Discrete Mathematics Cheat Sheet

Set Theory

Definitions

Set Definition: A set is a collection of objects called elements

List Notation: $\{1,2,3\}$
Characteristics
Sets can be finite or infinite.
Finite: $A=\{1,2,3,4,5,6,7,8,9\}$
Infinite: $\mathbb{Z}^{+}=\{1,2,3,4, \ldots\}$
Dots represent an implied pattern that continues infinitely
Repeated Elements are only listed once: $\{a, b, a, c, b, a\}=\{a, b, c\}$

Sets are Unordered:

$\{3,2,1\}=\{1,2,3\}=\{2,1,3\}$

Common Sets

Natural Numbers: $\mathbb{N}=\{0,1,2,3, \ldots\}$
Positive Integers: $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
Integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Rational Numbers: $\mathbb{Q}=\left\{\ldots, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \ldots\right\}$

Elements and Cardinality

Elements are the things contained in the set.
Let $C=\{$ Yellow, Blue, Red $\}$
Yellow $\in C$: Yellow is an element of C.
Green $\notin C$: Green is not an element of C.
Cardinality refers to the number of elements in the set.
$|C|=3$: The Cardinality (size) of C is 3 .
The Empty Set
$\emptyset=\{ \}$: The empty set is a set with no elements.
$|\emptyset|=|\{ \}|=0$: The cardinality of the empty set is 0 .
$\{\emptyset\} \neq \emptyset:$
$\{\emptyset\}=\{\{ \}\}$
$|\{\emptyset\}|=1$: The set contains the empty set.

Set Builder Notation

Elements in the list are defined as variables.
$X=\{$ expression \mid rule $\}$
If Desk $=\{$ drink, laptop, microphone $\}$
Set Builder Notation defines the set as:
Desk $=\{x \mid x$ is on the desk $\}$
Let $E=\{2 n \mid n \in \mathbb{Z}\}$
Reads as: The set of all things with form $2 n$ such that n is an element of \mathbb{Z}
$2 n$ is an expression that defines the form of the elements.
$n \in \mathbb{Z}$ defines a rule for elements appearing in the set.
| is read "such that" and separates the expression from the rule.
Examples:
$E=\{2 n \mid n \in \mathbb{Z}\}:$ A set containing even integers
$\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, n \neq 0\right\}:$ A set containing rational numbers (m and n are integers and n is not zero)

Ordered Pairs

An Ordered Pair is any list of things enclosed in parentheses: (x, y).
$(1,2) \neq(2,1)$

Cartesian Products

AKA Cross Product
Given 2 sets, A and B , a Cartesian Product is denoted by $A \times B$.
The Cartesian Product is a set of Ordered Pairs where the first element comes from A and the second element comes from B.

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

Let $X=\{0,1,2\}$ and $Y=\{0,1\}$

$$
X \times Y=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}
$$

$$
Y \times X=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}
$$

3-tuple: $A \times B \times C=\{(a, b, c) \mid a \in A, b \in B, c \in C\}$ n-tuple:
$A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}$ $\emptyset \times A=\emptyset$

Cartesian Product Cardinality

The cardinality of a cross product is the product of the cardinalities of each set.
If $|A|=m$ and $|B|=n$, then $|A \times B|=m \times n$
Let $|X|=3$ and $|Y|=2$.
$|X \times Y|=3 \times 2=6$
$|\emptyset| \times|A|=0$

Subsets

A is a subset of B if every element in A is also in B .

$A \subseteq B: \mathrm{A}$ is a subset of B .
$\{a, b\} \subseteq\{a, b, c\}$
$\{c, d\} \subseteq\{c, d\}$
$\{a\} \nsubseteq\{\{a\}\}$: The element a is not an element of the second set. $\emptyset \subseteq\{x, y, z\}$: The empty set is a subset of every set.

Proper Subsets

A is a proper subset of B if every element in A is also in B and A is smaller than B

$A \subset B: \mathrm{A}$ is a proper subset of B .

$$
\begin{aligned}
& \{a, b\} \subset\{a, b, c\} \\
& \{c, d\} \not \subset\{c, d\} \\
& \emptyset \subset\{x, y, z\}
\end{aligned}
$$

Power Sets

A Power Set of a set A is the set containing all possible subsets of A.
Let $A=\{a, b\}$

$$
\mathbb{P}(A)=\{\emptyset,\{a\},\{b\},\{a, b\}\}
$$

$\mathbb{P}(\emptyset)=\emptyset$
Power Sets Cardinality
If $|A|=n$, then $|\mathbb{P}(A)|=2^{n}$
Let $|A|=2$

$$
|\mathbb{P}(A)|=2^{2}=4
$$

Set Operations

Universes

Every set A exists within some universe U.

Complement

The complement of a set A is everything outside of A that is in the Universe.
$A^{c}($ or $\bar{A})=\{a \in U$ and $a \notin A\}$
Let $A=\{1\}$ and $U=\{1,2,3\}$.

Intersection

The intersection of sets A and B is every element that occurs in both A and B.
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$
$A \cap B=\{3\}$

Union

The union of sets A and B is every element that occurs in either A or B. $A \cup B=\{x \mid x \in A$ or $x \in B\}$
Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$

$$
A \cup B=\{1,2,3,4,5\}
$$

Difference

The difference between two sets, A-B, is every element from A minus any element that appears in B.
$A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$
$A \backslash B=\{1,2\}$

Symmetric Difference

The symmetric difference of sets A and B is every element that is exclusively in A or B (i.e. every element from A or B that is not in both).
$A \oplus B=\{x \mid x \in A$ xor $x \in B\}$
Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$

$$
A \oplus B=\{1,2,4,5\}
$$

Indexed Sets

Indexed Set Notation is used to shorten long strings of intersections and unions.
$\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n}$
$\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{1} \cup A_{2} \cup \cdots \cup A_{n}$

Well Ordering Principle

An Axiom: Any non-empty subset of the natural numbers (\mathbb{N}) has a least element.
$\mathbb{N}=\{1,2,3, \ldots, \infty\}$
Let $A=\{1,4,9\}($ Notethat $A \subset \mathbb{N})$
1 is the least element.
$B=\{i, j, k \mid i, j, k \in \mathbb{N}\}$
i, j, or k will be the least element.
When extended to \mathbb{Z}, the axiom does not hold since \mathbb{Z} contains $-\infty$.

Logic

Definitions

A statement is a declarative sentence that is either true (1) or false (0). Examples:

Milk is white.
$|\emptyset|=0$
Humans are just fish with legs.
A proposition represents the idea behind a statement.
A single proposition can be expressed by multiple statements.
Example:
The statements "It is cloudy." and "It is not sunny." both capture the same proposition.

Notation:

Capital letters (P, Q, R, etc.) are used to represent a specific proposition.

Lowercase letters (p, q, r, etc.) are used for general proofs and do not represent a specific proposition.

A well-formed formula (WFF) is an expression involving propositions and compound propositions that conform to the syntax of propositional logic.

Example:
The statements "It is cloudy." and "It is not sunny." both capture the same proposition.

Connectives and Truth Tables

All connectives take a truth value and output a new truth value.
A truth table shows all possible combinations of truth conditions.
A proposition, P , can either be true (1) or false (0).

Negation (\neg)

$\neg \mathrm{P}$ is read as "Not P " and negates the truth value of P .
If P is "It is raining", then $\neg \mathrm{P}$ is "It is not raining."

P	$\neg P$
1	0
0	1

Mathematically: $\neg P=1-P$

Conjunction (\wedge)

$P \wedge Q$ is read as " P and Q ".
If P is "It is raining" and Q is "It is cloudy", then $P \wedge Q$ is only true if if is raining and it is cloudy.

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Mathematically: $P \wedge Q=\min (P, Q)$

Disjunction (\vee)

$P \vee Q($ or $P+Q)$ is read as $" \mathrm{P}$ or Q ".
If P is "It is raining" and Q is "It is cloudy", then $P \vee Q$ is true if it is raining or it is cloudy.

P	Q	$P \vee Q$
1	1	1
1	0	1
0	1	1
0	0	0

Mathematically: $P \vee Q=\max (P, Q)$

Conditional (\Rightarrow)
$P \Rightarrow Q$ is read as "If P , then Q ".
If P is "It is sunny" and Q is "I'm wearing sunscreen", then $P \Rightarrow Q$ means "If it is sunny then I'm wearing sunscreen."

Ask the question: When am I lying about wearing sunscreen?
If it is sunny $(P=1)$ and I'm not wearing sunscreen $(Q=0)$, then I have lied.

Domination Law

The T or \perp dominates the proposition.

$$
\begin{aligned}
& p \vee \top=\top \\
& p \wedge \perp=\perp
\end{aligned}
$$

P	\top	\perp	$p \vee \top$	$p \wedge \perp$
1	1	0	1	0
1	1	0	1	0
0	1	0	1	0
0	1	0	1	0

Double Negation Law

$\neg \neg p=p$

DeMorgan's Law

$$
\begin{aligned}
& \neg(p \wedge q)=\neg p \vee \neg q \\
& \neg(p \vee q)=\neg p \wedge \neg q
\end{aligned}
$$

Distribute the negation (\neg) and flip the connective (\wedge or \vee)

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$\neg(p \wedge q)$	$(\neg p \vee \neg q)$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Distributive Law

$$
\begin{aligned}
& p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r) \\
& p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

When the \wedge is outside the parentheses and the \vee is inside, or vice versa.

Absorption Law

$p \wedge(p \vee r)=p$
$p \vee(p \wedge r)=p$
When the connectives are flipped and the p is in both.

Commutative Law

$p \wedge q=q \wedge p$
$p \vee q=q \vee p$

Associative Law

$$
\begin{aligned}
& p \wedge(q \wedge r)=(p \wedge q) \wedge r \\
& p \vee(q \vee r)=(p \vee q) \vee r
\end{aligned}
$$

Order can be changed when the connectives are the same (when the connectives are different, the Distributive law applies)

Logic Laws

Logical equivalences can be used to reduce complex formulas into simpler Inverse Law
ones.
\top : A Tautology is always true $p \vee \neg p$
\perp : A Contradiction is always false: $p \wedge \neg p$

\top	\perp
1	0
1	0
.	.
.	.
1	0

Identity Law

The identity of the proposition remains.

$$
\begin{aligned}
& p \wedge \top=p \\
& p \vee \perp=p
\end{aligned}
$$

p	\top	\perp	$p \wedge \top$	$p \vee \perp$
1	1	0	1	1
1	1	0	1	1
0	1	0	0	0
0	1	0	0	0

$p \wedge \neg p=\perp$
$p \vee \neg p-\top$
The inverses result in a contradiction or tautology.

Conditional Law

$p \Rightarrow q=\neg p \vee q$
The inverses result in a contradiction or tautology.

p	$\neg p$	q	$p \Rightarrow q$	$\neg p \vee q$
1	0	1	1	1
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1

Converse, Inverse, and Contrapositive

There are three terms related to conditionals ().
Converse:
If $p \Rightarrow q$, then the converse is $q \Rightarrow p$
Reverse the order of the propositions.

Inverse:

If $p \Rightarrow q$, then the inverse is $\neg p \Rightarrow \neg q$
Negate each proposition.
Contrapositive:
If $p \Rightarrow q$, then the inverse is $\neg a \Rightarrow \neg p$
Reverse the order and negate each proposition.
Take the contrapositive and the inverse.
Converse, Inverse, and Contrapositive Logical Equivalence
The conditional is logically equivalent to the contrapositive

$p \Rightarrow q$	$\neg q \Rightarrow \neg p$	Steps
$\neg p \vee q$	$\neg \neg q \vee \neg p$	Conditional Law
	$q \vee \neg p$	Double Negative
	$\neg p \vee q$	Associative Law
$\neg p \vee q$	$\neg p \vee q$	qed

The converse is logically equivalent to the inverse.

$q \Rightarrow p$	$\neg p \Rightarrow \neg q$	Steps
$\neg q \vee p$	$\neg \neg p \vee \neg q$	Conditional Law
	$p \vee \neg q$	Double Negative
	$\neg q \vee$	Associative Law
$\neg q \vee p$	$\neg q \vee p$	qed

Rules of Inference

The primary method of proofs in philosophical logic.

Definitions

A set of premises $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ prove some conclusion (q) in an argument:

$$
\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \Rightarrow q
$$

The argument is valid if whenever each premise is true, the conclusion is also true.
Example:
Let $\mathrm{R}=$ "It is raining." and $\mathrm{W}=$ "I will get wet."
Premise 1: If it is raining, I will get wet $(R \Rightarrow W)$.
Premise 2: It is raining (R).
Conclusion: I will get wet (W).

Step	Grammatically	Logically
Premise 1	If it is raining, I will get wet.	$R \Rightarrow W$
Premise 2	It is raining.	R
Conclusion	I will get wet.	W

The truth table of a valid argument is a tautology.

R	W	$R \Rightarrow W$	$((R \Rightarrow W) \wedge R)$	$((R \Rightarrow W) \wedge R) \Rightarrow W)$
P_{2}	Q	P_{1}	$P_{1} \wedge P_{2}$	$\left(P_{1} \wedge P_{2}\right) \Rightarrow Q$
1	1	1	1	1
1	0	0	0	1
0	1	1	1	1
0	0	1	0	1

Modus Ponens (MPP)
Affirming the antecedent.

$$
\left|\begin{array}{l}
p \Rightarrow q \\
p
\end{array}\right|
$$

Modus Tollens (MTT)

Denying the consequent.

$$
\left\lvert\, \begin{aligned}
& p \Rightarrow q \\
& \neg q \\
& \hline \therefore \neg p
\end{aligned}\right.
$$

Since $p \Rightarrow q$ is equivalent to $\neg q \Rightarrow \neg p$, MTT is equivalent to MPP on the contrapositive.

$$
\begin{aligned}
& \neg q \Rightarrow \neg p \mid \\
& \neg q \\
& \hline \therefore \neg p
\end{aligned}
$$

Hypothetical Syllogism (HS)

Transitivity.

$$
\left\lvert\, \begin{aligned}
& p \Rightarrow q \\
& q \Rightarrow r \\
& \hline \therefore p \Rightarrow r
\end{aligned}\right.
$$

Disjuntive Syllogism (DS)

$$
\left\lvert\, \begin{aligned}
& p \vee q \\
& \neg q \\
& \hline \therefore p
\end{aligned}\right.
$$

Addition

Or Induction.

$$
\left\lvert\, \begin{aligned}
& p \\
& \hline \therefore p \vee q
\end{aligned}\right.
$$

Simplification

And Elimination.

$$
\left\lvert\, \begin{array}{l|}
p \wedge q \\
\hline \therefore p \\
\therefore q
\end{array}\right.
$$

Conjunction

And Introduction.

$$
\left\lvert\, \begin{aligned}
& p \\
& q \\
& \therefore p \wedge q
\end{aligned}\right.
$$

Predicate Logic

Predicate logic uses variables and allows forms that are not statements. The truth value of predicates depends on the value of variable terms. $G(x, y) \mathrm{x}$ is greater than y .
$G(x, y)$ is an open statement since it does not have a truth value.
$G(2,1)$ is a closed statement and is true since 2 is greater than 1.
$G(3,6$ is a closed statement and is false.

Quantifiers

\forall_{x} : Universal Quantifier
For all x, x is P .
$\forall_{x} P(x)=(P(1) \wedge P(2) \wedge \cdots \wedge P(n))$
\exists_{x} : Existential Quantifier
There exists some x such that x is P .
$\exists_{x} P(x)=(P(1) \vee P(2) \vee \cdots \vee P(n))$

Sentences

For every real number n, there exists a real number m such that $m^{2}=n$.
$\forall_{x} \in \mathbb{R} \quad \exists_{m} \in \mathbb{R} \mid m^{2}=n$
Given two rationals x and $\mathrm{y}, \sqrt{x y}$ will be rational.
$\forall x \in \mathbb{Q} \quad \forall y \in Q \quad \sqrt{x y} \in \mathbb{Q}$
Negating Quantifiers

$$
\begin{aligned}
& \forall_{x} P(x)=\neg \exists_{x} \neg[P(x)] \\
& \exists_{x} P(x)=\neg \forall_{x} \neg[P(x)] \\
& \neg \forall_{x} P(x)=\exists_{x} \neg[p(x)] \\
& \neg \exists_{x} P(x)=\forall_{x} \neg[P(x)]
\end{aligned}
$$

Equivalence trick:

$$
\begin{aligned}
& \neg \forall_{x} P(X) \\
& -\forall_{x}+P(x) \\
& +\exists_{x}-P(x) \\
& \exists_{x} \neg P(X)
\end{aligned}
$$

Counting

To do
Proofs
To do

Relations and Functions
Number Theory
To do

