & \neg P \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

Mathematically:  $\neg P = 1 - P$ 

# Conjunction $(\land)$

 $P \wedge Q$  is read as "P and Q".

If P is "It is raining" and Q is "It is cloudy", then  $P \wedge Q$  is only true if if is raining and it is cloudy.

| P | Q | $P \wedge Q$ |
|---|---|--------------|
| 1 | 1 | 1            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 0 | 0 | 0            |

Mathematically:  $P \wedge Q = min(P, Q)$ 

# Disjunction $(\vee)$

 $P \lor Q$  (or P + Q) is read as "P or Q".

If P is "It is raining" and Q is "It is cloudy", then  $P \vee Q$  is true if it is raining or it is cloudy.

| P | Q | $P \lor Q$ |
|---|---|------------|
| 1 | 1 | 1          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 0 | 0 | 0          |

# Mathematically: $P \lor Q = max(P,Q)$

## Conditional $(\Rightarrow)$

 $P \Rightarrow Q$  is read as "If P, then Q".

If P is "It is sunny" and Q is "I'm wearing sunscreen", then  $P \Rightarrow Q$ means "If it is sunny then I'm wearing sunscreen."

Ask the question: When am I lying about wearing sunscreen?

If it is sunny (P = 1) and I'm not wearing sunscreen (Q = 0), then I have lied.

| P | Q | $P \Rightarrow Q$ |
|---|---|-------------------|
| 1 | 1 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 0 | 0 | 1                 |

# Grammatically:

If P, then Q. Whenever P, then also Q. For P, it is necessary that Q. P is a sufficient condition for Q. Q if/whenever P.

Q, provided that P. For Q, it is sufficient that P. Q is a necessary condition for P. P only if Q.

Note that 
$$P \Rightarrow Q \neq Q \Rightarrow P$$

$$\begin{array}{|c|c|c|} P & Q & Q \Rightarrow P \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}$$

Mathematically:  $P \Rightarrow Q ~iff ~P \leq Q$ 

#### Biconditional ( $\iff$ )

 $P \iff Q$  is read as "P if and only if Q".

If P is "a is even" and Q is "a is divisible by 2", then  $P \iff Q$  is true if both P and Q are true or if Q and P are false. Equivalent to  $(P \Rightarrow Q) \land (Q \Rightarrow P)$ 

| P | Q | $P \iff Q$ |
|---|---|------------|
| 1 | 1 | 1          |
| 1 | 0 | 0          |
| 0 | 1 | 0          |
| 0 | 0 | 1          |

Mathematically: 
$$P \iff Q \ iff \ P = Q$$

## Sheffer Stroke $(\uparrow)$

 $P\uparrow Q$  is read as "P n and Q".

Equivalent to  $\neg (P \land Q)$ 

#### Logic Laws

Logical equivalences can be used to reduce complex formulas into simpler Inverse Law ones.

> 1 0

1

· .

0

 $\top$  : A **Tautology** is always true:

 $p \vee \neg p$ 

 $\perp$ : A **Contradiction** is always false:  $p \wedge \neg p$ 

#### **Identity Law**

The identity of the proposition remains.

| $p \wedge \top = p$ | p | Τ |   | $p \wedge \top$ | $p \lor \bot$ |
|---------------------|---|---|---|-----------------|---------------|
| $p \lor \bot = p$   | 1 | 1 | 0 | 1               | 1             |
|                     | 1 | 1 | 0 | 1               | 1             |
|                     | 0 | 1 | 0 | 0               | 0             |
|                     | 0 | 1 | 0 | 0               | 0             |

#### **Domination Law**

The  $\top$  or  $\perp$  dominates the proposition.

| $p \vee \top = \top$  | P | T | ⊥ | $p \vee \top$ | $p \land \bot$ |
|-----------------------|---|---|---|---------------|----------------|
| $p \land \bot = \bot$ | 1 | 1 | 0 | 1             | 0              |
|                       | 1 | 1 | 0 | 1             | 0              |
|                       | 0 | 1 | 0 | 1             | 0              |
|                       | 0 | 1 | 0 | 1             | 0              |

## **Double Negation Law**

| $\neg \neg p$ | = | p |
|---------------|---|---|
|               |   |   |

| p | $\neg p$ | $\neg \neg p$ |
|---|----------|---------------|
| 1 | 0        | 1             |
| 1 | 0        | 1             |
| 0 | 1        | 0             |
| 0 | 1        | 0             |

**DeMorgan's Law** 

$$\neg (p \land q) = \neg p \lor \neg q$$

$$\neg (p \lor q) = \neg p \land \neg q$$

Distribute the negation  $(\neg)$  and flip the connective  $(\land \text{ or } \lor)$ 

| p | q | $\neg p$ | $\neg q$ | $(p \land q)$ | $\neg (p \land q)$ | $(\neg p \lor \neg q)$ |
|---|---|----------|----------|---------------|--------------------|------------------------|
| 1 | 1 | 0        | 0        | 1             | 0                  | 0                      |
| 1 | 0 | 0        | 1        | 0             | 1                  | 1                      |
| 0 | 1 | 1        | 0        | 0             | 1                  | 1                      |
| 0 | 0 | 1        | 1        | 0             | 1                  | 1                      |

# **Distributive Law**

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

When the  $\wedge$  is outside the parentheses and the  $\vee$  is inside, or vice versa.

#### Absorption Law

$$p \land (p \lor r) = p$$
$$p \lor (p \land r) = p$$

When the connectives are flipped and the p is in both.

#### Commutative Law

$$p \wedge q = q \wedge p$$
$$p \vee q = q \vee p$$

#### Associative Law

$$p \land (q \land r) = (p \land q) \land r$$
$$p \lor (q \lor r) = (p \lor q) \lor r$$

Order can be changed when the connectives are the same (when the connectives are different, the Distributive law applies)

$$p \wedge \neg p = \bot$$

 $p \vee \neg p - \top$ 

The inverses result in a contradiction or tautology.

#### **Conditional Law**

 $p \Rightarrow q = \neg p \lor q$ 

The inverses result in a contradiction or tautology.

| p | $\neg p$ | q | $p \Rightarrow q$ | $\neg p \lor q$ |
|---|----------|---|-------------------|-----------------|
| 1 | 0        | 1 | 1                 | 1               |
| 1 | 0        | 0 | 0                 | 0               |
| 0 | 1        | 1 | 1                 | 1               |
| 0 | 1        | 0 | 1                 | 1               |

#### Converse, Inverse, and Contrapositive

There are three terms related to conditionals (). Converse:

If  $p \Rightarrow q$ , then the converse is  $q \Rightarrow p$ 

Reverse the order of the propositions.

### Inverse:

If  $p \Rightarrow q$ , then the inverse is  $\neg p \Rightarrow \neg q$ 

Negate each proposition.

Contrapositive:

If  $p \Rightarrow q$ , then the inverse is  $\neg a \Rightarrow \neg p$ Reverse the order and negate each proposition. Take the contrapositive and the inverse.

Take the contrapositive and the inverse.

# Converse, Inverse, and Contrapositive Logical Equivalence

The conditional is logically equivalent to the contrapositive

| $p \Rightarrow q$ | $\neg q \Rightarrow \neg p$ | Steps           |
|-------------------|-----------------------------|-----------------|
| $\neg p \lor q$   | $\neg \neg q \vee \neg p$   | Conditional Law |
|                   | $q \lor \neg p$             | Double Negative |
|                   | $\neg p \lor q$             | Associative Law |
| $\neg p \lor q$   | $\neg p \lor q$             | qed             |

The converse is logically equivalent to the inverse.

| $q \Rightarrow p$ | $\neg p \Rightarrow \neg q$ | Steps               |
|-------------------|-----------------------------|---------------------|
| $\neg q \vee p$   | $\neg \neg p \vee \neg q$   | $Conditional \ Law$ |
|                   | $p \lor \neg q$             | Double Negative     |
|                   | $\neg q \lor$               | Associative Law     |
| $\neg q \vee p$   | $\neg q \lor p$             | qed                 |

# **Rules of Inference**

The primary method of proofs in philosophical logic.

### Definitions

A set of **premises**  $(p_1, p_2, \ldots, p_n)$  prove some **conclusion** (q) in an **argument**:

 $(p_1 \wedge p_2 \wedge \dots \wedge p_n) \Rightarrow q$ 

The argument is **valid** if whenever each premise is true, the conclusion is also true.

Example:

Let R ="It is raining." and W ="I will get wet."

Premise 1: If it is raining, I will get wet  $(R \Rightarrow W)$ .

Premise 2: It is raining (R).

Conclusion: I will get wet (W).

| Step          | Grammatically                     | Logically         |
|---------------|-----------------------------------|-------------------|
| Premise 1     | If it is raining, I will get wet. | $R \Rightarrow W$ |
| $Premise \ 2$ | It is raining.                    | R                 |
| Conclusion    | I will get wet.                   | W                 |

The truth table of a valid argument is a tautology.

| R     | W | $R \Rightarrow W$ | $((R \Rightarrow W) \land R)$ | $((R \Rightarrow W) \land R) \Rightarrow W)$ |
|-------|---|-------------------|-------------------------------|----------------------------------------------|
| $P_2$ | Q | $P_1$             | $P_1 \wedge P_2$              | $(P_1 \land P_2) \Rightarrow Q$              |
| 1     | 1 | 1                 | 1                             | 1                                            |
| 1     | 0 | 0                 | 0                             | 1                                            |
| 0     | 1 | 1                 | 1                             | 1                                            |
| 0     | 0 | 1                 | 0                             | 1                                            |

#### Modus Ponens (MPP)

Affirming the antecedent.

$$\begin{array}{c} p \Rightarrow q \\ p \\ \hline \therefore q \end{array}$$

# Modus Tollens (MTT)

Denying the consequent.



Since  $p \Rightarrow q$  is equivalent to  $\neg q \Rightarrow \neg p$ , MTT is equivalent to MPP on the contrapositive.

### Hypothetical Syllogism (HS)

Transitivity.



# Disjuntive Syllogism (DS)

$$\begin{array}{c} p \lor q \\ \neg q \\ \hline \therefore p \end{array}$$

p $\cdot n \lor a$ 

Addition Or Induction.

# Simplification

And Elimination.

Conjunction And Introduction.

| $p \wedge q$   |
|----------------|
| $\therefore p$ |
| $\therefore q$ |
|                |

 $p \\ q$ 

# **Predicate Logic**

Predicate logic uses variables and allows forms that are not statements. The truth value of predicates depends on the value of variable **terms**. G(x, y) x is greater than y.

G(x, y) is an **open statement** since it does not have a truth value.

G(2,1) is a closed statement and is true since 2 is greater than 1.

G(3, 6 is a closed statement and is false.

#### Quantifiers

 $\forall_x :$  Universal Quantifier

For all x, x is P.

$$\forall_x P(x) = (P(1) \land P(2) \land \dots \land P(n))$$

 $\exists_x$ : Existential Quantifier

There exists some 
$$x$$
 such that  $x$  is  $P$ .

 $\exists_x P(x) = (P(1) \lor P(2) \lor \cdots \lor P(n))$ 

#### Sentences

For every real number n, there exists a real number m such that  $m^2 = n.$ 

$$\forall_x \in \mathbb{R} \ \exists_m \in \mathbb{R} \mid m^2 = n$$

Given two rationals x and y,  $\sqrt{xy}$  will be rational.

 $\forall_x \in \mathbb{Q} \quad \forall_y \in Q \quad \sqrt{xy} \in \mathbb{Q}$ 

#### **Negating Quantifiers**

 $\forall_x P(x) = \neg \exists_x \neg [P(x)]$  $\exists_x P(x) = \neg \forall_x \neg [P(x)]$  $\neg \forall_x P(x) = \exists_x \neg [p(x)]$  $\neg \exists_x P(x) = \forall_x \neg [P(x)]$ 

### Equivalence trick:

 $\neg \forall_x P(X)$  $-\forall_x + P(x)$  $+\exists_x - P(x)$  $\exists_x \neg P(X)$ 

To do

To do

# Counting

 $\begin{array}{c} \neg q \Rightarrow \neg p \\ \neg q \end{array}$ 

Proofs