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Abstract 

Knowing the barycenter of the solar system and how far it is from the sun (up to twice the 

solar radius away), one can define fairly accurately how far the common barycenter of all 

planets (without the sun) is away, since the cumulative mass of the planets is well-known. 

From this, the orbital disturbance of planets close to the sun and also far from the sun can 

be reduced to a two-body problem. A very good approximation for the calculation of an 

orbital disturbance of a planet close to the sun using the barycenter method is φ = 

2πba^2(1-e) per orbit, with b = 4*10^-28 [rad/m^2], a is the semimajor axis and e is the 

eccentricity of the planet's orbit. The results are Mercury 574.14 arc seconds, Earth 

1161.74", Saturn 2040.15" and Mars 1598.78" per century. Thus, the orbital perturbations 

using a planetary barycenter are fairly consistent with the measured data. Determining the 

difference to Newton's theory using general relativity calculations makes no sense as long 

as the theoretical numbers have not been determined with sufficient accuracy and as long 

as there are no differences between the measurement data and the theory when using the 

barycentric method. A computer simulation could help to exactly determine the perihelion 

rotation of the planets. The angle between the force effect and the orbital direction and 

the respective distance of the planet to the time-dependent variable planetary barycenter 

as well as the mean values from this would have to be determined frequently enough. 

 

A possible reason for deviations from the 1/r2 central force law is the presence of other 

bodies that exert additional gravitational forces on the celestial body under consideration. In 

the case of the planetary orbits, the influence of the respective other planets is the main 

cause of the perihelion rotations (1-10). 



Another cause can be deviations of the central body from the spherical shape. While an 

extended body of exactly spherical symmetry would produce the same strictly inverse-

square gravitational field as a point-like body of the same mass, irregular mass distributions 

or the equatorial bulge of flattened central bodies lead to deviations from the inverse-

square force law and thus to orbital disturbances. The equatorial bulge of the earth causes 

(among other orbital disturbances) perigee rotations in artificial earth satellites. The 

flattening of the sun causes perihelion rotations of the planetary orbits, which, however, are 

much smaller than the rotations caused by the planets themselves due to the insignificance 

of the flattening and the large distance between the planets. 

The curvature of spacetime, an effect of general relativity, is thought to cause a deviation 

from Newton's equations of motion. This could create a contribution to the perihelion 

rotation, which is called Schwarzschild precession. 

Knowing the barycenter of the solar system and how far it is from the sun (up to twice the 

solar radius away), one can define fairly accurately the distance P to the common barycenter 

of all planets (without the sun), since the cumulative mass of the planets is well-known. 

𝑎𝐵𝑀 = (𝑃 − 𝑎𝐵)𝑀′    [1] 

(𝑎𝐵 is the barycenter distance of the solar system, M is the mass of the sun, P is the distance 

to the barycenter of the planets and M’ is the cumulative mass of the planets). The effect of 

nearby planets is unclear, since the effect is canceled out when the influencing planet is 

passed by the planet and is on average just as often in front of the planet as behind the 

planet. In contrast, the barycenter does not rotate on an elliptical orbit, but is sometimes in 

front of and behind Jupiter and can theoretically also move backwards, which emphasizes 

the influence of the barycenter as the sole factor. 

Using the construct of a barycenter, the orbital disturbance of planets can be reduced to a 

two-body problem. In order to calculate the perihelion rotation, Newtonian calculations 

were used.  
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(M’ is the cumulative mass of all planets, P is the distance to the common barycenter, M is 

the mass of the sun, 𝑎𝑀 is the semiaxis of the Mercury used for calibration, a is the semiaxis 

of the planet, e is the eccentricity, 𝑒𝑀 is the eccentricity of Mercury, 107 m corresponds to 

43.1”, 4,8481 ∗ 10−6 rad corresponds to one arc second, 𝛼 is the angle between the force 

direction of the barycenter and the movement direction of the planet and f is a factor from 

the flattening of the planet and the reduced circumference of the orbit due to the 

eccentricity compared to 2𝜋a). The formula is built out of the concept, that the barycenter 

influences the perihelion of a planet in such a way, that, in the time of a total orbiting the 

perihelion moves proportional to the lower mass and greater distance of the barycenter, 

while still considering the ratio between the circle area circumscribed by the aphelion (2a) 

and the area enclosed by that of the perihelion distance. Also of importance is the fact, that 

the different perihelion distances muss be taken into account.  

The results are Mercury 574.14 arc seconds, Earth 1161.74", Saturn 2040.15" and Mars 

1598.78" per century. In case of Mars, which is in the next neighborhood of Jupiter, the 

influence of Jupiter is sometimes (0.46) larger than that of all planets together, expressed by 

the planet’s barycenter, so that here the correction formula must be employed [3]. For the 

planet Saturn a correction factor [4] must be used, since the mass of Saturn must be 

subtracted from the mass of the barycenter and its position is therefore 1159.3∙109 m 

distant to the sun.  
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(𝑀𝐽 is the mass of Jupiter, M' is the mass of the barycenter, J is the distance to Jupiter).  
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(𝑀𝑆 is the mass of Saturn, 𝑃𝑆 is the barycenter without Saturn, 𝑎𝑆 is the semiaxis of Saturn).  

 a (109 m)           e         fC          fF        𝜑 (“)   

Mercure 57.909  0.2056 1.0106  1.0 574.14 

Earth 149.598 0.00167 1.00133 1.0033641 1161.74 

Mars 227.99 0.00592 1.00178 1.00592 1598.78 

Saturn 1433.4 0.1086 1.002796 1.1086  2040.15 
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Crantor, the largest of three asteroids with a diameter of 70 kilometers, has been suspected 

by astronomers for a few years to be in resonance with Uranus. This means that the orbital 

times of the two are related to each other in such a way that they regularly influence each 

other through their gravity. In the case of Crantor and Uranus, the ratio of these orbital 

times is almost exactly 1:1, so they take exactly the same amount of time to orbit the sun 

once. Carlos de la Fuente Marcos and Raúl de la Fuente Marcos from the Universidad 

Complutense de Madrid have now been able to confirm this with the help of a computer 

simulation. Furthermore, the perihelion rotation of Venus ist very small. On the one hand, 

the effect is very small because of the almost circular sun path of Venus. And then the 

"8:13 resonance" of the Earth-Venus system probably comes into play: in 8 orbits of the 

earth there are (almost exactly) 13 orbits of Venus. It is assumed that this is responsible for 

the fact that the earth slows down or stabilizes the Venus perihelion rotation instead of 

kicking it. In addition, Neptune with Kuiper belt objects and Jupiter with his Moons are also 

involved in orbit resonances. Therefore, these four planets have smaller perihelion rotations 

than calculated by the Newtonian theory. The elliptical shape of the planetary orbits was 

first described empirically in 1609 using Kepler's laws. The physical justification followed in 

the middle of the 17th century with Isaac Newton's celestial mechanics. With his universal 

law of force, which also describes gravitation, it had become possible to examine the orbital 

disturbances that the planets mutually cause in more detail. In particular, the observed apse 

rotations of the planets and the moon could be explained almost entirely by Newton's 

theory. 

In the mid-19th century, however, Urbain Le Verrier used observations of Mercury's transits 

for a particularly accurate survey of Mercury's orbit and, using the improved data, found 

that Mercury's perihelion rotation was slightly stronger than expected. According to the 

celestial mechanical calculations, it should be about 530″ (arc seconds) per century, with 

about 280″ due to the influence of Venus, about 150″ to perturbations by Jupiter and about 

100″ to the remaining planets (11). However, the observed perihelion rotation (modern 

value: 571.91″/century) (12) was significantly larger; the modern value for the discrepancy is 

43.11″. 
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Le Verrier, who had already successfully discovered Neptune by investigating unexplained 

parts in the orbital disturbances of Uranus, suspected the cause of the discrepancy in 

Mercury to be a disturbance by a previously unknown planet on an orbit within Mercury's 

orbit. This planet was given the name Vulcan, but could not be discovered despite an 

extensive search - including during several solar eclipses. Likewise, no asteroid belt close to 

the sun responsible for the disturbances could be detected. Others suspected the dust belt 

responsible for the zodiacal light or saw at least part of the cause in a flattened shape of the 

sun due to its rotation (see also below), but were ultimately unsuccessful with their attempts 

at an explanation (13). 

Further attempts at an explanation cast doubt on the validity of Newton's law of force. For 

example, Levy (1890) and especially Paul Gerber (1898) succeeded in deriving the excess on 

the basis of electrodynamic force laws, provided that the propagation speed of gravitation is 

equal to the speed of light. Gerber's formula for the deviation from perihelion was already 

formally identical to that later formulated by Einstein. However, the underlying force laws 

were wrong and theories of this kind had to be discarded (14,15). 

Only Albert Einstein's General Theory of Relativity (GRT), which describes gravitation as the 

curvature of space-time, the structure of which is also influenced by the celestial bodies, was 

able to explain the apparent excess (16). This achievement is considered one of the 

mainstays of general relativity and its first major confirmation. The relativistically calculated 

fraction of 42.98″ (17) agrees very well with the calculated excess of 43.11″. The reason for 

the relativistic effect apparently lies in the slight deviation of the relativistic gravitational 

field from the strictly inverse-square behavior. 

The agreement between the observation and the relativistic calculation was thought to be 

less good if a significant part of the observed excess was due to rotational flattening of the 

sun and the remaining part to be explained was therefore significantly smaller than 

calculated according to ART. Attempts to measure the extremely small oblateness of the sun 

have yielded conflicting results over a long period of time, so that it has always been a bit 

doubtful how well the relativistic prediction actually agrees with the observation. However, 

helio-seismological studies have now reliably determined the quadrupole moment of the sun 

to be (2.18 ± 0.06)·10−7; this quadrupole moment contributes only a few hundredths of an 

arc second to the perihelion spin and is therefore negligible (19). Another way to determine 



uses the fact that the relativistic and the conditional part of the total perihelion rotation 

decrease at different rates with increasing distance from the sun and can thus be separated 

from each other by comparing the total rotations of different planets. Such an investigation 

(20) delivered a result of = (1.9 ± 0.3)·10−7 that is close to that of helioseismology. 

 

Conclusions 

In conclusion, the orbital perturbations using a planetary barycenter are fairly consistent 

with the measured data. Determining the difference to Newton's theory using general 

relativity calculations makes no sense as long as the theoretical numbers have not been 

determined with sufficient accuracy and as long as there are no differences between the 

measurement data and the theory when using the barycentric method. A computer 

simulation could help to exactly determine the perihelion rotation of the planets. The angle 

between the force effect and the orbital direction and the respective distance of the planet 

to the time-dependent variable planetary barycenter as well as the mean values from this 

would have to be determined frequently enough. 
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