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Probability and Statistics P1-1

Probability and Statistics

The goals of this module are to provide a comprehensive and thorough introduc-
tion to the theory of probability, to present a variety of probabilistic models and
applications, to expose the reader to basic forms of statistical thinking, and to
build solid foundations for a serious study of statistics. Deeper understanding of
statistics and the ability to apply statistical reasoning require a good understand-
ing of the underlying probabilistic concepts and ideas.

In calculus and many other disciplines (within mathematics and beyond), we
study idealized models. No matter how many times we solve a given differential
equation, or run the exponential decay model, the answers are always the same.
Departing from the deterministic view, we now focus on situations that involve
chance factors, thus bringing us steps closer to a realistic context. Our analysis
and conclusions about the processes that we study are based on data. But the real
data are full of noise, which tends to obscure important features of the underlying
process. Extracting true, valuable data from the real, noisy data is the realm of
statistics.

Written with life sciences students in mind, this module develops all relevant
concepts from the theory of probability and discusses a wide array of applications.
A variety of approaches (algebraic, numerical, geometric, and verbal) facilitate
the learning process and are aimed at improving students’ skills in probabilistic
thinking, reasoning about chance events, and communicating probabilistic and
statistical ideas and information. Of course, we do not shy away from mathemat-
ics: all definitions and theorems are here, accompanied by fully solved examples,
diagrams, and illustrations that help us understand things better.

What’s in the module?
In Section 1 we make a formal transition from deterministic models to prob-

abilistic (stochastic) models by introducing the concepts of chance and random-
ness. In parallel to the deterministic model, we outline the constituent parts of
the stochastic model. The stochastic models that we discuss in Section 2 include
animal population changes due to chance immigration, dynamics of disappearance
and recurrence of a virus, analysis of chance in genetics, and a probabilistic view
of the diffusion process.

The basic concepts that we work with—sample spaces, events, probability,
conditional probability, the law of total probability, Bayes’ theorem, and indepen-
dence—are discussed in Sections 3, 4, and 5. As needed, we review definitions
and formulas from set theory.

Random variables are introduced in Section 6. Deciding to study discrete
random variables first, we postpone continuous random variables until Section 13.
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P1-2 Probability and Statistics

In Section 6 we relate two basic functions to a random variable: the probability
mass function and the cumulative distribution function. We measure the centre of
a distribution in Section 7 and study its spread in Section 8. After introducing joint
distributions (Section 9), we spend a good amount of time investigating important
discrete distributions: the binomial distribution (Section 10), the multinomial and
the geometric distributions (Section 11), and the Poisson distribution (Section 12).

In Section 13 we develop important concepts for continuous random variables.
We briefly remind the reader of the basic integration techniques that are needed
to work with probability density functions and cumulative distribution functions.
Next, we study the normal distribution in detail (Section 14) and finish by pre-
senting the continuous analogue of the geometric distribution, the exponential
distribution (Section 15).

The approach used in writing this module—clear explanations and easy-to-
understand narratives; numerous graphs, simulations, pictures and diagrams; a
large number of fully solved examples and end-of-section exercises; and a wide
spectrum of life sciences applications—makes the material suitable for students
whose interests lie in life sciences and who are willing to deepen their understanding
of life sciences phenomena.

I thank you for choosing this module, and I hope that you will like reading it
and that you will learn some good and useful math.

Miroslav Lovrić
McMaster University, 2011

[Solutions to odd-numbered exercises from this module are posted (free download)
on the web page www.adler.nelson.com.]
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1 Introduction: Why Probability and Statistics

By discussing a population whose dynamics is determined by chance events, we
get our first glimpse into what probability theory is about. Collecting all out-
comes from a random experiment, we apply statistics to analyze the outcomes
and to communicate the results.

In this section, we talk about ideas and concepts mostly on an intuitive level.
In the next section, we start building a rigorous theory that will help us understand
chance and work with mathematical objects that involve chance.

Basic Definitions and Notation

The outcome of a deterministic experiment is certain. No matter how many times
we repeat the experiment (for instance, solving a differential equation with an
initial condition), the outcome is always the same.

We use discrete-time dynamical systems and ordinary and partial differential
equations to describe deterministic events. We now revisit one dynamical system,
and then we modify it in a novel way.

Example 1.1 Basic Discrete-Time Dynamical System for a Population of Bacteria

The number of bacteria in a colony with constant per capita production rate r
changes according to

pt+1 = rpt

where pt is the number of bacteria at time t and pt+1 is the number of bacteria 1
time unit later (assume that the time unit is 1 hour). The number p0 represents
the initial number of bacteria in the colony. The per capita production rate is the
number of offspring per individual bacterium.

Assume that r = 1.05 and that the initial population size is p0 = 200. The
deterministic system

pt+1 = 1.05pt, p0 = 200

has solution

pt = 200 · 1.05t

Thus, after 12 hours, there will be p12 = 200 · 1.0512 ≈ 359 bacteria; after 100
hours, p100 = 200 · 1.05100 ≈ 26, 300. No matter how many times we repeat this
calculation, these answers will always be the same.

In reality, it is a lot more likely that the per capita production rate will not remain
constant but will fluctuate instead, due to various effects. Some we are aware of,
such as the availability of food or the changes in ambient temperature. However,
the population might be affected by events beyond our control, or by events that
we are not even aware of.

We use the term stochastic to describe these unpredictable, unknown events
(or effects). Often, we refer to them as random or chance events.

A stochastic model in life sciences describes a process that involves chance events.
As in the deterministic case, the purpose of a stochastic model is to try to accu-
rately describe the behaviour of the biological system that we are investigating.
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Example 1.2 Stochastic Model for Population Growth

Assume that, as in Example 1.1, we start with 200 bacteria. However, this time
the per capita rate is not constant—the population changes according to

pt+1 = rtpt

where the per capita rate assumes random values within the interval [0.95, 1.15].
This means that we do not know what the exact value of rt is; all we know is that
any number within the interval [0.95, 1.15] is equally likely to be the per capita
rate rt.

This setup does sound more realistic. The bacterial population might have a
“bad” time when it actually decreases (this is modelled by the fact that r could
be less than 1) and a “good” time when it might grow by as much as 15% in an
hour.

What will the population be 12 hours after the start of this experiment?
In Table 1.1 we record the per capita production rates and the corresponding

population sizes for the first 12 hours. (For the per capita rates we used a random
number generator programmed so that it picks any number in [0.95, 1.15] with
equal chance.)

Table 1.1

Time Per capita rate Population

0 200

1 0.9747 194.94

2 0.9868 192.37

3 0.9980 191.99

4 1.0335 198.42

5 0.9599 190.46

6 1.1305 215.32

7 1.1390 245.25

8 1.0482 257.07

9 1.0479 269.38

10 1.0175 274.09

11 1.1300 309.72

12 1.0328 319.88

In Figure 1.1 we compare our stochastic model with the deterministic model from
Example 1.1.
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FIGURE 1.1

Stochastic and deterministic
models for bacterial growth

Section 1 Introduction: Why Probability and Statistics P1-7

What happens of we repeat the experiment? In Table 1.2 and in Figure 1.2 we
show the outcomes of two more simulations.

Table 1.2

Time Per capita Population Per capita Population

rate rate

0 200 200

1 1.1286 225.72 1.0985 219.70

2 1.0611 239.51 1.0349 227.37

3 0.9924 237.69 1.0359 235.53

4 1.1328 269.26 0.9750 229.64

5 1.0616 285.85 0.9549 219.28

6 0.9832 281.05 1.0080 221.03

7 1.1476 322.53 1.0135 224.01

8 1.0016 323.05 1.0807 242.09

9 0.9648 311.68 1.1414 276.32

10 1.0305 321.19 1.1371 314.20

11 1.0304 330.95 1.0416 327.27

12 0.9809 324.63 0.9981 326.65

We have just come across an example of a random experiment, i.e., an experiment
that is repeatable but whose outcome is uncertain.

How do we report an outcome of a random experiment? So far, we have run
it three times and the answers (for the population after 12 hours) are 317, 325,
and 327. Suppose that we run the experiment 500 times. Listing the values of all
500 outcomes would not make much sense.
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deterministic model
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stochastic model

FIGURE 1.2

Two more simulations of the
stochastic population model

Although the outcome of a random experiment is uncertain, this does not mean
that we cannot quantify it. In Figure 1.3 we compare two more stochastic growth
simulations (this time, run for 60 steps) with the deterministic solution. The simu-
lations have been generated using random numbers, but their shape still resembles
an exponential function. So how uncertain are the outcomes?

Clearly, what we need is a way to accurately describe all possible outcomes of
a random experiment; as well, we need to measure and quantify uncertainty. This
is what statistics and probability are all about.

Calculus_Prob Status Mod_8.5x10.875.indd   8 12-08-09   11:59 AM



P1-6 Probability and Statistics

Example 1.2 Stochastic Model for Population Growth

Assume that, as in Example 1.1, we start with 200 bacteria. However, this time
the per capita rate is not constant—the population changes according to

pt+1 = rtpt

where the per capita rate assumes random values within the interval [0.95, 1.15].
This means that we do not know what the exact value of rt is; all we know is that
any number within the interval [0.95, 1.15] is equally likely to be the per capita
rate rt.

This setup does sound more realistic. The bacterial population might have a
“bad” time when it actually decreases (this is modelled by the fact that r could
be less than 1) and a “good” time when it might grow by as much as 15% in an
hour.

What will the population be 12 hours after the start of this experiment?
In Table 1.1 we record the per capita production rates and the corresponding

population sizes for the first 12 hours. (For the per capita rates we used a random
number generator programmed so that it picks any number in [0.95, 1.15] with
equal chance.)

Table 1.1

Time Per capita rate Population

0 200

1 0.9747 194.94

2 0.9868 192.37

3 0.9980 191.99

4 1.0335 198.42

5 0.9599 190.46

6 1.1305 215.32

7 1.1390 245.25

8 1.0482 257.07

9 1.0479 269.38

10 1.0175 274.09

11 1.1300 309.72

12 1.0328 319.88

In Figure 1.1 we compare our stochastic model with the deterministic model from
Example 1.1.

0 2 4 6 8 10 12
180

200

220

240

260

280

300

320

340

360

deterministic model

stochastic model

FIGURE 1.1

Stochastic and deterministic
models for bacterial growth

Section 1 Introduction: Why Probability and Statistics P1-7

What happens of we repeat the experiment? In Table 1.2 and in Figure 1.2 we
show the outcomes of two more simulations.

Table 1.2

Time Per capita Population Per capita Population

rate rate

0 200 200

1 1.1286 225.72 1.0985 219.70

2 1.0611 239.51 1.0349 227.37

3 0.9924 237.69 1.0359 235.53

4 1.1328 269.26 0.9750 229.64

5 1.0616 285.85 0.9549 219.28

6 0.9832 281.05 1.0080 221.03

7 1.1476 322.53 1.0135 224.01

8 1.0016 323.05 1.0807 242.09

9 0.9648 311.68 1.1414 276.32

10 1.0305 321.19 1.1371 314.20

11 1.0304 330.95 1.0416 327.27

12 0.9809 324.63 0.9981 326.65

We have just come across an example of a random experiment, i.e., an experiment
that is repeatable but whose outcome is uncertain.

How do we report an outcome of a random experiment? So far, we have run
it three times and the answers (for the population after 12 hours) are 317, 325,
and 327. Suppose that we run the experiment 500 times. Listing the values of all
500 outcomes would not make much sense.

0 2 4 6 8 10 12
200

220

240

260

280

300

320

340

360

deterministic model

stochastic model

stochastic model

FIGURE 1.2

Two more simulations of the
stochastic population model

Although the outcome of a random experiment is uncertain, this does not mean
that we cannot quantify it. In Figure 1.3 we compare two more stochastic growth
simulations (this time, run for 60 steps) with the deterministic solution. The simu-
lations have been generated using random numbers, but their shape still resembles
an exponential function. So how uncertain are the outcomes?

Clearly, what we need is a way to accurately describe all possible outcomes of
a random experiment; as well, we need to measure and quantify uncertainty. This
is what statistics and probability are all about.

Calculus_Prob Status Mod_8.5x10.875.indd   9 12-08-09   11:59 AM



P1-8 Probability and Statistics

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

deterministic model

stochastic model

stochastic model

FIGURE 1.3

Stochastic versus determinis-
tic growth

Definition 1 Statistic
A statistic is a set of numerical values that summarize the outcomes of a random
experiment.

A statistic can be represented numerically, in the form of a table, as a graph, or
as a diagram. What statistic we calculate, and how we represent it, depends on
the questions that we need to answer.

For instance, one statistic we could relate to the outcomes of the 500 repe-
titions of a stochastic growth model is the mean (also referred to as the average
value). Or, we can list the highest and the lowest values. In some cases, we might
need to identify the outcome that is larger than 75% of all outcomes.

We go back to the stochastic growth model of Example 1.2. Although we do not
know what a particular outcome will be, we know an interval within which all
outcomes have to fall. Since all per capita rates are in [0.95, 1.15], the lowest
outcome occurs when the per capita production rate is equal to 0.95 during every
time interval. In that case, the population count is 200 · 0.9512 ≈ 108.07. The
highest outcome, 200 · 1.1512 ≈ 1070.05, occurs when all per capita production
rates are equal to 1.15. Thus, we know that the outcomes of random simulations
(Figure 1.4) have to fall between 108.07 and 1070.05. (Of course, we round off to
the nearest integer when reporting on the actual count of bacteria.)
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FIGURE 1.4

The range of all outcomes of
the stochastic growth model

Definition 2 Random Experiment and Sample Space
A random experiment is an experiment that is repeatable but has an uncertain
outcome. The set of all possible outcomes of a random experiment is called the
sample space of that experiment.

In the stochastic growth experiment, the sample space consists of all real numbers
between 108.07 and 1070.05. Using S to denote the sample space, we write S =
[108.07, 1070.05].
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Are all values in S equally likely to occur as outcomes of the experiment?
To try to answer this question, we run the experiment 500 times, break down

the sample space into intervals, and record the number of outcomes that fall within
each interval. In this way, we construct the statistic called the histogram; see Figure
1.5.
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A histogram of 500 outcomes
of the stochastic growth
model

The sample space is placed on the horizontal axis, broken down into subintervals
whose ends are at 201.2, 226.4, 251.7, 276.9, 302.1, 327.3, 352.6, 377.8, 403.0, 428.2,
453.4, 478.7, 503.9, 529.1, 554.3, 579.5, 604.7, 630.3, 655.2, and 680.4 (there were
no outcomes smaller than 201.2 or larger than 680.4). The heights tell us how
many outcomes fall within each interval. For the record, the heights are 3, 4, 25,
51, 64, 81, 80, 64, 51, 22, 23, 14, 7, 5, 2, 1, 0, 1, 1, and 1.

Note that although the per capita rates have been chosen with equal chance
within the interval [0.95, 1.15], the outcomes do not share the same property—
some are more likely to occur than others. One of the major roles of stochastic
modelling is to correlate the two: how does the randomness in the input affect the
randomness in the output?

Example 1.3 Questions

We built a stochastic model that predicts (in its own way) the bacterial population
size after 12 hours. We identified the sample space and drew a histogram that
helps us answer some questions (such as finding which outcomes are more likely
to occur).

This is just the beginning. There are many questions we might need to know
answers to. How likely is it that the population will reach 90% of its theoretical
maximum of 1070 bacteria? How likely is it that the population will fall between
200 and 350? We run the model 500 times and calculate the mean (average) value.
How likely is it that 320 of 500 outcomes will fall within 15% of the mean?

As we learn probability and statistics, we will be able to answer these and
many other questions.

Example 1.4 Stochastic Model for a Population with Large Fluctuations

Of course, we can run the model from Example 1.2 with different values.
To model larger fluctuations, we use the interval [0.75, 1.35] for possible per

capita production rates, instead of the interval [0.95, 1.15]. So, consider

pt+1 = rtpt, p0 = 200

where rt is a number chosen randomly from the interval [0.75, 1.35].
In Figure 1.6 we show the outcomes of several experiments. The magnitudes

of the changes from hour to hour are a lot larger than before. This time, the
sample space is the interval [200 · 0.7512, 200 · 1.3512] ≈ [6.3, 7328.8].
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Definition 1 Statistic
A statistic is a set of numerical values that summarize the outcomes of a random
experiment.

A statistic can be represented numerically, in the form of a table, as a graph, or
as a diagram. What statistic we calculate, and how we represent it, depends on
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highest outcome, 200 · 1.1512 ≈ 1070.05, occurs when all per capita production
rates are equal to 1.15. Thus, we know that the outcomes of random simulations
(Figure 1.4) have to fall between 108.07 and 1070.05. (Of course, we round off to
the nearest integer when reporting on the actual count of bacteria.)
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answers to. How likely is it that the population will reach 90% of its theoretical
maximum of 1070 bacteria? How likely is it that the population will fall between
200 and 350? We run the model 500 times and calculate the mean (average) value.
How likely is it that 320 of 500 outcomes will fall within 15% of the mean?

As we learn probability and statistics, we will be able to answer these and
many other questions.
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Of course, we can run the model from Example 1.2 with different values.
To model larger fluctuations, we use the interval [0.75, 1.35] for possible per

capita production rates, instead of the interval [0.95, 1.15]. So, consider
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where rt is a number chosen randomly from the interval [0.75, 1.35].
In Figure 1.6 we show the outcomes of several experiments. The magnitudes
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Simulation of a population
with large fluctuations

Definition 3 Stochastic Model
A stochastic model is a mathematical model that describes processes (such as
biological processes) that are driven by chance (random) events.

Stochastic models may contain both deterministic and stochastic factors. In Figure
1.7 we show what is involved in building such models.

We use probability theory to define the model and to obtain outcomes (re-
sults). Next, we use statistical tools to analyze and organize the outcomes and
then descriptive statistics to communicate them.

Stochastic model of
a biological process

Probability

Outcomes Analysis of outcomes

Inferential statistics

Statistics
Descriptive

Communication

statsitics

FIGURE 1.7

Stochastic model

In many situations, we do not stop once we have communicated the results
and our analysis of the results—we try to make inferences (deductions) about the
biological processes that we have been investigating. Inferential statistics provides
us with the tools necessary to make these deductions. For instance, determining
whether one population of bacteria grows more rapidly than another (say, based
on situations similar to what we did in Examples 1.2 and 1.4) requires inferential
statistics.

Probability theory was invented to analyze games of chance (gambling), but it
was soon recognized for its true strength—the ability to provide a precise math-
ematical description of chance (randomness). Using the theory, we are able to
answer all kinds of questions that involve chance.

Example 1.5 More Questions

Assume that there is a 60% chance that it will rain on Saturday and a 50% chance
that it will rain on Sunday. What is the chance that it will rain on the weekend?
Clearly, it’s not going to be 60% + 50% = 110%. Do we have enough information
to answer this question? If not, what else do we need to know?

It has been determined that 0.9% of women over the age of 20 have breast
cancer. A commonly used test for the detection of breast cancer has a false-positive
rate of 10% (i.e., the test result is positive although a woman does not have breast
cancer) and false-negative rate of 3% (the test result is negative when a woman

Section 1 Introduction: Why Probability and Statistics P1-11

actually has breast cancer). A woman undergoes the test and its result is positive.
What is the chance that she has breast cancer?

Blood tests show that both a mother and a father are carriers of some trait
(for instance, a genetic disorder such as high blood pressure). It is known that
there is a 2% chance that the mother will pass the trait to the child and a 5%
chance that the father will pass on the trait. What is the probability that their
child will be born with that genetic trait?

In the next section, we will look at a few more models that involve chance and
then start developing the theory of probability.

Summary A stochastic model describes a process that involves unpredictable or often
unknown random events (also called chance events). Using randomness, we
were able to describe the fluctuations in the size of a population. A random
experiment is an experiment that we can repeat as many times as desired, but
whose outcome we cannot predict. A sample space is the set that contains all
possible outcomes of a random experiment. A statistic is a way to describe the
outcomes of a random experiment. As we have seen, statistics can be presented
as a set of numbers, in the form of a table, or as a histogram.
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rate of 10% (i.e., the test result is positive although a woman does not have breast
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actually has breast cancer). A woman undergoes the test and its result is positive.
What is the chance that she has breast cancer?

Blood tests show that both a mother and a father are carriers of some trait
(for instance, a genetic disorder such as high blood pressure). It is known that
there is a 2% chance that the mother will pass the trait to the child and a 5%
chance that the father will pass on the trait. What is the probability that their
child will be born with that genetic trait?

In the next section, we will look at a few more models that involve chance and
then start developing the theory of probability.

Summary A stochastic model describes a process that involves unpredictable or often
unknown random events (also called chance events). Using randomness, we
were able to describe the fluctuations in the size of a population. A random
experiment is an experiment that we can repeat as many times as desired, but
whose outcome we cannot predict. A sample space is the set that contains all
possible outcomes of a random experiment. A statistic is a way to describe the
outcomes of a random experiment. As we have seen, statistics can be presented
as a set of numbers, in the form of a table, or as a histogram.
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2 Stochastic Models

We examine several stochastic models to further illustrate the concepts introduced
in the last section: the dynamics of a population with immigration, the disappear-
ance and occurrence of a virus, randomness in genetics, and diffusion. We will use
these models (and others) in the forthcoming sections to illustrate new definitions,
ideas, and formulas as we introduce them.

Examples of Stochastic Models

A stochastic model might contain both deterministic and stochastic terms, as the
following example shows.

Example 2.1 Lion Population with Immigration

Consider the following stochastic dynamical system for the population pt of lions
living in a certain region:

pt+1 = 0.95pt + It

where

It =
{

12 with a 50% chance

0 with a 50% chance
and p0 = 160. The time unit is 1 year.

The deterministic part pt+1 = 0.95pt is the usual exponential law with a per
capita production rate of 0.95. The term It represents possible yearly immigration,
i.e., an influx of new lions (say, due to the lack of prey in surrounding areas). The
lions that migrate to the region join the lions living there and stay there.

It is not certain that new lions will join the exisiting population; it is only with
a 50% chance that a group of 12 lions will migrate into the region within any given
year. Without the immigration, the existing lion population will be decreasing,
since its per capita production rate is below 1. Can a chance event (immigration)
save it from going extinct?

Let’s do some calculations. The initial population is 160. To simulate ran-
domness, we flip a coin, adopting the rule that heads means immigration (influx
of 12 new lions) and tails means no immigration. Suppose we flip a coin and the
outcome is tails. In that case, I0 = 0 and

p1 = 0.95p0 + I0 = 0.95(160) + 0 = 152

We toss the coin again, and the outcome is heads. Thus, I1 = 12, and

p2 = 0.95p1 + I1 = 0.95(152) + 12 = 156.4

i.e., 156 lions. It’s tails on the third toss, and so I2 = 0 and

p3 = 0.95p2 + I2 = 0.95(156.4) + 0 = 148.6

We continue in the same way—see Table 2.1, where we have recorded the popu-
lation for the first 10 years.

In Figure 2.1 we show the outcome of this experiment, as well as two more
runs of the same experiment. (This is an example of a random experiment—it
is repeatable (we can do as many simulations as we like), but the outcome (the
number of lions after 10 years) is unpredictable.)

What is our prediction for the population? Looking at the three outcomes in
Figure 2.1, we cannot be sure about numbers, but it seems that the population
will decline.

Section 2 Stochastic Models P1-13

Table 2.1

Time Immigration Population

0 160

1 No 152

2 Yes 156.4

3 No 148.6

4 No 141.2

5 No 134.1

6 No 127.4

7 No 121.0

8 Yes 127.0

9 No 120.6

10 Yes 126.6

To get a more reliable prediction, using a computer, we run 1,000 simulations
for 10 years, and obtain an average of 140.8 lions— confirming the hint we got
from the three initial simulations. We conclude that random immigration will not
be able to help the local population of lions keep or increase their numbers.
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FIGURE 2.1

Three predictions for the lion
population in 10 years

The histogram in Figure 2.2a shows what the most likely population counts will
be, based on our simulation. Although the population will likely decrease, it will
not go extinct, at least not any time soon.

To see what happens farther into the future, we run 100 simulations for 50
years, and obtain an average of 122.2 lions. The histogram of the 50-year pre-
dictions (Figure 2.2b) shows that the population predictions shift toward lower
numbers, but not in a dramatic way.
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Histograms predicting the
population of lions after 10
years (a) and 50 years (b)
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Example 2.2 Disappearance and Recurrence of a Virus

Certain health conditions (such as viral infections) appear and disappear over time
with seemingly no pattern. After an absence of three months, an infection might
reappear within a population, persist for several months, and then disappear again.

This (quite common) situation can be modelled in the following way. If, at
time t, the virus is present in some population, we define It = 1; otherwise, define
It = 0. The unit of time is 1 month. Suppose that the following is known about
the virus. If it is present in the population at this moment, it will be present the
following month with a chance of 75%. If it is absent from the population at this
moment, the virus will be absent from the population the following month with a
chance of 80%. We visualize the dynamics in the diagram in Figure 2.3.

Virus absent
I t = 0

0.25

Virus present
0.2

0.8 0.75
I t = 1

FIGURE 2.3

Disappearance and
recurrence of a virus

Using a random number generator, we can simulate the outcomes of this sit-
uation. Starting with I0 = 0, we run the simulation for 50 months; the outcomes
are shown in Figure 2.4. Note the interchanges between shorter and longer periods
of absence and presence of a virus.

0 5 10 15 20 25 30 35 40 45 50

0

1

FIGURE 2.4

Dynamics of the virus for the
first 50 months

The system that we introduced in Example 2.2 is an example of a Markov chain.
Markov chains are characterized by the fact that the dynamics depends on

the population. In other words, what the system (in our case the virus) does at a
particular moment depends on the value of It at that moment. This was not the
case with the lions in Example 2.1: the per capita production rate of 0.95 and the
immigration of 0 or 12 are independent of the number of lions living in the region.

Example 2.3 Chance in Genetics

Many traits (in humans, animals, or plants) are determined by a pair of genes,
one coming from the mother and the other coming from the father. In humans,
traits include colour-blindness/no colour-blindness, lactose tolerance/intolerance,
eye colour, right-/left-handedness, susceptibility to high blood pressure, and so on.

We assume that a gene comes in two variants (alleles); call them allele A and
allele B. Each offspring inherits one allele from the mother and one allele from
the father, and thus there are four possible combinations (called genotypes); see
Table 2.2. The first letter is the allele from the mother and the second letter is
the allele from the father. The two combinations AB and BA are viewed as the
same genotype.
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Table 2.2

Genotype Name

AA A-homozygotes

AB heterozygotes

BA heterozygotes

BB B-homozygotes

Assume that both parents are heterozygous. Their offspring will have one of the
four combinations AA (allele A from the mother and allele A from the father),
AB (allele A from the mother and allele B from the father), BA (allele B from the
mother and allele A from the father), and BB (allele B from the mother and allele
B from the father). In the case where there are no outside factors influencing the
selection of alleles, the four outcomes are equally likely. Thus, the offspring has a
50-50 chance of being heterozygous.

Assume that the mother’s genotype is AA and the father’s genotype is AB.
Their offspring will have one of the following combinations: AA, AA, AB, and
AB. Again, their offspring has a 50-50 chance of being heterozygous.

Example 2.4 Chance in Genetics II

Assume that a plant is diploid (has two copies of each gene); we name the variants
(alleles) A and B. Starting with a heterozygous plant, what is the chance that its
offspring in generation t (t = 1, 2, 3, . . .) will be heterozygous?

Let ct be the chance that an offspring in generation t is heterozygous. Initially,
c0 = 1 (i.e., 100%, since we start with a heterozygous plant). As in the previous
example, the offspring could be homozygous (AA or BB) or heterozygous (AB or
BA). Thus, two of the four combinations are heterozygous, and so the chance is
c1 = 0.5.

A homozygous plant will produce homozygous offspring. A heterozygous plant
will produce a heterozygous offspring in 50% of the cases; thus, c2 = 0.5c1. In
general,

ct+1 = 0.5ct

Since the solution of this (deterministic!) system is ct = 0.5t, we conclude that
the number of heterozygous plants will decrease exponentially.

Example 2.5 Chance in Genetics: Phenotypes

In general, there are three genotypes: the combination AA exhibits one trait, the
combination BB exhibits another trait, and the combinations AB and BA exhibit
the third trait. If the heterozygotes exhibit the same trait as the homozygote
AA, then A is called the dominant allele and B is called the recessive allele. The
dominant allele and the recessive allele form the phenotype of an individual. Thus,
there are three genotypes, but only two phenotypes (A dominant or B dominant).
Consider an example.

Assume that an individual who has a copy of allele A has unattached earlobes
(dominant trait) and the with two copies of allele B has attached earlobes (recessive
trait). One thousand couples are sent to colonize a distant planet. Assuming that
within each couple there is a person with genotype AA (unattached earlobes)
and a person with genotype BB (attached earlobes) what is the chance that their
grandchildren will have attached earlobes?
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the virus. If it is present in the population at this moment, it will be present the
following month with a chance of 75%. If it is absent from the population at this
moment, the virus will be absent from the population the following month with a
chance of 80%. We visualize the dynamics in the diagram in Figure 2.3.
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Disappearance and
recurrence of a virus

Using a random number generator, we can simulate the outcomes of this sit-
uation. Starting with I0 = 0, we run the simulation for 50 months; the outcomes
are shown in Figure 2.4. Note the interchanges between shorter and longer periods
of absence and presence of a virus.
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Dynamics of the virus for the
first 50 months

The system that we introduced in Example 2.2 is an example of a Markov chain.
Markov chains are characterized by the fact that the dynamics depends on

the population. In other words, what the system (in our case the virus) does at a
particular moment depends on the value of It at that moment. This was not the
case with the lions in Example 2.1: the per capita production rate of 0.95 and the
immigration of 0 or 12 are independent of the number of lions living in the region.

Example 2.3 Chance in Genetics

Many traits (in humans, animals, or plants) are determined by a pair of genes,
one coming from the mother and the other coming from the father. In humans,
traits include colour-blindness/no colour-blindness, lactose tolerance/intolerance,
eye colour, right-/left-handedness, susceptibility to high blood pressure, and so on.

We assume that a gene comes in two variants (alleles); call them allele A and
allele B. Each offspring inherits one allele from the mother and one allele from
the father, and thus there are four possible combinations (called genotypes); see
Table 2.2. The first letter is the allele from the mother and the second letter is
the allele from the father. The two combinations AB and BA are viewed as the
same genotype.
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Table 2.2

Genotype Name

AA A-homozygotes

AB heterozygotes

BA heterozygotes

BB B-homozygotes

Assume that both parents are heterozygous. Their offspring will have one of the
four combinations AA (allele A from the mother and allele A from the father),
AB (allele A from the mother and allele B from the father), BA (allele B from the
mother and allele A from the father), and BB (allele B from the mother and allele
B from the father). In the case where there are no outside factors influencing the
selection of alleles, the four outcomes are equally likely. Thus, the offspring has a
50-50 chance of being heterozygous.

Assume that the mother’s genotype is AA and the father’s genotype is AB.
Their offspring will have one of the following combinations: AA, AA, AB, and
AB. Again, their offspring has a 50-50 chance of being heterozygous.

Example 2.4 Chance in Genetics II

Assume that a plant is diploid (has two copies of each gene); we name the variants
(alleles) A and B. Starting with a heterozygous plant, what is the chance that its
offspring in generation t (t = 1, 2, 3, . . .) will be heterozygous?

Let ct be the chance that an offspring in generation t is heterozygous. Initially,
c0 = 1 (i.e., 100%, since we start with a heterozygous plant). As in the previous
example, the offspring could be homozygous (AA or BB) or heterozygous (AB or
BA). Thus, two of the four combinations are heterozygous, and so the chance is
c1 = 0.5.

A homozygous plant will produce homozygous offspring. A heterozygous plant
will produce a heterozygous offspring in 50% of the cases; thus, c2 = 0.5c1. In
general,

ct+1 = 0.5ct

Since the solution of this (deterministic!) system is ct = 0.5t, we conclude that
the number of heterozygous plants will decrease exponentially.

Example 2.5 Chance in Genetics: Phenotypes

In general, there are three genotypes: the combination AA exhibits one trait, the
combination BB exhibits another trait, and the combinations AB and BA exhibit
the third trait. If the heterozygotes exhibit the same trait as the homozygote
AA, then A is called the dominant allele and B is called the recessive allele. The
dominant allele and the recessive allele form the phenotype of an individual. Thus,
there are three genotypes, but only two phenotypes (A dominant or B dominant).
Consider an example.

Assume that an individual who has a copy of allele A has unattached earlobes
(dominant trait) and the with two copies of allele B has attached earlobes (recessive
trait). One thousand couples are sent to colonize a distant planet. Assuming that
within each couple there is a person with genotype AA (unattached earlobes)
and a person with genotype BB (attached earlobes) what is the chance that their
grandchildren will have attached earlobes?
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Since an offspring of genotype AA and genotype BB parents can only be of geno-
type AB, all children in the first generation will be heterozygous (and so will have
unattached earlobes). An offspring of an AB and AB couple can have any of the
four combinations AA, AB, BA, and BB. In three of the four cases, a copy of the
A allele is present. Equivalently, in one of the four cases the offspring will have
a BB combination. Thus, there is a 25% chance that the grandchildren will have
attached earlobes.

Example 2.6 Diffusion as a Stochastic Process

For various reasons, we study diffusion at two different levels. Using the par-
tial differential equation ct = σcxx for the concentration of the substance that is
diffusing, we look at it on a macroscopic level.

Now we look at the diffusion microscopically—what do individual molecules,
or a small number of them, do? This is a real situation— various toxins and
enzymes can affect the behaviour of a cell even if present in very small quantities
(a dozen molecules will suffice).

We will soon see that there is a big difference in the probability of events if
we consider small and large quantities. It is a lot more likely that to toss 5 heads
in a row than 100 heads in a row. A small number of molecules is more likely
to exhibit a certain behaviour. It could happen that a dozen molecules move to
the same region within a cell by random motion—this is something that’s nearly
impossible for billions of water molecules within the cell to accomplish.

In our first model we consider a single molecule located inside a fixed region
(such as a cell). Assume that, in a given time interval (say, 1 hour), there is a
15% chance that the molecule will leave the region. Once it leaves the region, the
molecule does not come back.

In Table 2.3 we model the behaviour of three molecules (as usual, we need a
way to generate randomness; flipping a coin will do here).

Table 2.3

Time Molecule 1 Molecule 2 Molecule 3

0 In In In

1 In Out In

2 In Out In

3 In Out In

4 In Out In

5 In Out Out

6 In Out Out

7 Out Out Out

8 Out Out Out

How do we calculate the chance that a molecule is still within the region after 8
hours?

As usual, we build a dynamical system. Denote by pt the chance that the
molecule is still inside the region during the time interval t. Thus, p0 = 1 (i.e.,
100%, since we assume that initially a molecule is inside the region). After one
hour, the molecule is still inside the region with a chance of 85%. Thus, p1 = 0.85.
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After two hours, the molecule is still inside the region if it was inside the region
during the first and second hours. Thus,

p2 = 0.85 · 0.85 = 0.85p1

(Soon, we will state precise reasons why we multiply the chances, as well as make
exact assumptions that will tell us when we are allowed to do so. For now, we
reason intuitively: assume that we toss a coin twice—the chance of tossing heads
both times is 25%, which is the product of the chances of heads in a single toss.)

Continuing in the same way, we obtain the deterministic dynamical system

pt+1 = 0.85pt

whose solution is given by

pt = p0 · 0.85t = 0.85t

Thus, the chance that the molecule is still inside the region after 8 hours is p8 =
0.858 ≈ 0.2725, i.e., 27.25%.

In other words, if there were 1,000 molecules inside the region initially, we’d
expect to see about 273 still inside after 8 hours.

Example 2.7 Example 2.6 Continued: Simulated and Predicted Numbers of Molecules

Assume that there are 100 molecules in the region. After 1 hour there will be
p1 = 100 · 0.85 = 85 left. After another hour, there will be p2 = 85 · 0.85 = 72.25
(72 molecules left). Note that

p2 = 85 · 0.85 = 100 · 0.85 · 0.85 = 0.85 · (100 · 0.85) = 0.85p1

(This is an alternative to our reasoning in the previous exercise; perhaps it shows
in a more transparent way that we need to multiply to move to the next hour.)
Continuing in the same, way, we obtain p8 = 100 ·0.858 ≈ 27.25, i.e., 27 molecules.
Figure 2.5a shows the exponentially decreasing graph of pt compared with a sim-
ulation done on 100 molecules.
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FIGURE 2.5

Simulated and predicted
outcomes for 100 and 1,000
molecules

If we increase the number of molecules, the simulated and the predicted outcomes
will get closer to each other. In Figure 2.5b we show the comparison for 1,000
molecules.

Example 2.8 Modelling Diffusion Using Random Walk

Diffusion is defined as the spread of particles from regions of higher concentration
toward regions of lower concentration by means of random motion. Colliding with
neighbouring particles, a particle constantly changes its direction, moving around
in a random way.
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Since an offspring of genotype AA and genotype BB parents can only be of geno-
type AB, all children in the first generation will be heterozygous (and so will have
unattached earlobes). An offspring of an AB and AB couple can have any of the
four combinations AA, AB, BA, and BB. In three of the four cases, a copy of the
A allele is present. Equivalently, in one of the four cases the offspring will have
a BB combination. Thus, there is a 25% chance that the grandchildren will have
attached earlobes.

Example 2.6 Diffusion as a Stochastic Process

For various reasons, we study diffusion at two different levels. Using the par-
tial differential equation ct = σcxx for the concentration of the substance that is
diffusing, we look at it on a macroscopic level.

Now we look at the diffusion microscopically—what do individual molecules,
or a small number of them, do? This is a real situation— various toxins and
enzymes can affect the behaviour of a cell even if present in very small quantities
(a dozen molecules will suffice).

We will soon see that there is a big difference in the probability of events if
we consider small and large quantities. It is a lot more likely that to toss 5 heads
in a row than 100 heads in a row. A small number of molecules is more likely
to exhibit a certain behaviour. It could happen that a dozen molecules move to
the same region within a cell by random motion—this is something that’s nearly
impossible for billions of water molecules within the cell to accomplish.

In our first model we consider a single molecule located inside a fixed region
(such as a cell). Assume that, in a given time interval (say, 1 hour), there is a
15% chance that the molecule will leave the region. Once it leaves the region, the
molecule does not come back.

In Table 2.3 we model the behaviour of three molecules (as usual, we need a
way to generate randomness; flipping a coin will do here).

Table 2.3

Time Molecule 1 Molecule 2 Molecule 3

0 In In In

1 In Out In

2 In Out In

3 In Out In

4 In Out In

5 In Out Out

6 In Out Out

7 Out Out Out

8 Out Out Out

How do we calculate the chance that a molecule is still within the region after 8
hours?

As usual, we build a dynamical system. Denote by pt the chance that the
molecule is still inside the region during the time interval t. Thus, p0 = 1 (i.e.,
100%, since we assume that initially a molecule is inside the region). After one
hour, the molecule is still inside the region with a chance of 85%. Thus, p1 = 0.85.
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After two hours, the molecule is still inside the region if it was inside the region
during the first and second hours. Thus,

p2 = 0.85 · 0.85 = 0.85p1

(Soon, we will state precise reasons why we multiply the chances, as well as make
exact assumptions that will tell us when we are allowed to do so. For now, we
reason intuitively: assume that we toss a coin twice—the chance of tossing heads
both times is 25%, which is the product of the chances of heads in a single toss.)

Continuing in the same way, we obtain the deterministic dynamical system

pt+1 = 0.85pt

whose solution is given by

pt = p0 · 0.85t = 0.85t

Thus, the chance that the molecule is still inside the region after 8 hours is p8 =
0.858 ≈ 0.2725, i.e., 27.25%.

In other words, if there were 1,000 molecules inside the region initially, we’d
expect to see about 273 still inside after 8 hours.

Example 2.7 Example 2.6 Continued: Simulated and Predicted Numbers of Molecules

Assume that there are 100 molecules in the region. After 1 hour there will be
p1 = 100 · 0.85 = 85 left. After another hour, there will be p2 = 85 · 0.85 = 72.25
(72 molecules left). Note that

p2 = 85 · 0.85 = 100 · 0.85 · 0.85 = 0.85 · (100 · 0.85) = 0.85p1

(This is an alternative to our reasoning in the previous exercise; perhaps it shows
in a more transparent way that we need to multiply to move to the next hour.)
Continuing in the same, way, we obtain p8 = 100 ·0.858 ≈ 27.25, i.e., 27 molecules.
Figure 2.5a shows the exponentially decreasing graph of pt compared with a sim-
ulation done on 100 molecules.
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Simulated and predicted
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If we increase the number of molecules, the simulated and the predicted outcomes
will get closer to each other. In Figure 2.5b we show the comparison for 1,000
molecules.

Example 2.8 Modelling Diffusion Using Random Walk

Diffusion is defined as the spread of particles from regions of higher concentration
toward regions of lower concentration by means of random motion. Colliding with
neighbouring particles, a particle constantly changes its direction, moving around
in a random way.
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We now describe a way of simulating this random motion. Assume that a
particle is released from a source located at x = 0 on a number line and can move
only along the line (we are looking at one-dimensional diffusion). During every
time interval, a collision forces a particle to move either left or right with equal
chance for 1 unit of distance.

A particle starts at x = 0 at t = 0. It collides with another particle, and at
t = 1 with a 50% chance it moves to x = 1 and with a 50% chance it moves to
x = −1; see Table 2.4.

Table 2.4

Location Chance

−1 1/2

1 1/2

Assume that the particle ended at x = −1 at t = 1. The next collision moves the
particle to either x = −2 or x = 0 with equal chance. If it ended at x = 1 at
t = 1, the next collision will move the particle to either x = 0 or x = 2 with equal
chance; see Figure 2.6.
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FIGURE 2.6

First two steps of the random
walk along the line

Look at the situation at t = 2. There is one way the particle can end at x = −2
(moving left both times) and one way it can end at x = 2 (moving right both
times). But there are two ways it can end at x = 0: moving left then right, or
moving right then left. The chances that the particle ends at a particular location
are given in Table 2.5.

Table 2.5

Location Chance

−2 1/4

0 1/2

2 1/4

Consider another step. In Figure 2.7 we indicate the locations where the particle
could end at t = 3. The numbers in squares represent the number of ways the
particle can arrive at a particular location.
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Random walk, third step
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Of the total of eight paths, one leads to x = −3 and one to x = 3. Three paths
each lead to x = −1 and x = 1. For instance, to reach x = −1, the particle can
go left-left-right, or left-right-left, or right-left-left. The chances that the particle
ends at a particular location are shown in Table 2.6.

Table 2.6

Location Chance

−3 1/8

−1 3/8

1 3/8

3 1/8

We know that we cannot answer the question about the exact location of the
particle after t collisions. But we can try to answer questions such as: where is
the particle most likely to be? Or, how far from the source (from x = 0) is it most
likely to be?

Take t = 30 (i.e., 30 collisions). We run the experiment for 30 random walk
steps and then repeat 1,000 times. In Figure 2.8a we drew a histogram, showing
how many times the particle landed at each location. Does the shape look familiar?
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Random walk simulation
compared to the Gaussian
distribution

In calculus, we show that the concentration at a location x units from the source
at time t is given by

c(x, t) =
1

4πDt
e−x2/(4Dt)

where D is a constant (diffusion coefficient); see Figure 2.8b.
This particular shape is called the Gaussian distribution function or the Gaus-

sian density. We will learn a lot about it later in this book.

Summary Incorporating chance factors, we built models for a number of applications.
All models involve random experiments, i.e., repeatable experiments whose
outcomes we cannot exactly predict. We examined how a population of lions
reacts to a possible yearly immigration and the dynamics of the disappearance
and occurrence of a virus. Using chance, we explained basic principles in genetics.
The concept of random motion helps us to accurately describe certain aspects of
the process of diffusion.
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We now describe a way of simulating this random motion. Assume that a
particle is released from a source located at x = 0 on a number line and can move
only along the line (we are looking at one-dimensional diffusion). During every
time interval, a collision forces a particle to move either left or right with equal
chance for 1 unit of distance.

A particle starts at x = 0 at t = 0. It collides with another particle, and at
t = 1 with a 50% chance it moves to x = 1 and with a 50% chance it moves to
x = −1; see Table 2.4.
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Assume that the particle ended at x = −1 at t = 1. The next collision moves the
particle to either x = −2 or x = 0 with equal chance. If it ended at x = 1 at
t = 1, the next collision will move the particle to either x = 0 or x = 2 with equal
chance; see Figure 2.6.
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times). But there are two ways it can end at x = 0: moving left then right, or
moving right then left. The chances that the particle ends at a particular location
are given in Table 2.5.
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could end at t = 3. The numbers in squares represent the number of ways the
particle can arrive at a particular location.
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Of the total of eight paths, one leads to x = −3 and one to x = 3. Three paths
each lead to x = −1 and x = 1. For instance, to reach x = −1, the particle can
go left-left-right, or left-right-left, or right-left-left. The chances that the particle
ends at a particular location are shown in Table 2.6.

Table 2.6

Location Chance

−3 1/8

−1 3/8

1 3/8

3 1/8

We know that we cannot answer the question about the exact location of the
particle after t collisions. But we can try to answer questions such as: where is
the particle most likely to be? Or, how far from the source (from x = 0) is it most
likely to be?

Take t = 30 (i.e., 30 collisions). We run the experiment for 30 random walk
steps and then repeat 1,000 times. In Figure 2.8a we drew a histogram, showing
how many times the particle landed at each location. Does the shape look familiar?
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In calculus, we show that the concentration at a location x units from the source
at time t is given by

c(x, t) =
1

4πDt
e−x2/(4Dt)

where D is a constant (diffusion coefficient); see Figure 2.8b.
This particular shape is called the Gaussian distribution function or the Gaus-

sian density. We will learn a lot about it later in this book.

Summary Incorporating chance factors, we built models for a number of applications.
All models involve random experiments, i.e., repeatable experiments whose
outcomes we cannot exactly predict. We examined how a population of lions
reacts to a possible yearly immigration and the dynamics of the disappearance
and occurrence of a virus. Using chance, we explained basic principles in genetics.
The concept of random motion helps us to accurately describe certain aspects of
the process of diffusion.
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2 Exercises

1. Consider the stochastic system for a population of lions given by pt+1 = pt + It, where pt represents
the number of lions in year t, t = 0, 1, 2, . . . . The immigration term is It = 6 with a 50% chance and
It = 0 with a 50% chance. Assume that p0 = 100.

(a) Explain what dynamics is implied by this system. What would you expect the population to be
10 years later; i.e., what are the most likely values for p10?

(b) Using a coin to generate randomness, run the simulation three times, starting with p0 = 100, and
compare the values for p10 that you obtain.

(c) What is the sample space for p10 (i.e., the set of all possible values for p10)?

2. Consider the stochastic dynamical system mt+1 = rtmt, where m0 = 1 and rt = 2 with a 50% chance
and rt = 1/2 with a 50% chance (t = 0, 1, 2, . . .).

(a) What is the chance that m2 = 1?

(b) What is the sample space for m3 (i.e., the set of all possible values for m3)?

(c) What is the sample space for m4?

3. Consider the stochastic dynamical system mt+1 = rtmt, where m0 = 1 and rt = 2 with a 50% chance
and rt = −1 with a 50% chance (t = 0, 1, 2, . . .).

(a) What is the chance that m2 = 1?

(b) What is the sample space for m4 (i.e., the set of all possible values for m4)?

4. Consider the stochastic system for a population of lions given by pt+1 = pt + It, where pt represents
the number of lions in year t, t = 0, 1, 2, . . . . The immigration term is It = 3 with a 50% chance and
It = −3 with a 50% chance. Assume that p0 = 100.

(a) Describe the dynamics implied by this system.

(b) What is your prediction for the population of lions in 10 years? In 20 years?

(c) Using a coin to generate randomness, run the system three times and compare the values for p10

that you obtained.

(d) How can you relate this system to the random walk discussed in Example 2.8?

5. A population of leopards pt, t = 0, 1, 2 . . . , is modelled by pt+1 = pt + It. The immigration term is
equal to It = 3 with a 75% chance and It = −3 with a 25% chance. Assume that p0 = 100.

(a) Describe the dynamics implied by this system.

(b) What is your prediction for the population of leopards in 10 years? In the long term?

(c) Using a deck of cards to generate randomness (how?), run the system three times and compare
the values for p10 that you obtained.

6. A population of leopards pt, t = 0, 1, 2 . . . , is modelled by pt+1 = pt + It. The immigration term is
equal to It = 10 with a 90% chance and It = −100 with a 10% chance. What is more likely to happen
to the number of leopards—an increase or a decrease? Or will the population remain at about the
same size? Explain why.

7. Consider the following modification of the immigration pattern of the system pt+1 = 0.95pt + It in
Example 2.1: It = 12 with a 75% chance and It = 0 with a 25% chance.

(a) Explain how to simulate the probabilities that are needed in this exercise. [Hint: A deck of cards
will do.]

(b) Starting with p0 = 160 lions, find the values of pt for t = 1, 2, . . . , 6. How does p6 compare with
the values of the three simulations shown in Figure 2.1?
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8. Consider the following modification of the immigration pattern of the system pt+1 = 0.95pt + It in
Example 2.1: It = 12 with a 75% chance and It = −6 with a 25% chance. Starting with p0 = 160 lions,
find the values of pt for t = 1, 2, . . . , 6. How does p6 compare with the values of the three simulations
shown in Figure 2.1?

9. Consider a diploid plant of genotype AB.

(a) What fraction of first-generation offspring has genotype BB?

(b) What fraction of second-generation offspring has genotype BB?

(c) What fraction of third-generation offspring has genotype BB?

10. Consider a diploid plant of genotype AB.

(a) What fraction of first-generation offspring has genotype AB?

(b) What fraction of second-generation offspring has genotype AB?

(c) What fraction of third-generation offspring has genotype AB?

11. The trait of the dominant allele A is long ears and the trait of the recessive allele B is short ears.

(a) What is the chance that an offspring of AA and BB parents has short ears?

(b) What is the chance that an offspring of AB and BB parents has short ears?

12. The trait of the dominant allele A is brown hair and the trait of the recessive allele B is blond hair.

(a) What is the chance that an offspring of AB and AB parents has brown hair?

(b) What is the chance that an offspring of AA and AB parents has brown hair?

13. Assume that the molecule in Example 2.6 has a 25% chance of leaving the region during any 1-hour
time interval. Write the dynamical system for the chance pt that the molecule is still inside the region
after t hours. After how many hours will the chance pt fall below 10%?

14. Assume that the molecule in Example 2.6 has a 5% chance of leaving the region during any 1-hour
time interval. Write the dynamical system for the chance pt that the molecule is still inside the region
after t hours. After how many hours will the chance pt fall below 50%?

15. A molecule leaves a given region during any 1-minute interval with a 75% chance. What is the chance
that the molecule will be inside the region after 2 minutes? After 3 minutes?

16. A molecule leaves a given region during any 1-minute interval with a 35% chance. What is the chance
that the molecule will be inside the region after 5 minutes?

17. Consider the random walk described in Example 2.8.

(a) What is the sample space when t = 5? That is, list all possible locations of a particle after
completing five steps of the random walk.

(b) What is the sample space when t = 6?

(c) What is the sample space in general, after t steps of the random walk have been completed?

18. Consider the random walk described in Example 2.8.

(a) Add two more steps to the diagram in Figure 2.7; i.e., add all possible locations of the particle for
t = 4 and t = 5.

(b) Identify the number of different ways a particle can arrive at the locations you listed in (a).

(c) Look at the numbers in the squares in Figure 2.7 and your answer to (b). Does the pattern look
familiar?

(d) Create a table of probabilities (like Table 2.6) for the steps t = 4 and t = 5.
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2 Exercises

1. Consider the stochastic system for a population of lions given by pt+1 = pt + It, where pt represents
the number of lions in year t, t = 0, 1, 2, . . . . The immigration term is It = 6 with a 50% chance and
It = 0 with a 50% chance. Assume that p0 = 100.

(a) Explain what dynamics is implied by this system. What would you expect the population to be
10 years later; i.e., what are the most likely values for p10?

(b) Using a coin to generate randomness, run the simulation three times, starting with p0 = 100, and
compare the values for p10 that you obtain.

(c) What is the sample space for p10 (i.e., the set of all possible values for p10)?

2. Consider the stochastic dynamical system mt+1 = rtmt, where m0 = 1 and rt = 2 with a 50% chance
and rt = 1/2 with a 50% chance (t = 0, 1, 2, . . .).

(a) What is the chance that m2 = 1?

(b) What is the sample space for m3 (i.e., the set of all possible values for m3)?

(c) What is the sample space for m4?

3. Consider the stochastic dynamical system mt+1 = rtmt, where m0 = 1 and rt = 2 with a 50% chance
and rt = −1 with a 50% chance (t = 0, 1, 2, . . .).

(a) What is the chance that m2 = 1?

(b) What is the sample space for m4 (i.e., the set of all possible values for m4)?

4. Consider the stochastic system for a population of lions given by pt+1 = pt + It, where pt represents
the number of lions in year t, t = 0, 1, 2, . . . . The immigration term is It = 3 with a 50% chance and
It = −3 with a 50% chance. Assume that p0 = 100.

(a) Describe the dynamics implied by this system.

(b) What is your prediction for the population of lions in 10 years? In 20 years?

(c) Using a coin to generate randomness, run the system three times and compare the values for p10

that you obtained.

(d) How can you relate this system to the random walk discussed in Example 2.8?

5. A population of leopards pt, t = 0, 1, 2 . . . , is modelled by pt+1 = pt + It. The immigration term is
equal to It = 3 with a 75% chance and It = −3 with a 25% chance. Assume that p0 = 100.

(a) Describe the dynamics implied by this system.

(b) What is your prediction for the population of leopards in 10 years? In the long term?

(c) Using a deck of cards to generate randomness (how?), run the system three times and compare
the values for p10 that you obtained.

6. A population of leopards pt, t = 0, 1, 2 . . . , is modelled by pt+1 = pt + It. The immigration term is
equal to It = 10 with a 90% chance and It = −100 with a 10% chance. What is more likely to happen
to the number of leopards—an increase or a decrease? Or will the population remain at about the
same size? Explain why.

7. Consider the following modification of the immigration pattern of the system pt+1 = 0.95pt + It in
Example 2.1: It = 12 with a 75% chance and It = 0 with a 25% chance.

(a) Explain how to simulate the probabilities that are needed in this exercise. [Hint: A deck of cards
will do.]

(b) Starting with p0 = 160 lions, find the values of pt for t = 1, 2, . . . , 6. How does p6 compare with
the values of the three simulations shown in Figure 2.1?
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8. Consider the following modification of the immigration pattern of the system pt+1 = 0.95pt + It in
Example 2.1: It = 12 with a 75% chance and It = −6 with a 25% chance. Starting with p0 = 160 lions,
find the values of pt for t = 1, 2, . . . , 6. How does p6 compare with the values of the three simulations
shown in Figure 2.1?

9. Consider a diploid plant of genotype AB.

(a) What fraction of first-generation offspring has genotype BB?

(b) What fraction of second-generation offspring has genotype BB?

(c) What fraction of third-generation offspring has genotype BB?

10. Consider a diploid plant of genotype AB.

(a) What fraction of first-generation offspring has genotype AB?

(b) What fraction of second-generation offspring has genotype AB?

(c) What fraction of third-generation offspring has genotype AB?

11. The trait of the dominant allele A is long ears and the trait of the recessive allele B is short ears.

(a) What is the chance that an offspring of AA and BB parents has short ears?

(b) What is the chance that an offspring of AB and BB parents has short ears?

12. The trait of the dominant allele A is brown hair and the trait of the recessive allele B is blond hair.

(a) What is the chance that an offspring of AB and AB parents has brown hair?

(b) What is the chance that an offspring of AA and AB parents has brown hair?

13. Assume that the molecule in Example 2.6 has a 25% chance of leaving the region during any 1-hour
time interval. Write the dynamical system for the chance pt that the molecule is still inside the region
after t hours. After how many hours will the chance pt fall below 10%?

14. Assume that the molecule in Example 2.6 has a 5% chance of leaving the region during any 1-hour
time interval. Write the dynamical system for the chance pt that the molecule is still inside the region
after t hours. After how many hours will the chance pt fall below 50%?

15. A molecule leaves a given region during any 1-minute interval with a 75% chance. What is the chance
that the molecule will be inside the region after 2 minutes? After 3 minutes?

16. A molecule leaves a given region during any 1-minute interval with a 35% chance. What is the chance
that the molecule will be inside the region after 5 minutes?

17. Consider the random walk described in Example 2.8.

(a) What is the sample space when t = 5? That is, list all possible locations of a particle after
completing five steps of the random walk.

(b) What is the sample space when t = 6?

(c) What is the sample space in general, after t steps of the random walk have been completed?

18. Consider the random walk described in Example 2.8.

(a) Add two more steps to the diagram in Figure 2.7; i.e., add all possible locations of the particle for
t = 4 and t = 5.

(b) Identify the number of different ways a particle can arrive at the locations you listed in (a).

(c) Look at the numbers in the squares in Figure 2.7 and your answer to (b). Does the pattern look
familiar?

(d) Create a table of probabilities (like Table 2.6) for the steps t = 4 and t = 5.
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3 Basics of Probability Theory

We have already used “chance,” “sample space,” and “event,” words belonging
to the vocabulary of probability theory. In this section, we precisely define
what these (and related) terms mean. Having a sound mathematical theory of
probability allows us to argue correctly about the models and situations that
involve chance events. The foundations of probability theory lie in set theory,
which we review in this section. To find a probability amounts to assigning a
specific number to a subset of a given set.

Sample Spaces and Events

Consider performing an experiment that involves chance (such as the experiments
that we discussed in the previous two sections).

Definition 4 Sample Space
The sample space of a random experiment is the set of all possible outcomes of
that experiment.

We will use S to denote a sample space.

Some experiments that we will discuss involve tossing coins and rolling dice. We
assume that these objects are fair: tossing a fair coin means that heads (H) and
tails (T) are equally likely to occur. Likewise, each number (1, 2, 3, 4, 5, or 6) of a
fair die is equally likely to be rolled.

Example 3.1 Tossing Coins

The possible outcomes of a single toss of a coin are heads (H) and tails (T). The
sample space of the experiment that consists of tossing a fair coin once consists of
two elements:

S = {H, T}
The outcomes of tossing a coin twice in a row are often recorded as ordered pairs, so
that we know what was the outcome of the first toss and what was the outcome of
the second toss. For instance, heads followed by tails is recorded as (H, T); usually,
we drop the parentheses and the comma and just write HT. In the experiment of
tossing a coin twice, the sample space has four elements:

S = {HH, HT, TH, TT}
Note that HT and TH are two different events.

Example 3.2 Rolling Dice

The sample space of the random experiment that consists of rolling a fair die once
is the set of six elements

S = {1, 2, 3, 4, 5, 6}
If we roll two dice simultaneously and add up the numbers that come up, the
sample space describing the experiment is the set

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
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Example 3.3 Sample Space for the Lion Population Stochastic Model

In our model of the lion population with immigration (Example 2.1 in Section 2),
immigration is the chance factor. If we consider a single year, the sample space
consists of two elements: I = “immigration of 12 lions” and N = “no immigration.”
If we follow the experiment for 3 years, the sample space is larger:

S = {III, IIN, INI, NII, NNI, NIN, INN, NNN}
For instance, INN means immigration in the first year, followed by 2 years of no
immigration. (See Exercise 9.)

Example 3.4 Sample Space for AB and AB Crossing

Consider the genotype of an offspring of heterozygous parents (Example 2.3). The
parents are both of genotype AB, and so the possible outcomes are AA, AB, BA,
and BB. Assuming that AB and BA are the same genotype, the sample space has
three elements:

S = {AA, AB, BB}

Example 3.5 Sample Space for the Random Walk

Recall the random walk of Example 2.8. The sample space of the experiment that
consists of locating the particle at t = 1 (after one random move) is

S = {−1, 1}
When t = 2, the sample space of possible locations is

S = {−2, 0, 2}
and when t = 3,

S = {−3,−1, 1, 3}
In general, all possible locations of the particle at time t (i.e., after t random
moves) is

S = {−t,−t + 2, . . . , t − 2, t}
Note that if t is even, all numbers in S are even, and if t is odd then S is a subset
of odd numbers.

Related to the outcomes of an experiment, we define the following.

Definition 5 Simple Event and Event
A single outcome of a random experiment is called a simple event. An event is a
collection (or a set) of simple events.

Both a simple event and an event are subsets of the sample space; a simple event
has one element, whereas an event can be of any size: it could be an empty set,
or as large as the sample space, or anything in between.

Assume that we roll a die once. “Rolling a 3” is a simple event, and “rolling
an even number,” “rolling a number larger than 4,” and “rolling a 6” are events.

Example 3.6 Examples of Simple Events and Events

The sample space in Example 3.3, where we investigated the immigration/no-
immigration dynamics within a group of lions, is

S = {III, IIN, INI, NII, NNI, NIN, INN, NNN}
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3 Basics of Probability Theory

We have already used “chance,” “sample space,” and “event,” words belonging
to the vocabulary of probability theory. In this section, we precisely define
what these (and related) terms mean. Having a sound mathematical theory of
probability allows us to argue correctly about the models and situations that
involve chance events. The foundations of probability theory lie in set theory,
which we review in this section. To find a probability amounts to assigning a
specific number to a subset of a given set.

Sample Spaces and Events

Consider performing an experiment that involves chance (such as the experiments
that we discussed in the previous two sections).

Definition 4 Sample Space
The sample space of a random experiment is the set of all possible outcomes of
that experiment.

We will use S to denote a sample space.

Some experiments that we will discuss involve tossing coins and rolling dice. We
assume that these objects are fair: tossing a fair coin means that heads (H) and
tails (T) are equally likely to occur. Likewise, each number (1, 2, 3, 4, 5, or 6) of a
fair die is equally likely to be rolled.

Example 3.1 Tossing Coins

The possible outcomes of a single toss of a coin are heads (H) and tails (T). The
sample space of the experiment that consists of tossing a fair coin once consists of
two elements:

S = {H, T}
The outcomes of tossing a coin twice in a row are often recorded as ordered pairs, so
that we know what was the outcome of the first toss and what was the outcome of
the second toss. For instance, heads followed by tails is recorded as (H, T); usually,
we drop the parentheses and the comma and just write HT. In the experiment of
tossing a coin twice, the sample space has four elements:

S = {HH, HT, TH, TT}
Note that HT and TH are two different events.

Example 3.2 Rolling Dice

The sample space of the random experiment that consists of rolling a fair die once
is the set of six elements

S = {1, 2, 3, 4, 5, 6}
If we roll two dice simultaneously and add up the numbers that come up, the
sample space describing the experiment is the set

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
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Example 3.3 Sample Space for the Lion Population Stochastic Model

In our model of the lion population with immigration (Example 2.1 in Section 2),
immigration is the chance factor. If we consider a single year, the sample space
consists of two elements: I = “immigration of 12 lions” and N = “no immigration.”
If we follow the experiment for 3 years, the sample space is larger:

S = {III, IIN, INI, NII, NNI, NIN, INN, NNN}
For instance, INN means immigration in the first year, followed by 2 years of no
immigration. (See Exercise 9.)

Example 3.4 Sample Space for AB and AB Crossing

Consider the genotype of an offspring of heterozygous parents (Example 2.3). The
parents are both of genotype AB, and so the possible outcomes are AA, AB, BA,
and BB. Assuming that AB and BA are the same genotype, the sample space has
three elements:

S = {AA, AB, BB}

Example 3.5 Sample Space for the Random Walk

Recall the random walk of Example 2.8. The sample space of the experiment that
consists of locating the particle at t = 1 (after one random move) is

S = {−1, 1}
When t = 2, the sample space of possible locations is

S = {−2, 0, 2}
and when t = 3,

S = {−3,−1, 1, 3}
In general, all possible locations of the particle at time t (i.e., after t random
moves) is

S = {−t,−t + 2, . . . , t − 2, t}
Note that if t is even, all numbers in S are even, and if t is odd then S is a subset
of odd numbers.

Related to the outcomes of an experiment, we define the following.

Definition 5 Simple Event and Event
A single outcome of a random experiment is called a simple event. An event is a
collection (or a set) of simple events.

Both a simple event and an event are subsets of the sample space; a simple event
has one element, whereas an event can be of any size: it could be an empty set,
or as large as the sample space, or anything in between.

Assume that we roll a die once. “Rolling a 3” is a simple event, and “rolling
an even number,” “rolling a number larger than 4,” and “rolling a 6” are events.

Example 3.6 Examples of Simple Events and Events

The sample space in Example 3.3, where we investigated the immigration/no-
immigration dynamics within a group of lions, is

S = {III, IIN, INI, NII, NNI, NIN, INN, NNN}
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The event “no immigration in the first year followed by two years of immigration,”
or NII for short, is a simple event. The event “immigration in the third year” is
not a simple event—it consists of four elements: {III, INI, NII, NNI}.

In Example 2.5 in Section 2, we analyzed the case of a dominant allele A
(unattached earlobes) and a recessive allele B (attached earlobes). The sample
space of the random experiment where we look at an offspring of AA and BB
parents consists of three elements:

S = {AA, AB, BA}
The event “offspring has attached earlobes” consists of a single element BB; thus,
it is a simple event. The event “unattached earlobes” is not a simple event, since
it contains two elements, AA and AB.

The sample space for the step t = 5 of the random walk in Example 3.5 is

S = {−5,−3,−1, 1, 3, 5}
The events “particle ends at −3” and “particle ends at 5” are simple events. The
event “particle is more than 2 units away from the source” is not a simple event;
its elements are −5, −3, 3 and 5.

Elements of Set Theory

In order to work with events, we need to learn about sets.
A set is defined by the elements it contains. For instance, we say “the set of all

real numbers,” or “the set of genotypes AA, AB, and BB,” or “the set of all even
numbers between 2 and 22.” An empty set (denoted by ∅) is a set that contains
no elements.

A useful way of visualizing a set is by using a Venn diagram. A set is repre-
sented using a geometric figure, such as a circle, an ellipse, a rectangle, or some
irregular figure, with the convention that the insides of these figures contain the
elements of the set. In Figure 3.1 we use Venn diagrams to represent three different
sets.

set of genotypes
set of locations of a particle
after three random moves

set of outcomes of two
consecutive coin tossesof AB and AB crossing

AA

HTBB
AB

HH
TT

TH
-31

3-1

G S
C

FIGURE 3.1

Three sets

Using set notation, we write the sets in Figure 3.1 as G = {AA, AB, BB}, S =
{−3,−1, 1, 3}, and C = {HH, HT, TH, TT}.

We say that a set A is a subset of a set S and write A ⊆ S if A is empty or
contains some or all of the elements of S.

For any set A, ∅ ⊆ A and A ⊆ A.

We use a rectangle to visualize the sample space of an experiment and circles
or ellipses to indicate its subsets. In Figure 3.2a the sample space S has two
subsets, A and B.
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a b
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SS

BFIGURE 3.2

Set S and its subsets

Let S be the sample space S = {−3,−1, 1, 3} of outcomes after three steps of
random motion. The two subsets in Figure 3.2b contain ending locations to the
right and to the left of the starting position x = 0.

Next, we describe the basic set operations: intersection, union, and complement.

Definition 6 Intersection of Sets
The intersection A∩B of sets A and B is the set of elements that belong to both
A and B.

The symbol A ∩ B is read “A intersects B.” The operation of intersection corre-
sponds to the word “and.” Thus, the intersection of events A and B consists of
all simple events that belong to both A and B. The shaded region in Figure 3.3
represents the intersection A ∩ B.

From the defiinition, we conclude that A∩B = B∩A. Two sets A and B that
have no elements in common are called disjoint; we write A ∩ B = ∅, where ∅ is
the empty set.

A

S

B A∩B
shaded region is

FIGURE 3.3

The intersection of two sets

Definition 7 Mutually Exclusive Events
Two events A and B are said to be mutually exclusive if they are disjoint, i.e., if
A ∩ B = ∅.

Consider the experiment of rolling a die once. The events “rolling an even number”
and “rolling a 5” are mutually exclusive.

Regarding the immigration/no-immigration dynamics of Example 3.3: the
events “immigration in the first year” = {INN, IIN, III, INI} and “no immigration
in the first 3 years” = {NNN} are mutually exclusive.

Since {INN, IIN, III}∩{INN, NNN} = {INN} �= ∅, we conclude that the events
{INN, IIN, III} and {INN, NNN} are not mutually exclusive.

Definition 8 Union of Sets
The union A∪B of sets A and B is the set that contains elements that belong to
either A or B.

In other words, an element belongs to the union A∪B if it belongs to A, or to B,
or to both A and B. Thus, the union corresponds to the word “or.” The symbol
A ∪ B is read “A union B.”
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The event “no immigration in the first year followed by two years of immigration,”
or NII for short, is a simple event. The event “immigration in the third year” is
not a simple event—it consists of four elements: {III, INI, NII, NNI}.

In Example 2.5 in Section 2, we analyzed the case of a dominant allele A
(unattached earlobes) and a recessive allele B (attached earlobes). The sample
space of the random experiment where we look at an offspring of AA and BB
parents consists of three elements:

S = {AA, AB, BA}
The event “offspring has attached earlobes” consists of a single element BB; thus,
it is a simple event. The event “unattached earlobes” is not a simple event, since
it contains two elements, AA and AB.

The sample space for the step t = 5 of the random walk in Example 3.5 is

S = {−5,−3,−1, 1, 3, 5}
The events “particle ends at −3” and “particle ends at 5” are simple events. The
event “particle is more than 2 units away from the source” is not a simple event;
its elements are −5, −3, 3 and 5.

Elements of Set Theory

In order to work with events, we need to learn about sets.
A set is defined by the elements it contains. For instance, we say “the set of all

real numbers,” or “the set of genotypes AA, AB, and BB,” or “the set of all even
numbers between 2 and 22.” An empty set (denoted by ∅) is a set that contains
no elements.

A useful way of visualizing a set is by using a Venn diagram. A set is repre-
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irregular figure, with the convention that the insides of these figures contain the
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Using set notation, we write the sets in Figure 3.1 as G = {AA, AB, BB}, S =
{−3,−1, 1, 3}, and C = {HH, HT, TH, TT}.

We say that a set A is a subset of a set S and write A ⊆ S if A is empty or
contains some or all of the elements of S.

For any set A, ∅ ⊆ A and A ⊆ A.

We use a rectangle to visualize the sample space of an experiment and circles
or ellipses to indicate its subsets. In Figure 3.2a the sample space S has two
subsets, A and B.
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Let S be the sample space S = {−3,−1, 1, 3} of outcomes after three steps of
random motion. The two subsets in Figure 3.2b contain ending locations to the
right and to the left of the starting position x = 0.

Next, we describe the basic set operations: intersection, union, and complement.

Definition 6 Intersection of Sets
The intersection A∩B of sets A and B is the set of elements that belong to both
A and B.

The symbol A ∩ B is read “A intersects B.” The operation of intersection corre-
sponds to the word “and.” Thus, the intersection of events A and B consists of
all simple events that belong to both A and B. The shaded region in Figure 3.3
represents the intersection A ∩ B.

From the defiinition, we conclude that A∩B = B∩A. Two sets A and B that
have no elements in common are called disjoint; we write A ∩ B = ∅, where ∅ is
the empty set.
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The intersection of two sets

Definition 7 Mutually Exclusive Events
Two events A and B are said to be mutually exclusive if they are disjoint, i.e., if
A ∩ B = ∅.

Consider the experiment of rolling a die once. The events “rolling an even number”
and “rolling a 5” are mutually exclusive.

Regarding the immigration/no-immigration dynamics of Example 3.3: the
events “immigration in the first year” = {INN, IIN, III, INI} and “no immigration
in the first 3 years” = {NNN} are mutually exclusive.

Since {INN, IIN, III}∩{INN, NNN} = {INN} �= ∅, we conclude that the events
{INN, IIN, III} and {INN, NNN} are not mutually exclusive.

Definition 8 Union of Sets
The union A∪B of sets A and B is the set that contains elements that belong to
either A or B.

In other words, an element belongs to the union A∪B if it belongs to A, or to B,
or to both A and B. Thus, the union corresponds to the word “or.” The symbol
A ∪ B is read “A union B.”
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The shaded region in Figure 3.4 represents the set A∪B. The definition implies
that A ∪ B = B ∪ A.

A

S

B A∪B
shaded region is

FIGURE 3.4

The union of two sets

Definition 9 Complement of a Set
The complement Ac of a subset A ⊆ S is the set of all elements in S that are not
in A.

See Figure 3.5. Note that the complement of a set A depends on the set that
contains A (i.e., the set that A is a subset of). That set is called a universal set.
In Definition 9, the universal set is S.

For instance, the complement of the set A = {1, 2} as a subset of S =
{1, 2, 3, 4} is Ac = {3, 4}. The complement of A with respect to the universal
set S = {1, 2, 3, 4, 5, 6, 7, 8, 9} is Ac = {3, 4, 5, 6, 7, 8, 9}.

A

S

Ac
shaded region is

FIGURE 3.5

The complement of a set

In this book, the universal set S will always be the sample space of the experiment
that we are investigating.

Note that Sc = ∅ and ∅c = S. As well, (Ac)c = A for any set A. An element
of S is either in A or not in A (and thus in Ac); we conclude that A ∪Ac = S for
any set A ⊆ S. No element can be in both A and Ac; thus, A ∩ Ac = ∅.

Example 3.7 Operations with Events

We toss a coin three times in a row. The sample space has eight elements:

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Consider the following events:

A = “the outcome of the first toss was heads”

B = “exactly two heads in a row occurred”

C = “no more than one head occurred”

D = “exactly two tails occurred”
Find A ∪ B, A ∩ D, B ∩ D, Dc, and B ∪ C. As well, express the events Ac, Bc,
and Cc in words.

First, we write all events as sets by listing the simple events that they contain:
A = {HHH, HHT, HTH, HTT}, B = {HHT, THH}. “No more than one” means
none or one, so C = {HTT, THT, TTH, TTT}. As well, D = {HTT, THT, TTH}.
Thus,

A ∪ B = {HHH, HHT, HTH, HTT, THH}
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A ∩ D = {HTT} (so A ∩ D is a simple event)

B ∩ D = ∅ (so B and D are mutually exclusive events)

Dc = {HHH, HHT, HTH, THH, TTT}
B ∪ C = {HHT, THH, HTT, THT, TTH, TTT}

To express the complement of an event, we think of ways in which that event could
not happen. Thus, we have the following:

Ac = “the outcome of the first toss is not heads,” or Ac = “the outcome of the
first toss is tails.”

Bc = “exactly two heads in a row did not occur.”

Cc = “more than one head occurred”, or Cc = “exactly two or exactly three
heads occurred.”

Example 3.8 Operations with Events

In the stochastic population model (see Example 1.2 in Section 1), the per capita
production rate is the chance factor; the sample space is the interval [0.95, 1.15].
Define the events A = “per capita production rate decreases the population” and
B = “per capita production rate increases the population.”

Using interval notation, A = [0.95, 1) and B = (1, 1.15]. Clearly, A ∩ B = ∅;
i.e., A and B are mutually exclusive events. The complement Ac = [1, 1.15]
consists of the per capita rates that do not decrease the population. The value
r = 1 (which keeps the population unchanged in number) is contained in Ac.

Note that the complement of “decreasing” is not “increasing,” but “not decreas-
ing”!

The relationship between the intersection, union, and complement is given in the
following theorem.

Theorem 1 De Morgan’s Laws
Assume that A, B ⊆ S. Then

(a) (A ∩ B)c = Ac ∪ Bc

(b) (A ∪ B)c = Ac ∩ Bc

These formulas can be verified using Venn diagrams. As an illustration, in Figure
3.6 we verify (a).

A

S

B

A∩B

A

S

B

(A∩B)c

A

S

B

A

S

B

A

S

B

Ac Bc Ac ∪Bc

FIGURE 3.6

Verification of statement (a)
from Theorem 1
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The shaded region in Figure 3.4 represents the set A∪B. The definition implies
that A ∪ B = B ∪ A.
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FIGURE 3.4

The union of two sets

Definition 9 Complement of a Set
The complement Ac of a subset A ⊆ S is the set of all elements in S that are not
in A.

See Figure 3.5. Note that the complement of a set A depends on the set that
contains A (i.e., the set that A is a subset of). That set is called a universal set.
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The complement of a set

In this book, the universal set S will always be the sample space of the experiment
that we are investigating.

Note that Sc = ∅ and ∅c = S. As well, (Ac)c = A for any set A. An element
of S is either in A or not in A (and thus in Ac); we conclude that A ∪Ac = S for
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S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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First, we write all events as sets by listing the simple events that they contain:
A = {HHH, HHT, HTH, HTT}, B = {HHT, THH}. “No more than one” means
none or one, so C = {HTT, THT, TTH, TTT}. As well, D = {HTT, THT, TTH}.
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A ∪ B = {HHH, HHT, HTH, HTT, THH}
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A ∩ D = {HTT} (so A ∩ D is a simple event)

B ∩ D = ∅ (so B and D are mutually exclusive events)

Dc = {HHH, HHT, HTH, THH, TTT}
B ∪ C = {HHT, THH, HTT, THT, TTH, TTT}
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not happen. Thus, we have the following:

Ac = “the outcome of the first toss is not heads,” or Ac = “the outcome of the
first toss is tails.”

Bc = “exactly two heads in a row did not occur.”

Cc = “more than one head occurred”, or Cc = “exactly two or exactly three
heads occurred.”

Example 3.8 Operations with Events

In the stochastic population model (see Example 1.2 in Section 1), the per capita
production rate is the chance factor; the sample space is the interval [0.95, 1.15].
Define the events A = “per capita production rate decreases the population” and
B = “per capita production rate increases the population.”

Using interval notation, A = [0.95, 1) and B = (1, 1.15]. Clearly, A ∩ B = ∅;
i.e., A and B are mutually exclusive events. The complement Ac = [1, 1.15]
consists of the per capita rates that do not decrease the population. The value
r = 1 (which keeps the population unchanged in number) is contained in Ac.

Note that the complement of “decreasing” is not “increasing,” but “not decreas-
ing”!

The relationship between the intersection, union, and complement is given in the
following theorem.

Theorem 1 De Morgan’s Laws
Assume that A, B ⊆ S. Then

(a) (A ∩ B)c = Ac ∪ Bc

(b) (A ∪ B)c = Ac ∩ Bc

These formulas can be verified using Venn diagrams. As an illustration, in Figure
3.6 we verify (a).
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Probability

A probability is a special way of assigning a number to every event in a sample
space.

Definition 10 Probability
Let S denote a sample space. A probability is a function P that assigns, to each
event A in S, a unique real number P (A), called the probability of A. The function
P satisfies the following properties:

(i) 0 ≤ P (A) ≤ 1 for any event A ⊆ S.

(ii) P (∅) = 0 and P (S) = 1.

(iii) If A and B are mutually exclusive events (i.e., A ∩B = ∅), then P (A ∪ B) =
P (A) + P (B).

Thus, the probability is a number between 0 and 1 (and can be expressed—as is
common practice—as a percent). A probability of 0 means that the event never
happens, and a probability of 1 means certainty.

For instance, consider the experiment of rolling two dice and adding up the
numbers that come up. If A = “sum is 1,” then P (A) = 0, and if B = “sum is
larger than 1,” then P (B) = 1.

Recall that A ∪ Ac = S for any subset A of S. Substituting B = Ac into the
left side of (iii) in Definition 10 we get

P (A ∪ B) = P (A ∪ Ac) = P (S) = 1

The right side is

P (A) + P (B) = P (A) + P (Ac)

(Note that we are allowed to use (iii) since A and Ac are mutually exclusive events.)
Combining the two equations, we get P (A) + P (Ac) = 1, i.e.,

P (Ac) = 1 − P (A)

We have just proved the following theorem.

Theorem 2 Probability of a Complementary Event
If A is an event, then P (Ac) = 1 − P (A).

In words, the probability that A does not happen is equal to 1 minus the probability
that A happens. This sounds reasonable: if the probability that a given population
reaches 1,000 bacteria is 70%, then the probability that it will not reach 1,000 is
100%− 70%= 30%.

Note that (iii) in Definition 10 requires that A and B be disjoint events (mutually
exclusive). If the probability that in a random experiment a monkey presses a red
button is 0.2 and the probability that it presses a green button is 0.3, and there
is no chance that it can press both buttons at the same time, then the probability
that the monkey presses either a red button or a green button is 0.2 + 0.3 = 0.5.

In the case where two events are not mutually exclusive, we use the following
result.
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Theorem 3 Probability of the Union of Two Events
If A and B are two events, then

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (3.1)

In the special case where A and B are mutually exclusive events, (3.1) reduces to
P (A ∪ B) = P (A) + P (B), which is the requirement (iii) from Definition 10.

Intuitively, (3.1) is clear: the intersection A∩B is contained in both A and B. So
in calculating P (A) + P (B) we have counted the probability of A ∩ B twice and
need to subtract one of these contributions. The formal proof of this formula is
not difficult. We discuss it in Exercise 39.

We are ready to answer one of the questions we asked earlier: assume that there
is a 60% chance that it will rain on Saturday and a 50% chance that it will rain
on Sunday. What is the chance that it will rain on the weekend?

Define the events A = “it will rain on Saturday” and B = “it will rain on
Sunday.” Then A∪B = “it will rain on the weekend.” We are given that P (A) =
0.6 and P (B) = 0.5 and are asked to calculate P (A ∪ B).

Clearly, P (A) + P (B) = 0.6 + 0.5 = 1.1 > 1 cannot be the probability of any
event. Looking at (3.1), we see that in order to compute P (A ∪ B), we need to
know P (A∩B), i.e., the probability that it will rain on both Saturday and Sunday.
If we know that information (say, P (A ∩ B) = 0.4), then the probability that it
will rain on the weekend is

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.6 + 0.5 − 0.4 = 0.7

i.e., 70%.

The probability can be (and is) interpreted as an area upon adopting the following
conventions: to satisfy (ii) in Definition 10, we take the area of the sample space
S to be 1 and the area of the empty set to be 0. Any other event (subset of S)
has area between 0 and 1 (that’s (i) from Definition 10). Thus, for A ⊆ S,

P (A) = area of A (3.2)

The following arguments will convince us that this makes a lot of sense.

(a) If A and B are disjoint, then the area of A∪B is the sum of the area of A and
the area of B, which is exactly what (iii) in Definition 10 requires.

(b) If the area of A is P (A), then

area of Ac = area of S − area of A = 1 − P (A)

i.e., P (Ac) = 1 − P (A).

(c) If A and B are not disjoint, then the area of A∪B cannot be equal to the sum
of the areas of A and B, since the region A ∩B has been counted in twice. Thus,

area of (A ∪ B) = area of A + area of B − area of (A ∩ B)

which is exactly what we claim in (3.1).

Assigning Probability to Events

Now that we know what the probability is, we need to work on a major question
—how to assign probabilities to events within a given sample space S so that all
requirements of Definition 10 are fulfilled.

The approaches to answering this question differ based on the size of S. We
first focus on finite sample spaces. Later, we learn how to do it for infinite sample
spaces.
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Probability

A probability is a special way of assigning a number to every event in a sample
space.
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P (A) + P (B).

Thus, the probability is a number between 0 and 1 (and can be expressed—as is
common practice—as a percent). A probability of 0 means that the event never
happens, and a probability of 1 means certainty.

For instance, consider the experiment of rolling two dice and adding up the
numbers that come up. If A = “sum is 1,” then P (A) = 0, and if B = “sum is
larger than 1,” then P (B) = 1.

Recall that A ∪ Ac = S for any subset A of S. Substituting B = Ac into the
left side of (iii) in Definition 10 we get

P (A ∪ B) = P (A ∪ Ac) = P (S) = 1

The right side is

P (A) + P (B) = P (A) + P (Ac)

(Note that we are allowed to use (iii) since A and Ac are mutually exclusive events.)
Combining the two equations, we get P (A) + P (Ac) = 1, i.e.,

P (Ac) = 1 − P (A)

We have just proved the following theorem.

Theorem 2 Probability of a Complementary Event
If A is an event, then P (Ac) = 1 − P (A).

In words, the probability that A does not happen is equal to 1 minus the probability
that A happens. This sounds reasonable: if the probability that a given population
reaches 1,000 bacteria is 70%, then the probability that it will not reach 1,000 is
100%− 70%= 30%.

Note that (iii) in Definition 10 requires that A and B be disjoint events (mutually
exclusive). If the probability that in a random experiment a monkey presses a red
button is 0.2 and the probability that it presses a green button is 0.3, and there
is no chance that it can press both buttons at the same time, then the probability
that the monkey presses either a red button or a green button is 0.2 + 0.3 = 0.5.

In the case where two events are not mutually exclusive, we use the following
result.
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Theorem 3 Probability of the Union of Two Events
If A and B are two events, then

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (3.1)

In the special case where A and B are mutually exclusive events, (3.1) reduces to
P (A ∪ B) = P (A) + P (B), which is the requirement (iii) from Definition 10.

Intuitively, (3.1) is clear: the intersection A∩B is contained in both A and B. So
in calculating P (A) + P (B) we have counted the probability of A ∩ B twice and
need to subtract one of these contributions. The formal proof of this formula is
not difficult. We discuss it in Exercise 39.

We are ready to answer one of the questions we asked earlier: assume that there
is a 60% chance that it will rain on Saturday and a 50% chance that it will rain
on Sunday. What is the chance that it will rain on the weekend?

Define the events A = “it will rain on Saturday” and B = “it will rain on
Sunday.” Then A∪B = “it will rain on the weekend.” We are given that P (A) =
0.6 and P (B) = 0.5 and are asked to calculate P (A ∪ B).

Clearly, P (A) + P (B) = 0.6 + 0.5 = 1.1 > 1 cannot be the probability of any
event. Looking at (3.1), we see that in order to compute P (A ∪ B), we need to
know P (A∩B), i.e., the probability that it will rain on both Saturday and Sunday.
If we know that information (say, P (A ∩ B) = 0.4), then the probability that it
will rain on the weekend is

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.6 + 0.5 − 0.4 = 0.7

i.e., 70%.

The probability can be (and is) interpreted as an area upon adopting the following
conventions: to satisfy (ii) in Definition 10, we take the area of the sample space
S to be 1 and the area of the empty set to be 0. Any other event (subset of S)
has area between 0 and 1 (that’s (i) from Definition 10). Thus, for A ⊆ S,

P (A) = area of A (3.2)

The following arguments will convince us that this makes a lot of sense.

(a) If A and B are disjoint, then the area of A∪B is the sum of the area of A and
the area of B, which is exactly what (iii) in Definition 10 requires.

(b) If the area of A is P (A), then

area of Ac = area of S − area of A = 1 − P (A)

i.e., P (Ac) = 1 − P (A).

(c) If A and B are not disjoint, then the area of A∪B cannot be equal to the sum
of the areas of A and B, since the region A ∩B has been counted in twice. Thus,

area of (A ∪ B) = area of A + area of B − area of (A ∩ B)

which is exactly what we claim in (3.1).

Assigning Probability to Events

Now that we know what the probability is, we need to work on a major question
—how to assign probabilities to events within a given sample space S so that all
requirements of Definition 10 are fulfilled.

The approaches to answering this question differ based on the size of S. We
first focus on finite sample spaces. Later, we learn how to do it for infinite sample
spaces.
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Assume that the sample space of an experiment is finite, i.e., that it contains n
distinct, simple events E1, E2, . . . , En. By virtue of being simple and distinct, the
events E1, E2, . . . , En are all mutually exclusive. As well,

S = E1 ∪ E2 ∪ · · · ∪ En (3.3)

To each event Ei, i = 1, 2, . . . , n, we assign the number P (Ei) between 0 and 1.
From (3.3) we conclude that

P (S) = P (E1) + P (E2) + · · · + P (En) (3.4)

Since P (S) = 1, when assigning probabilities P (Ei) we have to make sure that
they add up to 1. (The formula in (iii) from Definition 10 extends to a finite union
of mutually exclusive events (see Exercise 40) and that’s why (3.4) follows from
(3.3).)

Example 3.9 Assigning Probabilities

The sample space of the experiment that consists of tossing a fair coin once is
S = {H, T}. To the two simple events {H} and {T} we assign P (H) = 0.5 and
P (T) = 0.5.

In the model of a population of lions with immigration (Example 2.1), the
chance factor is immigration. Defining A = “immigration occurs,” we let P (A) =
0.5. Its complement Ac = “immigration does not occur” has the same probability
P (Ac) = 0.5. The sample space consists of two simple events, A and Ac.

Assume that, at this moment, a virus is present in a population. The chance
that it will be present the following month is 75%. To model this situation, we
define the events A = “virus is present the following month” and B = Ac = “virus
is not present the following month.” We assign P (A) = 0.75 and P (B) = 0.25.

Example 3.10 Assigning Probabilities: Random Walk

Consider the second step in the random walk (discussed in detail in Example 2.8
in Section 2), shown in Figure 3.7.

0
t=0

t=1

t=2
0

2

1

-2

-1

FIGURE 3.7

Second step in the random
walk

Recall that, in each step, a particle moves either left or right for 1 unit with
equal probability. The outcomes of the random walk are the locations L of the
particle after two steps, and so the sample space is S = {−2, 0, 2}.

There are three simple events, E1 = {−2}, E2 = {0}, and E3 = {2}. Looking
at the diagram, we see that of the total of four paths, one each ends at −2 and 2,
whereas two paths end at 0 (see Figures 2.6 or 2.7 in Section 2).

In Table 3.1 we assign the probabilities that the particle ends at a location L.
Clearly, the probabilities add up to 1.

The events E1 = {L = −2} and E2 = {L = 0} are mutually exclusive. Thus,

P (L = −2 or L = 0) = P (E1 ∪ E2)
= P (E1) + P (E2)
= P (L = −2) + P (L = 0) = 3/4
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In words, there is a 75% chance that the particle ends up at location −2 or at
location 0.

Table 3.1

Event Probability

P (L = −2) 1/4

P (L = 0) 1/2

P (L = 2) 1/4

There is one situation where assigning probabilities is straightforward. Assume
that a sample space S consists of n (n ≥ 1) simple events E1, E2, . . . , En that are
equally likely, i.e., P (E1) = P (E2) = · · · = P (En). From

P (E1) + P (E2) + · · · + P (En) = 1

we conclude that P (Ei) = 1/n for all i.

Any event A can be written as the union of a certain number (say, k) of simple
events. Thus,

P (A) =
1
n

+
1
n

+ · · · + 1
n︸ ︷︷ ︸

k

=
k

n

Keep in mind that n is the number of elements in S.

For a given set X, we use |X| to denote the number of elements in X. We summarize
our discussion in the statement of the following theorem.

Theorem 4 Assigning Probabilities: Equally Likely Simple Events
Assume that S is a finite sample space in which all outcomes (simple sets) are
equally likely. The probability of an event A ⊆ S is

P (A) =
|A|
|S|

Example 3.11 Assigning Probabilities: Three Tosses of a Coin

The sample space of the experiment that consists of tossing a coin three times in
a row

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
contains eight equally likely simple events. In Example 3.7 we defined four events

A = “the outcome of the first toss was heads” = {HHH, HHT, HTH, HTT}
B = “exactly two heads in a row occurred”= {HHT, THH}
C = “no more than one head occurred”= {HTT, THT, TTH, TTT}
D = “exactly two tails occurred”= {HTT, THT, TTH}

With Theorem 4 in mind, we conclude that P (A) = 4/8 = 1/2, P (B) = 2/8 = 1/4,
P (C) = 4/8 = 1/2, and P (D) = 3/8.

Example 3.12 Assigning Probabilities: Rolling Two Dice

The experiment consists of rolling two dice, and the outcome is the sum of the
numbers that come up. The space of all possible outcomes consists of 36 equally
likely events

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 5), (6, 6)}
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Assume that the sample space of an experiment is finite, i.e., that it contains n
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events E1, E2, . . . , En are all mutually exclusive. As well,
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From (3.3) we conclude that
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Since P (S) = 1, when assigning probabilities P (Ei) we have to make sure that
they add up to 1. (The formula in (iii) from Definition 10 extends to a finite union
of mutually exclusive events (see Exercise 40) and that’s why (3.4) follows from
(3.3).)

Example 3.9 Assigning Probabilities

The sample space of the experiment that consists of tossing a fair coin once is
S = {H, T}. To the two simple events {H} and {T} we assign P (H) = 0.5 and
P (T) = 0.5.

In the model of a population of lions with immigration (Example 2.1), the
chance factor is immigration. Defining A = “immigration occurs,” we let P (A) =
0.5. Its complement Ac = “immigration does not occur” has the same probability
P (Ac) = 0.5. The sample space consists of two simple events, A and Ac.

Assume that, at this moment, a virus is present in a population. The chance
that it will be present the following month is 75%. To model this situation, we
define the events A = “virus is present the following month” and B = Ac = “virus
is not present the following month.” We assign P (A) = 0.75 and P (B) = 0.25.

Example 3.10 Assigning Probabilities: Random Walk

Consider the second step in the random walk (discussed in detail in Example 2.8
in Section 2), shown in Figure 3.7.
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Recall that, in each step, a particle moves either left or right for 1 unit with
equal probability. The outcomes of the random walk are the locations L of the
particle after two steps, and so the sample space is S = {−2, 0, 2}.

There are three simple events, E1 = {−2}, E2 = {0}, and E3 = {2}. Looking
at the diagram, we see that of the total of four paths, one each ends at −2 and 2,
whereas two paths end at 0 (see Figures 2.6 or 2.7 in Section 2).

In Table 3.1 we assign the probabilities that the particle ends at a location L.
Clearly, the probabilities add up to 1.

The events E1 = {L = −2} and E2 = {L = 0} are mutually exclusive. Thus,

P (L = −2 or L = 0) = P (E1 ∪ E2)
= P (E1) + P (E2)
= P (L = −2) + P (L = 0) = 3/4
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In words, there is a 75% chance that the particle ends up at location −2 or at
location 0.

Table 3.1

Event Probability

P (L = −2) 1/4

P (L = 0) 1/2

P (L = 2) 1/4

There is one situation where assigning probabilities is straightforward. Assume
that a sample space S consists of n (n ≥ 1) simple events E1, E2, . . . , En that are
equally likely, i.e., P (E1) = P (E2) = · · · = P (En). From
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we conclude that P (Ei) = 1/n for all i.
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For a given set X, we use |X| to denote the number of elements in X. We summarize
our discussion in the statement of the following theorem.
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Assume that S is a finite sample space in which all outcomes (simple sets) are
equally likely. The probability of an event A ⊆ S is

P (A) =
|A|
|S|

Example 3.11 Assigning Probabilities: Three Tosses of a Coin
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B = “exactly two heads in a row occurred”= {HHT, THH}
C = “no more than one head occurred”= {HTT, THT, TTH, TTT}
D = “exactly two tails occurred”= {HTT, THT, TTH}

With Theorem 4 in mind, we conclude that P (A) = 4/8 = 1/2, P (B) = 2/8 = 1/4,
P (C) = 4/8 = 1/2, and P (D) = 3/8.

Example 3.12 Assigning Probabilities: Rolling Two Dice

The experiment consists of rolling two dice, and the outcome is the sum of the
numbers that come up. The space of all possible outcomes consists of 36 equally
likely events

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 5), (6, 6)}
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where the ordered pair (m, n) records that the number m came up on the first die
and n came up on the second (1 ≤ m, n ≤ 6). Since all events are equally likely
(we assume that the dice are fair), the probability that any one occurs is 1/36.

The probabilities of the events “sum = 2,” “sum = 3,” . . . , “sum = 12” are
given in Table 3.2. They were computed using Theorem 4. For instance, the
event “sum = 6” consists of five simple events, {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.
Therefore,

P (sum = 6) =
|{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}|

36
=

5
36

Based on Table 3.2 we can calculate the probabilities of other events. For
instance, if A = “sum is larger than 9,” then (using mutual exclusivity) we get

P (A) = P (sum = 10) + P (sum = 11) + P (sum = 12)

=
3
36

+
2
36

+
1
36

=
6
36

=
1
6

The probability that we roll a sum divisible by 5 is (call the event B)

P (B) = P (sum = 5) + P (sum = 10) =
4
36

+
3
36

=
7
36

Table 3.2

Simple events Sum Probability

(1,1) 2 1/36

(1,2), (2,1) 3 2/36

(1,3), (2,2), (3,1) 4 3/36

(1,4), (2,3), (3,2), (4,1) 5 4/36

(1,5), (2,4), (3,3),(4,2),(5,1) 6 5/36

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 6/36

(2,6), (3,5), (4,4), (5,3), (6,2) 8 5/36

(3,6), (4,5), (5,4), (6,3) 9 4/36

(4,6), (5,5), (6,4) 10 3/36

(5,6), (6,5) 11 2/36

(6,6) 12 1/36

Example 3.13 Assigning Probabilities: Genotypes

Table 3.3

Genotype Probability

AA 1/4

AB 1/2

BB 1/4

Suppose that both parents are of genotype AB (for a background on the genetics
needed, see Example 2.3 in Section 2). Their offspring will have one of the four
combinations of alleles: AA, AB, BA, and BB. The sample space of genotypes has
three elements, since AB and BA are the same genotype. The probabilities are
given in Table 3.3.
Define the events X = “offspring has at least one A allele” and Y = “offspring is
homozygous.” Their probabilities are

P (X) = P (AA) + P (AB) =
1
4

+
1
2

=
3
4

and

P (Y ) = P (AA) + P (BB) =
1
4

+
1
4

=
1
2

Section 3 Basics of Probability Theory P1-33

Remarks Note that in applications it is the context that determines the probabilities. Math-
ematically, assigning P (AA) = 0.8, P (AB) = 0.05, and P (BB) = 0.15 in Example
3.13 is sound, but biologically it might not make sense. In other words, there are
many (infinitely many) different ways of assigning probabilities to events, but very
few might make sense biologically (or within the context of some other discipline).

A good way to verbalize information about chance is to use the relative frequencies
instead of reporting the probability of an event occurring. The relative frequency
is a fraction a/b, usually referred to as “a out of b.”

Consider an example. The chance that an adult male in Canada will have a
heart attack is 0.0153 (this is probability language). We can translate the decimal
number into 1.53% (still probability language). We can rephrase the given fact as
follows: 1.53 out of 100 (relative frequency language) adult males will have a heart
attack. To avoid decimal numbers, we multiply by 100: 153 of 10,000 (relative
frequency language) adult males will have a heart attack.

Definition 11 Odds
The odds in favour of an event are represented as the ratio of integers a/b, which is
equal to the quotient of the probability that the event will occur and the probability
that the event will not occur.

Quite often, a : b is used to express the odds a/b. Instead of saying “the odds
in favour of an event” we say “the odds for.” Thus, if p is the probability that an
event A occurs, then the odds for A are p/(1 − p) or p : (1 − p).

For instance, the probability that we roll a 3 in a single roll of a die is 1/6.
Thus, the odds for a 3 are

p

1 − p
=

1/6
1 − 1/6

=
1/6
5/6

=
1
5

or 1 : 5.

Unlike probability, odds can be greater than 1. Assume that we toss a coin
twice, and define the event A = “at least one H is tossed.” Then P (A) =
P ({TH, HT, HH}) = 3/4, and the odds in favour of A are

p

1 − p
=

3/4
1 − 3/4

=
3
1

i.e., three to one (3 : 1).

Summary The sample space of an experiment is the set of all possible outcomes. A single
outcome is called a simple event, and any collection of outcomes (i.e., any subset
of the sample space) defines an event. By using set operations—union, intersec-
tion, and complement—we form new events. The probability is a function that
assigns a number between 0 and 1 to every event in a sample space. The empty
set has probability 0, and the sample space has probability 1. The probability is
additive for mutually exclusive events: if two events have nothing in com-
mon, then the probability of their union is equal to the sum of the probabilities
of the events. To calculate probabilities, we start by assigning probabilities to
all simple events in the sample space; then, using their mutual exclusivity, we can
find the probability of any event in the sample space. If a sample space consists of
equally likely simple events, then the probability of an event occurring is the
number of simple events in that event divided by the number of simple events in
the sample space.
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where the ordered pair (m, n) records that the number m came up on the first die
and n came up on the second (1 ≤ m, n ≤ 6). Since all events are equally likely
(we assume that the dice are fair), the probability that any one occurs is 1/36.

The probabilities of the events “sum = 2,” “sum = 3,” . . . , “sum = 12” are
given in Table 3.2. They were computed using Theorem 4. For instance, the
event “sum = 6” consists of five simple events, {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.
Therefore,

P (sum = 6) =
|{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}|

36
=

5
36

Based on Table 3.2 we can calculate the probabilities of other events. For
instance, if A = “sum is larger than 9,” then (using mutual exclusivity) we get

P (A) = P (sum = 10) + P (sum = 11) + P (sum = 12)

=
3
36

+
2
36

+
1
36

=
6
36

=
1
6

The probability that we roll a sum divisible by 5 is (call the event B)

P (B) = P (sum = 5) + P (sum = 10) =
4
36

+
3
36

=
7
36

Table 3.2

Simple events Sum Probability

(1,1) 2 1/36

(1,2), (2,1) 3 2/36

(1,3), (2,2), (3,1) 4 3/36

(1,4), (2,3), (3,2), (4,1) 5 4/36

(1,5), (2,4), (3,3),(4,2),(5,1) 6 5/36

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 6/36

(2,6), (3,5), (4,4), (5,3), (6,2) 8 5/36

(3,6), (4,5), (5,4), (6,3) 9 4/36

(4,6), (5,5), (6,4) 10 3/36

(5,6), (6,5) 11 2/36

(6,6) 12 1/36

Example 3.13 Assigning Probabilities: Genotypes

Table 3.3

Genotype Probability

AA 1/4

AB 1/2

BB 1/4

Suppose that both parents are of genotype AB (for a background on the genetics
needed, see Example 2.3 in Section 2). Their offspring will have one of the four
combinations of alleles: AA, AB, BA, and BB. The sample space of genotypes has
three elements, since AB and BA are the same genotype. The probabilities are
given in Table 3.3.
Define the events X = “offspring has at least one A allele” and Y = “offspring is
homozygous.” Their probabilities are

P (X) = P (AA) + P (AB) =
1
4

+
1
2

=
3
4

and

P (Y ) = P (AA) + P (BB) =
1
4

+
1
4

=
1
2

Section 3 Basics of Probability Theory P1-33

Remarks Note that in applications it is the context that determines the probabilities. Math-
ematically, assigning P (AA) = 0.8, P (AB) = 0.05, and P (BB) = 0.15 in Example
3.13 is sound, but biologically it might not make sense. In other words, there are
many (infinitely many) different ways of assigning probabilities to events, but very
few might make sense biologically (or within the context of some other discipline).

A good way to verbalize information about chance is to use the relative frequencies
instead of reporting the probability of an event occurring. The relative frequency
is a fraction a/b, usually referred to as “a out of b.”

Consider an example. The chance that an adult male in Canada will have a
heart attack is 0.0153 (this is probability language). We can translate the decimal
number into 1.53% (still probability language). We can rephrase the given fact as
follows: 1.53 out of 100 (relative frequency language) adult males will have a heart
attack. To avoid decimal numbers, we multiply by 100: 153 of 10,000 (relative
frequency language) adult males will have a heart attack.

Definition 11 Odds
The odds in favour of an event are represented as the ratio of integers a/b, which is
equal to the quotient of the probability that the event will occur and the probability
that the event will not occur.

Quite often, a : b is used to express the odds a/b. Instead of saying “the odds
in favour of an event” we say “the odds for.” Thus, if p is the probability that an
event A occurs, then the odds for A are p/(1 − p) or p : (1 − p).

For instance, the probability that we roll a 3 in a single roll of a die is 1/6.
Thus, the odds for a 3 are

p

1 − p
=

1/6
1 − 1/6

=
1/6
5/6

=
1
5

or 1 : 5.

Unlike probability, odds can be greater than 1. Assume that we toss a coin
twice, and define the event A = “at least one H is tossed.” Then P (A) =
P ({TH, HT, HH}) = 3/4, and the odds in favour of A are

p

1 − p
=

3/4
1 − 3/4

=
3
1

i.e., three to one (3 : 1).

Summary The sample space of an experiment is the set of all possible outcomes. A single
outcome is called a simple event, and any collection of outcomes (i.e., any subset
of the sample space) defines an event. By using set operations—union, intersec-
tion, and complement—we form new events. The probability is a function that
assigns a number between 0 and 1 to every event in a sample space. The empty
set has probability 0, and the sample space has probability 1. The probability is
additive for mutually exclusive events: if two events have nothing in com-
mon, then the probability of their union is equal to the sum of the probabilities
of the events. To calculate probabilities, we start by assigning probabilities to
all simple events in the sample space; then, using their mutual exclusivity, we can
find the probability of any event in the sample space. If a sample space consists of
equally likely simple events, then the probability of an event occurring is the
number of simple events in that event divided by the number of simple events in
the sample space.
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3 Exercises

1. Describe an experiment whose sample space consists of three simple events that are not equally likely.
Give an example of an experiment whose sample space consists of three equally likely simple events.

2. Describe an experiment whose sample space consists of ten simple events that are not equally likely.
Give an example of an experiment whose sample space consists of ten equally likely simple events.

3–6 List all elements of the sample space S for each experiment. What is |S| (i.e., the number of elements
in S)?

3. We roll two dice simultaneously and multiply the numbers that come up.

4. We toss a fair coin ten times and calculate the following difference: the number of heads minus the
number of tails.

5. We roll two dice one after the other and count the number of times the first number is larger than the
second.

6. We toss a fair coin four times.

7. We toss a coin n times, n ≥ 1. How many elements does the sample space have?

8. We roll a die n times, n ≥ 1. What is the size of the sample space?

9. Continue with Example 3.3. How many elements does the sample space have if we consider four and five
years of the immigration/no-immigration dynamics? List all of them. Consider the immigration/no-
immigration dynamics for n years. How many elements does the sample set have?

10. In order to prove that two sets A and B are mutually exclusive, we need to show that A ∩ B = ∅. To
prove that A, B, and C are mutually exclusive, we need to prove that A ∩ B = ∅, A ∩ C = ∅, and
B ∩ C = ∅.

(a) List all conditions that we need to check in order to prove that the four events A, B, C, and D
are mutually exclusive.

(b) How many conditions do we need to check to prove that n (n ≥ 1) events are mutually exclusive?

11–14 For the given universal set S and the sets A and B, find A ∪ B, A ∩ B, Ac, and A ∩ Bc.

11. S = {1, 2, 3, 4, 5, 6, 7, 8, 9}; A = {1, 3, 5, 6, 7, 8, 9}, B = {1, 3, 4}

12. S = {a, b, c, d, e, f, g}; A = {a, f}, B = {c, d, e}

13. S is the set of all non-negative integers, S = {0, 1, 2, 3, . . .}; A is the set of even numbers (take 0 to
be even) and B is the set of all numbers divisible by 4.

14. S is the set of all non-negative integers, S = {0, 1, 2, 3, . . .}; A is the set of even numbers (take 0 to
be even) and B is the set of all numbers divisible by 3.

15. Use Venn diagrams to show that part (b) of Theorem 1 is true, i.e., (A ∪ B)c = Ac ∩ Bc.

16. Given that P (A ∩ B) = 0.2 and P (A ∩ Bc) = 0.45, find P (A).

17. Given that P (A) = 0.4, P (B) = 0.2, and P (A ∩ B) = 0.1, find P (Ac ∩ Bc).

18. Given that P (A) = 0.3, P (B) = 0.2, and P (A ∪ B) = 0.4, find P (A ∩ B) and P (Ac ∩ Bc).

19. Assume that A is a subset of B and A �= B (i.e., A is a proper subset of B). Show that P (A) < P (B).
[Hint: Using Venn diagrams, show that B = A ∪ (Ac ∩ B).]

Section 3 Basics of Probability Theory P1-35

20. Explain why it is not possible to assign probabilities to A and B in the following way: P (A) = 0.1,
P (B) = 0.2, and P (A ∩ B) = 0.4.

21. Explain why it is not possible to assign probabilities to A and B in the following way: P (A) = 0.5,
P (B) = 0.2, and P (A ∩ B) = 0.4.

22. Explain why it is not possible to assign probabilities to A and B in the following way: P (A) = 0.1,
P (B) = 0.2, and P (A ∪ B) = 0.4.

23–26 Given are the sample set S and the assignment of probabilities for all but one simple event. Find
the requested probabilities and answer the questions.

23. S = {1, 2, 3, 4, 5}; P (1) = 0.4, P (2) = 0.15, P (3) = 0.2, P (5) = 0.1

(a) Find P (4).

(b) Let A = {1, 2} and B = {2, 3, 4}. Find P (A), P (B), and P (A ∪ B).

(c) Is P (A ∪ B) equal to P (A) + P (B)? Why or why not?

24. S = {1, 2, 3, 4, 5}; P (1) = 0.1, P (2) = 0.1, P (4) = 0.1, P (5) = 0.2

(a) Find P (3).

(b) Let A = {1, 2, 3} and B = {4, 5}. Find P (A), P (Ac), P (B), and P (A ∪ B).

(c) Is P (A ∪ B) equal to P (A) + P (B)? Why or why not?

25. S = {1, 2, 3, 4, 5}; P (1) = 0.2, P (3) = 0.4, P (4) = 0.3, P (5) = 0.1

(a) Find P (2).

(b) Let A = {2} and B = {1, 3, 4, 5}. Find P (A), P (Ac), P (B), and P (Bc).

(c) Let C be any event. Is P (A ∪ C) equal to P (A) + P (C)? Why or why not?

26. S = {1, 2, 3, 4, 5}; P (1) = 0.2, P (2) = 0.2, P (4) = 0.2, P (5) = 0.2

(a) Find P (3).

(b) What is the probability of any event that consists of four simple events?

(c) Assume that A and B consist of three simple events each. Is P (A ∪ B) equal to P (A) + P (B)?
Why or why not?

27. (a) We toss a fair coin three times. What is the probability of getting exactly two heads in a row?

(b) We toss a fair coin four times. What is the probability of getting exactly two heads in a row?

28. We roll two fair dice. What is the probability that the sum of the numbers that come up is odd?

29. We roll two fair dice. What is the probability that the maximum of the two numbers is 4?

30–33 Assume that female and male children are equally likely to be born.

30. A family has three children. Find the probability that all three are girls.

31. A family has three children. Find the probability that at least one child is a girl.

32. A family has five children. Find the probability that all five are girls.

33. A family has six children. Find the probability that at least one child is a girl.

34. The odds for A are 2 : 7. What is the probability of A occurring?

35. The odds for an event are 2 : 100. What is the probability of the event occurring?

36. If the probability of an event A occurring is 0.4, what are the odds for A?
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Give an example of an experiment whose sample space consists of ten equally likely simple events.
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15. Use Venn diagrams to show that part (b) of Theorem 1 is true, i.e., (A ∪ B)c = Ac ∩ Bc.

16. Given that P (A ∩ B) = 0.2 and P (A ∩ Bc) = 0.45, find P (A).

17. Given that P (A) = 0.4, P (B) = 0.2, and P (A ∩ B) = 0.1, find P (Ac ∩ Bc).
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20. Explain why it is not possible to assign probabilities to A and B in the following way: P (A) = 0.1,
P (B) = 0.2, and P (A ∩ B) = 0.4.
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23–26 Given are the sample set S and the assignment of probabilities for all but one simple event. Find
the requested probabilities and answer the questions.

23. S = {1, 2, 3, 4, 5}; P (1) = 0.4, P (2) = 0.15, P (3) = 0.2, P (5) = 0.1

(a) Find P (4).

(b) Let A = {1, 2} and B = {2, 3, 4}. Find P (A), P (B), and P (A ∪ B).

(c) Is P (A ∪ B) equal to P (A) + P (B)? Why or why not?

24. S = {1, 2, 3, 4, 5}; P (1) = 0.1, P (2) = 0.1, P (4) = 0.1, P (5) = 0.2

(a) Find P (3).

(b) Let A = {1, 2, 3} and B = {4, 5}. Find P (A), P (Ac), P (B), and P (A ∪ B).

(c) Is P (A ∪ B) equal to P (A) + P (B)? Why or why not?

25. S = {1, 2, 3, 4, 5}; P (1) = 0.2, P (3) = 0.4, P (4) = 0.3, P (5) = 0.1

(a) Find P (2).

(b) Let A = {2} and B = {1, 3, 4, 5}. Find P (A), P (Ac), P (B), and P (Bc).

(c) Let C be any event. Is P (A ∪ C) equal to P (A) + P (C)? Why or why not?

26. S = {1, 2, 3, 4, 5}; P (1) = 0.2, P (2) = 0.2, P (4) = 0.2, P (5) = 0.2

(a) Find P (3).

(b) What is the probability of any event that consists of four simple events?

(c) Assume that A and B consist of three simple events each. Is P (A ∪ B) equal to P (A) + P (B)?
Why or why not?

27. (a) We toss a fair coin three times. What is the probability of getting exactly two heads in a row?

(b) We toss a fair coin four times. What is the probability of getting exactly two heads in a row?

28. We roll two fair dice. What is the probability that the sum of the numbers that come up is odd?

29. We roll two fair dice. What is the probability that the maximum of the two numbers is 4?

30–33 Assume that female and male children are equally likely to be born.

30. A family has three children. Find the probability that all three are girls.

31. A family has three children. Find the probability that at least one child is a girl.

32. A family has five children. Find the probability that all five are girls.

33. A family has six children. Find the probability that at least one child is a girl.

34. The odds for A are 2 : 7. What is the probability of A occurring?

35. The odds for an event are 2 : 100. What is the probability of the event occurring?

36. If the probability of an event A occurring is 0.4, what are the odds for A?
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37. Consider the following modification of the random walk routine: a particle is released from x = 0 at
t = 0; during each time interval, with a probability of 1/3, it moves left for 1 unit, or right for 1 unit,
or stays where it is.

(a) Find the sample space S when t = 1 (i.e., after one step of random motion), and assign probabilities
to each simple event in S.

(b) Find the sample space S when t = 2 (i.e., after two steps of random motion), and assign proba-
bilities to each simple event in S.

(c) Find the sample space when t = 3, and assign probabilities to each simple event.

38. Consider the following modification of the random walk routine: a particle is released from x = 0 at
t = 0; during each time interval, with a probability of 1/2, it moves left for 1 unit, or right for 2 units.

(a) Find the sample space S when t = 2 (i.e., after two steps of random motion), and assign proba-
bilities to each simple event in S.

(b) Find the sample space when t = 3 and t = 4 and assign probabilities to each simple event.

39. We prove that P (A∪B) = P (A)+P (B)−P (A∩B) for two sets A and B. The idea is to write A∪B
and A as disjoint unions.

(a) Using Venn diagrams, show that A ∪ B is a disjoint union of B and Bc ∩ A.

(b) Using Venn diagrams, show that A is a disjoint union of A ∩ B and A ∩ Bc.

(c) Apply (iii) from Definition 10 to (a) and (b) and combine the two equations that you obtain.

40. Show that, for three mutually exclusive events A, B, and C, P (A ∪ B ∪ C) = P (A) + P (B) + P (C).
Explain how you would prove the general claim: if E1, E2, . . . , En are mutually exclusive events, then
P (S) = P (E1) + P (E2) + · · · + P (En), where n = 1, 2, 3, . . . . [Hint: Write A ∪ B ∪ C = A ∪ (B ∪ C)
and use (iii) from Definition 10.]
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4 Conditional Probability and the Law of Total Probability

The probability we defined in the previous section is also referred to as the uncon-
ditional probability: we calculate the chance of an event occurring disregarding
any factors that might affect it. However, there are situations where we need to cal-
culate the probability of an event occurring knowing (or assuming) that another
event has taken place. That’s the motivation behind introducing conditional
probability.

Conditional Probability

We start with an example.

Example 4.1 Green-Eyed and Red-Eyed Kittens

Consider a population of cats with the following genetics. The trait of the dom-
inant allele R is red eyes; the trait of the recessive allele G is green eyes. This
means that there are three genotypes (RR, RG, and GG) and two phenotypes:
red eyes (RR, RG) and green eyes (GG).

The sample space of genotypes of a kitten both of whose parents are RG is

S = {RR, RG, GG}
and the probabilities are (see Example 3.13 in Section 3)

P (RR) = P (GG) = 1/4, P (RG) = 1/2 (4.1)

We ask the following question: RG parents have a kitten. We look at the
kitten and see that it has red eyes. What is the probability that its genotype is
RR?

Note the important difference—we are not asking the question “What is the
probability that a kitten has the combination RR?” (we know that it’s 1/4); in-
stead, our question is “Given that the kitten has red eyes (i.e., under the condition
that the kitten has red eyes), what is the probability that its genotype is RR?”

In a moment we will introduce the formula that will help us calculate this proba-
bility. But first we argue intuitively, using relative frequencies.

Take a sample of 1,000 kittens, all from RG parents. Based on (4.1), ideally,
250 kittens have genotype RR, 250 kittens have genotype GG, and 500 kittens
have genotype RG; see Figure 4.1a. The sample space consists of all 1,000 kittens.

We know that the kitten has red eyes. This eliminates the group of 250 GG
kittens. We draw a new diagram, this time with the sample space consisting of 750
red-eyed kittens; Figure 4.1b. Of 750 red-eyed kittens, 250 are of genotype RR.
Thus, the probability that a red-eyed kitten has genotype RR is 250/750 = 1/3.
Note that this probability is not equal to 1/4, which is the probability that the
kitten is RR, based on the sample space of all 1,000 kittens.

RGRRGG
250 500250

a b

RGRR
250 500

FIGURE 4.1

Reduced sample space

The condition imposed (red eyes) reduces the size of the sample space, and we
calculate the probability based on that reduced sample space.
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37. Consider the following modification of the random walk routine: a particle is released from x = 0 at
t = 0; during each time interval, with a probability of 1/3, it moves left for 1 unit, or right for 1 unit,
or stays where it is.

(a) Find the sample space S when t = 1 (i.e., after one step of random motion), and assign probabilities
to each simple event in S.

(b) Find the sample space S when t = 2 (i.e., after two steps of random motion), and assign proba-
bilities to each simple event in S.

(c) Find the sample space when t = 3, and assign probabilities to each simple event.

38. Consider the following modification of the random walk routine: a particle is released from x = 0 at
t = 0; during each time interval, with a probability of 1/2, it moves left for 1 unit, or right for 2 units.

(a) Find the sample space S when t = 2 (i.e., after two steps of random motion), and assign proba-
bilities to each simple event in S.

(b) Find the sample space when t = 3 and t = 4 and assign probabilities to each simple event.

39. We prove that P (A∪B) = P (A)+P (B)−P (A∩B) for two sets A and B. The idea is to write A∪B
and A as disjoint unions.

(a) Using Venn diagrams, show that A ∪ B is a disjoint union of B and Bc ∩ A.

(b) Using Venn diagrams, show that A is a disjoint union of A ∩ B and A ∩ Bc.

(c) Apply (iii) from Definition 10 to (a) and (b) and combine the two equations that you obtain.

40. Show that, for three mutually exclusive events A, B, and C, P (A ∪ B ∪ C) = P (A) + P (B) + P (C).
Explain how you would prove the general claim: if E1, E2, . . . , En are mutually exclusive events, then
P (S) = P (E1) + P (E2) + · · · + P (En), where n = 1, 2, 3, . . . . [Hint: Write A ∪ B ∪ C = A ∪ (B ∪ C)
and use (iii) from Definition 10.]
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4 Conditional Probability and the Law of Total Probability

The probability we defined in the previous section is also referred to as the uncon-
ditional probability: we calculate the chance of an event occurring disregarding
any factors that might affect it. However, there are situations where we need to cal-
culate the probability of an event occurring knowing (or assuming) that another
event has taken place. That’s the motivation behind introducing conditional
probability.

Conditional Probability

We start with an example.

Example 4.1 Green-Eyed and Red-Eyed Kittens

Consider a population of cats with the following genetics. The trait of the dom-
inant allele R is red eyes; the trait of the recessive allele G is green eyes. This
means that there are three genotypes (RR, RG, and GG) and two phenotypes:
red eyes (RR, RG) and green eyes (GG).

The sample space of genotypes of a kitten both of whose parents are RG is

S = {RR, RG, GG}
and the probabilities are (see Example 3.13 in Section 3)

P (RR) = P (GG) = 1/4, P (RG) = 1/2 (4.1)

We ask the following question: RG parents have a kitten. We look at the
kitten and see that it has red eyes. What is the probability that its genotype is
RR?

Note the important difference—we are not asking the question “What is the
probability that a kitten has the combination RR?” (we know that it’s 1/4); in-
stead, our question is “Given that the kitten has red eyes (i.e., under the condition
that the kitten has red eyes), what is the probability that its genotype is RR?”

In a moment we will introduce the formula that will help us calculate this proba-
bility. But first we argue intuitively, using relative frequencies.

Take a sample of 1,000 kittens, all from RG parents. Based on (4.1), ideally,
250 kittens have genotype RR, 250 kittens have genotype GG, and 500 kittens
have genotype RG; see Figure 4.1a. The sample space consists of all 1,000 kittens.

We know that the kitten has red eyes. This eliminates the group of 250 GG
kittens. We draw a new diagram, this time with the sample space consisting of 750
red-eyed kittens; Figure 4.1b. Of 750 red-eyed kittens, 250 are of genotype RR.
Thus, the probability that a red-eyed kitten has genotype RR is 250/750 = 1/3.
Note that this probability is not equal to 1/4, which is the probability that the
kitten is RR, based on the sample space of all 1,000 kittens.

RGRRGG
250 500250

a b

RGRR
250 500

FIGURE 4.1

Reduced sample space

The condition imposed (red eyes) reduces the size of the sample space, and we
calculate the probability based on that reduced sample space.
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To denote conditional probability, we use

P (event | condition)

In our case,

P (RR | red eyes) =
1
3

Formally, if A = “genotype RR” and C = “red eyes,” then P (A |C) = 1/3.

Definition 12 Conditional Probability
The probability of an event A conditional on an event C is given by

P (A |C) =
P (A ∩ C)

P (C)
provided that P (C) �= ∅.

Instead of saying “the probability of A conditional on C” we can say “the proba-
bility of A, given C.”

Example 4.2 Example 4.1, Continued

Using the probabilities in (4.1), we get

P (A) = P (genotype RR) = 1/4

P (C) = P (red eyes) = P (RR, RG) = 1/4 + 1/2 = 3/4

P (A ∩ C) = P (genotype RR and red eyes) = P (RR) = 1/4, since “genotype
RR” guarantees (is a subset of) “red eyes.” Therefore,

P (A |C) =
P (A ∩ C)

P (C)
=

1/4
3/4

=
1
3

which confirms our reasoning in Example 4.1.

Note that the conditional probability does not “commute”; in general, P (A |C) �=
P (C |A), as the following example shows.

Example 4.3 Computing Conditional Probability: Red-Eyed and Green-Eyed Kittens

Keep the context of Example 4.1. Define B = “kitten is of homozygous type” and
C = “kitten has red eyes.” Find and interpret P (B |C) and P (C |B).

By Definition 12,

P (B |C) =
P (B ∩ C)

P (C)
We have already calculated that P (C) = 3/4. Using the probabilities given in
(4.1), we compute

P (B ∩ C) = P (homozygous and red eyes) = P (RR) = 1/4

Thus,

P (B |C) =
P (B ∩ C)

P (C)
=

1/4
3/4

=
1
3

is the probability that a kitten is homozygous, given that it has red eyes. Since

P (B) = P (RR or GG) = P (RR) + P (GG) =
1
2

Section 4 Conditional Probability and the Law of Total Probability P1-39

it follows that

P (C |B) =
P (C ∩ B)

P (B)
=

1/4
1/2

=
1
2

Thus, there is a fifty-fifty chance that a kitten has red eyes, given that it is of
homozygous genotype.

Example 4.4 Computing Conditional Probability: Incidence of Heart Attacks in Canada

Based on a survey that examined the 1950–1999 data on cardiovascular diseases
in Canada, 1.53% of adult Canadians who suffered a heart attack were male,
and 0.54% of adult Canadians who suffered a heart attack were female [Source:
Manuel, D., Leung, M., Nguyen, K., Tanuseputro, P., & Johansen, H. (2003).
Burden of cardiovascular disease in Canada. Canadian Journal of Cardiology, 19
(9), 997-1004.]

To organize the information (whenever probability is involved), we define
events. Let

F = “person is female”

M = “person is male”

H = “person had a heart attack”
We assume that in Canada, P (F ) = P (M) = 0.5. From the given information, we
know that

P (M ∩ H) = P (male and had a heart attack) = 0.0153

P (F ∩ H) = P (female and had a heart attack) = 0.0054
Answer the following questions:

(a) What is the probability that an adult male had a heart attack? That is, what
is P (heart attack |male)?

(b) What is the probability that a randomly chosen adult Canadian had a heart
attack?

(c) What is the probability that a person who had a heart attack is male?

(a) By Definition 12,

P (H |M) =
P (H ∩ M)

P (M)
=

0.0153
0.5

= 0.0306

or 3.06%.

(b) We are asked to find P (H). Looking at Figure 4.2, we see that

H = (H ∩ M) ∪ (H ∩ F )

(i.e., a person who had a heart attack is either male or female).

M

H = shaded region

F

H∩FH∩M
FIGURE 4.2

Using Venn diagrams to
show that
H = (H ∩ M) ∪ (H ∩ F )

Since H ∩ M and H ∩ F are mutually exclusive events, the probability of their
union is the sum of the probabilities; thus,

P (H) = P ((H ∩ M) ∪ (H ∩ F ))
= P (H ∩ M) + P (H ∩ F ) = 0.0153 + 0.0054 = 0.0207
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To denote conditional probability, we use

P (event | condition)

In our case,

P (RR | red eyes) =
1
3

Formally, if A = “genotype RR” and C = “red eyes,” then P (A |C) = 1/3.

Definition 12 Conditional Probability
The probability of an event A conditional on an event C is given by

P (A |C) =
P (A ∩ C)

P (C)
provided that P (C) �= ∅.

Instead of saying “the probability of A conditional on C” we can say “the proba-
bility of A, given C.”

Example 4.2 Example 4.1, Continued

Using the probabilities in (4.1), we get

P (A) = P (genotype RR) = 1/4

P (C) = P (red eyes) = P (RR, RG) = 1/4 + 1/2 = 3/4

P (A ∩ C) = P (genotype RR and red eyes) = P (RR) = 1/4, since “genotype
RR” guarantees (is a subset of) “red eyes.” Therefore,

P (A |C) =
P (A ∩ C)

P (C)
=

1/4
3/4

=
1
3

which confirms our reasoning in Example 4.1.

Note that the conditional probability does not “commute”; in general, P (A |C) �=
P (C |A), as the following example shows.

Example 4.3 Computing Conditional Probability: Red-Eyed and Green-Eyed Kittens

Keep the context of Example 4.1. Define B = “kitten is of homozygous type” and
C = “kitten has red eyes.” Find and interpret P (B |C) and P (C |B).

By Definition 12,

P (B |C) =
P (B ∩ C)

P (C)
We have already calculated that P (C) = 3/4. Using the probabilities given in
(4.1), we compute

P (B ∩ C) = P (homozygous and red eyes) = P (RR) = 1/4

Thus,

P (B |C) =
P (B ∩ C)

P (C)
=

1/4
3/4

=
1
3

is the probability that a kitten is homozygous, given that it has red eyes. Since

P (B) = P (RR or GG) = P (RR) + P (GG) =
1
2
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it follows that

P (C |B) =
P (C ∩ B)

P (B)
=

1/4
1/2

=
1
2

Thus, there is a fifty-fifty chance that a kitten has red eyes, given that it is of
homozygous genotype.

Example 4.4 Computing Conditional Probability: Incidence of Heart Attacks in Canada

Based on a survey that examined the 1950–1999 data on cardiovascular diseases
in Canada, 1.53% of adult Canadians who suffered a heart attack were male,
and 0.54% of adult Canadians who suffered a heart attack were female [Source:
Manuel, D., Leung, M., Nguyen, K., Tanuseputro, P., & Johansen, H. (2003).
Burden of cardiovascular disease in Canada. Canadian Journal of Cardiology, 19
(9), 997-1004.]

To organize the information (whenever probability is involved), we define
events. Let

F = “person is female”

M = “person is male”

H = “person had a heart attack”
We assume that in Canada, P (F ) = P (M) = 0.5. From the given information, we
know that

P (M ∩ H) = P (male and had a heart attack) = 0.0153

P (F ∩ H) = P (female and had a heart attack) = 0.0054
Answer the following questions:

(a) What is the probability that an adult male had a heart attack? That is, what
is P (heart attack |male)?

(b) What is the probability that a randomly chosen adult Canadian had a heart
attack?

(c) What is the probability that a person who had a heart attack is male?

(a) By Definition 12,

P (H |M) =
P (H ∩ M)

P (M)
=

0.0153
0.5

= 0.0306

or 3.06%.

(b) We are asked to find P (H). Looking at Figure 4.2, we see that

H = (H ∩ M) ∪ (H ∩ F )

(i.e., a person who had a heart attack is either male or female).

M

H = shaded region

F

H∩FH∩M
FIGURE 4.2

Using Venn diagrams to
show that
H = (H ∩ M) ∪ (H ∩ F )

Since H ∩ M and H ∩ F are mutually exclusive events, the probability of their
union is the sum of the probabilities; thus,

P (H) = P ((H ∩ M) ∪ (H ∩ F ))
= P (H ∩ M) + P (H ∩ F ) = 0.0153 + 0.0054 = 0.0207
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(c) We know that a person had a heart attack; thus, “heart attack” is the condition,
and we need to find P (male | heart attack), i.e., P (M |H). We compute

P (M |H) =
P (M ∩ H)

P (H)
=

0.0153
0.0207

≈ 0.739

or about 74%.

Example 4.5 Using Relative Frequences to Argue about Probabilities in Example 4.4

Take a sample of 20,000 Canadians, 10,000 females and 10,000 males. The fraction
of the whole population (out of 20,000) who are males and had a heart attack is
0.0153. Thus, in the group of 20,000 Canadians, (0.0153)(20,000)= 306 males had
a heart attack. Likewise, (0.0054)(20,000)= 108 females had a heart attack; see
Figure 4.3a.

M

H = shaded region

F

H∩FH∩M

10,000 10,000

306 108

414 heart attacks

306 108

M F

a b

FIGURE 4.3

Heart attacks: relative
frequencies

Of 10,000 males, 306 had a heart attack; thus, the probability that a male had a
heart attack is 306/10,000 = 0.0306 (this answers question (a) from Example 4.4).

In the total population of 20,000 Canadians, 306 + 108 = 414 people had a
heart attack; Figure 4.3b. Knowing that a heart attack occurred, the probability
that it affected a male is 306/414 ≈ 0.739 (this is the answer to (c) in Example
4.4).

From Figure 4.3a we see that of 10,000 females, 108 experienced a heart at-
tack. Thus, the probability that a female Canadian experienced a heart attack is
108/10,000 = 0.0108. Checking using conditional probability, we get

P (H |F ) =
P (H ∩ F )

P (F )
=

0.0054
0.5

= 0.0108

Of the 414 Canadians who had a heart attack, 108 were females. Thus, the prob-
abilit that a person who had a heart attack is a female is 108/414 ≈ 0.261.

There are alternatives to the calculation we have just finished: using comple-
mentary events, we find that

P (person who had a heart attack is female)
= 1 − P (person who had a heart attack is male)
≈ 1 − 0.739 = 0.261

Another way to do the same is to use the conditional probability

P (F |H) =
P (F ∩ H)

P (H)
=

0.0054
0.0207

≈ 0.261

To deepen our understanding of conditional probability, we look into its properties
and work through a few more examples.

From the formulas for the conditional probability

P (A |C) =
P (A ∩ C)

P (C)
and P (C |A) =

P (C ∩ A)
P (A)

Section 4 Conditional Probability and the Law of Total Probability P1-41

we get

P (A ∩ C) = P (A |C)P (C) (4.2)

and
P (C ∩ A) = P (C |A)P (A) (4.3)

Thus, the probability of A ∩ C can be calculated in two different ways.
To illustrate these formulas, we go back to the green-eyed and red-eyed kittens

from the begining of this section. Recall that in Example 4.2 we defined the events
A = “kitten is of genotype RR” and C = “kitten has red eyes” and showed that
P (A) = 1/4, P (C) = 3/4, and P (A |C) = 1/3.

We can compute

P (genotype RR and red eyes) = P (A ∩ C)

in two different ways. A kitten can have red eyes and have genotype RR conditional
on red eyes; thus

P (genotype RR and red eyes) = P (genotype RR | red eyes)P (red eyes)
= P (A |C)P (C)

=
1
3
· 3
4

=
1
4

Or, a kitten can be of genotype RR and have red eyes conditional on genotype
RR; thus

P (genotype RR and red eyes) = P (red eyes | genotype RR)P (genotype RR)
= P (C |A)P (A)

= 1 · 1
4

=
1
4

(Note that P (red eyes | genotype RR) = 1 since, given RR, it is guaranteed that
the kitten will have red eyes.)

We consider P (A |C) in two extreme cases.
If A and C are mutually exclusive (A ∩ C = ∅), then

P (A |C) =
P (A ∩ C)

P (C)
=

P (∅)
P (C)

=
0

P (C)
= 0

This sounds right. We know that C occurred, and so we are sure that A could not
have occurred.

If A is a subset of C, then

P (C |A) =
P (C ∩ A)

P (A)
=

P (A)
P (A)

= 1

Again, it makes sense. We know that A occurred, and since A is within C, this
means that C occurred as well.

Example 4.6 Red-Eyed and Green-Eyed Kittens, Again

The events “green eyes” and “genotype RR” are mutually exclusive. Thus,

P (genotype RR | green eyes) = 0

and

P (green eyes | genotype RR) = 0

The event “genotype RR” is a subset of the event “red eyes,” and we conclude
that

P (red eyes | genotype RR) = 1
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(c) We know that a person had a heart attack; thus, “heart attack” is the condition,
and we need to find P (male | heart attack), i.e., P (M |H). We compute

P (M |H) =
P (M ∩ H)

P (H)
=

0.0153
0.0207

≈ 0.739

or about 74%.

Example 4.5 Using Relative Frequences to Argue about Probabilities in Example 4.4

Take a sample of 20,000 Canadians, 10,000 females and 10,000 males. The fraction
of the whole population (out of 20,000) who are males and had a heart attack is
0.0153. Thus, in the group of 20,000 Canadians, (0.0153)(20,000)= 306 males had
a heart attack. Likewise, (0.0054)(20,000)= 108 females had a heart attack; see
Figure 4.3a.

M

H = shaded region

F

H∩FH∩M

10,000 10,000

306 108

414 heart attacks

306 108

M F

a b

FIGURE 4.3

Heart attacks: relative
frequencies

Of 10,000 males, 306 had a heart attack; thus, the probability that a male had a
heart attack is 306/10,000 = 0.0306 (this answers question (a) from Example 4.4).

In the total population of 20,000 Canadians, 306 + 108 = 414 people had a
heart attack; Figure 4.3b. Knowing that a heart attack occurred, the probability
that it affected a male is 306/414 ≈ 0.739 (this is the answer to (c) in Example
4.4).

From Figure 4.3a we see that of 10,000 females, 108 experienced a heart at-
tack. Thus, the probability that a female Canadian experienced a heart attack is
108/10,000 = 0.0108. Checking using conditional probability, we get

P (H |F ) =
P (H ∩ F )

P (F )
=

0.0054
0.5

= 0.0108

Of the 414 Canadians who had a heart attack, 108 were females. Thus, the prob-
abilit that a person who had a heart attack is a female is 108/414 ≈ 0.261.

There are alternatives to the calculation we have just finished: using comple-
mentary events, we find that

P (person who had a heart attack is female)
= 1 − P (person who had a heart attack is male)
≈ 1 − 0.739 = 0.261

Another way to do the same is to use the conditional probability

P (F |H) =
P (F ∩ H)

P (H)
=

0.0054
0.0207

≈ 0.261

To deepen our understanding of conditional probability, we look into its properties
and work through a few more examples.

From the formulas for the conditional probability

P (A |C) =
P (A ∩ C)

P (C)
and P (C |A) =

P (C ∩ A)
P (A)

Section 4 Conditional Probability and the Law of Total Probability P1-41

we get

P (A ∩ C) = P (A |C)P (C) (4.2)

and
P (C ∩ A) = P (C |A)P (A) (4.3)

Thus, the probability of A ∩ C can be calculated in two different ways.
To illustrate these formulas, we go back to the green-eyed and red-eyed kittens

from the begining of this section. Recall that in Example 4.2 we defined the events
A = “kitten is of genotype RR” and C = “kitten has red eyes” and showed that
P (A) = 1/4, P (C) = 3/4, and P (A |C) = 1/3.

We can compute

P (genotype RR and red eyes) = P (A ∩ C)

in two different ways. A kitten can have red eyes and have genotype RR conditional
on red eyes; thus

P (genotype RR and red eyes) = P (genotype RR | red eyes)P (red eyes)
= P (A |C)P (C)

=
1
3
· 3
4

=
1
4

Or, a kitten can be of genotype RR and have red eyes conditional on genotype
RR; thus

P (genotype RR and red eyes) = P (red eyes | genotype RR)P (genotype RR)
= P (C |A)P (A)

= 1 · 1
4

=
1
4

(Note that P (red eyes | genotype RR) = 1 since, given RR, it is guaranteed that
the kitten will have red eyes.)

We consider P (A |C) in two extreme cases.
If A and C are mutually exclusive (A ∩ C = ∅), then

P (A |C) =
P (A ∩ C)

P (C)
=

P (∅)
P (C)

=
0

P (C)
= 0

This sounds right. We know that C occurred, and so we are sure that A could not
have occurred.

If A is a subset of C, then

P (C |A) =
P (C ∩ A)

P (A)
=

P (A)
P (A)

= 1

Again, it makes sense. We know that A occurred, and since A is within C, this
means that C occurred as well.

Example 4.6 Red-Eyed and Green-Eyed Kittens, Again

The events “green eyes” and “genotype RR” are mutually exclusive. Thus,

P (genotype RR | green eyes) = 0

and

P (green eyes | genotype RR) = 0

The event “genotype RR” is a subset of the event “red eyes,” and we conclude
that

P (red eyes | genotype RR) = 1
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Example 4.7 Conditional Probability with Apples and Bananas

The owners of farm X grow apples. The owners of farm Y grow apples on one half
of their farm and bananas on the other half. Define the events X = “farm X,”
Y = “farm Y,” A = “apples,” and B = “bananas.”

The conditional probability P (X |B) is zero, since X and B are mutually
exclusive. In other words, if we arrive at one of the two farms and see bananas,
then we are sure that it is not farm X.

To find P (Y |B) means to answer the following question: given that we see
bananas, what is the probability that we are on farm Y ? Since bananas grow
only on farm Y, we conclude that P (Y |B) = 1. (Note that this is the case of the
probability of an event conditional on its subset.)

The probability P (B |X) = 0, because B and X are mutually exclusive. Al-
ternatively: given that we are on farm X, it is certain that we will see no bananas
there.

Now assume that we are on farm Y. We might be standing among apples or
among bananas. Thus, P (B |Y ) is a number smaller than 1. It is given that
bananas grow on one half of farm Y, and so P (B |Y ) = 1/2.

Note that P (B |Y ) is larger than P (B); for P (B |Y ), the sample set is farm
Y, and for P (B) the sample set consists of the two farms combined. We can check
this reasoning algebraically:

P (B |Y ) =
P (B ∩ Y )

P (Y )
=

P (B)
P (Y )

> P (B)

B is a subset of Y, and thus B ∩ Y = B and P (B ∩ Y ) = P (B). In the last step,
the inequality holds because we are dividing P (B) by the number P (Y ), which is
smaller than 1.

The Law of Total Probability

In Example 4.4, we studied the incidence of heart attacks among adult Canadians.
We divided the total population (call it S) into two events (subsets): females (F )
and males (M).

The events M and F are mutually exclusive (i.e., M ∩ F = ∅) and collectively
exhaustive; that is, their union is equal to all of the sample space S, M ∪ F = S.
We say that M and F form a partition of S.

Take an event H �= ∅. We can write H as the union (see Figure 4.4)

H = (part of H inside M) ∪ (part of H inside F )

i.e.,
H = (H ∩ M) ∪ (H ∩ F ) (4.4)

(one of the two intersections can be empty). Recall that we have seen this before
—in Example 4.4, the event H represented the incidence of a heart attack.

M

H = shaded region

F

H∩FH∩MFIGURE 4.4

Partition of H into H ∩ M
and H ∩ F

Because H ∩ M and H ∩ F are mutually exclusive, (4.4) implies that

P (H) = P (H ∩ M) + P (H ∩ F )
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Formulas (4.2) and (4.3) allow us to rewrite the two terms on the right side using
conditional probabilities:

P (H) = P (H |F )P (F ) + P (H |M)P (M) (4.5)

In this way, we have expressed the probability of H as a combination of the
probabilities of the two sets M and F that form the partition of S. An easy
way to remember this is to form a tree diagram (see Figure 4.5). Start with the
sample space S and branch it out into the events that form the partition (M and
F ) and assign probabilities to each branch. Create further branches, and assign
(this time, conditional) probabilities to them.

heart attack
female

no heart attack

male

sample space
S P (M )

P (F )
F

M

H

Hc

P (H |M )

P (H |F )

heart attack

no heart attack

H

Hc
P (Hc| M )

P (Hc| F )

FIGURE 4.5

Tree diagram for P (H)

To find P (H), we multiply the probabilities along each path leading to H and add
up these products. In the same way we can calculate P (Hc):

P (Hc) = P (Hc |F )P (F ) + P (Hc |M)P (M) (4.6)

Formulas (4.5) and (4.6) are special cases of an important law in probability theory
that we now discuss.

Definition 13 Partition
Let S be a sample space and E1, E2, . . . , En (n ≥ 1) be events in S. If

(i) E1, E2, . . . , En are mutually exclusive, i.e.,

Ei ∩ Ej = ∅ for all i �= j, 1 ≤ i, j ≤ n

(ii) E1, E2, . . . , En are collectively exhaustive, i.e.,

S = E1 ∪ E2 ∪ · · · ∪ En

then we say that E1, E2, . . . , En form a partition of the sample space S.

In many situations (data collection for research, or conducting surveys), we need
to partition the sample set.

Example 4.8 Partitions

To study medical conditions related to smoking among adult Canadians (that’s
the sample space S), we partition S into smokers and non-smokers (the two sets
are mutually exclusive and collectively exhaustive). Or, perhaps, we might need
to partition into female smokers, male smokers, female non-smokers, and male
non-smokers.

Note that we have already used the partition of a population into males and
females in Example 4.4.

In researching drinking habits within a certain population, we might need
to form a partition consisting of non-drinkers, occasional drinkers, light drinkers,
moderate drinkers, and heavy drinkers.

By breaking down the set of genotypes S = {RR, RG, GG} into homozygous
and heterozygous, we formed a partition of S.
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Example 4.7 Conditional Probability with Apples and Bananas

The owners of farm X grow apples. The owners of farm Y grow apples on one half
of their farm and bananas on the other half. Define the events X = “farm X,”
Y = “farm Y,” A = “apples,” and B = “bananas.”

The conditional probability P (X |B) is zero, since X and B are mutually
exclusive. In other words, if we arrive at one of the two farms and see bananas,
then we are sure that it is not farm X.

To find P (Y |B) means to answer the following question: given that we see
bananas, what is the probability that we are on farm Y ? Since bananas grow
only on farm Y, we conclude that P (Y |B) = 1. (Note that this is the case of the
probability of an event conditional on its subset.)

The probability P (B |X) = 0, because B and X are mutually exclusive. Al-
ternatively: given that we are on farm X, it is certain that we will see no bananas
there.

Now assume that we are on farm Y. We might be standing among apples or
among bananas. Thus, P (B |Y ) is a number smaller than 1. It is given that
bananas grow on one half of farm Y, and so P (B |Y ) = 1/2.

Note that P (B |Y ) is larger than P (B); for P (B |Y ), the sample set is farm
Y, and for P (B) the sample set consists of the two farms combined. We can check
this reasoning algebraically:

P (B |Y ) =
P (B ∩ Y )

P (Y )
=

P (B)
P (Y )

> P (B)

B is a subset of Y, and thus B ∩ Y = B and P (B ∩ Y ) = P (B). In the last step,
the inequality holds because we are dividing P (B) by the number P (Y ), which is
smaller than 1.

The Law of Total Probability

In Example 4.4, we studied the incidence of heart attacks among adult Canadians.
We divided the total population (call it S) into two events (subsets): females (F )
and males (M).

The events M and F are mutually exclusive (i.e., M ∩ F = ∅) and collectively
exhaustive; that is, their union is equal to all of the sample space S, M ∪ F = S.
We say that M and F form a partition of S.

Take an event H �= ∅. We can write H as the union (see Figure 4.4)

H = (part of H inside M) ∪ (part of H inside F )

i.e.,
H = (H ∩ M) ∪ (H ∩ F ) (4.4)

(one of the two intersections can be empty). Recall that we have seen this before
—in Example 4.4, the event H represented the incidence of a heart attack.

M

H = shaded region

F

H∩FH∩MFIGURE 4.4

Partition of H into H ∩ M
and H ∩ F

Because H ∩ M and H ∩ F are mutually exclusive, (4.4) implies that

P (H) = P (H ∩ M) + P (H ∩ F )
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Formulas (4.2) and (4.3) allow us to rewrite the two terms on the right side using
conditional probabilities:

P (H) = P (H |F )P (F ) + P (H |M)P (M) (4.5)

In this way, we have expressed the probability of H as a combination of the
probabilities of the two sets M and F that form the partition of S. An easy
way to remember this is to form a tree diagram (see Figure 4.5). Start with the
sample space S and branch it out into the events that form the partition (M and
F ) and assign probabilities to each branch. Create further branches, and assign
(this time, conditional) probabilities to them.

heart attack
female

no heart attack

male

sample space
S P (M )

P (F )
F

M

H

Hc

P (H |M )

P (H |F )

heart attack

no heart attack

H

Hc
P (Hc| M )

P (Hc| F )

FIGURE 4.5

Tree diagram for P (H)

To find P (H), we multiply the probabilities along each path leading to H and add
up these products. In the same way we can calculate P (Hc):

P (Hc) = P (Hc |F )P (F ) + P (Hc |M)P (M) (4.6)

Formulas (4.5) and (4.6) are special cases of an important law in probability theory
that we now discuss.

Definition 13 Partition
Let S be a sample space and E1, E2, . . . , En (n ≥ 1) be events in S. If

(i) E1, E2, . . . , En are mutually exclusive, i.e.,

Ei ∩ Ej = ∅ for all i �= j, 1 ≤ i, j ≤ n

(ii) E1, E2, . . . , En are collectively exhaustive, i.e.,

S = E1 ∪ E2 ∪ · · · ∪ En

then we say that E1, E2, . . . , En form a partition of the sample space S.

In many situations (data collection for research, or conducting surveys), we need
to partition the sample set.

Example 4.8 Partitions

To study medical conditions related to smoking among adult Canadians (that’s
the sample space S), we partition S into smokers and non-smokers (the two sets
are mutually exclusive and collectively exhaustive). Or, perhaps, we might need
to partition into female smokers, male smokers, female non-smokers, and male
non-smokers.

Note that we have already used the partition of a population into males and
females in Example 4.4.

In researching drinking habits within a certain population, we might need
to form a partition consisting of non-drinkers, occasional drinkers, light drinkers,
moderate drinkers, and heavy drinkers.

By breaking down the set of genotypes S = {RR, RG, GG} into homozygous
and heterozygous, we formed a partition of S.
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Example 4.9 What Is Not a Partition?

Consider again the sample space of genotypes S = {RR, RG, GG}. The events
A = “kitten has at least one R allele” and B = “kitten has at least one G allele”
are not mutually exclusive, since A ∩ B = {RG}. Thus, A and B do not form a
partition of S. Note, however, that A and B are collectively exhaustive, since a
kitten must have at least one R allele or at least one G allele.

The sample space of the experiment that consists of tossing a coin three times
in a row is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Define the events A = “outcome of the first toss is H,” B = “outcome of the second
toss is H,” C = “outcome of the third toss is H,” and D = “at least one T.”

Note that S = A ∪ B ∪ C ∪ D but the sets are not mutually exclusive. For
instance, A ∩ B = {HHH, HHT} or B ∩ D = {THT, THH, HHT}. Thus, the four
events do not form a partition of S.

Theorem 5 Law of Total Probability
Assume that the events E1, E2, . . . , En (n ≥ 1) form a partition of a sample space
S. For any event A in S,

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + · · · + P (A |En)P (En)

We have already shown in (4.5) that the theorem holds if the partition consists of
two sets. A proof for a partition consisting of any number of sets is discussed in
Exercise 31. A tree diagram for Theorem 5 is analogous to the one in Figure 4.5
(see also Example 4.10 and Figure 4.6).

Example 4.10 Incidence of Rabies

We study the incidence of rabies in an ecosystem. The population S of animals
that can be infected with rabies consists of rabbits, foxes, and wolves. Table 4.1
contains the information about the distribution of animals within the population
and the chance that an animal becomes infected with rabies.

Table 4.1

Animals Percent of Probability of
population infection

rabbits 65 0.05

foxes 25 0.35

wolves 10 0.2

What is the probability that rabies will appear within the population S?

Define the event R = “rabies present.” We partition the sample space S into three
sets—rabbits, foxes, and wolves—and create a tree diagram; see Figure 4.6.

By Theorem 5, the probability that rabies will appear in the population is
(look at the tree diagram)

P (R) = (0.65)(0.05) + (0.25)(0.35) + (0.1)(0.2) = 0.14

We can do this more formally, to see exactly how Theorem 5 works.
Define the events E1 = “rabbit,” E2 = “fox,” and E3 = “wolf.” Clearly, E1,

E2, and E3 are mutually exclusive and collectively exhaustive, and therefore form
a partition of S. It is given that P (E1) = 0.65, P (E2) = 0.25, and P (E3) = 0.1. As

Section 4 Conditional Probability and the Law of Total Probability P1-45

well, from Table 4.1 we read P (R |E1) = 0.05, P (R |E2) = 0.35, and P (R |E3) =
0.2.

rabies

no rabies
rabbit

S fox

wolf

0.65

0.35

0.05

0.95

0.25

0.1

0.65

0.8

0.2

rabies

no rabies

rabies

no rabies

FIGURE 4.6

Tree diagram for the rabies
infection

Using the law of total probability formula, we get

P (R) = P (rabies | rabbit)P (rabbit) + P (rabies | fox)P (fox)
+ P (rabies |wolf)P (wolf)

= P (R |E1)P (E1) + P (R |E2)P (E2) + P (R |E3)P (E3)
= (0.05)(0.65) + (0.35)(0.25) + (0.2)(0.1) = 0.14

Example 4.11 Kittens, Once Again

Consider a sample of red-eyed cats, 30% of which are of genotype RG, and the
remaining 70% of genotype RR. A cat from this group and a cat of genotype GG
have a kitten. What is the probability that the kitten will have green eyes?

Partition the sample space into two events: E1 = “RG and GG parents” and E2 =
“RR and GG parents.” Define A = “kitten has green eyes.”

It is given that P (E1) = 0.3 and P (E2) = 0.7. In order to use the law of total
probability

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)

we need to figure out the two conditional probabilities.
The two possible genotypes of a kitten from RG and GG parents are RG and

GG, each occurring with a 50% chance. The RG trait is red eyes, whereas GG
yields green eyes. We conclude that

P (green eyes |RG and GG parents) = P (A |E1) = 0.5

The only genotype of a kitten whose parents are RR and GG is RG, which yields
red eyes. Consequently,

P (green eyes |RR and GG parents) = P (A |E2) = 0

We are done—the probability that the kitten has green eyes is

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)
= (0.5)(0.3) + (0)(0.7) = 0.15

What is the probability of the event B = “kitten has red eyes”? Since B is
complementary to A, we get P (B) = 1 − P (A) = 1 − 0.15 = 0.85.

red eyes
RG and GG

green eyes

RR and GG

RG and RR
cats

parents

red eyes

green eyes

parents0.3

1

0

0.5

0.5

0.7FIGURE 4.7

Tree diagram for P (B)
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Example 4.9 What Is Not a Partition?

Consider again the sample space of genotypes S = {RR, RG, GG}. The events
A = “kitten has at least one R allele” and B = “kitten has at least one G allele”
are not mutually exclusive, since A ∩ B = {RG}. Thus, A and B do not form a
partition of S. Note, however, that A and B are collectively exhaustive, since a
kitten must have at least one R allele or at least one G allele.

The sample space of the experiment that consists of tossing a coin three times
in a row is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Define the events A = “outcome of the first toss is H,” B = “outcome of the second
toss is H,” C = “outcome of the third toss is H,” and D = “at least one T.”

Note that S = A ∪ B ∪ C ∪ D but the sets are not mutually exclusive. For
instance, A ∩ B = {HHH, HHT} or B ∩ D = {THT, THH, HHT}. Thus, the four
events do not form a partition of S.

Theorem 5 Law of Total Probability
Assume that the events E1, E2, . . . , En (n ≥ 1) form a partition of a sample space
S. For any event A in S,

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + · · · + P (A |En)P (En)

We have already shown in (4.5) that the theorem holds if the partition consists of
two sets. A proof for a partition consisting of any number of sets is discussed in
Exercise 31. A tree diagram for Theorem 5 is analogous to the one in Figure 4.5
(see also Example 4.10 and Figure 4.6).

Example 4.10 Incidence of Rabies

We study the incidence of rabies in an ecosystem. The population S of animals
that can be infected with rabies consists of rabbits, foxes, and wolves. Table 4.1
contains the information about the distribution of animals within the population
and the chance that an animal becomes infected with rabies.

Table 4.1

Animals Percent of Probability of
population infection

rabbits 65 0.05

foxes 25 0.35

wolves 10 0.2

What is the probability that rabies will appear within the population S?

Define the event R = “rabies present.” We partition the sample space S into three
sets—rabbits, foxes, and wolves—and create a tree diagram; see Figure 4.6.

By Theorem 5, the probability that rabies will appear in the population is
(look at the tree diagram)

P (R) = (0.65)(0.05) + (0.25)(0.35) + (0.1)(0.2) = 0.14

We can do this more formally, to see exactly how Theorem 5 works.
Define the events E1 = “rabbit,” E2 = “fox,” and E3 = “wolf.” Clearly, E1,

E2, and E3 are mutually exclusive and collectively exhaustive, and therefore form
a partition of S. It is given that P (E1) = 0.65, P (E2) = 0.25, and P (E3) = 0.1. As
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well, from Table 4.1 we read P (R |E1) = 0.05, P (R |E2) = 0.35, and P (R |E3) =
0.2.
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Tree diagram for the rabies
infection

Using the law of total probability formula, we get

P (R) = P (rabies | rabbit)P (rabbit) + P (rabies | fox)P (fox)
+ P (rabies |wolf)P (wolf)

= P (R |E1)P (E1) + P (R |E2)P (E2) + P (R |E3)P (E3)
= (0.05)(0.65) + (0.35)(0.25) + (0.2)(0.1) = 0.14

Example 4.11 Kittens, Once Again

Consider a sample of red-eyed cats, 30% of which are of genotype RG, and the
remaining 70% of genotype RR. A cat from this group and a cat of genotype GG
have a kitten. What is the probability that the kitten will have green eyes?

Partition the sample space into two events: E1 = “RG and GG parents” and E2 =
“RR and GG parents.” Define A = “kitten has green eyes.”

It is given that P (E1) = 0.3 and P (E2) = 0.7. In order to use the law of total
probability

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)

we need to figure out the two conditional probabilities.
The two possible genotypes of a kitten from RG and GG parents are RG and

GG, each occurring with a 50% chance. The RG trait is red eyes, whereas GG
yields green eyes. We conclude that

P (green eyes |RG and GG parents) = P (A |E1) = 0.5

The only genotype of a kitten whose parents are RR and GG is RG, which yields
red eyes. Consequently,

P (green eyes |RR and GG parents) = P (A |E2) = 0

We are done—the probability that the kitten has green eyes is

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)
= (0.5)(0.3) + (0)(0.7) = 0.15

What is the probability of the event B = “kitten has red eyes”? Since B is
complementary to A, we get P (B) = 1 − P (A) = 1 − 0.15 = 0.85.
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To practise total probabilities, we construct a tree diagram (see Figure 4.7) and
figure out P (B) from there.

Following the two paths that lead to red eyes, we get

P (B) = (0.5)(0.3) + (1)(0.7) = 0.85

Bayes’ Theorem

By combining the properties we have seen so far of the probability function, we
discover a useful formula.

Assume that the events E1 and E2 form a partition of a sample space S. Let A
be an event and assume that the conditional probabilities P (A |E1) and P (A |E2)
are known. How do we compute P (E1 |A) and P (E2 |A)?

By the definition of conditional probability, we have

P (E1 |A) =
P (E1 ∩ A)

P (A)
(4.7)

Since P (A |E1) is known, we use (4.2):

P (E1 ∩ A) = P (A ∩ E1) = P (A |E1)P (E1) (4.8)

For the denominator of (4.7) we use Theorem 5:

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) (4.9)

Substituting (4.8) and (4.9) into (4.7), we get

P (E1 |A) =
P (E1 ∩ A)

P (A)
=

P (A |E1)P (E1)
P (A |E1)P (E1) + P (A |E2)P (E2)

In exactly the same way, we obtain a formula for P (E2 |A).
In the general case of a partition of S into n events, we replace the denominator

by the formula from Theorem 5. Thus, we have proved the following theorem.

Theorem 6 Bayes’ Formula
Assume that the events E1, E2, . . . , En (n ≥ 1) form a partition of a sample space
S. Let A be an event. Then

P (Ei |A) =
P (A |Ei)P (Ei)

P (A |E1)P (E1) + P (A |E2)P (E2) + · · · + P (A |En)P (En)
for i = 1, 2, . . . , n.

Why is this useful? Consider the following examples.

Example 4.12 Kittens, for the Last Time (in This Section)

We continue with Example 4.11. A randomly chosen kitten has green eyes. What
is the probability that its parents are RG and GG?

We are asked to calculate P (E1 |A). We use Bayes’ formula,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.5)(0.3)

(0.5)(0.3) + (0)(0.7)
= 1

Hardly a surprise: RR and GG parents can only have an RG kitten, which means
that they cannot have a kitten with green eyes. So from P (E2 |A) = 0 we conclude
that P (E1 |A) = 1.
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Example 4.13 Testing for Breast Cancer

Among the sample space of women aged 40– 50, the prevalence of breast cancer
is 0.8%. A test for the presence of breast cancer (say, a mammogram) shows a
positive result in 90% of women who have breast cancer and in 5% of women who
do not have breast cancer (these are called false positives). We will answer the
following questions:

(1) What is the probability that the test result is positive for a randomly chosen
woman from the sample space?

(2) Here is a more important (more relevant) question—suppose that a woman
takes the test and the test shows a positive result. How likely is it that she has
breast cancer?

As usual, we define events first and then translate the given information into
probabilities.

(1) We partition the population S into two sets: E1 = “a woman has breast
cancer” and E2 = “a woman does not have breast cancer.” Let A = “test shows a
positive result.”

It is given that P (E1) = 0.008. Thus, P (E2) = 1 − P (E1) = 0.992. Within
the group of women who have breast cancer, the test turns out positive in 90% of
the cases: P (A |E1) = 0.9. Therefore, P (Ac |E1) = the probability that a woman
who has breast cancer tests negative (this situation is called a false negative) is
0.1.

The false-positive information means that P (A |E2) = 0.05. The probability
P (Ac |E2) = 0.95 represents true negatives.

To visualize all of this, we construct a tree diagram; see Figure 4.8.
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Looking at the tree, we see that two paths lead to A; thus,

P (A) = (0.008)(0.9) + (0.992)(0.05) = 0.0568

Formally, using the law of total probability

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)
= (0.9)(0.008) + (0.05)(0.992) = 0.0568

Thus, the probability that a randomly chosen woman from the given sample tests
positive for brest cancer is 5.68%.

(2) We are asked to calculate P (E1 |A), i.e., the probability that a woman who
tests positive for breast cancer (that’s the condition) actually has breast cancer.

We know the event A, and the probability we are looking for is one of the par-
tition events conditional on A. This is the situation that requires Bayes’ formula.
By Theorem 6,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.9)(0.008)

(0.9)(0.008) + (0.05)(0.992)
≈ 0.1268 (4.10)

So the probability is a bit larger than 12.5%.
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To practise total probabilities, we construct a tree diagram (see Figure 4.7) and
figure out P (B) from there.

Following the two paths that lead to red eyes, we get

P (B) = (0.5)(0.3) + (1)(0.7) = 0.85

Bayes’ Theorem

By combining the properties we have seen so far of the probability function, we
discover a useful formula.

Assume that the events E1 and E2 form a partition of a sample space S. Let A
be an event and assume that the conditional probabilities P (A |E1) and P (A |E2)
are known. How do we compute P (E1 |A) and P (E2 |A)?

By the definition of conditional probability, we have

P (E1 |A) =
P (E1 ∩ A)

P (A)
(4.7)

Since P (A |E1) is known, we use (4.2):

P (E1 ∩ A) = P (A ∩ E1) = P (A |E1)P (E1) (4.8)

For the denominator of (4.7) we use Theorem 5:

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) (4.9)

Substituting (4.8) and (4.9) into (4.7), we get

P (E1 |A) =
P (E1 ∩ A)

P (A)
=

P (A |E1)P (E1)
P (A |E1)P (E1) + P (A |E2)P (E2)

In exactly the same way, we obtain a formula for P (E2 |A).
In the general case of a partition of S into n events, we replace the denominator

by the formula from Theorem 5. Thus, we have proved the following theorem.

Theorem 6 Bayes’ Formula
Assume that the events E1, E2, . . . , En (n ≥ 1) form a partition of a sample space
S. Let A be an event. Then

P (Ei |A) =
P (A |Ei)P (Ei)

P (A |E1)P (E1) + P (A |E2)P (E2) + · · · + P (A |En)P (En)
for i = 1, 2, . . . , n.

Why is this useful? Consider the following examples.

Example 4.12 Kittens, for the Last Time (in This Section)

We continue with Example 4.11. A randomly chosen kitten has green eyes. What
is the probability that its parents are RG and GG?

We are asked to calculate P (E1 |A). We use Bayes’ formula,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.5)(0.3)

(0.5)(0.3) + (0)(0.7)
= 1

Hardly a surprise: RR and GG parents can only have an RG kitten, which means
that they cannot have a kitten with green eyes. So from P (E2 |A) = 0 we conclude
that P (E1 |A) = 1.
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Example 4.13 Testing for Breast Cancer

Among the sample space of women aged 40– 50, the prevalence of breast cancer
is 0.8%. A test for the presence of breast cancer (say, a mammogram) shows a
positive result in 90% of women who have breast cancer and in 5% of women who
do not have breast cancer (these are called false positives). We will answer the
following questions:

(1) What is the probability that the test result is positive for a randomly chosen
woman from the sample space?

(2) Here is a more important (more relevant) question—suppose that a woman
takes the test and the test shows a positive result. How likely is it that she has
breast cancer?

As usual, we define events first and then translate the given information into
probabilities.

(1) We partition the population S into two sets: E1 = “a woman has breast
cancer” and E2 = “a woman does not have breast cancer.” Let A = “test shows a
positive result.”

It is given that P (E1) = 0.008. Thus, P (E2) = 1 − P (E1) = 0.992. Within
the group of women who have breast cancer, the test turns out positive in 90% of
the cases: P (A |E1) = 0.9. Therefore, P (Ac |E1) = the probability that a woman
who has breast cancer tests negative (this situation is called a false negative) is
0.1.

The false-positive information means that P (A |E2) = 0.05. The probability
P (Ac |E2) = 0.95 represents true negatives.

To visualize all of this, we construct a tree diagram; see Figure 4.8.
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Tree diagram for P (A)

Looking at the tree, we see that two paths lead to A; thus,

P (A) = (0.008)(0.9) + (0.992)(0.05) = 0.0568

Formally, using the law of total probability

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)
= (0.9)(0.008) + (0.05)(0.992) = 0.0568

Thus, the probability that a randomly chosen woman from the given sample tests
positive for brest cancer is 5.68%.

(2) We are asked to calculate P (E1 |A), i.e., the probability that a woman who
tests positive for breast cancer (that’s the condition) actually has breast cancer.

We know the event A, and the probability we are looking for is one of the par-
tition events conditional on A. This is the situation that requires Bayes’ formula.
By Theorem 6,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.9)(0.008)

(0.9)(0.008) + (0.05)(0.992)
≈ 0.1268 (4.10)

So the probability is a bit larger than 12.5%.
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The reason the probability is so small is that the chance that a woman has
breast cancer is small in the first place (0.8%). In practice, if a single test gives
a positive result, additional testing is done to confirm or dismiss the result of the
test.

Let’s think a bit more about this. If the prevalence of breast cancer in the
general population were 8% (instead of 0.8%), then (replace 0.008 by 0.08 and
0.992 by 0.92 in (4.10))

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.9)(0.08)

(0.9)(0.08) + (0.05)(0.92)
≈ 0.6102

Thus, the probability that a woman who tested positive for breast cancer actually
has breast cancer has increased dramatically.
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Tree diagram to help us
compute P (E1 |A)

To see this better, assume that the prevalence of breast cancer in the general
population is p, where 0 ≤ p ≤ 1. The tree diagram for the probabilities is shown
in Figure 4.9.

In this case,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
0.9p

0.9p + 0.05(1 − p)
=

0.9p

0.85p + 0.05
When p = 0.008, then P (E1 |A) = 0.1268, and when p = 0.08, then P (E1 |A) =
0.6102, confirming our earlier calculations. The graph of P (E1 |A) as a function
of p (see Figure 4.10) shows the initial steep increase in P (E1 |A).
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Dependence of P (E1 |A)
on p

To check our answer to (2), we can argue using relative frequencies. Take a sample
of 10,000 women aged 40–50. Since the prevalence of breast cancer in this group
is 0.8%, we conclude that 80 women have breast cancer and 9,920 do not have
breast cancer.

How many women will test positive for breast cancer? 5% of the 9,920 women
(496 women) who do not have breast cancer will nevertheless test positive (these
are false positives). Of the 80 women who have breast cancer, 90% (i.e., 72) will
test positive.

So, a total of 496 + 72 = 568 women will test positive. Of those, 72 have
breast cancer. Therefore, the probability that a woman who tests positive has
breast cancer is 72/568 ≈ 0.1268.

Summary Conditional probability allows us to calculate the probability of an event oc-
curring when we know that another event has taken place. Calculating conditional
probability is based on basic properties of probability and set theory. A partition
of a set is a collection of pairwise disjoint subsets whose union is the whole set

Section 4 Conditional Probability and the Law of Total Probability P1-49

(think about tiling a floor: no overlaps and no gaps). The law of total proba-
bility tells us how to calculate the probability of an event based on knowing the
probabilities related to the sets that form a partition of the sample set. In this
context, the conditional probabilities are calculated using Bayes’ formula.

4 Exercises

1. Find a pair of events A and C in the sample space S = {1, 2, 3, 4, 5} for which P (A |C) = 1. Find a
pair of events B and D for which P (B |D) = 0.

2. Find a pair of events A and C in the sample space S = {1, 2, 3, 4, 5} for which P (A |C) = P (A). Find
a pair of events B and D for which P (B |D) = P (D).

3–6 The sample space is S = {1, 2, 3, 4, 5}. Find P (A ∩ B), P (A |B), and P (B |A).

3. P (1) = 0.2, P (2) = 0.1, P (3) = 0.15, P (4) = 0.45, P (5) = 0.1; A = {1, 2, 3}, B = {1, 4, 5}.

4. P (1) = 0.2, P (2) = 0.1, P (3) = 0.15, P (4) = 0.45, P (5) = 0.1; A = {1, 2}, B = {3, 4, 5}.

5. P (1) = 0.1, P (2) = 0.3, P (3) = 0.2, P (4) = 0.3, P (5) = 0.1; A = {1, 2, 4, 5}, B = {4, 5}.

6. P (1) = 0, P (2) = 0.2, P (3) = 0.3, P (4) = 0.3, P (5) = 0.2; A = {1, 2, 4}, B = {3, 4, 5}.

7. Let S = {1, 2, 3, 4, 5} be a sample space, and assume that all five events are equally likely to occur.

(a) Find two sets A and B so that P (A |B) �= P (B |A).

(b) Find two sets A and B so that P (A |B) = P (B |A).

8. Let S = {1, 2, 3, 4, 5} be a sample space, and assume that P (1) = 0.15, P (2) = 0.25, P (3) = 0.2,
P (4) = 0.3, and P (5) = 0.1.

(a) Find two sets A and B so that P (A |B) �= P (B |A).

(b) Find two sets A and B so that P (A |B) = P (B |A).

9–15 Using conditional probability, answer the following questions. If you wish, check your answers by
using other means.

9. A family has three children, two of which are girls. Assuming a 1:1 sex ratio of births, what is the
probability that their third child is a boy?

10. A family has four children. Knowing that three of them are boys and assuming a 1:1 sex ratio of
births, what is the probability that the fourth child is a girl?

11. A family has four children. Knowing that three are of the same sex and assuming a 1:1 sex ratio of
births, what is the probability that the fourth child is a girl?

12. A coin is tossed three times. Find the probability that exactly two heads occurred given that at least
one toss resulted in heads.

13. A coin is tossed three times. Find the probability that at least two heads occurred given that at least
one toss resulted in heads.

14. Two dice are rolled. Find the probability that one die is a 4 given that the sum is 6.

15. Two dice are rolled. Find the probability that the sum is 7 given that one die shows a number larger
than 3.
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The reason the probability is so small is that the chance that a woman has
breast cancer is small in the first place (0.8%). In practice, if a single test gives
a positive result, additional testing is done to confirm or dismiss the result of the
test.

Let’s think a bit more about this. If the prevalence of breast cancer in the
general population were 8% (instead of 0.8%), then (replace 0.008 by 0.08 and
0.992 by 0.92 in (4.10))

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
(0.9)(0.08)

(0.9)(0.08) + (0.05)(0.92)
≈ 0.6102

Thus, the probability that a woman who tested positive for breast cancer actually
has breast cancer has increased dramatically.
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To see this better, assume that the prevalence of breast cancer in the general
population is p, where 0 ≤ p ≤ 1. The tree diagram for the probabilities is shown
in Figure 4.9.

In this case,

P (E1 |A) =
P (A |E1)P (E1)

P (A |E1)P (E1) + P (A |E2)P (E2)

=
0.9p
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When p = 0.008, then P (E1 |A) = 0.1268, and when p = 0.08, then P (E1 |A) =
0.6102, confirming our earlier calculations. The graph of P (E1 |A) as a function
of p (see Figure 4.10) shows the initial steep increase in P (E1 |A).
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To check our answer to (2), we can argue using relative frequencies. Take a sample
of 10,000 women aged 40–50. Since the prevalence of breast cancer in this group
is 0.8%, we conclude that 80 women have breast cancer and 9,920 do not have
breast cancer.

How many women will test positive for breast cancer? 5% of the 9,920 women
(496 women) who do not have breast cancer will nevertheless test positive (these
are false positives). Of the 80 women who have breast cancer, 90% (i.e., 72) will
test positive.

So, a total of 496 + 72 = 568 women will test positive. Of those, 72 have
breast cancer. Therefore, the probability that a woman who tests positive has
breast cancer is 72/568 ≈ 0.1268.

Summary Conditional probability allows us to calculate the probability of an event oc-
curring when we know that another event has taken place. Calculating conditional
probability is based on basic properties of probability and set theory. A partition
of a set is a collection of pairwise disjoint subsets whose union is the whole set
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(think about tiling a floor: no overlaps and no gaps). The law of total proba-
bility tells us how to calculate the probability of an event based on knowing the
probabilities related to the sets that form a partition of the sample set. In this
context, the conditional probabilities are calculated using Bayes’ formula.

4 Exercises

1. Find a pair of events A and C in the sample space S = {1, 2, 3, 4, 5} for which P (A |C) = 1. Find a
pair of events B and D for which P (B |D) = 0.

2. Find a pair of events A and C in the sample space S = {1, 2, 3, 4, 5} for which P (A |C) = P (A). Find
a pair of events B and D for which P (B |D) = P (D).

3–6 The sample space is S = {1, 2, 3, 4, 5}. Find P (A ∩ B), P (A |B), and P (B |A).

3. P (1) = 0.2, P (2) = 0.1, P (3) = 0.15, P (4) = 0.45, P (5) = 0.1; A = {1, 2, 3}, B = {1, 4, 5}.

4. P (1) = 0.2, P (2) = 0.1, P (3) = 0.15, P (4) = 0.45, P (5) = 0.1; A = {1, 2}, B = {3, 4, 5}.

5. P (1) = 0.1, P (2) = 0.3, P (3) = 0.2, P (4) = 0.3, P (5) = 0.1; A = {1, 2, 4, 5}, B = {4, 5}.

6. P (1) = 0, P (2) = 0.2, P (3) = 0.3, P (4) = 0.3, P (5) = 0.2; A = {1, 2, 4}, B = {3, 4, 5}.

7. Let S = {1, 2, 3, 4, 5} be a sample space, and assume that all five events are equally likely to occur.

(a) Find two sets A and B so that P (A |B) �= P (B |A).

(b) Find two sets A and B so that P (A |B) = P (B |A).

8. Let S = {1, 2, 3, 4, 5} be a sample space, and assume that P (1) = 0.15, P (2) = 0.25, P (3) = 0.2,
P (4) = 0.3, and P (5) = 0.1.

(a) Find two sets A and B so that P (A |B) �= P (B |A).

(b) Find two sets A and B so that P (A |B) = P (B |A).

9–15 Using conditional probability, answer the following questions. If you wish, check your answers by
using other means.

9. A family has three children, two of which are girls. Assuming a 1:1 sex ratio of births, what is the
probability that their third child is a boy?

10. A family has four children. Knowing that three of them are boys and assuming a 1:1 sex ratio of
births, what is the probability that the fourth child is a girl?

11. A family has four children. Knowing that three are of the same sex and assuming a 1:1 sex ratio of
births, what is the probability that the fourth child is a girl?

12. A coin is tossed three times. Find the probability that exactly two heads occurred given that at least
one toss resulted in heads.

13. A coin is tossed three times. Find the probability that at least two heads occurred given that at least
one toss resulted in heads.

14. Two dice are rolled. Find the probability that one die is a 4 given that the sum is 6.

15. Two dice are rolled. Find the probability that the sum is 7 given that one die shows a number larger
than 3.
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16–18 Within a population of tigers, the trait of the dominant allele P is a spotted tail, and the trait of
the recessive allele T is a striped tail.

16. A baby tiger, born to genotype PT parents, has a spotted tail. What is the probability that it is of
genotype PT?

17. A baby tiger, born to genotype PT parents, is known to have one T allele. What is the probability
that it has a striped tail?

18. A baby tiger, born to genotype PT and TT parents, is known to have one T allele. What is the
probability that it has a striped tail?

19. Let S = {1, 2, 3, 4, 5}.

(a) Find three subsets of S that are mutually exclusive but do not form a partition of S.

(b) Find three mutually exclusive subsets of S that do not form a partition of S.

(c) Find a partition of S that contains three sets.

20. Let S = {1, 2, 3, 4}.

(a) Find three mutually exclusive subsets of S that do not form a partition of S.

(b) Find a collection of two subsets of S whose union is S but that are not mutually exclusive.

(c) Find a partition of S that contains three sets.

21. A surveyed population consists of 60% females and 40% males. Of all males, 35% are smokers, and of
all females, 20% are smokers.

(a) What is the probability that a randomly chosen person from this population is a smoker?

(b) What is the probability that a randomly selected smoker is male?

22. Within a population with a 1:1 sex ratio, 15% of females have blond hair and 5% of males have blond
hair.

(a) What is the probability that a randomly chosen person has blond hair?

(b) What is the probability that a randomly selected blond person is female?

23. A certain population consists of 20% children, 30% adolescents, and 50% adults. The probabilities
that a member of this population catches the flu are 0.45 for a child, 0.2 for an adolescent, and 0.15
for an adult.

(a) What is the probability that a randomly selected member of this population has the flu?

(b) What is the probability that a randomly selected person with the flu is an adult?

24. Of all frogs in a large pond, 50% are green, 35% are brown, and 15% are blue. About 5% of green
frogs have brown eyes, and 75% of blue frogs have brown eyes. There are no brown frogs with brown
eyes.

(a) What is the probability that a randomly chosen frog has brown eyes?

(b) A randomly selected frog has been found to have brown eyes. What is the probability that it is
green?

25. The incidence of asthma in young adults (assuming a 1:1 sex ratio) is 6.4% for females and 4.5% for
males. [Source: Thomsen, S.F., Ulrik, C.S., Kyvik, K.O., Larsen, K., Skadhauge, L.R., Steffensen, I.,
et al. (2005). The incidence of asthma in young adults. Chest, 127 (6), 1928-1934.]

(a) What is the probability that a randomly chosen young adult has asthma?

Section 4 Conditional Probability and the Law of Total Probability P1-51

(b) What is the probability that a young adult with asthma is a female?

26. A certain medical condition (could be high blood pressure) comes in three forms, X, Y, and Z, with
prevalences of 45%, 35%, and 20%, respectively. The probability that a person will need emergency
medical attention is 10% if he has the X form, 5% if he has the Y form, and 45% if he has the Z
form. What is the probability that a person who has the condition will require emergency medical
attention?

27. There is an open-air concert tomorrow, but the weather forecast does not look good: a 60% chance of
rain. You need transportation to go to the concert and know the following: if it rains, there is a 30%
chance that you will have a car available, but if it does not rain, the chance is 90%. How likely is it
that you will go to the concert tomorrow?

28. There is a way to survey people face-to-face on embarrassing questions and ensure their anonymity
(thus getting potentially useful results). Suppose you live in Toronto and wish to survey people on
their use of a cell phone while driving (which is against the law in Ontario). You set it up in the
following way. Each participant draws a card from a deck of cards; you don’t know which card they
picked. If they pick a black suit, then they have to truthfully answer a question where there is exactly
a 50-50 chance of answering “yes” or “no” (such as “Was your mother born between 1 January and
30 June?”). If they pick a red suit, then they have to truthfully answer the question “Have you driven
a car and talked on a cell phone at the same time?”

You realize that of the 200 people you surveyed, 120 answered “yes.” So, how many people are
likely to use their cell phone while driving?

29. The incidence of bacterial meningitis in Canada ranged from 3.17 to 3.66 per 100,000 between 1994
and 2001. [Source: Public Health Agency of Canada, http://www.phac-aspc.gc.ca/publicat/ccdr-
rmtc/05vol31/dr3123a-eng.php.] For the purpose of this exercise, we take the incidence to be 3.4 per
100,000. A test for meningitis shows a positive result in 85% of people who have it and in 7% of people
who do not have it.

(a) What is the probability that a randomly selected person tests positive for bacterial meningitis?

(b) If a person tests positive for bacterial meningitis, what is the probability that they have it?

30. The average incidence of autism spectrum disorder is 45 cases per 10, 000. [Source: Rutter, M. (2005).
Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatrica, 94
(1), 2-15.] A test for the disorder shows a positive result in 96% of people who have the disorder, and
in 1% of people who do not have it.

(a) What is the probability that a randomly selected person tests positive for the disorder?

(b) If a person tests positive for the disorder, what is the probability that they have it?

31. Assume that the sets E1, E2, and E3 form a partition of a sample space S and let A be an event in S.

(a) Using Venn diagrams, show that A can be written as a union of A ∩ E1, A ∩ E2, and A ∩ E3.
Explain why the formula P (A) = P (A ∩ E1) + P (A ∩ E2) + P (A ∩ E3) is true.

(b) Show that (a) implies that P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + P (A |E3)P (E3), which is
the law of total probability in the case n = 3.

(c) Repeat (a) and (b) in the case of a partition of S into n subsets.

32. Recall that the events E1, E2, . . . , En are called mutually exclusive if the condition Ei ∩Ej = ∅ holds
for all i, j between 1 and n. How many conditions do we need to check if n = 3, n = 4, and n = 5? In
general, for any n?

Calculus_Prob Status Mod_8.5x10.875.indd   52 12-08-09   11:59 AM



P1-50 Probability and Statistics

16–18 Within a population of tigers, the trait of the dominant allele P is a spotted tail, and the trait of
the recessive allele T is a striped tail.

16. A baby tiger, born to genotype PT parents, has a spotted tail. What is the probability that it is of
genotype PT?

17. A baby tiger, born to genotype PT parents, is known to have one T allele. What is the probability
that it has a striped tail?

18. A baby tiger, born to genotype PT and TT parents, is known to have one T allele. What is the
probability that it has a striped tail?

19. Let S = {1, 2, 3, 4, 5}.

(a) Find three subsets of S that are mutually exclusive but do not form a partition of S.

(b) Find three mutually exclusive subsets of S that do not form a partition of S.

(c) Find a partition of S that contains three sets.

20. Let S = {1, 2, 3, 4}.

(a) Find three mutually exclusive subsets of S that do not form a partition of S.

(b) Find a collection of two subsets of S whose union is S but that are not mutually exclusive.

(c) Find a partition of S that contains three sets.

21. A surveyed population consists of 60% females and 40% males. Of all males, 35% are smokers, and of
all females, 20% are smokers.

(a) What is the probability that a randomly chosen person from this population is a smoker?

(b) What is the probability that a randomly selected smoker is male?

22. Within a population with a 1:1 sex ratio, 15% of females have blond hair and 5% of males have blond
hair.

(a) What is the probability that a randomly chosen person has blond hair?

(b) What is the probability that a randomly selected blond person is female?

23. A certain population consists of 20% children, 30% adolescents, and 50% adults. The probabilities
that a member of this population catches the flu are 0.45 for a child, 0.2 for an adolescent, and 0.15
for an adult.

(a) What is the probability that a randomly selected member of this population has the flu?

(b) What is the probability that a randomly selected person with the flu is an adult?

24. Of all frogs in a large pond, 50% are green, 35% are brown, and 15% are blue. About 5% of green
frogs have brown eyes, and 75% of blue frogs have brown eyes. There are no brown frogs with brown
eyes.

(a) What is the probability that a randomly chosen frog has brown eyes?

(b) A randomly selected frog has been found to have brown eyes. What is the probability that it is
green?

25. The incidence of asthma in young adults (assuming a 1:1 sex ratio) is 6.4% for females and 4.5% for
males. [Source: Thomsen, S.F., Ulrik, C.S., Kyvik, K.O., Larsen, K., Skadhauge, L.R., Steffensen, I.,
et al. (2005). The incidence of asthma in young adults. Chest, 127 (6), 1928-1934.]

(a) What is the probability that a randomly chosen young adult has asthma?
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(b) What is the probability that a young adult with asthma is a female?

26. A certain medical condition (could be high blood pressure) comes in three forms, X, Y, and Z, with
prevalences of 45%, 35%, and 20%, respectively. The probability that a person will need emergency
medical attention is 10% if he has the X form, 5% if he has the Y form, and 45% if he has the Z
form. What is the probability that a person who has the condition will require emergency medical
attention?

27. There is an open-air concert tomorrow, but the weather forecast does not look good: a 60% chance of
rain. You need transportation to go to the concert and know the following: if it rains, there is a 30%
chance that you will have a car available, but if it does not rain, the chance is 90%. How likely is it
that you will go to the concert tomorrow?

28. There is a way to survey people face-to-face on embarrassing questions and ensure their anonymity
(thus getting potentially useful results). Suppose you live in Toronto and wish to survey people on
their use of a cell phone while driving (which is against the law in Ontario). You set it up in the
following way. Each participant draws a card from a deck of cards; you don’t know which card they
picked. If they pick a black suit, then they have to truthfully answer a question where there is exactly
a 50-50 chance of answering “yes” or “no” (such as “Was your mother born between 1 January and
30 June?”). If they pick a red suit, then they have to truthfully answer the question “Have you driven
a car and talked on a cell phone at the same time?”

You realize that of the 200 people you surveyed, 120 answered “yes.” So, how many people are
likely to use their cell phone while driving?

29. The incidence of bacterial meningitis in Canada ranged from 3.17 to 3.66 per 100,000 between 1994
and 2001. [Source: Public Health Agency of Canada, http://www.phac-aspc.gc.ca/publicat/ccdr-
rmtc/05vol31/dr3123a-eng.php.] For the purpose of this exercise, we take the incidence to be 3.4 per
100,000. A test for meningitis shows a positive result in 85% of people who have it and in 7% of people
who do not have it.

(a) What is the probability that a randomly selected person tests positive for bacterial meningitis?

(b) If a person tests positive for bacterial meningitis, what is the probability that they have it?

30. The average incidence of autism spectrum disorder is 45 cases per 10, 000. [Source: Rutter, M. (2005).
Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatrica, 94
(1), 2-15.] A test for the disorder shows a positive result in 96% of people who have the disorder, and
in 1% of people who do not have it.

(a) What is the probability that a randomly selected person tests positive for the disorder?

(b) If a person tests positive for the disorder, what is the probability that they have it?

31. Assume that the sets E1, E2, and E3 form a partition of a sample space S and let A be an event in S.

(a) Using Venn diagrams, show that A can be written as a union of A ∩ E1, A ∩ E2, and A ∩ E3.
Explain why the formula P (A) = P (A ∩ E1) + P (A ∩ E2) + P (A ∩ E3) is true.

(b) Show that (a) implies that P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + P (A |E3)P (E3), which is
the law of total probability in the case n = 3.

(c) Repeat (a) and (b) in the case of a partition of S into n subsets.

32. Recall that the events E1, E2, . . . , En are called mutually exclusive if the condition Ei ∩Ej = ∅ holds
for all i, j between 1 and n. How many conditions do we need to check if n = 3, n = 4, and n = 5? In
general, for any n?
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5 Independence

We introduce an important category of events, called independent events. If
our knowledge about an event does not tell us anything about the probability of
another event occurring, then the two events are independent.

Independent Events

We toss a coin and it’s tails. We toss it again. Knowing that it was tails the first
time, what is the probability that it will be tails again?

Define the events A = “outcome of the second toss is T” and B = “outcome
of the first toss is T.” The question is, what is P (A |B)? Since the coin has no
memory, the outcome of the second toss does not depend on the outcome of the
first toss. Thus,

P (A |B) = P (A) (5.1)

If (5.1) holds for two events A and B, then we say that A is independent of B.
Combining the definition of conditional probability

P (A |B) =
P (A ∩ B)

P (B)
with (5.1), we obtain

P (A ∩ B)
P (B)

= P (A)

and
P (A ∩ B) = P (A)P (B) (5.2)

Definition 14 Independent Events
Two events A and B are called independent if P (A ∩ B) = P (A)P (B).

Although (5.1) and Definition 14 are equivalent, the statement given in Definition
14 is a common way of defining independence. The major reason is that the defini-
tion emphasizes symmetry: note that switching A and B in P (A∩B) = P (A)P (B)
results in the same formula. Thus, we do not have to say “A is independent of B”
(as in P (A |B) = P (A)) nor “B is independent of A” (as in P (B |A) = P (B));
instead, we say that “A and B are independent.”

Example 5.1 Independent Events: Rolling a Die

What is the probability that two consecutive rolls of a die result in two sixes?

Define the events A1 = “outcome of the first roll is a 6” and A2 = “outcome of
the second roll is a 6.” We know that P (A1) = P (A2) = 1/6. Since A1 and A2 are
independent,

P (A1 ∩ A2) = P (A1)P (A2) =
1
6
· 1
6

=
1
36

Note that A1 ∩ A2 = “outcome of both rolls is a 6,” and so the answer to the
question is 1/36.

Section 5 Independence P1-53

Example 5.2 Independence: Genetics

Both the mother and the father are of genotype RG. What is the probability that
their offspring is of genotype GG?

One way to do this is to define the sample space of all possible genotypes S =
{RR, RG, GR, GG} and look at probabilities. Since the four events are equally
likely, P (GG) = 1/4.

Here is an alternative way of thinking about this: in order for an offspring to
inherit the GG genotype, it has to inherit the allele G from its mother and the
allele G from its father. Define the events A1 = “allele from the mother is G,”
A2 = “allele from the father is G,” and B = A1 ∩ A2 = “offspring has genotype
GG.”

From biological laws (laws of inheritance) we know that P (A1) = P (A2) = 1/2
and that the events A1 and A2 are independent. Thus,

P (B) = P (A1 ∩ A2) = P (A1)P (A2) =
1
2
· 1
2

=
1
4

The definition of independence can be extended to any number of events. Although
the message is the same, the actual conditions get messy. In particular, three
events A, B, and C are said to be independent if all of the following conditions
hold: P (A ∩ B) = P (A)P (B), P (A ∩ C) = P (A)P (C), P (B ∩ C) = P (B)P (C),
and P (A ∩ B ∩ C) = P (A)P (B)P (C).

To define independence for n events, we have to check all possible combi-
nations of intersections of 2, 3, 4, . . . , n events (see Exercise 23). Thus, deciding
whether or not several events are independent using the definition could be quite
hard. However, if we know that events are independent, then we can calculate the
probability of their intersection.

Example 5.3 Using Independence

Assume that a certain population has a 1:1 sex ratio of births.

(a) A family has three children. What is the probability that they are all girls?

(b) A family has three children. What is the probability that at least one child is
a boy?

(a) Define the following events: A1 = “the first child is a girl,” A2 = “the second
child is a girl,” and A3 = “the third child is a girl.” Girls and boys are equally
likely to be born, so P (A1) = P (A2) = P (A3) = 1/2. Define B = A1 ∩A2 ∩A3 =
“all three children are girls.” The fact that the consecutive births are considered
independent implies that

P (B) = P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3) =
(

1
2

)3

=
1
8

(b) Here is one approach: the sample space of all events is

S = {GGG, GGB, GBG, GBB, BBB, BBG, BGB, BGG}
The sequences of three letters (B for a boy, G for a girl) represent the chronological
order of births. The probabilities are P (three girls) = P (three boys) = 1/8, and
P (two boys and a girl) = P (two girls and a boy) = 3/8. It follows that

P (at least one boy) = P (exactly one boy) + P (exactly two boys) + P (three boys)

=
3
8

+
3
8

+
1
8

=
7
8

A commonly used trick—to consider the complementary event—simplifies our
calculations quite a bit: instead of the event “at least one boy,” consider the
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5 Independence

We introduce an important category of events, called independent events. If
our knowledge about an event does not tell us anything about the probability of
another event occurring, then the two events are independent.

Independent Events

We toss a coin and it’s tails. We toss it again. Knowing that it was tails the first
time, what is the probability that it will be tails again?

Define the events A = “outcome of the second toss is T” and B = “outcome
of the first toss is T.” The question is, what is P (A |B)? Since the coin has no
memory, the outcome of the second toss does not depend on the outcome of the
first toss. Thus,

P (A |B) = P (A) (5.1)

If (5.1) holds for two events A and B, then we say that A is independent of B.
Combining the definition of conditional probability

P (A |B) =
P (A ∩ B)

P (B)
with (5.1), we obtain

P (A ∩ B)
P (B)

= P (A)

and
P (A ∩ B) = P (A)P (B) (5.2)

Definition 14 Independent Events
Two events A and B are called independent if P (A ∩ B) = P (A)P (B).

Although (5.1) and Definition 14 are equivalent, the statement given in Definition
14 is a common way of defining independence. The major reason is that the defini-
tion emphasizes symmetry: note that switching A and B in P (A∩B) = P (A)P (B)
results in the same formula. Thus, we do not have to say “A is independent of B”
(as in P (A |B) = P (A)) nor “B is independent of A” (as in P (B |A) = P (B));
instead, we say that “A and B are independent.”

Example 5.1 Independent Events: Rolling a Die

What is the probability that two consecutive rolls of a die result in two sixes?

Define the events A1 = “outcome of the first roll is a 6” and A2 = “outcome of
the second roll is a 6.” We know that P (A1) = P (A2) = 1/6. Since A1 and A2 are
independent,

P (A1 ∩ A2) = P (A1)P (A2) =
1
6
· 1
6

=
1
36

Note that A1 ∩ A2 = “outcome of both rolls is a 6,” and so the answer to the
question is 1/36.
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Example 5.2 Independence: Genetics

Both the mother and the father are of genotype RG. What is the probability that
their offspring is of genotype GG?

One way to do this is to define the sample space of all possible genotypes S =
{RR, RG, GR, GG} and look at probabilities. Since the four events are equally
likely, P (GG) = 1/4.

Here is an alternative way of thinking about this: in order for an offspring to
inherit the GG genotype, it has to inherit the allele G from its mother and the
allele G from its father. Define the events A1 = “allele from the mother is G,”
A2 = “allele from the father is G,” and B = A1 ∩ A2 = “offspring has genotype
GG.”

From biological laws (laws of inheritance) we know that P (A1) = P (A2) = 1/2
and that the events A1 and A2 are independent. Thus,

P (B) = P (A1 ∩ A2) = P (A1)P (A2) =
1
2
· 1
2

=
1
4

The definition of independence can be extended to any number of events. Although
the message is the same, the actual conditions get messy. In particular, three
events A, B, and C are said to be independent if all of the following conditions
hold: P (A ∩ B) = P (A)P (B), P (A ∩ C) = P (A)P (C), P (B ∩ C) = P (B)P (C),
and P (A ∩ B ∩ C) = P (A)P (B)P (C).

To define independence for n events, we have to check all possible combi-
nations of intersections of 2, 3, 4, . . . , n events (see Exercise 23). Thus, deciding
whether or not several events are independent using the definition could be quite
hard. However, if we know that events are independent, then we can calculate the
probability of their intersection.

Example 5.3 Using Independence

Assume that a certain population has a 1:1 sex ratio of births.

(a) A family has three children. What is the probability that they are all girls?

(b) A family has three children. What is the probability that at least one child is
a boy?

(a) Define the following events: A1 = “the first child is a girl,” A2 = “the second
child is a girl,” and A3 = “the third child is a girl.” Girls and boys are equally
likely to be born, so P (A1) = P (A2) = P (A3) = 1/2. Define B = A1 ∩A2 ∩A3 =
“all three children are girls.” The fact that the consecutive births are considered
independent implies that

P (B) = P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3) =
(

1
2

)3

=
1
8

(b) Here is one approach: the sample space of all events is

S = {GGG, GGB, GBG, GBB, BBB, BBG, BGB, BGG}
The sequences of three letters (B for a boy, G for a girl) represent the chronological
order of births. The probabilities are P (three girls) = P (three boys) = 1/8, and
P (two boys and a girl) = P (two girls and a boy) = 3/8. It follows that

P (at least one boy) = P (exactly one boy) + P (exactly two boys) + P (three boys)

=
3
8

+
3
8

+
1
8

=
7
8

A commonly used trick—to consider the complementary event—simplifies our
calculations quite a bit: instead of the event “at least one boy,” consider the
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complement “no boys” = “all girls.” From (1) we know that P (all girls) = 1/8,
and therefore P (at least one boy) = 1 − P (all girls) = 7/8.

Example 5.4 Independence in Genetics: Example of the Hardy-Weinberg Law

Assume that, within some population, the fraction of G alleles is 0.6 and the
fraction of R alleles is 0.4 (this means that the fraction of G alleles among females
is 0.6 and the fraction of G alleles among males is 0.6; the fraction of R alleles
among the females, as well as among the males, is 0.4).

To determine the genetic makeup of a child, we select one allele from the
mother and one allele from the father. These two selections are considered in-
dependent. To guide us through the reasoning, we construct a tree diagram; see
Figure 5.1.

GG
G

GR

RG

RR

0.6

0.4

0.6

0.4

R

0.6

0.4

allele from allele from
fathermother

FIGURE 5.1

Tree diagram for allele selec-
tion

Using the assumption on independence,

P (GG) = P (G from mother and G from father)
= P (G from mother)P (G from father) = 0.6 · 0.6 = 0.36

Likewise,

P (GR) = P (G from mother and R from father)
= P (G from mother)P (R from father) = 0.6 · 0.4 = 0.24

In the same way, we calculate P (RG) = 0.24 and P (RR) = 0.16.

Suppose that 1,000 children are born. What is the genetic makeup of the new
generation?

We use the probabilities we just found: of the 1,000 children, 0.36(1, 000) =
360 will be of type GG, 0.24(1, 000)+0.24(1, 000) = 480 will be of type GR = RG,
and 0.16(1, 000) = 160 will be of type RR.

The 360 genotype GG children contribute 720 G alleles to the genetic pool.
The 480 genotype RG children contribute 480 G and 480 R alleles to the pool, and
the 160 genotype RR children contribute 320 R alleles to the pool. The genetic
pool of children will contain 2,000 alleles, of which 720+480 = 1, 200 are G alleles
and 480 + 320 = 800 are R alleles. The ratio of G alleles is 1, 200/2, 000 = 0.6,
and the ratio of R alleles is 800/2, 000 = 0.4. Note that the ratio is the same as in
the genetic pool of the parents.

This example is an illustration of the Hardy-Weinberg law, which states that
in the absence of other factors, the genetic makeup of a population remains un-
changed.

Example 5.5 Independence in Genetics: Hardy-Weinberg Law

Now we generalize the calculations of Example 5.4. Assume that the fraction
of G alleles within some population is g and the fraction of R alleles is r (thus,
g + r = 1). The tree diagram in Figure 5.2 shows all possibilities for the genetic
makeup of a child, and the corresponding probabilities.
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GG      P(GG)=g2

G
GR      P(GR)=gr

RG      P(RG)=rg

RR      P(RR)=r2

g

r

g

r

R

g

r

allele from allele from
fathermother

FIGURE 5.2

Tree diagram for the genetic
makeup of a child

Suppose that the population has N children. What are the fractions of G and R
alleles in this new genetic pool?

We organize the information in Table 5.1.

Table 5.1

Genotype Number of Number of Number of

children G alleles R alleles

GG g2N 2g2N 0

GR, RG 2grN 2grN 2grN

RR r2N 0 2r2N

Thus, there is a total of

2g2N + 2grN = 2gN(g + r) = 2gN

G alleles and

2grN + 2r2N = 2rN(g + r) = 2rN

R alleles (keep in mind that g + r = 1). The total number of alleles is 2N ; the
ratio of G alleles is 2gN/2N = g and the ratio of R alleles is 2rN/2N = r. Thus,
the ratios have not changed.

As an illustration of situations that produce non-independent events we consider
an example of a Markov chain. Recall that (see Example 2.2 in Section 2 and the
text following it) a Markov chain is a stochastic system where the probability of
arriving at a particular state depends on the state at the previous time.

Example 5.6 Markov Chain: Disappearance and Recurrence of a Virus

Recall the model of recurrence and disappearance of a virus from Example 2.2: if
the virus is present in the population at time t, it will be present at time t+1 with
a probability of 0.75. If it is absent from the population at time t, the virus will
appear in the population at time t + 1 with a probability of 0.2; see Figure 5.3.

Virus absent
0.25

Virus present
0.2

0.8 0.75FIGURE 5.3

Dynamics of disappearance
and recurrence of the virus

Define the following events:

Vt = “virus present at time t”

Nt = “virus absent at time t”

Vt+1 = “virus present at time t + 1”

Nt+1 = “virus absent at time t + 1”
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complement “no boys” = “all girls.” From (1) we know that P (all girls) = 1/8,
and therefore P (at least one boy) = 1 − P (all girls) = 7/8.

Example 5.4 Independence in Genetics: Example of the Hardy-Weinberg Law

Assume that, within some population, the fraction of G alleles is 0.6 and the
fraction of R alleles is 0.4 (this means that the fraction of G alleles among females
is 0.6 and the fraction of G alleles among males is 0.6; the fraction of R alleles
among the females, as well as among the males, is 0.4).

To determine the genetic makeup of a child, we select one allele from the
mother and one allele from the father. These two selections are considered in-
dependent. To guide us through the reasoning, we construct a tree diagram; see
Figure 5.1.
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FIGURE 5.1

Tree diagram for allele selec-
tion

Using the assumption on independence,

P (GG) = P (G from mother and G from father)
= P (G from mother)P (G from father) = 0.6 · 0.6 = 0.36

Likewise,

P (GR) = P (G from mother and R from father)
= P (G from mother)P (R from father) = 0.6 · 0.4 = 0.24

In the same way, we calculate P (RG) = 0.24 and P (RR) = 0.16.

Suppose that 1,000 children are born. What is the genetic makeup of the new
generation?

We use the probabilities we just found: of the 1,000 children, 0.36(1, 000) =
360 will be of type GG, 0.24(1, 000)+0.24(1, 000) = 480 will be of type GR = RG,
and 0.16(1, 000) = 160 will be of type RR.

The 360 genotype GG children contribute 720 G alleles to the genetic pool.
The 480 genotype RG children contribute 480 G and 480 R alleles to the pool, and
the 160 genotype RR children contribute 320 R alleles to the pool. The genetic
pool of children will contain 2,000 alleles, of which 720+480 = 1, 200 are G alleles
and 480 + 320 = 800 are R alleles. The ratio of G alleles is 1, 200/2, 000 = 0.6,
and the ratio of R alleles is 800/2, 000 = 0.4. Note that the ratio is the same as in
the genetic pool of the parents.

This example is an illustration of the Hardy-Weinberg law, which states that
in the absence of other factors, the genetic makeup of a population remains un-
changed.

Example 5.5 Independence in Genetics: Hardy-Weinberg Law

Now we generalize the calculations of Example 5.4. Assume that the fraction
of G alleles within some population is g and the fraction of R alleles is r (thus,
g + r = 1). The tree diagram in Figure 5.2 shows all possibilities for the genetic
makeup of a child, and the corresponding probabilities.
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Suppose that the population has N children. What are the fractions of G and R
alleles in this new genetic pool?

We organize the information in Table 5.1.

Table 5.1

Genotype Number of Number of Number of

children G alleles R alleles

GG g2N 2g2N 0

GR, RG 2grN 2grN 2grN

RR r2N 0 2r2N

Thus, there is a total of

2g2N + 2grN = 2gN(g + r) = 2gN

G alleles and

2grN + 2r2N = 2rN(g + r) = 2rN

R alleles (keep in mind that g + r = 1). The total number of alleles is 2N ; the
ratio of G alleles is 2gN/2N = g and the ratio of R alleles is 2rN/2N = r. Thus,
the ratios have not changed.

As an illustration of situations that produce non-independent events we consider
an example of a Markov chain. Recall that (see Example 2.2 in Section 2 and the
text following it) a Markov chain is a stochastic system where the probability of
arriving at a particular state depends on the state at the previous time.

Example 5.6 Markov Chain: Disappearance and Recurrence of a Virus

Recall the model of recurrence and disappearance of a virus from Example 2.2: if
the virus is present in the population at time t, it will be present at time t+1 with
a probability of 0.75. If it is absent from the population at time t, the virus will
appear in the population at time t + 1 with a probability of 0.2; see Figure 5.3.

Virus absent
0.25

Virus present
0.2

0.8 0.75FIGURE 5.3

Dynamics of disappearance
and recurrence of the virus

Define the following events:

Vt = “virus present at time t”

Nt = “virus absent at time t”

Vt+1 = “virus present at time t + 1”

Nt+1 = “virus absent at time t + 1”
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The assumptions about the behaviour of the virus can be translated into condi-
tional probabilities in the following way:

P (Vt+1 |Vt) = 0.75

P (Vt+1 |Nt) = 0.2

P (Nt+1 |Nt) = 0.8

P (Nt+1 |Vt) = 0.25
We now compute the probability that the virus is present at time t + 1.

The events Vt and Nt form a partition of the sample space (the virus is either
present or not). By the law of total probability,

P (Vt+1) = P (Vt+1 |Vt)P (Vt) + P (Vt+1 |Nt)P (Nt)
= 0.75P (Vt) + 0.2P (Nt)

Thus, the probability at time t + 1 depends on the probabilities at time t (which
we do not know). From

P (Vt+1 |Vt) = 0.75 �= P (Vt+1 |Nt) = 0.2

we conclude that Vt+1 and Vt are not independent (it is more likely that Vt+1

occurs if Vt occurs than if Nt occurs; see Exercise 24 for a formal proof).

To visualize the long-term behaviour, we run the simulation for 100 time steps;
see Figure 5.4, where 0 marks the absence and 1 marks the presence of the virus.
(Note that, due to the chance factor, the picture differs from the one in Figure 2.4
in Section 2.)
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FIGURE 5.4

Dynamics of recurrence and
disappearance of a virus, 100
steps

We contrast the situation of Example 5.6 with the situation where the probabilities
of switching between the two states, A and B, are higher (see Figure 5.5).

State A
0.9

State B
0.75

0.25 0.1
FIGURE 5.5

The dynamics of high prob-
ability of switching between
states

As before, we define the events

At = “system is at A at time t”

Bt = “system is at B at time t”

At+1 = “system is at A at time t + 1”

Bt+1 = “system is at B at time t + 1”
From the diagram, we see that

P (At+1 |At) = 0.25

P (At+1 |Bt) = 0.9
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P (Bt+1 |At) = 0.75

P (Bt+1 |Bt) = 0.1
Again, the fact that P (At+1 |At) �= P (At+1 |Bt) shows that At+1 and At are not
independent.

To see the long-term behaviour, we run the simulation for 100 steps; see Figure
5.6 (0 represents state A and 1 represents state B).
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The dynamics of a high prob-
ability of switching between
states

So, using simple stochastic tools, we can model various patterns of switching be-
haviours.

Example 5.7 Mutation

Assume that rt and gt represent the ratios of alleles R and G, respectively, in a
reproductive population at time t. The Hardy-Weinberg law states that the genetic
pool in the next generation, without any outside factors, will keep the same ratios.

Now consider the case of mutation: in each generation, the fraction m of
G-alleles mutates to R-alleles.

Suppose that there are N offspring (thus, 2N alleles). Of the 2N alleles,
2Ngt are G-alleles and 2Nrt are R-alleles. Due to the mutation, m(2Ngt) G-
alleles become R-alleles. Thus, of the 2N alleles in generation t + 1, there are
2Nrt + 2mNgt R-alleles and 2Ngt − 2mNgt G-alleles.

The ratios are

rt+1 =
2Nrt + 2mNgt

2N
= rt + mgt

and

gt+1 =
2Ngt − 2mNgt

2N
= gt − mgt = (1 − m)gt

From rt + gt = 1 we get gt = 1 − rt and

rt+1 = rt + m(1 − rt) = (1 − m)rt + m

Thus, we obtain the deterministic dynamical system for the ratios:

gt+1 = (1 − m)gt

rt+1 = (1 − m)rt + m

The solutions (see Exercise 25) are given by

gt = g0(1 − m)t

rt = (r0 − 1)(1 − m)t + 1 (5.3)

where g0 and r0 are the ratios of the G and R alleles, respectively, in the starting
generation.

Since 1 − m < 1, the ratio of G-alleles decreases exponentially and

lim
t→∞

gt = 0
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(Note that, due to the chance factor, the picture differs from the one in Figure 2.4
in Section 2.)
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P (Bt+1 |At) = 0.75

P (Bt+1 |Bt) = 0.1
Again, the fact that P (At+1 |At) �= P (At+1 |Bt) shows that At+1 and At are not
independent.

To see the long-term behaviour, we run the simulation for 100 steps; see Figure
5.6 (0 represents state A and 1 represents state B).

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

FIGURE 5.6

The dynamics of a high prob-
ability of switching between
states

So, using simple stochastic tools, we can model various patterns of switching be-
haviours.

Example 5.7 Mutation

Assume that rt and gt represent the ratios of alleles R and G, respectively, in a
reproductive population at time t. The Hardy-Weinberg law states that the genetic
pool in the next generation, without any outside factors, will keep the same ratios.

Now consider the case of mutation: in each generation, the fraction m of
G-alleles mutates to R-alleles.

Suppose that there are N offspring (thus, 2N alleles). Of the 2N alleles,
2Ngt are G-alleles and 2Nrt are R-alleles. Due to the mutation, m(2Ngt) G-
alleles become R-alleles. Thus, of the 2N alleles in generation t + 1, there are
2Nrt + 2mNgt R-alleles and 2Ngt − 2mNgt G-alleles.

The ratios are

rt+1 =
2Nrt + 2mNgt

2N
= rt + mgt

and

gt+1 =
2Ngt − 2mNgt

2N
= gt − mgt = (1 − m)gt

From rt + gt = 1 we get gt = 1 − rt and

rt+1 = rt + m(1 − rt) = (1 − m)rt + m

Thus, we obtain the deterministic dynamical system for the ratios:

gt+1 = (1 − m)gt

rt+1 = (1 − m)rt + m

The solutions (see Exercise 25) are given by

gt = g0(1 − m)t

rt = (r0 − 1)(1 − m)t + 1 (5.3)

where g0 and r0 are the ratios of the G and R alleles, respectively, in the starting
generation.

Since 1 − m < 1, the ratio of G-alleles decreases exponentially and

lim
t→∞

gt = 0
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On the other hand,

lim
t→∞

rt = (r0 − 1)(0) + 1 = 1

Thus, in the long term, G-alleles will completely disappear from the population.
Substituting gt = 0.5g0 into (5.3), we calculate the half-life

0.5 = (1 − m)t

ln 0.5 = t ln(1 − m)

t =
ln 0.5

ln(1 − m)
Mutation rates are usually very small. If m = 0.001, then the half-life of G-alleles
is

t =
ln 0.5

ln(1 − 0.001)
≈ 693

generations.

Summary Two events are independent if the knowledge of one event does not convey any-
thing about the probability of the other event. In other words, if the probabilify
of one event conditional on another is equal to the unconditional probability, then
the two events are independent. For independent events, the probability of the
intersection of events is equal to the product of the individual probabilities. The
Hardy-Weinberg law states that, in the absence of outside factors, the genetic
makeup of a population remains unchanged.

5 Exercises

1. Assume that A and B are disjoint events such that P (A) > 0 and P (B) > 0. Can A and B be
independent?

2–5 Define the sample space S = {1, 2, 3, 4, 5}, and assume that P (1) = 0.2, P (2) = 0.1, P (3) = 0.2,
P (4) = 0.4, and P (5) = 0.1.

2. Let A = {1, 3} and B = {2, 4}. Calculate P (A |B) and P (A). Are A and B independent?

3. Let A = {4, 5} and B = {2, 5}. Calculate P (B |A) and P (B). Are A and B independent?

4. Let A = {1} and B = {1, 2, 3, 4, 5}. Calculate P (B |A) and P (B). Are A and B independent?

5. Let A = {1, 5} and B = {1, 2, 5}. Calculate P (A |B) and P (A). Are A and B independent?

6. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = P (2) = P (3) = 0.2,
and P (4) = 0.4. Are the events A = {1, 4} and B = {2, 3, 4} independent?

7. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = 0.2, P (2) = 0.3,
P (3) = 0.2, and P (4) = 0.3. Are the events A = {1, 3} and B = {1, 4} independent?

8. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that A = {2, 3} and B = {3, 4}
are independent and P (A) = 0.3 and P (B) = 0.2. Find P (3) and P (1).

9. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that A = {1, 3} and B = {2, 3}
are independent and P (A) = 0.5 and P (B) = 0.4. Find P (3) and P (4).
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10. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = 0.1, P (2) = 0.4,
P (3) = 0.1, and P (4) = 0.4, and let A = {1, 3}. Find an event B that contains two elements and is
independent of A.

11. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = 0.3, P (2) = 0.2,
P (3) = 0.2, and P (4) = 0.3, and let A = {2, 4}. Find an event B that contains two elements and is
independent of A.

12. A quiz has five multiple-choice questions, each with three choices. Without reading them, a student
randomly answers all questions.

(a) What is the probability that the student will answer at least one question correctly?

(b) What is the probability that the student will answer all questions correctly?

13. A quiz has ten multiple-choice questions, each with two choices. Without reading them, a student
randomly answers all questions.

(a) What is the probability that the student will answer at least one question correctly?

(b) What is the probability that the student will answer all questions correctly?

14. The probability that a couple has a female child is 0.54 and the probability that they have a male
child is 0.46. Assume that births are independent events.

(a) A couple has three children. What is the probability that two of their children are girls?

(b) A couple has four children. What is the probability that at least two children are boys?

15. The probability that a couple has a female child is 0.45 and the probability that they have a male
child is 0.55. Assume that births are independent events.

(a) A couple has three children. What is the probability that two of their children are girls?

(b) A couple has four children. What is the probability that at least two children are boys?

16. The chance that a mosquito survives an application of a bug spray is 0.15. What is the probability
that in a sample of 20 mosquitoes at least one will survive?

17. One way to get rid of most of the house dust mites (which are the most commom cause of allergic
reactions and asthma) is to wash laundry in hot water. It has been determined that the chance that a
house dust mite survives in laundry washed at 60oC is 0.01. What is the probability that, in a sample
of 100 house dust mites, at least one will survive?

18. A medical test for a certain disease gives a false-positive result with a probability of 0.002. (A false
positive describes the situation where the test turns out positive although the person tested does not
have the disease.) What is the probability that in a group of 100 people, at least one false positive
will occur?

19. A medical test for high blood glucose gives a false-negative result with a probability of 0.012. (A false
negative describes the situation where the test turns out negative although the person tested has a
high blood glucose level.) What is the probability that in a group of 50 people, at least one false
negative will occur?

20. The average efficacy of an oral contraceptive (birth control pill) is about 97.5% per year. This means
that, within a year, 2.5% of sexually active women who are taking the pill will get pregnant. What is
the probability that a sexually active woman who takes birth control pills will get pregnant at least
once in a 5-year period?

21. The average efficacy of a condom (used without any other preventative measures) is about 86% per
year. This means that, within a year, 14% of sexually active women who use condoms will get pregnant.
What is the probability that a sexually active woman who uses condoms regularly will get pregnant
at least once in a 5-year period?
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On the other hand,

lim
t→∞

rt = (r0 − 1)(0) + 1 = 1

Thus, in the long term, G-alleles will completely disappear from the population.
Substituting gt = 0.5g0 into (5.3), we calculate the half-life

0.5 = (1 − m)t

ln 0.5 = t ln(1 − m)

t =
ln 0.5

ln(1 − m)
Mutation rates are usually very small. If m = 0.001, then the half-life of G-alleles
is

t =
ln 0.5

ln(1 − 0.001)
≈ 693

generations.

Summary Two events are independent if the knowledge of one event does not convey any-
thing about the probability of the other event. In other words, if the probabilify
of one event conditional on another is equal to the unconditional probability, then
the two events are independent. For independent events, the probability of the
intersection of events is equal to the product of the individual probabilities. The
Hardy-Weinberg law states that, in the absence of outside factors, the genetic
makeup of a population remains unchanged.

5 Exercises

1. Assume that A and B are disjoint events such that P (A) > 0 and P (B) > 0. Can A and B be
independent?

2–5 Define the sample space S = {1, 2, 3, 4, 5}, and assume that P (1) = 0.2, P (2) = 0.1, P (3) = 0.2,
P (4) = 0.4, and P (5) = 0.1.

2. Let A = {1, 3} and B = {2, 4}. Calculate P (A |B) and P (A). Are A and B independent?

3. Let A = {4, 5} and B = {2, 5}. Calculate P (B |A) and P (B). Are A and B independent?

4. Let A = {1} and B = {1, 2, 3, 4, 5}. Calculate P (B |A) and P (B). Are A and B independent?

5. Let A = {1, 5} and B = {1, 2, 5}. Calculate P (A |B) and P (A). Are A and B independent?

6. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = P (2) = P (3) = 0.2,
and P (4) = 0.4. Are the events A = {1, 4} and B = {2, 3, 4} independent?

7. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = 0.2, P (2) = 0.3,
P (3) = 0.2, and P (4) = 0.3. Are the events A = {1, 3} and B = {1, 4} independent?

8. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that A = {2, 3} and B = {3, 4}
are independent and P (A) = 0.3 and P (B) = 0.2. Find P (3) and P (1).

9. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that A = {1, 3} and B = {2, 3}
are independent and P (A) = 0.5 and P (B) = 0.4. Find P (3) and P (4).
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10. The sample space consists of four elements, S = {1, 2, 3, 4}. Assume that P (1) = 0.1, P (2) = 0.4,
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12. A quiz has five multiple-choice questions, each with three choices. Without reading them, a student
randomly answers all questions.

(a) What is the probability that the student will answer at least one question correctly?

(b) What is the probability that the student will answer all questions correctly?

13. A quiz has ten multiple-choice questions, each with two choices. Without reading them, a student
randomly answers all questions.

(a) What is the probability that the student will answer at least one question correctly?

(b) What is the probability that the student will answer all questions correctly?

14. The probability that a couple has a female child is 0.54 and the probability that they have a male
child is 0.46. Assume that births are independent events.

(a) A couple has three children. What is the probability that two of their children are girls?

(b) A couple has four children. What is the probability that at least two children are boys?

15. The probability that a couple has a female child is 0.45 and the probability that they have a male
child is 0.55. Assume that births are independent events.

(a) A couple has three children. What is the probability that two of their children are girls?

(b) A couple has four children. What is the probability that at least two children are boys?

16. The chance that a mosquito survives an application of a bug spray is 0.15. What is the probability
that in a sample of 20 mosquitoes at least one will survive?

17. One way to get rid of most of the house dust mites (which are the most commom cause of allergic
reactions and asthma) is to wash laundry in hot water. It has been determined that the chance that a
house dust mite survives in laundry washed at 60oC is 0.01. What is the probability that, in a sample
of 100 house dust mites, at least one will survive?

18. A medical test for a certain disease gives a false-positive result with a probability of 0.002. (A false
positive describes the situation where the test turns out positive although the person tested does not
have the disease.) What is the probability that in a group of 100 people, at least one false positive
will occur?

19. A medical test for high blood glucose gives a false-negative result with a probability of 0.012. (A false
negative describes the situation where the test turns out negative although the person tested has a
high blood glucose level.) What is the probability that in a group of 50 people, at least one false
negative will occur?

20. The average efficacy of an oral contraceptive (birth control pill) is about 97.5% per year. This means
that, within a year, 2.5% of sexually active women who are taking the pill will get pregnant. What is
the probability that a sexually active woman who takes birth control pills will get pregnant at least
once in a 5-year period?

21. The average efficacy of a condom (used without any other preventative measures) is about 86% per
year. This means that, within a year, 14% of sexually active women who use condoms will get pregnant.
What is the probability that a sexually active woman who uses condoms regularly will get pregnant
at least once in a 5-year period?
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22. The average efficacy of a birth control pill is about 97.5% per year (see Exercise 20) and the average
efficacy of a condom is 86% per year (see Exercise 21). If a sexually active woman uses both the
pill and condoms (and assuming that the two preventative measures are independent), what is the
probability that she will get pregnant at least once in 5 years?

23. Consider the number of conditions we need to check to prove independence. To show that three events
are independent, we need to check four conditions (see the text following Example 5.2).

(a) List all the conditions we need to check to prove that the events A, B, C, and D are independent.

(b) How many conditions do we need to check to prove that five events are independent?

(c) Once you learn about counting (Section 10), show that, in order to prove that n events are
independent, we have to check

(
n
2

)
+

(
n
3

)
+ · · · +

(
n

n−1

)
+

(
n
n

)
conditions.

24. Related to Example 5.6: assume that A, B, and C are events in S, and that B and C form a partition
of S. We will prove that P (A |B) = P (A |C) if and only if A and B and A and C are independent.

(a) Assume that A and B and A and C are independent. Using the definitions of the independence
of two events and of the conditional probability, show that P (A |B) = P (A |C).

(b) Rewrite the condition P (A |B) = P (A |C) using the definition of conditional probability.

(c) Explain why P (B) + P (C) = 1. Explain why P (A) = P (A ∩ B) + P (A ∩ C).

(d) Use (c) to eliminate the terms involving C from the equation you obtained in (b), and then simplify
to show that P (A ∩ B) = P (A)P (B).

(e) Explain how (a) and (d) complete the proof.

(f) Using what you just proved, explain why P (Vt+1 |Vt) = 0.75 and P (Vt+1 |Nt) = 0.2 imply that
Vt+1 and Vt are not independent.

25. We verify the formulas that were used in Example 5.7.

(a) Assume that gt+1 = agt, where a > 0. Given the value g0, find g1, g2, and g3, and then find the
general formula for gt. Apply the formula you obtained, with a = 1−m, to get the formula for gt

in (5.3).

(b) Show that rt = (r0 − 1)(1 − m)t + 1 satisfies rt+1 = (1 − m)rt + m. (The formula for rt is not as
easy to derive as the one in (a).)
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6 Discrete Random Variables

In many cases, the outcomes of experiments involving chance are real numbers. If
this is the case, we use random variables to describe the outcomes.

Definition 15 Random Variable
Assume that S is a sample space of a random experiment. A random variable X
is a function from S into the set of real numbers.

Thus, a random variable assigns a unique real number to each event in S. To
denote a random variable, we write

X: S → R
Unlike the functional notation in calculus, we use uppercase letters (X, Y, Z, and
so on) to identify random variables.

A set is called finite if it contains finitely many elements (or none at all); otherwise,
it is an infinite set. An infinite set is called countable if all of its elements can
be listed in a sequence; for instance, the set of positive integers {1, 2, 3, . . .} is
countable, and so is the set of all odd numbers. It is not possible to list all real
numbers that belong to the interval [0, 1] in a sequence, and therefore [0, 1] is not
a countable set. Infinite sets that are not countable are called uncountable.

Definition 16 Discrete and Continuous Random Variables
If the range of a random variable X is a finite or a countable set, then X is called a
discrete random variable. Otherwise, if its range is an uncountable set, a random
variable X is called a continuous random variable.

We focus on discrete random variables first. Our study of continuous random
variables begins in Section 13.

Discrete Random Variables

We start by investigating examples of discrete random variables that we will ex-
tensively use to illustrate concepts that we define in this and in the forthcoming
sections.

Example 6.1 Tossing a Coin Three Times in a Row

Consider a random experiment that consists of tossing a fair coin three times in a
row and recording the side that comes up. The sample space is the set

S = {HHH, THH, HTH, HHT, TTH, THT, HTT, TTT}
When defining a random variable—as for any function—we need to specify the
rule of assignment.

Define X to be a random variable that counts the number of tails that show
up. The values of X are

X(HHH) = 0, X(THH) = 1, X(HTH) = 1, X(THT) = 2, X(TTT) = 3,

and so on.
We define a few more random variables: let the random variable Y count how

many heads in a row show up. Define Z as follows: if no heads show up, then
Z = 0; otherwise, Z is the first occurrence of H.
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22. The average efficacy of a birth control pill is about 97.5% per year (see Exercise 20) and the average
efficacy of a condom is 86% per year (see Exercise 21). If a sexually active woman uses both the
pill and condoms (and assuming that the two preventative measures are independent), what is the
probability that she will get pregnant at least once in 5 years?

23. Consider the number of conditions we need to check to prove independence. To show that three events
are independent, we need to check four conditions (see the text following Example 5.2).

(a) List all the conditions we need to check to prove that the events A, B, C, and D are independent.

(b) How many conditions do we need to check to prove that five events are independent?

(c) Once you learn about counting (Section 10), show that, in order to prove that n events are
independent, we have to check
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24. Related to Example 5.6: assume that A, B, and C are events in S, and that B and C form a partition
of S. We will prove that P (A |B) = P (A |C) if and only if A and B and A and C are independent.

(a) Assume that A and B and A and C are independent. Using the definitions of the independence
of two events and of the conditional probability, show that P (A |B) = P (A |C).

(b) Rewrite the condition P (A |B) = P (A |C) using the definition of conditional probability.

(c) Explain why P (B) + P (C) = 1. Explain why P (A) = P (A ∩ B) + P (A ∩ C).

(d) Use (c) to eliminate the terms involving C from the equation you obtained in (b), and then simplify
to show that P (A ∩ B) = P (A)P (B).

(e) Explain how (a) and (d) complete the proof.

(f) Using what you just proved, explain why P (Vt+1 |Vt) = 0.75 and P (Vt+1 |Nt) = 0.2 imply that
Vt+1 and Vt are not independent.

25. We verify the formulas that were used in Example 5.7.

(a) Assume that gt+1 = agt, where a > 0. Given the value g0, find g1, g2, and g3, and then find the
general formula for gt. Apply the formula you obtained, with a = 1−m, to get the formula for gt

in (5.3).

(b) Show that rt = (r0 − 1)(1 − m)t + 1 satisfies rt+1 = (1 − m)rt + m. (The formula for rt is not as
easy to derive as the one in (a).)
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6 Discrete Random Variables

In many cases, the outcomes of experiments involving chance are real numbers. If
this is the case, we use random variables to describe the outcomes.

Definition 15 Random Variable
Assume that S is a sample space of a random experiment. A random variable X
is a function from S into the set of real numbers.

Thus, a random variable assigns a unique real number to each event in S. To
denote a random variable, we write

X: S → R
Unlike the functional notation in calculus, we use uppercase letters (X, Y, Z, and
so on) to identify random variables.

A set is called finite if it contains finitely many elements (or none at all); otherwise,
it is an infinite set. An infinite set is called countable if all of its elements can
be listed in a sequence; for instance, the set of positive integers {1, 2, 3, . . .} is
countable, and so is the set of all odd numbers. It is not possible to list all real
numbers that belong to the interval [0, 1] in a sequence, and therefore [0, 1] is not
a countable set. Infinite sets that are not countable are called uncountable.

Definition 16 Discrete and Continuous Random Variables
If the range of a random variable X is a finite or a countable set, then X is called a
discrete random variable. Otherwise, if its range is an uncountable set, a random
variable X is called a continuous random variable.

We focus on discrete random variables first. Our study of continuous random
variables begins in Section 13.

Discrete Random Variables

We start by investigating examples of discrete random variables that we will ex-
tensively use to illustrate concepts that we define in this and in the forthcoming
sections.

Example 6.1 Tossing a Coin Three Times in a Row

Consider a random experiment that consists of tossing a fair coin three times in a
row and recording the side that comes up. The sample space is the set

S = {HHH, THH, HTH, HHT, TTH, THT, HTT, TTT}
When defining a random variable—as for any function—we need to specify the
rule of assignment.

Define X to be a random variable that counts the number of tails that show
up. The values of X are

X(HHH) = 0, X(THH) = 1, X(HTH) = 1, X(THT) = 2, X(TTT) = 3,

and so on.
We define a few more random variables: let the random variable Y count how

many heads in a row show up. Define Z as follows: if no heads show up, then
Z = 0; otherwise, Z is the first occurrence of H.
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Assume that T is worth 3 points and H is worth −2 points. The random
variable W calculates the net worth of the three tosses.

The values of the four random variables are given in Table 6.1. They are all
discrete random variables, since their ranges are finite sets.

Table 6.1

event X Y Z W

HHH 0 3 1 −6

THH 1 2 2 −1

HTH 1 1 1 −1

HHT 1 2 1 −1

TTH 2 1 3 4

THT 2 1 2 4

HTT 2 1 1 4

TTT 3 0 0 9

Example 6.2 Genetics

Consider the sample space S = {RR, RG, GG} of genotypes involving a dominant
allele R (red eyes) and a recessive allele G (green eyes). Define the random variable
Y as follows:

Y =
{

1 if the combination yields red eyes
0 if the combination yields green eyes

Then Y (RR) = 1, Y (RG) = 1, and Y (GG) = 0. In words, Y is a discrete random
variable whose range is the two-element set {0, 1}.

Example 6.3 Dynamics of Disappearance and Recurrence of a Virus

Recall the situation of Example 5.6: if, at some time, a virus is present in a
population, then it will be present the following month with a probability of 0.75
(thus, it will disappear with probability 0.25). If the virus is absent from the
population, then it will be absent the following month with probability 0.8 (i.e.,
it will (re)appear within the population with probability 0.2).

Assume that, currently, the virus is absent from the population. Define X
to be a random variable that counts the number of virus-free months in the next
3-month period.

Denoting the presence of a virus by V and its absence by N, we write the
sample space as

S = {VVV, NVV, VNV, VVN, NNV, NVN, VNN, NNN}
For instance, NVV describes the event that the population (which starts virus-free,
by assumption) is virus-free for a month; then the virus appears and remains in
the population for two months.

Thus, X(VVV) = 0, X(NVN) = 2, X(NVV) = 1, and so on. X is a discrete
variable with (finite) range {0, 1, 2, 3}.

How can the range of a random variable be an infinite countable set? Look at the
following example.
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Example 6.4 Random Motion of a Molecule

Recall the random motion of a single molecule that we studied in Example 2.6:
initially, a molecule is inside a given region. During each time interval, it remanis
inside the region with probability 0.85 and leaves the region with probability 0.15.
Once it leaves the region, the molecule does not return.

Define the random variable X to be the time interval during which the molecule
leaves the region. Using the symbol I to denote that the molecule is inside the
region and O that it is outside, the sample space can be written as

S = {O, IO, IIO, IIIO, . . .}
(for instance, the event IIO descibes the situation where the molecule remains
within the region during the first two time intervals and leaves the region during
the third time interval). The values of X are

X(O) = 1, X(IO) = 2, X(IIO) = 3, X(IIIO) = 4, . . .

Since the molecule can leave during any time interval (could be the fifth, could be
the millionth), the range of X consists of all positive integers. It follows that X is
a discrete random variable whose range is an infinite countable set.

Later, we will need to know the probabilities of events in S. It is given that
P (I) = 0.85 and P (O) = 0.15. Note that the probabilities that the molecule leaves
the region (or stays inside) remain unchanged throughout the whole experiment.
This means that the behaviour of the molecule during any time interval is inde-
pendent of what happened in the past. Using the independence of events,

P (IO) = P (I during the first time interval and O during the second time interval)
= P (I during the first time interval)P (O during the second time interval)
= P (I)P (O)
= (0.85)(0.15) = 0.1275

Likewise,

P (IIIO) = P (I)P (I)P (I)P (O) = (0.85)3(0.15) = 0.0921

and so on.

Example 6.5 Modified Random Walk

Consider a modification of the random walk experiment discussed in Example 2.8
in Section 2. A particle is released at the location x = 0 and moves, during each
time interval, either left or right for one distance unit with a fifty-fifty chance.
Now the modification: when the particle reaches the location x = 3 or x = −3, it
is absorbed. Define

X = time needed for a particle to be absorbed

The sample space consists of all random paths that end at 3 or −3:

S = {0123, 012123, 0-1-2-1-2-3, 0-1010-1-2-3, 0-101212123, . . .}
For instance, 0-1-2-1-2-3 represents the particle moving from 0 to −1 (during the
first time interval), then to −2 (during the second time interval), then back to
−1 (third interval), then to −2 (fourth interval), and finally to −3 (fifth interval),
where the particle is absorbed. Thus, X(0-1-2-1-2-3) = 5. Likewise, X(0123) = 3,
X(012123) = 5, and X(0-101212123) = 9.

We conclude that the range of X is {3, 5, 7, 9, 11, 13, . . .}. (Why odd numbers
only? See Exercise 31.) The fact that the range of X is an infinite countable set
makes X a discrete random variable.
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Assume that T is worth 3 points and H is worth −2 points. The random
variable W calculates the net worth of the three tosses.

The values of the four random variables are given in Table 6.1. They are all
discrete random variables, since their ranges are finite sets.
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Consider the sample space S = {RR, RG, GG} of genotypes involving a dominant
allele R (red eyes) and a recessive allele G (green eyes). Define the random variable
Y as follows:

Y =
{

1 if the combination yields red eyes
0 if the combination yields green eyes

Then Y (RR) = 1, Y (RG) = 1, and Y (GG) = 0. In words, Y is a discrete random
variable whose range is the two-element set {0, 1}.

Example 6.3 Dynamics of Disappearance and Recurrence of a Virus

Recall the situation of Example 5.6: if, at some time, a virus is present in a
population, then it will be present the following month with a probability of 0.75
(thus, it will disappear with probability 0.25). If the virus is absent from the
population, then it will be absent the following month with probability 0.8 (i.e.,
it will (re)appear within the population with probability 0.2).

Assume that, currently, the virus is absent from the population. Define X
to be a random variable that counts the number of virus-free months in the next
3-month period.

Denoting the presence of a virus by V and its absence by N, we write the
sample space as

S = {VVV, NVV, VNV, VVN, NNV, NVN, VNN, NNN}
For instance, NVV describes the event that the population (which starts virus-free,
by assumption) is virus-free for a month; then the virus appears and remains in
the population for two months.

Thus, X(VVV) = 0, X(NVN) = 2, X(NVV) = 1, and so on. X is a discrete
variable with (finite) range {0, 1, 2, 3}.

How can the range of a random variable be an infinite countable set? Look at the
following example.
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Example 6.4 Random Motion of a Molecule

Recall the random motion of a single molecule that we studied in Example 2.6:
initially, a molecule is inside a given region. During each time interval, it remanis
inside the region with probability 0.85 and leaves the region with probability 0.15.
Once it leaves the region, the molecule does not return.

Define the random variable X to be the time interval during which the molecule
leaves the region. Using the symbol I to denote that the molecule is inside the
region and O that it is outside, the sample space can be written as

S = {O, IO, IIO, IIIO, . . .}
(for instance, the event IIO descibes the situation where the molecule remains
within the region during the first two time intervals and leaves the region during
the third time interval). The values of X are

X(O) = 1, X(IO) = 2, X(IIO) = 3, X(IIIO) = 4, . . .

Since the molecule can leave during any time interval (could be the fifth, could be
the millionth), the range of X consists of all positive integers. It follows that X is
a discrete random variable whose range is an infinite countable set.

Later, we will need to know the probabilities of events in S. It is given that
P (I) = 0.85 and P (O) = 0.15. Note that the probabilities that the molecule leaves
the region (or stays inside) remain unchanged throughout the whole experiment.
This means that the behaviour of the molecule during any time interval is inde-
pendent of what happened in the past. Using the independence of events,

P (IO) = P (I during the first time interval and O during the second time interval)
= P (I during the first time interval)P (O during the second time interval)
= P (I)P (O)
= (0.85)(0.15) = 0.1275

Likewise,

P (IIIO) = P (I)P (I)P (I)P (O) = (0.85)3(0.15) = 0.0921

and so on.

Example 6.5 Modified Random Walk

Consider a modification of the random walk experiment discussed in Example 2.8
in Section 2. A particle is released at the location x = 0 and moves, during each
time interval, either left or right for one distance unit with a fifty-fifty chance.
Now the modification: when the particle reaches the location x = 3 or x = −3, it
is absorbed. Define

X = time needed for a particle to be absorbed

The sample space consists of all random paths that end at 3 or −3:

S = {0123, 012123, 0-1-2-1-2-3, 0-1010-1-2-3, 0-101212123, . . .}
For instance, 0-1-2-1-2-3 represents the particle moving from 0 to −1 (during the
first time interval), then to −2 (during the second time interval), then back to
−1 (third interval), then to −2 (fourth interval), and finally to −3 (fifth interval),
where the particle is absorbed. Thus, X(0-1-2-1-2-3) = 5. Likewise, X(0123) = 3,
X(012123) = 5, and X(0-101212123) = 9.

We conclude that the range of X is {3, 5, 7, 9, 11, 13, . . .}. (Why odd numbers
only? See Exercise 31.) The fact that the range of X is an infinite countable set
makes X a discrete random variable.
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Next, we assign probabilities to a random variable by assigning a probability to
each value that the random variable assumes.

We start with discrete random variables whose range is a finite set.

Example 6.6 Assigning Probabilities: Rolling Two Dice

Consider a random experiment of rolling two dice. The sample space S consists
of 36 simple events

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 5), (6, 6)}
(where (m, n) means that the number m came up on the first die and n came up
on the second). Since all events are equally likely, the probability that any one
occurs is 1/36.

Define X to be the sum of the numbers that come up; its values are given in the
second column in Table 6.2. As we can see, the range of X is {2, 3, 4, . . . , 11, 12},
and so X is a discrete random variable with finite range.

In the third column we calculated the probabilities for X. (How? See Theorem
4 in Section 3 and Example 3.12).

Table 6.2

Events X= sum Probability

(1,1) 2 P (X = 2) = 1/36

(1,2), (2,1) 3 P (X = 3) = 2/36

(1,3), (2,2), (3,1) 4 P (X = 4) = 3/36

(1,4), (2,3), (3,2), (4,1) 5 P (X = 5) = 4/36

(1,5), (2,4), (3,3), (4,2), (5,1) 6 P (X = 6) = 5/36

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 P (X = 7) = 6/36

(2,6), (3,5), (4,4), (5,3), (6,2) 8 P (X = 8) = 5/36

(3,6), (4,5), (5,4), (6,3) 9 P (X = 9) = 4/36

(4,6), (5,5), (6,4) 10 P (X = 10) = 3/36

(5,6), (6,5) 11 P (X = 11) = 2/36

(6,6) 12 P (X = 12) = 1/36

Example 6.7 Assigning Probabilities: Tossing a Coin

Table 6.3

x P (X = x)

0 1/8

1 3/8

2 3/8

3 1/8

Consider the experiment of tossing a coin three times in a row (Example 6.1).
Assuming that all eight outcomes are equally likely (which is guaranteed if the
coin is fair), the probability of each outcome occurring is 1/8. The random variable
X counts the number of tails. The probability that X is equal to 0 is

P (X = 0) = P (HHH) =
1
8

Looking at Table 6.1, we see that there are three events whose outcome contains
one T; thus,

P (X = 1) = P (THH, HTH, HHT) =
3
8

Likewise, P (X = 2) = 3/8 and P (X = 3) = 1/8.

We display these probabilities in a table (Table 6.3) and as a histogram (Figure
6.1). The horizontal axis in a histogram contains the values of the random variable
and the vertical axis shows the probabilities.

Section 6 Discrete Random Variables P1-65

1 2 3 x=number of tails0

1/8

3/8

probability P(X=x)

FIGURE 6.1

The histogram for the ran-
dom variable X

In Exercise 11 we assign probabilities to the remaining random variables from
Example 6.1.

Example 6.8 Assigning Probabilities to the Random Variable in Example 6.3

In order to assign probabilities to X we need to find the probability of each event.
Unlike the coin-tossing experiment, the outcomes in this case are not equally likely.

Note that the probabilities remain unchanged through time. This means that
the present behaviour of the virus is unaffected by (independent of) its past. Keep
in mind that the initial state is N (virus not present). Using independence, we
compute (the probabilities are given in Example 6.3)

P (VVV) = P (V during the first month and V during the second month
and V during the third month)

= P (V during the first month)P (V during the second month)
P (V during the third month)

= (0.2)(0.75)(0.75) = 0.1125

Likewise,

P (VNV) = P (V during the first month)P (N during the second month)
P (V during the third month)

= (0.2)(0.25)(0.2) = 0.01

and

P (NVV) = P (N)P (V)P (V ) = (0.8)(0.2)(0.75) = 0.12

In Table 6.4 we show all events in the sample space, their probabilities, and the
values of the random variable X.

Table 6.4

Event Probability Value of X

VVV (0.2)(0.75)(0.75) = 0.1125 0

NVV (0.8)(0.2)(0.75) = 0.12 1

VNV (0.2)(0.25)(0.2) = 0.01 1

VVN (0.2)(0.75)(0.25) = 0.0375 1

NNV (0.8)(0.8)(0.2) = 0.128 2

NVN (0.8)(0.2)(0.25) = 0.04 2

VNN (0.2)(0.25)(0.8) = 0.04 2

NNN (0.8)(0.8)(0.8) = 0.512 3
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Consider the experiment of tossing a coin three times in a row (Example 6.1).
Assuming that all eight outcomes are equally likely (which is guaranteed if the
coin is fair), the probability of each outcome occurring is 1/8. The random variable
X counts the number of tails. The probability that X is equal to 0 is

P (X = 0) = P (HHH) =
1
8

Looking at Table 6.1, we see that there are three events whose outcome contains
one T; thus,

P (X = 1) = P (THH, HTH, HHT) =
3
8

Likewise, P (X = 2) = 3/8 and P (X = 3) = 1/8.

We display these probabilities in a table (Table 6.3) and as a histogram (Figure
6.1). The horizontal axis in a histogram contains the values of the random variable
and the vertical axis shows the probabilities.
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In order to assign probabilities to X we need to find the probability of each event.
Unlike the coin-tossing experiment, the outcomes in this case are not equally likely.

Note that the probabilities remain unchanged through time. This means that
the present behaviour of the virus is unaffected by (independent of) its past. Keep
in mind that the initial state is N (virus not present). Using independence, we
compute (the probabilities are given in Example 6.3)
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and
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Thus, P (X = 0) = 0.1125,

P (X = 1) = 0.12 + 0.01 + 0.0375 = 0.1675

and so on; see Table 6.5.

Table 6.5

x P (X = x)

0 0.1125

1 0.1675

2 0.208

3 0.512

Example 6.9 Assigning Probabilities: Random Walk

Figure 6.2 shows a computer-generated histogram representing the probabilities
for the position of a particle after five steps of random motion starting at x = 0.

Recall that the random variable X records the location of the particle. Thus,
P (X = x) is the probability that the particle is located at x after five steps. The
histogram is based on repeating the experiment 1,000 times.
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0.35

FIGURE 6.2

Histogram of the random
walk experiment

In Table 6.6 we compare the simulated probabilities from Figure 6.2 against the
true probabilities (for the calculation of the true probabilities, see Exercise 30; all
we have to do is to count the number of different paths by which a particle can
reach a certain location).

Table 6.6

Value of X Simulated probability True probability

X = −5 0.025 1/32 ≈ 0.03125

X = −3 0.156 5/32 ≈ 0.15625

X = −1 0.315 10/32 ≈ 0.3125

X = 1 0.319 10/32 ≈ 0.3125

X = 3 0.146 5/32 ≈ 0.15625

X = 5 0.039 1/32 ≈ 0.03125
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Probability Mass Function and Cumulative Probability Function

We now associate a couple of important functions with a random variable.

Definition 17 Probability Mass Function
Let X be a random variable. The function

p(x) = P (X = x)

is called the probability mass function. The function p(x) is said to describe a
probability distribution of X.

Note that the domain of p(x) is the range of the random variable X. Because p is
defined as a probability, it follows that 0 ≤ p(x) ≤ 1 for all x. As well, the sum of
all values of p(x) is 1. In symbols,∑

x

p(x) = 1 or
∑

x

P (X = x) = 1

where the sum is calculated over all x (that’s why the x is under the summation
sign) for which P (X = x) > 0. (This last part of the sentence means that we will
be able to avoid calculating infinite sums.)

Convince yourself that the sum
∑

x p(x) is 1 by adding up all probabilities in
Tables 6.2, 6.3, and 6.5, and the true probabilities in Table 6.6.

One way to describe how the probabilities are assigned to a random variable X is
to define the probability mass function p(x). Now we introduce another function
that describes the probability distribution of X.

Definition 18 Cumulative Distribution Function
Let X be a random variable. The cumulative distribution function F (x) of X is
defined as

F (x) = P (X ≤ x)

We often abbreviate cumulative distribution function by c.d.f.
The domain of F (x) consists of all real numbers. Since F (x) is defined as a

probability, 0 ≤ F (x) ≤ 1 for all x.

The probability mass function and the cumulative distribution function are
equivalent: if we know one, we can easily figure out the other one.

Example 6.10 Finding the Cumulative Distribution Function from the Probability Mass Function

Consider the probability mass function for the random variable X that we obtained
in Example 6.8; see Table 6.5. Find a formula for the cumulative distribution
function F (x) and sketch its graph.

To get a feel for F (x), we calculate a few values. Since X does not assume negative
values, the event {X ≤ −3} is empty. Thus

F (−3) = P (X ≤ −3) = P (∅) = 0

Likewise, F (x) = 0 for all x < 0. When x = 0,

F (0) = P (X ≤ 0) = P (X = 0) = 0.1125

and

F (0.99) = P (X ≤ 0.99) = P (X = 0) = 0.1125
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Thus, P (X = 0) = 0.1125,

P (X = 1) = 0.12 + 0.01 + 0.0375 = 0.1675

and so on; see Table 6.5.

Table 6.5

x P (X = x)

0 0.1125

1 0.1675

2 0.208

3 0.512

Example 6.9 Assigning Probabilities: Random Walk

Figure 6.2 shows a computer-generated histogram representing the probabilities
for the position of a particle after five steps of random motion starting at x = 0.

Recall that the random variable X records the location of the particle. Thus,
P (X = x) is the probability that the particle is located at x after five steps. The
histogram is based on repeating the experiment 1,000 times.
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FIGURE 6.2

Histogram of the random
walk experiment

In Table 6.6 we compare the simulated probabilities from Figure 6.2 against the
true probabilities (for the calculation of the true probabilities, see Exercise 30; all
we have to do is to count the number of different paths by which a particle can
reach a certain location).

Table 6.6

Value of X Simulated probability True probability

X = −5 0.025 1/32 ≈ 0.03125

X = −3 0.156 5/32 ≈ 0.15625

X = −1 0.315 10/32 ≈ 0.3125

X = 1 0.319 10/32 ≈ 0.3125

X = 3 0.146 5/32 ≈ 0.15625

X = 5 0.039 1/32 ≈ 0.03125
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Probability Mass Function and Cumulative Probability Function

We now associate a couple of important functions with a random variable.

Definition 17 Probability Mass Function
Let X be a random variable. The function

p(x) = P (X = x)

is called the probability mass function. The function p(x) is said to describe a
probability distribution of X.

Note that the domain of p(x) is the range of the random variable X. Because p is
defined as a probability, it follows that 0 ≤ p(x) ≤ 1 for all x. As well, the sum of
all values of p(x) is 1. In symbols,∑

x

p(x) = 1 or
∑

x

P (X = x) = 1

where the sum is calculated over all x (that’s why the x is under the summation
sign) for which P (X = x) > 0. (This last part of the sentence means that we will
be able to avoid calculating infinite sums.)

Convince yourself that the sum
∑

x p(x) is 1 by adding up all probabilities in
Tables 6.2, 6.3, and 6.5, and the true probabilities in Table 6.6.

One way to describe how the probabilities are assigned to a random variable X is
to define the probability mass function p(x). Now we introduce another function
that describes the probability distribution of X.

Definition 18 Cumulative Distribution Function
Let X be a random variable. The cumulative distribution function F (x) of X is
defined as

F (x) = P (X ≤ x)

We often abbreviate cumulative distribution function by c.d.f.
The domain of F (x) consists of all real numbers. Since F (x) is defined as a

probability, 0 ≤ F (x) ≤ 1 for all x.

The probability mass function and the cumulative distribution function are
equivalent: if we know one, we can easily figure out the other one.

Example 6.10 Finding the Cumulative Distribution Function from the Probability Mass Function

Consider the probability mass function for the random variable X that we obtained
in Example 6.8; see Table 6.5. Find a formula for the cumulative distribution
function F (x) and sketch its graph.

To get a feel for F (x), we calculate a few values. Since X does not assume negative
values, the event {X ≤ −3} is empty. Thus

F (−3) = P (X ≤ −3) = P (∅) = 0

Likewise, F (x) = 0 for all x < 0. When x = 0,

F (0) = P (X ≤ 0) = P (X = 0) = 0.1125

and

F (0.99) = P (X ≤ 0.99) = P (X = 0) = 0.1125
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In the same way we calculate other values for F ; for instance,

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.1125 + 0.1675 = 0.28

(we used the fact that the events {X = 0} and {X = 1} are mutually exclusive;
thus, the probability of their union {X ≤ 1} = {X = 0} ∪ {X = 1} is the sum of
the probabilities). As well,

F (1.7) = P (X ≤ 1.7) = P (X = 0) + P (X = 1) = 0.1125 + 0.1675 = 0.28

and

F (2) = P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)
= 0.1125 + 0.1675 + 0.208 = 0.488

If x ≥ 3, then

F (x) = P (X ≤ x) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)
= 0.1125 + 0.1675 + 0.208 + 0.512 = 1

What does the graph of F look like?
Going from left to right, the values of F are zero until x reaches the smallest

value in the range of X (which is x = 0). Then, the graph of F jumps by the
amount P (X = 0) and remains constant until it encounters the next value in the
range of X, namely x = 1. There, it jumps by the value of P (X = 1). So, at x = 1,
the value of F is equal to the sum of the two jumps. The pattern continues—the
graph of F is a piecewise constant function. We find

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 0

0.1125 0 ≤ x < 1

0.28 1 ≤ x < 2

0.488 2 ≤ x < 3

1 x ≥ 3
The graph of F is given in Figure 6.3 (recall that filled circles represent the values
of F ).
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FIGURE 6.3

The graph of F (x)

The graph of F (x) is piecewise constant, with discontinuities at x = 0, 1, 2 and 3.
Note that the left and the right limits of F at these values of x are not equal. For
instance,

lim
x→2+

F (x) = 0.488 whereas lim
x→2−

F (x) = 0.28

More precisely, because the right limit of F (x) as x approaches 0, 1, 2, or 3 is equal
to the value of F, it follows that F (x) is right-continuous at 0, 1, 2, and 3.

At every discontinuity, a positive number is added to F ; thus, F is a non-
decreasing function (we cannot say “increasing” because F is not increasing on its
flat (horizontal) parts). Moreover,

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

Section 6 Discrete Random Variables P1-69

To summarize:
Let X be a discrete random variable with probability mass function p(x) =

P (X = x). The cumulative distribution function F (x) satisfies the following:

(a) 0 ≤ F (x) ≤ 1 for all x ∈R.

(b) F (x) is non-decreasing (i.e., constant, or increasing) for all x ∈R.

(c) F (x) has jump discontinuities of size p(x) at those x where p(x) > 0 (i.e., at
all x in the range of X where P (X = x) > 0).

(d) F (x) is right-continuous at all points x where p(x) > 0.

(e) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Now reverse the situation: given a cumulative distribution function, we recover
the probability distribution.

Example 6.11 Finding the Probability Mass Function from the Cumulative Distribution Function

The following is the cumulative distribution function of a random variable X:

F (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < −10

0.2 −10 ≤ x < −2.2

0.25 −2.2 ≤ x < 3

0.8 3 ≤ x < 4

1 x ≥ 4
Find the probability mass function of X.

First of all, note that F (x) satisfies the conditions (a) to (e) that we listed in the
summary above, so it could indeed be the cumulative distribution function of some
random variable X. (For instance, if the values 0.25 and 0.8 in the definition of F
were switched, or the value 1 replaced by 1.3, or the condition −10 ≤ x < −2.2
replaced by −10 < x ≤ −2.2, then F could no longer be a cumulative distribution
function of a random variable.)

We look at the discontinuities: x = −10, −2.2, 3, and 4. The sizes of the jumps
are equal to the non-zero probabilities (i.e., the non-zero values of p(x)). Thus,

p(−10) = 0.2
p(−2.2) = 0.25 − 0.2 = 0.05

p(3) = 0.8 − 0.25 = 0.55
p(4) = 1 − 0.8 = 0.2

are the only non-zero values of p; see Table 6.7.

Table 6.7

x P (X = x)

−10 0.2

−2 .2 0.05

3 0.55

4 0.2

The sum is equal to

p(−10) + p(−2.2) + p(3) + p(4) = 0.2 + 0.05 + 0.55 + 0.2 = 1

which means that, indeed, there could not be any other values for x where p(x) =
P (X = x) > 0.

Example 6.12 Finding a Cumulative Distribution Function

Consider the experiment of rolling two dice from Example 6.6. The random vari-
able X is the sum of the numbers that come up, and denote by F (x) its cumu-
lative distribution function. Using the probabilities given in Table 6.2, find F (5),
F (5.99), F (6), and F (6.01).

Calculus_Prob Status Mod_8.5x10.875.indd   70 12-08-09   12:00 PM



P1-68 Probability and Statistics

In the same way we calculate other values for F ; for instance,

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.1125 + 0.1675 = 0.28

(we used the fact that the events {X = 0} and {X = 1} are mutually exclusive;
thus, the probability of their union {X ≤ 1} = {X = 0} ∪ {X = 1} is the sum of
the probabilities). As well,

F (1.7) = P (X ≤ 1.7) = P (X = 0) + P (X = 1) = 0.1125 + 0.1675 = 0.28

and

F (2) = P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)
= 0.1125 + 0.1675 + 0.208 = 0.488

If x ≥ 3, then

F (x) = P (X ≤ x) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)
= 0.1125 + 0.1675 + 0.208 + 0.512 = 1

What does the graph of F look like?
Going from left to right, the values of F are zero until x reaches the smallest

value in the range of X (which is x = 0). Then, the graph of F jumps by the
amount P (X = 0) and remains constant until it encounters the next value in the
range of X, namely x = 1. There, it jumps by the value of P (X = 1). So, at x = 1,
the value of F is equal to the sum of the two jumps. The pattern continues—the
graph of F is a piecewise constant function. We find

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 0

0.1125 0 ≤ x < 1

0.28 1 ≤ x < 2

0.488 2 ≤ x < 3

1 x ≥ 3
The graph of F is given in Figure 6.3 (recall that filled circles represent the values
of F ).
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The graph of F (x)

The graph of F (x) is piecewise constant, with discontinuities at x = 0, 1, 2 and 3.
Note that the left and the right limits of F at these values of x are not equal. For
instance,

lim
x→2+

F (x) = 0.488 whereas lim
x→2−

F (x) = 0.28

More precisely, because the right limit of F (x) as x approaches 0, 1, 2, or 3 is equal
to the value of F, it follows that F (x) is right-continuous at 0, 1, 2, and 3.

At every discontinuity, a positive number is added to F ; thus, F is a non-
decreasing function (we cannot say “increasing” because F is not increasing on its
flat (horizontal) parts). Moreover,

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

Section 6 Discrete Random Variables P1-69

To summarize:
Let X be a discrete random variable with probability mass function p(x) =

P (X = x). The cumulative distribution function F (x) satisfies the following:

(a) 0 ≤ F (x) ≤ 1 for all x ∈R.

(b) F (x) is non-decreasing (i.e., constant, or increasing) for all x ∈R.

(c) F (x) has jump discontinuities of size p(x) at those x where p(x) > 0 (i.e., at
all x in the range of X where P (X = x) > 0).

(d) F (x) is right-continuous at all points x where p(x) > 0.

(e) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Now reverse the situation: given a cumulative distribution function, we recover
the probability distribution.

Example 6.11 Finding the Probability Mass Function from the Cumulative Distribution Function

The following is the cumulative distribution function of a random variable X:

F (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < −10

0.2 −10 ≤ x < −2.2

0.25 −2.2 ≤ x < 3

0.8 3 ≤ x < 4

1 x ≥ 4
Find the probability mass function of X.

First of all, note that F (x) satisfies the conditions (a) to (e) that we listed in the
summary above, so it could indeed be the cumulative distribution function of some
random variable X. (For instance, if the values 0.25 and 0.8 in the definition of F
were switched, or the value 1 replaced by 1.3, or the condition −10 ≤ x < −2.2
replaced by −10 < x ≤ −2.2, then F could no longer be a cumulative distribution
function of a random variable.)

We look at the discontinuities: x = −10, −2.2, 3, and 4. The sizes of the jumps
are equal to the non-zero probabilities (i.e., the non-zero values of p(x)). Thus,

p(−10) = 0.2
p(−2.2) = 0.25 − 0.2 = 0.05

p(3) = 0.8 − 0.25 = 0.55
p(4) = 1 − 0.8 = 0.2

are the only non-zero values of p; see Table 6.7.

Table 6.7

x P (X = x)

−10 0.2

−2 .2 0.05

3 0.55

4 0.2

The sum is equal to

p(−10) + p(−2.2) + p(3) + p(4) = 0.2 + 0.05 + 0.55 + 0.2 = 1

which means that, indeed, there could not be any other values for x where p(x) =
P (X = x) > 0.

Example 6.12 Finding a Cumulative Distribution Function

Consider the experiment of rolling two dice from Example 6.6. The random vari-
able X is the sum of the numbers that come up, and denote by F (x) its cumu-
lative distribution function. Using the probabilities given in Table 6.2, find F (5),
F (5.99), F (6), and F (6.01).
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Using the definition of the cumulative distribution function,

F (5) = P (X ≤ 5)
= P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5)

=
1
36

+
2
36

+
3
36

+
4
36

=
10
36

(note that we used the mutual exclusivity of the events).
F (x) is constant between the consecutive values in the range of X. After 5,

the next value in the range is 6, and so F (5.99) = F (5) = 10/36. When x reaches
6, F jumps by P (X = 6) = 5/36. Thus,

F (6) = F (5) + P (X = 6) =
10
36

+
5
36

=
15
36

Because F is constant between 6 and 7, F (6.01) = F (6) = 15/36.

Summary A random variable is a function from a sample space into the set of real num-
bers. If its range is finite or countable, then it is a discrete random variable.
The range of a continuous random variable is an uncountable set. There are
two ways to assign probabilities to a discrete random variable: we can define
the probability mass function or, equivalently, the cumulative distribution
function. The probability mass function of a finite discrete variable has finitely
many non-zero values that add up to 1. The cumulative distribution function gives
the probability that the random variable is smaller than or equal to a particular
value.

6 Exercises

1. Let X count the number of tosses until we toss five heads in a row. Is X a discrete or a continuous
random variable? Is it finite or infinite?

2. Let X be the location of a particle after 100 steps of the random walk. Is X a discrete or a continuous
random variable? Is it finite or infinite?

3. Assume that the range of a random variable X is the set {1, 2, 3}. Define p(1) = 0.16, p(2) = 0.54,
and p(3) = 0.29. Can p be a probability mass function of X? Why or why not?

4. Assume that the range of a random variable X is the set {0, 1, 2, 3}. Define p(0) = 0, p(1) = 0.16,
p(2) = 0.54, and p(3) = 0.3. Can p be a probability mass function of X? Why or why not?

5. Explain why

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 0

0.32 0 ≤ x < 1

0.31 1 ≤ x < 2

1 x ≥ 2
cannot be a cumulative distribution function of a random variable.

6. Explain why

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.1 x < 0

0.2 0 ≤ x < 1

0.6 1 ≤ x < 2

1 x ≥ 2
cannot be a cumulative distribution function of a random variable.
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7–10 Find the probability mass function of each random variable X.

7. Toss a coin four times. The random variable X counts the number of trials until the first tails.

8. Toss a coin four times. The random variable X counts the number of heads.

9. Roll two dice. X is the maximum of the numbers that show up.

10. Roll two dice. X is the absolute value of the difference of the numbers that show up.

11. Based on Table 6.1, find the probability distributions for the random variables Y, Z, and W from
Example 6.1. Make sure that the probabilities add up to 1.

12. If, at some time, a virus is present in a population, then it will be present the following month
with probability 0.75 (thus, it will disappear with probability 0.25). If the virus is absent from the
population, then it will be absent the following month with probability 0.8 (i.e., it will (re)appear
within the population with probability 0.2). Assume that at this moment the virus is present in the
population. Find the probability mass function for the random variable X = “number of virus-free
months in the 2-month period from now.”

13. If, at some time, a virus is present in a population, then it will be present the following month
with probability 0.4 (thus, it will disappear with probability 0.6). If the virus is absent from the
population, then it will be absent the following month with probability 0.7 (i.e., it will (re)appear
within the population with probability 0.3). Assume that at this moment the virus is absent from the
population. Find the probability mass function for the random variable X = “number of virus-free
months in the 2-month period from now.”

14. A couple of bonobo monkeys have a baby monkey each year: a female with probability 0.55, and a
male with probability 0.45. Let B = “number of female baby monkeys born to the couple in a 3-year
period.” Find the probability mass function for B.

15. A couple of rhesus monkeys have a baby monkey each year with a chance of 65% that the baby will
be dark brown and 35% that it will be light brown and grey. Let R = “number of dark brown baby
monkeys born to the couple in a 3-year period.” Find the probability mass function for R.

16. A couple of rhesus monkeys have a baby monkey each year with a chance of 25% that the baby will
be dark brown, 35% that it will be light brown, and 40% that it will be grey. Let R = “number of
grey baby monkeys born to the couple in a 2-year period.” Find the probability mass function for R.

17. A couple of bonobo monkeys have a baby monkey each year with a chance of 15% that the baby will
have red eyes, 5% that it will have blue eyes, and 80% that it will have brown eyes. Let B = “number
of blue-eyed baby monkeys born to the couple in a 2-year period.” Find the probability mass function
for B.

18–21 Draw a histogram for the following probability mass functions, and a pick the word or phrase
among “symmetric,” “skewed left,” “skewed right,” and “uniform” that best describes it.

18. p(1) = 0.35, p(2) = 0.2, p(3) = 0.1, p(4) = 0.15, p(5) = 0.1, p(6) = 0.05, p(7) = 0.04, p(8) = 0.01

19. p(1) = 0.15, p(2) = 0.1, p(3) = 0.15, p(4) = 0.15, p(5) = 0.1, p(6) = 0.1, p(7) = 0.15, p(8) = 0.1

20. p(1) = 0, p(2) = 0.2, p(3) = 0.1, p(4) = 0.2, p(5) = 0.15, p(6) = 0.1, p(7) = 0.25, p(8) = 0

21. p(1) = 0, p(2) = 0, p(3) = 0.1, p(4) = 0, p(5) = 0.1, p(6) = 0.3, p(7) = 0.5, p(8) = 0
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Using the definition of the cumulative distribution function,

F (5) = P (X ≤ 5)
= P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5)

=
1
36

+
2
36

+
3
36

+
4
36

=
10
36

(note that we used the mutual exclusivity of the events).
F (x) is constant between the consecutive values in the range of X. After 5,

the next value in the range is 6, and so F (5.99) = F (5) = 10/36. When x reaches
6, F jumps by P (X = 6) = 5/36. Thus,

F (6) = F (5) + P (X = 6) =
10
36

+
5
36

=
15
36

Because F is constant between 6 and 7, F (6.01) = F (6) = 15/36.

Summary A random variable is a function from a sample space into the set of real num-
bers. If its range is finite or countable, then it is a discrete random variable.
The range of a continuous random variable is an uncountable set. There are
two ways to assign probabilities to a discrete random variable: we can define
the probability mass function or, equivalently, the cumulative distribution
function. The probability mass function of a finite discrete variable has finitely
many non-zero values that add up to 1. The cumulative distribution function gives
the probability that the random variable is smaller than or equal to a particular
value.

6 Exercises

1. Let X count the number of tosses until we toss five heads in a row. Is X a discrete or a continuous
random variable? Is it finite or infinite?

2. Let X be the location of a particle after 100 steps of the random walk. Is X a discrete or a continuous
random variable? Is it finite or infinite?

3. Assume that the range of a random variable X is the set {1, 2, 3}. Define p(1) = 0.16, p(2) = 0.54,
and p(3) = 0.29. Can p be a probability mass function of X? Why or why not?

4. Assume that the range of a random variable X is the set {0, 1, 2, 3}. Define p(0) = 0, p(1) = 0.16,
p(2) = 0.54, and p(3) = 0.3. Can p be a probability mass function of X? Why or why not?

5. Explain why

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 0

0.32 0 ≤ x < 1

0.31 1 ≤ x < 2

1 x ≥ 2
cannot be a cumulative distribution function of a random variable.

6. Explain why

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.1 x < 0

0.2 0 ≤ x < 1

0.6 1 ≤ x < 2

1 x ≥ 2
cannot be a cumulative distribution function of a random variable.
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7–10 Find the probability mass function of each random variable X.

7. Toss a coin four times. The random variable X counts the number of trials until the first tails.

8. Toss a coin four times. The random variable X counts the number of heads.

9. Roll two dice. X is the maximum of the numbers that show up.

10. Roll two dice. X is the absolute value of the difference of the numbers that show up.

11. Based on Table 6.1, find the probability distributions for the random variables Y, Z, and W from
Example 6.1. Make sure that the probabilities add up to 1.

12. If, at some time, a virus is present in a population, then it will be present the following month
with probability 0.75 (thus, it will disappear with probability 0.25). If the virus is absent from the
population, then it will be absent the following month with probability 0.8 (i.e., it will (re)appear
within the population with probability 0.2). Assume that at this moment the virus is present in the
population. Find the probability mass function for the random variable X = “number of virus-free
months in the 2-month period from now.”

13. If, at some time, a virus is present in a population, then it will be present the following month
with probability 0.4 (thus, it will disappear with probability 0.6). If the virus is absent from the
population, then it will be absent the following month with probability 0.7 (i.e., it will (re)appear
within the population with probability 0.3). Assume that at this moment the virus is absent from the
population. Find the probability mass function for the random variable X = “number of virus-free
months in the 2-month period from now.”

14. A couple of bonobo monkeys have a baby monkey each year: a female with probability 0.55, and a
male with probability 0.45. Let B = “number of female baby monkeys born to the couple in a 3-year
period.” Find the probability mass function for B.

15. A couple of rhesus monkeys have a baby monkey each year with a chance of 65% that the baby will
be dark brown and 35% that it will be light brown and grey. Let R = “number of dark brown baby
monkeys born to the couple in a 3-year period.” Find the probability mass function for R.

16. A couple of rhesus monkeys have a baby monkey each year with a chance of 25% that the baby will
be dark brown, 35% that it will be light brown, and 40% that it will be grey. Let R = “number of
grey baby monkeys born to the couple in a 2-year period.” Find the probability mass function for R.

17. A couple of bonobo monkeys have a baby monkey each year with a chance of 15% that the baby will
have red eyes, 5% that it will have blue eyes, and 80% that it will have brown eyes. Let B = “number
of blue-eyed baby monkeys born to the couple in a 2-year period.” Find the probability mass function
for B.

18–21 Draw a histogram for the following probability mass functions, and a pick the word or phrase
among “symmetric,” “skewed left,” “skewed right,” and “uniform” that best describes it.

18. p(1) = 0.35, p(2) = 0.2, p(3) = 0.1, p(4) = 0.15, p(5) = 0.1, p(6) = 0.05, p(7) = 0.04, p(8) = 0.01

19. p(1) = 0.15, p(2) = 0.1, p(3) = 0.15, p(4) = 0.15, p(5) = 0.1, p(6) = 0.1, p(7) = 0.15, p(8) = 0.1

20. p(1) = 0, p(2) = 0.2, p(3) = 0.1, p(4) = 0.2, p(5) = 0.15, p(6) = 0.1, p(7) = 0.25, p(8) = 0

21. p(1) = 0, p(2) = 0, p(3) = 0.1, p(4) = 0, p(5) = 0.1, p(6) = 0.3, p(7) = 0.5, p(8) = 0
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22–25 Given is the cumulative distribution function of a random variable X. Find the probability mass
function of X.

22. 23.

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 3

0.1 3 ≤ x < 5

0.4 5 ≤ x < 10

1 x ≥ 10

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 0.7

0.3 0.7 ≤ x < 1

0.7 1 ≤ x < 1.2

1 x ≥ 1.2

24. 25.

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < −4

0.5 −4 ≤ x < −2

0.65 −2 ≤ x < −1

0.95 −1 ≤ x < 0

1 x ≥ 0

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 1/2

0.1 1/2 ≤ x < 1

0.5 1 ≤ x < 3/2

0.8 3/2 ≤ x < 3

1 x ≥ 3

26–29 Given is the probability mass function of a discrete random variable X. Find the cumulative
distribution function of X and sketch its graph.

26. 27.
x P (X = x)

−2 0.15

1 0.15

3 0.45

4 0.25

x P (X = x)

0 0.25

1 0.25

2 0.25

3 0.25

28. 29.
x P (X = x)

−2 0.25

−1 0.1

0 0.15

1 0.2

2 0.3

x P (X = x)

0 0.8

1 0.05

2 0.05

3 0.05

4 0.05

30. Continue the diagram in Example 3.10 in Section 3 until you complete the fifth step of the random
walk.

(a) Explain why there is only one way to reach x = 5. List all routes that end at x = 3.

(b) List all ten routes in which a random walk ends at x = 1 after five steps.

(c) Explain why the fifth step in the random walk contains 32 different routes (i.e., 32 different ways
to start at x = 0 and end at one of −5, −3, −1, 1, 3, and 5 after five steps. Use this fact, and
your answers to (a) and (b), to build a probability distribution for X.

31. Assume that 0 is an even number, and classify negative numbers by looking at their absolute values
(−3 is odd, −4 is even, etc.).

(a) Consider the usual random walk that we introduced in Example 2.8. List all possible locations of
a particle after 1, 2, 3, 4, and 5 steps of a random walk. You will notice that, after an even (odd)

Section 6 Discrete Random Variables P1-73

number of steps, the particle is located at even- (odd-) numbered locations. Explain why this is
true.

(b) Consider the modified random walk from Example 6.5. Using (a), explain why the range of the
random variable X consists of odd numbers only.

32. Given is the histogram of a random variable X. Find its probability mass function and cumulative
distribution function.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

33. Given is the histogram of a random variable X. Find its probability mass function and cumulative
distribution function.

1 2 3 4 5
0

0.1

0.2

0.3

0.4
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22–25 Given is the cumulative distribution function of a random variable X. Find the probability mass
function of X.

22. 23.

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 3

0.1 3 ≤ x < 5

0.4 5 ≤ x < 10

1 x ≥ 10

F (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 0.7

0.3 0.7 ≤ x < 1

0.7 1 ≤ x < 1.2

1 x ≥ 1.2

24. 25.

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < −4

0.5 −4 ≤ x < −2

0.65 −2 ≤ x < −1

0.95 −1 ≤ x < 0

1 x ≥ 0

F (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 1/2

0.1 1/2 ≤ x < 1

0.5 1 ≤ x < 3/2

0.8 3/2 ≤ x < 3

1 x ≥ 3

26–29 Given is the probability mass function of a discrete random variable X. Find the cumulative
distribution function of X and sketch its graph.

26. 27.
x P (X = x)

−2 0.15

1 0.15

3 0.45

4 0.25

x P (X = x)

0 0.25

1 0.25

2 0.25

3 0.25

28. 29.
x P (X = x)

−2 0.25

−1 0.1

0 0.15

1 0.2

2 0.3

x P (X = x)

0 0.8

1 0.05

2 0.05

3 0.05

4 0.05

30. Continue the diagram in Example 3.10 in Section 3 until you complete the fifth step of the random
walk.

(a) Explain why there is only one way to reach x = 5. List all routes that end at x = 3.

(b) List all ten routes in which a random walk ends at x = 1 after five steps.

(c) Explain why the fifth step in the random walk contains 32 different routes (i.e., 32 different ways
to start at x = 0 and end at one of −5, −3, −1, 1, 3, and 5 after five steps. Use this fact, and
your answers to (a) and (b), to build a probability distribution for X.

31. Assume that 0 is an even number, and classify negative numbers by looking at their absolute values
(−3 is odd, −4 is even, etc.).

(a) Consider the usual random walk that we introduced in Example 2.8. List all possible locations of
a particle after 1, 2, 3, 4, and 5 steps of a random walk. You will notice that, after an even (odd)
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number of steps, the particle is located at even- (odd-) numbered locations. Explain why this is
true.

(b) Consider the modified random walk from Example 6.5. Using (a), explain why the range of the
random variable X consists of odd numbers only.

32. Given is the histogram of a random variable X. Find its probability mass function and cumulative
distribution function.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

33. Given is the histogram of a random variable X. Find its probability mass function and cumulative
distribution function.

1 2 3 4 5
0

0.1

0.2

0.3

0.4
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7 The Mean, the Median, and the Mode

A random variable is fully described by its probability mass function or, equiva-
lently, by its cumulative distribution function. In reality, there are situations where
it is not practical (or useful) to use these functions to represent a random variable.
Instead, we extract certain information (a single number, or a small collection of
numbers) that, in a satisfactory way, represents the random variable. For instance,
a weather report would be incomprehensible (and useless) if it consisted of a long
list of measurements of air temperature taken at regular intervals throughout the
day. Reporting the average daily temperature instead makes a lot more sense.

In this section we discuss ways in which we can compute information about
the centre of the distribution. In the following section we introduce the mea-
surements of the spread of data.

Expected Value

We start with an example.

Example 7.1 Daily Milk Production on Milky Way Farm

The Milky Way Farm in Eastern Quebec has 30 cows. Its owner recorded the daily
production D of milk, in litres:

30, 18, 20, 27, 30, 20, 18, 29, 30, 30, 27, 22, 18, 30, 20,

24, 18, 27, 22, 29, 29, 20, 29, 18, 18, 30, 27, 20, 30, 25 (7.1)

How much milk does a Milky Way Farm cow produce, on average, in a day?
The answer is straightforward: we add up the amount of milk each cow pro-

duces in a day and divide by 30. Denoting the average daily production by D, we
compute

D =
1
30

(30 + 18 + 20 + 27 + 30 + 20 + 18 + · · · + 30 + 25) =
735
30

= 24.5

litres. The number D is called the average value or the mean. (more precisely, it
is called the arithmetic mean).

Adding up 30 numbers is not fun. To make this calculation more pleasant, we
organize the production numbers into groups (see Table 7.1).

Table 7.1

Production 18 20 22 24 25 27 29 30

Frequency 6 5 2 1 1 4 4 7

We recorded the frequencies, i.e., we counted how many times each number occurs
in the list (7.1); for instance, six cows produced exactly 18 L of milk, five cows
produced 20 L of milk, and so on. Now we compute the average based on the
frequencies:

D =
1
30

(6 · 18 + 5 · 20 + 2 · 22 + 1 · 24 + 1 · 25 + 4 · 27 + 4 · 29 + 7 · 30)

=
735
30

= 24.5 (7.2)

We further rearrange the terms in (7.2)

Section 7 The Mean, the Median, and the Mode P1-75

D =
6
30

· 18 +
5
30

· 20 +
2
30

· 22 +
1
30

· 24 +
1
30

· 25 +
4
30

· 27 +
4
30

· 29 +
7
30

· 30

=
735
30

= 24.5 (7.3)

and redo Table 7.1 using relative frequencies; see Table 7.2.

Table 7.2

Production 18 20 22 24 25 27 29 30

Relative frequency 6/30 5/30 2/30 1/30 1/30 4/30 4/30 7/30

The relative frequency information associates the amount of milk with the ratio
of cows that produce it. For instance, 6/30 = 20% of the cows give 18 L of milk
per day each; 5/30 = 1/6 of the cows produce 20 L of milk each, and so on.

Note that the relative frequencies are actually probabilities, based on the sam-
ple space S consisting of the 30 cows on the farm. So Table 7.2 represents the
probability distribution for the random variable D = “daily production of milk”
defined on S. We interpret the columns in Table 7.2 as P (D = 18) = 6/30,
P (D = 20) = 5/30, and so on.

The average D in (7.3) is the sum of terms, each of the form

(ratio of cows that give d litres of milk) · (d litres of milk)

i.e.,
(probability that D = d) · d

In symbols,

D =
∑

d

P (D = d) · d

where the sum is calculated over all d for which P (D = d) > 0.

Keeping this in mind, we now define the mean or the expected value of a random
variable. We abandon using the phrase “average value” to avoid the confusion that
could arise from the variety of meanings associated with it.

The mean is one of the most important statistics related to a random variable.

Definition 19 Mean or Expected Value
Let X be a discrete random variable. The mean or the expected value of X is the
number

E(X) =
∑

x

xP (X = x) =
∑

x

xp(x)

where the sum goes over all values x for which p(x) = P (X = x) is not zero.

When the range of X is a finite set, the sum in Definition 19 is a finite sum.
Otherwise, we need to add infinitely many terms, which forces us to consider
infinite series. The issues of convergence of infinite series place this case beyond
the scope of this book, so we will not deal with it.

Example 7.2 Calculating Expected Value: Rolling Dice

Assume that we roll two dice and add up the numbers that come up. What is the
expected value of the sum?
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7 The Mean, the Median, and the Mode

A random variable is fully described by its probability mass function or, equiva-
lently, by its cumulative distribution function. In reality, there are situations where
it is not practical (or useful) to use these functions to represent a random variable.
Instead, we extract certain information (a single number, or a small collection of
numbers) that, in a satisfactory way, represents the random variable. For instance,
a weather report would be incomprehensible (and useless) if it consisted of a long
list of measurements of air temperature taken at regular intervals throughout the
day. Reporting the average daily temperature instead makes a lot more sense.

In this section we discuss ways in which we can compute information about
the centre of the distribution. In the following section we introduce the mea-
surements of the spread of data.

Expected Value

We start with an example.

Example 7.1 Daily Milk Production on Milky Way Farm

The Milky Way Farm in Eastern Quebec has 30 cows. Its owner recorded the daily
production D of milk, in litres:

30, 18, 20, 27, 30, 20, 18, 29, 30, 30, 27, 22, 18, 30, 20,

24, 18, 27, 22, 29, 29, 20, 29, 18, 18, 30, 27, 20, 30, 25 (7.1)

How much milk does a Milky Way Farm cow produce, on average, in a day?
The answer is straightforward: we add up the amount of milk each cow pro-

duces in a day and divide by 30. Denoting the average daily production by D, we
compute

D =
1
30

(30 + 18 + 20 + 27 + 30 + 20 + 18 + · · · + 30 + 25) =
735
30

= 24.5

litres. The number D is called the average value or the mean. (more precisely, it
is called the arithmetic mean).

Adding up 30 numbers is not fun. To make this calculation more pleasant, we
organize the production numbers into groups (see Table 7.1).

Table 7.1

Production 18 20 22 24 25 27 29 30

Frequency 6 5 2 1 1 4 4 7

We recorded the frequencies, i.e., we counted how many times each number occurs
in the list (7.1); for instance, six cows produced exactly 18 L of milk, five cows
produced 20 L of milk, and so on. Now we compute the average based on the
frequencies:

D =
1
30

(6 · 18 + 5 · 20 + 2 · 22 + 1 · 24 + 1 · 25 + 4 · 27 + 4 · 29 + 7 · 30)

=
735
30

= 24.5 (7.2)

We further rearrange the terms in (7.2)
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D =
6
30

· 18 +
5
30

· 20 +
2
30

· 22 +
1
30

· 24 +
1
30

· 25 +
4
30

· 27 +
4
30

· 29 +
7
30

· 30

=
735
30

= 24.5 (7.3)

and redo Table 7.1 using relative frequencies; see Table 7.2.

Table 7.2

Production 18 20 22 24 25 27 29 30

Relative frequency 6/30 5/30 2/30 1/30 1/30 4/30 4/30 7/30

The relative frequency information associates the amount of milk with the ratio
of cows that produce it. For instance, 6/30 = 20% of the cows give 18 L of milk
per day each; 5/30 = 1/6 of the cows produce 20 L of milk each, and so on.

Note that the relative frequencies are actually probabilities, based on the sam-
ple space S consisting of the 30 cows on the farm. So Table 7.2 represents the
probability distribution for the random variable D = “daily production of milk”
defined on S. We interpret the columns in Table 7.2 as P (D = 18) = 6/30,
P (D = 20) = 5/30, and so on.

The average D in (7.3) is the sum of terms, each of the form

(ratio of cows that give d litres of milk) · (d litres of milk)

i.e.,
(probability that D = d) · d

In symbols,

D =
∑

d

P (D = d) · d

where the sum is calculated over all d for which P (D = d) > 0.

Keeping this in mind, we now define the mean or the expected value of a random
variable. We abandon using the phrase “average value” to avoid the confusion that
could arise from the variety of meanings associated with it.

The mean is one of the most important statistics related to a random variable.

Definition 19 Mean or Expected Value
Let X be a discrete random variable. The mean or the expected value of X is the
number

E(X) =
∑

x

xP (X = x) =
∑

x

xp(x)

where the sum goes over all values x for which p(x) = P (X = x) is not zero.

When the range of X is a finite set, the sum in Definition 19 is a finite sum.
Otherwise, we need to add infinitely many terms, which forces us to consider
infinite series. The issues of convergence of infinite series place this case beyond
the scope of this book, so we will not deal with it.

Example 7.2 Calculating Expected Value: Rolling Dice

Assume that we roll two dice and add up the numbers that come up. What is the
expected value of the sum?
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In Example 6.6 in Section 6 we described the sample space for this experiment.
The random variable X adds up the numbers that come up; thus

X: S → {2, 3, 4, 5, . . . , 12}
In Table 6.2 we find the probabilities that we need. We compute

E(X) =
12∑
2

x · P (X = x)

= 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X = 4) + 5 · P (X = 5)
+ · · · + 12 · P (X = 12)

= 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ 5 · 4
36

+ 6 · 5
36

+ 7 · 6
36

+ 8 · 5
36

+ 9 · 4
36

+ 10 · 3
36

+ 11 · 2
36

+ 12 · 1
36

=
252
36

= 7

Thus, the expected value of the sum showing up on the two dice is 7.

Example 7.3 Calculating Expected Value: Virus Dynamics

In Example 6.8 in Section 6 we studied the dynamics of the appearance and dis-
appearance of a virus and arrived at the probability distribution (repeated, for
convenience, in Table 7.3) for the random variable X = “number of virus-free
months in a 3-month interval.”Table 7.3

x P (X = x)

0 0.1125

1 0.1675

2 0.208

3 0.512

The mean of X is

E(X) =
3∑
0

x · P (X = x)

= 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3)
= 0 · 0.1125 + 1 · 0.1675 + 2 · 0.208 + 3 · 0.512
= 2.1195

Thus, on average, we expect to see about 2.1 virus-free months within a 3-month
period (assuming no virus is present initially).

Example 7.4 Expected Value for the Random Walk

The probability distribution of the random variable X = “position of a particle
after five steps of random motion starting at x = 0” is shown in Table 7.4 (taken
from Example 6.9 in Section 6).

Table 7.4

x P (X = x)

−5 1/32

−3 5/32

−1 10/32

1 10/32

3 5/32

5 1/32

The expected (mean) location is

E(X) =
∑

x

x · P (X = x)

where x is in {−5,−3,−1, 1, 3, 5}. Thus,

E(X) = (−5) · P (X = −5) + (−3) · P (X = −3) + (−1) · P (X = −1)
+ 1 · P (X = 1) + 3 · P (X = 3) + 5 · P (X = 5)

= (−5)
1
32

+ (−3)
5
32

+ (−1)
10
32

+ (1)
10
32

+ (3)
5
32

+ (5)
1
32

= 0
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The fact that the mean is 0 is not at all exciting. Because a particle moves
randomly, it will end up at symmetric locations (such as −3 and 3) with equal
probability (look at Table 7.4). Thus, the mean location of the particle is its
starting position x = 0.

However, it is wrong to deduce that, on average, a particle will end its random
walk at x = 0, where it started. We need to do a different calculation to figure out,
on average, how far from the origin a particle will be after five steps of random
walk.

To calculate the distance, we need to remove the minus signs from the final
locations of the particle. So, we’ll square the x values of the locations and in the
end calculate the square root. More precisely, we define a new random variable
X2 = X ·X and calculate its probability mass function (shown in the second and
third columns in Table 7.5).

Table 7.5

x x2 P (X = x)

−5 (−5)2 1/32

−3 (−3)2 5/32

−1 (−1)2 10/32

1 (1)2 10/32

3 (3)2 5/32

5 (5)2 1/32

The expected value of X2 is

E(X2) = (−5)2 · P (X = −5) + (−3)2 · P (X = −3) + (−1)2 · P (X = −1)
+ 12 · P (X = 1) + 32 · P (X = 3) + 52 · P (X = 5)

= 25 · 1
32

+ 9 · 5
32

+
10
32

+
10
32

+ 9 · 5
32

+ 25 · 1
32

=
160
32

= 5

Thus, the average position of the particle after five steps of the random walk is√
E(X2) =

√
5 ≈ 2.236

Motivated by this discussion, we now define the expected value of a function of a
random variable X.

Definition 20 Expected Value of a Function of a Random Variable
Assume that X is a discrete random variable and that p(x) = P (X = x) is its
probability mass function. Let g(x) be a function of x. The expected value of the
random variable g(X) is

E(g(X)) =
∑

x

g(x)P (X = x) =
∑

x

g(x)p(x)

where the sum goes over all values x for which p(x) is not zero.

For instance, if g(x) = sin x, then

E(g(X)) =
∑

x

sin x P (X = x) =
∑

x

sin x p(x)

When g(x) = x, the formula in Definition 20 gives the expected value E(X) of X.
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In Example 6.6 in Section 6 we described the sample space for this experiment.
The random variable X adds up the numbers that come up; thus

X: S → {2, 3, 4, 5, . . . , 12}
In Table 6.2 we find the probabilities that we need. We compute

E(X) =
12∑
2

x · P (X = x)

= 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X = 4) + 5 · P (X = 5)
+ · · · + 12 · P (X = 12)

= 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ 5 · 4
36

+ 6 · 5
36

+ 7 · 6
36

+ 8 · 5
36

+ 9 · 4
36

+ 10 · 3
36

+ 11 · 2
36

+ 12 · 1
36

=
252
36

= 7

Thus, the expected value of the sum showing up on the two dice is 7.

Example 7.3 Calculating Expected Value: Virus Dynamics

In Example 6.8 in Section 6 we studied the dynamics of the appearance and dis-
appearance of a virus and arrived at the probability distribution (repeated, for
convenience, in Table 7.3) for the random variable X = “number of virus-free
months in a 3-month interval.”Table 7.3

x P (X = x)

0 0.1125

1 0.1675

2 0.208

3 0.512

The mean of X is

E(X) =
3∑
0

x · P (X = x)

= 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3)
= 0 · 0.1125 + 1 · 0.1675 + 2 · 0.208 + 3 · 0.512
= 2.1195

Thus, on average, we expect to see about 2.1 virus-free months within a 3-month
period (assuming no virus is present initially).

Example 7.4 Expected Value for the Random Walk

The probability distribution of the random variable X = “position of a particle
after five steps of random motion starting at x = 0” is shown in Table 7.4 (taken
from Example 6.9 in Section 6).

Table 7.4

x P (X = x)

−5 1/32

−3 5/32

−1 10/32

1 10/32

3 5/32

5 1/32

The expected (mean) location is

E(X) =
∑

x

x · P (X = x)

where x is in {−5,−3,−1, 1, 3, 5}. Thus,

E(X) = (−5) · P (X = −5) + (−3) · P (X = −3) + (−1) · P (X = −1)
+ 1 · P (X = 1) + 3 · P (X = 3) + 5 · P (X = 5)

= (−5)
1
32

+ (−3)
5
32

+ (−1)
10
32

+ (1)
10
32

+ (3)
5
32

+ (5)
1
32

= 0
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The fact that the mean is 0 is not at all exciting. Because a particle moves
randomly, it will end up at symmetric locations (such as −3 and 3) with equal
probability (look at Table 7.4). Thus, the mean location of the particle is its
starting position x = 0.

However, it is wrong to deduce that, on average, a particle will end its random
walk at x = 0, where it started. We need to do a different calculation to figure out,
on average, how far from the origin a particle will be after five steps of random
walk.

To calculate the distance, we need to remove the minus signs from the final
locations of the particle. So, we’ll square the x values of the locations and in the
end calculate the square root. More precisely, we define a new random variable
X2 = X ·X and calculate its probability mass function (shown in the second and
third columns in Table 7.5).

Table 7.5

x x2 P (X = x)

−5 (−5)2 1/32

−3 (−3)2 5/32

−1 (−1)2 10/32

1 (1)2 10/32

3 (3)2 5/32

5 (5)2 1/32

The expected value of X2 is

E(X2) = (−5)2 · P (X = −5) + (−3)2 · P (X = −3) + (−1)2 · P (X = −1)
+ 12 · P (X = 1) + 32 · P (X = 3) + 52 · P (X = 5)

= 25 · 1
32

+ 9 · 5
32

+
10
32

+
10
32

+ 9 · 5
32

+ 25 · 1
32

=
160
32

= 5

Thus, the average position of the particle after five steps of the random walk is√
E(X2) =

√
5 ≈ 2.236

Motivated by this discussion, we now define the expected value of a function of a
random variable X.

Definition 20 Expected Value of a Function of a Random Variable
Assume that X is a discrete random variable and that p(x) = P (X = x) is its
probability mass function. Let g(x) be a function of x. The expected value of the
random variable g(X) is

E(g(X)) =
∑

x

g(x)P (X = x) =
∑

x

g(x)p(x)

where the sum goes over all values x for which p(x) is not zero.

For instance, if g(x) = sin x, then

E(g(X)) =
∑

x

sin x P (X = x) =
∑

x

sin x p(x)

When g(x) = x, the formula in Definition 20 gives the expected value E(X) of X.
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Example 7.5 Expected Value of Functions of a Random Variable

The probability mass function of a random variable X is given in Table 7.6. Find
E(X + 4) and E(e−X).

Table 7.6

x P (X = x)

−2 0.1

0 0.2

1 0.5

3 0.2

Substituting g(x) = x + 4 into Definition 20 we get

E(X + 4) =
∑

x

(x + 4)P (X = x)

where the sum has four terms, corresponding to x = −2, 0, 1 and 3. Thus

E(X + 4) = (−2 + 4)P (X = −2) + (0 + 4)P (X = 0) + (1 + 4)P (X = 1)
+ (3 + 4)P (X = 3)

= 2 · 0.1 + 4 · 0.2 + 5 · 0.5 + 7 · 0.2
= 4.9

Likewise, with g(x) = e−x,

E(e−X) =
∑

x

e−xP (X = x)

= e−(−2)P (X = −2) + e0P (X = 0) + e−1P (X = 1) + e−2P (X = 3)
= e2 · 0.1 + 0.2 + e−1 · 0.5 + e−2 · 0.2
≈ 1.1499

Theorem 7 Properties of the Expected Value
Let X and Y be discrete random variables and a and b be real numbers. Then

(1) E(aX) = aE(X)

(2) E(X + b) = E(X) + b

(3) X ± Y is a discrete random variable and

E(X ± Y ) = E(X) ± E(Y )

Sometimes we join properties (1) and (2) together and write

E(aX + b) = aE(X) + b

Note that if a = 0, then this formula implies that E(b) = b. The symbol b on the
left side represents the random variable (actually there is nothing random about
it) all of whose (finitely many) values are equal to b. Clearly, its mean must be b.

Replacing the real number b in E(b) = b by E(X), we obtain the formula
E[E(X)] = E(X) (see Exercise 30).

The properties in Theorem 7 are intuitively clear. Suppose that we calculate
the mean (call it m) of finitely many numbers. If we multiply all numbers by the
same number a, then to get the new mean, we multiply the old mean m by a. If
we add the same number b to all numbers, the mean will change by that same
number, i.e., it will be equal to m + b.

For practice, we now prove formulas (1) and (2). We will not prove (3).
To prove (1), we use the formula

E(g(X)) =
∑

x

g(x)P (X = x) =
∑

x

g(x)p(x)

from Definition 20 with g(x) = ax:

E(aX) =
∑

x

axP (X = x) = a
∑

x

xP (X = x) = aE(X)

(as usual, the sum is taken over all x for which the probability P (X = x) is not
zero). Since a is constant, we were allowed to take it out of the sum.
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Now let g(x) = x + b and use Definition 20 again:

E(X + b) =
∑

x

(x + b)P (X = x)

=
∑

x

xP (X = x) +
∑

x

bP (X = x)

= E(X) + b
∑

x

P (X = x)

= E(X) + b

since ∑
x

P (X = x) = 1

by the basic property of the probability mass function. This proves (2).

As attractive as it may appear (reducing information about a random variable to
a single number), the expected value does not tell the whole story.

In Example 7.1 we studied the daily milk production of 30 cows on the Milky
Way Farm and calculated the mean to be 24.5 L per cow per day.

Example 7.6 Daily Milk Production on Two More Farms

Consider the daily production of milk by 30 cows on Milkshake Farm in Western
Quebec:

23, 22, 25, 26, 27, 23, 25, 26, 26, 26, 27, 25, 25, 23, 22,

24, 25, 25, 23, 25, 24, 23, 26, 26, 25, 22, 22, 23, 24, 27 (7.4)

and on Butterscotch Farm in Ontario:

20, 17, 32, 32, 32, 20, 17, 20, 32, 30, 30, 32, 32, 18, 18,

18, 18, 32, 19, 19, 18, 18, 18, 31, 31, 31, 31, 31, 19, 19 (7.5)

We can easily check that the average milk production on these two farms is 24.5
L per cow per day, the same as for the Milky Way Farm cows.

However, looking at the frequencies shown in Figure 7.1, we see that the three
distributions differ quite a bit. Clearly, the expected value is not able to capture
their differences.
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FIGURE 7.1

The distributions of milk production on the three farms

Next, we look at other statistics that describe the “centre” of a distribution, which
might be able to distinguish between the three distributions.
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Example 7.5 Expected Value of Functions of a Random Variable

The probability mass function of a random variable X is given in Table 7.6. Find
E(X + 4) and E(e−X).

Table 7.6

x P (X = x)

−2 0.1

0 0.2

1 0.5

3 0.2

Substituting g(x) = x + 4 into Definition 20 we get

E(X + 4) =
∑

x

(x + 4)P (X = x)

where the sum has four terms, corresponding to x = −2, 0, 1 and 3. Thus

E(X + 4) = (−2 + 4)P (X = −2) + (0 + 4)P (X = 0) + (1 + 4)P (X = 1)
+ (3 + 4)P (X = 3)

= 2 · 0.1 + 4 · 0.2 + 5 · 0.5 + 7 · 0.2
= 4.9

Likewise, with g(x) = e−x,

E(e−X) =
∑

x

e−xP (X = x)

= e−(−2)P (X = −2) + e0P (X = 0) + e−1P (X = 1) + e−2P (X = 3)
= e2 · 0.1 + 0.2 + e−1 · 0.5 + e−2 · 0.2
≈ 1.1499

Theorem 7 Properties of the Expected Value
Let X and Y be discrete random variables and a and b be real numbers. Then

(1) E(aX) = aE(X)

(2) E(X + b) = E(X) + b

(3) X ± Y is a discrete random variable and

E(X ± Y ) = E(X) ± E(Y )

Sometimes we join properties (1) and (2) together and write

E(aX + b) = aE(X) + b

Note that if a = 0, then this formula implies that E(b) = b. The symbol b on the
left side represents the random variable (actually there is nothing random about
it) all of whose (finitely many) values are equal to b. Clearly, its mean must be b.

Replacing the real number b in E(b) = b by E(X), we obtain the formula
E[E(X)] = E(X) (see Exercise 30).

The properties in Theorem 7 are intuitively clear. Suppose that we calculate
the mean (call it m) of finitely many numbers. If we multiply all numbers by the
same number a, then to get the new mean, we multiply the old mean m by a. If
we add the same number b to all numbers, the mean will change by that same
number, i.e., it will be equal to m + b.

For practice, we now prove formulas (1) and (2). We will not prove (3).
To prove (1), we use the formula

E(g(X)) =
∑

x

g(x)P (X = x) =
∑

x

g(x)p(x)

from Definition 20 with g(x) = ax:

E(aX) =
∑

x

axP (X = x) = a
∑

x

xP (X = x) = aE(X)

(as usual, the sum is taken over all x for which the probability P (X = x) is not
zero). Since a is constant, we were allowed to take it out of the sum.
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Now let g(x) = x + b and use Definition 20 again:

E(X + b) =
∑

x

(x + b)P (X = x)

=
∑

x

xP (X = x) +
∑

x

bP (X = x)

= E(X) + b
∑

x

P (X = x)

= E(X) + b

since ∑
x

P (X = x) = 1

by the basic property of the probability mass function. This proves (2).

As attractive as it may appear (reducing information about a random variable to
a single number), the expected value does not tell the whole story.

In Example 7.1 we studied the daily milk production of 30 cows on the Milky
Way Farm and calculated the mean to be 24.5 L per cow per day.

Example 7.6 Daily Milk Production on Two More Farms

Consider the daily production of milk by 30 cows on Milkshake Farm in Western
Quebec:

23, 22, 25, 26, 27, 23, 25, 26, 26, 26, 27, 25, 25, 23, 22,

24, 25, 25, 23, 25, 24, 23, 26, 26, 25, 22, 22, 23, 24, 27 (7.4)

and on Butterscotch Farm in Ontario:

20, 17, 32, 32, 32, 20, 17, 20, 32, 30, 30, 32, 32, 18, 18,

18, 18, 32, 19, 19, 18, 18, 18, 31, 31, 31, 31, 31, 19, 19 (7.5)

We can easily check that the average milk production on these two farms is 24.5
L per cow per day, the same as for the Milky Way Farm cows.

However, looking at the frequencies shown in Figure 7.1, we see that the three
distributions differ quite a bit. Clearly, the expected value is not able to capture
their differences.
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FIGURE 7.1

The distributions of milk production on the three farms

Next, we look at other statistics that describe the “centre” of a distribution, which
might be able to distinguish between the three distributions.
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The Median and the Mode

We now define two useful statistics for a distribution, the median and the mode.
Although we can compute the median and the mode for any sample, we will see
that they make sense mostly for larger samples that consist of many different
values.

Definition 21 The Median
The median is the midpoint of a distribution.

Algorithm 1 below will make the meaning of the word “midpoint” precise.
Rougly speaking, the median M is a number with the property that picking

a number larger than or equal to M is as likely as picking a number smaller than
or equal to M.

We discuss a few examples and then explain why we used the word “roughly”
in interpreting the meaning of the median.

To find the median of the set of five numbers {1, 7, 3, 2, 10}, we create the
ordered list 1, 2, 3, 7, 10 and pick the number in the centre. Thus, the median is 3;
picking a number larger than or equal 3 is as likely as picking a number smaller
than or equal to 3 (both probabilities are 3/5).

Consider an even number of outcomes, say {1, 4, 3, 7, 2, 6}. In the centre of the
ordered list 1, 2, 3, 4, 6, 7 there are two numbers, 3 and 4. The median is taken to
be the mean of the two numbers, i.e., (3 + 4)/2 = 3.5. Clearly, picking a number
greater than or equal to 3.5 from the list 1, 2, 3, 4, 6, 7 is as likely as picking a
number smaller than or equal to 3.5 (both probabilities are 1/2).

In creating the ordered list we have to make sure that we keep the frequencies.
Ordering the set of data {3, 1, 2, 6, 3, 6, 3, 3, 11}, we get 1, 2, 3, 3, 3, 3, 6, 6, 11. The
central term—and hence the median—is 3. Note that in this case the probabilities
are not equal; the probability of picking a number smaller than or equal to 3 is
6/9, whereas the probability of picking a number greater than or equal to 3 is 7/9.
If we ask for strict inequalities, it still does not work: the probability of picking
a number smaller than 3 is 2/9 and the probability of picking a number greater
than 3 is 3/9.

So, the probabilities are not equal. However, if we consider a large set of
data with many distinct values (that’s when the median is actually useful), then,
in many cases, things work. To alert the reader to this issue, we used the word
“roughly” in explaining the meaning of the median.

The following algorithm makes Definition 21 fully transparent.

Algorithm 1 How to Locate the Median

To find the median of a sample set of n numbers:

(1) Create an ordered list of the numbers, from the smallest to the largest.

(2) If n is odd, then there is one number in the centre of the list, and that number
is the median. To locate it, count (n + 1)/2 numbers from either end of the list.

(3) If n is even, then by counting n/2 numbers from both ends we arrive at the
two centre numbers. The median is the mean of these two numbers.

Section 7 The Mean, the Median, and the Mode P1-81

Example 7.7 Calculating the Median Milk Production

Consider the milk production on the Milky Way Farm (Example 7.1). The out-
comes (n = 30), written as an ordered list, are

18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 24, 25,

27, 27, 27, 27, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30

Counting n/2 = 15 outcomes from both sides, we arrive at 25 and 27. Thus, the
median is (25 + 27)/2 = 26.

Here is an alternative way of thinking about the median. Table 7.7 gives the
probability mass function of the random variable X = “amount of milk a cow
gives in a day.”Table 7.7

x P (X = x)

18 6/30

20 5/30

22 2/30

24 1/30

25 1/30

27 4/30

29 4/30

30 7/30

Based on the data, we construct the cumulative distribution function

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 18

6/30 18 ≤ x < 20

11/30 20 ≤ x < 22

13/30 22 ≤ x < 24

14/30 24 ≤ x < 25

15/30 25 ≤ x < 27

19/30 27 ≤ x < 29

23/30 29 ≤ x < 30

1 x ≥ 30
To identify the median, we look for the x value that corresponds to the cumulative
probability of 1/2. We see that F (x) = 1/2 for 25 ≤ x < 27. We take the midpoint,
so the median is 26.

Consider the graph of a cumulative distribution function F (x) in Figure 7.2.

1

0.5

x0

F (x )

FIGURE 7.2

Locating the median from
the cumulative distribution
function

We would like to say that the median is the point (actually the interval, which
we reduce to a point) where the cumulative distribution function crosses the hor-
izontal line representing the probability of 1/2. But in some cases the cumulative
distribution function and the horizontal line have nothing in common. That is
why we state the algorithm for finding the median in the following way.

Algorithm 2 How to Locate the Median from a Cumulative Distribution Function

Assume that X is a discrete random variable.

(1) Compute the cumulative distribution function F (x) of X and sketch its graph.

(2) If the graph of F (x) intersects 1/2, then identify the interval for x where
F (x) = 1/2. The midpoint of that interval is the median of X; see Figure 7.3a.

(3) If the graph of F (x) does not intersect 1/2, then the median of X is the mean
of the values immediately above and immediately below 0.5; see Figure 7.3b.
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The Median and the Mode

We now define two useful statistics for a distribution, the median and the mode.
Although we can compute the median and the mode for any sample, we will see
that they make sense mostly for larger samples that consist of many different
values.

Definition 21 The Median
The median is the midpoint of a distribution.

Algorithm 1 below will make the meaning of the word “midpoint” precise.
Rougly speaking, the median M is a number with the property that picking

a number larger than or equal to M is as likely as picking a number smaller than
or equal to M.

We discuss a few examples and then explain why we used the word “roughly”
in interpreting the meaning of the median.

To find the median of the set of five numbers {1, 7, 3, 2, 10}, we create the
ordered list 1, 2, 3, 7, 10 and pick the number in the centre. Thus, the median is 3;
picking a number larger than or equal 3 is as likely as picking a number smaller
than or equal to 3 (both probabilities are 3/5).

Consider an even number of outcomes, say {1, 4, 3, 7, 2, 6}. In the centre of the
ordered list 1, 2, 3, 4, 6, 7 there are two numbers, 3 and 4. The median is taken to
be the mean of the two numbers, i.e., (3 + 4)/2 = 3.5. Clearly, picking a number
greater than or equal to 3.5 from the list 1, 2, 3, 4, 6, 7 is as likely as picking a
number smaller than or equal to 3.5 (both probabilities are 1/2).

In creating the ordered list we have to make sure that we keep the frequencies.
Ordering the set of data {3, 1, 2, 6, 3, 6, 3, 3, 11}, we get 1, 2, 3, 3, 3, 3, 6, 6, 11. The
central term—and hence the median—is 3. Note that in this case the probabilities
are not equal; the probability of picking a number smaller than or equal to 3 is
6/9, whereas the probability of picking a number greater than or equal to 3 is 7/9.
If we ask for strict inequalities, it still does not work: the probability of picking
a number smaller than 3 is 2/9 and the probability of picking a number greater
than 3 is 3/9.

So, the probabilities are not equal. However, if we consider a large set of
data with many distinct values (that’s when the median is actually useful), then,
in many cases, things work. To alert the reader to this issue, we used the word
“roughly” in explaining the meaning of the median.

The following algorithm makes Definition 21 fully transparent.

Algorithm 1 How to Locate the Median

To find the median of a sample set of n numbers:

(1) Create an ordered list of the numbers, from the smallest to the largest.

(2) If n is odd, then there is one number in the centre of the list, and that number
is the median. To locate it, count (n + 1)/2 numbers from either end of the list.

(3) If n is even, then by counting n/2 numbers from both ends we arrive at the
two centre numbers. The median is the mean of these two numbers.
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Example 7.7 Calculating the Median Milk Production

Consider the milk production on the Milky Way Farm (Example 7.1). The out-
comes (n = 30), written as an ordered list, are

18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 24, 25,

27, 27, 27, 27, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30

Counting n/2 = 15 outcomes from both sides, we arrive at 25 and 27. Thus, the
median is (25 + 27)/2 = 26.

Here is an alternative way of thinking about the median. Table 7.7 gives the
probability mass function of the random variable X = “amount of milk a cow
gives in a day.”Table 7.7

x P (X = x)

18 6/30

20 5/30

22 2/30

24 1/30

25 1/30

27 4/30

29 4/30

30 7/30

Based on the data, we construct the cumulative distribution function

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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11/30 20 ≤ x < 22

13/30 22 ≤ x < 24

14/30 24 ≤ x < 25

15/30 25 ≤ x < 27

19/30 27 ≤ x < 29

23/30 29 ≤ x < 30

1 x ≥ 30
To identify the median, we look for the x value that corresponds to the cumulative
probability of 1/2. We see that F (x) = 1/2 for 25 ≤ x < 27. We take the midpoint,
so the median is 26.

Consider the graph of a cumulative distribution function F (x) in Figure 7.2.
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Locating the median from
the cumulative distribution
function

We would like to say that the median is the point (actually the interval, which
we reduce to a point) where the cumulative distribution function crosses the hor-
izontal line representing the probability of 1/2. But in some cases the cumulative
distribution function and the horizontal line have nothing in common. That is
why we state the algorithm for finding the median in the following way.

Algorithm 2 How to Locate the Median from a Cumulative Distribution Function

Assume that X is a discrete random variable.

(1) Compute the cumulative distribution function F (x) of X and sketch its graph.

(2) If the graph of F (x) intersects 1/2, then identify the interval for x where
F (x) = 1/2. The midpoint of that interval is the median of X; see Figure 7.3a.

(3) If the graph of F (x) does not intersect 1/2, then the median of X is the mean
of the values immediately above and immediately below 0.5; see Figure 7.3b.
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FIGURE 7.3

The median of a random
variable

Definition 22 The Mode
The mode of a sample space is the outcome that appears most often.

The mode of the set of numbers

{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 6, 7}
is 4. The mode need not be a unique number. For instance, the mode of the set

{1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 8}
consists of two numbers, 3 and 4. There are situations when the mode can be cal-
culated, but makes no sense (i.e., provides no new information about the sample).
For instance, every number in the sample space

{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6}
is the mode.

As with the median, the mode makes (most) sense when we need to describe
large sample spaces.

Example 7.8 Measures of the Centre of a Distribuiton

In Figure 7.4 we repeat the frequencies of the daily production of milk by 30 cows
on each of the three farms (see Examples 7.1 and 7.6). Under each histogram, we
record the mean, the median, and the mode.

Milky Way ButterscotchMilkshake

mean = 24.5

median = 26

mode = 30

mean = 24.5

median = 25

mode = 25

mean = 24.5

median = 20

mode = 18 and 32

16 18 20 22 24 26 28 30 32

1

2

3

4

5

6

7

8

16 18 20 22 24 26 28 30 32 16 18 20 22 24 26 28 30 32

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

FIGURE 7.4

Comparing milk production

The distribution of the Milkshake Farm data is clustered (and somewhat symmet-
ric), which is reflected in the fact that all three measures are equal or close to
equal.
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The remaning two histograms are spread out. The Milky Way data is skewed,
with both the median and the mode on the same side of the mean (i.e., both are
larger than the mean). The Butterscotch data has two modes, 18 and 32.

Expected Value of the Logarithm and the Geometric Mean

There are situations where the mean does not provide adequate information about
the sample space, or about the behaviour of a system or a biological process.

Consider a population of fish whose per capita production rate alternates
throughout the year: during a “good” season, the rate is 1.8 (say, due to abundance
of food or absence of predators). During a “bad” season, the per capita production
rate falls to 0.4.

The average per capita rate (1.8 + 0.4)/2 = 1.1 suggests that the fish popu-
lation will increase on average by 10% per year.

Let’s check. Assume that the initial population is p0 = 100,000. We compute

p1 = 1.8 · 100,000 = 180,000
p2 = 0.4 · 180,000 = 72,000
p3 = 1.8 · 72,000 = 129,600
p4 = 0.4 · 129,600 = 51,840
p5 = 1.8 · 51,840 = 93,312
p4 = 0.4 · 93,312 = 37,325

and so on. The population is oscillating, but declining, and will eventually go
extinct. If we continue our calculation, we get

p10 = 19,349
p20 = 3,744
p30 = 724

See Figure 7.5.
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The fish population dynam-
ics

This clearly contradicts the conclusion based on the mean of the per capita
production rates.

The mean, as we defined it, is an adequate measurement (useful measurement)
for phenomena based on addition such as milk production (hence the name arith-
metic mean). However, in the case of the fish population, we multiply the present
population by the per capita rate to get next year’s population. Looking at the
numbers p1, p2, p3, . . . again, we see that what matters is not the sum 1.8 + 0.4 of
the per capita rates, but their product 1.8 · 0.4 = 0.72. Note that

p0 = 100,000
p1 = 180,000
p2 = 0.72 · p0 = 0.72 · 100,000 = 72,000
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The median of a random
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Definition 22 The Mode
The mode of a sample space is the outcome that appears most often.

The mode of the set of numbers

{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 6, 7}
is 4. The mode need not be a unique number. For instance, the mode of the set

{1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 8}
consists of two numbers, 3 and 4. There are situations when the mode can be cal-
culated, but makes no sense (i.e., provides no new information about the sample).
For instance, every number in the sample space

{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6}
is the mode.

As with the median, the mode makes (most) sense when we need to describe
large sample spaces.

Example 7.8 Measures of the Centre of a Distribuiton

In Figure 7.4 we repeat the frequencies of the daily production of milk by 30 cows
on each of the three farms (see Examples 7.1 and 7.6). Under each histogram, we
record the mean, the median, and the mode.
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Comparing milk production

The distribution of the Milkshake Farm data is clustered (and somewhat symmet-
ric), which is reflected in the fact that all three measures are equal or close to
equal.
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The remaning two histograms are spread out. The Milky Way data is skewed,
with both the median and the mode on the same side of the mean (i.e., both are
larger than the mean). The Butterscotch data has two modes, 18 and 32.

Expected Value of the Logarithm and the Geometric Mean

There are situations where the mean does not provide adequate information about
the sample space, or about the behaviour of a system or a biological process.

Consider a population of fish whose per capita production rate alternates
throughout the year: during a “good” season, the rate is 1.8 (say, due to abundance
of food or absence of predators). During a “bad” season, the per capita production
rate falls to 0.4.

The average per capita rate (1.8 + 0.4)/2 = 1.1 suggests that the fish popu-
lation will increase on average by 10% per year.

Let’s check. Assume that the initial population is p0 = 100,000. We compute

p1 = 1.8 · 100,000 = 180,000
p2 = 0.4 · 180,000 = 72,000
p3 = 1.8 · 72,000 = 129,600
p4 = 0.4 · 129,600 = 51,840
p5 = 1.8 · 51,840 = 93,312
p4 = 0.4 · 93,312 = 37,325

and so on. The population is oscillating, but declining, and will eventually go
extinct. If we continue our calculation, we get

p10 = 19,349
p20 = 3,744
p30 = 724

See Figure 7.5.
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This clearly contradicts the conclusion based on the mean of the per capita
production rates.

The mean, as we defined it, is an adequate measurement (useful measurement)
for phenomena based on addition such as milk production (hence the name arith-
metic mean). However, in the case of the fish population, we multiply the present
population by the per capita rate to get next year’s population. Looking at the
numbers p1, p2, p3, . . . again, we see that what matters is not the sum 1.8 + 0.4 of
the per capita rates, but their product 1.8 · 0.4 = 0.72. Note that

p0 = 100,000
p1 = 180,000
p2 = 0.72 · p0 = 0.72 · 100,000 = 72,000
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p3 = 0.72 · p1 = 0.72 · 180,000 = 129, 600
p4 = 0.72 · p2 = 0.72 · 72,000 = 51,840
p5 = 0.72 · p3 = 0.72 · 129,600 = 93,312

and so on. The population change is obviously a multiplicative process. Let’s look
further into this.

Assume that a population changes according to

pt+1 = Rtpt

where the per capita rate is represented by the random variable Rt. If the initial
population is p0, then

p1 = R0p0

p2 = R1p1 = R1R0p0

. . .

pt = Rt−1Rt−2 · · ·R0p0 (7.6)

To convert (7.6) to a sum, we use logarithms:

ln pt = ln Rt−1 + ln Rt−2 + · · · + ln R0 + ln p0 (7.7)

Thus, to find the logarithm of pt we add the logarithms of the per capita rates to
the logarithm of the initial population. So, if the expected value of the logarithms
of Rt is positive, the sum in (7.7) will increase over time and so will the population.
If the expected value is negative, the sum will decrease, and so the population will
decrease as well.

So it is important to know the expected value of the logarithm of the per
capita rates. In the example we started with, the rates (and thus the values of the
random variable R) are 1.8 and 0.4. We calculated

E(R) =
1
2
(1.8) +

1
2
(0.4) = 1.1

The expected value of the logarithm of R is

E(lnR) =
1
2
(ln 1.8) +

1
2
(ln 0.4) ≈ −0.164

The expected value is negative, suggesting (correctly) a decline in the population.

Definition 23 Geometric Mean
Assume that X is a random variable such that X > 0 (i.e., X takes on positive
values at all events in its domain). The geometric mean of X is the real number

G.M.(X) = eE(ln X)

Recall that the expected value of ln X is calculated as

E(lnX) =
∑

x

ln x P (X = x) =
∑

x

ln x · p(x)

where the sum goes over all values x for which p(x) is positive (see Definition 20).

Example 7.9 Geometric Mean: Population Dynamics

Assume that the per capita production rate in a population of salmon is given by
its probability mass function; see Table 7.8. Find E(lnR) and interpret the result.

Table 7.8

r P (R = r)

1.8 0.25

0.7 0.65

1.2 0.1

We compute

E(lnX) =
∑

x

ln x P (X = x)

= ln 1.8 P (R = 1.8) + ln 0.7 P (R = 0.7) + ln 1.2 P (R = 1.2)
= (ln 1.8)(0.25) + (ln 0.7)(0.65) + (ln 1.2)(0.1) ≈ −0.06666

Section 7 The Mean, the Median, and the Mode P1-85

The geometric mean

eE(ln R) = e−0.06666 ≈ 0.93551

predicts that the population will decline at the rate of 1− 0.93551 = 0.06449; i.e.,
a bit under 6.5% per year. Figure 7.6 shows the outcomes of three simulations, all
starting with initial population 1,000.
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Three simulations of salmon
population

Summary We defined three statistics related to the centre of a distribution: the mean,
the median, and the mode. The mean, or the expected value, corresponds to
what we usually think of when we say “average value.” Since distributions that
are quite different can have the same mean, we need to find other statistics to
describe their differences. The median is the midpoint of a distribution, and the
mode is the value that appears most often. In some cases, the median and the
mode do convey more information about the distribution, but they are not able
to fully capture the differences among distributions (hence the next section).

7 Exercises

1. Find the median of the sets S1 = {3, 2, 4, 6, 7, 10, 5} and S2 = {3, 2, 4, 6, 700,000, 1,000,000, 5}. What
can you conclude about the median?

2. Find the mode of the sets S1 = {2, 2, 2, 3, 4, 5, 4, 3} and S2 = {2, 2, 2, 2, 2, 1,000,000, 2,000,000}. What
can you conclude about the mode?

3. Double each value in a data set S1, thus obtaining the data set S2. How are the means, the medians,
and the modes of S1 and S2 related?

4. Add 5 to each value in a data set S1, thus obtaining the data set S2. How are the means, the medians,
and the modes of S1 and S2 related?

5. A random variable X is said to be uniformly distributed on the set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} if
P (X = k) = 1/10 for k = 1, 2, . . . , 10. What is the mean of X?

6. A random variable X is said to be uniformly distributed on the set S = {1, 2, 3, . . . , n} (where n ≥ 1)
if P (X = k) = 1/n for k = 1, 2, . . . , n. What is the mean of X?

7. If E(X) = 3, is it true that E(X2) = 9?

8. If E(X) = 2, what is E(E(E(E(X))))?

9. If E(X) = 2 and E(X2) = 3, what is E(2X2 − 4X + 1)?

10. Knowing that E(X) = 2 and E(X2) = 3, compute E(X − X2 + 7).
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p3 = 0.72 · p1 = 0.72 · 180,000 = 129, 600
p4 = 0.72 · p2 = 0.72 · 72,000 = 51,840
p5 = 0.72 · p3 = 0.72 · 129,600 = 93,312

and so on. The population change is obviously a multiplicative process. Let’s look
further into this.

Assume that a population changes according to

pt+1 = Rtpt

where the per capita rate is represented by the random variable Rt. If the initial
population is p0, then

p1 = R0p0

p2 = R1p1 = R1R0p0

. . .

pt = Rt−1Rt−2 · · ·R0p0 (7.6)

To convert (7.6) to a sum, we use logarithms:

ln pt = ln Rt−1 + ln Rt−2 + · · · + ln R0 + ln p0 (7.7)

Thus, to find the logarithm of pt we add the logarithms of the per capita rates to
the logarithm of the initial population. So, if the expected value of the logarithms
of Rt is positive, the sum in (7.7) will increase over time and so will the population.
If the expected value is negative, the sum will decrease, and so the population will
decrease as well.

So it is important to know the expected value of the logarithm of the per
capita rates. In the example we started with, the rates (and thus the values of the
random variable R) are 1.8 and 0.4. We calculated

E(R) =
1
2
(1.8) +

1
2
(0.4) = 1.1

The expected value of the logarithm of R is

E(lnR) =
1
2
(ln 1.8) +

1
2
(ln 0.4) ≈ −0.164

The expected value is negative, suggesting (correctly) a decline in the population.

Definition 23 Geometric Mean
Assume that X is a random variable such that X > 0 (i.e., X takes on positive
values at all events in its domain). The geometric mean of X is the real number

G.M.(X) = eE(ln X)

Recall that the expected value of ln X is calculated as

E(lnX) =
∑

x

ln x P (X = x) =
∑

x

ln x · p(x)

where the sum goes over all values x for which p(x) is positive (see Definition 20).

Example 7.9 Geometric Mean: Population Dynamics

Assume that the per capita production rate in a population of salmon is given by
its probability mass function; see Table 7.8. Find E(lnR) and interpret the result.

Table 7.8

r P (R = r)

1.8 0.25

0.7 0.65

1.2 0.1

We compute

E(lnX) =
∑

x

ln x P (X = x)

= ln 1.8 P (R = 1.8) + ln 0.7 P (R = 0.7) + ln 1.2 P (R = 1.2)
= (ln 1.8)(0.25) + (ln 0.7)(0.65) + (ln 1.2)(0.1) ≈ −0.06666

Section 7 The Mean, the Median, and the Mode P1-85

The geometric mean

eE(ln R) = e−0.06666 ≈ 0.93551

predicts that the population will decline at the rate of 1− 0.93551 = 0.06449; i.e.,
a bit under 6.5% per year. Figure 7.6 shows the outcomes of three simulations, all
starting with initial population 1,000.
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Summary We defined three statistics related to the centre of a distribution: the mean,
the median, and the mode. The mean, or the expected value, corresponds to
what we usually think of when we say “average value.” Since distributions that
are quite different can have the same mean, we need to find other statistics to
describe their differences. The median is the midpoint of a distribution, and the
mode is the value that appears most often. In some cases, the median and the
mode do convey more information about the distribution, but they are not able
to fully capture the differences among distributions (hence the next section).

7 Exercises

1. Find the median of the sets S1 = {3, 2, 4, 6, 7, 10, 5} and S2 = {3, 2, 4, 6, 700,000, 1,000,000, 5}. What
can you conclude about the median?

2. Find the mode of the sets S1 = {2, 2, 2, 3, 4, 5, 4, 3} and S2 = {2, 2, 2, 2, 2, 1,000,000, 2,000,000}. What
can you conclude about the mode?

3. Double each value in a data set S1, thus obtaining the data set S2. How are the means, the medians,
and the modes of S1 and S2 related?

4. Add 5 to each value in a data set S1, thus obtaining the data set S2. How are the means, the medians,
and the modes of S1 and S2 related?

5. A random variable X is said to be uniformly distributed on the set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} if
P (X = k) = 1/10 for k = 1, 2, . . . , 10. What is the mean of X?

6. A random variable X is said to be uniformly distributed on the set S = {1, 2, 3, . . . , n} (where n ≥ 1)
if P (X = k) = 1/n for k = 1, 2, . . . , n. What is the mean of X?

7. If E(X) = 3, is it true that E(X2) = 9?

8. If E(X) = 2, what is E(E(E(E(X))))?

9. If E(X) = 2 and E(X2) = 3, what is E(2X2 − 4X + 1)?

10. Knowing that E(X) = 2 and E(X2) = 3, compute E(X − X2 + 7).
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11. Let X be a random variable with expected value μ. Define Y = (X − μ)/σ, where σ �= 0. What is the
expected value of Y ?

12–15 Given is the probability mass function of a discrete random variable X. Compute E(X), E(X2),
and E[X(X − 1)].

12. 13.
x P (X = x)

−2 0.15

1 0.15

3 0.45

4 0.25

x P (X = x)

0 0.25

1 0.25

2 0.25

3 0.25

14. 15.
x P (X = x)

−2 0.25

−1 0.2

0 0.1

1 0.2

2 0.25

x P (X = x)

0 0.8

1 0.05

2 0.05

3 0.05

4 0.05

16. Find the mean, the median, and the mode of the following data set:

20, 16, 20, 27, 30, 20, 18, 29, 30, 30, 27, 22, 18, 30, 20, 16, 14, 32
24, 18, 27, 22, 20, 20, 20, 20, 18, 18, 30, 27, 20, 30, 25, 30, 28, 24

17. Find the mean, the median, and the mode of the following data set:

19, 18, 18, 20, 27, 30, 20, 18, 29, 30, 18, 18, 18, 18, 30, 20, 18, 19,

18, 14, 18, 27, 20, 18, 18, 19, 29, 18, 18, 30, 27, 20, 30, 25, 18, 22

18–23 Consider the following probability mass function of a random variable X. Find each quantity.

x P (X = x)

1 0.2

2 0.4

3 0.3

4 0.1

18. E(X2) − (E(X))2 19. E(sin X) − sin(E(X))

20. E(lnX) 21. Geometric mean, i.e., eE(ln X)

22. E[X(X − E(X))] 23. E(1/X)

24. Assume that the per capita production rate of a population of fish is 1.25 in 70% of years and 0.6 in
30% of years. Calculate the geometric mean and explain what it says about the long-term behaviour
of the population.

Section 7 The Mean, the Median, and the Mode P1-87

25. Assume that the per capita production rate of a population of fish is 1.25 in 70% of years and 0.1 in
30% of years. Calculate the geometric mean and explain what it says about the long-term behaviour
of the population.

26–29 Given the histogram of a discrete random variable X, find the mean, the median, and the mode(s).

26. 27.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8
0

0.05

0.15

0.2

0.25

0.1

28. 29.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.15

0.2

0.25

0.3

0.1

30. Prove the formula E[E(X)] = E(X) directly, without reference to Theorem 7. (Hint: Start by using
the formula for the expected value, E[E(X)] =

∑
E(X)P (X = x); it’s a one-line proof.)
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17. Find the mean, the median, and the mode of the following data set:

19, 18, 18, 20, 27, 30, 20, 18, 29, 30, 18, 18, 18, 18, 30, 20, 18, 19,

18, 14, 18, 27, 20, 18, 18, 19, 29, 18, 18, 30, 27, 20, 30, 25, 18, 22

18–23 Consider the following probability mass function of a random variable X. Find each quantity.

x P (X = x)

1 0.2

2 0.4

3 0.3

4 0.1

18. E(X2) − (E(X))2 19. E(sin X) − sin(E(X))

20. E(lnX) 21. Geometric mean, i.e., eE(ln X)

22. E[X(X − E(X))] 23. E(1/X)

24. Assume that the per capita production rate of a population of fish is 1.25 in 70% of years and 0.6 in
30% of years. Calculate the geometric mean and explain what it says about the long-term behaviour
of the population.
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25. Assume that the per capita production rate of a population of fish is 1.25 in 70% of years and 0.1 in
30% of years. Calculate the geometric mean and explain what it says about the long-term behaviour
of the population.
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30. Prove the formula E[E(X)] = E(X) directly, without reference to Theorem 7. (Hint: Start by using
the formula for the expected value, E[E(X)] =

∑
E(X)P (X = x); it’s a one-line proof.)
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8 The Spread of a Distribution

In Section 7 we learned how to calculate the statistics related to the centre of a
distribution. Although important, the mean and the median fail to fully describe
a distribution.

For instance, the fact that the mean of a distribution is 5 does not tell us
anything about how spread out it is. The mean of both S1 = {3, 4, 5, 6, 7} and
S2 = {−20,−10, 5, 20, 30} is 5. However, the largest distance from an element of
S1 to the mean is 2. For S2, the largest distance is 25.

Both S3 = {0, 1, 6, 1,000, 50,000} and S4 = {0, 5, 6, 7, 8} have the same median
of 6, but differ considerably in the way they are spread out.

We now introduce the most common tools used to describe the spread of
a distribution: the range, the percentiles, the variance, and the standard
deviation.

Range, Percentiles, and Boxplots

The range of a distribution is the simplest measure of its spread. Usually, we sum-
marize the information about the range by stating the minimum and the maximum
values. We say, “The range of S3 is from 0 to 50,000” or “S4 ranges from 0 to 8.”

We have already met an example of a percentile—namely the 50th percentile,
or the median. The median splits the distribution into two groups: 50% of the
values are smaller than the median, and 50% are larger than the median.

Now we define other important percentiles. As with the median, for a per-
centile to make sense, we need to have larger distributions with many distinct
values.

Definition 24 Percentile
Let X be a random variable. The pth percentile (where 0 < p < 1) is the value of
X that is, ideally, larger than p percent of the values.

We comment on why we used the word “ideally” near the end of Example 8.1.
The most commonly used percentiles are listed in Table 8.1.

Table 8.1

p Name and notation

0.25 25th percentile, or first quartile, or lower quartile; Q1

0.5 50th percentile, or median; M

0.75 75th percentile, or third quartile, or upper quartile; Q3

0.95 95th percentile

As we just mentioned, the median M divides the values of a random variable into
two sets of equal size. The 25th percentile is the median of the set that contains
the numbers smaller than M and the 75th percentile is the median of the set of
numbers that are larger than M. Thus, the quartiles and the median divide the
set of values of a random variable into four roughly equally probable sets.

Section 8 The Spread of a Distribution P1-89

Example 8.1 Percentiles for the Milk Production Data

Recall the daily milk production by 30 Milky Way Farm cows:

30, 18, 20, 27, 30, 20, 18, 29, 30, 30, 27, 22, 18, 30, 20,

24, 18, 27, 22, 29, 29, 20, 29, 18, 18, 30, 27, 20, 30, 25

(see Example 7.1). We order the numbers from smallest to largest and list them
in two rows, each containing 15 numbers:

18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 24, 25,

27, 27, 27, 27, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30 (8.1)

The minimum is 18, and the maximum is 30. The median is the mean of the last
number in the top row and the first number in the bottom row: (25 + 27)/2 = 26.
The lower quartile (the median of the numbers in the top row) is Q1 = 20, and
the upper quartile (the median of the numbers in the bottom row) is Q3 = 29.

To identify the 95th percentile, we note that 95% of 30 (cows) is 28.5. Thus,
the 95th percentile is the mean of the amounts of milk produced by the 28th and
the 29th cow in the list (8.1), which is 30 L.

Note that the value of 30 is larger than only 23 values; i.e., it’s larger than
77%, rather than 95%, of all values. As well, it is larger than or equal to 100%,
rather than 95%, of all values. So either way we look at it, strictly speaking, there
is no 95th percentile in this distribution. However, since the information could
still be (and is) useful, we will refer to 30 L as the 95th percentile.

The comment we made at the end of the previous example applies to all percentiles.
All statistics that we mentioned in Example 8.1 (except for the 95th percentile)

form the five-number summary.

Definition 25 The Five-Number Summary
The five-number summary of a distribution consists of the minimum value of the
range, the lower quartile, the median, the upper quartile, and the maximum value
of the range.

The five-number summary is often visualized in the form of a box plot; see Figure
8.1a. The box plot for the milk production on the Milky Way Farm (Example 8.1)
is drawn in Figure 8.1b.
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FIGURE 8.1

Box plots

Example 8.2 Box Plot Diagrams

Construct the box plot diagrams for the milk production from Example 7.6 in
Section 7. For convenience, we repeat the data:
Milkshake Farm:

23, 22, 25, 26, 27, 23, 25, 26, 26, 26, 27, 25, 25, 23, 22,

24, 25, 25, 23, 25, 24, 23, 26, 26, 25, 22, 22, 23, 24, 27
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8 The Spread of a Distribution

In Section 7 we learned how to calculate the statistics related to the centre of a
distribution. Although important, the mean and the median fail to fully describe
a distribution.

For instance, the fact that the mean of a distribution is 5 does not tell us
anything about how spread out it is. The mean of both S1 = {3, 4, 5, 6, 7} and
S2 = {−20,−10, 5, 20, 30} is 5. However, the largest distance from an element of
S1 to the mean is 2. For S2, the largest distance is 25.

Both S3 = {0, 1, 6, 1,000, 50,000} and S4 = {0, 5, 6, 7, 8} have the same median
of 6, but differ considerably in the way they are spread out.

We now introduce the most common tools used to describe the spread of
a distribution: the range, the percentiles, the variance, and the standard
deviation.

Range, Percentiles, and Boxplots

The range of a distribution is the simplest measure of its spread. Usually, we sum-
marize the information about the range by stating the minimum and the maximum
values. We say, “The range of S3 is from 0 to 50,000” or “S4 ranges from 0 to 8.”

We have already met an example of a percentile—namely the 50th percentile,
or the median. The median splits the distribution into two groups: 50% of the
values are smaller than the median, and 50% are larger than the median.

Now we define other important percentiles. As with the median, for a per-
centile to make sense, we need to have larger distributions with many distinct
values.

Definition 24 Percentile
Let X be a random variable. The pth percentile (where 0 < p < 1) is the value of
X that is, ideally, larger than p percent of the values.

We comment on why we used the word “ideally” near the end of Example 8.1.
The most commonly used percentiles are listed in Table 8.1.

Table 8.1

p Name and notation

0.25 25th percentile, or first quartile, or lower quartile; Q1

0.5 50th percentile, or median; M

0.75 75th percentile, or third quartile, or upper quartile; Q3

0.95 95th percentile

As we just mentioned, the median M divides the values of a random variable into
two sets of equal size. The 25th percentile is the median of the set that contains
the numbers smaller than M and the 75th percentile is the median of the set of
numbers that are larger than M. Thus, the quartiles and the median divide the
set of values of a random variable into four roughly equally probable sets.
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Example 8.1 Percentiles for the Milk Production Data

Recall the daily milk production by 30 Milky Way Farm cows:

30, 18, 20, 27, 30, 20, 18, 29, 30, 30, 27, 22, 18, 30, 20,

24, 18, 27, 22, 29, 29, 20, 29, 18, 18, 30, 27, 20, 30, 25

(see Example 7.1). We order the numbers from smallest to largest and list them
in two rows, each containing 15 numbers:

18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 24, 25,

27, 27, 27, 27, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30 (8.1)

The minimum is 18, and the maximum is 30. The median is the mean of the last
number in the top row and the first number in the bottom row: (25 + 27)/2 = 26.
The lower quartile (the median of the numbers in the top row) is Q1 = 20, and
the upper quartile (the median of the numbers in the bottom row) is Q3 = 29.

To identify the 95th percentile, we note that 95% of 30 (cows) is 28.5. Thus,
the 95th percentile is the mean of the amounts of milk produced by the 28th and
the 29th cow in the list (8.1), which is 30 L.

Note that the value of 30 is larger than only 23 values; i.e., it’s larger than
77%, rather than 95%, of all values. As well, it is larger than or equal to 100%,
rather than 95%, of all values. So either way we look at it, strictly speaking, there
is no 95th percentile in this distribution. However, since the information could
still be (and is) useful, we will refer to 30 L as the 95th percentile.

The comment we made at the end of the previous example applies to all percentiles.
All statistics that we mentioned in Example 8.1 (except for the 95th percentile)

form the five-number summary.

Definition 25 The Five-Number Summary
The five-number summary of a distribution consists of the minimum value of the
range, the lower quartile, the median, the upper quartile, and the maximum value
of the range.

The five-number summary is often visualized in the form of a box plot; see Figure
8.1a. The box plot for the milk production on the Milky Way Farm (Example 8.1)
is drawn in Figure 8.1b.
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Box plots

Example 8.2 Box Plot Diagrams

Construct the box plot diagrams for the milk production from Example 7.6 in
Section 7. For convenience, we repeat the data:
Milkshake Farm:

23, 22, 25, 26, 27, 23, 25, 26, 26, 26, 27, 25, 25, 23, 22,

24, 25, 25, 23, 25, 24, 23, 26, 26, 25, 22, 22, 23, 24, 27
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Butterscotch Farm:

20, 17, 32, 32, 32, 20, 17, 20, 32, 30, 30, 32, 32, 18, 18,

18, 18, 32, 19, 19, 18, 18, 18, 31, 31, 31, 31, 31, 19, 19

Order the Milkshake Farm production numbers:

22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 25, 25,

25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27

The minimum is 22 and the maximum is 27. The median (the mean between the
15th and the 16th numbers in the list) is 25, the lower quartile (the eighth number
from either end in the top row) is 23, and the upper quartile (the eighth number
from either end in the bottom row) is 26. See Figure 8.2.

In the same way we obtain the statistics for the Butterscotch Farm cows: the
minimum is 17 and the maximum is 32. The median is 20, the lower quartile is
18, and the upper quartile is 31; see Figure 8.2. Clearly, the two box plots differ
quite a bit.
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FIGURE 8.2

Box plots of milk production
at the two farms

The Variance and the Standard Deviation

To motivate the formulas we will use, we consider two random variables whose
distribution functions are given in Tables 8.2 and 8.3.

Table 8.2

x P (X = x)

−1 0.2

0 0.1

1 0.4

2 0.1

3 0.2

Table 8.3

y P (Y = y)

−10 0.2

−7 0.1

1 0.4

9 0.1

12 0.2

Both x and y have the same mean:

E(X) =
∑

x

x P (X = x)

= (−1)(0.2) + (0)(0.1) + (1)(0.4) + (2)(0.1) + (3)(0.2) = 1
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and

E(Y ) =
∑

y

y P (Y = y)

= (−10)(0.2) + (−7)(0.1) + (1)(0.4) + (9)(0.1) + (12)(0.2) = 1

However, Y is more spread out than X. How do we quantify this spread?
One way to do this is to relate the values of the random variable to its mean.

To Tables 8.2 and 8.3 we add an extra column, where we calculate the difference
between the random variable and its mean. More precisely, we define new random
variables X1 = X − E(X) and Y1 = Y − E(Y ) and display their probability
distributions in Tables 8.4 and 8.5.

Table 8.4

x P (X = x) X1

−1 0.2 −2

0 0.1 −1

1 0.4 0

2 0.1 1

3 0.2 2

Table 8.5

y P (Y = y) Y1

−10 0.2 −11

−7 0.1 −8

1 0.4 0

9 0.1 8

12 0.2 11

What are the means of X1 and Y1?
We compute

E(X1) = (−2)(0.2) + (−1)(0.1) + (0)(0.4) + (1)(0.1) + (2)(0.2) = 0

Likewise, E(Y1) = 0. What we just discovered is true in general: if X is a random
variable and X1 = X − E(X), then E(X1) = 0 (see Exercise 11).

So, the mean differences E(X1) and E(Y1) are equal and cannot help us to
distinguish between the spreads of the two distributions. Both are equal to zero,
which is not a surprise, since the negative and the positive values cancel each other
out.

However, if the differences were all positive, then they would not cancel each
other. Given a number, we can make a positive number out of it by squaring,
or by taking the absolute value (of course, there are other ways, but the two we
mentioned will prove to be most useful). Let’s consider squaring.

Consider the squares of the differences, whose distributions are given in Tables
8.6 and 8.7.

Table 8.6

x P (X = x) X2
1

−1 0.2 4

0 0.1 1

1 0.4 0

2 0.1 1

3 0.2 4

Table 8.7

y P (Y = y) Y 2
1

−10 0.2 121

−7 0.1 64

1 0.4 0

9 0.1 64

12 0.2 121

This, time, the means are

E(X2
1 ) = (4)(0.2) + (1)(0.1) + (0)(0.4) + (1)(0.1) + (4)(0.2) = 1.8 (8.2)
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Butterscotch Farm:

20, 17, 32, 32, 32, 20, 17, 20, 32, 30, 30, 32, 32, 18, 18,

18, 18, 32, 19, 19, 18, 18, 18, 31, 31, 31, 31, 31, 19, 19

Order the Milkshake Farm production numbers:

22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 25, 25,

25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27

The minimum is 22 and the maximum is 27. The median (the mean between the
15th and the 16th numbers in the list) is 25, the lower quartile (the eighth number
from either end in the top row) is 23, and the upper quartile (the eighth number
from either end in the bottom row) is 26. See Figure 8.2.

In the same way we obtain the statistics for the Butterscotch Farm cows: the
minimum is 17 and the maximum is 32. The median is 20, the lower quartile is
18, and the upper quartile is 31; see Figure 8.2. Clearly, the two box plots differ
quite a bit.
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Box plots of milk production
at the two farms

The Variance and the Standard Deviation

To motivate the formulas we will use, we consider two random variables whose
distribution functions are given in Tables 8.2 and 8.3.

Table 8.2

x P (X = x)

−1 0.2

0 0.1

1 0.4

2 0.1

3 0.2

Table 8.3

y P (Y = y)

−10 0.2

−7 0.1

1 0.4

9 0.1

12 0.2

Both x and y have the same mean:

E(X) =
∑

x

x P (X = x)

= (−1)(0.2) + (0)(0.1) + (1)(0.4) + (2)(0.1) + (3)(0.2) = 1

Section 8 The Spread of a Distribution P1-91

and

E(Y ) =
∑

y

y P (Y = y)

= (−10)(0.2) + (−7)(0.1) + (1)(0.4) + (9)(0.1) + (12)(0.2) = 1

However, Y is more spread out than X. How do we quantify this spread?
One way to do this is to relate the values of the random variable to its mean.

To Tables 8.2 and 8.3 we add an extra column, where we calculate the difference
between the random variable and its mean. More precisely, we define new random
variables X1 = X − E(X) and Y1 = Y − E(Y ) and display their probability
distributions in Tables 8.4 and 8.5.

Table 8.4

x P (X = x) X1

−1 0.2 −2

0 0.1 −1

1 0.4 0

2 0.1 1

3 0.2 2

Table 8.5

y P (Y = y) Y1

−10 0.2 −11

−7 0.1 −8

1 0.4 0

9 0.1 8

12 0.2 11

What are the means of X1 and Y1?
We compute

E(X1) = (−2)(0.2) + (−1)(0.1) + (0)(0.4) + (1)(0.1) + (2)(0.2) = 0

Likewise, E(Y1) = 0. What we just discovered is true in general: if X is a random
variable and X1 = X − E(X), then E(X1) = 0 (see Exercise 11).

So, the mean differences E(X1) and E(Y1) are equal and cannot help us to
distinguish between the spreads of the two distributions. Both are equal to zero,
which is not a surprise, since the negative and the positive values cancel each other
out.

However, if the differences were all positive, then they would not cancel each
other. Given a number, we can make a positive number out of it by squaring,
or by taking the absolute value (of course, there are other ways, but the two we
mentioned will prove to be most useful). Let’s consider squaring.

Consider the squares of the differences, whose distributions are given in Tables
8.6 and 8.7.

Table 8.6

x P (X = x) X2
1

−1 0.2 4

0 0.1 1

1 0.4 0

2 0.1 1

3 0.2 4

Table 8.7

y P (Y = y) Y 2
1

−10 0.2 121

−7 0.1 64

1 0.4 0

9 0.1 64

12 0.2 121

This, time, the means are

E(X2
1 ) = (4)(0.2) + (1)(0.1) + (0)(0.4) + (1)(0.1) + (4)(0.2) = 1.8 (8.2)
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and

E(Y 2
1 ) = (121)(0.2) + (64)(0.1) + (0)(0.4) + (64)(0.1) + (121)(0.2)

= 61.2 (8.3)

It works! The mean of the differences squared for Y (namely, the mean of Y 2
1 )

is larger than the corresponding mean for X. This is the quantity we have been
looking for, which we now define. Note that the difference squared is the same as
the distance squared from the random variable to its mean. Keeping in mind that
X2

1 = (X − E(X))2, the following definition becomes transparent.

Definition 26 The Variance of a Random Variable
Assume that X is a random variable with mean μ = E(X). The variance of X is
the real number

var(X) = E
[
(X − μ)2

]
= E

[
(X − E(X))2

]

In words, the variance of a random variable X is the mean (expected value) of the
distance squared between X and its mean.

If X is a discrete random variable and p(x) = P (X = x) its probability mass
function, then

var(X) =
∑

x

(x − μ)2P (X = x) =
∑

x

(x − μ)2p(x) (8.4)

where the sum is taken over all x for which p(x) = P (X = x) is not zero.
So, in (8.2) and (8.3) we actually calculated the variances: var(X) = 1.8 and

var(Y ) = 61.2. The larger the variance, the larger is the spread of a distribution.
If var(X) = 0, then (8.4) implies that (x−μ)2 = 0 for all values of x for which

p(x) > 0. Thus, the only distribution with var(X) = 0 has one value, X = μ, and
P (X = μ) = 1.

Since var(X) ≥ 0, it is often denoted by σ2. Thus, σ2 = var(X).

Definition 27 Standard Deviation
Let X be a random variable whose variance is σ2 = var(X). The standard deviation
of X is the number

σ =
√

var(X)

Sometimes we use s.d. instead of σ to denote the standard deviation.
If X is measured in some units, then var(X) is measured in those units squared.

Since σ is the square root, the units of σ are the same as the units of X (or its
mean μ). That’s one of the reasons we introduced the standard deviation.

Example 8.3 Variance and Standard Deviation for the Milk Production

We compare the milk productions on the three farms from the last section, in
terms of the spread of the distributions (see Examples 7.1 and 7.8). Recall that
the expected daily milk production for all three farms is the same, equal to 24.5.

The distribution for Milky Way Farm is given in Table 8.8.

Table 8.8

x 18 20 22 24 25 27 29 30

P (X1 = x) 6/30 5/30 2/30 1/30 1/30 4/30 4/30 7/30
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The variance is

var(X1) =
∑

x

(x − 24.5)2P (X1 = x)

= (18 − 24.5)2
6
30

+ (20 − 24.5)2
5
30

+ (22 − 24.5)2
2
30

+ (24 − 24.5)2
1
30

+ (25 − 24.5)2
1
30

+ (27 − 24.5)2
4
30

+ (29 − 24.5)2
4
30

+ (30 − 24.5)2
7
30

= 22.850

Thus,

σX1 =
√

var(X1) =
√

22.850 ≈ 4.780

The distribution for the milk production on Milkshake Farm is given in Table
8.9.

Table 8.9

x 22 23 24 25 26 27

P (X = x) 4/30 6/30 3/30 8/30 6/30 3/30

As above, we compute var(X2) = 2.450 and σX2 =
√

2.450 ≈ 1.565.

From the data for Butterscotch Farm (Table 8.10) we compute var(X3) =
41.849 and σX3 =

√
41.849 ≈ 6.469.

Table 8.10

x 17 18 19 20 30 31 32

P (X = x) 2/30 7/30 4/30 3/30 2/30 5/30 7/30

In Figure 8.3 we redrew the histograms for the three farms. Clearly, the standard
deviation is able to detect the size of the spread: a small standard deviation means
a small spread (i.e., the data are clustered around the mean), whereas large values
of the standard deviation indicate distributions for which the majority of values
are located far from the mean.

standard deviation = 4.78 standard deviation = 1.57 standard deviation = 6.47

Milky Way ButterscotchMilkshake
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FIGURE 8.3

The standard deviations of the milk production on the three farms

Example 8.4 Statistics of Surviving Chicks

Researchers picked a sample of 20 birds that laid the same number of eggs. The
following list gives the number of chicks that survived the first month:

3, 7, 2, 6, 0, 1, 5, 6, 2, 2, 6, 3, 2, 5, 4, 1, 2, 2, 5, 5
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and

E(Y 2
1 ) = (121)(0.2) + (64)(0.1) + (0)(0.4) + (64)(0.1) + (121)(0.2)

= 61.2 (8.3)

It works! The mean of the differences squared for Y (namely, the mean of Y 2
1 )

is larger than the corresponding mean for X. This is the quantity we have been
looking for, which we now define. Note that the difference squared is the same as
the distance squared from the random variable to its mean. Keeping in mind that
X2

1 = (X − E(X))2, the following definition becomes transparent.

Definition 26 The Variance of a Random Variable
Assume that X is a random variable with mean μ = E(X). The variance of X is
the real number

var(X) = E
[
(X − μ)2

]
= E

[
(X − E(X))2

]

In words, the variance of a random variable X is the mean (expected value) of the
distance squared between X and its mean.

If X is a discrete random variable and p(x) = P (X = x) its probability mass
function, then

var(X) =
∑

x

(x − μ)2P (X = x) =
∑

x

(x − μ)2p(x) (8.4)

where the sum is taken over all x for which p(x) = P (X = x) is not zero.
So, in (8.2) and (8.3) we actually calculated the variances: var(X) = 1.8 and

var(Y ) = 61.2. The larger the variance, the larger is the spread of a distribution.
If var(X) = 0, then (8.4) implies that (x−μ)2 = 0 for all values of x for which

p(x) > 0. Thus, the only distribution with var(X) = 0 has one value, X = μ, and
P (X = μ) = 1.

Since var(X) ≥ 0, it is often denoted by σ2. Thus, σ2 = var(X).

Definition 27 Standard Deviation
Let X be a random variable whose variance is σ2 = var(X). The standard deviation
of X is the number

σ =
√

var(X)

Sometimes we use s.d. instead of σ to denote the standard deviation.
If X is measured in some units, then var(X) is measured in those units squared.

Since σ is the square root, the units of σ are the same as the units of X (or its
mean μ). That’s one of the reasons we introduced the standard deviation.

Example 8.3 Variance and Standard Deviation for the Milk Production

We compare the milk productions on the three farms from the last section, in
terms of the spread of the distributions (see Examples 7.1 and 7.8). Recall that
the expected daily milk production for all three farms is the same, equal to 24.5.

The distribution for Milky Way Farm is given in Table 8.8.

Table 8.8

x 18 20 22 24 25 27 29 30

P (X1 = x) 6/30 5/30 2/30 1/30 1/30 4/30 4/30 7/30
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The variance is

var(X1) =
∑

x

(x − 24.5)2P (X1 = x)

= (18 − 24.5)2
6
30

+ (20 − 24.5)2
5
30

+ (22 − 24.5)2
2
30

+ (24 − 24.5)2
1
30

+ (25 − 24.5)2
1
30

+ (27 − 24.5)2
4
30

+ (29 − 24.5)2
4
30

+ (30 − 24.5)2
7
30

= 22.850

Thus,

σX1 =
√

var(X1) =
√

22.850 ≈ 4.780

The distribution for the milk production on Milkshake Farm is given in Table
8.9.

Table 8.9

x 22 23 24 25 26 27

P (X = x) 4/30 6/30 3/30 8/30 6/30 3/30

As above, we compute var(X2) = 2.450 and σX2 =
√

2.450 ≈ 1.565.

From the data for Butterscotch Farm (Table 8.10) we compute var(X3) =
41.849 and σX3 =

√
41.849 ≈ 6.469.

Table 8.10

x 17 18 19 20 30 31 32

P (X = x) 2/30 7/30 4/30 3/30 2/30 5/30 7/30

In Figure 8.3 we redrew the histograms for the three farms. Clearly, the standard
deviation is able to detect the size of the spread: a small standard deviation means
a small spread (i.e., the data are clustered around the mean), whereas large values
of the standard deviation indicate distributions for which the majority of values
are located far from the mean.

standard deviation = 4.78 standard deviation = 1.57 standard deviation = 6.47
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The standard deviations of the milk production on the three farms

Example 8.4 Statistics of Surviving Chicks

Researchers picked a sample of 20 birds that laid the same number of eggs. The
following list gives the number of chicks that survived the first month:

3, 7, 2, 6, 0, 1, 5, 6, 2, 2, 6, 3, 2, 5, 4, 1, 2, 2, 5, 5
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Find the mean and the standard deviation of this distribution.

Let X be a random variable that keeps track of how many chicks survived the
first month. In Table 8.11 we organize the given list by absolute frequencies and
relative frequencies (probabilities).

Table 8.11

x 0 1 2 3 4 5 6 7

Absolute frequencies 1 2 6 2 1 4 3 1

Relative frequencies 1/20 2/20 6/20 2/20 1/20 4/20 3/20 1/20

The expected value of the number of surviving chicks is

E(X) =
∑

x

x P (X = x)

= 0 · 1
20

+ 1 · 2
20

+ 2 · 6
20

+ 3 · 2
20

+ 4 · 1
20

+ 5 · 4
20

+ 6 · 3
20

+ 7 · 1
20

=
69
20

= 3.45

The variance is

var(X) =
∑

x

(x − 3.45)2P (X = x)

= (0 − 3.45)2
1
20

+ (1 − 3.45)2
2
20

+ (2 − 3.45)2
6
20

+ (3 − 3.45)2
2
20

+ (4 − 3.45)2
1
20

+ (5 − 3.45)2
4
20

+ (6 − 3.45)2
3
20

+ (7 − 3.45)2
1
20

= 3.9475

Thus, the standard deviation of this distribution is

σX =
√

var(X) =
√

3.9475 ≈ 1.9868

Next, we explore several properties of the variance.

Theorem 8 Properties of the Variance
Let X be a random variable and a and b be real numbers. Then

(1) var(aX) = a2var(X)

(2) var(X + b) = var(X)

(3) var(X) = E(X2) − [E(X)]2

The first two formulas can be summarized as

var(aX + b) = a2var(X)

Formula (2) is intuitively clear: shifting a distribution horizontally by a constant
value does not change its spread (think of shifting a histogram). The formula in
(3) is an alternative way of calculating the variance and is often more convenient.
We’ll use it in a moment.

To practise calculations with means and variances, and to review their prop-
erties, we prove the theorem.

(1) Using Definition 26, we write

var(aX) = E
[
(aX − E(aX))2

]

The expected value is linear; thus E(aX) = aE(X), and
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var(aX) = E
[
(aX − aE(X))2

]

= E
[
a2(X − E(X))2

]

= a2E
[
(X − E(X))2

]

= a2var(X)

(We used the linearity of the expected value again when we factored out a2.)

(2) Using the definition of the variance

var(X + b) = E
[
(X + b − E(X + b))2

]

(recall that E(X + b) = E(X) + b)
= E

[
(X + b − E(X) − b)2

]

= E
[
(X − E(X))2

]

= var(X)

(3) Again, start with Definition 26:

var(X) = E
[
(X − E(X))2

]

We compute the term in the square brackets

(X − E(X))2 = X2 − 2E(X)X + (E(X))2

and calculate the expected value of both sides:

E
[
(X − E(X))2

]
= E

[
X2 − 2E(X)X + (E(X))2

]

var(X) = E(X2) − E [2E(X)X] + E
[
(E(X))2

]

var(X) = E(X2) − 2E(X) · E(X) + (E(X))2 (8.5)

To simplify the second term on the right side, we applied the formula E(aX) =
aE(X) with a = 2E(X). Recall that if b is a real number, then E(b) = b. Taking
b = (E(X))2, we get E

[
(E(X))2

]
= (E(X))2, which is how we simplified the third

term in (8.5).
Continuing with (8.5), we get

var(X) = E(X2) − 2(E(X))2 + (E(X))2

= E(X2) − (E(X))2

Example 8.5 Alternative Calculation of the Variance

Use formula (3) from Theorem 8 to recalculate the variance of the random variable
X from Example 8.4.

We redraw Table 8.11 by adding the values of X2; see Table 8.12.

Table 8.12

x 0 1 2 3 4 5 6 7

x2 0 1 4 9 16 25 36 49

P (X = x) 1/20 2/20 6/20 2/20 1/20 4/20 3/20 1/20

In Example 8.4 we calculated the expected value E(X) = 3.45. Thus, we only need
to find E(X2).

E(X2) =
∑

x

x2 P (X = x)

= 0 · 1
20

+ 1 · 2
20

+ 4 · 6
20

+ 9 · 2
20

+ 16 · 1
20

+ 25 · 4
20

+ 36 · 3
20

+ 49 · 1
20

=
317
20

= 15.85
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To simplify the second term on the right side, we applied the formula E(aX) =
aE(X) with a = 2E(X). Recall that if b is a real number, then E(b) = b. Taking
b = (E(X))2, we get E

[
(E(X))2

]
= (E(X))2, which is how we simplified the third

term in (8.5).
Continuing with (8.5), we get

var(X) = E(X2) − 2(E(X))2 + (E(X))2

= E(X2) − (E(X))2

Example 8.5 Alternative Calculation of the Variance

Use formula (3) from Theorem 8 to recalculate the variance of the random variable
X from Example 8.4.

We redraw Table 8.11 by adding the values of X2; see Table 8.12.

Table 8.12

x 0 1 2 3 4 5 6 7

x2 0 1 4 9 16 25 36 49

P (X = x) 1/20 2/20 6/20 2/20 1/20 4/20 3/20 1/20

In Example 8.4 we calculated the expected value E(X) = 3.45. Thus, we only need
to find E(X2).

E(X2) =
∑

x

x2 P (X = x)

= 0 · 1
20

+ 1 · 2
20

+ 4 · 6
20

+ 9 · 2
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+ 16 · 1
20

+ 25 · 4
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+ 36 · 3
20

+ 49 · 1
20

=
317
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It follows that

var(X) = E(X2) − (E(X))2 = 15.85 − 3.452 = 3.9475

Remarks (1) Note that E(X2) �= (E(X))2. From var(X) = E(X2) − (E(X))2 ≥ 0 we
conclude that E(X2) ≥ (E(X))2. The equality holds only when var(X) = 0.
(2) Instead of squaring the differences between the values of a random variable
and its mean, we can take the absolute value. In that case, we obtain the mean
absolute deviation (MAD)

MAD = E (|X − E(X)|)
Although MAD works (i.e., distinguishes distributions based on the spread; see
Exercise 25), it is not as commonly used as the variance. We will not use it in this
book.
(3) Assume that a random variable X takes on the values x1, x2, . . . , xn with equal
probability. Thus, P (X = xi) = 1/n for all i = 1, 2, . . . , n. The expected value

E(X) =
n∑

i=1

xiP (X = xi) =
n∑

i=1

xi
1
n

=
x1 + x2 + · · · + xn

n

corresponds to our usual notion of what the mean (“average value”) is. The
variance is

var(X) =
n∑

i=1

(xi − E(X))2P (X = xi) =
1
n

n∑
i=1

(xi − E(X))2

and the standard deviation is

σ =

√√√√ 1
n

n∑
i=1

(xi − E(X))2 (8.6)

This formula differs from the standard deviation formula

σ =

√√√√ 1
n − 1

n∑
i=1

(xi − E(X))2 (8.7)

that is implemented in many mathematics and statistics software packages and
programmable calculators. We will not go into reasons why there are two different
formulas (let’s just say that it’s related to the fact that we are calculating the
standard deviation of a sample of the whole population and not of the whole
population; this issue is addressed in statistics courses). We will not use formula
(8.7) in this book.

If we decide to use mathematics or statistics software, we need to check which
formula is actually being used. If (8.7) is used, then we have to multiply the answer
by

√
(n − 1)/n to obtain the answer that corresponds to (8.6).

Summary Several statistics are used to measure the spread of a distribution. The pth
percentile is the value of the random variable that is larger than p percent of all
values of X. The lower quartile (25th percentile), the median (50th percentile),
and the upper quartile (75th percentile), together with the minimum and the
maximum values of the range of X, form the five-number summary statistics
of X. Often, the five-number summary is represented in a box plot diagram.
The variance is the expected value of the distance squared from the mean, and
the standard deviation is the square root of the variance. The variance and the
standard deviation are the most common statistics used to quantify the spread of
a distribution.
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8 Exercises

1. Order the following three samples based on their standard deviations (from the smallest to the largest):
A = {2, 2, 3, 4, 4}, B = {2, 3, 3, 3, 4}, C = {1, 1, 3, 5, 5}.

2. Order the following three samples based on their standard deviations (from the smallest to the largest):
A = {−2,−1, 0, 1, 2}, B = {−3, 0, 0, 0, 3}, C = {−4, 0, 1, 1, 2}.

3. It turns out that the variance of a random variable X is 22, but you want it to be 2. How would you
change the values of X to make it so?

4. Suppose that var(X) = 5. Using X, define a random variable Y such that var(Y ) = 10.

5. A random variable X is said to be uniformly distributed on the set S = {−4,−3,−2,−1, 0, 1, 2, 3, 4}
if P (X = k) = 1/9 for k = 1, 2, . . . , 9. What is the variance of X?

6. A random variable X is said to be uniformly distributed on the set S = {−3,−2,−1, 0, 1, 2, 3} if
P (X = k) = 1/7 for k = 1, 2, . . . , 7. What is the variance of X?

7–10 Find the variance and the standard deviation of each distribution.

7. 8.
x P (X = x)

0 0.15

1 0.15

2 0.15

4 0.55

x P (X = x)

0 0.1

1 0.4

2 0.4

3 0.1

9. 10.
x P (X = x)

−2 0.25

−1 0.2

0 0.1

1 0.2

2 0.25

x P (X = x)

0 0.8

1 0.05

2 0.05

3 0.05

4 0.05

11. Show that if X1 = X − E(X), then E(X1 = 0). (Hint: Try to prove it directly, or use Theorem 7 in
Section 7; if you do, it’s a one-line proof.)

12. Assume that X is a random variable with standard deviation σ. Define Y = (X − a)/σ, where a is a
real number. What is the standard deviation of Y ?

13. Using var(X) = E(X2) − [E(X)]2 and the properties of the expected value, prove that var(aX) =
a2var(X) for a real number a.

14. Using var(X) = E(X2) − [E(X)]2 and the properties of the expected value, prove that var(X + b) =
var(X) for a real number b.

15. Draw the box plot diagrams for the systolic blood pressure measurements (mmHg) for the following
two samples and compare them: sample of 12 healthy adults: 120, 123, 138, 110, 125, 128, 140, 132,
138, 116, 122, 125; sample of 12 adults with a history of cardiovascular problems: 136, 142, 150, 148,
160, 154, 162, 166, 154, 154, 160, 158.
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It follows that
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Summary Several statistics are used to measure the spread of a distribution. The pth
percentile is the value of the random variable that is larger than p percent of all
values of X. The lower quartile (25th percentile), the median (50th percentile),
and the upper quartile (75th percentile), together with the minimum and the
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3. It turns out that the variance of a random variable X is 22, but you want it to be 2. How would you
change the values of X to make it so?

4. Suppose that var(X) = 5. Using X, define a random variable Y such that var(Y ) = 10.

5. A random variable X is said to be uniformly distributed on the set S = {−4,−3,−2,−1, 0, 1, 2, 3, 4}
if P (X = k) = 1/9 for k = 1, 2, . . . , 9. What is the variance of X?
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11. Show that if X1 = X − E(X), then E(X1 = 0). (Hint: Try to prove it directly, or use Theorem 7 in
Section 7; if you do, it’s a one-line proof.)

12. Assume that X is a random variable with standard deviation σ. Define Y = (X − a)/σ, where a is a
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a2var(X) for a real number a.
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var(X) for a real number b.
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16. Draw the box plot diagrams for the blood glucose level measurements (mmol/L) for the following two
samples and compare them: sample of 12 healthy adults: 4.2, 3.6, 3.5, 4, 4.1, 4.2, 4.2, 4, 3.8, 3.8, 3.8,
3.4; sample of 12 adults who have experienced problems related to increased blood glucose levels: 4,
4.4, 6, 5.8, 6, 4.4, 5, 6.2, 6.8, 6, 6, 6.2.

17–20 For each data set, calculate the five-number summary and draw a box plot.

17. The lifespan of lions in captivity (in years): 18, 17, 19, 24, 22, 20, 20, 16, 14, 24, 22, 25, 24, 20.

18. The lifespan of lions in the wild (in years): 10, 8, 12, 14, 18, 12, 16, 14, 14, 12, 11, 15.

19. The lifespan of moose in Algonquin Provincial Park (in years): 12, 20, 24, 26, 25, 23, 21, 20, 28, 20,
24, 23, 27, 25.

20. The lifespan of mosquitoes (in weeks): 4.5, 5, 6, 6.5, 7, 8, 5, 5.5, 6, 6, 8, 7.5, 6.

21–24 Given the histogram of a discrete random variable, find its variance and standard deviation.

21. 22.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8
0

0.05

0.15

0.2

0.25

0.1

23. 24.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.15

0.2

0.25

0.3

0.1

25. Using the milk production data in Tables 8.8 to 8.10 in Example 8.3, calculate the mean absolute
deviations (MAD) for the three populations. Convince yourself that the MAD is able to detect the
differences in their spreads.

26. Consider the data set of the lifespan (in years) of lions in captivity

C = {18, 17, 19, 24, 22, 20, 20, 16, 14, 24, 22, 25, 24, 20}
and the data set of the lifespan (in years) of lions in the wild

W = {10, 8, 12, 14, 18, 12, 16, 14, 14, 12, 11, 15}
Compute the standard deviations and the mean absolute deviations of C and W. Do the two statistics
agree on detecting a larger/smaller spread?

Section 9 Joint Distributions P1-99

9 Joint Distributions

So far we have studied one random variable and its associated distribution. In
order to study two variables and to investigate their relationship, we introduce the
concept of a joint distribution. The joint distribution gives the probability of
each pair of values of the random variables involved.

From the joint distribution we extract marginal distributions that describe
each random variable separately. As well, we define the conditional distribution,
i.e., the probability of one random variable given that the other variable takes on
a particular value.

Joint Distribution

We consider an example first.

Example 9.1 Joint Distribution of Populations of Squirrels

Two species of squirrels, grey and brown, live in a forest. Researchers measured
the lengths of their tails and classified them as short, medium, or long. Define the
random variables

X =
�

1 squirrel is brown

2 squirrel is grey

and

Y =

⎧⎨
⎩

1 squirrel has a short tail

2 squirrel has a medium-length tail

3 squirrel has a long tail
The data obtained from 1,000 squirrels are summarized in Table 9.1.

Table 9.1

X = 1 X = 2 Total

Y = 1 150 90 240

Y = 2 220 340 560

Y = 3 50 150 200

Total 420 580 1, 000

For instance, 220 brown squirrels have medium-length tails (X = 1 and Y = 2) and
150 grey squirrels have long tails (X = 2 and Y = 3). Replacing the frequencies
in Table 9.1 with relative frequences, we obtain Table 9.2:

Table 9.2

X = 1 X = 2 Total

Y = 1 0.15 0.09 0.24

Y = 2 0.22 0.34 0.56

Y = 3 0.05 0.15 0.2

Total 0.42 0.58 1

Reading from Table 9.2: the probability that a randomly chosen squirrel is brown
and has a medium-length tail is P (X = 1, Y = 2) = 0.22.
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16. Draw the box plot diagrams for the blood glucose level measurements (mmol/L) for the following two
samples and compare them: sample of 12 healthy adults: 4.2, 3.6, 3.5, 4, 4.1, 4.2, 4.2, 4, 3.8, 3.8, 3.8,
3.4; sample of 12 adults who have experienced problems related to increased blood glucose levels: 4,
4.4, 6, 5.8, 6, 4.4, 5, 6.2, 6.8, 6, 6, 6.2.

17–20 For each data set, calculate the five-number summary and draw a box plot.

17. The lifespan of lions in captivity (in years): 18, 17, 19, 24, 22, 20, 20, 16, 14, 24, 22, 25, 24, 20.

18. The lifespan of lions in the wild (in years): 10, 8, 12, 14, 18, 12, 16, 14, 14, 12, 11, 15.

19. The lifespan of moose in Algonquin Provincial Park (in years): 12, 20, 24, 26, 25, 23, 21, 20, 28, 20,
24, 23, 27, 25.

20. The lifespan of mosquitoes (in weeks): 4.5, 5, 6, 6.5, 7, 8, 5, 5.5, 6, 6, 8, 7.5, 6.

21–24 Given the histogram of a discrete random variable, find its variance and standard deviation.

21. 22.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8
0

0.05

0.15

0.2

0.25

0.1

23. 24.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.15

0.2

0.25

0.3

0.1

25. Using the milk production data in Tables 8.8 to 8.10 in Example 8.3, calculate the mean absolute
deviations (MAD) for the three populations. Convince yourself that the MAD is able to detect the
differences in their spreads.

26. Consider the data set of the lifespan (in years) of lions in captivity

C = {18, 17, 19, 24, 22, 20, 20, 16, 14, 24, 22, 25, 24, 20}
and the data set of the lifespan (in years) of lions in the wild

W = {10, 8, 12, 14, 18, 12, 16, 14, 14, 12, 11, 15}
Compute the standard deviations and the mean absolute deviations of C and W. Do the two statistics
agree on detecting a larger/smaller spread?
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9 Joint Distributions

So far we have studied one random variable and its associated distribution. In
order to study two variables and to investigate their relationship, we introduce the
concept of a joint distribution. The joint distribution gives the probability of
each pair of values of the random variables involved.

From the joint distribution we extract marginal distributions that describe
each random variable separately. As well, we define the conditional distribution,
i.e., the probability of one random variable given that the other variable takes on
a particular value.

Joint Distribution

We consider an example first.

Example 9.1 Joint Distribution of Populations of Squirrels

Two species of squirrels, grey and brown, live in a forest. Researchers measured
the lengths of their tails and classified them as short, medium, or long. Define the
random variables

X =
�

1 squirrel is brown

2 squirrel is grey

and

Y =

⎧⎨
⎩

1 squirrel has a short tail

2 squirrel has a medium-length tail

3 squirrel has a long tail
The data obtained from 1,000 squirrels are summarized in Table 9.1.

Table 9.1

X = 1 X = 2 Total

Y = 1 150 90 240

Y = 2 220 340 560

Y = 3 50 150 200

Total 420 580 1, 000

For instance, 220 brown squirrels have medium-length tails (X = 1 and Y = 2) and
150 grey squirrels have long tails (X = 2 and Y = 3). Replacing the frequencies
in Table 9.1 with relative frequences, we obtain Table 9.2:

Table 9.2

X = 1 X = 2 Total

Y = 1 0.15 0.09 0.24

Y = 2 0.22 0.34 0.56

Y = 3 0.05 0.15 0.2

Total 0.42 0.58 1

Reading from Table 9.2: the probability that a randomly chosen squirrel is brown
and has a medium-length tail is P (X = 1, Y = 2) = 0.22.
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Likewise, P (X = 2, Y = 3) = 0.15 is the probability that a randomly chosen
squirrel is grey and has a long tail.

The probability that a randomly chosen squirrel has a medium-length tail is
0.56, and the probability that a randomly chosen squirrel is brown is 0.42.

The distribution given in Table 9.2 is called the joint probability distribution.
It assigns a probability to every combination of the values for X and Y. We write

p(x, y) = P (X = x, Y = y)

Note that the horizontal and the vertical totals in Table 9.2 are 1. The vertical
sum (0.24 + 0.56 + 0.2 = 1) represents the fact that the probability that a squirrel
has a short, or a medium-length, or a long tail is 1. Likewise, 0.42 + 0.58 = 1
because a squirrel must be either brown or grey.

Definition 28 Joint Probability Distribution
Assume that X and Y are discrete random variables with ranges x1, x2, . . . , xm

and y1, y2, . . . , yn, respectively. The probabilities

P (xi, yj) = P (X = xi, Y = yj)

(i = 1, 2, . . . , m and j = 1, 2, . . . , n) of each composite event X = xi and Y = yj

define the joint probability distribution of X and Y.

As in the example preceding the definition, we usually describe a joint probability
distribution in a table; see Table 9.3.

Table 9.3

X = x1 · · · X = xi · · · X = xm

Y = y1 P (X = x1, Y = y1) P (X = xi, Y = y1) P (X = xm, Y = y1)

· · · · · · · · · · · ·

Y = yj P (X = x1, Y = yj) P (X = xi, Y = yj) P (X = xm, Y = yj)

· · · · · · · · · · · ·

Y = yn P (X = x1, Y = yn) P (X = xi, Y = yn) P (X = xm, Y = yn)

By extending Definition 28 we can define a joint probability distribution for any
number of random variables. For instance, the joint probability distribution of
three random variables X, Y, and Z consists of the probabilities

P (X = x, Y = y, Z = z)

where x, y, and z are all possible values of X, Y, and Z, respectively.

We look a bit more closely at the totals in Table 9.2. The value Y = 1 represents
squirrels with short tails. We compute

P (Y = 1) = P ((Y = 1 and X = 1) or (Y = 1 and X = 2))
= P (Y = 1 and X = 1) + P (Y = 1 and X = 2)
= 0.15 + 0.09 = 0.24

The events “Y = 1 and X = 1” (brown squirrel, short tail) and “Y = 1 and X =
2” (grey squirrel, short tail) are mutually exclusive. That’s why we calculated the
probability above as the sum of the probabilities. As well, the probability that a
randomly chosen squirrel has a medium-length tail is

P (Y = 2) = P ((Y = 2 and X = 1) or (Y = 2 and X = 2))
= P (Y = 2 and X = 1) + P (Y = 2 and X = 2)
= 0.22 + 0.34 = 0.56
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The probability that a randomly chosen squirrel is brown is

P (X = 1) = P ((X = 1 and Y = 1) or (X = 1 and Y = 2)
or (X = 1 and Y = 3))

= P (X = 1 and Y = 1) + P (X = 1 and Y = 2)
+ P (X = 1 and Y = 3)

= 0.15 + 0.22 + 0.05 = 0.42

Thus, the rows and the columns in Table 9.2 represent individual random variables.
With this in mind, we redraw Table 9.2 by identifying the totals in the last column
and in the last row by the probabilities they represent; see Table 9.4.

Table 9.4

X = 1 X = 2 Total

Y = 1 0.15 0.09 P (Y = 1) = 0.24

Y = 2 0.22 0.34 P (Y = 2) = 0.56

Y = 3 0.05 0.15 P (Y = 3) = 0.2

Total P (X = 1) = 0.42 P (X = 2) = 0.58 1

By adding up all of the entries in the ith column in Table 9.3, we get

P (X = xi) = P ((X = xi and Y = y1) or (X = xi and Y = y2)
or . . . or (X = xi and Y = yn))

= P (X = xi and Y = y1) + P (X = xi and Y = y2)
+ · · · + P (X = xi and Y = yn)

The probability that Y = yj is the sum of the terms in the jth row:

P (Y = yj) = P (X = x1 and Y = yj) + P (X = x2 and Y = yj)
+ · · · + P (X = xm and Y = yj)

In this way, using the joint probability distribution, we are able to find the prob-
ability distributions of both X and Y.

Definition 29 Marginal Probability Distribution
Assume that p(x, y) = P (X = x, Y = y) represents the joint probability distribu-
tion of random variables X and Y, and that the range of X is x1, x2, . . . , xm and
the range of Y is y1, y2, . . . , yn (m, n ≥ 1).

The marginal probability distribution pX of X is given by

pX(xi) = P (X = xi) =
n∑

j=1

P (X = Xi, Y = yj)

for i = 1, 2, . . . , m. The marginal probability distribution pY of Y is given by

pY (yj) = P (Y = yj) =
m∑

i=1

P (X = Xi, Y = yj)

where i = 1, 2, . . . , m.

Example 9.2 Joint and Marginal Distributions

Consider the joint probability distribution p(x, y) given in Table 9.5. Find p(1,−1)
and p(0, 2). Identify the marginal probability distributions pX(x) and pY (y).
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Likewise, P (X = 2, Y = 3) = 0.15 is the probability that a randomly chosen
squirrel is grey and has a long tail.

The probability that a randomly chosen squirrel has a medium-length tail is
0.56, and the probability that a randomly chosen squirrel is brown is 0.42.

The distribution given in Table 9.2 is called the joint probability distribution.
It assigns a probability to every combination of the values for X and Y. We write

p(x, y) = P (X = x, Y = y)

Note that the horizontal and the vertical totals in Table 9.2 are 1. The vertical
sum (0.24 + 0.56 + 0.2 = 1) represents the fact that the probability that a squirrel
has a short, or a medium-length, or a long tail is 1. Likewise, 0.42 + 0.58 = 1
because a squirrel must be either brown or grey.

Definition 28 Joint Probability Distribution
Assume that X and Y are discrete random variables with ranges x1, x2, . . . , xm

and y1, y2, . . . , yn, respectively. The probabilities

P (xi, yj) = P (X = xi, Y = yj)

(i = 1, 2, . . . , m and j = 1, 2, . . . , n) of each composite event X = xi and Y = yj

define the joint probability distribution of X and Y.

As in the example preceding the definition, we usually describe a joint probability
distribution in a table; see Table 9.3.

Table 9.3

X = x1 · · · X = xi · · · X = xm

Y = y1 P (X = x1, Y = y1) P (X = xi, Y = y1) P (X = xm, Y = y1)

· · · · · · · · · · · ·

Y = yj P (X = x1, Y = yj) P (X = xi, Y = yj) P (X = xm, Y = yj)

· · · · · · · · · · · ·

Y = yn P (X = x1, Y = yn) P (X = xi, Y = yn) P (X = xm, Y = yn)

By extending Definition 28 we can define a joint probability distribution for any
number of random variables. For instance, the joint probability distribution of
three random variables X, Y, and Z consists of the probabilities

P (X = x, Y = y, Z = z)

where x, y, and z are all possible values of X, Y, and Z, respectively.

We look a bit more closely at the totals in Table 9.2. The value Y = 1 represents
squirrels with short tails. We compute

P (Y = 1) = P ((Y = 1 and X = 1) or (Y = 1 and X = 2))
= P (Y = 1 and X = 1) + P (Y = 1 and X = 2)
= 0.15 + 0.09 = 0.24

The events “Y = 1 and X = 1” (brown squirrel, short tail) and “Y = 1 and X =
2” (grey squirrel, short tail) are mutually exclusive. That’s why we calculated the
probability above as the sum of the probabilities. As well, the probability that a
randomly chosen squirrel has a medium-length tail is

P (Y = 2) = P ((Y = 2 and X = 1) or (Y = 2 and X = 2))
= P (Y = 2 and X = 1) + P (Y = 2 and X = 2)
= 0.22 + 0.34 = 0.56
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The probability that a randomly chosen squirrel is brown is

P (X = 1) = P ((X = 1 and Y = 1) or (X = 1 and Y = 2)
or (X = 1 and Y = 3))

= P (X = 1 and Y = 1) + P (X = 1 and Y = 2)
+ P (X = 1 and Y = 3)

= 0.15 + 0.22 + 0.05 = 0.42

Thus, the rows and the columns in Table 9.2 represent individual random variables.
With this in mind, we redraw Table 9.2 by identifying the totals in the last column
and in the last row by the probabilities they represent; see Table 9.4.

Table 9.4

X = 1 X = 2 Total

Y = 1 0.15 0.09 P (Y = 1) = 0.24

Y = 2 0.22 0.34 P (Y = 2) = 0.56

Y = 3 0.05 0.15 P (Y = 3) = 0.2

Total P (X = 1) = 0.42 P (X = 2) = 0.58 1

By adding up all of the entries in the ith column in Table 9.3, we get

P (X = xi) = P ((X = xi and Y = y1) or (X = xi and Y = y2)
or . . . or (X = xi and Y = yn))

= P (X = xi and Y = y1) + P (X = xi and Y = y2)
+ · · · + P (X = xi and Y = yn)

The probability that Y = yj is the sum of the terms in the jth row:

P (Y = yj) = P (X = x1 and Y = yj) + P (X = x2 and Y = yj)
+ · · · + P (X = xm and Y = yj)

In this way, using the joint probability distribution, we are able to find the prob-
ability distributions of both X and Y.

Definition 29 Marginal Probability Distribution
Assume that p(x, y) = P (X = x, Y = y) represents the joint probability distribu-
tion of random variables X and Y, and that the range of X is x1, x2, . . . , xm and
the range of Y is y1, y2, . . . , yn (m, n ≥ 1).

The marginal probability distribution pX of X is given by

pX(xi) = P (X = xi) =
n∑

j=1

P (X = Xi, Y = yj)

for i = 1, 2, . . . , m. The marginal probability distribution pY of Y is given by

pY (yj) = P (Y = yj) =
m∑

i=1

P (X = Xi, Y = yj)

where i = 1, 2, . . . , m.

Example 9.2 Joint and Marginal Distributions

Consider the joint probability distribution p(x, y) given in Table 9.5. Find p(1,−1)
and p(0, 2). Identify the marginal probability distributions pX(x) and pY (y).
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Table 9.5

X = −1 X = 0 X = 1

Y = −2 0.15 0.05 0.2

Y = −1 0.08 0.15 0.2

Y = 2 0.07 0.05 0.05

Table 9.6

x P (X = x)

−1 0.3

0 0.25

1 0.45

Table 9.7

y P (Y = y)

−2 0.4

−1 0.43

2 0.17

By definition,

p(1,−1) = P (X = 1, Y = −1) = 0.2

and

p(0, 2) = P (X = 0, Y = 2) = 0.05

Since the range of X is {−1, 0, 1}, in order to describe the marginal probability
distribution pX(x) we need to calculate P (X = −1), P (X = 0), and P (X = 1).
Using Definition 29,

P (X = −1) = P (X = −1, Y = −2) + P (X = −1, Y = −1) + P (X = −1, Y = 2)
= 0.15 + 0.08 + 0.07 = 0.3

As well,

P (X = 0) = P (X = 0, Y = −2) + P (X = 0, Y = −1) + P (X = 0, Y = 2)
= 0.05 + 0.15 + 0.05 = 0.25

In the same way (by adding up the entries in the last column) we get P (X = 1) =
0.45. The marginal probability distribution for X is given in Table 9.6.

By adding up the probabilities along the rows of Table 9.5 we obtain the
marginal probability distribution pY (y); see Table 9.7.

Recall that the joint probability distribution is given by

p(x, y) = P (X = x and Y = y)

(To make the notation cleaner, we drop subscripts; so x represents all xi, i =
1, 2, . . . , m, and y represents all yj , j = 1, 2, . . . , n.)

Assuming that X = x and Y = y are independent events, we get

p(x, y) = P (X = x and Y = y) = P (X = x)P (Y = y)

If this is true for all x in the range of X and all y in the range of Y, then X and
Y are called independent random variables.

Reading the following definition, keep in mind that P (X = x) is the marginal
distribution pX(x) and P (Y = y) is the marginal distribution pY (y).

Definition 30 Independent Random Variables
Assume that X and Y are discrete random variables. If the joint probability
distribution is equal to the product of the marginal distributions of X and Y, then
X and Y are called independent random variables.

Thus, X and Y are independent if

p(x, y) = pX(x)pY (y)

for all x in the range of X and for all y in the range of Y.

Section 9 Joint Distributions P1-103

Example 9.3 Independent Random Variables

Consider two random variables X and Y whose joint probability distribution is
given in Table 9.8. Are X and Y independent?

Table 9.8

X = 1 X = 2

Y = −1 0.04 0.16

Y = 1 0.16 0.64

We need to check whether

P (X = x, Y = y) = P (X = x)P (Y = y) (9.1)

is true for all combinations of x = 1 or x = 2 and y = −1 or y = 1.

To check the right side in (9.1) we need to know all of the marginal proba-
bilities. Therefore, we append a row and a column to Table 9.8 and calculate the
marginal probabilities by adding up entries in each row and in each column; see
Table 9.9.

Table 9.9

X = 1 X = 2

Y = −1 0.04 0.16 P (Y = −1) = 0.2

Y = 1 0.16 0.64 P (Y = 1) = 0.8

P (X = 1) = 0.2 P (X = 2) = 0.8

We see that P (X = 1, Y = −1) = 0.04 is equal to

P (X = 1)P (Y = −1) = (0.2)(0.2) = 0.04

As well, P (X = 1, Y = 1) = 0.16 and

P (X = 1)P (Y = 1) = (0.2)(0.8) = 0.16

In the same way we check that P (X = 2, Y = −1) = 0.16 is equal to

P (X = 2)P (Y = −1) = (0.8)(0.2) = 0.16

and P (X = 2, Y = 1) = 0.64 is equal to

P (X = 2)P (Y = 1) = (0.8)(0.8) = 0.64

We showed that (9.1) holds for all possible combinations of the values of X and
the values of Y. Consequently, X and Y are independent.

Example 9.4 Non-independent Random Variables

Show that the random variables X and Y in Example 9.1 are not independent.

To prove that X and Y are independent, we need to verify that

P (X = x, Y = y) = P (X = x)P (Y = y) (9.2)

holds for all combinations of the values of X and the values of Y. However, to
prove that X and Y are not independent, we need to show that (9.2) fails to hold
for one value of X and one value of Y.

All we need is Table 9.4. We read that P (X = 1, Y = 2) = 0.22. Since

P (X = 1)P (Y = 2) = (0.42)(0.56) = 0.2352

is not equal to 0.22, it follows that X and Y are not independent.

Calculus_Prob Status Mod_8.5x10.875.indd   104 12-08-09   12:00 PM



P1-102 Probability and Statistics

Table 9.5

X = −1 X = 0 X = 1

Y = −2 0.15 0.05 0.2

Y = −1 0.08 0.15 0.2

Y = 2 0.07 0.05 0.05

Table 9.6

x P (X = x)

−1 0.3

0 0.25

1 0.45

Table 9.7

y P (Y = y)

−2 0.4

−1 0.43

2 0.17

By definition,

p(1,−1) = P (X = 1, Y = −1) = 0.2

and

p(0, 2) = P (X = 0, Y = 2) = 0.05

Since the range of X is {−1, 0, 1}, in order to describe the marginal probability
distribution pX(x) we need to calculate P (X = −1), P (X = 0), and P (X = 1).
Using Definition 29,

P (X = −1) = P (X = −1, Y = −2) + P (X = −1, Y = −1) + P (X = −1, Y = 2)
= 0.15 + 0.08 + 0.07 = 0.3

As well,

P (X = 0) = P (X = 0, Y = −2) + P (X = 0, Y = −1) + P (X = 0, Y = 2)
= 0.05 + 0.15 + 0.05 = 0.25

In the same way (by adding up the entries in the last column) we get P (X = 1) =
0.45. The marginal probability distribution for X is given in Table 9.6.

By adding up the probabilities along the rows of Table 9.5 we obtain the
marginal probability distribution pY (y); see Table 9.7.

Recall that the joint probability distribution is given by

p(x, y) = P (X = x and Y = y)

(To make the notation cleaner, we drop subscripts; so x represents all xi, i =
1, 2, . . . , m, and y represents all yj , j = 1, 2, . . . , n.)

Assuming that X = x and Y = y are independent events, we get

p(x, y) = P (X = x and Y = y) = P (X = x)P (Y = y)

If this is true for all x in the range of X and all y in the range of Y, then X and
Y are called independent random variables.

Reading the following definition, keep in mind that P (X = x) is the marginal
distribution pX(x) and P (Y = y) is the marginal distribution pY (y).

Definition 30 Independent Random Variables
Assume that X and Y are discrete random variables. If the joint probability
distribution is equal to the product of the marginal distributions of X and Y, then
X and Y are called independent random variables.

Thus, X and Y are independent if

p(x, y) = pX(x)pY (y)

for all x in the range of X and for all y in the range of Y.
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Example 9.3 Independent Random Variables

Consider two random variables X and Y whose joint probability distribution is
given in Table 9.8. Are X and Y independent?

Table 9.8

X = 1 X = 2

Y = −1 0.04 0.16

Y = 1 0.16 0.64

We need to check whether

P (X = x, Y = y) = P (X = x)P (Y = y) (9.1)

is true for all combinations of x = 1 or x = 2 and y = −1 or y = 1.

To check the right side in (9.1) we need to know all of the marginal proba-
bilities. Therefore, we append a row and a column to Table 9.8 and calculate the
marginal probabilities by adding up entries in each row and in each column; see
Table 9.9.

Table 9.9

X = 1 X = 2

Y = −1 0.04 0.16 P (Y = −1) = 0.2

Y = 1 0.16 0.64 P (Y = 1) = 0.8

P (X = 1) = 0.2 P (X = 2) = 0.8

We see that P (X = 1, Y = −1) = 0.04 is equal to

P (X = 1)P (Y = −1) = (0.2)(0.2) = 0.04

As well, P (X = 1, Y = 1) = 0.16 and

P (X = 1)P (Y = 1) = (0.2)(0.8) = 0.16

In the same way we check that P (X = 2, Y = −1) = 0.16 is equal to

P (X = 2)P (Y = −1) = (0.8)(0.2) = 0.16

and P (X = 2, Y = 1) = 0.64 is equal to

P (X = 2)P (Y = 1) = (0.8)(0.8) = 0.64

We showed that (9.1) holds for all possible combinations of the values of X and
the values of Y. Consequently, X and Y are independent.

Example 9.4 Non-independent Random Variables

Show that the random variables X and Y in Example 9.1 are not independent.

To prove that X and Y are independent, we need to verify that

P (X = x, Y = y) = P (X = x)P (Y = y) (9.2)

holds for all combinations of the values of X and the values of Y. However, to
prove that X and Y are not independent, we need to show that (9.2) fails to hold
for one value of X and one value of Y.

All we need is Table 9.4. We read that P (X = 1, Y = 2) = 0.22. Since

P (X = 1)P (Y = 2) = (0.42)(0.56) = 0.2352

is not equal to 0.22, it follows that X and Y are not independent.
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Example 9.5 Calculations with Joint and Marginal Distributions

Table 9.10 shows the probability mass functions for random variables X and Y.
Assuming that X and Y are independent, find

(a) The probability that X = 3 and Y = 4.

(b) The probability that X is even and Y = 3.

(c) The probability that X = Y.

Table 9.10

x, y P (X = x) P (Y = y)

1 0.4 0.6

2 0.15 0.05

3 0.4 0.05

4 0.05 0.3

(a) The assumption on independence implies that

P (X = 3, Y = 4) = P (X = 3)P (Y = 4) = (0.4)(0.3) = 0.12

(b) We are asked to find the probability of the event (X = 2 or X = 4) and Y = 3.
By mutual exclusivity, and then by independence, we get

P ((X = 2 or X = 4) and Y = 3)
= P ((X = 2 and Y = 3) or (X = 4 and Y = 3))
= P (X = 2 and Y = 3) + P (X = 4 and Y = 3)
= P (X = 2)P (Y = 3) + P (X = 4)P (Y = 3)
= (0.15)(0.05) + (0.05)(0.05) = 0.01

(c) The event X = Y can be written as {(X = 1 and Y = 1) or (X = 2 and
Y = 2) or (X = 3 and Y = 3) or (X = 4 and Y = 4)}. Thus

P (X = Y ) = P (X = 1 and Y = 1) + P (X = 2 and Y = 2)
+ P (X = 3 and Y = 3) + P (X = 4 and Y = 4)

= P (X = 1)P (Y = 1) + P (X = 2)P (Y = 2) + P (X = 3)P (Y = 3)+
+ P (X = 4)P (Y = 4)

= (0.4)(0.6) + (0.15)(0.05) + (0.4)(0.05) + (0.05)(0.3)
= 0.2825

Given two random variables X and Y, we define the conditional probability in the
same way as in Section 4:

P (X = x |Y = y) =
P (X = x and Y = y)

P (Y = y)
=

P (X = x, Y = y)
P (Y = y)

Example 9.6 Conditional Probability with Squirrels

Going back to Example 9.1 and the probabilities in Table 9.4, find

(a) The probability that a randomly chosen brown squirrel has a long tail.

(b) The probability that a randomly chosen medium-tailed squirrel is grey.
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(a) We are asked to find

P (long tail | brown squirrel) = P (Y = 3 |X = 1)

=
P (X = 1, Y = 3)

P (X = 1)

=
0.05
0.42

=
5
42

≈ 0.119

(b) We need to find

P (grey |medium-tailed squirrel) = P (X = 2 |Y = 2)

=
P (X = 2, Y = 2)

P (Y = 2)

=
0.34
0.56

≈ 0.607

Two important formulas related to independent random variables are given in the
following theorem.

Theorem 9 Properties of Independent Random Variables
Assume that X and Y are independent discrete random variables. Then

(1) E(XY ) = E(X)E(Y )

(2) var(X + Y ) = var(X) + var(Y ).

The proof of (1) is discussed in Exercise 35. To prove (2), we start with formula
(3) from Theorem 8 in Section 8:

var(X + Y ) = E
[
(X + Y )2

]
− [E(X + Y )]2

= E(X2 + 2XY + Y 2) − [E(X) + E(Y )]2

= E(X2) + 2E(XY ) + E(Y 2) − (E(X))2 − 2E(X)E(Y ) − (E(Y ))2

= E(X2) − (E(X))2 + E(Y 2) − (E(Y ))2

= var(X) + var(Y )

(Note that by (1), 2E(XY ) − 2E(X)E(Y ) = 0.)

We will use these formulas (especially formula (2)) in the forthcoming sections.

Summary In order to describe two (or more) random variables simultaneously, we build a
joint distribution. In the case of two random variables, the joint distribution
gives the probability of the occurrence of each pair of values of the two variables.
Adding up all probabilities of one random variable, we obtain the marginal prob-
ability distribution of the other. If the joint probability distribution is equal to
the product of the marginal distributions, then the random variables are indepen-
dent. We define the conditional probability in the same way as in Section 4.

9 Exercises

1. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.2, P (X =
2) = 0.8 and P (Y = 1) = 0.7, P (Y = 2) = 0.3. Find the joint probability distribution of X and Y.

2. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.5, P (X =
2) = 0.5 and P (Y = 1) = 0.5, P (Y = 2) = 0.5. Find the joint probability distribution of X and Y.
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Example 9.5 Calculations with Joint and Marginal Distributions

Table 9.10 shows the probability mass functions for random variables X and Y.
Assuming that X and Y are independent, find

(a) The probability that X = 3 and Y = 4.

(b) The probability that X is even and Y = 3.

(c) The probability that X = Y.

Table 9.10

x, y P (X = x) P (Y = y)

1 0.4 0.6

2 0.15 0.05

3 0.4 0.05

4 0.05 0.3

(a) The assumption on independence implies that

P (X = 3, Y = 4) = P (X = 3)P (Y = 4) = (0.4)(0.3) = 0.12

(b) We are asked to find the probability of the event (X = 2 or X = 4) and Y = 3.
By mutual exclusivity, and then by independence, we get

P ((X = 2 or X = 4) and Y = 3)
= P ((X = 2 and Y = 3) or (X = 4 and Y = 3))
= P (X = 2 and Y = 3) + P (X = 4 and Y = 3)
= P (X = 2)P (Y = 3) + P (X = 4)P (Y = 3)
= (0.15)(0.05) + (0.05)(0.05) = 0.01

(c) The event X = Y can be written as {(X = 1 and Y = 1) or (X = 2 and
Y = 2) or (X = 3 and Y = 3) or (X = 4 and Y = 4)}. Thus

P (X = Y ) = P (X = 1 and Y = 1) + P (X = 2 and Y = 2)
+ P (X = 3 and Y = 3) + P (X = 4 and Y = 4)

= P (X = 1)P (Y = 1) + P (X = 2)P (Y = 2) + P (X = 3)P (Y = 3)+
+ P (X = 4)P (Y = 4)

= (0.4)(0.6) + (0.15)(0.05) + (0.4)(0.05) + (0.05)(0.3)
= 0.2825

Given two random variables X and Y, we define the conditional probability in the
same way as in Section 4:

P (X = x |Y = y) =
P (X = x and Y = y)

P (Y = y)
=

P (X = x, Y = y)
P (Y = y)

Example 9.6 Conditional Probability with Squirrels

Going back to Example 9.1 and the probabilities in Table 9.4, find

(a) The probability that a randomly chosen brown squirrel has a long tail.

(b) The probability that a randomly chosen medium-tailed squirrel is grey.
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(a) We are asked to find

P (long tail | brown squirrel) = P (Y = 3 |X = 1)

=
P (X = 1, Y = 3)

P (X = 1)

=
0.05
0.42

=
5
42

≈ 0.119

(b) We need to find

P (grey |medium-tailed squirrel) = P (X = 2 |Y = 2)

=
P (X = 2, Y = 2)

P (Y = 2)

=
0.34
0.56

≈ 0.607

Two important formulas related to independent random variables are given in the
following theorem.

Theorem 9 Properties of Independent Random Variables
Assume that X and Y are independent discrete random variables. Then

(1) E(XY ) = E(X)E(Y )

(2) var(X + Y ) = var(X) + var(Y ).

The proof of (1) is discussed in Exercise 35. To prove (2), we start with formula
(3) from Theorem 8 in Section 8:

var(X + Y ) = E
[
(X + Y )2

]
− [E(X + Y )]2

= E(X2 + 2XY + Y 2) − [E(X) + E(Y )]2

= E(X2) + 2E(XY ) + E(Y 2) − (E(X))2 − 2E(X)E(Y ) − (E(Y ))2

= E(X2) − (E(X))2 + E(Y 2) − (E(Y ))2

= var(X) + var(Y )

(Note that by (1), 2E(XY ) − 2E(X)E(Y ) = 0.)

We will use these formulas (especially formula (2)) in the forthcoming sections.

Summary In order to describe two (or more) random variables simultaneously, we build a
joint distribution. In the case of two random variables, the joint distribution
gives the probability of the occurrence of each pair of values of the two variables.
Adding up all probabilities of one random variable, we obtain the marginal prob-
ability distribution of the other. If the joint probability distribution is equal to
the product of the marginal distributions, then the random variables are indepen-
dent. We define the conditional probability in the same way as in Section 4.

9 Exercises

1. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.2, P (X =
2) = 0.8 and P (Y = 1) = 0.7, P (Y = 2) = 0.3. Find the joint probability distribution of X and Y.

2. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.5, P (X =
2) = 0.5 and P (Y = 1) = 0.5, P (Y = 2) = 0.5. Find the joint probability distribution of X and Y.
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3–4 Fill in the missing entries in the joint probability distribution so that X and Y become independent
random variables.

3. 4.
X = 0 X = 1

Y = 0 0.1 0.3

Y = 1

X = 0 X = 1

Y = 0 0.25

Y = 1 0.35

5. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.2, P (X =
2) = 0.8 and P (Y = 1) = 0.9, P (Y = 2) = 0.1. Find the joint probability distribution of X and Y.
Calculate P (X = 1 |Y = 1), P (X = 1 |Y = 2), and P (X = 1) and explain the relationship between
the three probabilities.

6. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.45, P (X =
2) = 0.55 and P (Y = 1) = 0.55, P (Y = 2) = 0.45. Find the joint probability distribution of X and Y.
Calculate P (X = 2 |Y = 1), P (X = 2 |Y = 2), and P (X = 2) and explain the relationship between
the three probabilities.

7–10 Consider the joint distribution of blood types in Canada, where the random variables are G =
“blood group” and R = “Rhesus factor.” (Source: Canadian Blood Services.)

G = A G = B G = AB G = O

R = + 0.36 0.076 0.025 0.39

R = − 0.06 0.014 0.005 0.07

7. If someone’s blood group is B, what is the probability that their blood type is B+?

8. What is the probability that a person whose Rhesus factor is negative has blood group AB?

9. Find the distribution of R conditional on G = B.

10. Find the distribution of G conditional on R = +.

11–14 Consider the joint distribution related to testing for an allergy to bee venom. The random
variables are T = “test result” and A = “person has an allergy to bee venom.”

T = positive T = negative T = inconclusive

A = allergy 0.3 0.07 0.1

A = no allergy 0.03 0.45 0.05

11. Find the two marginal distributions and explain what they mean.

12. What is the probability that someone who tests positive has the allergy?

13. What is the probability that someone who tests negative is actually allergic to bee venom?

14. What is the probability that someone who is allergic to bee venom will have an inconclusive test?

15. Consider two random variables: X, with range {1, 2}, and Y, with range {3, 4}. Find the joint distri-
bution of the two random variables knowing that P (X = 1) = 0.4, P (X = 2) = 0.6, P (Y = 3 |X =
1) = 0.7, and P (Y = 3 |X = 2) = 0.1.
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16. Consider two random variables: X, with range {1, 2}, and Y, with range {3, 4}. Find the joint distri-
bution of the two random variables knowing that P (Y = 3) = 0.1, P (Y = 4) = 0.9, P (X = 1 |Y =
3) = 0.2, and P (X = 1 |Y = 4) = 0.4.

17–22 The joint distribution below describes the feeding patterns of three animal species. The random
variables are P = “predator” and F = “food.”

P = Brown bear P = Wolf P = Fox

F = Fish 0.2 0.02 0.03

F = Insects 0.1 0.05 0.05

F = Small mammals 0.2 0.25 0.1

17. Find the two marginal distributions.

18. The sum of the numbers in the first row is 0.25. Dividing the entries in the first row by 0.25, we get
0.2/0.25, 0.02/0.25, and 0.03/0.25. What conditional probabilities do these three numbers represent?
What is their sum? Why?

19. The sum of the numbers in the second column is 0.32. Dividing the entries in the second column
by 0.32, we get 0.02/0.32, 0.05/0.32, and 0.25/0.32. What conditional probabilities do these three
numbers represent? What is their sum? Why?

20. What is the probability that a wolf will prey on a fish?

21. What is the probability that a bear will prey on a small mammal?

22. A small mammal has been caught. What is the probability that it was caught by a wolf?

23–26 For each joint distribution:

(a) Find both marginal distributions.

(b) Determine whether or not X and Y are independent.

23. 24.
X = 0 X = 1

Y = 0 0.05 0.1

Y = 1 0.45 0.4

X = 0 X = 1

Y = 0 0.09 0.21

Y = 1 0.21 0.49

25. 26.
X = 0 X = 1

Y = 0 0.12 0.18

Y = 1 0.22 0.28

Y = 2 0.02 0.18

X = 0 X = 1

Y = 0 0.2 0.3

Y = 1 0.08 0.12

Y = 2 0.12 0.18

27. Consider the joint distribution given in Exercise 26. Find P (Y = 0 |X = 0) and P (Y = 0 |X = 1).
What is the sum P (Y = 0 |X = 0) + P (Y = 0 |X = 1)? Why?

28. Consider the joint distribution given in Exercise 26. What is the sum P (X = 0 |Y = 0) + P (X =
0 |Y = 1) + P (X = 0 |Y = 2)? Why?
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3–4 Fill in the missing entries in the joint probability distribution so that X and Y become independent
random variables.

3. 4.
X = 0 X = 1

Y = 0 0.1 0.3

Y = 1

X = 0 X = 1

Y = 0 0.25

Y = 1 0.35

5. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.2, P (X =
2) = 0.8 and P (Y = 1) = 0.9, P (Y = 2) = 0.1. Find the joint probability distribution of X and Y.
Calculate P (X = 1 |Y = 1), P (X = 1 |Y = 2), and P (X = 1) and explain the relationship between
the three probabilities.

6. Assume that X and Y are independent random variables with distributions P (X = 1) = 0.45, P (X =
2) = 0.55 and P (Y = 1) = 0.55, P (Y = 2) = 0.45. Find the joint probability distribution of X and Y.
Calculate P (X = 2 |Y = 1), P (X = 2 |Y = 2), and P (X = 2) and explain the relationship between
the three probabilities.

7–10 Consider the joint distribution of blood types in Canada, where the random variables are G =
“blood group” and R = “Rhesus factor.” (Source: Canadian Blood Services.)

G = A G = B G = AB G = O

R = + 0.36 0.076 0.025 0.39

R = − 0.06 0.014 0.005 0.07

7. If someone’s blood group is B, what is the probability that their blood type is B+?

8. What is the probability that a person whose Rhesus factor is negative has blood group AB?

9. Find the distribution of R conditional on G = B.

10. Find the distribution of G conditional on R = +.

11–14 Consider the joint distribution related to testing for an allergy to bee venom. The random
variables are T = “test result” and A = “person has an allergy to bee venom.”

T = positive T = negative T = inconclusive

A = allergy 0.3 0.07 0.1

A = no allergy 0.03 0.45 0.05

11. Find the two marginal distributions and explain what they mean.

12. What is the probability that someone who tests positive has the allergy?

13. What is the probability that someone who tests negative is actually allergic to bee venom?

14. What is the probability that someone who is allergic to bee venom will have an inconclusive test?

15. Consider two random variables: X, with range {1, 2}, and Y, with range {3, 4}. Find the joint distri-
bution of the two random variables knowing that P (X = 1) = 0.4, P (X = 2) = 0.6, P (Y = 3 |X =
1) = 0.7, and P (Y = 3 |X = 2) = 0.1.
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16. Consider two random variables: X, with range {1, 2}, and Y, with range {3, 4}. Find the joint distri-
bution of the two random variables knowing that P (Y = 3) = 0.1, P (Y = 4) = 0.9, P (X = 1 |Y =
3) = 0.2, and P (X = 1 |Y = 4) = 0.4.

17–22 The joint distribution below describes the feeding patterns of three animal species. The random
variables are P = “predator” and F = “food.”

P = Brown bear P = Wolf P = Fox

F = Fish 0.2 0.02 0.03

F = Insects 0.1 0.05 0.05

F = Small mammals 0.2 0.25 0.1

17. Find the two marginal distributions.

18. The sum of the numbers in the first row is 0.25. Dividing the entries in the first row by 0.25, we get
0.2/0.25, 0.02/0.25, and 0.03/0.25. What conditional probabilities do these three numbers represent?
What is their sum? Why?

19. The sum of the numbers in the second column is 0.32. Dividing the entries in the second column
by 0.32, we get 0.02/0.32, 0.05/0.32, and 0.25/0.32. What conditional probabilities do these three
numbers represent? What is their sum? Why?

20. What is the probability that a wolf will prey on a fish?

21. What is the probability that a bear will prey on a small mammal?

22. A small mammal has been caught. What is the probability that it was caught by a wolf?

23–26 For each joint distribution:

(a) Find both marginal distributions.

(b) Determine whether or not X and Y are independent.

23. 24.
X = 0 X = 1

Y = 0 0.05 0.1

Y = 1 0.45 0.4

X = 0 X = 1

Y = 0 0.09 0.21

Y = 1 0.21 0.49

25. 26.
X = 0 X = 1

Y = 0 0.12 0.18

Y = 1 0.22 0.28

Y = 2 0.02 0.18

X = 0 X = 1

Y = 0 0.2 0.3

Y = 1 0.08 0.12

Y = 2 0.12 0.18

27. Consider the joint distribution given in Exercise 26. Find P (Y = 0 |X = 0) and P (Y = 0 |X = 1).
What is the sum P (Y = 0 |X = 0) + P (Y = 0 |X = 1)? Why?

28. Consider the joint distribution given in Exercise 26. What is the sum P (X = 0 |Y = 0) + P (X =
0 |Y = 1) + P (X = 0 |Y = 2)? Why?
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29–32 Consider the following joint distribution.

X = 0 X = 1

Y = 0 0.05 0.1

Y = 1 0.1 0.1

Y = 2 0.4 0.25

29. Find the marginal probability distribution of X.

30. Find the marginal probability distribution of Y.

31. Find the distribution of X conditional on Y = 2.

32. Find the distribution of Y conditional on X = 0.

33–34 Consider the following joint distribution.

Y = 1 Y = 2

X = −2 0 0.12

X = −1 0.1 0.38

X = 0 0.26 0.14

33. Find the marginal probability distributions of X and Y.

34. Find the distribution of X conditional on Y = 1. Find the distribution of Y conditional on X = −2.

35. Assume that X is a discrete random variable with range {1, 2} and Y is a discrete random variable with
range {3, 4, 5}. Assuming that X and Y are independent, show that E(XY ) = E(X)E(Y ). Generalize
your proof: assuming that X and Y are independent, and that the range of X is {x1, x2, . . . , xm} and
the range of Y is {y1, y2, . . . , yn}, prove that E(XY ) = E(X)E(Y ).
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10 The Binomial Distribution

Having learned about distributions and how to assign probabilities, we now turn
our attention to one special distribution, the binomial distribution, that arises
in numerous models in biology and elsewhere. The binomial distribution is based
on the concept of a Bernoulli experiment, which is the opening topic of this section.

Bernoulli Experiment and Bernoulli Random Variable

We define a simple random variable with two outcomes.

Definition 31 Bernoulli Random Variable
A discrete random variable that takes on the value 1 with probability p and the
value 0 with probability 1 − p is called a Bernoulli random variable.

A random experiment whose outcomes can be described using a Bernoulli random
variable is called a Bernoulli experiment or a Bernoulli trial. The value 1 is often
called a “success,” and p is the probability of success.

The meaning of 0 and 1 (or success and no-success) depends on the particular
experiment. The probability distribution of the Bernoulli random variable B is
shown in Table 10.1.

Table 10.1

b P (B = b)

0 1 − p

1 p

Example 10.1 Bernoulli Experiment: Tossing a Coin

Define the random variable B to count the number of tails in a single flip of a
coin. We can think of B as a Bernoulli random variable, where B = 1 represents
flipping tails and B = 0 represents flipping heads. So, flipping a coin once is a
Bernoulli experiment for which success is flipping tails. In the case of a fair coin,
p = P (B = 1) = 0.5 and P (B = 0) = 1 − p = 0.5.

Example 10.2 Bernoulli Experiment: Occurrence of a Virus

Let V track the occurrence of a virus during a given time interval (say, one month)
within a certain population. The outcome V = 1 indicates the presence of the virus
(so, in this context, that’s success), and V = 0 indicates that there is no virus.
Assume that p = P (V = 1) = 0.2 is the probability that the virus is present. The
virus is absent with probability P (V = 0) = 1 − p = 0.8. In this way, V becomes
a Bernoulli random variable.

Example 10.3 Bernoulli Experiment: Finding Artifacts

Table 10.2

b P (B = b)

0 0.985

1 0.015

The probability that, on a given day, a team of archaeologists finds an important
(scientifically valuable) artifact is 0.015. Define

B =
{

1 important artifact is found (success)

0 important artifact is not found
This is an example of a Bernoulli trial (experiment), and B is a Bernoulli random
variable.

The probability distribution of B is given in Table 10.2.
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29–32 Consider the following joint distribution.

X = 0 X = 1

Y = 0 0.05 0.1

Y = 1 0.1 0.1

Y = 2 0.4 0.25

29. Find the marginal probability distribution of X.

30. Find the marginal probability distribution of Y.

31. Find the distribution of X conditional on Y = 2.

32. Find the distribution of Y conditional on X = 0.

33–34 Consider the following joint distribution.

Y = 1 Y = 2

X = −2 0 0.12

X = −1 0.1 0.38

X = 0 0.26 0.14

33. Find the marginal probability distributions of X and Y.

34. Find the distribution of X conditional on Y = 1. Find the distribution of Y conditional on X = −2.

35. Assume that X is a discrete random variable with range {1, 2} and Y is a discrete random variable with
range {3, 4, 5}. Assuming that X and Y are independent, show that E(XY ) = E(X)E(Y ). Generalize
your proof: assuming that X and Y are independent, and that the range of X is {x1, x2, . . . , xm} and
the range of Y is {y1, y2, . . . , yn}, prove that E(XY ) = E(X)E(Y ).
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10 The Binomial Distribution

Having learned about distributions and how to assign probabilities, we now turn
our attention to one special distribution, the binomial distribution, that arises
in numerous models in biology and elsewhere. The binomial distribution is based
on the concept of a Bernoulli experiment, which is the opening topic of this section.

Bernoulli Experiment and Bernoulli Random Variable

We define a simple random variable with two outcomes.

Definition 31 Bernoulli Random Variable
A discrete random variable that takes on the value 1 with probability p and the
value 0 with probability 1 − p is called a Bernoulli random variable.

A random experiment whose outcomes can be described using a Bernoulli random
variable is called a Bernoulli experiment or a Bernoulli trial. The value 1 is often
called a “success,” and p is the probability of success.

The meaning of 0 and 1 (or success and no-success) depends on the particular
experiment. The probability distribution of the Bernoulli random variable B is
shown in Table 10.1.

Table 10.1

b P (B = b)

0 1 − p

1 p

Example 10.1 Bernoulli Experiment: Tossing a Coin

Define the random variable B to count the number of tails in a single flip of a
coin. We can think of B as a Bernoulli random variable, where B = 1 represents
flipping tails and B = 0 represents flipping heads. So, flipping a coin once is a
Bernoulli experiment for which success is flipping tails. In the case of a fair coin,
p = P (B = 1) = 0.5 and P (B = 0) = 1 − p = 0.5.

Example 10.2 Bernoulli Experiment: Occurrence of a Virus

Let V track the occurrence of a virus during a given time interval (say, one month)
within a certain population. The outcome V = 1 indicates the presence of the virus
(so, in this context, that’s success), and V = 0 indicates that there is no virus.
Assume that p = P (V = 1) = 0.2 is the probability that the virus is present. The
virus is absent with probability P (V = 0) = 1 − p = 0.8. In this way, V becomes
a Bernoulli random variable.

Example 10.3 Bernoulli Experiment: Finding Artifacts

Table 10.2

b P (B = b)

0 0.985

1 0.015

The probability that, on a given day, a team of archaeologists finds an important
(scientifically valuable) artifact is 0.015. Define

B =
{

1 important artifact is found (success)

0 important artifact is not found
This is an example of a Bernoulli trial (experiment), and B is a Bernoulli random
variable.

The probability distribution of B is given in Table 10.2.
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Take a Bernoulli experiment and keep repeating it. Assume that the repetitions
are independent of each other, i.e., the outcome of one experiment does not affect
the outcomes of any other experiment. There are all kinds of questions that we
would like to know the answer to.

Example 10.4 Questions That We Would Like to Know the Answers To

(i) Assume that we repeat the experiment in Example 10.1 ten times (i.e., we toss
a coin ten times). What is the probability that we flip exactly seven tails?

(ii) Related to Example 10.2, what is the probability that there are exactly 8
virus-free months in a year?

(iii) What is the probability that the archeologists in Example 10.3 find important
artifacts more often than 1 day in a month?

We can answer these questions by understanding how a binomial distribution
works.

The Binomial Distribution

Assume that we repeat the same Bernoulli experiment and that the outcomes
are independent. Denote by N the random variable that counts the number of
successes (i.e., the number of outcomes B = 1) in n repetitions of the experi-
ment. Since the range of N is the set {0, 1, 2, 3, . . . , n}, we need to figure out the
probabilities P (N = k) for k = 0, 1, 2, 3, . . . , n.

We define the binomial probability distribution by

b(k, n; p) = P (N = k)

Thus, b(k, n; p) is the probability of exactly k successes in n repetitions of the
same experiment, where p is the probability of a success in a single experiment.
The notation b(k, n; p) keeps track of all the values that we need: k (the number
of successes), n (the number of experiments), and p (the probability of a success).

The main objective of this section is to find the formula for b(k, n; p).

Example 10.5 First Step in Answering Questions (i) –(iii) from Example 10.4

To calculate the probability that we flip exactly seven tails in ten flips of a coin
we need to know the probability of seven successes in ten experiments, given that
the probability of a success is 0.5. Thus, we need to figure out b(7, 10; 0.5).

“Eight virus-free months in a year” means 4 months during which the virus
is present. So we are looking for the probability of 4 successes in 12 trials, know-
ing that the probability of success in each trial is 0.2; i.e., we are looking for
b(4, 12; 0.2).

Question (iii): the probability that archeologists find no important artifacts
in a month (i.e., zero successes in 30 days) is b(0, 30; 0.015). The probability that
on 1 day within a month they find an important artifact is b(1, 30; 0.015). Thus,
the probability of finding important artifacts more often than 1 day in a month is
(complementary event!) 1 − b(0, 30; 0.015) − b(1, 30; 0.015).

Now we work on calculating b(k, n; p).
In the case n = 1 (one experiment), there are two outcomes, and their proba-

bilities are recorded in Table 10.3.

Section 10 The Binomial Distribution P1-111

Table 10.3

k P (N = k) b(k, n; p)

0 1 − p b(0, 1; p) = 1 − p

1 p b(1, 1; p) = p

In words: the probability of success is b(1, 1; p) = p and the probability of no-
success is b(0, 1; p) = 1 − p. This is not new information, we just restated the
assumptions.

Assume that the experiment is repeated twice (n = 2). There are four outcomes:
success in the first experiment and success in the second experiment (we label
this outcome 11), success in the first experiment and no-success in the second
experiment (10), no-success in the first experiment and success in the second ex-
periment (01), and no-success in the first experiment and no-success in the second
experiment (00). Now the probabilities:

P (11) = P (success in the first experiment and success in the second experiment)
= P (success in the first experiment)P (success in the second experiment)
= pp = p2

Recall that the outcomes of the two experiments are assumed to be independent.
That is why we calculated the probability P (11) as the product of the probabilities.
We continue in the same way:

P (10) = P (1 in the first experiment and 0 in the second experiment)
= P (1 in the first experiment)P (0 in the second experiment)
= p(1 − p)

and

P (01) = P (0 in the first experiment and 1 in the second experiment)
= P (0 in the first experiment)P (1 in the second experiment)
= (1 − p)p = p(1 − p)

Finally,

P (00) = P (0 in the first experiment and 0 in the second experiment)
= P (0 in the first experiment)P (0 in the second experiment)
= (1 − p)(1 − p) = (1 − p)2

Recall that N counts the number of successes. Thus, P (N = 2) = P (11) = p2

and P (N = 0) = P (00) = (1 − p)2. Since the outcomes 10 and 01 are mutually
exclusive,

P (N = 1) = P (10 or 01) = P (10) + P (01) = p(1 − p) + p(1 − p) = 2p(1 − p)

Table 10.4 summarizes the probability distribution when n = 2.

Table 10.4

k P (N = k) b(k, n; p)

0 (1 − p)2 b(0, 2; p) = (1 − p)2

1 2p(1 − p) b(1, 2; p) = 2p(1 − p)

2 p2 b(2, 2; p) = p2

Next, we repeat the experiment three times (n = 3). There are eight possible
outcomes {111, 011, 101, 110, 001, 010, 100, 000}. Using independence, we calculate
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Take a Bernoulli experiment and keep repeating it. Assume that the repetitions
are independent of each other, i.e., the outcome of one experiment does not affect
the outcomes of any other experiment. There are all kinds of questions that we
would like to know the answer to.

Example 10.4 Questions That We Would Like to Know the Answers To

(i) Assume that we repeat the experiment in Example 10.1 ten times (i.e., we toss
a coin ten times). What is the probability that we flip exactly seven tails?

(ii) Related to Example 10.2, what is the probability that there are exactly 8
virus-free months in a year?

(iii) What is the probability that the archeologists in Example 10.3 find important
artifacts more often than 1 day in a month?

We can answer these questions by understanding how a binomial distribution
works.

The Binomial Distribution

Assume that we repeat the same Bernoulli experiment and that the outcomes
are independent. Denote by N the random variable that counts the number of
successes (i.e., the number of outcomes B = 1) in n repetitions of the experi-
ment. Since the range of N is the set {0, 1, 2, 3, . . . , n}, we need to figure out the
probabilities P (N = k) for k = 0, 1, 2, 3, . . . , n.

We define the binomial probability distribution by

b(k, n; p) = P (N = k)

Thus, b(k, n; p) is the probability of exactly k successes in n repetitions of the
same experiment, where p is the probability of a success in a single experiment.
The notation b(k, n; p) keeps track of all the values that we need: k (the number
of successes), n (the number of experiments), and p (the probability of a success).

The main objective of this section is to find the formula for b(k, n; p).

Example 10.5 First Step in Answering Questions (i) –(iii) from Example 10.4

To calculate the probability that we flip exactly seven tails in ten flips of a coin
we need to know the probability of seven successes in ten experiments, given that
the probability of a success is 0.5. Thus, we need to figure out b(7, 10; 0.5).

“Eight virus-free months in a year” means 4 months during which the virus
is present. So we are looking for the probability of 4 successes in 12 trials, know-
ing that the probability of success in each trial is 0.2; i.e., we are looking for
b(4, 12; 0.2).

Question (iii): the probability that archeologists find no important artifacts
in a month (i.e., zero successes in 30 days) is b(0, 30; 0.015). The probability that
on 1 day within a month they find an important artifact is b(1, 30; 0.015). Thus,
the probability of finding important artifacts more often than 1 day in a month is
(complementary event!) 1 − b(0, 30; 0.015) − b(1, 30; 0.015).

Now we work on calculating b(k, n; p).
In the case n = 1 (one experiment), there are two outcomes, and their proba-

bilities are recorded in Table 10.3.
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Table 10.3

k P (N = k) b(k, n; p)

0 1 − p b(0, 1; p) = 1 − p

1 p b(1, 1; p) = p

In words: the probability of success is b(1, 1; p) = p and the probability of no-
success is b(0, 1; p) = 1 − p. This is not new information, we just restated the
assumptions.

Assume that the experiment is repeated twice (n = 2). There are four outcomes:
success in the first experiment and success in the second experiment (we label
this outcome 11), success in the first experiment and no-success in the second
experiment (10), no-success in the first experiment and success in the second ex-
periment (01), and no-success in the first experiment and no-success in the second
experiment (00). Now the probabilities:

P (11) = P (success in the first experiment and success in the second experiment)
= P (success in the first experiment)P (success in the second experiment)
= pp = p2

Recall that the outcomes of the two experiments are assumed to be independent.
That is why we calculated the probability P (11) as the product of the probabilities.
We continue in the same way:

P (10) = P (1 in the first experiment and 0 in the second experiment)
= P (1 in the first experiment)P (0 in the second experiment)
= p(1 − p)

and

P (01) = P (0 in the first experiment and 1 in the second experiment)
= P (0 in the first experiment)P (1 in the second experiment)
= (1 − p)p = p(1 − p)

Finally,

P (00) = P (0 in the first experiment and 0 in the second experiment)
= P (0 in the first experiment)P (0 in the second experiment)
= (1 − p)(1 − p) = (1 − p)2

Recall that N counts the number of successes. Thus, P (N = 2) = P (11) = p2

and P (N = 0) = P (00) = (1 − p)2. Since the outcomes 10 and 01 are mutually
exclusive,

P (N = 1) = P (10 or 01) = P (10) + P (01) = p(1 − p) + p(1 − p) = 2p(1 − p)

Table 10.4 summarizes the probability distribution when n = 2.

Table 10.4

k P (N = k) b(k, n; p)

0 (1 − p)2 b(0, 2; p) = (1 − p)2

1 2p(1 − p) b(1, 2; p) = 2p(1 − p)

2 p2 b(2, 2; p) = p2

Next, we repeat the experiment three times (n = 3). There are eight possible
outcomes {111, 011, 101, 110, 001, 010, 100, 000}. Using independence, we calculate
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the probabilities as the products of probabilities:

P (111) = P (1 in the first experiment and 1 in the second experiment
and 1 in the third experiment)

= P (1 in the first experiment)P (1 in the second experiment)
P (1 in the third experiment)

= ppp = p3

To save space, we omit the words since the meaning is clear:

P (011) = P (0)P (1)P (1) = (1 − p)pp = p2(1 − p)

Likewise,

P (101) = P (110) = p2(1 − p)
P (001) = P (010) = P (001) = p(1 − p)2

and
P (000) = (1 − p)3

Therefore, P (N = 3) = P (111) = p3 and P (N = 0) = P (000) = (1 − p)3. To
compute the remaing two probabilities, we use the mutual exclusivity of events:

P (N = 2) = P (011 or 101 or 110) = P (011) + P (101) + P (110) = 3p2(1 − p)

and

P (N = 1) = P (001 or 010 or 100) = P (001) + P (010) + P (100) = 3p(1 − p)2

The probability distribution is given in Table 10.5.

Table 10.5

k P (N = k) b(k, n; p)

0 (1 − p)3 b(0, 3; p) = (1 − p)3

1 3p(1 − p)2 b(1, 3; p) = 3p(1 − p)2

2 3p2(1 − p) b(2, 3; p) = 3p2(1 − p)

3 p3 b(3, 3; p) = p3

Example 10.6 Probability of Finding Artifacts; Example 10.3

The probability that archeologists find an important artifact on any given day is
0.015. Find and interpret b(1, 2; 0.015), b(0, 3; 0.015), and b(2, 3; 0.015).

It is given that the probability of success is p = 0.015. The number b(1, 2; 0.015)
is the probability that in 1 of 2 days the archeologists find an important artifact.
Using Table 10.4 we calculate

b(1, 2; 0.015) = 2(0.015)(1 − 0.015) = 0.02955

So, the probability is a bit less than 3%.

The number (calculated from Table 10.5)

b(0, 3; 0.015) = (1 − 0.015)3 ≈ 0.95567

is the probability of zero successes in three repetitions of the experiment. It
represents the probability that out of 3 days, no important objects are found on
either day. The number

b(2, 3; 0.015) = 3(0.015)2(1 − 0.015) ≈ 0.00066

is the probability of two successes in three trials, given that the probability of
success is 0.015. Thus, the chance that the archeologists find significant objects on
exactly 2 days out of 3 days is 0.00066.

Section 10 The Binomial Distribution P1-113

Example 10.7 Histogram for a Coin-Tossing Experiment

Consider tossing a fair coin three times in a row, and let the random variable N
count the number of tails; so success is flipping tails, and the probability of success
is 0.5.

Using Table 10.5, we calculate the probability distribution of N :

P (N = 0) = b(0, 3; 0.5) = (1 − 0.5)3 = 0.125
P (N = 1) = b(1, 3; 0.5) = 3(0.5)(1 − 0.5)2 = 0.375
P (N = 2) = b(2, 3; 0.5) = 3(0.5)2(1 − 0.5) = 0.375
P (N = 3) = b(3, 3; 0.5) = (0.5)3 = 0.125

For instance, the probability of flipping exactly two tails in three trials is P (N =
2) = 0.375. The probability of flipping no tails in three trials is P (N = 0) = 0.125.
The histogram for N is drawn in Figure 10.1.
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FIGURE 10.1

The histogram for Example
10.7

Now we calculate the probability distribution in general, for n repetitions of a
Bernoulli experiment. The analysis that we conducted for small values of n sug-
gests that we have to do two things: calculate the probability of each possible
outcome, and combine the outcomes that have the same number of successes. For
instance, in the case n = 3 there are three possible outcomes when N = 2 (two
successes): 110, 101, and 011. The probability of each occurring is p2(1 − p), and
so P (N = 2) = 3p2(1 − p).

An outcome that results in exactly k successes (with probability of success
p) in n experiments must have n − k no-successes (with probability of no-success
1 − p). The probability of that particular outcome occurring is

(probability of success)k(probability of no-success )n−k = pk(1 − p)n−k

Therefore, the probability of k successes in n experiments is

b(k, n; p) = (number of ways of obtaining k successes in n experiments)·
(probability of one outcome with k successes in n experiments)

= C(n, k) · pk(1 − p)n−k (10.1)

Once we find C(n, k), we are done.
We already know some values: from Table 10.3, C(1, 0) = 1, and C(1, 1) = 1

(this time, we are looking for the coefficients in b(k, n; p)). From Table 10.4,
C(2, 0) = 1, C(2, 1) = 2, and C(2, 2) = 1. From Table 10.5, C(3, 0) = 1, C(3, 1) =
3, C(3, 2) = 3, and C(3, 3) = 1. Look familiar?

If we arrange these values in a triangle, we get

1 1

1 2 1

1 3 3 1
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the probabilities as the products of probabilities:

P (111) = P (1 in the first experiment and 1 in the second experiment
and 1 in the third experiment)

= P (1 in the first experiment)P (1 in the second experiment)
P (1 in the third experiment)

= ppp = p3

To save space, we omit the words since the meaning is clear:

P (011) = P (0)P (1)P (1) = (1 − p)pp = p2(1 − p)

Likewise,

P (101) = P (110) = p2(1 − p)
P (001) = P (010) = P (001) = p(1 − p)2

and
P (000) = (1 − p)3

Therefore, P (N = 3) = P (111) = p3 and P (N = 0) = P (000) = (1 − p)3. To
compute the remaing two probabilities, we use the mutual exclusivity of events:

P (N = 2) = P (011 or 101 or 110) = P (011) + P (101) + P (110) = 3p2(1 − p)

and

P (N = 1) = P (001 or 010 or 100) = P (001) + P (010) + P (100) = 3p(1 − p)2

The probability distribution is given in Table 10.5.

Table 10.5

k P (N = k) b(k, n; p)

0 (1 − p)3 b(0, 3; p) = (1 − p)3

1 3p(1 − p)2 b(1, 3; p) = 3p(1 − p)2

2 3p2(1 − p) b(2, 3; p) = 3p2(1 − p)

3 p3 b(3, 3; p) = p3

Example 10.6 Probability of Finding Artifacts; Example 10.3

The probability that archeologists find an important artifact on any given day is
0.015. Find and interpret b(1, 2; 0.015), b(0, 3; 0.015), and b(2, 3; 0.015).

It is given that the probability of success is p = 0.015. The number b(1, 2; 0.015)
is the probability that in 1 of 2 days the archeologists find an important artifact.
Using Table 10.4 we calculate

b(1, 2; 0.015) = 2(0.015)(1 − 0.015) = 0.02955

So, the probability is a bit less than 3%.

The number (calculated from Table 10.5)

b(0, 3; 0.015) = (1 − 0.015)3 ≈ 0.95567

is the probability of zero successes in three repetitions of the experiment. It
represents the probability that out of 3 days, no important objects are found on
either day. The number

b(2, 3; 0.015) = 3(0.015)2(1 − 0.015) ≈ 0.00066

is the probability of two successes in three trials, given that the probability of
success is 0.015. Thus, the chance that the archeologists find significant objects on
exactly 2 days out of 3 days is 0.00066.
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Example 10.7 Histogram for a Coin-Tossing Experiment

Consider tossing a fair coin three times in a row, and let the random variable N
count the number of tails; so success is flipping tails, and the probability of success
is 0.5.

Using Table 10.5, we calculate the probability distribution of N :

P (N = 0) = b(0, 3; 0.5) = (1 − 0.5)3 = 0.125
P (N = 1) = b(1, 3; 0.5) = 3(0.5)(1 − 0.5)2 = 0.375
P (N = 2) = b(2, 3; 0.5) = 3(0.5)2(1 − 0.5) = 0.375
P (N = 3) = b(3, 3; 0.5) = (0.5)3 = 0.125

For instance, the probability of flipping exactly two tails in three trials is P (N =
2) = 0.375. The probability of flipping no tails in three trials is P (N = 0) = 0.125.
The histogram for N is drawn in Figure 10.1.
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The histogram for Example
10.7

Now we calculate the probability distribution in general, for n repetitions of a
Bernoulli experiment. The analysis that we conducted for small values of n sug-
gests that we have to do two things: calculate the probability of each possible
outcome, and combine the outcomes that have the same number of successes. For
instance, in the case n = 3 there are three possible outcomes when N = 2 (two
successes): 110, 101, and 011. The probability of each occurring is p2(1 − p), and
so P (N = 2) = 3p2(1 − p).

An outcome that results in exactly k successes (with probability of success
p) in n experiments must have n − k no-successes (with probability of no-success
1 − p). The probability of that particular outcome occurring is

(probability of success)k(probability of no-success )n−k = pk(1 − p)n−k

Therefore, the probability of k successes in n experiments is

b(k, n; p) = (number of ways of obtaining k successes in n experiments)·
(probability of one outcome with k successes in n experiments)

= C(n, k) · pk(1 − p)n−k (10.1)

Once we find C(n, k), we are done.
We already know some values: from Table 10.3, C(1, 0) = 1, and C(1, 1) = 1

(this time, we are looking for the coefficients in b(k, n; p)). From Table 10.4,
C(2, 0) = 1, C(2, 1) = 2, and C(2, 2) = 1. From Table 10.5, C(3, 0) = 1, C(3, 1) =
3, C(3, 2) = 3, and C(3, 3) = 1. Look familiar?

If we arrange these values in a triangle, we get

1 1

1 2 1

1 3 3 1
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Pascal’s triangle! So the numbers C(n, k) seem to be the same as the coefficients
in the expansion of (a + b)2, (a + b)3, etc. (these numbers are called binomial
coefficients).

If this were really so, continuing to build Pascal’s triangle

1 1

1 2 1

1 3 3 1

1 4 6 4 1

we would obtain C(4, 0) = 1, C(4, 1) = 4, C(4, 2) = 6, C(4, 3) = 4, and C(4, 4) = 1.
Let’s check.

C(4, 0) is the number of outcomes with no success in four experiments. There
is only one such outcome, 0000; thus, C(4, 0) = 1. To find C(4, 1) we need to
count the number of ways of obtaining one success in four experiments. Listing
all possibilities—1000, 0100, 0010, 0001—we see that C(4, 1) = 4. To calculate
C(4, 2) we list all outcomes that contain two successes: 1100, 1010, 1001, 0110,
0101, 0011. Thus, C(4, 2) = 6, and so on.

But how can we calculate C(4, 2), and C(n, k) in general, without listing all
possibilities? To answer this question, we need to learn how to count things.

Counting

We discuss several relevant situations that involve counting possibilities.

Example 10.8 Counting: Dividing a Sample into Groups

For a study on the growth of ears in dogs, we organize a sample of dogs into
groups. First, we separate female dogs from male dogs. Then, within each group,
we divide the dogs according to their body size into small, medium, and large,
and then further into short-eared and long-eared. How many groups of dogs are
we going to have?

A tree diagram helps; see Figure 10.2.

short-eared
long-earedsmall

female short-eared
long-earedmedium

short-eared
long-earedlarge

short-eared
long-earedsmall

male short-eared
long-earedmedium

short-eared
long-earedlarge

FIGURE 10.2

Conuting: tree diagram

There will be 2 (male or female) times 3 (small or medium or large) times 2
(short-eared or long-eared) = 12 groups.

This is an example of the multiplication principle. In general, if task 1 involves
selecting one of n1 options, task 2 involves selecting one of n2 options, . . . , task
k involves selecting one of nk options, then the multiplication principle says that
the total number of outcomes is the product n1n2 · · ·nk.
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A coffee shop offers three different sizes of coffee (small, medium, large), six
different flavours (Colombian, Cuban, Indonesian, Kenyan, French Vanilla, Irish
Cream), four options for milk (no milk, 2% milk, 5% milk, cream), and two options
for sugar (sugar or no sugar). There is a total of 3 · 6 · 4 · 2 = 144 different coffees
we can order.

Example 10.9 Counting: Arrangements, Order Matters

In how many different ways can five people be seated in a row on a bench?

Think of an empty bench, and the ways in which the five people can be seated on
it, one by one. There are five choices for the leftmost position on the bench. The
next position to the right can be occupied by any of the remaining four people, and
the next position by any of the remaining three people. There are only two people
left unseated, so there are two options for the fourth position from the left, and
only one for the fifth. By the multiplication principle, there are 5 · 4 · 3 · 2 · 1 = 120
different seating arrangements for the five people to sit on the bench.

We introduce a piece of notation. For a positive integer n, we define n! (read “n
factorial”) by

n! = 1 · 2 · 3 · · · (n − 1) · n
In words, n! is the product of all integers from 1 to n. Thus,

1! = 1
2! = 1 · 2 = 2
3! = 1 · 2 · 3 = 6
4! = 1 · 2 · 3 · 4 = 24
5! = 1 · 2 · 3 · 4 · 5 = 120

and so on. Factorials grow large very quickly: for instance, 10! = 3,628,800,
20! = 2,432,902,008,176,640,000, and 100! is larger than 10157. There are situations
where taking 0! = 1 makes sense, so we add it to the definition of the factorial.

We now formalize the reasoning from Example 10.9.

Definition 32 Permutation
A permutation on a set of n distinct elements is an ordering of those elements.

To order a set we specify which element is the first, which is the second, and so
on. In other words, order matters.

Consider the set of six letters {A, B, C, D, E, F}. The orderings ACDBFE,
EFACBD, and CABDEF are three permutations. The permutation CADBEF is
different from the permutation ACDBEF.

The number of ways in which we can order n distinct objects is n!. Thus, there
are n! permutations of a given set of n distinct elements.

Next, we consider a situation where the order of the objects is not relevant.

Example 10.10 Counting: Arrangements, Order Does Not Matter

In how many different ways can we select a group of three people from a group of
five people, A, B, C, D, and E?

Think of a bench that has space for three people only. Again, we have five choices
for the leftmost position, four choices for the position to the right of it, and three
for the remaining position. Thus, there are 5 · 4 · 3 possibilities, if we care about
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Pascal’s triangle! So the numbers C(n, k) seem to be the same as the coefficients
in the expansion of (a + b)2, (a + b)3, etc. (these numbers are called binomial
coefficients).

If this were really so, continuing to build Pascal’s triangle

1 1

1 2 1

1 3 3 1

1 4 6 4 1

we would obtain C(4, 0) = 1, C(4, 1) = 4, C(4, 2) = 6, C(4, 3) = 4, and C(4, 4) = 1.
Let’s check.

C(4, 0) is the number of outcomes with no success in four experiments. There
is only one such outcome, 0000; thus, C(4, 0) = 1. To find C(4, 1) we need to
count the number of ways of obtaining one success in four experiments. Listing
all possibilities—1000, 0100, 0010, 0001—we see that C(4, 1) = 4. To calculate
C(4, 2) we list all outcomes that contain two successes: 1100, 1010, 1001, 0110,
0101, 0011. Thus, C(4, 2) = 6, and so on.

But how can we calculate C(4, 2), and C(n, k) in general, without listing all
possibilities? To answer this question, we need to learn how to count things.

Counting

We discuss several relevant situations that involve counting possibilities.

Example 10.8 Counting: Dividing a Sample into Groups

For a study on the growth of ears in dogs, we organize a sample of dogs into
groups. First, we separate female dogs from male dogs. Then, within each group,
we divide the dogs according to their body size into small, medium, and large,
and then further into short-eared and long-eared. How many groups of dogs are
we going to have?

A tree diagram helps; see Figure 10.2.

short-eared
long-earedsmall

female short-eared
long-earedmedium

short-eared
long-earedlarge

short-eared
long-earedsmall

male short-eared
long-earedmedium

short-eared
long-earedlarge

FIGURE 10.2

Conuting: tree diagram

There will be 2 (male or female) times 3 (small or medium or large) times 2
(short-eared or long-eared) = 12 groups.

This is an example of the multiplication principle. In general, if task 1 involves
selecting one of n1 options, task 2 involves selecting one of n2 options, . . . , task
k involves selecting one of nk options, then the multiplication principle says that
the total number of outcomes is the product n1n2 · · ·nk.
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A coffee shop offers three different sizes of coffee (small, medium, large), six
different flavours (Colombian, Cuban, Indonesian, Kenyan, French Vanilla, Irish
Cream), four options for milk (no milk, 2% milk, 5% milk, cream), and two options
for sugar (sugar or no sugar). There is a total of 3 · 6 · 4 · 2 = 144 different coffees
we can order.

Example 10.9 Counting: Arrangements, Order Matters

In how many different ways can five people be seated in a row on a bench?

Think of an empty bench, and the ways in which the five people can be seated on
it, one by one. There are five choices for the leftmost position on the bench. The
next position to the right can be occupied by any of the remaining four people, and
the next position by any of the remaining three people. There are only two people
left unseated, so there are two options for the fourth position from the left, and
only one for the fifth. By the multiplication principle, there are 5 · 4 · 3 · 2 · 1 = 120
different seating arrangements for the five people to sit on the bench.

We introduce a piece of notation. For a positive integer n, we define n! (read “n
factorial”) by

n! = 1 · 2 · 3 · · · (n − 1) · n
In words, n! is the product of all integers from 1 to n. Thus,

1! = 1
2! = 1 · 2 = 2
3! = 1 · 2 · 3 = 6
4! = 1 · 2 · 3 · 4 = 24
5! = 1 · 2 · 3 · 4 · 5 = 120

and so on. Factorials grow large very quickly: for instance, 10! = 3,628,800,
20! = 2,432,902,008,176,640,000, and 100! is larger than 10157. There are situations
where taking 0! = 1 makes sense, so we add it to the definition of the factorial.

We now formalize the reasoning from Example 10.9.

Definition 32 Permutation
A permutation on a set of n distinct elements is an ordering of those elements.

To order a set we specify which element is the first, which is the second, and so
on. In other words, order matters.

Consider the set of six letters {A, B, C, D, E, F}. The orderings ACDBFE,
EFACBD, and CABDEF are three permutations. The permutation CADBEF is
different from the permutation ACDBEF.

The number of ways in which we can order n distinct objects is n!. Thus, there
are n! permutations of a given set of n distinct elements.

Next, we consider a situation where the order of the objects is not relevant.

Example 10.10 Counting: Arrangements, Order Does Not Matter

In how many different ways can we select a group of three people from a group of
five people, A, B, C, D, and E?

Think of a bench that has space for three people only. Again, we have five choices
for the leftmost position, four choices for the position to the right of it, and three
for the remaining position. Thus, there are 5 · 4 · 3 possibilities, if we care about
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the order (in which case we count ABE, AEB, BEA and other permutations of
these three people as distinct possibilities).

But this time, we do not care about the order, so we need to divide 5 · 4 · 3
by the number of times each subset of three people is counted in. There are three
people, so each subset is counted in 3! = 6 times. We conclude that the total
number of ways of picking a group of three people from a group of five is

5 · 4 · 3
3!

=
60
6

= 10

For the record, we list them all here: ABC, ABD, ABE, ACD, ACE, ADE, BCD,
BCE, BDE, CDE.

We introduce the notation (
5
3

)
=

5 · 4 · 3
3!

The symbol on the left is read “5 choose 3” (as in “given 5 objects choose 3”).
In general, the number of ways in which we can pick k objects from a group

of n objects (disregarding order) is given by the binomial coefficient(
n

k

)
=

number of ways to select an ordered set of k objects
number of times each set of k objects is counted in

Since we have n choices for the first object, n − 1 choices for the second object,
n−2 choices for the third object, . . . , n−k+1 choices for the kth object, the total
number of ways to select an ordered set of k objects is n(n−1)(n−2) · · · (n−k+1).
The number of times each set of k objects is counted in is equal to the number of
permutations of k elements, which is k!. Therefore,(

n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

(10.2)

We are done. Now think of “object” as “success.” We can pick k successes (objects)
out of n experiments (objects) in

C(n, k) =
(

n

k

)

ways.
Going back to where we were before our detour into counting—equation (10.1)

—we get that the probability distribution of the binomial variable is

b(k, n; p) =
(

n

k

)
pk(1 − p)n−k

In words, the number b(k, n; p) is the probability of k successes in n repetitions of
the same Bernoulli experiment, given that the probability of success is p.

Next, we simplify the fraction on the right side in (10.2). Multiply and divide
by 1 · 2 · 3 · · · (n − k)(

n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

=
n(n − 1)(n − 2) · · · (n − k + 1)

k!
· (n − k) · · · 3 · 2 · 1
1 · 2 · 3 · · · (n − k)

=
n!

k!(n − k)!
(10.3)

Thus, we expressed the binomial coefficient
(
n
k

)
using factorials only. For instance,(

4
2

)
=

4!
2!(4 − 2)!

=
4!

2!2!
=

24
4

= 6

We summarize the most important results in this section in the statements of the
following two theorems.
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Theorem 10 The Number of Successes in Repeated Bernoulli Experiments
The number of ways to choose a group of k objects out of n objects or, equivalently,
k successes in n repetitions of a Bernoulli experiment is equal to(

n

k

)
=

n!
k!(n − k)!

Recall that we defined 0! = 1. Thus, using the formula from Theorem 10,(
n

0

)
=

n!
0!(n − 0)!

=
n!

1 · n!
= 1

As well, (
n

1

)
=

n!
1!(n − 1)!

=
n!

(n − 1)!
=

1 · 2 · 3 · · · (n − 1)n
1 · 2 · 3 · · · (n − 1)

= n

Theorem 11 Probability Distribution of the Binomial Variable
The probability distribution of the binomial variable N is given by

P (N = k) = b(k, n; p) =
(

n

k

)
pk(1 − p)n−k

where N counts the number of successes in n independent repetitions of the same
Bernoulli experiment and p is the probability of success.

We are ready to answer the questions that we asked at the beginning of this section.

Example 10.11 Answers to Questions from Example 10.4

(i) The probability that we obtain exactly 7 tails in 10 flips of a fair coin is

b(7, 10; 0.5) =
(

10
7

)
(0.5)7(1 − 0.5)10−7

Using (10.3) or Theorem 10 we compute(
10
7

)
=

10!
7! 3!

=
3,628,800
5,040 · 6 = 120

and so

b(7, 10; 0.5) = 120 (0.5)7(0.5)3 = 120(0.5)10 ≈ 0.117

(ii) Recall that the probability of a virus occurring in a given month (that is what
the success is in this case) is 0.2. The probability that there will be exactly eight
virus-free months is the same as the probability that the virus will be present
during exactly 4 months:

b(4, 12; 0.2) =
(

12
4

)
(0.2)4(1 − 0.2)12−4 = 495 (0.2)4(0.8)8 ≈ 0.133

since (
12
4

)
=

12!
4! 8!

=
479,001,600
24 · 40,320

= 495

Alternatively, we use (10.2) and cancel the common factors in the fraction:(
12
4

)
=

12 · 11 · 10 · 9
1 · 2 · 3 · 4 =

11 · 5 · 9
1

= 495

At the end of the section we will say a bit more about calculations of binomial
coefficients that involve large numbers.

(iii) The number

b(0, 30; 0.015) =
(

30
0

)
(0.015)0(1 − 0.015)30−0 = 0.98530 ≈ 0.635
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the order (in which case we count ABE, AEB, BEA and other permutations of
these three people as distinct possibilities).

But this time, we do not care about the order, so we need to divide 5 · 4 · 3
by the number of times each subset of three people is counted in. There are three
people, so each subset is counted in 3! = 6 times. We conclude that the total
number of ways of picking a group of three people from a group of five is

5 · 4 · 3
3!

=
60
6

= 10

For the record, we list them all here: ABC, ABD, ABE, ACD, ACE, ADE, BCD,
BCE, BDE, CDE.

We introduce the notation (
5
3

)
=

5 · 4 · 3
3!

The symbol on the left is read “5 choose 3” (as in “given 5 objects choose 3”).
In general, the number of ways in which we can pick k objects from a group

of n objects (disregarding order) is given by the binomial coefficient(
n

k

)
=

number of ways to select an ordered set of k objects
number of times each set of k objects is counted in

Since we have n choices for the first object, n − 1 choices for the second object,
n−2 choices for the third object, . . . , n−k+1 choices for the kth object, the total
number of ways to select an ordered set of k objects is n(n−1)(n−2) · · · (n−k+1).
The number of times each set of k objects is counted in is equal to the number of
permutations of k elements, which is k!. Therefore,(

n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

(10.2)

We are done. Now think of “object” as “success.” We can pick k successes (objects)
out of n experiments (objects) in

C(n, k) =
(

n

k

)

ways.
Going back to where we were before our detour into counting—equation (10.1)

—we get that the probability distribution of the binomial variable is

b(k, n; p) =
(

n

k

)
pk(1 − p)n−k

In words, the number b(k, n; p) is the probability of k successes in n repetitions of
the same Bernoulli experiment, given that the probability of success is p.

Next, we simplify the fraction on the right side in (10.2). Multiply and divide
by 1 · 2 · 3 · · · (n − k)(

n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

=
n(n − 1)(n − 2) · · · (n − k + 1)

k!
· (n − k) · · · 3 · 2 · 1
1 · 2 · 3 · · · (n − k)

=
n!

k!(n − k)!
(10.3)

Thus, we expressed the binomial coefficient
(
n
k

)
using factorials only. For instance,(

4
2

)
=

4!
2!(4 − 2)!

=
4!

2!2!
=

24
4

= 6

We summarize the most important results in this section in the statements of the
following two theorems.
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Theorem 10 The Number of Successes in Repeated Bernoulli Experiments
The number of ways to choose a group of k objects out of n objects or, equivalently,
k successes in n repetitions of a Bernoulli experiment is equal to(

n

k

)
=

n!
k!(n − k)!

Recall that we defined 0! = 1. Thus, using the formula from Theorem 10,(
n

0

)
=

n!
0!(n − 0)!

=
n!

1 · n!
= 1

As well, (
n

1

)
=

n!
1!(n − 1)!

=
n!

(n − 1)!
=

1 · 2 · 3 · · · (n − 1)n
1 · 2 · 3 · · · (n − 1)

= n

Theorem 11 Probability Distribution of the Binomial Variable
The probability distribution of the binomial variable N is given by

P (N = k) = b(k, n; p) =
(

n

k

)
pk(1 − p)n−k

where N counts the number of successes in n independent repetitions of the same
Bernoulli experiment and p is the probability of success.

We are ready to answer the questions that we asked at the beginning of this section.

Example 10.11 Answers to Questions from Example 10.4

(i) The probability that we obtain exactly 7 tails in 10 flips of a fair coin is

b(7, 10; 0.5) =
(

10
7

)
(0.5)7(1 − 0.5)10−7

Using (10.3) or Theorem 10 we compute(
10
7

)
=

10!
7! 3!

=
3,628,800
5,040 · 6 = 120

and so

b(7, 10; 0.5) = 120 (0.5)7(0.5)3 = 120(0.5)10 ≈ 0.117

(ii) Recall that the probability of a virus occurring in a given month (that is what
the success is in this case) is 0.2. The probability that there will be exactly eight
virus-free months is the same as the probability that the virus will be present
during exactly 4 months:

b(4, 12; 0.2) =
(

12
4

)
(0.2)4(1 − 0.2)12−4 = 495 (0.2)4(0.8)8 ≈ 0.133

since (
12
4

)
=

12!
4! 8!

=
479,001,600
24 · 40,320

= 495

Alternatively, we use (10.2) and cancel the common factors in the fraction:(
12
4

)
=

12 · 11 · 10 · 9
1 · 2 · 3 · 4 =

11 · 5 · 9
1

= 495

At the end of the section we will say a bit more about calculations of binomial
coefficients that involve large numbers.

(iii) The number

b(0, 30; 0.015) =
(

30
0

)
(0.015)0(1 − 0.015)30−0 = 0.98530 ≈ 0.635
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is the probability of finding no significant artifacts on any day within a month,
assuming that a month has 30 days. (In the above calculation we used the fact
that

(
30
0

)
= 1; see the note that follows Theorem 10.) The number

b(1, 30; 0.015) =
(

30
1

)
(0.015)1(1 − 0.015)30−1 = 30 · (0.015)(0.985)29 ≈ 0.290

is the probability of finding a significant object on exactly 1 day within a month.
Therefore, the probability of finding important artifacts more often than 1 day in
a month is 1 − b(0, 30; 0.015) − b(1, 30; 0.015) ≈ 1 − 0.635 − 0.290 = 0.075.

The Mean and Variance of the Binomial Distribution

The probability distribution of a Bernoulli random variable B is P (B = 0) = 1−p
and P (B = 1) = p. Thus,

E(B) = 0 · (1 − p) + 1 · p = p

and
var(B) = (0 − p)2 · (1 − p) + (1 − p)2 · p

= p2(1 − p) + (1 − p)2p
= p(1 − p) [p + (1 − p)]
= p(1 − p)

Alternatively, we use the formula var(B) = E(B2) − (E(B))2. Note that P (B2 =
0) = 1 − p and P (B2 = 1) = p and thus

var(B) = [0 · (1 − p) + 1 · p] − (p)2 = p − p2 = p(1 − p)

Let

N = B1 + B2 + · · · + Bn

where Bi, i = 1, 2, . . . , n, are independent Bernoulli random variables (and so N
is the binomial distribution). Using Theorem 7 in Section 7 for the mean and
Theorem 9 in Section 9 for the variance, we get

E(N) = E(B1) + E(B2) + · · · + E(Bn) = np (10.4)

and
var(N) = var(B1) + var(B2) + · · · + var(Bn) = np(1 − p) (10.5)

Example 10.12 Mean and Variance in Flipping Coins

Let N be the number of tails in n tosses of a fair coin. Since p = 0.5, the expected
value is E(N) = 0.5n. Thus, if we toss a coin n = 100 times, the expected number
of tails is E(N) = 100(0.5) = 50.

The histogram of N is drawn in Figure 10.3.
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Histogram of the binomial
distribution N
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The variance of N is

var(N) = n(0.5)(1 − 0.5) = 0.25n

When n = 100, then var(N) = 0.25(100) = 25, and the standard deviation is
σ =

√
var(N) = 5.

In Section 14 we study bell-shaped distributions in detail. One fact we will
discover is that most of a bell-shaped distribution lies within two standard devi-
ations of the mean. The distribution here looks bell-shaped, so we conclude that
the number of tails in 100 tosses of a coin will very likely be between 50−2 ·5 = 40
and 50 + 2 · 5 = 60.

Example 10.13 Genetics of Green-Eyed Kittens

Consider two alleles R and G, where R is the dominant allele (red eyes in cats)
and G is the recessive allele (green eyes in cats). Assume that there are 30 kittens,
all from RG parents, and that the genetic makeup of a kitten is independent of
other births. What is the probability that at most three kittens have green eyes?

Define the Bernoulli experiment B by

B =
{

1 a kitten has green eyes (success)

0 a kitten has red eyes

Of the four genotypes RR, RG, GR, and GG that a kitten can inherit, green eyes
results from the trait of GG only. Thus the probability of success is p = P (B =
1) = 1/4 = 0.25. The experiment is repeated 30 times, and we declare N to be the
number of kittens with green eyes.

The event “at most three kittens have green eyes” is the union of four mutually
exclusive events “no kittens have green eyes,” “exactly one kitten has green eyes,”
“exactly two kittens have green eyes,” and “exactly three kittens have green eyes.”
Thus

P (N ≤ 3) = P (N = 0) + P (N = 1) + P (N = 2) + P (N = 3)
= b(0, 30; 0.25) + b(1, 30; 0.25) + b(2, 30; 0.25) + b(3, 30; 0.25)

=
(

30
0

)
(0.25)0(0.75)30 +

(
30
1

)
(0.25)1(0.75)29 +

(
30
2

)
(0.25)2(0.75)28

+
(

30
3

)
(0.25)3(0.75)27

≈ 0.000179 + 0.001786 + 0.008631 + 0.026853 = 0.037449

i.e., about 3.75%.

Note that zero, one, two, or three kittens are at the lower end of the distribution.
For instance, the probability that exactly seven kittens have green eyes is

P (N = 7) = b(7, 30; 0.25) =
(

30
7

)
(0.25)7(0.75)23 ≈ 0.166236

i.e., a bit over 16.6%.

In Figure 10.4 we drew the histogram, showing that the distribution is skewed
towards the values N = 7 and N = 8. Not surprising—the expected number of
kittens with green eyes is

E(N) = np = 30(0.25) = 7.5
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is the probability of finding no significant artifacts on any day within a month,
assuming that a month has 30 days. (In the above calculation we used the fact
that

(
30
0

)
= 1; see the note that follows Theorem 10.) The number

b(1, 30; 0.015) =
(

30
1

)
(0.015)1(1 − 0.015)30−1 = 30 · (0.015)(0.985)29 ≈ 0.290

is the probability of finding a significant object on exactly 1 day within a month.
Therefore, the probability of finding important artifacts more often than 1 day in
a month is 1 − b(0, 30; 0.015) − b(1, 30; 0.015) ≈ 1 − 0.635 − 0.290 = 0.075.

The Mean and Variance of the Binomial Distribution

The probability distribution of a Bernoulli random variable B is P (B = 0) = 1−p
and P (B = 1) = p. Thus,

E(B) = 0 · (1 − p) + 1 · p = p

and
var(B) = (0 − p)2 · (1 − p) + (1 − p)2 · p

= p2(1 − p) + (1 − p)2p
= p(1 − p) [p + (1 − p)]
= p(1 − p)

Alternatively, we use the formula var(B) = E(B2) − (E(B))2. Note that P (B2 =
0) = 1 − p and P (B2 = 1) = p and thus

var(B) = [0 · (1 − p) + 1 · p] − (p)2 = p − p2 = p(1 − p)

Let

N = B1 + B2 + · · · + Bn

where Bi, i = 1, 2, . . . , n, are independent Bernoulli random variables (and so N
is the binomial distribution). Using Theorem 7 in Section 7 for the mean and
Theorem 9 in Section 9 for the variance, we get

E(N) = E(B1) + E(B2) + · · · + E(Bn) = np (10.4)

and
var(N) = var(B1) + var(B2) + · · · + var(Bn) = np(1 − p) (10.5)

Example 10.12 Mean and Variance in Flipping Coins

Let N be the number of tails in n tosses of a fair coin. Since p = 0.5, the expected
value is E(N) = 0.5n. Thus, if we toss a coin n = 100 times, the expected number
of tails is E(N) = 100(0.5) = 50.

The histogram of N is drawn in Figure 10.3.
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The variance of N is

var(N) = n(0.5)(1 − 0.5) = 0.25n

When n = 100, then var(N) = 0.25(100) = 25, and the standard deviation is
σ =

√
var(N) = 5.

In Section 14 we study bell-shaped distributions in detail. One fact we will
discover is that most of a bell-shaped distribution lies within two standard devi-
ations of the mean. The distribution here looks bell-shaped, so we conclude that
the number of tails in 100 tosses of a coin will very likely be between 50−2 ·5 = 40
and 50 + 2 · 5 = 60.

Example 10.13 Genetics of Green-Eyed Kittens

Consider two alleles R and G, where R is the dominant allele (red eyes in cats)
and G is the recessive allele (green eyes in cats). Assume that there are 30 kittens,
all from RG parents, and that the genetic makeup of a kitten is independent of
other births. What is the probability that at most three kittens have green eyes?

Define the Bernoulli experiment B by

B =
{

1 a kitten has green eyes (success)

0 a kitten has red eyes

Of the four genotypes RR, RG, GR, and GG that a kitten can inherit, green eyes
results from the trait of GG only. Thus the probability of success is p = P (B =
1) = 1/4 = 0.25. The experiment is repeated 30 times, and we declare N to be the
number of kittens with green eyes.

The event “at most three kittens have green eyes” is the union of four mutually
exclusive events “no kittens have green eyes,” “exactly one kitten has green eyes,”
“exactly two kittens have green eyes,” and “exactly three kittens have green eyes.”
Thus

P (N ≤ 3) = P (N = 0) + P (N = 1) + P (N = 2) + P (N = 3)
= b(0, 30; 0.25) + b(1, 30; 0.25) + b(2, 30; 0.25) + b(3, 30; 0.25)

=
(

30
0

)
(0.25)0(0.75)30 +

(
30
1

)
(0.25)1(0.75)29 +

(
30
2

)
(0.25)2(0.75)28

+
(

30
3

)
(0.25)3(0.75)27

≈ 0.000179 + 0.001786 + 0.008631 + 0.026853 = 0.037449

i.e., about 3.75%.

Note that zero, one, two, or three kittens are at the lower end of the distribution.
For instance, the probability that exactly seven kittens have green eyes is

P (N = 7) = b(7, 30; 0.25) =
(

30
7

)
(0.25)7(0.75)23 ≈ 0.166236

i.e., a bit over 16.6%.

In Figure 10.4 we drew the histogram, showing that the distribution is skewed
towards the values N = 7 and N = 8. Not surprising—the expected number of
kittens with green eyes is

E(N) = np = 30(0.25) = 7.5
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Histogram of the number of
kittens with green eyes

Example 10.14 Occurrence of a Genetic Disorder

Assume that the probability that a child inherits a genetic disorder (such as certain
forms of lactose intolerance) from her/his parents is 0.035. A couple decides to have
four children. What is the probability that

(i) No children will inherit the disorder.

(ii) At least one child will inherit the disorder.

Define the Bernoulli experiment B by

B =

{
1 child inherits the disorder (success)

0 child does not inherit the disorder

It is given that p = P (child inherits the disorder) = 0.035. Denote by N the
number of children who will inherit the disorder. We assume that the four births
are independent events.

(i) The probability is given by (no successes in four trials)

P (N = 0) = b(0, 4; 0.035) =
(

4
0

)
(0.035)0(0.965)4 = 0.9654 ≈ 0.8672

or about 86.7%.

(ii) One way to answer this question is to calculate P (N = 1) = P (exactly one
child will inherit the disorder), P (N = 2) = P (exactly two children will inherit
the disorder), P (N = 3) = P (exactly three children will inherit the disorder), and
P (N = 4) = P (all four children will inherit the disorder) and add up the four
probabilities (since the four events are mutually exclusive).

There is an easier way: the complementary event of “at least one child will
inherit the disorder” is “no children will inherit the disorder,” the probability of
which we calculated in (i). Thus,

P (at least one child will inherit the disorder)
= 1 − P (no children will inherit the disorder)
= 1 − 0.8672 = 0.1328.

Example 10.15 Expectation and Variance for the Virus Occurrence from Example 10.2

The occurrence of the virus within a given month is a Bernoulli experiment that
can be described by

V =

{
1 virus is present (success)

0 virus is absent

where P (V = 1) = 0.2 and P (V = 0) = 0.8. Thus, E(V ) = p = 0.2 and var(V ) =
p(1 − p) = (0.2)(0.8) = 0.16. Let the random variable M count the number of
months in a 10-year period during which the virus is present in a population. Its
histogram is shown in Figure 10.5.
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Histogram of the occurrence
of the virus

The fact that the expected value is E(M) = np = (120)(0.2) = 24 explains why
the histogram is skewed toward lower values. In words, it is expected that, in a 10-
year period, there are 24 months during which the virus is present. The variance
of M is

var(M) = np(1 − p) = 120(0.2)(0.8) = 19.2

and the standard deviation is σ =
√

19.2 ≈ 4.38.

Appendix: Calculating Factorials and Binomial Coefficients

Calculating binomial coefficients and the probabilities associated with the binomial
distribution can be quite challenging.

Back to Example 10.15: in order to figure out the probability that in 10 years
there will be exactly 36 months during which the virus is present, we need to find
the numeric value of the expression

b(36, 120; 0.2) =
(

120
36

)
(0.2)36(0.8)84 (10.6)

We have two major problems: one is to calculate the binomial coefficient(
120
36

)
=

120!
36! 84!

since the numbers involved are huge: 120! is of the order of magnitude of 10198,
36! ≈ 3.720 · 1041 and 84! ≈ 3.314 · 10126. The other problem is multiplication
of very large numbers by very small numbers. The two terms coming from the
probabilities are 0.236 ≈ 6.872 · 10−26 and 0.884 ≈ 7.237 · 10−9. Mathematical
software can deal with these types of calculations. Using Maple, we find that(

120
36

)
= 5,425,936,737,585,192,491,355,436,069,690 ≈ 5.426 · 1030

and

b(36, 120; 0.2) =
(

120
36

)
(0.2)36(0.8)84 ≈ 0.002698

There is a way to approximate (10.6) using Stirling’s approximaton for factorials:

n! ≈
√

2πn
(n

e

)n

(10.7)

In Table 10.6 we show several values of n and (avoiding listing the actual and
approximated values of n!) the value of the fraction

comparison =
true value of n!

Stirling’s approximation of n!
as a measure of how close the approximation is.
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Example 10.14 Occurrence of a Genetic Disorder

Assume that the probability that a child inherits a genetic disorder (such as certain
forms of lactose intolerance) from her/his parents is 0.035. A couple decides to have
four children. What is the probability that

(i) No children will inherit the disorder.

(ii) At least one child will inherit the disorder.

Define the Bernoulli experiment B by

B =

{
1 child inherits the disorder (success)

0 child does not inherit the disorder

It is given that p = P (child inherits the disorder) = 0.035. Denote by N the
number of children who will inherit the disorder. We assume that the four births
are independent events.

(i) The probability is given by (no successes in four trials)

P (N = 0) = b(0, 4; 0.035) =
(

4
0

)
(0.035)0(0.965)4 = 0.9654 ≈ 0.8672

or about 86.7%.

(ii) One way to answer this question is to calculate P (N = 1) = P (exactly one
child will inherit the disorder), P (N = 2) = P (exactly two children will inherit
the disorder), P (N = 3) = P (exactly three children will inherit the disorder), and
P (N = 4) = P (all four children will inherit the disorder) and add up the four
probabilities (since the four events are mutually exclusive).

There is an easier way: the complementary event of “at least one child will
inherit the disorder” is “no children will inherit the disorder,” the probability of
which we calculated in (i). Thus,

P (at least one child will inherit the disorder)
= 1 − P (no children will inherit the disorder)
= 1 − 0.8672 = 0.1328.

Example 10.15 Expectation and Variance for the Virus Occurrence from Example 10.2

The occurrence of the virus within a given month is a Bernoulli experiment that
can be described by

V =

{
1 virus is present (success)

0 virus is absent

where P (V = 1) = 0.2 and P (V = 0) = 0.8. Thus, E(V ) = p = 0.2 and var(V ) =
p(1 − p) = (0.2)(0.8) = 0.16. Let the random variable M count the number of
months in a 10-year period during which the virus is present in a population. Its
histogram is shown in Figure 10.5.

Section 10 The Binomial Distribution P1-121

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FIGURE 10.5

Histogram of the occurrence
of the virus

The fact that the expected value is E(M) = np = (120)(0.2) = 24 explains why
the histogram is skewed toward lower values. In words, it is expected that, in a 10-
year period, there are 24 months during which the virus is present. The variance
of M is

var(M) = np(1 − p) = 120(0.2)(0.8) = 19.2

and the standard deviation is σ =
√

19.2 ≈ 4.38.

Appendix: Calculating Factorials and Binomial Coefficients

Calculating binomial coefficients and the probabilities associated with the binomial
distribution can be quite challenging.

Back to Example 10.15: in order to figure out the probability that in 10 years
there will be exactly 36 months during which the virus is present, we need to find
the numeric value of the expression

b(36, 120; 0.2) =
(

120
36

)
(0.2)36(0.8)84 (10.6)

We have two major problems: one is to calculate the binomial coefficient(
120
36

)
=

120!
36! 84!

since the numbers involved are huge: 120! is of the order of magnitude of 10198,
36! ≈ 3.720 · 1041 and 84! ≈ 3.314 · 10126. The other problem is multiplication
of very large numbers by very small numbers. The two terms coming from the
probabilities are 0.236 ≈ 6.872 · 10−26 and 0.884 ≈ 7.237 · 10−9. Mathematical
software can deal with these types of calculations. Using Maple, we find that(

120
36

)
= 5,425,936,737,585,192,491,355,436,069,690 ≈ 5.426 · 1030

and

b(36, 120; 0.2) =
(

120
36

)
(0.2)36(0.8)84 ≈ 0.002698

There is a way to approximate (10.6) using Stirling’s approximaton for factorials:

n! ≈
√

2πn
(n

e

)n

(10.7)

In Table 10.6 we show several values of n and (avoiding listing the actual and
approximated values of n!) the value of the fraction

comparison =
true value of n!

Stirling’s approximation of n!
as a measure of how close the approximation is.
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Table 10.6

n Comparison (true/Stirling’s approximation)

20 1.004175

50 1.001668

100 1.000834

200 1.000417

Using Stirling’s approximation, we write
(

120
36

)
=

120!
36! 84!

≈
√

240π (120/e)120√
72π (36/e)36

√
168π (84/e)84

It’s messy, but it can be done on a hand calculator. As well, we can use logarithms
(see Exercise 37).

Summary A Bernoulli random variable is a discrete random variable that takes on two
values; one, called the success, has probability p. The number of successes in n
independent repetitions of a Bernoulli experiment is given by the binomial dis-
tribution. In particular, b(k, n; p) gives the probability of exactly k successes in
n repetitions of the same Bernoulli experiment. Finding a probability distribu-
tion of a binomial random variable involves counting arguments. The mean of the
binomial distribution b(k, n; p) is np, and the variance is np(1 − p). A number of
applications that we explored in this section (such as distribution of alleles, occur-
rence of a genetic disorder, and dynamics of a virus occurrence in a population)
were modelled by the binomial random variable.

10 Exercises

1. There is no time to interview all 20 job applicants (10 women and 10 men), so it has been decided that
only 8 will be interviewed. One person at a time is selected randomly and called for the interview.
Let X = “number of males interviewed.” Is X a binomial variable? Why or why not?

2. A shipment of 2,000 containers has arrived at the port of Vancouver. As part of the customs inspection,
a container is selected at random and checked for contraband (say, illegal drugs). Then, of the
remaining 1,999 containers, another container is selected at random and checked for illegal drugs.
This routine is repeated 25 times. Assume that all containers have the same probability of carrying
illegal drugs, and let X = “number of containers that contain illegal drugs.” Is X a binomial variable?
Why or why not?

3. A northern goshawk preys on fish 40% of the time and on small mammals 60% of the time. A group of
ten goshawks (assumed to be acting independently) hunt within the same region. Let X = “number
of small mammals captured.” Is X a binomial variable? Why or why not?

4. You should have discovered that X in Exercises 1 and 2 is not a binomial variable. Suggest a modi-
fication to the routines that will make X a binomial variable. Do these new routines make sense in
reality?

5. Suppose that the probability of a success is 0.3. Make a complete list of ways in which we can obtain
exactly two successes in four trials. Based on your list, find the probability of obtaining exactly two
successes in four trials. Compare with the formula for the binomial distribution.

Section 10 The Binomial Distribution P1-123

6. Suppose that the probability of a success is 0.3. Make a complete list of ways in which we can obtain
exactly two successes in five trials. Based on your list, find the probability of obtaining exactly two
successes in five trials. Compare with the formula for the binomial distribution.

7–14 Find each quantity and explain what it represents.

7.
(

12
3

)
8.

(
10
4

)

9. C(8, 0) 10. C(13, 1)

11. b(1, 4; 0.6) 12. b(3, 4; 0.6)

13. b(1, 7; 0.2) 14. b(1, 7; 0.8)

15–18 Express each quantity in the form of a binomial coefficient and find its value.

15. The number of ways we can obtain three tails in eight tosses of a coin.

16. The number of ways we can obtain six heads in seven tosses of a coin.

17. The number of ways of selecting a team of 4 students from a group of 20 students.

18. The number of ways of selecting a team of 11 players from a group of 14 available players.

19–22 A random variable X is distributed binomially with probability of success p = 0.6. Using the
notation b(k, n; p) for the probabilities associated with the binomial distribution, say what you would need
to calculate to answer each question.

19. Find the probability of at least three successes in five trials.

20. Find the probability of at most three successes in eight trials.

21. Find the probability that there are no more than 9 and no less than 5 successes in 25 trials.

22. Find the probability that there are more than 2 successes in 50 trials.

23. Explain why (10.3) implies that
(

n

k

)
=

(
n

n − k

)
. Use this fact to calculate

(
22
20

)
.

24. Using the formula in Exercise 23, calculate
(

50
47

)
.

25–28 The random variable X is binomially distributed with parameters n (number of trials) and p
(probability of success). In each case:

(a) Find the probability distribution of X.

(b) Draw a histogram of X.

(c) Find the mean and the variance of X using the probabilities you found in (a).

(d) Find the mean and the variance using formulas (10.4) and (10.5) and compare with your answers
to (c).

25. n = 2, p = 0.4 26. n = 3, p = 0.4

27. n = 4, p = 0.4 28. n = 5, p = 0.5

29. A box of chocolates contains 20 chocolates. The probability that any one chocolate has a hazelnut is
0.03.

(a) What is the expected number of chocolates with a hazelnut per box?

(b) What is the probability that there are no chocolates with a hazelnut in one box of chocolates?
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Table 10.6

n Comparison (true/Stirling’s approximation)

20 1.004175

50 1.001668

100 1.000834

200 1.000417

Using Stirling’s approximation, we write
(

120
36

)
=

120!
36! 84!

≈
√

240π (120/e)120√
72π (36/e)36

√
168π (84/e)84

It’s messy, but it can be done on a hand calculator. As well, we can use logarithms
(see Exercise 37).

Summary A Bernoulli random variable is a discrete random variable that takes on two
values; one, called the success, has probability p. The number of successes in n
independent repetitions of a Bernoulli experiment is given by the binomial dis-
tribution. In particular, b(k, n; p) gives the probability of exactly k successes in
n repetitions of the same Bernoulli experiment. Finding a probability distribu-
tion of a binomial random variable involves counting arguments. The mean of the
binomial distribution b(k, n; p) is np, and the variance is np(1 − p). A number of
applications that we explored in this section (such as distribution of alleles, occur-
rence of a genetic disorder, and dynamics of a virus occurrence in a population)
were modelled by the binomial random variable.

10 Exercises

1. There is no time to interview all 20 job applicants (10 women and 10 men), so it has been decided that
only 8 will be interviewed. One person at a time is selected randomly and called for the interview.
Let X = “number of males interviewed.” Is X a binomial variable? Why or why not?

2. A shipment of 2,000 containers has arrived at the port of Vancouver. As part of the customs inspection,
a container is selected at random and checked for contraband (say, illegal drugs). Then, of the
remaining 1,999 containers, another container is selected at random and checked for illegal drugs.
This routine is repeated 25 times. Assume that all containers have the same probability of carrying
illegal drugs, and let X = “number of containers that contain illegal drugs.” Is X a binomial variable?
Why or why not?

3. A northern goshawk preys on fish 40% of the time and on small mammals 60% of the time. A group of
ten goshawks (assumed to be acting independently) hunt within the same region. Let X = “number
of small mammals captured.” Is X a binomial variable? Why or why not?

4. You should have discovered that X in Exercises 1 and 2 is not a binomial variable. Suggest a modi-
fication to the routines that will make X a binomial variable. Do these new routines make sense in
reality?

5. Suppose that the probability of a success is 0.3. Make a complete list of ways in which we can obtain
exactly two successes in four trials. Based on your list, find the probability of obtaining exactly two
successes in four trials. Compare with the formula for the binomial distribution.
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6. Suppose that the probability of a success is 0.3. Make a complete list of ways in which we can obtain
exactly two successes in five trials. Based on your list, find the probability of obtaining exactly two
successes in five trials. Compare with the formula for the binomial distribution.

7–14 Find each quantity and explain what it represents.

7.
(

12
3

)
8.

(
10
4

)

9. C(8, 0) 10. C(13, 1)

11. b(1, 4; 0.6) 12. b(3, 4; 0.6)

13. b(1, 7; 0.2) 14. b(1, 7; 0.8)

15–18 Express each quantity in the form of a binomial coefficient and find its value.

15. The number of ways we can obtain three tails in eight tosses of a coin.

16. The number of ways we can obtain six heads in seven tosses of a coin.

17. The number of ways of selecting a team of 4 students from a group of 20 students.

18. The number of ways of selecting a team of 11 players from a group of 14 available players.

19–22 A random variable X is distributed binomially with probability of success p = 0.6. Using the
notation b(k, n; p) for the probabilities associated with the binomial distribution, say what you would need
to calculate to answer each question.

19. Find the probability of at least three successes in five trials.

20. Find the probability of at most three successes in eight trials.

21. Find the probability that there are no more than 9 and no less than 5 successes in 25 trials.

22. Find the probability that there are more than 2 successes in 50 trials.

23. Explain why (10.3) implies that
(

n

k

)
=

(
n

n − k

)
. Use this fact to calculate

(
22
20

)
.

24. Using the formula in Exercise 23, calculate
(

50
47

)
.

25–28 The random variable X is binomially distributed with parameters n (number of trials) and p
(probability of success). In each case:

(a) Find the probability distribution of X.

(b) Draw a histogram of X.

(c) Find the mean and the variance of X using the probabilities you found in (a).

(d) Find the mean and the variance using formulas (10.4) and (10.5) and compare with your answers
to (c).

25. n = 2, p = 0.4 26. n = 3, p = 0.4

27. n = 4, p = 0.4 28. n = 5, p = 0.5

29. A box of chocolates contains 20 chocolates. The probability that any one chocolate has a hazelnut is
0.03.

(a) What is the expected number of chocolates with a hazelnut per box?

(b) What is the probability that there are no chocolates with a hazelnut in one box of chocolates?
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(c) You buy 15 boxes of chocolates. What is the expected number of boxes that contain no chocolates
with a hazelnut?

30. About 10% of Canadians have latent TB (tuberculosis) infection (i.e., they have been infected, are
not infectious, but can develop tuberculosis at some point in their lives). [Source: Canadian Institute
for Health Information, Canadian Lung Association, Health Canada Statistics Canada, Respiratory
Disease in Canada, September 2001. Available at www.phac-aspc.gc.ca/publicat/rdc-mrc01/.]

(a) What is the expected number of people with latent TB infection in Winnipeg, Manitoba (popu-
lation 633 thousand)? Define the binomial variable involved, say what constitutes a success, and
state the probability of success.

(b) What is the probability that in a randomly chosen sample of ten people in Winnipeg nobody has
a latent TB infection?

31. It has been determined that 15% of all tomato plants in a greenhouse have been infested with horn-
worms. You pick ten plants at random. What is the probability that none of them have been infested
with hornworms?

32. Suppose that dogs with genotype SS and SC have straight hair, and those with genotype CC have
curly hair (so S is the dominant allele). Two SC parents have eight puppies. What is the probability
that exactly four puppies have curly hair?

33. Suppose that dogs with genotype SS and SC have straight hair, and those with genotype CC have
curly hair (so S is the dominant allele). Two SC parents have eight puppies. What is the expected
number of puppies with curly hair? Call that number n. What is the probability that exactly n
puppies have curly hair?

34. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced 12 offspring.

(a) What is the expected value of the number of long offspring?

(b) Find the probability that there are at least two long offspring.

35. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced 12 offspring.

(a) What is the expected value of the number of medium-sized offspring?

(b) Find the probability that there are at most two medium-sized offspring.

36. Various surveys have found that about 95% of claims that certain products are “green” (or “eco-
friendly” or “organic”) are either misleading or not true at all.

(a) What is the expected number of truly “green” products out of 1,000 products that are claimed to
be “green?”

(b) You buy five products that are claimed to be “green.” What is the probability that none of them
are truly “green”? What is the probability that all of them are truly “green”?

37. We investigate the approximation of factorials using Stirling’s formula.

(a) Using Stirling’s formula, approximate 50! and compare with the true value.

(b) Compute the logarithm with base 10 of the formula (10.7) and use it to estimate the number
of digits in 120!. (Thus, you will check the claim made in the text that 120! is of the order of
magnitude of 10198.)

(c) Approximate log10

(
120
36

)
using a calculator. Compare with the true value of 30.73447.
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11 The Multinomial and the Geometric Distributions

In this section we study two discrete distributions that we find often in applica-
tions: the multinomial and the geometric distributions. We start by gener-
alizing the binomial distribution.

The Multinomial Distribution

The binomial distribution is based on repetitions of an experiment (called the
Bernoulli experiment or the Bernoulli trial) that has two outcomes.

Now consider an experiment that has three possible outcomes, called A1, A2,
and A3, whose probabilities are given in Table 11.1. Repeat the experiment ten
times, and assume that the experiments are independent of each other. Define
random variables N1 = “number of times event A1 occurs,” N2 = “number of
times event A2 occurs,” and N3 = “number of times event A3 occurs.” What is
the probability that N1 = 3, N2 = 5, and N3 = 2?

Table 11.1

Outcome Probability

A1 0.2

A2 0.3

A3 0.5

We argue as in the binomial case: the probability that A1 occurs exactly three
times is 0.23; the probability that A2 occurs exactly five times is 0.35; and the
probability that A3 occurs exactly two times is 0.52. Thus, the probability that
one event with N1 = 3, N2 = 5, and N3 = 2 occurs is

0.23 · 0.35 · 0.52

How many events with N1 = 3, N2 = 5, and N3 = 2 are there? Their number
is equal to the number of ways in which we can arrange ten numbers into three
groups, the first one containing three numbers, the second five numbers, and the
third two numbers.

There is a total of 10! arrangements of ten numbers. Note that each choice
of three numbers appears in 3! arrangements; each choice of five numbers appears
in 5! arrangements, and each choice of two numbers appears in 2! arrangements.
Thus, the total number of arrangements is

10!
3! · 5! · 2!

(11.1)

and the probability is (different arrangements are mutually exclusive, so we add
up the probabilities)

P (N1 = 3, N2 = 5, N3 = 2) =
10!

3! · 5! · 2!
0.23 · 0.35 · 0.52

See Exercises 1 and 2 for practice on counting.

Example 11.1 Eating Habits of Wolves in Algonquin Park

Wolf predation can have a considerable impact on the vulnerabity and density of
prey in an ecosystem. Studying wolves in Algonquin Provincial Park in Ontario,
a group of researchers determined the probabilities for the prey of a single wolf;
see Table 11.2. [Source: Voigt, D.R., Kolenosky, G.B., & Pimlott, D.H. (1976).
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(c) You buy 15 boxes of chocolates. What is the expected number of boxes that contain no chocolates
with a hazelnut?

30. About 10% of Canadians have latent TB (tuberculosis) infection (i.e., they have been infected, are
not infectious, but can develop tuberculosis at some point in their lives). [Source: Canadian Institute
for Health Information, Canadian Lung Association, Health Canada Statistics Canada, Respiratory
Disease in Canada, September 2001. Available at www.phac-aspc.gc.ca/publicat/rdc-mrc01/.]

(a) What is the expected number of people with latent TB infection in Winnipeg, Manitoba (popu-
lation 633 thousand)? Define the binomial variable involved, say what constitutes a success, and
state the probability of success.

(b) What is the probability that in a randomly chosen sample of ten people in Winnipeg nobody has
a latent TB infection?

31. It has been determined that 15% of all tomato plants in a greenhouse have been infested with horn-
worms. You pick ten plants at random. What is the probability that none of them have been infested
with hornworms?

32. Suppose that dogs with genotype SS and SC have straight hair, and those with genotype CC have
curly hair (so S is the dominant allele). Two SC parents have eight puppies. What is the probability
that exactly four puppies have curly hair?

33. Suppose that dogs with genotype SS and SC have straight hair, and those with genotype CC have
curly hair (so S is the dominant allele). Two SC parents have eight puppies. What is the expected
number of puppies with curly hair? Call that number n. What is the probability that exactly n
puppies have curly hair?

34. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced 12 offspring.

(a) What is the expected value of the number of long offspring?

(b) Find the probability that there are at least two long offspring.

35. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced 12 offspring.

(a) What is the expected value of the number of medium-sized offspring?

(b) Find the probability that there are at most two medium-sized offspring.

36. Various surveys have found that about 95% of claims that certain products are “green” (or “eco-
friendly” or “organic”) are either misleading or not true at all.

(a) What is the expected number of truly “green” products out of 1,000 products that are claimed to
be “green?”

(b) You buy five products that are claimed to be “green.” What is the probability that none of them
are truly “green”? What is the probability that all of them are truly “green”?

37. We investigate the approximation of factorials using Stirling’s formula.

(a) Using Stirling’s formula, approximate 50! and compare with the true value.

(b) Compute the logarithm with base 10 of the formula (10.7) and use it to estimate the number
of digits in 120!. (Thus, you will check the claim made in the text that 120! is of the order of
magnitude of 10198.)

(c) Approximate log10

(
120
36

)
using a calculator. Compare with the true value of 30.73447.
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11 The Multinomial and the Geometric Distributions

In this section we study two discrete distributions that we find often in applica-
tions: the multinomial and the geometric distributions. We start by gener-
alizing the binomial distribution.

The Multinomial Distribution

The binomial distribution is based on repetitions of an experiment (called the
Bernoulli experiment or the Bernoulli trial) that has two outcomes.

Now consider an experiment that has three possible outcomes, called A1, A2,
and A3, whose probabilities are given in Table 11.1. Repeat the experiment ten
times, and assume that the experiments are independent of each other. Define
random variables N1 = “number of times event A1 occurs,” N2 = “number of
times event A2 occurs,” and N3 = “number of times event A3 occurs.” What is
the probability that N1 = 3, N2 = 5, and N3 = 2?

Table 11.1

Outcome Probability

A1 0.2

A2 0.3

A3 0.5

We argue as in the binomial case: the probability that A1 occurs exactly three
times is 0.23; the probability that A2 occurs exactly five times is 0.35; and the
probability that A3 occurs exactly two times is 0.52. Thus, the probability that
one event with N1 = 3, N2 = 5, and N3 = 2 occurs is

0.23 · 0.35 · 0.52

How many events with N1 = 3, N2 = 5, and N3 = 2 are there? Their number
is equal to the number of ways in which we can arrange ten numbers into three
groups, the first one containing three numbers, the second five numbers, and the
third two numbers.

There is a total of 10! arrangements of ten numbers. Note that each choice
of three numbers appears in 3! arrangements; each choice of five numbers appears
in 5! arrangements, and each choice of two numbers appears in 2! arrangements.
Thus, the total number of arrangements is

10!
3! · 5! · 2!

(11.1)

and the probability is (different arrangements are mutually exclusive, so we add
up the probabilities)

P (N1 = 3, N2 = 5, N3 = 2) =
10!

3! · 5! · 2!
0.23 · 0.35 · 0.52

See Exercises 1 and 2 for practice on counting.

Example 11.1 Eating Habits of Wolves in Algonquin Park

Wolf predation can have a considerable impact on the vulnerabity and density of
prey in an ecosystem. Studying wolves in Algonquin Provincial Park in Ontario,
a group of researchers determined the probabilities for the prey of a single wolf;
see Table 11.2. [Source: Voigt, D.R., Kolenosky, G.B., & Pimlott, D.H. (1976).
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Changes in summer foods of wolves in Central Ontario. The Journal of Wildlife
Management, 40 (4), 663-668.]

Table 11.2

Prey Probability

Deer 0.33

Beaver 0.55

Moose 0.05

Other 0.07

Consider the impact on the prey by a group of 80 adult wolves, assumed to act
independently.

(a) What is the probability that the 80 wolves will prey on 25 deer, 50 beavers,
and 5 moose (and no animals from the “other” group)?

(b) What is the probability that the 80 wolves will prey on 24 deer, 53 beavers, 1
moose, and 2 animals from the “other” group?

Define the random variables N1 = “number of deer preyed on,” N2 = “number of
beavers preyed on,” N3 = “number of moose preyed on,” and N4 = “number of
other animals preyed on.”

(a) Arguing in the same way as in the introductory example, we conclude that

P (N1 = 25, N2 = 50, N3 = 5, N4 = 0)

=
80!

25! · 50! · 5! · 0!
0.3325 · 0.5550 · 0.055 · 0.070

≈ 0.0000378

(b) Likewise,

P (N1 = 24, N2 = 53, N3 = 1, N4 = 2)

=
80!

24! · 53! · 1! · 2!
0.3324 · 0.5553 · 0.051 · 0.072

≈ 0.0001595

Note that the probabilities are very small. The reason is that there are many ways
(over 7 million) in which four non-negative numbers N1, N2, N3, and N4 can be
added up to give 80.

The Geometric Distribution

We go back to the repetitions of Bernoulli trials. Recall that a Bernoulli trial
(Bernoulli experiment) has two outcomes: success (probability p) and no-success
(probability 1−p). Assume that the trials are independent, and define the random
variable

X = “number of trials until the first success”
The range of X is the set 1, 2, 3, 4, . . . . Thus, X is a discrete random variable
whose range is a countably infinite set. (Recall that we have already met countably
infinite discrete random variables in Examples 6.4 and 6.5 in Section 6.) What is
the probability mass function of X?

The probability P (X = 1) is the probability of success in the first trial, so
P (X = 1) = p. By independence,

P (X = 2) = P (the first trial is no-success and the second trial is success)
= P (the first trial is no-success)P (the second trial is success)
= (1 − p)p
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Likewise,

P (X = 3) = P (no-success then no-success then success)
= P (no-success)P (no-success)P (success)
= (1 − p)(1 − p)p
= (1 − p)2p

In general,

P (X = k) = P (no-success in the first k − 1 trials and success in kth trial)
= P (no-success in the first k − 1 trials)P (success in kth trial)
= (1 − p)k−1p (11.2)

The formula (11.2) holds for k = 1, 2, 3, . . . . In order to show that it represents a
probability mass function, we need to check that

(1) P (X = k) ≥ 0 for all k.

(2) The sum of all probabilities in (11.2) is 1.
Since 0 ≤ p ≤ 1, it follows that 1 − p ≥ 0 and thus (1 − p)k−1 ≥ 0 for all k; so (1)
is true.

Note that if p = 0 (the probability of success is zero), then the random variable
X makes no sense (as it describes something that cannot happen). If p = 1 then
P (X = 1) = 1 is the complete probability mass function of X. To avoid these two
trivial cases, in what follows we assume that 0 < p < 1.

For (2), we need to show that the infinite sum
∞∑

k=1

P (X = k) = 1

By definition, the infinite sum (also known as the series) is calculated as the limit
of finite sums:

∞∑
k=1

P (X = k) = lim
n→∞

n∑
k=1

P (X = k)

In our case, we need to calculate
∞∑

k=1

P (X = k) =
∞∑

k=1

(1 − p)k−1p

= p + (1 − p)p + (1 − p)2p + (1 − p)3p + · · · (11.3)

Sums are usually difficult to calculate explicitly (i.e., using formulas). But we are
lucky! We recognize the sum in (11.3) as a geometric series, for which we do have
a formula.

Recall that if |q| < 1, then

1 + q + q2 + q3 + · · · =
1

1 − q
(11.4)

If |q| ≥ 1, then the sum 1 + q + q2 + q3 + · · · is not a real number (we will not
worry about it since we will not meet this case). See Exercise 27 for the derivation
of the sum of the geometric series formula (11.4).

Using (11.4) with q = 1 − p < 1, the sum in (11.3) is calculated to be

p + (1 − p)p + (1 − p)2p + (1 − p)3p + · · ·
= p

[
1 + (1 − p) + (1 − p)2 + (1 − p)3 + · · ·

]

= p
1

1 − (1 − p)

= p
1
p

= 1

Calculus_Prob Status Mod_8.5x10.875.indd   128 12-08-09   12:01 PM



P1-126 Probability and Statistics

Changes in summer foods of wolves in Central Ontario. The Journal of Wildlife
Management, 40 (4), 663-668.]

Table 11.2

Prey Probability

Deer 0.33

Beaver 0.55

Moose 0.05

Other 0.07

Consider the impact on the prey by a group of 80 adult wolves, assumed to act
independently.

(a) What is the probability that the 80 wolves will prey on 25 deer, 50 beavers,
and 5 moose (and no animals from the “other” group)?

(b) What is the probability that the 80 wolves will prey on 24 deer, 53 beavers, 1
moose, and 2 animals from the “other” group?

Define the random variables N1 = “number of deer preyed on,” N2 = “number of
beavers preyed on,” N3 = “number of moose preyed on,” and N4 = “number of
other animals preyed on.”

(a) Arguing in the same way as in the introductory example, we conclude that

P (N1 = 25, N2 = 50, N3 = 5, N4 = 0)

=
80!

25! · 50! · 5! · 0!
0.3325 · 0.5550 · 0.055 · 0.070

≈ 0.0000378

(b) Likewise,

P (N1 = 24, N2 = 53, N3 = 1, N4 = 2)

=
80!

24! · 53! · 1! · 2!
0.3324 · 0.5553 · 0.051 · 0.072

≈ 0.0001595

Note that the probabilities are very small. The reason is that there are many ways
(over 7 million) in which four non-negative numbers N1, N2, N3, and N4 can be
added up to give 80.

The Geometric Distribution

We go back to the repetitions of Bernoulli trials. Recall that a Bernoulli trial
(Bernoulli experiment) has two outcomes: success (probability p) and no-success
(probability 1−p). Assume that the trials are independent, and define the random
variable

X = “number of trials until the first success”
The range of X is the set 1, 2, 3, 4, . . . . Thus, X is a discrete random variable
whose range is a countably infinite set. (Recall that we have already met countably
infinite discrete random variables in Examples 6.4 and 6.5 in Section 6.) What is
the probability mass function of X?

The probability P (X = 1) is the probability of success in the first trial, so
P (X = 1) = p. By independence,

P (X = 2) = P (the first trial is no-success and the second trial is success)
= P (the first trial is no-success)P (the second trial is success)
= (1 − p)p
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Likewise,

P (X = 3) = P (no-success then no-success then success)
= P (no-success)P (no-success)P (success)
= (1 − p)(1 − p)p
= (1 − p)2p

In general,

P (X = k) = P (no-success in the first k − 1 trials and success in kth trial)
= P (no-success in the first k − 1 trials)P (success in kth trial)
= (1 − p)k−1p (11.2)

The formula (11.2) holds for k = 1, 2, 3, . . . . In order to show that it represents a
probability mass function, we need to check that

(1) P (X = k) ≥ 0 for all k.

(2) The sum of all probabilities in (11.2) is 1.
Since 0 ≤ p ≤ 1, it follows that 1 − p ≥ 0 and thus (1 − p)k−1 ≥ 0 for all k; so (1)
is true.

Note that if p = 0 (the probability of success is zero), then the random variable
X makes no sense (as it describes something that cannot happen). If p = 1 then
P (X = 1) = 1 is the complete probability mass function of X. To avoid these two
trivial cases, in what follows we assume that 0 < p < 1.

For (2), we need to show that the infinite sum
∞∑

k=1

P (X = k) = 1

By definition, the infinite sum (also known as the series) is calculated as the limit
of finite sums:

∞∑
k=1

P (X = k) = lim
n→∞

n∑
k=1

P (X = k)

In our case, we need to calculate
∞∑

k=1

P (X = k) =
∞∑

k=1

(1 − p)k−1p

= p + (1 − p)p + (1 − p)2p + (1 − p)3p + · · · (11.3)

Sums are usually difficult to calculate explicitly (i.e., using formulas). But we are
lucky! We recognize the sum in (11.3) as a geometric series, for which we do have
a formula.

Recall that if |q| < 1, then

1 + q + q2 + q3 + · · · =
1

1 − q
(11.4)

If |q| ≥ 1, then the sum 1 + q + q2 + q3 + · · · is not a real number (we will not
worry about it since we will not meet this case). See Exercise 27 for the derivation
of the sum of the geometric series formula (11.4).

Using (11.4) with q = 1 − p < 1, the sum in (11.3) is calculated to be

p + (1 − p)p + (1 − p)2p + (1 − p)3p + · · ·
= p

[
1 + (1 − p) + (1 − p)2 + (1 − p)3 + · · ·

]

= p
1

1 − (1 − p)

= p
1
p

= 1
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Therefore,
∞∑

k=1

P (X = k) =
∞∑

k=1

(1 − p)k−1p = 1

and we are done.

Definition 33 The Geometric Distribution
A discrete random variable X is said to be geometrically distributed with parameter
p if its probability mass function is given by

P (X = k) = (1 − p)k−1p (11.5)

for k = 1, 2, 3, . . . .

The parameter p is the probability of a success in a single trial. The histograms
in Figure 11.1 represent geometric distributions with p = 0.5 and p = 0.15. The
fact that the probabilities decrease means that the largest probability is that of
a success happening right away. As we keep repeating the trials, waiting for a
success to occur, the probabilities get smaller and smaller.
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Geometric distributions

Example 11.2 Molecule Diffusing Out of a Region

The probability that a molecule leaves a fixed region (for instance, a cell) during
any given time interval is 0.15; once it leaves, the molecule does not come back.
What is the probability that the molecule leaves during the sixth time interval?

Define the random variable X = “time interval during which the molecule leaves
the region,” and declare the event “molecule leaves the region” to be the success.
It is given that the probability of success is p = 0.15.

Since X counts the number of trials until the first success, it is geometrically
distributed with parameter p = 0.15. Thus, the probability that the molecule
leaves during the sixth time interval is

P (X = 6) = (1 − p)5 p = (1 − 0.15)5 0.15 ≈ 0.06656

i.e., about 6.7%.

Example 11.3 Molecule Diffusing Out of a Region, II

Continuing with the previous example, what is the probability that the molecule
does not leave the region during the first ten time intervals?

The molecule can leave during the 11th, 12th, 13th, . . . time intervals. In terms of
the random variable X, to answer the question we need to calculate the sum

P (X = 11) + P (X = 12) + P (X = 13) + · · ·
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(which is an infinite sum). Using (11.5), we find

P (X = 11) = (1 − p)10 p = 0.8510 0.15
P (X = 12) = (1 − p)11 p = 0.8511 0.15
P (X = 13) = (1 − p)12 p = 0.8512 0.15

and so on. Thus,

P (X = 11) + P (X = 12) + P (X = 13) + · · ·
= 0.8510 0.15 + 0.8511 0.15 + 0.8512 0.15 + · · ·
= 0.8510 0.15

[
1 + 0.85 + 0.852 + · · ·

]

= 0.8510 0.15 · 1
1 − 0.85

= 0.8510 0.15 · 1
0.15

= 0.8510 ≈ 0.196874

We used the formula for the sum of a geometric series (11.4) with q = 0.85 < 1.

This was good practice, but there is a quicker way to do this. The event
“molecule does not leave during the first ten time intervals” is the intersection of
the events “molecule does not leave during the first time interval,” “molecule does
not leave during the second time interval,” “molecule does not leave during the
third time interval,” . . ., “molecule does not leave during the tenth time interval.”
Because these ten events are independent, the probability of their intersection is
the product of the probabilities. Thus,

P (“molecule does not leave during the first ten time intervals”) = 0.8510

There is a way to do it even more quickly: the desired probability is equal
to the probability of zero successes in ten trials of a Bernoulli experiment with
probability of success equal to p = 0.15:

b(0, 10; 0.15) =
(

10
0

)
0.150 (1 − 0.15)10 = 0.8510

Let X be a geometric distribution with parameter p, i.e.,

P (X = k) = (1 − p)k−1p (11.6)

for k = 1, 2, 3, . . . . Arguing as in Example 11.3, we conclude that the probability
of no success in the first k trials (i.e., the probability that a success occurs after
the kth attempt) is

P (X > k) = (1 − p)k

The cumulative distribution function of X, given by P (X ≤ k), is the probability
of success before trial k, or on trial k. It is given by

P (X ≤ k) = 1 − P (X > k) = 1 − (1 − p)k (11.7)

Clearly, (1 − p)k → 0 as k → ∞ (since 1 − p < 1). Thus,

P (X ≤ k) → 1

as k → ∞.

In Figure 11.2 we show the cumulative distribution function for the molecule
in Examples 11.2 and 11.3 (p = 0.15).
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Therefore,
∞∑

k=1

P (X = k) =
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(1 − p)k−1p = 1

and we are done.

Definition 33 The Geometric Distribution
A discrete random variable X is said to be geometrically distributed with parameter
p if its probability mass function is given by

P (X = k) = (1 − p)k−1p (11.5)

for k = 1, 2, 3, . . . .

The parameter p is the probability of a success in a single trial. The histograms
in Figure 11.1 represent geometric distributions with p = 0.5 and p = 0.15. The
fact that the probabilities decrease means that the largest probability is that of
a success happening right away. As we keep repeating the trials, waiting for a
success to occur, the probabilities get smaller and smaller.
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Example 11.2 Molecule Diffusing Out of a Region

The probability that a molecule leaves a fixed region (for instance, a cell) during
any given time interval is 0.15; once it leaves, the molecule does not come back.
What is the probability that the molecule leaves during the sixth time interval?

Define the random variable X = “time interval during which the molecule leaves
the region,” and declare the event “molecule leaves the region” to be the success.
It is given that the probability of success is p = 0.15.

Since X counts the number of trials until the first success, it is geometrically
distributed with parameter p = 0.15. Thus, the probability that the molecule
leaves during the sixth time interval is

P (X = 6) = (1 − p)5 p = (1 − 0.15)5 0.15 ≈ 0.06656

i.e., about 6.7%.

Example 11.3 Molecule Diffusing Out of a Region, II

Continuing with the previous example, what is the probability that the molecule
does not leave the region during the first ten time intervals?

The molecule can leave during the 11th, 12th, 13th, . . . time intervals. In terms of
the random variable X, to answer the question we need to calculate the sum

P (X = 11) + P (X = 12) + P (X = 13) + · · ·
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(which is an infinite sum). Using (11.5), we find

P (X = 11) = (1 − p)10 p = 0.8510 0.15
P (X = 12) = (1 − p)11 p = 0.8511 0.15
P (X = 13) = (1 − p)12 p = 0.8512 0.15

and so on. Thus,

P (X = 11) + P (X = 12) + P (X = 13) + · · ·
= 0.8510 0.15 + 0.8511 0.15 + 0.8512 0.15 + · · ·
= 0.8510 0.15

[
1 + 0.85 + 0.852 + · · ·

]

= 0.8510 0.15 · 1
1 − 0.85

= 0.8510 0.15 · 1
0.15

= 0.8510 ≈ 0.196874

We used the formula for the sum of a geometric series (11.4) with q = 0.85 < 1.

This was good practice, but there is a quicker way to do this. The event
“molecule does not leave during the first ten time intervals” is the intersection of
the events “molecule does not leave during the first time interval,” “molecule does
not leave during the second time interval,” “molecule does not leave during the
third time interval,” . . ., “molecule does not leave during the tenth time interval.”
Because these ten events are independent, the probability of their intersection is
the product of the probabilities. Thus,

P (“molecule does not leave during the first ten time intervals”) = 0.8510

There is a way to do it even more quickly: the desired probability is equal
to the probability of zero successes in ten trials of a Bernoulli experiment with
probability of success equal to p = 0.15:

b(0, 10; 0.15) =
(

10
0

)
0.150 (1 − 0.15)10 = 0.8510

Let X be a geometric distribution with parameter p, i.e.,

P (X = k) = (1 − p)k−1p (11.6)

for k = 1, 2, 3, . . . . Arguing as in Example 11.3, we conclude that the probability
of no success in the first k trials (i.e., the probability that a success occurs after
the kth attempt) is

P (X > k) = (1 − p)k

The cumulative distribution function of X, given by P (X ≤ k), is the probability
of success before trial k, or on trial k. It is given by

P (X ≤ k) = 1 − P (X > k) = 1 − (1 − p)k (11.7)

Clearly, (1 − p)k → 0 as k → ∞ (since 1 − p < 1). Thus,

P (X ≤ k) → 1

as k → ∞.

In Figure 11.2 we show the cumulative distribution function for the molecule
in Examples 11.2 and 11.3 (p = 0.15).
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Cumulative distribution for
the diffusing molecule

Note that

P (X = k) = (1 − p)k−1 p

is a decreasing function of k (see Figure 11.1 and Exercise 28). Thus, the mode of
X (that is, the mode of any geometric distribution) is X = 1, no matter what the
probability of success. The median of X is the integer that is the closest to the
value K where the cumulative distribution function is equal to 1/2, i.e.,

1 − (1 − p)K = 0.5
(1 − p)K = 0.5

K =
ln 0.5

ln(1 − p)
Now we calculate the mean of X. By definition,

E(X) =
∞∑

k=1

kP (X = k) =
∞∑

k=1

k(1 − p)k−1 p = p

∞∑
k=1

k(1 − p)k−1

In Exercise 29(a) we show that
∞∑

k=1

k(1 − p)k−1 =
1
p2

and therefore

E(X) = p
1
p2

=
1
p

For the molecule in Example 11.2,

E(X) =
1

0.15
≈ 6.667

Thus, on average, the molecule will leave the region during the seventh time in-
terval.

Suppose we keep rolling a die until a 1 appears for the first time. Since the
probability of success is p = 1/6, the expected value is E = 1/p = 1/(1/6) = 6.
Thus, on average, we have to roll a die six times until we roll a 1.

To calculate the variance of X, we use var(X) = E(X2) − (E(X))2. First we
calculate

E(X2) =
∞∑

k=1

k2P (X = k) =
∞∑

k=1

k2(1 − p)k−1 p =
2 − p

p2

(see Exercise 29(b)). Thus,

var(X) =
2 − p

p2
− 1

p2
=

1 − p

p2

When p = 0.5,

var(X) =
1 − 0.5
0.52

= 2
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and the standard deviation is
√

2 ≈ 1.414. When p = 0.15,

var(X) =
1 − 0.15
0.152

≈ 37.778

and the standard deviation is 6.146. These calculations agree with the histograms
in Figure 11.1: the distribution with p = 0.15 is more spread out than the distri-
bution with p = 0.5.

Summary The binomial distribution is based on repetitions of an experiment that has two
outcomes. Independent repetitions of an experiment that has more than two
outcomes generate the multinomial distribution. The probability of the first
success in a sequence of repetitions of a Bernoulli experiment is given by the
geometric distribution. We say that the geometric distribution represents the
waiting time until the first success. If the probability of success is small, the
geometric distribution has a large variance.

11 Exercises

1. Four balls are numbered 1, 2, 3, and 4. Write the answer to each question using factorials, as in (11.1).

(a) In how many ways can we place the four balls into two boxes so that one box contains one ball
and the other box three balls? Write down all possible combinations, to check your answer.

(b) In how many ways can we place the four balls into two boxes so that each box contains two balls?
List all possible combinations.

(c) In how many ways can we place the four balls into three boxes so that two boxes contain one ball
each and the third one contains two balls? List all possible combinations.

2. Five balls are numbered 1, 2, 3, 4, and 5. Write the answer to each question using factorials, as in
(11.1).

(a) In how many ways can we place the five balls into two boxes so that one box contains one ball
and the other box four balls? Write down all possible combinations.

(b) In how many ways can we place the five balls into two boxes so that one box contains two balls
and the other three balls? List all possible combinations.

(c) In how many ways can we place the five balls into three boxes so that two boxes contain one ball
each and the third contains three balls? List all possible combinations.

(d) In how many ways can we place the five balls into three boxes so that two boxes contain two balls
each and the third contains one ball? List all possible combinations.

3. Consider the wolf predation described in Example 11.1.

(a) Write an expression for the probability that the 80 wolves will prey on 10 deer, 70 beavers, no
moose, and no animals from the “other” group.

(b) Write an expression for the probability that the 80 wolves will prey on 60 beavers, 16 animals
from the “other” group, and any combination of a total of four deer or moose.

4. Consider the wolf predation described in Example 11.1.

(a) Write an expression for the probability that the 80 wolves will prey on 5 deer, 65 beavers, 2 moose,
and 8 animals from the “other” group.

(b) Write an expression for the probability that the 80 wolves will prey on 60 beavers, 15 animals
from the “other” group, and (of the remaining five animals) more deer than moose.
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Cumulative distribution for
the diffusing molecule

Note that

P (X = k) = (1 − p)k−1 p

is a decreasing function of k (see Figure 11.1 and Exercise 28). Thus, the mode of
X (that is, the mode of any geometric distribution) is X = 1, no matter what the
probability of success. The median of X is the integer that is the closest to the
value K where the cumulative distribution function is equal to 1/2, i.e.,

1 − (1 − p)K = 0.5
(1 − p)K = 0.5

K =
ln 0.5

ln(1 − p)
Now we calculate the mean of X. By definition,

E(X) =
∞∑

k=1

kP (X = k) =
∞∑

k=1

k(1 − p)k−1 p = p

∞∑
k=1

k(1 − p)k−1

In Exercise 29(a) we show that
∞∑

k=1

k(1 − p)k−1 =
1
p2

and therefore

E(X) = p
1
p2

=
1
p

For the molecule in Example 11.2,

E(X) =
1

0.15
≈ 6.667

Thus, on average, the molecule will leave the region during the seventh time in-
terval.

Suppose we keep rolling a die until a 1 appears for the first time. Since the
probability of success is p = 1/6, the expected value is E = 1/p = 1/(1/6) = 6.
Thus, on average, we have to roll a die six times until we roll a 1.

To calculate the variance of X, we use var(X) = E(X2) − (E(X))2. First we
calculate

E(X2) =
∞∑

k=1

k2P (X = k) =
∞∑

k=1

k2(1 − p)k−1 p =
2 − p

p2

(see Exercise 29(b)). Thus,

var(X) =
2 − p

p2
− 1

p2
=

1 − p

p2

When p = 0.5,

var(X) =
1 − 0.5
0.52

= 2
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and the standard deviation is
√

2 ≈ 1.414. When p = 0.15,

var(X) =
1 − 0.15
0.152

≈ 37.778

and the standard deviation is 6.146. These calculations agree with the histograms
in Figure 11.1: the distribution with p = 0.15 is more spread out than the distri-
bution with p = 0.5.

Summary The binomial distribution is based on repetitions of an experiment that has two
outcomes. Independent repetitions of an experiment that has more than two
outcomes generate the multinomial distribution. The probability of the first
success in a sequence of repetitions of a Bernoulli experiment is given by the
geometric distribution. We say that the geometric distribution represents the
waiting time until the first success. If the probability of success is small, the
geometric distribution has a large variance.

11 Exercises

1. Four balls are numbered 1, 2, 3, and 4. Write the answer to each question using factorials, as in (11.1).

(a) In how many ways can we place the four balls into two boxes so that one box contains one ball
and the other box three balls? Write down all possible combinations, to check your answer.

(b) In how many ways can we place the four balls into two boxes so that each box contains two balls?
List all possible combinations.

(c) In how many ways can we place the four balls into three boxes so that two boxes contain one ball
each and the third one contains two balls? List all possible combinations.

2. Five balls are numbered 1, 2, 3, 4, and 5. Write the answer to each question using factorials, as in
(11.1).

(a) In how many ways can we place the five balls into two boxes so that one box contains one ball
and the other box four balls? Write down all possible combinations.

(b) In how many ways can we place the five balls into two boxes so that one box contains two balls
and the other three balls? List all possible combinations.

(c) In how many ways can we place the five balls into three boxes so that two boxes contain one ball
each and the third contains three balls? List all possible combinations.

(d) In how many ways can we place the five balls into three boxes so that two boxes contain two balls
each and the third contains one ball? List all possible combinations.

3. Consider the wolf predation described in Example 11.1.

(a) Write an expression for the probability that the 80 wolves will prey on 10 deer, 70 beavers, no
moose, and no animals from the “other” group.

(b) Write an expression for the probability that the 80 wolves will prey on 60 beavers, 16 animals
from the “other” group, and any combination of a total of four deer or moose.

4. Consider the wolf predation described in Example 11.1.

(a) Write an expression for the probability that the 80 wolves will prey on 5 deer, 65 beavers, 2 moose,
and 8 animals from the “other” group.

(b) Write an expression for the probability that the 80 wolves will prey on 60 beavers, 15 animals
from the “other” group, and (of the remaining five animals) more deer than moose.
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5. In a crossing of genotype AB parents, three offspring are homozygous of genotype AA, four are ho-
mozygous of genotype BB, and two are heterozygous. What is the probability of this event occurring?

6. In a crossing of genotype AB and AB parents, two offspring are of genotype AA, three are of genotype
BB, and three are heterozygous. What is the probability of this event occurring?

7. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced six offspring.

(a) What is the probability that two offspring are long, two are of medium length, and two are short?

(b) What is the probability that two offspring are long, and of the remaining four, there are more
short than medium-length offspring?

8. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced six offspring.

(a) What is the probability that three offspring are long, one is of medium length, and two are short?

(b) What is the probability that three offspring are short, and of the remaining three, there is at least
one long offspring?

9. Assume that A is a normal allele and B is a mutant allele. A pair of mutant alleles BB causes a certain
trait (say, attached earlobes). A person with genotype AB is a carrier of the trait but does not exhibit
it. A person with genotype AA neither is a carrier nor exhibits the trait. Assume that AB parents
decide to have four children. What is the probability that one child will have attached earlobes, two
will be carriers, and one will neither be a carrier nor have attached earlobes?

10. Consider the context in Exercise 9. What is the probability that the couple will have exactly two
children with attached earlobes?

11–17 In each case:

(a) Compute the required probability.

(b) Sketch the histogram and shade the area corresponding to the probability in (a).

11. The probability that the first success occurs on the fourth trial, given that the probability of a success
in each trial is 0.15.

12. The probability that the first success occurs on the third trial, given that the probability of a success
in each trial is 0.8.

13. The probability that the first success occurs on the third trial, given that the probability of a success
in each trial is 0.2.

14. The probability that the first success occurs on or after the third trial, given that the probability of
a success in each trial is 0.3.

15. The probability that the first success occurs on or after the fourth trial, given that the probability of
a success in each trial is 0.6.

16. The probability that the first success occurs on or before the third trial, given that the probability of
a success in each trial is 0.3.

17. The probability that the first success occurs on or before the fourth trial, given that the probability
of a success in each trial is 0.6.

18. Consider geometric distributions with probabilities of success equal to p1 = 0.3 and p2 = 0.7. Which
one has larger the mean? Which is more spread out?
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19. Consider geometric distributions with probabilities of success equal to p1 = p and p2 = p/2. Which
distribution is more spread out?

20. Assume a 1:1 sex ratio. A couple continues to have children until they have a girl. Find each
probability.

(a) The second child is a girl.

(b) Either the second or the third child is a girl.

(c) A girl is born after four attempts.

21. The mean of a geometric distribution is 5. What is its standard deviation?

22. The mean of a geometric distribution is m. What is its standard deviation?

23. The variance of a geometric distribution is 2. What is its mean?

24. The variance of a geometric distribution is v > 0. What is its mean?

25. A gene has a 0.1% chance of mutating each time a cell divides. What is the probability that a gene
will mutate during the 20th cell division? What is the probability that it will mutate before or during
the 20th cell division?

26. A molecule leaves a cell during each hour with a 45% chance. Find the probability that the molecule
leaves during the tenth hour. Find the probability that the molecule leaves before or during the tenth
hour.

27. Recall that an infinite sum is calculated as the limit of finite sums. Take a number q such that |q| < 1.

(a) Let sn = 1 + q + q2 + q3 + · · · + qn. Multiply this equation by q, and subtract what you obtain
from the given equation. Solve for sn to get sn = (1 − qn+1)/(1 − q).

(b) Calculate the limit of sn as n → ∞ to show that 1 + q + q2 + q3 + · · · = 1/(1 − q).

28. Assume that 0 < p < 1.

(a) Explain why the numbers p, (1 − p)p, (1 − p)2p, (1 − p)3p, . . . form a decreasing sequence.

(b) Use calculus to show that f(k) = (1 − p)k−1 p is a decreasing function.

29. Assume that 0 < q < 1.

(a) Start with

1 + q + q2 + q3 + · · · =
1

1 − q

and differentiate both sides with respect to q. Replace q by 1 − p to show that
∞∑

k=1

k(1 − p)k−1 =
1
p2

(b) Start with

1 + q + q2 + q3 + · · · =
1

1 − q

and differentiate both sides with respect to q. Then multiply by q and differentiate both sides with
respect to q once again. Replace q by 1 − p to obtain

p

∞∑
k=1

k2(1 − p)k−1 =
2 − p

p2
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5. In a crossing of genotype AB parents, three offspring are homozygous of genotype AA, four are ho-
mozygous of genotype BB, and two are heterozygous. What is the probability of this event occurring?

6. In a crossing of genotype AB and AB parents, two offspring are of genotype AA, three are of genotype
BB, and three are heterozygous. What is the probability of this event occurring?

7. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced six offspring.

(a) What is the probability that two offspring are long, two are of medium length, and two are short?

(b) What is the probability that two offspring are long, and of the remaining four, there are more
short than medium-length offspring?

8. Suppose that the alleles responsible for the growth of a trout are additive in the sense that trout with
genotype LL are long, those with genotype LS are of medium length, and those with genotype SS are
short. A crossing of two LS trout produced six offspring.

(a) What is the probability that three offspring are long, one is of medium length, and two are short?

(b) What is the probability that three offspring are short, and of the remaining three, there is at least
one long offspring?

9. Assume that A is a normal allele and B is a mutant allele. A pair of mutant alleles BB causes a certain
trait (say, attached earlobes). A person with genotype AB is a carrier of the trait but does not exhibit
it. A person with genotype AA neither is a carrier nor exhibits the trait. Assume that AB parents
decide to have four children. What is the probability that one child will have attached earlobes, two
will be carriers, and one will neither be a carrier nor have attached earlobes?

10. Consider the context in Exercise 9. What is the probability that the couple will have exactly two
children with attached earlobes?

11–17 In each case:

(a) Compute the required probability.

(b) Sketch the histogram and shade the area corresponding to the probability in (a).

11. The probability that the first success occurs on the fourth trial, given that the probability of a success
in each trial is 0.15.

12. The probability that the first success occurs on the third trial, given that the probability of a success
in each trial is 0.8.

13. The probability that the first success occurs on the third trial, given that the probability of a success
in each trial is 0.2.

14. The probability that the first success occurs on or after the third trial, given that the probability of
a success in each trial is 0.3.

15. The probability that the first success occurs on or after the fourth trial, given that the probability of
a success in each trial is 0.6.

16. The probability that the first success occurs on or before the third trial, given that the probability of
a success in each trial is 0.3.

17. The probability that the first success occurs on or before the fourth trial, given that the probability
of a success in each trial is 0.6.

18. Consider geometric distributions with probabilities of success equal to p1 = 0.3 and p2 = 0.7. Which
one has larger the mean? Which is more spread out?
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19. Consider geometric distributions with probabilities of success equal to p1 = p and p2 = p/2. Which
distribution is more spread out?

20. Assume a 1:1 sex ratio. A couple continues to have children until they have a girl. Find each
probability.

(a) The second child is a girl.

(b) Either the second or the third child is a girl.

(c) A girl is born after four attempts.

21. The mean of a geometric distribution is 5. What is its standard deviation?

22. The mean of a geometric distribution is m. What is its standard deviation?

23. The variance of a geometric distribution is 2. What is its mean?

24. The variance of a geometric distribution is v > 0. What is its mean?

25. A gene has a 0.1% chance of mutating each time a cell divides. What is the probability that a gene
will mutate during the 20th cell division? What is the probability that it will mutate before or during
the 20th cell division?

26. A molecule leaves a cell during each hour with a 45% chance. Find the probability that the molecule
leaves during the tenth hour. Find the probability that the molecule leaves before or during the tenth
hour.

27. Recall that an infinite sum is calculated as the limit of finite sums. Take a number q such that |q| < 1.

(a) Let sn = 1 + q + q2 + q3 + · · · + qn. Multiply this equation by q, and subtract what you obtain
from the given equation. Solve for sn to get sn = (1 − qn+1)/(1 − q).

(b) Calculate the limit of sn as n → ∞ to show that 1 + q + q2 + q3 + · · · = 1/(1 − q).

28. Assume that 0 < p < 1.

(a) Explain why the numbers p, (1 − p)p, (1 − p)2p, (1 − p)3p, . . . form a decreasing sequence.

(b) Use calculus to show that f(k) = (1 − p)k−1 p is a decreasing function.

29. Assume that 0 < q < 1.

(a) Start with

1 + q + q2 + q3 + · · · =
1

1 − q

and differentiate both sides with respect to q. Replace q by 1 − p to show that
∞∑

k=1

k(1 − p)k−1 =
1
p2

(b) Start with

1 + q + q2 + q3 + · · · =
1

1 − q

and differentiate both sides with respect to q. Then multiply by q and differentiate both sides with
respect to q once again. Replace q by 1 − p to obtain

p

∞∑
k=1

k2(1 − p)k−1 =
2 − p

p2

Calculus_Prob Status Mod_8.5x10.875.indd   135 12-08-09   12:01 PM



P1-134 Probability and Statistics

12 The Poisson Distribution

In this section we study one of the most useful discrete distributions, the Poisson
distribution.

The Poisson Distribution

The Poisson distribution counts the number of events that occur randomly over
time or over space. It is one of the most widely used distributions, as it can model
a wide range of phenomena, such as the number of mutations in a stretch of a
DNA, the number of bacteria per square centimetre of a kitchen countertop, the
number of weekly requests for an emergency ultrasound or CT scan, the number of
car accidents on a given stretch of highway, the number of stars in a given volume
of the sky, or the distribution of pieces of almond in a square of chocolate.

The Poisson distribution describes the number of occurrences of an event in a
given finite interval of time or space, assuming that

(1) the occurrences of the event are mutually independent (i.e., one event occurring
does not affect the probability of another event occurring), and

(2) the probability of an occurrence is the same for all intervals of the same size.
The “interval” can be an actual time interval, or a unit of length, area, or volume
(as we will witness soon). The events that satisfy (1) and (2) are said to form a
Poisson process.

Definition 34 The Poisson Distribution
A random variable X is said to have a Poisson distribution with parameter λ if its
probability mass function satisfies

P (X = k) = e−λ λk

k!
(12.1)

for k = 0, 1, 2, . . . .

X is a discrete random variable whose range is countably infinite. To denote that
X is Poisson-distributed with parameter λ, we write X∼ Po (λ).

Recall that 0! = 1, 1! = 1, and k! = 1 · 2 · 3 · · · k, for k ≥ 1. Since λ > 0,
we conclude that P (X = k) ≥ 0 for all non-negative k. To show that (12.1) is a
probability mass function, we have to to verify that

∞∑
k=0

e−λ λk

k!
= 1 (12.2)

We factor out the term not involving k:
∞∑

k=0

e−λ λk

k!
= e−λ

∞∑
k=0

λk

k!

Recall that the Taylor polynomial of y = ex of order n is given by

Tn(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
=

n∑
k=0

xk

k!

Taking the limit of both sides we obtain

ex = lim
n→∞

Tn(x) = lim
n→∞

n∑
k=0

xk

k!
=

∞∑
k=0

xk

k!
(12.3)

The last equal sign is due to the definition of an infinite sum. The reasons why
the first equal sign in (12.3) is true are beyond the scope of this book.
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Using (12.3) with x = λ, we get

e−λ
∞∑

k=0

λk

k!
= e−λeλ = 1

So (12.1) is indeed a probability mass function.
In Figure 12.1 we show histograms of Poisson distributions corresponding to

four different values of the parameter λ.

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 120

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 160

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

λ=1

λ=10

λ=3

λ=6

FIGURE 12.1

Poisson distributions

Example 12.1 Bacteria in a Piece of Salami

A piece of salami that was dropped on the floor was found to contain four salmo-
nella bacteria per square centimetre. (As few as ten salmonella bacteria can cause
gastroenteritis (stomach flu).) Assuming that the number of salmonella bacteria
per square centimetre has a Poisson distribution, find the probability that

(a) There are no salmonella bacteria in a given square centimetre of the piece of
salami.

(b) There are at least three bacteria in a given square centimetre of the piece of
salami.

Define X = “number of salmonella bacteria in a given square centimetre of the
piece of salami.” Then X∼ Po (4), i.e., λ = 4 bacteria per square centimetre.

(a) We are looking for the probability P (X = 0). Substituting λ = 4 and k = 0
into (12.1), we obtain

P (X = 0) = e−4 40

0!
= e−4 ≈ 0.018316

Thus, the chance of finding no salmonella bacteria in a randomly chosen square
centimetre of the piece of salami is less than 2%.

(b) The probability that there are at least three bacteria in a given square cen-
timetre of the salami is (using complementary events)

P (X ≥ 3) = 1 − P (X < 3)
= 1 − P (X = 0 or X = 1 or X = 2)
= 1 − (P (X = 0) + P (X = 1) + P (X = 2))
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12 The Poisson Distribution

In this section we study one of the most useful discrete distributions, the Poisson
distribution.

The Poisson Distribution

The Poisson distribution counts the number of events that occur randomly over
time or over space. It is one of the most widely used distributions, as it can model
a wide range of phenomena, such as the number of mutations in a stretch of a
DNA, the number of bacteria per square centimetre of a kitchen countertop, the
number of weekly requests for an emergency ultrasound or CT scan, the number of
car accidents on a given stretch of highway, the number of stars in a given volume
of the sky, or the distribution of pieces of almond in a square of chocolate.

The Poisson distribution describes the number of occurrences of an event in a
given finite interval of time or space, assuming that

(1) the occurrences of the event are mutually independent (i.e., one event occurring
does not affect the probability of another event occurring), and

(2) the probability of an occurrence is the same for all intervals of the same size.
The “interval” can be an actual time interval, or a unit of length, area, or volume
(as we will witness soon). The events that satisfy (1) and (2) are said to form a
Poisson process.

Definition 34 The Poisson Distribution
A random variable X is said to have a Poisson distribution with parameter λ if its
probability mass function satisfies

P (X = k) = e−λ λk

k!
(12.1)

for k = 0, 1, 2, . . . .

X is a discrete random variable whose range is countably infinite. To denote that
X is Poisson-distributed with parameter λ, we write X∼ Po (λ).

Recall that 0! = 1, 1! = 1, and k! = 1 · 2 · 3 · · · k, for k ≥ 1. Since λ > 0,
we conclude that P (X = k) ≥ 0 for all non-negative k. To show that (12.1) is a
probability mass function, we have to to verify that

∞∑
k=0

e−λ λk

k!
= 1 (12.2)

We factor out the term not involving k:
∞∑

k=0

e−λ λk

k!
= e−λ

∞∑
k=0

λk

k!

Recall that the Taylor polynomial of y = ex of order n is given by

Tn(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
=

n∑
k=0

xk

k!

Taking the limit of both sides we obtain

ex = lim
n→∞

Tn(x) = lim
n→∞

n∑
k=0

xk

k!
=

∞∑
k=0

xk

k!
(12.3)

The last equal sign is due to the definition of an infinite sum. The reasons why
the first equal sign in (12.3) is true are beyond the scope of this book.
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Using (12.3) with x = λ, we get

e−λ
∞∑

k=0

λk

k!
= e−λeλ = 1

So (12.1) is indeed a probability mass function.
In Figure 12.1 we show histograms of Poisson distributions corresponding to

four different values of the parameter λ.
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Poisson distributions

Example 12.1 Bacteria in a Piece of Salami

A piece of salami that was dropped on the floor was found to contain four salmo-
nella bacteria per square centimetre. (As few as ten salmonella bacteria can cause
gastroenteritis (stomach flu).) Assuming that the number of salmonella bacteria
per square centimetre has a Poisson distribution, find the probability that

(a) There are no salmonella bacteria in a given square centimetre of the piece of
salami.

(b) There are at least three bacteria in a given square centimetre of the piece of
salami.

Define X = “number of salmonella bacteria in a given square centimetre of the
piece of salami.” Then X∼ Po (4), i.e., λ = 4 bacteria per square centimetre.

(a) We are looking for the probability P (X = 0). Substituting λ = 4 and k = 0
into (12.1), we obtain

P (X = 0) = e−4 40

0!
= e−4 ≈ 0.018316

Thus, the chance of finding no salmonella bacteria in a randomly chosen square
centimetre of the piece of salami is less than 2%.

(b) The probability that there are at least three bacteria in a given square cen-
timetre of the salami is (using complementary events)

P (X ≥ 3) = 1 − P (X < 3)
= 1 − P (X = 0 or X = 1 or X = 2)
= 1 − (P (X = 0) + P (X = 1) + P (X = 2))
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The last equal sign is because the three events X = 0, X = 1, and X = 2 are
mutually exclusive.
From

P (X = 0) + P (X = 1) + P (X = 2) = e−4 40

0!
+ e−4 41

1!
+ e−4 42

2!

= e−4

(
1 + 4 +

42

2

)

= 13e−4 ≈ 0.238103

we obtain

P (X ≥ 3) = 1 − P (X < 3) ≈ 1 − 0.238103 = 0.761897

In the previous example, the “interval” was 1 cm2. In our next example, it is a
time interval.

Example 12.2 The Number of Requests for an Emergency Diagnostic Scan

The number of emergency requests for an ultrasound or a CT scan during the
9-hour interval from 8 a.m. to 5 p.m. on a weekday in a medical clinic is ap-
proximated by the Poisson distribution with parameter λ = 6.56; units of λ are
requests per 9-hour interval. [Source: Vasanawala, S.S., & Desser, T.S. (2005).
Accommodation of requests for emergency US and CT: applications of queueing
theory to scheduling of urgent studies. Radiology, 235 (1), 244-249.]

What is the probability that, on a given weekday between 8 a.m. and 5 p.m.,
there will be between 9 and 12 emergency requests for the scans?

Let X denote the number of requests for an emergency scan on a weekday between
8 a.m. and 5 p.m. It is given that X∼ Po (6.56). Thus (using mutual exclusivity
of events)

P (9 ≤ X ≤ 12) = P (X = 9 or X = 10 or X = 11 or X = 12)
= P (X = 9) + P (X = 10) + P (X = 11) + P (X = 12)

= e−6.56 6.569

9!
+ e−6.56 6.5610

10!
+ e−6.56 6.5611

11!
+ e−6.56 6.5612

12!
≈ 0.087781 + 0.057584 + 0.034341 + 0.018773
= 0.198479

Next, we compute the mean and the variance of a Poisson distribution.
The mean of X∼ Po (λ) is given by the sum

E(X) =
∞∑

k=0

kP (X = k) =
∞∑

k=0

ke−λ λk

k!

In Exercise 30(a) we show that
∞∑

k=0

k
λk

k!
= λ eλ

and therefore

E(X) = e−λ
∞∑

k=0

k
λk

k!
= e−λλ eλ = λ

From

E(X2) =
∞∑

k=0

k2P (X = k) =
∞∑

k=0

k2e−λ λk

k!
= e−λ

∞∑
k=0

k2 λk

k!

Section 12 The Poisson Distribution P1-137

using the formula for the infinite sum
∞∑

k=0

k2 λk

k!
= λ eλ + λ2 eλ

that we derive in Exercise 30(b), we get

E(X2) = e−λ
(
λ eλ + λ2 eλ

)
= λ + λ2

The variance of X is

var(X) = E(X2) − (E(X))2 = λ + λ2 − λ2 = λ

Note that E(X) = var(X) = λ. The standard deviation of X is
√

λ.

If the mean number of occurrences λ is large, so is the standard deviation√
λ. This means that the distribution is quite spread out (and thus not of much

value). For this reason a Poisson distribution is usually used (and gives meaningful
results, as we will see) when the mean number of occurrences is small, i.e., for rarely
occurring random phenomena.

Example 12.3 Radiotherapy in Cancer Treatment

Radiotherapy, or radiation therapy, is a medical procedure that is used for a num-
ber of purposes, from cancer treatment, control of malignant cells, and palliative
treatments to treatments of non-malignant conditions.

In the case of cancer, ionizing radiation (a beam of charged particles) is used to
disable the development of cancerous cells by damaging their DNA, thus eventually
killing them. The amount of radiation that is applied is of crucial importance in
the treatment.

Assume that a cancer has N cells (a cancer starts with one cell, and can grow
to contain more than one billion cells). As well, assume that one charged particle
in the radiation beam that is used is capable of damaging one cell. We will say
that a particle “hits” the cell (thus, one or more hits into the same cell will disable
it). Finally, assume that the number of hits per cell is Poisson-distributed.

(a) Suppose that the radiation beam contains N charged particles (that’s one
particle per cancerous cell). How many cancerous cells will be missed in the
treatment? What ratio of cells will be hit more than once?

(b) Suppose that the radiation beam contains 3N particles (that’s three particles
per cancerous cell). What ratio of cancerous cells will survive this treatment (i.e.,
will not be hit by a single particle)?

Let X denote the number of particles that hit a cell.

(a) It is assumed that the average number of particles that hit a cell is 1. Since the
expected value of X is λ, it follows that λ = 1; thus, X∼ Po (1). The probability
that a cell does not get hit is

P (X = 0) = e−1 10

0!
= e−1 ≈ 0.367879

Thus, over one third of all cancerous cells will be unaffected by this treatment
(i.e., will not be hit by radiation). In other words, the treatment succeeds in
killing about (1 − 0.367879 = 0.632121) 63.2% of cells.

For practice, we compute

P (X = 1) = e−1 11

1!
= e−1 ≈ 0.367879

P (X = 2) = e−1 12

2!
= e−1 1

2
≈ 0.183940

P (X = 3) = e−1 13

3!
= e−1 1

6
≈ 0.061313
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The mean of X∼ Po (λ) is given by the sum
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using the formula for the infinite sum
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The variance of X is
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Note that E(X) = var(X) = λ. The standard deviation of X is
√

λ.

If the mean number of occurrences λ is large, so is the standard deviation√
λ. This means that the distribution is quite spread out (and thus not of much

value). For this reason a Poisson distribution is usually used (and gives meaningful
results, as we will see) when the mean number of occurrences is small, i.e., for rarely
occurring random phenomena.

Example 12.3 Radiotherapy in Cancer Treatment

Radiotherapy, or radiation therapy, is a medical procedure that is used for a num-
ber of purposes, from cancer treatment, control of malignant cells, and palliative
treatments to treatments of non-malignant conditions.

In the case of cancer, ionizing radiation (a beam of charged particles) is used to
disable the development of cancerous cells by damaging their DNA, thus eventually
killing them. The amount of radiation that is applied is of crucial importance in
the treatment.

Assume that a cancer has N cells (a cancer starts with one cell, and can grow
to contain more than one billion cells). As well, assume that one charged particle
in the radiation beam that is used is capable of damaging one cell. We will say
that a particle “hits” the cell (thus, one or more hits into the same cell will disable
it). Finally, assume that the number of hits per cell is Poisson-distributed.

(a) Suppose that the radiation beam contains N charged particles (that’s one
particle per cancerous cell). How many cancerous cells will be missed in the
treatment? What ratio of cells will be hit more than once?

(b) Suppose that the radiation beam contains 3N particles (that’s three particles
per cancerous cell). What ratio of cancerous cells will survive this treatment (i.e.,
will not be hit by a single particle)?

Let X denote the number of particles that hit a cell.

(a) It is assumed that the average number of particles that hit a cell is 1. Since the
expected value of X is λ, it follows that λ = 1; thus, X∼ Po (1). The probability
that a cell does not get hit is

P (X = 0) = e−1 10

0!
= e−1 ≈ 0.367879

Thus, over one third of all cancerous cells will be unaffected by this treatment
(i.e., will not be hit by radiation). In other words, the treatment succeeds in
killing about (1 − 0.367879 = 0.632121) 63.2% of cells.

For practice, we compute

P (X = 1) = e−1 11

1!
= e−1 ≈ 0.367879

P (X = 2) = e−1 12
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= e−1 1

2
≈ 0.183940

P (X = 3) = e−1 13

3!
= e−1 1

6
≈ 0.061313

Calculus_Prob Status Mod_8.5x10.875.indd   139 12-08-09   12:01 PM



P1-138 Probability and Statistics

P (X = 4) = e−1 14

4!
= e−1 1

24
≈ 0.015328

and so on; see Figure 12.1 on page P1-135 for the histogram. We see that about
37% of the cells will be hit once, about 18% will be hit twice, and so on.

To find out what ratio of cells will be hit more that once we compute

P (X > 1) = 1 − P (X ≤ 1)
= 1 − P (X = 0) − P (X = 1)
≈ 1 − 0.367879 − 0.367879 = 0.264242

Thus, 26.4% of all cells will be hit more than once.

(b) This time, X∼ Po (3), and

P (X = 0) = e−3 30

0!
= e−3 ≈ 0.0497871

So, about 5% of the cells will not be hit. The good news is that tripling the
intensity of the radiation improves the ratio of cancerous cells killed from 63.2%
to 95%. The bad news, though, is that 5% of cancerous cells will still survive the
treatment.

Example 12.4 Using the Poisson Distribution to Identify a Possible Epidemic Outbreak

In a non-epidemic situation, occurrences of certain infections (or medical condi-
tions, or diseases) are viewed as independent, random events and are often mod-
elled with a Poisson distribution. If the actual number of cases deviates signifi-
cantly from what the Poisson model predicts, there is a possibility of an outbreak.
Let’s look at an example.

According to the Meningitis Research Foundation of Canada, the number
of occurrences of pneumococcal meningitis is 2 per 100,000 Canadians per year.
[Source: www.meningitis.ca/en/what is meningitis/pneumococcal.shtml.] That is
two cases per year in a city the size of St. John’s (Newfoundland and Labrador)
or Lethbridge (Alberta).

Assume that in the last month at least two cases of pneumococcal meningitis
were diagnosed in St. John’s. Is this normal (i.e., could it be attributed to the
randomness of the occurrence of meningitis), or is there a reason for concern as
this could be a sign of an epidemic outbreak?

Two cases per year translate to 2/12 = 1/6 cases per month. Thus, we model
the number of cases X using the distribution X ∼ Po (1/6) ≈ Po(0.166667). The
probability that there are fewer than two cases in a month in St. John’s is

P (X < 2) = P (X = 0) + P (X = 1)

= e−0.166667 0.1666670

0!
+ e−0.166667 0.1666671

1!
≈ 0.846481 + 0.141081 = 0.987562

In words, fewer than two cases of meningitis a month occur with 98.7% chance.
So identifying two or more cases in a month is very unlikely to happen by sheer
randomness (the chance of that happening is 1.3%). Thus, there are reasons to
believe that there is an epidemic outbreak.

Example 12.5 Chocolate with Almonds

Divide a bar of chocolate into 24 squares of equal size (we call them squares,
but they are not really squares), and count the number of pieces of almond in
each square. In Figure 12.2 we simulated this situation by asking a computer
to randomly select 72 points within the 6 by 4 grid (i.e., 24 squares). Thus, on
average, there should be three pieces of almond in each square.
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FIGURE 12.2

Simulation of the distribu-
tion of almond pieces in a
bar of chocolate

In Table 12.1 we recorded the actual count (number of squares that contain a
certain number of pieces of almond) and compared with the prediction given by
X ∼ Po (3). In order to obtain a closer match, we would need to repeat the
experiment many times and calculate the averages for the relative frequencies.

Table 12.1

Number of pieces Number of Relative Poisson

of almond squares frequency distribution

0 1 0.0416667 0.049787

1 2 0.0833333 0.149361

2 7 0.291667 0.224042

3 6 0.25 0.224042

4 5 0.208333 0.168031

5 1 0.0416667 0.100819

6 1 0.0416667 0.0504094

7 1 0.0416667 0.0216040

To calculate the probabilities in the last column, we used

P (X = k) = e−3 3k

k!
with k = 0, 1, 2, . . . , 7.

We discuss two more properties of the Poisson distribution.

Theorem 12 Sum of Poisson Distributions
Assume that X1 and X2 are independent, Poisson-distributed random variables,
X1 ∼ Po (λ1) and X2 ∼ Po (λ2). Then their sum X = X1 + X2 is Poisson-
distributed with λ = λ1 + λ2.

By the additive property of the expected value,

E(X) = E(X1 + X2) = E(X1) + E(X2) = λ1 + λ2

Since the two random variables are independent,

var(X) = var(X1 + X2) = var(X1) + var(X2) = λ1 + λ2
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So identifying two or more cases in a month is very unlikely to happen by sheer
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believe that there is an epidemic outbreak.
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but they are not really squares), and count the number of pieces of almond in
each square. In Figure 12.2 we simulated this situation by asking a computer
to randomly select 72 points within the 6 by 4 grid (i.e., 24 squares). Thus, on
average, there should be three pieces of almond in each square.

Section 12 The Poisson Distribution P1-139

0 1 2 3 4 5 6
0

1

2

3

4

FIGURE 12.2

Simulation of the distribu-
tion of almond pieces in a
bar of chocolate

In Table 12.1 we recorded the actual count (number of squares that contain a
certain number of pieces of almond) and compared with the prediction given by
X ∼ Po (3). In order to obtain a closer match, we would need to repeat the
experiment many times and calculate the averages for the relative frequencies.
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To calculate the probabilities in the last column, we used
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k!
with k = 0, 1, 2, . . . , 7.

We discuss two more properties of the Poisson distribution.

Theorem 12 Sum of Poisson Distributions
Assume that X1 and X2 are independent, Poisson-distributed random variables,
X1 ∼ Po (λ1) and X2 ∼ Po (λ2). Then their sum X = X1 + X2 is Poisson-
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This, of course, does not prove that X is a Poisson random variable (but it’s a
good start; since the mean and the variance of X are equal, X does have a chance
of being a Poisson distribution). To prove the theorem, we have to show that

P (X = k) = e−(λ1+λ2)
(λ1 + λ2)k

k!
for all k = 0, 1, 2, . . . . We will show that the first two cases (k = 0 and k = 1)
work, i.e.,

P (X = 0) = e−(λ1+λ2)
(λ1 + λ2)0

0!
= e−(λ1+λ2)

P (X = 1) = e−(λ1+λ2)
(λ1 + λ2)1

1!
= e−(λ1+λ2)(λ1 + λ2)

Using the assumption of independence,

P (X = 0) = P (X1 = 0 and X2 = 0)
= P (X1 = 0)P (X2 = 0)

= e−λ1
λ0

1

0!
e−λ2

λ0
2

0!
= e−λ1e−λ2 = e−(λ1+λ2)

Starting with mutual exclusivity and then using independence,

P (X = 1) = P ((X1 = 0 and X2 = 1) or (X1 = 1 and X2 = 0))
= P (X1 = 0 and X2 = 1) + P (X1 = 1 and X2 = 0)
= P (X1 = 0)P (X2 = 1) + P (X1 = 1)P (X2 = 0)

= e−λ1
λ0

1

0!
e−λ2

λ1
2

1!
+ e−λ1

λ1
1

1!
e−λ2

λ0
2

0!
= e−λ1e−λ2λ2 + e−λ1λ1e

−λ2

= e−(λ1+λ2)(λ1 + λ2)

The remaining cases use the same ideas, but are technically more involved.

Example 12.6 Bacteria on a Kitchen Countertop

A stainless steel countertop in a restaurant kitchen with a total area of 10 m2 is
known to contain 250 type A bacteria and 870 type B bacteria. A 100-cm2 patch
of the countertop is randomly chosen. What is the probability that there are no
bacteria at all on it?

The average number of type A bacteria is 250 per 10 m2 = 100,000 cm2 or 0.25
per 100 cm2. Thus, we model the number of type A bacteria in a 100-cm2 patch
by a Poisson distribution A∼ Po (0.25). The average number of type B bacteria
is 870 per 100,000 cm2 or 0.87 per 100 cm2. Thus, the number of type B bacteria
in a 100-cm2 patch is Poisson distributed, B ∼ Po (0.87). We are asked to find
P (A + B = 0).

By Theorem 12, the random variable A + B is Poisson-distributed with pa-
rameter λ = 0.25 + 0.87 = 1.12. We compute

P (A + B = 0) = e−1.12 1.120

0!
= e−1.12 ≈ 0.326280

Thus, there is about a 33% chance that a randomly selected 100-cm2 patch of the
countertop is free of bacteria.
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The Poisson Distribution Approximates the Binomial Distribution

In Example 12.2 we modelled the number of emergency scanning requests during
a 9-hour interval using the Poisson distribution X∼ Po (6.56).

On average, there are 6.56/9 requests per hour, or
6.56/(9 · 3,600) = 0.000202469

requests per second. Assuming that the consecutive emergency scanning requests
come more than 1 second apart, we can reformulate the situation in the following
way. Define the Bernoulli experiment Bi by

Bi =
{

1 emergency request received (success)

0 no emergency request
for i = 1, 2, . . . , 9 ·3,600 = 32,400. The probability distribution for each Bi is given
in Table 12.2.

Table 12.2

k P (B = k)

0 0.999797531

1 0.000202469

Define by B the binomial variable that counts the number of successes in a 9-
hour interval. Let’s compare the two distributions, but using both to compute the
probability that there are exactly eight emergency requests in a 9-hour interval.
Using the Poisson distribution X∼ Po (6.56), we get

P (X = 8) = e−6.56 6.568

8!
≈ 0.120431

Using the binomial distribution (8 successes in 32,400 trials) we get

b(8, 32,400; 0.000202469) =
(

32,400
8

)
0.0002024698(1 − 0.000202469)32,400−8

≈ 0.122285

In Table 12.3 we compare a few more values.

Table 12.3

k Poisson X∼ Po (6.56) Binomial

P (X = k) b(k, 32,400; 0.000202469)

0 0.00141589 0.00143662

5 0.143340 0.145540

10 0.0575846 0.0584642

15 0.00194128 0.00196927

20 0.0000126760 0.0000128379

We divided the 9-hour interval into seconds. If we had we divided it into tenths
of a second, we would have obtained an even closer approximation. Thus, we can
view the Poisson distribution as the limit of infinitely many Bernoulli trials, each
with an infinitesimal probability of success.

A commonly accepted rule states that if the probability of success p is small
(smaller than 0.01) and the number of trials is large (larger than 100), then the
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This, of course, does not prove that X is a Poisson random variable (but it’s a
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= e−λ1
λ0

1

0!
e−λ2

λ0
2

0!
= e−λ1e−λ2 = e−(λ1+λ2)

Starting with mutual exclusivity and then using independence,

P (X = 1) = P ((X1 = 0 and X2 = 1) or (X1 = 1 and X2 = 0))
= P (X1 = 0 and X2 = 1) + P (X1 = 1 and X2 = 0)
= P (X1 = 0)P (X2 = 1) + P (X1 = 1)P (X2 = 0)

= e−λ1
λ0

1

0!
e−λ2

λ1
2

1!
+ e−λ1

λ1
1

1!
e−λ2

λ0
2

0!
= e−λ1e−λ2λ2 + e−λ1λ1e

−λ2

= e−(λ1+λ2)(λ1 + λ2)

The remaining cases use the same ideas, but are technically more involved.

Example 12.6 Bacteria on a Kitchen Countertop

A stainless steel countertop in a restaurant kitchen with a total area of 10 m2 is
known to contain 250 type A bacteria and 870 type B bacteria. A 100-cm2 patch
of the countertop is randomly chosen. What is the probability that there are no
bacteria at all on it?

The average number of type A bacteria is 250 per 10 m2 = 100,000 cm2 or 0.25
per 100 cm2. Thus, we model the number of type A bacteria in a 100-cm2 patch
by a Poisson distribution A∼ Po (0.25). The average number of type B bacteria
is 870 per 100,000 cm2 or 0.87 per 100 cm2. Thus, the number of type B bacteria
in a 100-cm2 patch is Poisson distributed, B ∼ Po (0.87). We are asked to find
P (A + B = 0).

By Theorem 12, the random variable A + B is Poisson-distributed with pa-
rameter λ = 0.25 + 0.87 = 1.12. We compute

P (A + B = 0) = e−1.12 1.120

0!
= e−1.12 ≈ 0.326280

Thus, there is about a 33% chance that a randomly selected 100-cm2 patch of the
countertop is free of bacteria.
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The Poisson Distribution Approximates the Binomial Distribution

In Example 12.2 we modelled the number of emergency scanning requests during
a 9-hour interval using the Poisson distribution X∼ Po (6.56).

On average, there are 6.56/9 requests per hour, or
6.56/(9 · 3,600) = 0.000202469

requests per second. Assuming that the consecutive emergency scanning requests
come more than 1 second apart, we can reformulate the situation in the following
way. Define the Bernoulli experiment Bi by

Bi =
{

1 emergency request received (success)

0 no emergency request
for i = 1, 2, . . . , 9 ·3,600 = 32,400. The probability distribution for each Bi is given
in Table 12.2.

Table 12.2

k P (B = k)

0 0.999797531

1 0.000202469

Define by B the binomial variable that counts the number of successes in a 9-
hour interval. Let’s compare the two distributions, but using both to compute the
probability that there are exactly eight emergency requests in a 9-hour interval.
Using the Poisson distribution X∼ Po (6.56), we get

P (X = 8) = e−6.56 6.568

8!
≈ 0.120431

Using the binomial distribution (8 successes in 32,400 trials) we get

b(8, 32,400; 0.000202469) =
(

32,400
8

)
0.0002024698(1 − 0.000202469)32,400−8

≈ 0.122285

In Table 12.3 we compare a few more values.

Table 12.3

k Poisson X∼ Po (6.56) Binomial

P (X = k) b(k, 32,400; 0.000202469)

0 0.00141589 0.00143662

5 0.143340 0.145540

10 0.0575846 0.0584642

15 0.00194128 0.00196927

20 0.0000126760 0.0000128379

We divided the 9-hour interval into seconds. If we had we divided it into tenths
of a second, we would have obtained an even closer approximation. Thus, we can
view the Poisson distribution as the limit of infinitely many Bernoulli trials, each
with an infinitesimal probability of success.

A commonly accepted rule states that if the probability of success p is small
(smaller than 0.01) and the number of trials is large (larger than 100), then the
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binomial distribution can be closely approximated by the Poission distribution. In
particular,

b(k, n; p) ≈ P (X = k)

where X∼ Po (np).
Let B be the binomial distribution with parameters n and p and X the Poisson

distribution with parameter λ = np. The two distributions have the same means
E(B) = E(X) = np. Their variances differ: var(B) = np(1−p), whereas var(X) =
np. However, when p is small, then 1 − p ≈ 1, and thus var(B) ≈ var(X).

The two distributions differ in their ranges: the binomial distribution has non-
zero probabilities for k = 0, 1, 2, . . . , n, whereas X has non-zero probabilities for
all k = 0, 1, 2, . . . . For large k, though, P (X = k) is very small.

Summary The Poisson process describes events that are independent and occur at a con-
stant rate λ. The associated Poisson distribution counts the number of events
that occur in a given time or space interval. The sum of independent, Poisson-
distributed random variables is Poisson-distributed. In certain situations, the
Poisson distribution is a close approximation of the binomial distribution.

12 Exercises

1. Compute the values P (X = k) for k = 0, 1, 2, 3, and 4 for a Poisson distribution with λ = 2.5.

2. Compute the values P (X = k) for k = 0, 1, 2, 3, 4, 5, and 6 for a Poisson distribution with λ = 4.

3. Suppose that X is Poisson-distributed with mean λ = 12. Find P (4 ≤ X ≤ 7).

4. Suppose that X is Poisson-distributed with mean λ = 2.6. Find P (X < 3) and P (1 ≤ X ≤ 3).

5. Let X∼ Po (4). Find the probability that X is at most 3.

6. Let X∼ Po (4). Find the probability that X is at least 3.

7–8 Find the value of the parameter λ for each Poisson distribution, knowing that it is an integer.
Explain your reasoning.

7. 8.
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0.16
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9. Certain types of a rare strain of respiratory infection occur in about 3 out of 2,000 people. During
a particularly bad flu season, 12 out of 5,000 people were diagnosed with the infection. What is the
probability of this event occurring?

10. The average number of more serious traffic accidents per week on the stretch of Highway 401 between
Pearson International Airport and Yonge Street (downtown Toronto) is four. What is the probability
that two accidents happen on the same day on that stretch of the highway?
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11. The average number of more serious traffic accidents per week on the stretch of Highway 401 between
Pearson International Airport and Yonge Street (downtown Toronto) is four. What is the probability
that at least two accidents happen in a week on that stretch of the highway?

12. In a bag containing 30 apples, 2 are found to be spoiled. You buy a bag with 15 apples. What is the
probability that you will find exactly 1 spoiled apple in the bag?

13. In a bag containing 30 apples, 2 are found to be spoiled. You buy a bag with 15 apples. What is the
probability that you will find no more than two spoiled apples in the bag?

14. It has been determined that the average number of bacteria in a hot dog is four per 10 g. What is the
probability that a 150-g hot dog will contain fewer than three bacteria?

15. A sample of 1 L of tap water has been found to contain six heavy metal particles. You drink a half-litre
glass of tap water. How likely is it that you have not consumed any heavy metal particles?

16. A room is found to have seven dust particles per cubic centrimetre of air. Find the probability that
there are fewer than four dust particles in 1 cm3 of air in the room.

17. Diffusing molecules leave a certain region at a rate of 0.4 molecules per hour. What is the probability
that three or fewer will leave by the end of the second hour?

18. Diffusing molecules leave a certain region at a rate of 0.4 molecules per hour. What is the probability
that more than two molecules will leave by the end of the third hour?

19. The rate at which we are hit by cosmic rays is about one per day. What is the probability that we
will be hit at least once during an eight-hour interval?

20. Flying in an airplane, we get hit by cosmic rays more often than when we are on the ground. Assume
that the rate at which we are hit is one per 4 hours. What is the probability that we will be hit between
10 and 12 times during an 8-hour flight? [Although the effects of cosmic radiation are negligible for
an airplane passenger, they could have serious effects on the International Space Station personnel,
who spend months at a time in space.]

21. A student receives text messages at a rate of three per hour. What is the probability that she receives
more than five messages in an hour?

22. A student receives text messages at a rate of three per hour. What is the probability that she receives
at least three messages in 2 hours?

23. Given that X∼ Po (1) and Y ∼ Po (9), find P (X + Y = 2) and P (Y = 2 |X + Y = 2).

24. Given that X∼ Po (5) and Y ∼ Po (3), find P (X + Y = 3) and P (X = 1 |X + Y = 3).

25. A student receives text messages at a rate of four per hour and phone calls at a rate of two per
hour. Each phone call and each text message interrupts the student’s work. How likely is it that the
student will experience no interruptions in 1 hour? How likely is it that the student will experience
one interruption every 10 minutes?

26. A student receives text messages at a rate of three per hour and phone calls at a rate of one per
hour. Each phone call and each text message interrupts the student’s work. Find the probability that
the student will experience at least three interruptions in 30 minutes. Find the probability that the
student will experience at least one interruption in 5 minutes.

27. About 3 in 1,000 people experience serious side effects from an allergy medication. Find the probability
that in a group of 200 people nobody experiences serious side effects in two ways: using the binomial
distribution, and then using the Poisson approximation. Compare the results.

28. About 3.8 in 1,000 births in Canada are affected by fetal alcohol syndrome (FAS). Find the probability
that in 500 births there will be exactly one case of FAS in two ways: using the binomial distribution,
and then using the Poisson approximation. Compare the results.
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binomial distribution can be closely approximated by the Poission distribution. In
particular,
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E(B) = E(X) = np. Their variances differ: var(B) = np(1−p), whereas var(X) =
np. However, when p is small, then 1 − p ≈ 1, and thus var(B) ≈ var(X).

The two distributions differ in their ranges: the binomial distribution has non-
zero probabilities for k = 0, 1, 2, . . . , n, whereas X has non-zero probabilities for
all k = 0, 1, 2, . . . . For large k, though, P (X = k) is very small.

Summary The Poisson process describes events that are independent and occur at a con-
stant rate λ. The associated Poisson distribution counts the number of events
that occur in a given time or space interval. The sum of independent, Poisson-
distributed random variables is Poisson-distributed. In certain situations, the
Poisson distribution is a close approximation of the binomial distribution.

12 Exercises
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9. Certain types of a rare strain of respiratory infection occur in about 3 out of 2,000 people. During
a particularly bad flu season, 12 out of 5,000 people were diagnosed with the infection. What is the
probability of this event occurring?

10. The average number of more serious traffic accidents per week on the stretch of Highway 401 between
Pearson International Airport and Yonge Street (downtown Toronto) is four. What is the probability
that two accidents happen on the same day on that stretch of the highway?
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11. The average number of more serious traffic accidents per week on the stretch of Highway 401 between
Pearson International Airport and Yonge Street (downtown Toronto) is four. What is the probability
that at least two accidents happen in a week on that stretch of the highway?

12. In a bag containing 30 apples, 2 are found to be spoiled. You buy a bag with 15 apples. What is the
probability that you will find exactly 1 spoiled apple in the bag?

13. In a bag containing 30 apples, 2 are found to be spoiled. You buy a bag with 15 apples. What is the
probability that you will find no more than two spoiled apples in the bag?

14. It has been determined that the average number of bacteria in a hot dog is four per 10 g. What is the
probability that a 150-g hot dog will contain fewer than three bacteria?

15. A sample of 1 L of tap water has been found to contain six heavy metal particles. You drink a half-litre
glass of tap water. How likely is it that you have not consumed any heavy metal particles?

16. A room is found to have seven dust particles per cubic centrimetre of air. Find the probability that
there are fewer than four dust particles in 1 cm3 of air in the room.

17. Diffusing molecules leave a certain region at a rate of 0.4 molecules per hour. What is the probability
that three or fewer will leave by the end of the second hour?

18. Diffusing molecules leave a certain region at a rate of 0.4 molecules per hour. What is the probability
that more than two molecules will leave by the end of the third hour?

19. The rate at which we are hit by cosmic rays is about one per day. What is the probability that we
will be hit at least once during an eight-hour interval?

20. Flying in an airplane, we get hit by cosmic rays more often than when we are on the ground. Assume
that the rate at which we are hit is one per 4 hours. What is the probability that we will be hit between
10 and 12 times during an 8-hour flight? [Although the effects of cosmic radiation are negligible for
an airplane passenger, they could have serious effects on the International Space Station personnel,
who spend months at a time in space.]

21. A student receives text messages at a rate of three per hour. What is the probability that she receives
more than five messages in an hour?

22. A student receives text messages at a rate of three per hour. What is the probability that she receives
at least three messages in 2 hours?

23. Given that X∼ Po (1) and Y ∼ Po (9), find P (X + Y = 2) and P (Y = 2 |X + Y = 2).

24. Given that X∼ Po (5) and Y ∼ Po (3), find P (X + Y = 3) and P (X = 1 |X + Y = 3).

25. A student receives text messages at a rate of four per hour and phone calls at a rate of two per
hour. Each phone call and each text message interrupts the student’s work. How likely is it that the
student will experience no interruptions in 1 hour? How likely is it that the student will experience
one interruption every 10 minutes?

26. A student receives text messages at a rate of three per hour and phone calls at a rate of one per
hour. Each phone call and each text message interrupts the student’s work. Find the probability that
the student will experience at least three interruptions in 30 minutes. Find the probability that the
student will experience at least one interruption in 5 minutes.

27. About 3 in 1,000 people experience serious side effects from an allergy medication. Find the probability
that in a group of 200 people nobody experiences serious side effects in two ways: using the binomial
distribution, and then using the Poisson approximation. Compare the results.

28. About 3.8 in 1,000 births in Canada are affected by fetal alcohol syndrome (FAS). Find the probability
that in 500 births there will be exactly one case of FAS in two ways: using the binomial distribution,
and then using the Poisson approximation. Compare the results.
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29. About 2 in 1,000 people suffer serious consequences from lactose intolerance. Find the probability that
in a group of 500 people one person experiences serious consequences in two ways: using the binomial
distribution, and then using the Poisson approximation. Compare the results.

30. Assume that the algebraic operations suggested here are true when applied to infinite sums.

(a) Start with

1 + λ +
λ2

2!
+

λ3

3!
+ · · · = eλ

differentiate with respect to λ, and then multiply by λ to show that

λ + 2
λ2

2!
+ 3

λ3

3!
+ · · · = λeλ

(b) Start with the formula you proved in (a), differentiate with respect to λ again, and then multiply
by λ to show that

∞∑
k=0

k2 λk

k!
= λ + 22 λ2

2!
+ 32 λ3

3!
+ · · · = λ eλ + λ2 eλ
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13 Continuous Random Variables

Departing from studying random variables that take on a finite number of values,
we now focus on random variables whose range contains a continuum of values.
The word “continuum” describes the size of the set of real numbers or intervals
of real numbers. For instance, the sets [3, 4), (−∞, 0), and (−∞,∞) contain a
continuum of real numbers. Unlike positive numbers or integers, a continuum of
numbers cannot be written in a sequence.

Probability Density Function

Recall that a random variable is a function from a sample space into a subset of
real numbers.

Definition 35 Continuous Random Variable
A random variable that takes on a continuum of values is called a continuous
random variable.

As with derivatives and integrals in calculus, our approach to studying continuous
random variables will involve limits of smaller and smaller quantities. We start
with an example.

Example 13.1 Distributions of Lengths of Boa Constrictors

The boa constrictor (boa, for short) is a large species of snake that can grow to
anywhere between 1 m and 4 m in length. The lengths of 500 boas are recorded
in Table 13.1; we show the frequencies as well as the relative frequencies for the
six length ranges.

Table 13.1

Length range (m) Frequency Relative frequency

[1, 1.5) 20 0.04

[1.5, 2) 58 0.116

[2, 2.5) 122 0.244

[2.5, 3) 180 0.36

[3, 3.5) 86 0.172

[3.5, 4) 34 0.068

The histogram representing the probabilities (relative frequencies) is drawn in
Figure 13.1.
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FIGURE 13.1

Histogram: the heights rep-
resent the probability
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The horizontal axis represents the intervals (length ranges); we read the corres-
ponding probabilities on the vertical axis. For instance, the probability that a
randomly selected boa is between 2.5 m and 3 m in length is 0.36. Note that 0.36
is the height of the rectangle that represents the group of boas between 2.5 m and
3 m in length.

We now redraw the rectangles in the histogram so that their areas, rather than
their heights, represent the probability; see Figure 13.2.

Consider the rectangle over [2, 2.5). What should its height be? To satisfy

area = base length · height = probability

we need

(2.5 − 2) · height = 0.244

and thus the height must be 0.244/0.5 = 0.488.

length1 3.51.5 2.5 32 4
0.08

0.344

0.488

0.232

0.72

0.136
FIGURE 13.2

Histogram: the areas repre-
sent the probability

The height of the rectangle over [3, 3.5) in Figure 13.2 is 0.344. The probability
that a randomly chosen boa is between 3 m and 3.5 m long is equal to the area of
the rectangle, (0.5)(0.344) = 0.172.

For various reasons, we might need to have a more precise probability mass
function (note that, for instance, we put 3.04-m, 3.3-m and 3.48-m boas in the
same box). Table 13.2 shows data arranged in twelve length ranges (rather than
six), each of length 0.25 m.

Table 13.2

Length range (m) Frequency Relative frequency

[1, 1.25) 6 0.012

[1.25, 1.5) 14 0.028

[1.5, 1.75) 30 0.06

[1.75, 2) 28 0.056

[2, 2.25) 50 0.1

[2.25, 2.5) 72 0.144

[2.5, 2.75) 104 0.208

[2.75, 3) 76 0.152

[3, 3.25) 52 0.104

[3.25, 3.5) 34 0.068

[3.5, 3.75) 28 0.056

[3.75, 4) 6 0.012
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Now we draw the histogram, with our new agreement that areas represent prob-
abilities. This time, the length of each subinterval (length range) is 0.25, and so
from 0.25 · height = probability we get that

height = probability/0.25.

Thus, we multiply the probabilities (relative frequencies) in Table 13.2 by 1/0.25 =
4 to get the heights of the rectangles in the histogram in Figure 13.3.
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0.6

0.7
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0.9

2.5 3.5

FIGURE 13.3

Histogram with shorter
length ranges

The horizontal axis in Figure 13.3 represents the length ranges, but the vertical
axis no longer represents the probabilities. As our calculation of the heights for the
rectangles shows, the vertical axis represents probability/0.25, i.e., the probability
per unit width of the length range.

Keeping the tradition that a quantity per unit length (or area, or volume)
is called a density, we call the quantity on the vertical axis in Figure 13.3 the
probability density.

We continue increasing the number of subintervals by shrinking the length
ranges on the horizontal axis. In Figure 13.4 we drew histograms based on 24 and
48 subintervals (the frequencies for the 48 subintervals are 0, 2, 1, 3, 3, 2, 5, 4, 7,
9, 5, 9, 5, 7, 7, 9, 9, 11, 12, 18, 14, 16, 20, 22, 20, 24, 25, 35, 30, 20, 16, 10, 19,
9, 13, 11, 11, 9, 9, 5, 9, 9, 6, 4, 0, 4, 1, 1; the frequencies for the 24 intervals are
obtained by adding pairs of consecutive numbers in the list).
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FIGURE 13.4

Histograms based on 24 and
48 subintervals

The shrinking rectangles that we obtain as we keep increasing the number of
subintervals define the probability density function (think of the definite integral
and approximating Riemann sums).

Looking at Figure 13.4b: how do we find the probability that a randomly
chosen boa is between 1.75 m and 2 m in length?

Since the areas of the rectangles represent the probabilities, we add up the
areas of those rectangles whose bases belong to [1.75, 2); see Figure 13.5.
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function (note that, for instance, we put 3.04-m, 3.3-m and 3.48-m boas in the
same box). Table 13.2 shows data arranged in twelve length ranges (rather than
six), each of length 0.25 m.

Table 13.2

Length range (m) Frequency Relative frequency

[1, 1.25) 6 0.012

[1.25, 1.5) 14 0.028

[1.5, 1.75) 30 0.06

[1.75, 2) 28 0.056

[2, 2.25) 50 0.1

[2.25, 2.5) 72 0.144

[2.5, 2.75) 104 0.208

[2.75, 3) 76 0.152

[3, 3.25) 52 0.104

[3.25, 3.5) 34 0.068

[3.5, 3.75) 28 0.056

[3.75, 4) 6 0.012
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Now we draw the histogram, with our new agreement that areas represent prob-
abilities. This time, the length of each subinterval (length range) is 0.25, and so
from 0.25 · height = probability we get that

height = probability/0.25.

Thus, we multiply the probabilities (relative frequencies) in Table 13.2 by 1/0.25 =
4 to get the heights of the rectangles in the histogram in Figure 13.3.
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Histogram with shorter
length ranges

The horizontal axis in Figure 13.3 represents the length ranges, but the vertical
axis no longer represents the probabilities. As our calculation of the heights for the
rectangles shows, the vertical axis represents probability/0.25, i.e., the probability
per unit width of the length range.

Keeping the tradition that a quantity per unit length (or area, or volume)
is called a density, we call the quantity on the vertical axis in Figure 13.3 the
probability density.

We continue increasing the number of subintervals by shrinking the length
ranges on the horizontal axis. In Figure 13.4 we drew histograms based on 24 and
48 subintervals (the frequencies for the 48 subintervals are 0, 2, 1, 3, 3, 2, 5, 4, 7,
9, 5, 9, 5, 7, 7, 9, 9, 11, 12, 18, 14, 16, 20, 22, 20, 24, 25, 35, 30, 20, 16, 10, 19,
9, 13, 11, 11, 9, 9, 5, 9, 9, 6, 4, 0, 4, 1, 1; the frequencies for the 24 intervals are
obtained by adding pairs of consecutive numbers in the list).
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Histograms based on 24 and
48 subintervals

The shrinking rectangles that we obtain as we keep increasing the number of
subintervals define the probability density function (think of the definite integral
and approximating Riemann sums).

Looking at Figure 13.4b: how do we find the probability that a randomly
chosen boa is between 1.75 m and 2 m in length?

Since the areas of the rectangles represent the probabilities, we add up the
areas of those rectangles whose bases belong to [1.75, 2); see Figure 13.5.
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Probability of boa length be-
tween 1.75 m and 2 m

To summarize: by re-interpreting the histogram and by increasing the number of
rectangles, we obtain the probability density function. The probability is the area
of the region under the graph of the probability density function; see Figure 13.6.
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From a histogram to a density function

Before we learn how to work with probability density functions, we need to figure
out which functions can possibly act as probability density functions.

Recall that the sum of the probabilities that define a distribution of a discrete
random variable must add up to 1. Thus—in the limit—the area under the graph
of a probability density function must be 1. The probability is a non-negative
number, and so the probability density function must be non-negative.

In this, and in the forthcoming sections, we use the symbol I to denote any of
the intervals [a, b], (a, b), (a, b], and [a, b), including unbounded intervals such as
(−∞, b), (a,∞), and (−∞,∞).

Definition 36 Defining Properties of a Probability Density Function
Assume that the interval I represents the sample space of an experiment (thus, a
simple event is represented by a real number from I). A function f(x) can be a
probability density function if

(1) f(x) ≥ 0 for all x in I.

(2)
∫

I

f(x)dx = 1.

Note that there is no requirement that f(x) ≤ 1 on I, as was the case for the
discrete probability distributions we studied earlier (see Example 13.2b).

If I = [a, b], or (a, b), or (a, b], or [a, b), and a and b are real numbers, then∫
I
f(x)dx denotes the usual definite integral

∫

I

f(x) dx =
∫ b

a

f(x) dx
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If I is an unbounded interval, then
∫

I
f(x)dx is an improper integral. For instance,

∫ ∞

a

f(x) dx = lim
T→∞

∫ T

a

f(x) dx

Example 13.2 Probability Density Functions

Show that

(a) f(x) = x/2 could be a probability density function on the interval I = [0, 2].

(b) f(x) = 3e−3x could be a probability density function on I = [0,∞).

(a) Clearly, f(x) ≥ 0 for all x in [0, 2]. As well,
∫ 2

0

x

2
dx =

x2

4

∣∣∣∣
2

0

=
4
4
− 0 = 1

(b) Because the exponential function is positive for all real numbers, it follows
that f(x) ≥ 0 for all x ∈ [0,∞). To check that the integral of f is 1, we need to
use improper integration:

∫ ∞

0

3e−3x dx = lim
T→∞

∫ T

0

3e−3x dx

= lim
T→∞

(
−e−3x

)∣∣∣
T

0

= lim
T→∞

(
−e−3T + e0

)

= −e−∞ + 1 = 1

Note that f(x) > 1 for some values of x; see Figure 13.7.
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FIGURE 13.7

The graph of f(x) = 3e−3x

How do we calculate a probability using a probability density function?
Suppose that we conduct an experiment whose sample space is an interval I

of real numbers, and whose outcomes are defined by a function f(x) that satisfies
properties (1) and (2) from Definition 36. The probability

P (a ≤ X ≤ b)

that an outcome X is between a and b is the area under the graph of f(x) on [a, b].
Since the area is calculated as a definite integral, we get

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx (13.1)

This formula holds for unbounded intervals as well, in which case the integral on
the right side is an improper integral.

In the same sense as integrating the mass density gives the mass (of an object),
integrating the probability density gives the probability (of an event occurring).
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To summarize: by re-interpreting the histogram and by increasing the number of
rectangles, we obtain the probability density function. The probability is the area
of the region under the graph of the probability density function; see Figure 13.6.
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Before we learn how to work with probability density functions, we need to figure
out which functions can possibly act as probability density functions.

Recall that the sum of the probabilities that define a distribution of a discrete
random variable must add up to 1. Thus—in the limit—the area under the graph
of a probability density function must be 1. The probability is a non-negative
number, and so the probability density function must be non-negative.

In this, and in the forthcoming sections, we use the symbol I to denote any of
the intervals [a, b], (a, b), (a, b], and [a, b), including unbounded intervals such as
(−∞, b), (a,∞), and (−∞,∞).

Definition 36 Defining Properties of a Probability Density Function
Assume that the interval I represents the sample space of an experiment (thus, a
simple event is represented by a real number from I). A function f(x) can be a
probability density function if

(1) f(x) ≥ 0 for all x in I.

(2)
∫

I

f(x)dx = 1.

Note that there is no requirement that f(x) ≤ 1 on I, as was the case for the
discrete probability distributions we studied earlier (see Example 13.2b).

If I = [a, b], or (a, b), or (a, b], or [a, b), and a and b are real numbers, then∫
I
f(x)dx denotes the usual definite integral

∫

I

f(x) dx =
∫ b

a

f(x) dx
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If I is an unbounded interval, then
∫

I
f(x)dx is an improper integral. For instance,

∫ ∞

a

f(x) dx = lim
T→∞

∫ T

a

f(x) dx

Example 13.2 Probability Density Functions

Show that

(a) f(x) = x/2 could be a probability density function on the interval I = [0, 2].

(b) f(x) = 3e−3x could be a probability density function on I = [0,∞).

(a) Clearly, f(x) ≥ 0 for all x in [0, 2]. As well,
∫ 2

0

x

2
dx =

x2

4
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=
4
4
− 0 = 1

(b) Because the exponential function is positive for all real numbers, it follows
that f(x) ≥ 0 for all x ∈ [0,∞). To check that the integral of f is 1, we need to
use improper integration:

∫ ∞

0

3e−3x dx = lim
T→∞

∫ T

0

3e−3x dx

= lim
T→∞

(
−e−3x
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T

0

= lim
T→∞

(
−e−3T + e0

)

= −e−∞ + 1 = 1

Note that f(x) > 1 for some values of x; see Figure 13.7.
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How do we calculate a probability using a probability density function?
Suppose that we conduct an experiment whose sample space is an interval I

of real numbers, and whose outcomes are defined by a function f(x) that satisfies
properties (1) and (2) from Definition 36. The probability

P (a ≤ X ≤ b)

that an outcome X is between a and b is the area under the graph of f(x) on [a, b].
Since the area is calculated as a definite integral, we get

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx (13.1)

This formula holds for unbounded intervals as well, in which case the integral on
the right side is an improper integral.

In the same sense as integrating the mass density gives the mass (of an object),
integrating the probability density gives the probability (of an event occurring).
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Using (13.1) with a = b, we get

P (a ≤ X ≤ a) =
∫ a

a

f(x) dx = 0

i.e.,

P (X = a) = 0 (13.2)

Thus, the probability that an outcome is equal to a particular real number is
zero. In other words, what makes sense in the continuous case is to calculate
the probability that the values of a random variable belong to an interval of real
numbers. We will illustrate this point in numerous examples.

As a consequence of (13.2), we obtain

P (a ≤ X ≤ b) = P (a ≤ X < b or X = b)
= P (a ≤ X < b) + P (X = b)
= P (a ≤ X < b)

since P (X = b) = 0. Proceeding in the same way, we show that

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b)

Thus, including or excluding the endpoints of an interval does not affect the prob-
ability.

Example 13.3 Uniform Distribution

Consider the uniform distribution given by the probability density function f(x) =
1 on [0, 1]. Let X be a continuous random variable whose probability density
function is f(x). Find the probability that the value of X is between 0.17 and
0.28.

The probability is given by

P (0.17 ≤ X ≤ 0.28) =
∫ 0.28

0.17

1 dx = x
∣∣∣
0.28

0.17
= 0.28 − 0.17 = 0.11

According to the interpretation of the probability, the area of the shaded region
below the graph of f(x) = 1 in Figure 13.8 is equal to 0.11.

1 x

f (x)=1
1

0 0.280.17

FIGURE 13.8

Interpreting the probability
P (0.17 ≤ X ≤ 0.28) as area

Let’s continue with the example: the probability that X is between 0.17 and 0.18
is

P (0.17 ≤ X ≤ 0.18) =
∫ 0.18

0.17

1 dx = x
∣∣∣
0.18

0.17
= 0.18 − 0.17 = 0.01

Likewise, the probability that X is between 0.17 and 0.17001 is

P (0.17 ≤ X ≤ 0.17001) =
∫ 0.17001

0.17

1 dx = 0.17001 − 0.17 = 0.00001

Although the probability that X is equal to a particular number is zero, the
probability that X belongs to an interval, no matter how small, is not zero. In
this case, the smaller the interval, the smaller the probability; so the fact that
P (X = 0.17) = 0 is not surprising: if we keep shrinking the interval, the probability
will approach zero.
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The uniform distribution can be used to represent a random number generator,
i.e., a piece of software that makes picking any number between 0 and 1 equally
likely (in theory). Computers, no matter how powerful or sophisticated, work with
finite numbers, so it makes sense to talk about the non-zero probability of picking
a single number. The uniform distribution is an idealization in the case of (true)
real numbers.

Example 13.4 Probability of a Virus Appearing in a Population

Let T be a random variable that tracks the time of the appearance of a virus within
a population. At the start of the experiment (t = 0) the virus is not present, but
it can appear at any time t > 0 (t is measured in days).

Unlike the situations we studied in previous sections, the random variable T
can take on any non-negative real-number value (thus, it is a continuous random
variable). The probability density function of T is given by

f(t) = 0.2e−0.2t

for t ≥ 0.

(a) Find the probability that the virus appears within the first 5 days.

(b) Find the probability that the virus appears on the sixth day.

(c) Find the probability that the virus appears between 6 a.m. and noon on the
sixth day.

The first day is defined by 0 ≤ t ≤ 1, the second day by 1 ≤ t ≤ 2, the fifth day
by 4 ≤ t ≤ 5, and so on. Recall that it makes no difference whether we use ≤ or
< (and thus we can, luckily, avoid discussing when exactly a day starts or ends).

(a) To find the probability, we integrate the probability density function:

P (0 < T ≤ 5) =
∫ 5

0

0.2e−0.2t dt

= 0.2
1

−0.2
e−0.2t

∣∣∣
5

0

=
(
−e−0.2t

)∣∣∣
5

0

=
(
−e−0.2(5)

)
−

(
−e−0.2(0)

)

= −e−1 + 1 ≈ 0.632

Note that we used the integration formula∫
eat dt =

1
a

eat + C,

which can be found by guessing and checked by differentiation.
Thus, there is about a 63.2% chance that the virus will appear within the first

5 days. This probability is equal to the area of the shaded region in Figure 13.9.
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f(t)

0.2

0

FIGURE 13.9

Geometric interpretation of
the probability in
Example 13.4(a)
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Using (13.1) with a = b, we get
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i.e.,

P (X = a) = 0 (13.2)

Thus, the probability that an outcome is equal to a particular real number is
zero. In other words, what makes sense in the continuous case is to calculate
the probability that the values of a random variable belong to an interval of real
numbers. We will illustrate this point in numerous examples.
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P (a ≤ X ≤ b) = P (a ≤ X < b or X = b)
= P (a ≤ X < b) + P (X = b)
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Consider the uniform distribution given by the probability density function f(x) =
1 on [0, 1]. Let X be a continuous random variable whose probability density
function is f(x). Find the probability that the value of X is between 0.17 and
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The probability is given by

P (0.17 ≤ X ≤ 0.28) =
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0.17

1 dx = x
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According to the interpretation of the probability, the area of the shaded region
below the graph of f(x) = 1 in Figure 13.8 is equal to 0.11.
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is
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Although the probability that X is equal to a particular number is zero, the
probability that X belongs to an interval, no matter how small, is not zero. In
this case, the smaller the interval, the smaller the probability; so the fact that
P (X = 0.17) = 0 is not surprising: if we keep shrinking the interval, the probability
will approach zero.
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The uniform distribution can be used to represent a random number generator,
i.e., a piece of software that makes picking any number between 0 and 1 equally
likely (in theory). Computers, no matter how powerful or sophisticated, work with
finite numbers, so it makes sense to talk about the non-zero probability of picking
a single number. The uniform distribution is an idealization in the case of (true)
real numbers.
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Let T be a random variable that tracks the time of the appearance of a virus within
a population. At the start of the experiment (t = 0) the virus is not present, but
it can appear at any time t > 0 (t is measured in days).

Unlike the situations we studied in previous sections, the random variable T
can take on any non-negative real-number value (thus, it is a continuous random
variable). The probability density function of T is given by

f(t) = 0.2e−0.2t

for t ≥ 0.

(a) Find the probability that the virus appears within the first 5 days.

(b) Find the probability that the virus appears on the sixth day.

(c) Find the probability that the virus appears between 6 a.m. and noon on the
sixth day.

The first day is defined by 0 ≤ t ≤ 1, the second day by 1 ≤ t ≤ 2, the fifth day
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(b) The probability that the virus appears on the sixth day is P (5 ≤ T ≤ 6).
Integrating, we get

P (5 ≤ T ≤ 6) =
∫ 6

5

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
6

5

= −e−1.2 + e−1 ≈ 0.067

(c) The sixth day is defined by 5 ≤ t ≤ 6, and so the probability that the virus
appears between 6 a.m. and noon on the sixth day is

P (5.25 ≤ T ≤ 5.5) =
∫ 5.5

5.25

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
5.5

5.25

= −e−1.1 + e−1.05 ≈ 0.017

In theory, we can calculate the probability of the virus appearing during any time
interval, no matter how small. In practice, the answers to (a) and (b) might be
quite useful, whereas the answer to (c) might not mean much.

Cumulative Distribution Function

We can rephrase the answer to part (a) of Example 13.4 in the following way: the
probability that the virus appears before t = 5 (i.e., by the end of day five) is

P (T ≤ 5) =
∫ 5

0

f(t) dt ≈ 0.632

In general, the probability that the virus appears before time x is

P (T ≤ x) =
∫ x

0

f(t) dt (13.3)

The function appearing on the right side in (13.3) is an integral function. Because
it’s important in probability, we give it a name.

Definition 37 Cumulative Distribution Function
Suppose that f(x) is a probability density function defined on an interval [a, b].
The function F (x) defined by

F (x) =
∫ x

a

f(t) dt

for all x in [a, b] is called a cumulative distribution function of f(x).

As mentioned earlier, the interval [a, b] could be replaced by other intervals (such
as (a, b) or (a, b]), or by unbounded intervals. For instance, the cumulative distri-
bution function of a probability density function f(x) defined on (−∞,∞) is given
by

F (x) =
∫ x

−∞
f(t) dt

for all x in (−∞,∞). Since we cannot use the same variable name for both the
integrand and the upper limit, we renamed (as is common practice) the variable
in the integrand to t.

Using the language of calculus, we say that the cumulative distribution func-
tion is the integral function of a probability density function. By convention, we
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use the same letter for both functions: uppercase for the cumulative distribution
function and lowercase for the probability density function.

Example 13.5 Cumulative Distribution Function for Example 13.4

Consider the probability density function f(t) = 0.2e−0.2t defined on [0,∞). The
associated cumulative distribution function is

F (x) =
∫ x

0

f(t) dt

=
∫ x

0

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
x

0

=
(
−e−0.2(x)

)
−

(
−e−0.2(0)

)

= 1 − e−0.2x

where x ∈ [0,∞). The probability that the virus appears by the end of day five
(i.e., x = 5) is

P (T ≤ 5) = F (5) = 1 − e−0.2(5) ≈ 0.632.

Example 13.6 Cumulative Distribution Function of the Uniform Distribution

The uniform distribution is given by the probability density function f(x) = 1,
0 ≤ x ≤ 1. The corresponding cumulative distribution function is

F (x) =
∫ x

0

1 dt = 1
∣∣∣
x

0
= x

where 0 ≤ x ≤ 1. Let X be a continuous random variable uniformly distributed
on [0, 1] (in other words, f(x) = 1, x ∈ [0, 1], is its probability density function).
The probability that X is smaller than 0.76 is

P (X ≤ 0.76) = F (0.76) = 0.76

Thus, we can calculate the probability from either the probability density function
or the cumulative distribution function. If we use the probability density function,
the probability P (X ≤ 0.76) is the area (Figure 13.10a). If we use the cumulative
distribution function, P (X ≤ 0.76) is the height, i.e., the value of F at 0.76.
(Figure 13.10b).

0 1 

f (x) 
1 

0 

F (x) 

x x 0.76 

probability density function cumulative probability function 

area = probability height = probability

1 

0.76 

0.76 
a b

FIGURE 13.10

Geometric representations of
the probability

Assume that f is a probability density function and F its associated cumulative
distribution function:

F (x) =
∫ x

a

f(t) dt

(a could be a real number or −∞). Using the Fundamental Theoerm of Calculus
we conclude that

(a) F �(x) = f(x) (i.e., F is an antiderivative of f).
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(b) The probability that the virus appears on the sixth day is P (5 ≤ T ≤ 6).
Integrating, we get

P (5 ≤ T ≤ 6) =
∫ 6

5

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
6

5

= −e−1.2 + e−1 ≈ 0.067

(c) The sixth day is defined by 5 ≤ t ≤ 6, and so the probability that the virus
appears between 6 a.m. and noon on the sixth day is

P (5.25 ≤ T ≤ 5.5) =
∫ 5.5

5.25

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
5.5

5.25

= −e−1.1 + e−1.05 ≈ 0.017

In theory, we can calculate the probability of the virus appearing during any time
interval, no matter how small. In practice, the answers to (a) and (b) might be
quite useful, whereas the answer to (c) might not mean much.

Cumulative Distribution Function

We can rephrase the answer to part (a) of Example 13.4 in the following way: the
probability that the virus appears before t = 5 (i.e., by the end of day five) is

P (T ≤ 5) =
∫ 5

0

f(t) dt ≈ 0.632

In general, the probability that the virus appears before time x is

P (T ≤ x) =
∫ x

0

f(t) dt (13.3)

The function appearing on the right side in (13.3) is an integral function. Because
it’s important in probability, we give it a name.

Definition 37 Cumulative Distribution Function
Suppose that f(x) is a probability density function defined on an interval [a, b].
The function F (x) defined by

F (x) =
∫ x

a

f(t) dt

for all x in [a, b] is called a cumulative distribution function of f(x).

As mentioned earlier, the interval [a, b] could be replaced by other intervals (such
as (a, b) or (a, b]), or by unbounded intervals. For instance, the cumulative distri-
bution function of a probability density function f(x) defined on (−∞,∞) is given
by

F (x) =
∫ x

−∞
f(t) dt

for all x in (−∞,∞). Since we cannot use the same variable name for both the
integrand and the upper limit, we renamed (as is common practice) the variable
in the integrand to t.

Using the language of calculus, we say that the cumulative distribution func-
tion is the integral function of a probability density function. By convention, we
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use the same letter for both functions: uppercase for the cumulative distribution
function and lowercase for the probability density function.

Example 13.5 Cumulative Distribution Function for Example 13.4

Consider the probability density function f(t) = 0.2e−0.2t defined on [0,∞). The
associated cumulative distribution function is

F (x) =
∫ x

0

f(t) dt

=
∫ x

0

0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
x

0

=
(
−e−0.2(x)

)
−

(
−e−0.2(0)

)

= 1 − e−0.2x

where x ∈ [0,∞). The probability that the virus appears by the end of day five
(i.e., x = 5) is

P (T ≤ 5) = F (5) = 1 − e−0.2(5) ≈ 0.632.

Example 13.6 Cumulative Distribution Function of the Uniform Distribution

The uniform distribution is given by the probability density function f(x) = 1,
0 ≤ x ≤ 1. The corresponding cumulative distribution function is

F (x) =
∫ x

0

1 dt = 1
∣∣∣
x

0
= x

where 0 ≤ x ≤ 1. Let X be a continuous random variable uniformly distributed
on [0, 1] (in other words, f(x) = 1, x ∈ [0, 1], is its probability density function).
The probability that X is smaller than 0.76 is

P (X ≤ 0.76) = F (0.76) = 0.76

Thus, we can calculate the probability from either the probability density function
or the cumulative distribution function. If we use the probability density function,
the probability P (X ≤ 0.76) is the area (Figure 13.10a). If we use the cumulative
distribution function, P (X ≤ 0.76) is the height, i.e., the value of F at 0.76.
(Figure 13.10b).

0 1 

f (x) 
1 

0 

F (x) 

x x 0.76 

probability density function cumulative probability function 

area = probability height = probability

1 

0.76 

0.76 
a b

FIGURE 13.10

Geometric representations of
the probability

Assume that f is a probability density function and F its associated cumulative
distribution function:

F (x) =
∫ x

a

f(t) dt

(a could be a real number or −∞). Using the Fundamental Theoerm of Calculus
we conclude that

(a) F �(x) = f(x) (i.e., F is an antiderivative of f).
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(b) For any numbers c and d in the domains of f and F,
∫ d

c

f(t) dt = F (d) − F (c)

Statement (a) says that, given the cumulative distribution function, we find the
probability density function by differentiating (by drawing the slopes of F ). For
instance, the derivative of F (x) = 1−e−0.2x is F �(x) = 0.2e−0.2x = f(x) (Example
13.5); the derivative of F (x) = x is F �(x) = 1 = f(x) (Example 13.6).

Given a cumulative distribution function, we use (b) to find the probability:

P (c ≤ x ≤ d) =
∫ d

c

f(t) dt = F (d) − F (c)

So, in general, the probability is the difference of the values of the cumulative
distribution function.

Example 13.7 Revisiting the Calculation of the Probability in Example 13.4

The cumulative distribution function for the appearance of the virus is given by
F (x) = 1 − e−0.2x (we calculated it in Example 13.5).

The probability that the virus appears on the sixth day is

P (5 ≤ T ≤ 6) = F (6) − F (5)

=
(
1 − e−0.2(6)

)
−

(
1 − e−0.2(5)

)

= −e−1.2 + e−1 ≈ 0.067

confirming our answer to part (b) of Example 13.4.

We continue analyzing the cumulative distribution function

F (x) =
∫ x

a

f(t) dt

defined on an interval [a, b].
Since f(t) ≥ 0 for all t, it follows that F (x) ≥ 0 for all x. As well (again using

the fact that f(t) ≥ 0),

F (x) =
∫ x

a

f(t) dt ≤
∫ b

a

f(t) dt = 1

by (2) in Definition 36.
Moreover, if a is a real number, then

F (a) =
∫ a

a

f(t) dt = 0

If a = −∞, then

lim
x→−∞

F (x) = lim
x→−∞

∫ x

−∞
f(t) dt = 0

If b is a real number then

F (b) =
∫ b

a

f(t) dt = 1

Otherwise, if b = ∞, then

lim
x→∞

F (x) = lim
x→∞

∫ x

a

f(t) dt = 1

by (2) in Definition 36.
From F �(x) = f(x) ≥ 0, we conclude that F (x) is a non-decreasing function.

According to the Fundamental Theorem of Calculus, if f is continuous, so is F.
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To summarize:

Theorem 13 Properties of the Cumulative Distribution Function
Assume that f is a probability density function, defined and continuous on an
interval [a, b]. The left end a could be a real number or −∞; the right end b
could be a real number or ∞. Denote by F the associated cumulative distribution
function. Then

(1) 0 ≤ F (x) ≤ 1 for all x in [a, b].

(2) F (x) is continuous and non-decreasing.

(3) lim
x→a

F (x) = 0 and lim
x→b

F (x) = 1.

Note that f does not have to be continuous for F to be continuous (see Example
13.8). In all situations that we will encounter f will be continuous or will have a
finite number of jump discontinuities (such as the function in Example 13.8).

Example 13.8 Finding the Cumulative Distribution Function

Consider the function

f(x) =

⎧⎨
⎩

0 x < 0

1/2 0 ≤ x ≤ 2

0 x > 2
defined on (−∞,∞).

(a) Show that f could be a probability density function.

(b) Find the corresponding cumulative distribution function.

(a) Clearly, f(x) ≥ 0 for all x ∈ (−∞,∞) and
� ∞

−∞
f(x) dx =

� 0

−∞
f(x) dx +

� 2

0

f(x) dx +
� ∞

2

f(x) dx

=
� 2

0

1
2

dx

=
1
2

x
���
2

0
= 1

Thus, f satisfies both conditions of Definition 36.

(b) The cumulative distribution function is given by

F (x) =
� x

−∞
f(t) dt

where x ∈ (−∞,∞). If x < 0, then

F (x) =
� x

−∞
f(t) dt =

� x

−∞
0 dt = 0

If 0 ≤ x ≤ 2, then

F (x) =
� x

−∞
f(t) dt

=
� 0

−∞
f(t) dt +

� x

0

f(t) dt

=
� 0

−∞
0 dt +

� x

0

1
2

dt =
1
2
x
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(b) For any numbers c and d in the domains of f and F,
∫ d

c

f(t) dt = F (d) − F (c)

Statement (a) says that, given the cumulative distribution function, we find the
probability density function by differentiating (by drawing the slopes of F ). For
instance, the derivative of F (x) = 1−e−0.2x is F �(x) = 0.2e−0.2x = f(x) (Example
13.5); the derivative of F (x) = x is F �(x) = 1 = f(x) (Example 13.6).

Given a cumulative distribution function, we use (b) to find the probability:

P (c ≤ x ≤ d) =
∫ d

c

f(t) dt = F (d) − F (c)

So, in general, the probability is the difference of the values of the cumulative
distribution function.

Example 13.7 Revisiting the Calculation of the Probability in Example 13.4

The cumulative distribution function for the appearance of the virus is given by
F (x) = 1 − e−0.2x (we calculated it in Example 13.5).

The probability that the virus appears on the sixth day is

P (5 ≤ T ≤ 6) = F (6) − F (5)

=
(
1 − e−0.2(6)

)
−

(
1 − e−0.2(5)

)

= −e−1.2 + e−1 ≈ 0.067

confirming our answer to part (b) of Example 13.4.

We continue analyzing the cumulative distribution function

F (x) =
∫ x

a

f(t) dt

defined on an interval [a, b].
Since f(t) ≥ 0 for all t, it follows that F (x) ≥ 0 for all x. As well (again using

the fact that f(t) ≥ 0),

F (x) =
∫ x

a

f(t) dt ≤
∫ b

a

f(t) dt = 1

by (2) in Definition 36.
Moreover, if a is a real number, then

F (a) =
∫ a

a

f(t) dt = 0

If a = −∞, then

lim
x→−∞

F (x) = lim
x→−∞

∫ x

−∞
f(t) dt = 0

If b is a real number then

F (b) =
∫ b

a

f(t) dt = 1

Otherwise, if b = ∞, then

lim
x→∞

F (x) = lim
x→∞

∫ x

a

f(t) dt = 1

by (2) in Definition 36.
From F �(x) = f(x) ≥ 0, we conclude that F (x) is a non-decreasing function.

According to the Fundamental Theorem of Calculus, if f is continuous, so is F.
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To summarize:

Theorem 13 Properties of the Cumulative Distribution Function
Assume that f is a probability density function, defined and continuous on an
interval [a, b]. The left end a could be a real number or −∞; the right end b
could be a real number or ∞. Denote by F the associated cumulative distribution
function. Then

(1) 0 ≤ F (x) ≤ 1 for all x in [a, b].

(2) F (x) is continuous and non-decreasing.

(3) lim
x→a

F (x) = 0 and lim
x→b

F (x) = 1.

Note that f does not have to be continuous for F to be continuous (see Example
13.8). In all situations that we will encounter f will be continuous or will have a
finite number of jump discontinuities (such as the function in Example 13.8).

Example 13.8 Finding the Cumulative Distribution Function

Consider the function

f(x) =

⎧⎨
⎩

0 x < 0

1/2 0 ≤ x ≤ 2

0 x > 2
defined on (−∞,∞).

(a) Show that f could be a probability density function.

(b) Find the corresponding cumulative distribution function.

(a) Clearly, f(x) ≥ 0 for all x ∈ (−∞,∞) and
� ∞

−∞
f(x) dx =

� 0

−∞
f(x) dx +

� 2

0

f(x) dx +
� ∞

2

f(x) dx

=
� 2

0

1
2

dx

=
1
2

x
���
2

0
= 1

Thus, f satisfies both conditions of Definition 36.

(b) The cumulative distribution function is given by

F (x) =
� x

−∞
f(t) dt

where x ∈ (−∞,∞). If x < 0, then

F (x) =
� x

−∞
f(t) dt =

� x

−∞
0 dt = 0

If 0 ≤ x ≤ 2, then

F (x) =
� x

−∞
f(t) dt

=
� 0

−∞
f(t) dt +

� x

0

f(t) dt

=
� 0

−∞
0 dt +

� x

0

1
2

dt =
1
2
x
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If x ≥ 2,

F (x) =
� x

−∞
f(t) dt

=
� 0

−∞
f(t) dt +

� 2

0

f(t) dt +
� x

2

f(t) dt

=
� 0

−∞
0 dt +

� 2

0

1
2

dt +
� x

2

0 dt

= 0 + 1 + 0 = 1

Thus, the cumulative distribution function is

F (x) =

⎧⎨
⎩

0 x < 0

x/2 0 ≤ x ≤ 2

1 x > 2
In Figure 13.11 we sketched both f(x) and F (x). Note that f is not continuous
(at 0 and at 2), but, nevertheless, F is continuous for all x.

0 

1/2 

2 

f (x) 
1 

0 2 

F (x) 

x x 

FIGURE 13.11

The functions f(x) and F (x)
from Example 13.8

Example 13.9 Working with the Cumulative Distribution Function

Let

F (x) =
� 0 x < 1

1 − 1/x2 x ≥ 1

(a) Check that F (x) satisfies properties (1), (2), and (3) from Theorem 13.

(b) Find the associated probability density function f(x).

(c) Let X be a continuous random variable whose probability density function
is f(x). Find the probability P (−2 ≤ X ≤ 4) in two different ways: by using
the cumulative distribution function from (a) and by using the probability density
function from (b).

(a) Clearly, F (x) ≥ 0 for all x. As well, 1 − 1/x2 ≤ 1 for x ≥ 1. Since F (x) = 0
for x < 1, we conclude that, for any x, F (x) ≤ 1.

The function F (x) is continuous for all x �= 1. From

lim
x→1+

F (x) = lim
x→1+

�
1 − 1

x2

�
= 0

lim
x→1−

F (x) = lim
x→1−

0 = 0

and F (1) = 0 we conclude that F is continuous at x = 1. Thus, F is continuous
at all real numbers x.

Calculating the derivative

F �(x) =
�

1 − 1
x2

��
=

2
x3

≥ 0

we conclude that F (x) is increasing if x ≥ 1. Because F (x) = 0 if x < 1, it follows
that F is non-decreasing.
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Finally,

lim
x→−∞

F (x) = lim
x→−∞

0 = 0

and

lim
x→∞

F (x) = lim
x→∞

(
1 − 1

x2

)
= 1 − 0 = 1

and we are done: all of (1), (2), and (3) from Theorem 13 are satisfied.
The graph of F (x) is shown in Figure 13.12.

x

y

1

1

0

F (x )

FIGURE 13.12

The cumulative distribution
function F (x)

(b) Recall that f(x) = F �(x). Thus,

f(x) =
{ 0 x < 1

2/x3 x > 1
Note that F is not differentiable at x = 1 (it has a corner there) and so f(1) is
not defined. As is common in these situations, to make f defined for all x, we set
f(1) = 0. Thus,

f(x) =
{ 0 x ≤ 1

2/x3 x > 1

(c) Using the cumulative distribution function,

P (−2 ≤ X ≤ 4) = F (4) − F (−2) =
(

1 − 1
42

)
− 0 =

15
16

Using the probability density function,

P (−2 ≤ X ≤ 4) =
∫ 4

−2

f(t) dt

=
∫ 1

−2

f(t) dt +
∫ 4

1

f(t) dt

=
∫ 1

−2

0 dt +
∫ 4

1

2
t3

dt

= 0 − 1
t2

∣∣∣
4

1

= − 1
42

− (−1) =
15
16

The next example is a bit more challenging.

Example 13.10 Calculating the Cumulative Distribution Function

Let f(x) = xe−x, where x ∈ [0,∞). Check that f could be a probability density
function, and find the corresponding cumulative distribution function.

Clearly, f(x) ≥ 0 for all x in [0,∞). To integrate f(x), we use integration by parts.
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If x ≥ 2,

F (x) =
� x

−∞
f(t) dt

=
� 0

−∞
f(t) dt +

� 2

0

f(t) dt +
� x

2

f(t) dt

=
� 0

−∞
0 dt +

� 2

0

1
2

dt +
� x

2

0 dt

= 0 + 1 + 0 = 1

Thus, the cumulative distribution function is

F (x) =

⎧⎨
⎩

0 x < 0

x/2 0 ≤ x ≤ 2

1 x > 2
In Figure 13.11 we sketched both f(x) and F (x). Note that f is not continuous
(at 0 and at 2), but, nevertheless, F is continuous for all x.
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The functions f(x) and F (x)
from Example 13.8

Example 13.9 Working with the Cumulative Distribution Function

Let

F (x) =
� 0 x < 1

1 − 1/x2 x ≥ 1

(a) Check that F (x) satisfies properties (1), (2), and (3) from Theorem 13.

(b) Find the associated probability density function f(x).

(c) Let X be a continuous random variable whose probability density function
is f(x). Find the probability P (−2 ≤ X ≤ 4) in two different ways: by using
the cumulative distribution function from (a) and by using the probability density
function from (b).

(a) Clearly, F (x) ≥ 0 for all x. As well, 1 − 1/x2 ≤ 1 for x ≥ 1. Since F (x) = 0
for x < 1, we conclude that, for any x, F (x) ≤ 1.

The function F (x) is continuous for all x �= 1. From

lim
x→1+

F (x) = lim
x→1+

�
1 − 1

x2

�
= 0

lim
x→1−

F (x) = lim
x→1−

0 = 0

and F (1) = 0 we conclude that F is continuous at x = 1. Thus, F is continuous
at all real numbers x.

Calculating the derivative

F �(x) =
�

1 − 1
x2

��
=

2
x3

≥ 0

we conclude that F (x) is increasing if x ≥ 1. Because F (x) = 0 if x < 1, it follows
that F is non-decreasing.
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Finally,

lim
x→−∞

F (x) = lim
x→−∞

0 = 0

and

lim
x→∞

F (x) = lim
x→∞

(
1 − 1

x2

)
= 1 − 0 = 1

and we are done: all of (1), (2), and (3) from Theorem 13 are satisfied.
The graph of F (x) is shown in Figure 13.12.
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(b) Recall that f(x) = F �(x). Thus,

f(x) =
{ 0 x < 1

2/x3 x > 1
Note that F is not differentiable at x = 1 (it has a corner there) and so f(1) is
not defined. As is common in these situations, to make f defined for all x, we set
f(1) = 0. Thus,

f(x) =
{ 0 x ≤ 1

2/x3 x > 1

(c) Using the cumulative distribution function,

P (−2 ≤ X ≤ 4) = F (4) − F (−2) =
(

1 − 1
42

)
− 0 =

15
16

Using the probability density function,

P (−2 ≤ X ≤ 4) =
∫ 4

−2

f(t) dt

=
∫ 1

−2

f(t) dt +
∫ 4

1

f(t) dt

=
∫ 1

−2

0 dt +
∫ 4

1

2
t3

dt

= 0 − 1
t2

∣∣∣
4

1

= − 1
42

− (−1) =
15
16

The next example is a bit more challenging.

Example 13.10 Calculating the Cumulative Distribution Function

Let f(x) = xe−x, where x ∈ [0,∞). Check that f could be a probability density
function, and find the corresponding cumulative distribution function.

Clearly, f(x) ≥ 0 for all x in [0,∞). To integrate f(x), we use integration by parts.
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Let u = x and v� = e−x. Then u� = 1, v = −e−x, and∫
xe−x dx = uv −

∫
vu� dx

= −xe−x +
∫

e−x dx

= −xe−x − e−x + C

Thus ∫ ∞

0

xe−x dx = lim
T→∞

∫ T

0

xe−x dx

= lim
T→∞

(
−xe−x − e−x

)∣∣∣
T

0

= lim
T→∞

(
−Te−T − e−T

)
− (0 − 1) = 1

since

lim
T→∞

e−T = 0

and, by L’Hôpital’s rule,

lim
T→∞

Te−T = lim
T→∞

T

eT
= lim

T→∞

1
eT

= 0

Thus, f satisfies both conditions of Definition 36. The cumulative distribution
function is given by

F (x) =
∫ x

0

f(t) dt =
∫ x

0

te−t dt

=
(
−te−t − e−t

)∣∣∣
x

0

=
(
−xe−x − e−x

)
− (0 − 1) = 1 − xe−x − e−x

The graphs of f and F are shown in Figure 13.13.

0 1 2 3 4 5 6 7 8 9 100

0.5

1

f (x)

F (x)

FIGURE 13.13

The graphs of f and F from
Example 13.10

The Mean and the Variance

Analogous to the discrete case, we define the mean and the variance for continuous
random variables.

Definition 38 The Mean and the Variance of a Continuous Random Variable
Let X be a continuous random variable with probability density function f(x),
defined on an interval [a, b]. As usual, a could be a real number or −∞; b could
be a real number or ∞. The mean (or the expected value) of X is given by

μ = E(X) =
∫ b

a

xf(x) dx
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The expected value of g(X) (i.e., the expected value of a function of X) is

E(g(X)) =
∫ b

a

g(x)f(x) dx

The variance of X is

var(X) = E
[
(X − μ)2

]
=

∫ b

a

(x − μ)2f(x) dx

The variance can also be calculated from

var(X) = E(X2) − (E(X))2 =
∫ b

a

x2f(x) dx −
(∫ b

a

xf(x) dx

)2

Example 13.11 The Mean and the Variance of the Uniform Distribution

Find the mean and the variance of the random variable X distributed uniformly
on [0, 1].

Recall that the probability density function of X is given by f(x) = 1, x ∈ [0, 1].
The mean is, not surprisingly,

μ =
∫ 1

0

xf(x) dx =
∫ 1

0

x dx =
x2

2

∣∣∣
1

0
=

1
2

The variance is

var(X) =
∫ 1

0

(x − μ)2f(x) dx

=
∫ 1

0

(
x − 1

2

)2

dx

=
1
3

(
x − 1

2

)3
∣∣∣∣∣
1

0

=
1
3

(
1
2

)3

+
1
3

(
1
2

)3

=
1
12

Example 13.12 Calculating the Mean and the Variance

The probability density function of a continuous random variable X is given by

f(x) =
{

4x3 0 ≤ x ≤ 1

0 otherwise
Find its mean and variance.

The mean of X is

μ = E(X) =
∫ ∞

−∞
xf(x) dx

=
∫ 0

−∞
xf(x) dx +

∫ 1

0

xf(x) dx +
∫ ∞

1

xf(x) dx

=
∫ 0

−∞
0 dx +

∫ 1

0

x(4x3) dx +
∫ ∞

1

0 dx

= 4
x5

5

∣∣∣
1

0
=

4
5

Note that all we have to do is to integrate over the interval [0, 1] where f(x) is not
zero. To calculate the variance, we use var(X) = E(X2) − (E(X))2. From

E(X2) =
∫ ∞

−∞
x2f(x) dx =

∫ 1

0

x2(4x3) dx = 4
x6

6

∣∣∣
1

0
=

2
3
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Let u = x and v� = e−x. Then u� = 1, v = −e−x, and∫
xe−x dx = uv −

∫
vu� dx

= −xe−x +
∫

e−x dx

= −xe−x − e−x + C

Thus ∫ ∞

0

xe−x dx = lim
T→∞

∫ T

0

xe−x dx

= lim
T→∞

(
−xe−x − e−x

)∣∣∣
T

0

= lim
T→∞

(
−Te−T − e−T

)
− (0 − 1) = 1

since

lim
T→∞

e−T = 0

and, by L’Hôpital’s rule,

lim
T→∞

Te−T = lim
T→∞

T

eT
= lim

T→∞

1
eT

= 0
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F (x) =
∫ x

0

f(t) dt =
∫ x

0

te−t dt

=
(
−te−t − e−t

)∣∣∣
x

0

=
(
−xe−x − e−x

)
− (0 − 1) = 1 − xe−x − e−x

The graphs of f and F are shown in Figure 13.13.
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The graphs of f and F from
Example 13.10

The Mean and the Variance

Analogous to the discrete case, we define the mean and the variance for continuous
random variables.

Definition 38 The Mean and the Variance of a Continuous Random Variable
Let X be a continuous random variable with probability density function f(x),
defined on an interval [a, b]. As usual, a could be a real number or −∞; b could
be a real number or ∞. The mean (or the expected value) of X is given by

μ = E(X) =
∫ b

a

xf(x) dx
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∫ b

a

g(x)f(x) dx
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var(X) = E
[
(X − μ)2

]
=

∫ b

a

(x − μ)2f(x) dx
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var(X) = E(X2) − (E(X))2 =
∫ b

a

x2f(x) dx −
(∫ b

a

xf(x) dx

)2

Example 13.11 The Mean and the Variance of the Uniform Distribution
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∣∣∣
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zero. To calculate the variance, we use var(X) = E(X2) − (E(X))2. From

E(X2) =
∫ ∞

−∞
x2f(x) dx =

∫ 1

0

x2(4x3) dx = 4
x6

6

∣∣∣
1

0
=

2
3

Calculus_Prob Status Mod_8.5x10.875.indd   161 12-08-09   12:02 PM



P1-160 Probability and Statistics

we obtain

var(X) = E(X2) − (E(X))2 =
2
3
−

(
4
5

)2

=
2
75

Remark In a number of statements in this section, we have used the phrase “probability
density function f(x), defined on an interval [a, b]; a could be a real number or
−∞; b could be a real number or ∞.” All we wanted to say is that any type of
interval (bounded or not) is allowed as the domain of f(x).

Some textbooks use the following approach, which is only superficially differ-
ent. Assume that a probability density function is defined on some interval [a, b].
We can extend its domain to (−∞,∞) by defining f(x) to be 0 outside [a, b] (for
an illustration, see Example 13.12). So one can assume from the start that the
domain of a probability density function is (−∞,∞).

Having defined the probability density function f(x) on (−∞,∞), we define
all quantities related to it using integration from −∞ to ∞. For instance,

μ =
∫ ∞

−∞
xf(x) dx

or

var(X) =
∫ ∞

−∞
(x − μ)2f(x) dx

and so on; see Examples 13.8 and 13.12 to convince yourself that this approach
actually does not differ at all from the way we have done it.

Small point: extending a probability density function beyond its domain to
(−∞,∞), although mathematically sound, might not make sense in the context
of an application. In Example 13.13 the variable x represents distance, so using
negative numbers does not make sense.

Example 13.13 Mean Dispersal Distance

In studying certain aspects of the development of an ecosystem, researchers use
probability to model the dispersal of plant seeds by various species, such as bats,
birds, and lizards.

The function f(x) = ae−ax, where a > 0 and x ∈ [0,∞), is used as the density
function, in the sense that the integral

r(c) =
∫ c

0

f(x) dx =
∫ c

0

ae−ax dx

gives the ratio of seeds dispersed within the circular region of radius c centred at
the source of the seeds, taken to be at x = 0. (This circular region is sometimes
referred to as the “seed shadow.”) Note that∫ ∞

0

ae−ax dx = 1

(see Exercise 34(a)), so the ratio r(c) is a number between 0 and 1.
What is the mean seed dispersal distance?

Note that the model allows for arbitrarily large distances of seed dispersal (x ∈
[0,∞)), which is of course not realistic. However, the model works because the
exponential function decays quickly (for instance, e−20 ≈ 2·10−9, e−50 ≈ 1.9·10−22,
and e−100 ≈ 3.7·10−44). Thus, we can safely neglect the effects of distances beyond
a certain (relatively small) range.

The average dispersal distance is∫ ∞

0

xf(x) dx =
∫ ∞

0

axe−ax dx
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Using integration by parts (as in Example 13.10; see Exercise 34(b) for details) we
get ∫

xe−ax dx = −1
a
e−ax − xe−ax + C

Thus, ∫ ∞

0

axe−ax dx =
(
−1

a
e−ax − xe−ax

)∣∣∣∣
∞

0

= 0 −
(

1
a

)
=

1
a

(see Exercise 34(c) for the details of the calculation of the improper integral). The
mean seed dispersal distance is the reciprocal of the constant a (which needs to
be determined experimentally).

The Median

In discussing the median for finite random variables, we mentioned that it makes
the most sense when the random variable involved takes on a large number of
different values. Continuous random variables certainly possess this property.

Recall that the median is the value that divides the sample into two equally
likely events. In other words, the median is the point where the cumulative distri-
bution function is equal to 1/2. (That the median exists is a consequence of the
Intermediate Value Theorem; see Exercise 35.)

In Figure 13.14 we show how to identify the median from both a probability
density function and a cumulative distribution function.

probability density function cumulative distribution function
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0.5

1

F (x)

0 2 6 8 10 12 14 16 18 20
0

area 
= 1/2

area 
= 1/2

f (x)

median

median

0.2

FIGURE 13.14

Locating the median

Example 13.14 The Median of the Distribution in Example 13.5

The cumulative distribution function related to the appearance of a virus in a
population is given by F (x) = 1− e−0.2x. Find the median time of the appearance
of the virus.

The median is the value of x where F (x) = 1− e−0.2x = 0.5. Solving for x, we get

e−0.2x = 0.5
−0.2x = ln 0.5

x =
ln 0.5
−0.2

≈ 3.47

Thus, the median time is about 3.5 days.
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we obtain
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negative numbers does not make sense.
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birds, and lizards.

The function f(x) = ae−ax, where a > 0 and x ∈ [0,∞), is used as the density
function, in the sense that the integral
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the source of the seeds, taken to be at x = 0. (This circular region is sometimes
referred to as the “seed shadow.”) Note that∫ ∞
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(see Exercise 34(a)), so the ratio r(c) is a number between 0 and 1.
What is the mean seed dispersal distance?

Note that the model allows for arbitrarily large distances of seed dispersal (x ∈
[0,∞)), which is of course not realistic. However, the model works because the
exponential function decays quickly (for instance, e−20 ≈ 2·10−9, e−50 ≈ 1.9·10−22,
and e−100 ≈ 3.7·10−44). Thus, we can safely neglect the effects of distances beyond
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Using integration by parts (as in Example 13.10; see Exercise 34(b) for details) we
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(see Exercise 34(c) for the details of the calculation of the improper integral). The
mean seed dispersal distance is the reciprocal of the constant a (which needs to
be determined experimentally).
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In discussing the median for finite random variables, we mentioned that it makes
the most sense when the random variable involved takes on a large number of
different values. Continuous random variables certainly possess this property.

Recall that the median is the value that divides the sample into two equally
likely events. In other words, the median is the point where the cumulative distri-
bution function is equal to 1/2. (That the median exists is a consequence of the
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Example 13.14 The Median of the Distribution in Example 13.5

The cumulative distribution function related to the appearance of a virus in a
population is given by F (x) = 1− e−0.2x. Find the median time of the appearance
of the virus.

The median is the value of x where F (x) = 1− e−0.2x = 0.5. Solving for x, we get

e−0.2x = 0.5
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x =
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Thus, the median time is about 3.5 days.
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Summary Continuous random variables take on a continuum of values. By modifying the
way we draw histograms so that the areas, rather than the heights, represent the
probability, we constructed the probability density function of a continuous
random variable. To find the probability, we integrate the probability density
function. The cumulative distribution function is defined in the same way as
for discrete random variables. Replacing the sum by the definite integral in the
definitions for the discrete variables, we obtain the mean and the variance for
continuous random variables.

13 Exercises

1. Explain why f(x) = 1−x2, x ∈ [0, 2], cannot be a probability density function of any random variable.

2. Explain why f(x) = 1/2, x ∈ [1, 2], cannot be a probability density function of any random variable.

3. Find the value of the constant a so that f(x) = a/x, 1 ≤ x ≤ 10, satisfies the properties of the
probability density function.

4. Find the value of the constant a so that f(x) = ax(1 − x), 0 ≤ x ≤ 1, satisfies the properties of the
probability density function.

5. Find the value of the constant a so that f(x) = a(1 + x2)−1, x ∈ (0,∞), satisfies the properties of the
probability density function.

6. Check that the function f(x) =
1

2
√

x
, 0 ≤ x ≤ 1, can be a probability density function. Find its mean.

7. Check that the function f(x) =
2
x3

, x ∈ [1,∞), can be a probability density function. Find its mean.

8. Consider uniformly distributed random variables X1 and X2 whose probability density functions are
f1(x) = 1/2, 0 ≤ x ≤ 2, and f2(x) = 1/10, 0 ≤ x ≤ 10. Which one has the larger variance?

9. The uniform distribution is characterized by the fact that its probability density function is a constant
function. Can there be a uniform distribution on [0,∞)?

10. Find the value of c so that f(x) = c, a ≤ x ≤ b, is a probability density function (a and b are real
numbers). The random variable X whose probability density function is f(x) is said to be distributed
uniformly on [a, b]. Can you guess what the mean of X is? Find the mean and the variance of X.

11–14 Find each probability in two ways: using the probability density function f(x) and using the
corresponding cumulative distribution function.

11. f(x) = 0.3 + 0.2x, 0 ≤ x ≤ 2. Find P (0.5 ≤ x ≤ 2).

12. f(x) = 0.5 − 0.125x, 0 ≤ x ≤ 4. Find P (2 ≤ x ≤ 3).

13. f(x) = 1/x, 1 ≤ x ≤ e. Find P (1 ≤ x ≤ 2).

14. f(x) = 6x(1 − x), 0 ≤ x ≤ 1. Find P (0.2 ≤ x ≤ 0.5).

15. Show that the function F (x) = 1−e−2x, x ∈ [0,∞), satisfies all properties listed in Theorem 13. Thus,
it is a cumulative distribution function of a continuous random variable X. Find the corresponding
probability density function and the expected value of X.
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16. Show that F (x) = 1 − x−3, x ∈ [1,∞), satisfies all properties listed in Theorem 13. Thus, it is a
cumulative distribution function of a random variable X. Find the corresponding probability density
function and the variance of X.

17–22 In each case:

(a) Check that f(x) satisfies properties (1) and (2) in Definition 36.

(b) Find the cumulative distribution function for the distribution f(x).

(c) Let X be a continuous random variable whose probability density function is f(x). Find the
expected value μ of X.

(d) Find the probability P (X ≤ μ).

17. f(x) = 2x, 0 ≤ x ≤ 1 18. f(x) = 8x, 0 ≤ x ≤ 1/2

19. f(x) = 3x2, 0 ≤ x ≤ 1 20. f(x) = 4x3, 0 ≤ x ≤ 1

21. f(x) =
2
3
− 2x

9
, 0 ≤ x ≤ 3 22.

3
4
x(2 − x), 0 ≤ x ≤ 2

23. Consider the continuous random variable X given by the probability density function f(x) = 3x2,
0 ≤ x ≤ 1. Find the probability that the values of X are at most one standard deviation away from
the mean.

24. Consider the continuous random variable X given by the probability density function f(x) = 0.3 +
0.2 x, 0 ≤ x ≤ 2. Find P (0.5 ≤ x ≤ 2). Find the probability that the values of X are at least one
standard deviation above the mean.

25–28 Given the probability density function of a random variable X, answer each question.

25. f(x) = 3x2, 0 ≤ x ≤ 1. Find the median of X.

26. f(x) = 3x2, 0 ≤ x ≤ 1. Find the 95th percentile of X; i.e., find the value Q such that P (X ≤ Q) = 0.95.

27. f(x) =
2
3
− 2x

9
, 0 ≤ x ≤ 3. Find the upper quartile of X; i.e., find Q3 such that P (X ≤ Q3) = 0.75.

28. f(x) = 4x3, 0 ≤ x ≤ 1. Find the lower quartile of X; i.e., find Q1 such that P (X ≤ Q1) = 0.25.

29. Suppose that the lifetime of a tree is given by the probability density function f(t) = 0.01e−0.01t,
where t is measured in years, t ∈ [0,∞). Find the average lifetime of the tree. What is the probability
that it will live longer than 70 years?

30. Suppose that the lifetime of an insect is given by the probability density function f(t) = 0.2e−0.2t,
where t is measured in days, t ∈ [0,∞). What is the probability that the insect will live longer than
10 days?

31. The distance between a seed and the plant it came from is modelled by the density function

f(x) =
2

π(1 + x2)
where x represents the distance (in metres), x ∈ [0,∞). What is the probability that a seed will be
found within 10 m of the plant?

32. The distance between a seed and the plant it came from is modelled by the density function

f(x) =
2

π(1 + x2)
where x represents the distance (in metres), x ∈ [0,∞). What is the probability that a seed will be
found farther than 5 m from the plant?
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32. The distance between a seed and the plant it came from is modelled by the density function

f(x) =
2

π(1 + x2)
where x represents the distance (in metres), x ∈ [0,∞). What is the probability that a seed will be
found farther than 5 m from the plant?
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33. Assume that f(x) = 1 − |x|, −1 ≤ x ≤ 1, is the probability density function of a random variable X.

(a) Find P (1/2 ≤ X ≤ 3/4) and P (−1/2 ≤ X ≤ 0).

(b) Find the expected value and the variance of X.

34. We calculate the integrals that are used in Example 13.13.

(a) Show that the improper integral∫ ∞

0

ae−ax = 1

(b) Imitating the integration by parts done in Example 13.10, show that∫
xe−ax dx = −1

a
e−ax − xe−ax

(c) Calculating the limits involved as in Example 13.10, show that(
−1

a
e−ax − xe−ax

)∣∣∣∣
∞

0

= 0 −
(

1
a

)
=

1
a

35. The Intermediate Value Theorem guarantees that a function takes on certain values. State the as-
sumptions of the theorem, and show that they are fulfilled in the case of a cumulative distribution
function F (x) defined on an interval [a, b], where a and b are real numbers. The function F (x) defines
the continuous random variable X. Conclude that the median of X exists.
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14 The Normal Distribution

The normal distribution is the most important continuous distribution. It can
be used to describe a variety of phenomena in biology, such as plant height, human
growth or body weight distributions, the concentration of a chemical diffusing
within a cell, litter size, the length of human or animal pregnancies, the size of
animals, and so on. We will explain in what sense the normal distribution describes
the outomes of a large number of repetitions of a single experiment.

The graph of the probability density function of the normal distribution is a
bell-shaped curve, also known as the Gaussian distribution.

The Normal Distribution

We start with a few examples and then define the probability density function for
the normal distribution.

Example 14.1 Bacterial Population Dynamics Interpreted as Repeated Experiments

A bacterial culture contains 1,000 bacteria. Every day, each bacterium produces
two offspring. The chance that both survive is 35%, the chance that one of them
survives is 25%, and the chance that neither survives is 40%.

Denote by Bi (i = 1, 2, . . . , 1,000) the random variable that counts the number
of surviving offspring from bacterium i. The distribution of Bi is in Table 14.1.

Table 14.1

Surviving offspring Probability

P (Bi = 0) 0.4

P (Bi = 1) 0.25

P (Bi = 2) 0.35

Since all Bi have the same distribution, they are called identically distributed
random variables. The expected value of each Bi is

E(Bi) = (0)(0.4) + (1)(0.25) + (2)(0.35) = 0.95

and the variance is

var(Bi) = E(B2
i ) − (E(Bi))2

= [(0)(0.4) + (1)(0.25) + (4)(0.35)] − 0.952 = 0.7475

Assume that the Bi are mutually independent and denote by B the total number
of offspring in the next generation (one day later):

B =
1,000∑
i=1

Bi

We calculate the expected number of offspring using Theorem 7 in Section 7:

E(B) =
1,000∑
i=1

E(Bi) = 1,000(0.95) = 950

The variance is (here we need independence; see Theorem 9 in Section 9)

var(B) =
1,000∑
i=1

var(Bi) = 1,000(0.7475) = 747.5
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So we know something about the distribution of B. But there are questions we
might want to know the answers to, which cannot be obtained from the information
we have here (or are not easy to get). What is the probability that the population
will increase; i.e., what is the probability that B > 1,000? How likely is it that
the population in the next generation will be between 900 and 1,000?

Once we learn how the normal distribution is related to the sum of indepen-
dent, identically distributed random variables, we will be able to answer these
questions.

Example 14.2 Questions We Will Answer Using the Normal Distribution

Numerous phenomena can be modelled using the normal distribution. By the end
of this section we will be able to answer, among others, the following questions:

(a) How likely is it that an adult female Canadian is taller than 175 cm?

(b) The mean length of a human pregnancy from conception to birth is 266 days
(this seems to be a widely accepted ballpark figure in North America; checking
various sources, we found values of 272, 268, and 274 days; the common estimate
of 40 weeks = 280 days is the duration measured from the date of the mother’s
last menstrual period; see, for instance Mittendorf, R., Williams, M.A., Berkey,
C.S., & Cotter, P.F. (1990). The length of uncomplicated human gestation. Ob-
stetrics & Gynecology, 75 (6), 929-932. or Omigbodun, A.O. (1997). Duration of
human singleton pregnancies in Ibadan, Nigeria. Journal of the National Medical
Association, 89 (9), 617-621).

A baby is considered premature if it is born less than 35 weeks from the date
of conception. What is the probability of a premature birth? What is the length
of 5% of the longest pregnancies? Do we have enough information to answer these
questions? If not, what else do we need?

(c) The Wechsler Adult Intelligence Scale (WAIS) intelligence quotient (IQ) is
distributed normally (bell-shaped) with a mean of 100 and a standard deviation
of 15 (soon, we will learn what “normally distributed” means).

What is the IQ of the smartest 10% of the people, judging solely by the WAIS
IQ test scores?

Example 14.3 Occurrence of a Virus

In Section 10 we studied the occurrence of a virus whose behaviour during month
i is identified by the Bernoulli experiment

Vi =
{

1 virus is present (success)

0 virus is absent
where P (Vi = 1) = 0.2 and P (Vi = 0) = 0.8 for i = 1, 2, . . . , 120. The random
variable

N =
120∑
i=1

Vi

counts the number of months in a 10-year period during which the virus is present
in a population. Its histogram (Figure 14.1) suggests a bell-shaped distribution.

What is the probability that the virus will be present for between 30 and 36
months during the 10-year period?

Of course, we can use the binomial distribution to answer this question, but
the calculations are quite involved (see Exercise 39). In this section, we will learn
how to approximate the binomial distribution with the normal distribution. This
fact will make answering the question somewhat easier.
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Histogram of the occurrence
of the virus and its approxi-
mation

Definition 39 The Normal Distribution
We say that a continuous random variable X has a normal distribution (or is
distributed normally) with mean μ and variance σ2, and write X ∼ N(μ, σ2), if its
probability density function is

f(x) =
1

σ
√

2π
e−(x−μ)2/2σ2

(14.1)

where x is in (−∞,∞).

The probability density function of the normal distribution is determined by two
parameters, μ ∈R and σ > 0. The range of X is (−∞,∞).

In a moment we will describe the graph of f(x). First, we justify the use of
the terms “probability density function,” “mean,” and “variance” in Definition 39.
Keep in mind that the second parameter in X ∼ N(μ, σ2) is the variance. The
standard deviation σ > 0 is its square root.

Looking at (14.1), we see that f(x) ≥ 0 for all x (since σ > 0). In order to verify
that f(x) is indeed a probability density function, we have to show that∫ ∞

−∞
f(x) dx =

∫ ∞

−∞

1
σ
√

2π
e−(x−μ)2/2σ2

dx = 1 (14.2)

Using techniques that are beyond what we can do here one can prove that∫ ∞

−∞
e−x2

dx =
√

π (14.3)

We can show that formula (14.2) follows from (14.3) using integration by substi-
tution (see Exercise 40).

The mean of X is

E(X) =
∫ ∞

−∞
xf(x) dx =

∫ ∞

−∞
x

1
σ
√

2π
e−(x−μ)2/2σ2

dx

Rewrite the exponent of e as −
(

x−μ

σ
√

2

)2

and let u = x−μ

σ
√

2
. Then x =

√
2σu + μ,

du/dx = 1/
√

2σ, and

E(X) =
1

σ
√

2π

∫ ∞

−∞
xe−(x−μ)2/2σ2

dx

=
1

σ
√

2π

∫ ∞

−∞

(√
2σu + μ

)
e−u2√

2σ du

=
1√
π

(∫ ∞

−∞

√
2σu e−u2

du +
∫ ∞

−∞
μe−u2

du

)

=
1√
π

(√
2σ

∫ ∞

−∞
u e−u2

du + μ

∫ ∞

−∞
e−u2

du

)
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The first integral is zero (see Exercise 41) and the second is
√

π, by (14.3). Thus,

E(X) =
1√
π

(
0 + μ

√
π
)

= μ

i.e., μ is indeed the expected value of X. The variance of X is given by

var(X) =
1

σ
√

2π

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ2

dx

In Exercise 42 we show that var(X) = σ2.

Now we describe the graph of the probability density function of the normal dis-
tribution.

Theorem 14 Properties of the Normal Distribution Density Function
The probability density function of the normal distribution

f(x) =
1

σ
√

2π
e−(x−μ)2/2σ2

satisfies the following properties:

(a) f(x) is symmetric with respect to the vertical line x = μ.

(b) f(x) is increasing for x < μ and decreasing for x > μ. It has a local (also
global) maximum value 1/(σ

√
2π) at x = μ.

(c) The inflection points of f(x) are x = μ − σ and x = μ + σ.

(d) lim
x→−∞

f(x) = lim
x→∞

f(x) = 0

See Exercises 43 and 44 for proofs of these facts.
Figure 14.2 shows the graph of the probability density function for N(10, 4),

i.e., for the normal distribution with mean μ = 10 and standard deviation σ = 2.

Note that the inflection points are one standard deviation below and above
the mean, at x = 10−2 = 8 and x = 10+2 = 12. The maximum value the density
function reaches is 1/(2

√
2π) ≈ 0.1995.
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Normal distribution N(10, 4)

Assume that a continuous random variable X is normally distributed with mean
μ and standard deviation σ; i.e., X ∼ N(μ, σ2). Then we calculate the probability
P (a ≤ X ≤ b) using

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx =
∫ b

a

1
σ
√

2π
e−(x−μ)2/2σ2

dx (14.4)

This integral cannot be evaluated using elementary functions. It can be evaluated,
for instance, by approximating the exponential function with a Taylor polynomial
(see Appendix to this section). The usual approach to calculating the integral
in (14.4) consists of reducing a general normal distribution to a special normal
distribution (which we now define) and then using tables.
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Definition 40 Standard Normal Distribution
The standard normal distribution is the normal distribution with mean 0 and
variance 1; in symbols, it is N(0, 1). Its probability density function is given by

f(x) =
1√
2π

e−x2/2 (14.5)

for all x ∈R.

Of course, (14.5) is obtained by substituting μ = 0 and σ = 1 into (14.1). The
graph of f(x) is drawn in Figure 14.3.
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Density function for the
standard normal distribution

We use the symbol Z to denote the continuous random variable that has the stan-
dard normal distribution; i.e., Z ∼ N(0, 1). The cumulative distribution function
of Z is given by

F (z) =
∫ z

−∞
f(x) dx =

∫ z

−∞

1√
2π

e−x2/2 dx (14.6)

F (z) is a non-zero number, equal to the area of the shaded region in Figure 14.4a.
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We give several values of F (z) in Table 14.2. A larger set of values can be found
in Table 14.4 in the Appendix at the end of this section.

Table 14.2

z F (z) z F (z)

−4 0.000032 1 0.841345

−3 0.001350 2 0.977250

−2 0.022750 3 0.998650

−1 0.158655 4 0.999968

0 0.500000 5 0.999999
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F (z) is a non-zero number, equal to the area of the shaded region in Figure 14.4a.
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The area representing the
cumulative distribution func-
tion and the probability

We give several values of F (z) in Table 14.2. A larger set of values can be found
in Table 14.4 in the Appendix at the end of this section.

Table 14.2

z F (z) z F (z)

−4 0.000032 1 0.841345

−3 0.001350 2 0.977250

−2 0.022750 3 0.998650

−1 0.158655 4 0.999968

0 0.500000 5 0.999999
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If Z ∼ N(0, 1), then

P (a ≤ Z ≤ b) =
∫ b

a

1√
2π

e−x2/2 dx = F (b) − F (a) (14.7)

This probability is equal to the area of the shaded region in Figure 14.4b.

Example 14.4 Calculating Probabilities Using the Standard Normal Distribution

Let Z ∼ N(0, 1). The probability that Z is less than 1 is (see Table 14.2)

P (Z < 1) = P (Z ≤ 1) =
∫ 1

−∞

1√
2π

e−x2/2 dx = F (1) = 0.841345

This probability is equal to the area of the shaded region in Figure 14.5a. The
probability that Z is less than −3 is

P (Z < −3) = F (−3) = 0.001350

To calculate P (Z ≥ a), we use complementary events. For instance,

P (Z ≥ 1) = 1 − P (Z < 1) = 1 − 0.841345 = 0.158655

(see Figure 14.5b). Likewise,

P (Z > 3) = 1 − P (Z ≤ 3) = 1 − 0.998650 = 0.001350 (14.8)
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Areas representing probabil-
ities

The result in (14.8) means that very few values (about 0.14%) of Z are more than
three standard deviations above the mean (keep in mind that Z ∼ N(0, 1), so the
mean is 0 and the standard deviation is 1). The fact that P (Z ≥ 1) = 0.158655
means that a bit over 15.8% of the values of Z are more than one standard deviation
above the mean.

Using (14.7), we find that

P (−2 ≤ Z ≤ 1) =
∫ 1

−2

1√
2π

e−x2/2 dx

= F (1) − F (−2) = 0.841345 − 0.022750 = 0.818595

Thus, the area of the shaded region in Figure 14.6 is 0.818595.
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Probability as area
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Next, we compute three probabilities over symmetric intervals.

P (−1 ≤ Z ≤ 1) =
∫ 1

−1

1√
2π

e−x2/2 dx

= F (1) − F (−1)
= 0.841345 − 0.158655 = 0.682690

In words, a bit over 68% of the values of Z fall within one standard deviation of
the mean. Likewise,

P (−2 ≤ Z ≤ 2) = F (2) − F (−2) = 0.977250 − 0.022750 = 0.954500

and

P (−3 ≤ Z ≤ 3) = F (3) − F (−3) = 0.998650 − 0.001350 = 0.997300

Thus, about 95.5% of the values of Z fall within two standard deviations of the
mean, and about 99.7% are within three standard deviations of the mean.

The conclusion we reached in Example 14.4 holds in general: if X ∼ N(μ, σ2),
i.e., if X is a continuous random variable distributed normally with mean μ and
standard deviation σ, then

P (μ − σ ≤ X ≤ μ + σ) = 0.683
P (μ − 2σ ≤ X ≤ μ + 2σ) = 0.955 (14.9)
P (μ − 3σ ≤ X ≤ μ + 3σ) = 0.997

(see Exercise 45). The formulas in (14.9) are referred to as the “68-95-99.7 rule.”
In words, for a normally distributed random variable:

68.3% of the values fall within one standard deviation of the mean.

95.5% of the values fall within two standard deviations of the mean.

99.7% of the values fall within three standard deviations of the mean.

See Figure 14.7.

μ+σ μ−2σ μ−3σμ−σ μ+2σ μ+3σ

95.5% 99.7%68.3%

FIGURE 14.7

The distribution of the values of a normal distribution

Example 14.5 Finding Probabilities Using the 68-95-99.7 Rule

Assume that X ∼ N(μ, σ2). Using (14.9), find

(a) P (X < μ + σ)

(b) P (X ≤ μ + 3σ)

(c) P (X > μ + σ)

(a) We are asked to find the area of the shaded region in Figure 14.8a. Since the
probability density function is symmetric with respect to the mean μ, the area
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If Z ∼ N(0, 1), then

P (a ≤ Z ≤ b) =
∫ b
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1√
2π

e−x2/2 dx = F (b) − F (a) (14.7)

This probability is equal to the area of the shaded region in Figure 14.4b.
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Let Z ∼ N(0, 1). The probability that Z is less than 1 is (see Table 14.2)

P (Z < 1) = P (Z ≤ 1) =
∫ 1

−∞

1√
2π

e−x2/2 dx = F (1) = 0.841345

This probability is equal to the area of the shaded region in Figure 14.5a. The
probability that Z is less than −3 is

P (Z < −3) = F (−3) = 0.001350

To calculate P (Z ≥ a), we use complementary events. For instance,

P (Z ≥ 1) = 1 − P (Z < 1) = 1 − 0.841345 = 0.158655

(see Figure 14.5b). Likewise,

P (Z > 3) = 1 − P (Z ≤ 3) = 1 − 0.998650 = 0.001350 (14.8)
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The result in (14.8) means that very few values (about 0.14%) of Z are more than
three standard deviations above the mean (keep in mind that Z ∼ N(0, 1), so the
mean is 0 and the standard deviation is 1). The fact that P (Z ≥ 1) = 0.158655
means that a bit over 15.8% of the values of Z are more than one standard deviation
above the mean.

Using (14.7), we find that

P (−2 ≤ Z ≤ 1) =
∫ 1

−2

1√
2π

e−x2/2 dx

= F (1) − F (−2) = 0.841345 − 0.022750 = 0.818595

Thus, the area of the shaded region in Figure 14.6 is 0.818595.
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Next, we compute three probabilities over symmetric intervals.

P (−1 ≤ Z ≤ 1) =
∫ 1

−1

1√
2π

e−x2/2 dx

= F (1) − F (−1)
= 0.841345 − 0.158655 = 0.682690

In words, a bit over 68% of the values of Z fall within one standard deviation of
the mean. Likewise,

P (−2 ≤ Z ≤ 2) = F (2) − F (−2) = 0.977250 − 0.022750 = 0.954500

and

P (−3 ≤ Z ≤ 3) = F (3) − F (−3) = 0.998650 − 0.001350 = 0.997300

Thus, about 95.5% of the values of Z fall within two standard deviations of the
mean, and about 99.7% are within three standard deviations of the mean.

The conclusion we reached in Example 14.4 holds in general: if X ∼ N(μ, σ2),
i.e., if X is a continuous random variable distributed normally with mean μ and
standard deviation σ, then

P (μ − σ ≤ X ≤ μ + σ) = 0.683
P (μ − 2σ ≤ X ≤ μ + 2σ) = 0.955 (14.9)
P (μ − 3σ ≤ X ≤ μ + 3σ) = 0.997

(see Exercise 45). The formulas in (14.9) are referred to as the “68-95-99.7 rule.”
In words, for a normally distributed random variable:

68.3% of the values fall within one standard deviation of the mean.

95.5% of the values fall within two standard deviations of the mean.

99.7% of the values fall within three standard deviations of the mean.

See Figure 14.7.
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The distribution of the values of a normal distribution

Example 14.5 Finding Probabilities Using the 68-95-99.7 Rule

Assume that X ∼ N(μ, σ2). Using (14.9), find

(a) P (X < μ + σ)

(b) P (X ≤ μ + 3σ)

(c) P (X > μ + σ)

(a) We are asked to find the area of the shaded region in Figure 14.8a. Since the
probability density function is symmetric with respect to the mean μ, the area
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of the region to the left of μ is 0.5. We know that 68.3% of the values of X lie
between μ − σ and μ + σ. Again, due to the symmetry of the graph, one half of
these values, 68.3%/2 = 34.15%, lie between μ and μ + σ. Thus,

P (X < μ + σ) = P (X ≤ μ + σ) = 0.5 + 0.3415 = 0.8415

μ+σμ μ−3σ μ+3σμ+3σ

a b c

FIGURE 14.8

Calculating probability using areas

(b) We know that 99.7% of the values of X lie between μ− 3σ and μ + 3σ. Thus,
99.7%/2 = 49.85% of the values lie between μ and μ + 3σ. It follows that

P (X ≤ μ + 3σ) = P (X ≤ μ) + P (μ ≤ X ≤ μ + 3σ) = 0.5 + 0.4985 = 0.9985

See Figure 14.8b.
Alternatively, we argue in the following way: the probability that X is farther

than three standard deviations from the mean is 1 − 0.997 = 0.003. That’s the
area of the two “tails” of the distribution in Figure 14.8c. By symmetry, the area
of each tail is 0.003/1 = 0.0015. Thus,

P (X ≤ μ + 3σ) = 1 − area of the tail at the right end
= 1 − 0.0015 = 0.9985

(c) Using (a), we get

P (X > μ + σ) = 1 − P (X ≤ μ + σ) = 1 − 0.8415 = 0.1585.

Example 14.6 Using the 68-95-99.7 Rule

Assume that a certain quantity X is distributed normally, X ∼ N(15, 32).

(a) Find an interval centred at the mean of X with the property that there is
about a 95% chance that a randomly chosen value of X falls into this interval.

(b) Estimate the probability that a randomly chosen value of X is larger than 24.

The variance of X is 32 = 9, so its standard deviation is σ = 3.

(a) Looking at (14.9), we see that the range of values corresponding to a 95%
chance is within two standard deviations of the mean, so the interval is [15 − 2 ·
3, 15 + 2 · 3] = [9, 21].

(b) Note that 24 = 15 + 3 · 3, i.e., 24 is three standard deviations of the mean.
The probability that X > 24 is equal to the area of the right tail in Figure 14.8c,
which is 0.0015.

Example 14.7 The Lengths of Pregnanicies

The lengths of human pregnancies (measured in days from conception to birth)
can be approximated by the normal distribution with a mean of 266 days and a

Section 14 The Normal Distribution P1-173

standard deviation of 16 days (see Example 14.2(b) for references).
Thus, about 68% of pregnancies last between 266 − 16 = 250 days and 266 +

16 = 282 days. About 95.5% of pregnancies last between 266 − 2 · 16 = 234
days and 266 + 2 · 16 = 298 days, and about 99.7% of pregnancies last between
266 − 3 · 16 = 218 days and 266 + 3 · 16 = 314 days.

Assume that X ∼ N(μ, σ2). If a, b ∈R, then

P (a ≤ X ≤ b) =
∫ b

a

1
σ
√

2π
e−(x−μ)2/2σ2

dx

Using the substitution z = (x − μ)/σ and dz/dx = 1/σ, we obtain
∫ b

a

1
σ
√

2π
e−(x−μ)2/2σ2

dx =
∫ (b−μ)/σ

(a−μ)/σ

1
σ
√

2π
e−z2/2 σ dz

=
∫ (b−μ)/σ

(a−μ)/σ

1√
2π

e−z2/2 dz

The right side is the probability

P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)

and therefore

P (a ≤ X ≤ b) = P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)
(14.10)

where Z is the standard normal distribution.
In other words, the area under the normal distribution density function be-

tween a and b is equal to the area under the standard normal distribution density
function between (a−μ)/σ and (b−μ)/σ. Thus, the two shaded regions in Figure
14.9 have the same area.
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The normal and the standard
normal distributions

Thus, we have proved the following fact.

Theorem 15 The Normal and the Standard Normal Distributions
Assume that X ∼ N(μ, σ2). The random variable Z = (X−μ)/σ has the standard
normal distribution, i.e., Z ∼ N(0, 1).

Putting it all together, if X ∼ N(μ, σ2), then

P (a ≤ X ≤ b) = P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)

= F

(
b − μ

σ

)
− F

(
a − μ

σ

)
(14.11)
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of the region to the left of μ is 0.5. We know that 68.3% of the values of X lie
between μ − σ and μ + σ. Again, due to the symmetry of the graph, one half of
these values, 68.3%/2 = 34.15%, lie between μ and μ + σ. Thus,

P (X < μ + σ) = P (X ≤ μ + σ) = 0.5 + 0.3415 = 0.8415
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(b) We know that 99.7% of the values of X lie between μ− 3σ and μ + 3σ. Thus,
99.7%/2 = 49.85% of the values lie between μ and μ + 3σ. It follows that

P (X ≤ μ + 3σ) = P (X ≤ μ) + P (μ ≤ X ≤ μ + 3σ) = 0.5 + 0.4985 = 0.9985

See Figure 14.8b.
Alternatively, we argue in the following way: the probability that X is farther

than three standard deviations from the mean is 1 − 0.997 = 0.003. That’s the
area of the two “tails” of the distribution in Figure 14.8c. By symmetry, the area
of each tail is 0.003/1 = 0.0015. Thus,

P (X ≤ μ + 3σ) = 1 − area of the tail at the right end
= 1 − 0.0015 = 0.9985

(c) Using (a), we get

P (X > μ + σ) = 1 − P (X ≤ μ + σ) = 1 − 0.8415 = 0.1585.

Example 14.6 Using the 68-95-99.7 Rule

Assume that a certain quantity X is distributed normally, X ∼ N(15, 32).

(a) Find an interval centred at the mean of X with the property that there is
about a 95% chance that a randomly chosen value of X falls into this interval.

(b) Estimate the probability that a randomly chosen value of X is larger than 24.

The variance of X is 32 = 9, so its standard deviation is σ = 3.

(a) Looking at (14.9), we see that the range of values corresponding to a 95%
chance is within two standard deviations of the mean, so the interval is [15 − 2 ·
3, 15 + 2 · 3] = [9, 21].

(b) Note that 24 = 15 + 3 · 3, i.e., 24 is three standard deviations of the mean.
The probability that X > 24 is equal to the area of the right tail in Figure 14.8c,
which is 0.0015.

Example 14.7 The Lengths of Pregnanicies

The lengths of human pregnancies (measured in days from conception to birth)
can be approximated by the normal distribution with a mean of 266 days and a
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standard deviation of 16 days (see Example 14.2(b) for references).
Thus, about 68% of pregnancies last between 266 − 16 = 250 days and 266 +

16 = 282 days. About 95.5% of pregnancies last between 266 − 2 · 16 = 234
days and 266 + 2 · 16 = 298 days, and about 99.7% of pregnancies last between
266 − 3 · 16 = 218 days and 266 + 3 · 16 = 314 days.

Assume that X ∼ N(μ, σ2). If a, b ∈R, then

P (a ≤ X ≤ b) =
∫ b

a

1
σ
√

2π
e−(x−μ)2/2σ2

dx

Using the substitution z = (x − μ)/σ and dz/dx = 1/σ, we obtain
∫ b

a

1
σ
√

2π
e−(x−μ)2/2σ2

dx =
∫ (b−μ)/σ

(a−μ)/σ

1
σ
√

2π
e−z2/2 σ dz

=
∫ (b−μ)/σ

(a−μ)/σ

1√
2π

e−z2/2 dz

The right side is the probability

P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)

and therefore

P (a ≤ X ≤ b) = P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)
(14.10)

where Z is the standard normal distribution.
In other words, the area under the normal distribution density function be-

tween a and b is equal to the area under the standard normal distribution density
function between (a−μ)/σ and (b−μ)/σ. Thus, the two shaded regions in Figure
14.9 have the same area.
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Thus, we have proved the following fact.

Theorem 15 The Normal and the Standard Normal Distributions
Assume that X ∼ N(μ, σ2). The random variable Z = (X−μ)/σ has the standard
normal distribution, i.e., Z ∼ N(0, 1).

Putting it all together, if X ∼ N(μ, σ2), then

P (a ≤ X ≤ b) = P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)

= F

(
b − μ

σ

)
− F

(
a − μ

σ

)
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where F is the cumulative distribution function of the standard normal distribution
Z ∼ N(0, 1). We read the values of F from a table (such as Table 14.4 in the
Appendix to this section).

One technical issue: Table 14.4 lists the values F (z) for positive z only. How do
we calculate F (−0.75) or F (−4)?

Example 14.8 Calculating the Values of F (z) for Negative z

It is given that F (1.5) = 0.933193. Find F (−1.5).

Let’s use pictures. Denote by A, B, and C the areas of the three shaded regions in
Figure 14.10. We are asked to find A (or C, since they are equal by the symmetry
of the graph).

It is given that A + B = F (1.5). Since A + B + C = 1, it follows that

F (−1.5) = A = C

= 1 − (A + B)
= 1 − F (1.5)
= 1 − 0.933193 = 0.066807

So we have discovered the formula F (−1.5) = 1 − F (1.5).

A
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C
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0.1
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0.3

FIGURE 14.10

Computing F (−1.5)

Replacing 1.5 by z and −1.5 by −z in Example 14.8, we obtain

F (−z) = 1 − F (z) (14.12)

for any z. As practice, we now verify (14.12) using probability density functions.
We know F (z), z ≥ 0, and need to find

F (−z) =
∫ −z

−∞

1√
2π

e−x2/2 dx

By the symmetry of the graph (A = C in Figure 14.10) we get

F (−z) =
∫ −z

−∞

1√
2π

e−x2/2 dx =
∫ ∞

z

1√
2π

e−x2/2 dx

Since

1 =
∫ ∞

−∞

1√
2π

e−x2/2 dx =
∫ z

−∞

1√
2π

e−x2/2 dx +
∫ ∞

z

1√
2π

e−x2/2 dx

we obtain ∫ ∞

z

1√
2π

e−x2/2 dx = 1 −
∫ z

−∞

1√
2π

e−x2/2 dx

i.e.,

F (−z) = 1 − F (z)

and we are done.
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In particular,

F (−0.75) = 1 − F (0.75) = 1 − 0.773373 = 0.226627 (14.13)

and

F (−4) = 1 − F (4) = 1 − 0.999968 = 0.000032 (14.14)

Now we are ready to calculate the probability P (a ≤ X ≤ b) for the normal
distribution X ∼ N(μ, σ).

According to (14.11), we convert a and b by subtracting the mean and dividing
by the standard deviation. The values (a − μ)/σ and (b − μ)/σ are called the z-
scores of a and b, respectively. We think of the z-score of a number as the difference
from that number to the mean, in units of standard deviations.

Example 14.9 Calculating Probabilities

Assume that X ∼ N(25, 16). Find P (22 ≤ X ≤ 30).

The random variable X is normally distributed with mean μ = 25 and standard
deviation σ = 4. To convert P (22 ≤ X ≤ 30) to the probability related to the
standard normal distribution, we calculate the z-scores; the z-score of 22 is

22 − μ

σ
=

22 − 25
4

= −3
4

= −0.75

and the z-score of 30 is
30 − μ

σ
=

30 − 25
4

=
5
4

= 1.25

Thus,

P (22 ≤ X ≤ 30) = P (−0.75 ≤ Z ≤ 1.25)

where Z ∼ N(0, 1). Using Table 14.4 from the Appendix and (14.13),

P (−0.75 ≤ Z ≤ 1.25) = F (1.25) − F (−0.75)
= 0.894350 − 0.226627 = 0.667723

Likewise, using (14.14) and Table 14.4,

P (9 ≤ X ≤ 29) = P

(
9 − 25

4
≤ Z ≤ 29 − 25

4

)

= P (−4 ≤ Z ≤ 1)
= F (1) − F (−4)
= 0.841345 − 0.000032 = 0.841313

We are ready to answer the questions we asked at the beginning of this section.

Example 14.10 Answers to Questions from Example 14.2

(a) Human height data have been collected for a variety of reasons. For instance,
there is a growing body of literature that explores the relationship between the
mean human height in a population and the living standard. In some cases, the
normal distribution is used to model human height, although a number of sources
that use it admit that the symmetry of the normal distribution is too restrictive
to reflect the true distribution.

For our example, we will, nevertheless, assume that the distribution of adult
female (age group 25–44) heights in Canada is normal. Taking the mean to be 163
cm and the standard deviation to be 6 cm, we consider the distribution of heights
H ∼ N(163, 62). [Source: Shields, M., Connor Gorber, S., & Tremblay, M.S.
(2008). Methodological issues in anthropometry: Self-reported versus measured
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where F is the cumulative distribution function of the standard normal distribution
Z ∼ N(0, 1). We read the values of F from a table (such as Table 14.4 in the
Appendix to this section).

One technical issue: Table 14.4 lists the values F (z) for positive z only. How do
we calculate F (−0.75) or F (−4)?

Example 14.8 Calculating the Values of F (z) for Negative z

It is given that F (1.5) = 0.933193. Find F (−1.5).

Let’s use pictures. Denote by A, B, and C the areas of the three shaded regions in
Figure 14.10. We are asked to find A (or C, since they are equal by the symmetry
of the graph).

It is given that A + B = F (1.5). Since A + B + C = 1, it follows that

F (−1.5) = A = C

= 1 − (A + B)
= 1 − F (1.5)
= 1 − 0.933193 = 0.066807

So we have discovered the formula F (−1.5) = 1 − F (1.5).
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for any z. As practice, we now verify (14.12) using probability density functions.
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In particular,

F (−0.75) = 1 − F (0.75) = 1 − 0.773373 = 0.226627 (14.13)

and

F (−4) = 1 − F (4) = 1 − 0.999968 = 0.000032 (14.14)

Now we are ready to calculate the probability P (a ≤ X ≤ b) for the normal
distribution X ∼ N(μ, σ).

According to (14.11), we convert a and b by subtracting the mean and dividing
by the standard deviation. The values (a − μ)/σ and (b − μ)/σ are called the z-
scores of a and b, respectively. We think of the z-score of a number as the difference
from that number to the mean, in units of standard deviations.

Example 14.9 Calculating Probabilities

Assume that X ∼ N(25, 16). Find P (22 ≤ X ≤ 30).

The random variable X is normally distributed with mean μ = 25 and standard
deviation σ = 4. To convert P (22 ≤ X ≤ 30) to the probability related to the
standard normal distribution, we calculate the z-scores; the z-score of 22 is

22 − μ

σ
=

22 − 25
4

= −3
4

= −0.75

and the z-score of 30 is
30 − μ

σ
=

30 − 25
4

=
5
4

= 1.25

Thus,

P (22 ≤ X ≤ 30) = P (−0.75 ≤ Z ≤ 1.25)

where Z ∼ N(0, 1). Using Table 14.4 from the Appendix and (14.13),

P (−0.75 ≤ Z ≤ 1.25) = F (1.25) − F (−0.75)
= 0.894350 − 0.226627 = 0.667723

Likewise, using (14.14) and Table 14.4,

P (9 ≤ X ≤ 29) = P

(
9 − 25

4
≤ Z ≤ 29 − 25

4

)

= P (−4 ≤ Z ≤ 1)
= F (1) − F (−4)
= 0.841345 − 0.000032 = 0.841313

We are ready to answer the questions we asked at the beginning of this section.

Example 14.10 Answers to Questions from Example 14.2

(a) Human height data have been collected for a variety of reasons. For instance,
there is a growing body of literature that explores the relationship between the
mean human height in a population and the living standard. In some cases, the
normal distribution is used to model human height, although a number of sources
that use it admit that the symmetry of the normal distribution is too restrictive
to reflect the true distribution.

For our example, we will, nevertheless, assume that the distribution of adult
female (age group 25–44) heights in Canada is normal. Taking the mean to be 163
cm and the standard deviation to be 6 cm, we consider the distribution of heights
H ∼ N(163, 62). [Source: Shields, M., Connor Gorber, S., & Tremblay, M.S.
(2008). Methodological issues in anthropometry: Self-reported versus measured
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height and weight. Proceedings of Statistics Canada Symposium 2008. Available
at www.statcan.gc.ca/pub/11-522-x/2008000/article/11002-eng.pdf.]

Thus, the probability that a female Canadian (in the age range 25 –44) is taller
than 172 cm is

P (H ≥ 172) = P

(
H − 163

6
≥ 172 − 163

6

)

= P (Z ≥ 1.5)
= 1 − P (Z < 1.5)
= 1 − F (1.5) = 1 − 0.933193 = 0.066807

i.e., about 6.7%.

(b) It is given that the mean length of a human pregnancy from conception to
birth is 266 days. In order to use the normal distribution, we need the standard
deviation; from the sources listed in Example 14.2(b), we learn that σ = 16. Thus,
we model the length of pregnancy as the random variable L ∼ N(266, 162).

The probability that a baby is born prematurely is (35 weeks is 245 days)

P (L ≤ 245) = P

(
L − 266

16
≤ 245 − 266

16

)

= P (Z ≤ −1.3125)
= F (−1.3125)

We do not have the value 1.3125 in Table 14.4, so we use the nearest one: F (1.3) =
0.903202. Thus,

F (−1.3125) ≈ F (−1.3) = 1 − F (1.3) = 1 − 0.903200 = 0.096800

In words, about 10% of babies are born prematurely.
What is the length of the longest 5% of pregnancies? To answer this question,

we need to find � such that P (L > �) = 0.05 or P (L ≤ �) = 0.95. We start as
usual:

P (L ≤ �) = 0.95

P

(
L − 266

16
≤ � − 266

16

)
= 0.95

We note that this is an “inverse” question: we know the probability, and need to
figure out the z-score. Looking at Table 14.4, we read

P (Z ≤ 1.65) = 0.950529 ≈ 0.95

Comparing the two expressions, we get
� − 266

16
= 1.65

� = 266 + (16)(1.65) = 292.40

days (which is 41 weeks, 5 days and about 10 hours).

(c) It is given that the WAIS IQ test scores distribution is T ∼ N(100, 152). We
are asked to determine the IQ of the smartest 10% of the people judging solely by
the WAIS IQ test scores.

As in (b), this is an inverse question: we need to find t so that P (T > t) = 0.1
or, equivalently, P (T ≤ t) = 0.9:

P (T ≤ t) = 0.9

P

(
T − 100

15
≤ t − 100

15

)
= 0.9

In Table 14.4, we find F (1.3) = 0.903200 (close enough to 0.9). Thus
t − 100

15
= 1.3

t = 100 + (15)(1.3) = 119.5
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So, the smartest 10% of the people have a WAIS IQ of 119.5 or higher.

Looking back at Examples 14.2 and 14.10, how was it determined that the mean
length of pregnancy is 266 days, or that the average height of an adult Canadian
female is 163 cm?

It is impossible to collect measurements from the whole population. No mat-
ter what is investigated (statistically), researchers need to pick a sample that is
representative of the whole population. How exactly this is done (or whether it
can be done at all) is a difficult problem that we do not discuss here.

In any case, based on a sample and assuming that the phenomenon under in-
vestigation has a certain distribution, statisticians estimate the parameters for the
distribution. The pregnancy length and the female height distributions are based
on data collected from a sample. Under the assumption that the distributions are
normal, the estimates for μ and σ are derived.

To understand the type of difficulty statisticians face in going from a sample
to a distribution, consider the following example.

Example 14.11 Sample versus Population

The following samples (representing some quantity) have been taken from the same
population, assumed to be normally distributed with a mean of 10 and a standard
deviation of 3:

S1 = {8, 9, 5, 9, 6, 10, 13, 11, 8, 5, 14, 16, 10, 7, 14, 8, 9, 13, 6, 4}
S2 = {11, 11, 10, 11, 13, 13, 8, 12, 11, 8, 6, 12, 9, 10, 8, 5, 11, 10, 14, 12}

(To get these values, we used a random number generator programmed to pick
values according to the distribution X ∼ N(10, 32).)

Since the mean is 10, roughly one half of the measurements should be above
and one half below 10. In sample S1, 12 values are below 10, 6 values are above
10, and two values are equal to 10. In sample S2, 6 values are below 10, 11 values
are above 10, and 3 values are equal to 10.

As well, 68% of the values should be within one standard deviation of the
mean, i.e., in the interval [7, 13]. In sample S1, 12 values (60% of all values) belong
to the interval. In sample S2, 17 values (85%) are in the interval [7, 13].

Thus, in spite of the fact that they came from the same population, the two
samples are far from identical.

Obviously, S1 and S2 differ. But if we increase their size (say, pick 50 or 200
values instead of 20), the samples will resemble each other more closely, and will
represent the total population more faithfully. (We will not go into this issue any
further.)

Central Limit Theorems

One reason we study the normal distribution is its ability to describe phenomena
whose values depend on a large number of small contributions. For instance, small
errors in rounding off a number add up as we perform large, complex calculations.
The height and the weight of an animal are believed to be the result of various
factors that are mutually independent and act additively (i.e., each contributes a
small quantity to the height or to the weight).

Consider the situation in Example 14.1. Each of the 1,000 bacteria can be
viewed as an experiment in which we measure the number of surviving offspring.
The outcome of each experiment is small compared to the total population and
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height and weight. Proceedings of Statistics Canada Symposium 2008. Available
at www.statcan.gc.ca/pub/11-522-x/2008000/article/11002-eng.pdf.]

Thus, the probability that a female Canadian (in the age range 25 –44) is taller
than 172 cm is

P (H ≥ 172) = P

(
H − 163

6
≥ 172 − 163

6

)

= P (Z ≥ 1.5)
= 1 − P (Z < 1.5)
= 1 − F (1.5) = 1 − 0.933193 = 0.066807

i.e., about 6.7%.

(b) It is given that the mean length of a human pregnancy from conception to
birth is 266 days. In order to use the normal distribution, we need the standard
deviation; from the sources listed in Example 14.2(b), we learn that σ = 16. Thus,
we model the length of pregnancy as the random variable L ∼ N(266, 162).

The probability that a baby is born prematurely is (35 weeks is 245 days)

P (L ≤ 245) = P

(
L − 266

16
≤ 245 − 266

16

)

= P (Z ≤ −1.3125)
= F (−1.3125)

We do not have the value 1.3125 in Table 14.4, so we use the nearest one: F (1.3) =
0.903202. Thus,

F (−1.3125) ≈ F (−1.3) = 1 − F (1.3) = 1 − 0.903200 = 0.096800

In words, about 10% of babies are born prematurely.
What is the length of the longest 5% of pregnancies? To answer this question,

we need to find � such that P (L > �) = 0.05 or P (L ≤ �) = 0.95. We start as
usual:

P (L ≤ �) = 0.95

P

(
L − 266

16
≤ � − 266

16

)
= 0.95

We note that this is an “inverse” question: we know the probability, and need to
figure out the z-score. Looking at Table 14.4, we read

P (Z ≤ 1.65) = 0.950529 ≈ 0.95

Comparing the two expressions, we get
� − 266

16
= 1.65

� = 266 + (16)(1.65) = 292.40

days (which is 41 weeks, 5 days and about 10 hours).

(c) It is given that the WAIS IQ test scores distribution is T ∼ N(100, 152). We
are asked to determine the IQ of the smartest 10% of the people judging solely by
the WAIS IQ test scores.

As in (b), this is an inverse question: we need to find t so that P (T > t) = 0.1
or, equivalently, P (T ≤ t) = 0.9:

P (T ≤ t) = 0.9

P

(
T − 100

15
≤ t − 100

15

)
= 0.9

In Table 14.4, we find F (1.3) = 0.903200 (close enough to 0.9). Thus
t − 100

15
= 1.3

t = 100 + (15)(1.3) = 119.5
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So, the smartest 10% of the people have a WAIS IQ of 119.5 or higher.

Looking back at Examples 14.2 and 14.10, how was it determined that the mean
length of pregnancy is 266 days, or that the average height of an adult Canadian
female is 163 cm?

It is impossible to collect measurements from the whole population. No mat-
ter what is investigated (statistically), researchers need to pick a sample that is
representative of the whole population. How exactly this is done (or whether it
can be done at all) is a difficult problem that we do not discuss here.

In any case, based on a sample and assuming that the phenomenon under in-
vestigation has a certain distribution, statisticians estimate the parameters for the
distribution. The pregnancy length and the female height distributions are based
on data collected from a sample. Under the assumption that the distributions are
normal, the estimates for μ and σ are derived.

To understand the type of difficulty statisticians face in going from a sample
to a distribution, consider the following example.

Example 14.11 Sample versus Population

The following samples (representing some quantity) have been taken from the same
population, assumed to be normally distributed with a mean of 10 and a standard
deviation of 3:

S1 = {8, 9, 5, 9, 6, 10, 13, 11, 8, 5, 14, 16, 10, 7, 14, 8, 9, 13, 6, 4}
S2 = {11, 11, 10, 11, 13, 13, 8, 12, 11, 8, 6, 12, 9, 10, 8, 5, 11, 10, 14, 12}

(To get these values, we used a random number generator programmed to pick
values according to the distribution X ∼ N(10, 32).)

Since the mean is 10, roughly one half of the measurements should be above
and one half below 10. In sample S1, 12 values are below 10, 6 values are above
10, and two values are equal to 10. In sample S2, 6 values are below 10, 11 values
are above 10, and 3 values are equal to 10.

As well, 68% of the values should be within one standard deviation of the
mean, i.e., in the interval [7, 13]. In sample S1, 12 values (60% of all values) belong
to the interval. In sample S2, 17 values (85%) are in the interval [7, 13].

Thus, in spite of the fact that they came from the same population, the two
samples are far from identical.

Obviously, S1 and S2 differ. But if we increase their size (say, pick 50 or 200
values instead of 20), the samples will resemble each other more closely, and will
represent the total population more faithfully. (We will not go into this issue any
further.)

Central Limit Theorems

One reason we study the normal distribution is its ability to describe phenomena
whose values depend on a large number of small contributions. For instance, small
errors in rounding off a number add up as we perform large, complex calculations.
The height and the weight of an animal are believed to be the result of various
factors that are mutually independent and act additively (i.e., each contributes a
small quantity to the height or to the weight).

Consider the situation in Example 14.1. Each of the 1,000 bacteria can be
viewed as an experiment in which we measure the number of surviving offspring.
The outcome of each experiment is small compared to the total population and
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contributes additively to the total population of bacteria in the next generation (a
day later). It is assumed that the number of surviving offspring of one bacterium is
independent of all other bacteria, and that all bacteria have the same probability
distribution for the survival of their offspring.

Define Bi = “number of surviving offspring from bacterium i,” where i =
1, 2, . . . , 1,000. Keep in mind that all Bi are mutually independent and identically
distributed (all have the same probability distribution). We are interested in their
sum

B = B1 + B2 + · · · + B1,000 =
1,000∑
i=1

Bi

since it gives the number of bacteria in the next generation.

Theorem 16 Central Limit Theorem for Sums of Random Variables
Assume that the random variables X1, X2, . . . , Xn are mutually independent and
identically distributed, with mean μ and variance σ2. Define the random variable

S =
n∑

i=1

Xi

For sufficiently large n, the probability density function of S can be approximated
by the normal distribution with mean nμ and variance nσ2.

The proof of this theorem is beyond the scope of this book.
Note that the random variables X1, X2, . . . , Xn do not have to be normally

distributed; all we require is that they be identically distributed and independent.
What is the “sufficiently large” value of n in Theorem 16? It is generally

accepted that the theorem will give meaningful results when n ≥ 30.

In our example with the bacteria, n = 1,000. Let’s go back to it.

Example 14.12 Answering Questions from Example 14.1

Consider the sum

B =
1,000∑
i=1

Bi

that gives the number of offspring in the next generation. We assume that the
Bi are mutually independent. In Example 14.1 we calculated E(Bi) = 0.95 and
var(Bi) = 0.7475 for all i. By the Central Limit Theorem,

B ∼ N(nμ, nσ2) = N(950, 747.50)

The standard deviation of B is
√

747.50 ≈ 27.34.

The probability that the population will increase in the next generation is

P (B > 1,000) = 1 − P (B ≤ 1,000)

= 1 − P

(
B − 950
27.34

≤ 1,000 − 950
27.34

)

= 1 − P (Z ≤ 1.83)
≈ 1 − P (Z ≤ 1.85)
= 1 − 0.967843 = 0.032157

So, there is little chance (about 3.2%) that the population will increase in size.
How likely is it that in the next generation there will be between 900 and 1,000

bacteria?
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Note that the range [900, 1,000] is about two standard deviations from the
mean; the exact interval is

[950 − (2)(27.34), 950 + (2)(27.34)] = [895.32, 1,004.68]

Thus, we expect the probability to be around 0.95. We compute

P (900 ≤ B ≤ 1,000) = P

(
900 − 950

27.34
≤ Z ≤ 1,000 − 950

27.34

)

= P (−1.83 ≤ Z ≤ 1.83)
= F (1.83) − F (−1.83)
= F (1.83) − (1 − F (1.83))
= 2F (1.83) − 1 ≈ 2(0.967843) − 1 = 0.935686

We approximated F (1.83) by F (1.85) so that we can use Table 14.4.

The Central Limit Theorem talks about sums of random variables. The reason
the sum of random variables can be approximated by the normal distribution is
that the normal distribution is additive. More precisely, the sum X = X1 + X2 of
the two independent random variables X1 ∼ N(μ1, σ

2
1) and X2 ∼ N(μ2, σ

2
2) is the

normal distribution

X = X1 + X2 ∼ N(μ1 + μ2, σ
2
1 + σ2

2)

We check that

E(X) = E(X1) + E(X2) = μ1 + μ2

Because X1 and X2 are independent,

var(X) = var(X1) + var(X2) = σ2
1 + σ2

2

Note that we did not prove that X is normally distributed (that’s the difficult
part). We only proved that the means and the variances add up.

Example 14.13 The Occurrence of a Virus, Revisited

We answer the question asked in Example 14.3.
The random variable M = V1 + V2 + · · · + V120 counts the number of months

during which the virus is present (out of n = 120 months). Recall that P (Vi = 1) =
p = 0.2 for each i = 1, 2, . . . , 120. In Example 10.15 in Section 10 we calculated
the values

E(Vi) = p = 0.2
var(Vi) = p(1 − p) = (0.2)(0.8) = 0.16

The random variables Vi are identically distributed (and assumed to be) indepen-
dent. The mean of M is (see Theorem 7 in Section 7)

E(M) = np = (120)(0.2) = 24

and the variance is (see Theorem 9 in Section 9)

var(M) = np(1 − p) = 120(0.2)(0.8) = 19.2

Using the Central Limit Theorem, we approximate M by the normal distribution
M ∼ N(24, 19.2).

To find the probability that the virus will be present in between 30 and 36
months during the 10-year period, we compute (the standard deviation is

√
19.2 ≈

4.38)

P (30 ≤ M ≤ 36) = P

(
30 − 24

4.38
≤ Z ≤ 36 − 24

4.38

)

≈ P (1.37 ≤ Z ≤ 2.74)
= F (2.74) − F (1.37)
≈ 0.997020 − 0.911492 = 0.085528
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contributes additively to the total population of bacteria in the next generation (a
day later). It is assumed that the number of surviving offspring of one bacterium is
independent of all other bacteria, and that all bacteria have the same probability
distribution for the survival of their offspring.

Define Bi = “number of surviving offspring from bacterium i,” where i =
1, 2, . . . , 1,000. Keep in mind that all Bi are mutually independent and identically
distributed (all have the same probability distribution). We are interested in their
sum

B = B1 + B2 + · · · + B1,000 =
1,000∑
i=1

Bi

since it gives the number of bacteria in the next generation.

Theorem 16 Central Limit Theorem for Sums of Random Variables
Assume that the random variables X1, X2, . . . , Xn are mutually independent and
identically distributed, with mean μ and variance σ2. Define the random variable

S =
n∑

i=1

Xi

For sufficiently large n, the probability density function of S can be approximated
by the normal distribution with mean nμ and variance nσ2.

The proof of this theorem is beyond the scope of this book.
Note that the random variables X1, X2, . . . , Xn do not have to be normally

distributed; all we require is that they be identically distributed and independent.
What is the “sufficiently large” value of n in Theorem 16? It is generally

accepted that the theorem will give meaningful results when n ≥ 30.

In our example with the bacteria, n = 1,000. Let’s go back to it.

Example 14.12 Answering Questions from Example 14.1

Consider the sum

B =
1,000∑
i=1

Bi

that gives the number of offspring in the next generation. We assume that the
Bi are mutually independent. In Example 14.1 we calculated E(Bi) = 0.95 and
var(Bi) = 0.7475 for all i. By the Central Limit Theorem,

B ∼ N(nμ, nσ2) = N(950, 747.50)

The standard deviation of B is
√

747.50 ≈ 27.34.

The probability that the population will increase in the next generation is

P (B > 1,000) = 1 − P (B ≤ 1,000)

= 1 − P

(
B − 950
27.34

≤ 1,000 − 950
27.34

)

= 1 − P (Z ≤ 1.83)
≈ 1 − P (Z ≤ 1.85)
= 1 − 0.967843 = 0.032157

So, there is little chance (about 3.2%) that the population will increase in size.
How likely is it that in the next generation there will be between 900 and 1,000

bacteria?
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Note that the range [900, 1,000] is about two standard deviations from the
mean; the exact interval is

[950 − (2)(27.34), 950 + (2)(27.34)] = [895.32, 1,004.68]

Thus, we expect the probability to be around 0.95. We compute

P (900 ≤ B ≤ 1,000) = P

(
900 − 950

27.34
≤ Z ≤ 1,000 − 950

27.34

)

= P (−1.83 ≤ Z ≤ 1.83)
= F (1.83) − F (−1.83)
= F (1.83) − (1 − F (1.83))
= 2F (1.83) − 1 ≈ 2(0.967843) − 1 = 0.935686

We approximated F (1.83) by F (1.85) so that we can use Table 14.4.

The Central Limit Theorem talks about sums of random variables. The reason
the sum of random variables can be approximated by the normal distribution is
that the normal distribution is additive. More precisely, the sum X = X1 + X2 of
the two independent random variables X1 ∼ N(μ1, σ

2
1) and X2 ∼ N(μ2, σ

2
2) is the

normal distribution

X = X1 + X2 ∼ N(μ1 + μ2, σ
2
1 + σ2

2)

We check that

E(X) = E(X1) + E(X2) = μ1 + μ2

Because X1 and X2 are independent,

var(X) = var(X1) + var(X2) = σ2
1 + σ2

2

Note that we did not prove that X is normally distributed (that’s the difficult
part). We only proved that the means and the variances add up.

Example 14.13 The Occurrence of a Virus, Revisited

We answer the question asked in Example 14.3.
The random variable M = V1 + V2 + · · · + V120 counts the number of months

during which the virus is present (out of n = 120 months). Recall that P (Vi = 1) =
p = 0.2 for each i = 1, 2, . . . , 120. In Example 10.15 in Section 10 we calculated
the values

E(Vi) = p = 0.2
var(Vi) = p(1 − p) = (0.2)(0.8) = 0.16

The random variables Vi are identically distributed (and assumed to be) indepen-
dent. The mean of M is (see Theorem 7 in Section 7)

E(M) = np = (120)(0.2) = 24

and the variance is (see Theorem 9 in Section 9)

var(M) = np(1 − p) = 120(0.2)(0.8) = 19.2

Using the Central Limit Theorem, we approximate M by the normal distribution
M ∼ N(24, 19.2).

To find the probability that the virus will be present in between 30 and 36
months during the 10-year period, we compute (the standard deviation is

√
19.2 ≈

4.38)

P (30 ≤ M ≤ 36) = P

(
30 − 24

4.38
≤ Z ≤ 36 − 24

4.38

)

≈ P (1.37 ≤ Z ≤ 2.74)
= F (2.74) − F (1.37)
≈ 0.997020 − 0.911492 = 0.085528
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To get the values from Table 14.4 we used the approximations F (2.75) for F (2.74)
and F (1.35) for F (1.37).

In Exercise 39 we discover the difficulties that we encounter when we try to
calculate this probability using the binomial distribution. Although it seems much
simpler to do it using the normal distribution approximation, keep in mind that
we did not do the hard part of the calculation—instead, we read the values of the
cumulative distribution function F from a table.

The close connection between the average and the sum is given in the following
consequence of the Central Limit Theorem.

Theorem 17 Central Limit Theorem for Averages
Assume that the random variables X1, X2, . . . , Xn are mutually independent and
identically distributed with mean μ and variance σ2. Define the random variable

A =
1
n

n∑
i=1

Xi

For sufficiently large n, the probability density function of A can be approximated
by the normal distribution with mean μ and variance σ2/n.

As before, “sufficiently large n” means n ≥ 30. Note that A = 1
nS, where S is the

sum random variable from Theorem 16. The statement of Theorem 17 is easy to
verify:

E(A) = E

(
1
n

S

)
=

1
n

E(S) =
1
n

nμ = μ

As well (because X1, X2, . . . , Xn are mutually independent),

var(A) = var
(

1
n

S

)
=

1
n2

var(S) =
1
n2

nσ2 =
σ2

n

Example 14.14 Average Number of Offspring of Bacteria

The number (see Example 14.12)

A =
1

1,000

1,000∑
i=1

Bi

gives the average number of offspring in the next generation. According to Theo-
rem 17, A is approximatelly normally distributed:

A ∼ N(μ, σ2/n) = N(0.95, 0.7475/1,000) = N(0.95, 0.0007475)

Example 14.15 Population with Immigration and Emigration

We study the fluctuations in the size of a population of lions in a national park
due to movements of lions into the region or out of it. The distribution of the
net yearly change (= number of lions that immigrated minus number of lions that
emigrated) is given in Table 14.3.

Assume that the same pattern persists for 40 years, and that these patterns
are mutually independent. Find the normal distribution approximation for the
total change in the population of lions due to immigration and emigration.
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Table 14.3

Net yearly change Probability
in number of lions

−3 0.3

−1 0.15

0 0.2

2 0.15

6 0.2

Denote by Ci the net yearly change in the lion population due to immigration and
emigration, i = 1, 2, . . . , 40. We are interested in the total change over 40 years:

C =
40∑

i=1

Ci

We compute

E(Ci) = (−3)(0.3) + (−1)(0.15) + (0)(0.2) + (2)(0.15) + (6)(0.2) = 0.45

for all i. From

E(C2
i ) = (−3)2(0.3) + (−1)2(0.15) + (0)2(0.2) + (2)2(0.15) + (6)2(0.2) = 10.65

we compute the variance

var(Ci) = E(C2
i ) − (E(Ci))2 = 10.65 − 0.452 = 10.4475

for all i. Using the Central Limit Theorem (Theorem 16), we approximate C by
the normal distribution

C ∼ N(40 · 0.45, 40 · 10.4475) = N(18, 417.9)

The average total change A = 1
40

∑40
i=1 Ci is distributed as (Theorem 17)

A ∼ N(0.45, 10.4475/40) ≈ N(0.45, 0.26)

Appendix: Values of the Cumulative Distribution Function F(z)

In Table 14.4 we give the values of the cumulative distribution function

F (z) =
∫ z

−∞

1√
2π

e−x2/2 dx

of the standard normal distribution for z between 0 and 4. The value F (z) is equal
to the area of the shaded region in Figure 14.11.

0

0.4

z

0.1

0.2

0.3

FIGURE 14.11

The area of the shaded re-
gion is F (z)

Remember to use

F (−z) = 1 − F (z)

to calculate the values of F for negative z.
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To get the values from Table 14.4 we used the approximations F (2.75) for F (2.74)
and F (1.35) for F (1.37).

In Exercise 39 we discover the difficulties that we encounter when we try to
calculate this probability using the binomial distribution. Although it seems much
simpler to do it using the normal distribution approximation, keep in mind that
we did not do the hard part of the calculation—instead, we read the values of the
cumulative distribution function F from a table.

The close connection between the average and the sum is given in the following
consequence of the Central Limit Theorem.

Theorem 17 Central Limit Theorem for Averages
Assume that the random variables X1, X2, . . . , Xn are mutually independent and
identically distributed with mean μ and variance σ2. Define the random variable

A =
1
n

n∑
i=1

Xi

For sufficiently large n, the probability density function of A can be approximated
by the normal distribution with mean μ and variance σ2/n.

As before, “sufficiently large n” means n ≥ 30. Note that A = 1
nS, where S is the

sum random variable from Theorem 16. The statement of Theorem 17 is easy to
verify:

E(A) = E

(
1
n

S

)
=

1
n

E(S) =
1
n

nμ = μ

As well (because X1, X2, . . . , Xn are mutually independent),

var(A) = var
(

1
n

S

)
=

1
n2

var(S) =
1
n2

nσ2 =
σ2

n

Example 14.14 Average Number of Offspring of Bacteria

The number (see Example 14.12)

A =
1

1,000

1,000∑
i=1

Bi

gives the average number of offspring in the next generation. According to Theo-
rem 17, A is approximatelly normally distributed:

A ∼ N(μ, σ2/n) = N(0.95, 0.7475/1,000) = N(0.95, 0.0007475)

Example 14.15 Population with Immigration and Emigration

We study the fluctuations in the size of a population of lions in a national park
due to movements of lions into the region or out of it. The distribution of the
net yearly change (= number of lions that immigrated minus number of lions that
emigrated) is given in Table 14.3.

Assume that the same pattern persists for 40 years, and that these patterns
are mutually independent. Find the normal distribution approximation for the
total change in the population of lions due to immigration and emigration.
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Table 14.3

Net yearly change Probability
in number of lions

−3 0.3

−1 0.15

0 0.2

2 0.15

6 0.2

Denote by Ci the net yearly change in the lion population due to immigration and
emigration, i = 1, 2, . . . , 40. We are interested in the total change over 40 years:

C =
40∑

i=1

Ci

We compute

E(Ci) = (−3)(0.3) + (−1)(0.15) + (0)(0.2) + (2)(0.15) + (6)(0.2) = 0.45

for all i. From

E(C2
i ) = (−3)2(0.3) + (−1)2(0.15) + (0)2(0.2) + (2)2(0.15) + (6)2(0.2) = 10.65

we compute the variance

var(Ci) = E(C2
i ) − (E(Ci))2 = 10.65 − 0.452 = 10.4475

for all i. Using the Central Limit Theorem (Theorem 16), we approximate C by
the normal distribution

C ∼ N(40 · 0.45, 40 · 10.4475) = N(18, 417.9)

The average total change A = 1
40

∑40
i=1 Ci is distributed as (Theorem 17)

A ∼ N(0.45, 10.4475/40) ≈ N(0.45, 0.26)

Appendix: Values of the Cumulative Distribution Function F(z)

In Table 14.4 we give the values of the cumulative distribution function

F (z) =
∫ z

−∞

1√
2π

e−x2/2 dx

of the standard normal distribution for z between 0 and 4. The value F (z) is equal
to the area of the shaded region in Figure 14.11.
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FIGURE 14.11

The area of the shaded re-
gion is F (z)

Remember to use

F (−z) = 1 − F (z)

to calculate the values of F for negative z.
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Table 14.4

z F (z) z F (z) z F (z) z F (z)

0 0.500000 1 0.841345 2 0.977250 3 0.998650

0.05 0.519938 1.05 0.853141 2.05 0.979818 3.05 0.998856

0.1 0.539828 1.1 0.864334 2.1 0.982136 3.1 0.999032

0.15 0.559618 1.15 0.874928 2.15 0.984222 3.15 0.999184

0.2 0.579260 1.2 0.884930 2.2 0.986097 3.2 0.999313

0.25 0.598706 1.25 0.894350 2.25 0.987776 3.25 0.999423

0.3 0.617911 1.3 0.903200 2.3 0.989276 3.3 0.999517

0.35 0.636831 1.35 0.911492 2.35 0.990613 3.35 0.999596

0.4 0.655422 1.4 0.919243 2.4 0.991802 3.4 0.999663

0.45 0.673645 1.45 0.926471 2.45 0.992857 3.45 0.999720

0.5 0.691462 1.5 0.933193 2.5 0.993790 3.5 0.999767

0.55 0.708840 1.55 0.939429 2.55 0.994614 3.55 0.999807

0.6 0.725747 1.6 0.945201 2.6 0.995339 3.6 0.999840

0.65 0.742154 1.65 0.950529 2.65 0.995975 3.65 0.999869

0.7 0.758036 1.7 0.955435 2.7 0.996533 3.7 0.999892

0.75 0.773373 1.75 0.959941 2.75 0.997020 3.75 0.999912

0.8 0.788145 1.8 0.964070 2.8 0.997445 3.8 0.999928

0.85 0.802337 1.85 0.967843 2.85 0.997814 3.85 0.999941

0.9 0.815940 1.9 0.971283 2.9 0.998134 3.9 0.999952

0.95 0.828944 1.95 0.974412 2.95 0.998411 3.95 0.999961

4 0.999968

How were the values in Table 14.4 calculated?
One way to do it is to approximate F (z) using Taylor polynomials. As an

example, we show how to find F (1). Note that

F (1) =
∫ 1

−∞

1√
2π

e−x2/2 dx

=
∫ 0

−∞

1√
2π

e−x2/2 dx +
∫ 1

0

1√
2π

e−x2/2 dx

= 0.5 +
1√
2π

∫ 1

0

e−x2/2 dx (14.15)

Recall that we can approximate ex using the Taylor polynomial

ex ≈ 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
Replacing x by −x2/2, we obtain

e−x2/2 ≈ 1 − x2

2
+

(−x2/2)2

2!
+

(−x2/2)3

3!
+ · · · + (−x2/2)n

n!

= 1 − x2

2
+

x4

22 · 2!
− x6

23 · 3!
+ · · · + (−1)nx2n

2nn!
(14.16)
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To approximate the integral in (14.15), we use the first four terms (of course,
increasing the number of terms improves the approximation):

∫ 1

0

e−x2/2 dx ≈
∫ 1

0

(
1 − x2

2
+

x4

8
− x6

48

)
dx

=
(

x − x3

6
+

x5

40
− x7

336

)∣∣∣∣
1

0

= 1 − 1
6

+
1
40

− 1
336

= 0.855357

Thus,

F (1) = 0.5 +
1√
2π

∫ 1

0

e−x2/2 dx ≈ 0.5 +
1√
2π

0.855357 = 0.841238

which agrees with F (1) = 0.841347 to three decimal places.

Summary The normal distribution can be used to model a wide variety of phenomena
in the life sciences and elsewhere. The probability density function of the nor-
mal distribution is a bell-shaped curve, symmetric about the mean. In order to
calculate the probability related to a normal distribution, we use the standard
normal distribution. We convert the values to z-scores by subtracting the
mean and dividing by the standard deviation. The calculation of the values of the
cumulative distribution function of the standard normal distribution involves an
integral that cannot be evaluated using elementary means. Instead, we use tables
or mathematical software to find its values. The sum of independent, identically
distributed random variables can be approximated by a normal distribution. This
idea is made precise in the statement of the Central Limit Theorem.

14 Exercises

1. What is the z-score? Explain how to calculate the probability P (0 ≤ 2 ≤ 7) if X ∼ N(3, 16).

2. Sketch the graph of the standard normal distribution. Shade the region whose area corresponds to the
probability P (1 ≤ X ≤ 4), if X ∼ N(3, 12).

3. Sketch the graph of the standard normal distribution. Shade the region whose area corresponds to the
probability P (−1 ≤ X ≤ 2), if X ∼ N(0, 22).

4–11 Find each probability using Table 14.4.

4. X is normally distributed with mean 3 and variance 4. Find the probability that X is less than 4.1.

5. X is normally distributed with mean 5 and variance 100. Find the probability that X is less than 9.

6. Let X ∼ N(−1, 4); find P (X > 1). 7. Let X ∼ N(0, 102); find P (X > 25).

8. Let X ∼ N(−1, 4); find P (X < −2). 9. Let X ∼ N(−5, 102); find P (X < −10).

10. Let X ∼ N(−2, 4); find P (−3 ≤ X ≤ 1). 11. Let X ∼ N(2, 52); find P (0 ≤ X ≤ 5).

12. The wingspan of a blue jay is normally distributed with a mean of 39 cm and a standard deviation of
3 cm. What is the probability that a randomly chosen blue jay has a wingspan wider than 42 cm?

13. The weight of a pink salmon is normally distributed with a mean of 1.7 kg and a standard deviation
of 0.1 kg. What ratio of pink salmon is heavier than 1.9 kg?
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Table 14.4

z F (z) z F (z) z F (z) z F (z)

0 0.500000 1 0.841345 2 0.977250 3 0.998650

0.05 0.519938 1.05 0.853141 2.05 0.979818 3.05 0.998856

0.1 0.539828 1.1 0.864334 2.1 0.982136 3.1 0.999032

0.15 0.559618 1.15 0.874928 2.15 0.984222 3.15 0.999184

0.2 0.579260 1.2 0.884930 2.2 0.986097 3.2 0.999313

0.25 0.598706 1.25 0.894350 2.25 0.987776 3.25 0.999423

0.3 0.617911 1.3 0.903200 2.3 0.989276 3.3 0.999517

0.35 0.636831 1.35 0.911492 2.35 0.990613 3.35 0.999596

0.4 0.655422 1.4 0.919243 2.4 0.991802 3.4 0.999663

0.45 0.673645 1.45 0.926471 2.45 0.992857 3.45 0.999720

0.5 0.691462 1.5 0.933193 2.5 0.993790 3.5 0.999767

0.55 0.708840 1.55 0.939429 2.55 0.994614 3.55 0.999807

0.6 0.725747 1.6 0.945201 2.6 0.995339 3.6 0.999840

0.65 0.742154 1.65 0.950529 2.65 0.995975 3.65 0.999869

0.7 0.758036 1.7 0.955435 2.7 0.996533 3.7 0.999892

0.75 0.773373 1.75 0.959941 2.75 0.997020 3.75 0.999912

0.8 0.788145 1.8 0.964070 2.8 0.997445 3.8 0.999928

0.85 0.802337 1.85 0.967843 2.85 0.997814 3.85 0.999941

0.9 0.815940 1.9 0.971283 2.9 0.998134 3.9 0.999952

0.95 0.828944 1.95 0.974412 2.95 0.998411 3.95 0.999961

4 0.999968

How were the values in Table 14.4 calculated?
One way to do it is to approximate F (z) using Taylor polynomials. As an

example, we show how to find F (1). Note that

F (1) =
∫ 1

−∞

1√
2π

e−x2/2 dx

=
∫ 0

−∞

1√
2π

e−x2/2 dx +
∫ 1

0

1√
2π

e−x2/2 dx

= 0.5 +
1√
2π

∫ 1

0

e−x2/2 dx (14.15)

Recall that we can approximate ex using the Taylor polynomial

ex ≈ 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
Replacing x by −x2/2, we obtain

e−x2/2 ≈ 1 − x2

2
+

(−x2/2)2

2!
+

(−x2/2)3

3!
+ · · · + (−x2/2)n

n!

= 1 − x2

2
+

x4

22 · 2!
− x6

23 · 3!
+ · · · + (−1)nx2n

2nn!
(14.16)
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To approximate the integral in (14.15), we use the first four terms (of course,
increasing the number of terms improves the approximation):

∫ 1

0

e−x2/2 dx ≈
∫ 1

0

(
1 − x2

2
+

x4

8
− x6

48

)
dx

=
(

x − x3

6
+

x5

40
− x7

336

)∣∣∣∣
1

0

= 1 − 1
6

+
1
40

− 1
336

= 0.855357

Thus,

F (1) = 0.5 +
1√
2π

∫ 1

0

e−x2/2 dx ≈ 0.5 +
1√
2π

0.855357 = 0.841238

which agrees with F (1) = 0.841347 to three decimal places.

Summary The normal distribution can be used to model a wide variety of phenomena
in the life sciences and elsewhere. The probability density function of the nor-
mal distribution is a bell-shaped curve, symmetric about the mean. In order to
calculate the probability related to a normal distribution, we use the standard
normal distribution. We convert the values to z-scores by subtracting the
mean and dividing by the standard deviation. The calculation of the values of the
cumulative distribution function of the standard normal distribution involves an
integral that cannot be evaluated using elementary means. Instead, we use tables
or mathematical software to find its values. The sum of independent, identically
distributed random variables can be approximated by a normal distribution. This
idea is made precise in the statement of the Central Limit Theorem.

14 Exercises

1. What is the z-score? Explain how to calculate the probability P (0 ≤ 2 ≤ 7) if X ∼ N(3, 16).

2. Sketch the graph of the standard normal distribution. Shade the region whose area corresponds to the
probability P (1 ≤ X ≤ 4), if X ∼ N(3, 12).

3. Sketch the graph of the standard normal distribution. Shade the region whose area corresponds to the
probability P (−1 ≤ X ≤ 2), if X ∼ N(0, 22).

4–11 Find each probability using Table 14.4.

4. X is normally distributed with mean 3 and variance 4. Find the probability that X is less than 4.1.

5. X is normally distributed with mean 5 and variance 100. Find the probability that X is less than 9.

6. Let X ∼ N(−1, 4); find P (X > 1). 7. Let X ∼ N(0, 102); find P (X > 25).

8. Let X ∼ N(−1, 4); find P (X < −2). 9. Let X ∼ N(−5, 102); find P (X < −10).

10. Let X ∼ N(−2, 4); find P (−3 ≤ X ≤ 1). 11. Let X ∼ N(2, 52); find P (0 ≤ X ≤ 5).

12. The wingspan of a blue jay is normally distributed with a mean of 39 cm and a standard deviation of
3 cm. What is the probability that a randomly chosen blue jay has a wingspan wider than 42 cm?

13. The weight of a pink salmon is normally distributed with a mean of 1.7 kg and a standard deviation
of 0.1 kg. What ratio of pink salmon is heavier than 1.9 kg?
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14. Assume that the random variable S ∼ N(70, 102) describes the grades on a math test. What is the
probability that a student scored more than 85 points?

15. Assume that the random variable I ∼ N(100, 152) gives the distribution of IQ test scores. What is
the probability that someone’s IQ is more than 120?

16. Suppose that the weight of an animal is normally distributed with a mean of 4.5 kg and a standard
deviation of 2.5 kg. What is the probability that a randomly chosen animal weighs between 6 kg and
8 kg?

17. The full running speed (km/h) of a moose is normally distributed, S ∼ N(44, 52). What percent of
moose can run faster than 50 km/h?

18–23 Assume that a population is normally distributed with mean μ and variance σ2. Find the fraction
of the population that falls within each interval.

18. (μ, μ + 3σ) 19. (μ − σ, μ + 2σ)

20. (μ,∞) 21. (−∞, μ + σ)

22. (μ + σ,∞) 23. (−∞, μ − σ)

24. Assume that X ∼ N(μ, σ2) and let Z = (X − μ)/σ. Using the properties of the expected value and
the variance (without integrals), show that E(Z) = 0 and var(Z) = 1.

25. Assume that X1 ∼ N(2, 122) and X2 ∼ N(4, 62) are independent random variables. What is the
distribution of X = X1 + X2? Find the mean and the variance of X.

26. Assume that X1 ∼ N(2, 122). Under what conditions is the random variable X = 5X1 normally
distributed? Find the mean and the variance of X.

27–30 Suppose that X ∼ N(2, 122). Use Table 14.4 to find an x that satisfies each condition (if you
cannot find an exact match, use the nearest approximation).

27. P (X ≤ x) = 0.56 28. P (X ≤ x) = 0.95

29. P (X > x) = 0.2 30. P (X > x) = 0.3

31–34 The grades on a math test are normally distributed with a mean grade of 72 out of 100 and a
standard deviation of 8.

31. What ratio of students scored more than 90% on the test?

32. What ratio of students scored between 60 and 80 points?

33. What is the minimum score of the highest 5% of the test scores?

34. What is the maximum score of the lowest 10% of the tests scores?

35. The probability that a tree is infested by canker-rot fungus (which causes heartwood decay) is 1.4%.
What is the probability that of the 200 trees selected, fewer than 25 are infested with the fungus?
[Hint: Use the Central Limit Theorem.]

36. About 5% of people are carriers of a certain gene. What is the probability that in a sample of 80
people, between 5 and 10 are carriers of the gene? [Hint: Use the Central Limit Theorem.]

37. A bacterial culture contains 10,000 bacteria. Every day, each bacterium produces two offspring. The
chance that they both survive is 15%, the chance that one survives is 75%, and the chance that none
survive is 10%. What is the probability that the population will be larger than 10,000 tomorrow?

38. Consider the bacterial culture from Exercise 37. Find the probability that there will be between 9,000
and 12,000 bacteria the following day.
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39. (Example 14.3) Use the binomial distribution b(k, n; p) (with appropriate choices for k, n, and p) to
find an expression for the probability that the virus will be present in between 30 and 36 months
during a 10-year period. What is the major difficulty you would encounter if you tried to find the
numerical value of your expression?

40. Using the substitution u = x−μ

σ
√

2
, show that

∫ ∞

−∞

1
σ
√

2π
e−(x−μ)2/2σ2

dx =
1√
π

∫ ∞

−∞
e−u2

du

and then use (14.3) to conclude that (14.2) is true.

41. Using integration by substitution, show that∫ ∞

0

ue−u2
du =

1
2

Verify that the integrand is an odd function, and conclude that∫ ∞

−∞
ue−u2

du = 0

42. In this exercise we evaluate the integral

var(X) =
1

σ
√

2π

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ2

dx

(a) Using integration by parts, show that∫
w2e−w2

dw = −1
2
we−w2

+
1
2

∫
e−w2

dw

(b) Using (14.3), show that the improper integral∫ ∞

−∞
w2e−w2

dw

is equal to
√

π/2. [You will need L’Hôpital’s rule.]

(c) Rewrite

var(X) =
∫ ∞

−∞

(
x − μ

σ
√

2

)2 √
2σ√
π

e−(x−μ)2/2σ2
dx

and substitute w = (x − μ)/σ
√

2 to get

var(X) =
2σ2

√
π

∫ ∞

−∞
w2e−w2

dx

(d) Use (b) to show that var(X) = σ2.

43. Prove the following for the function g(x) = e−x2
.

(a) g(x) is an even function (i.e., symmetric with respect to the y-axis).

(b) g(x) is increasing for x < 0 and decreasing for x > 0. It has a local (also global) maximum value
of 1 at x = 0.

(c) The inflection points of g(x) are at x = ±1/
√

2.

(d) limx→−∞ g(x) = limx→∞ g(x) = 0

44. Explain how to obtain the graph of the function f(x) = 1
σ
√

2π
e−(x−μ)2/2σ2

from the graph of the

function g(x) = e−x2
by shifting and scaling. Combine what you discovered with the results of

Exercise 43 to prove (a) – (d) from Theorem 14. [Hint: To discover how to transform g(x) to obtain

f(x), rewrite the exponent of e as −
(

1
σ
√

2
(x − μ)

)2

.]

45. Using formula (14.10), prove the claims about the “68-95-99.7 rule” that we made in (14.9).
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14. Assume that the random variable S ∼ N(70, 102) describes the grades on a math test. What is the
probability that a student scored more than 85 points?

15. Assume that the random variable I ∼ N(100, 152) gives the distribution of IQ test scores. What is
the probability that someone’s IQ is more than 120?

16. Suppose that the weight of an animal is normally distributed with a mean of 4.5 kg and a standard
deviation of 2.5 kg. What is the probability that a randomly chosen animal weighs between 6 kg and
8 kg?

17. The full running speed (km/h) of a moose is normally distributed, S ∼ N(44, 52). What percent of
moose can run faster than 50 km/h?

18–23 Assume that a population is normally distributed with mean μ and variance σ2. Find the fraction
of the population that falls within each interval.

18. (μ, μ + 3σ) 19. (μ − σ, μ + 2σ)

20. (μ,∞) 21. (−∞, μ + σ)

22. (μ + σ,∞) 23. (−∞, μ − σ)

24. Assume that X ∼ N(μ, σ2) and let Z = (X − μ)/σ. Using the properties of the expected value and
the variance (without integrals), show that E(Z) = 0 and var(Z) = 1.

25. Assume that X1 ∼ N(2, 122) and X2 ∼ N(4, 62) are independent random variables. What is the
distribution of X = X1 + X2? Find the mean and the variance of X.

26. Assume that X1 ∼ N(2, 122). Under what conditions is the random variable X = 5X1 normally
distributed? Find the mean and the variance of X.

27–30 Suppose that X ∼ N(2, 122). Use Table 14.4 to find an x that satisfies each condition (if you
cannot find an exact match, use the nearest approximation).

27. P (X ≤ x) = 0.56 28. P (X ≤ x) = 0.95

29. P (X > x) = 0.2 30. P (X > x) = 0.3

31–34 The grades on a math test are normally distributed with a mean grade of 72 out of 100 and a
standard deviation of 8.

31. What ratio of students scored more than 90% on the test?
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33. What is the minimum score of the highest 5% of the test scores?

34. What is the maximum score of the lowest 10% of the tests scores?

35. The probability that a tree is infested by canker-rot fungus (which causes heartwood decay) is 1.4%.
What is the probability that of the 200 trees selected, fewer than 25 are infested with the fungus?
[Hint: Use the Central Limit Theorem.]

36. About 5% of people are carriers of a certain gene. What is the probability that in a sample of 80
people, between 5 and 10 are carriers of the gene? [Hint: Use the Central Limit Theorem.]

37. A bacterial culture contains 10,000 bacteria. Every day, each bacterium produces two offspring. The
chance that they both survive is 15%, the chance that one survives is 75%, and the chance that none
survive is 10%. What is the probability that the population will be larger than 10,000 tomorrow?

38. Consider the bacterial culture from Exercise 37. Find the probability that there will be between 9,000
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39. (Example 14.3) Use the binomial distribution b(k, n; p) (with appropriate choices for k, n, and p) to
find an expression for the probability that the virus will be present in between 30 and 36 months
during a 10-year period. What is the major difficulty you would encounter if you tried to find the
numerical value of your expression?

40. Using the substitution u = x−μ

σ
√

2
, show that

∫ ∞

−∞

1
σ
√

2π
e−(x−μ)2/2σ2

dx =
1√
π

∫ ∞

−∞
e−u2

du

and then use (14.3) to conclude that (14.2) is true.

41. Using integration by substitution, show that∫ ∞

0

ue−u2
du =

1
2

Verify that the integrand is an odd function, and conclude that∫ ∞

−∞
ue−u2

du = 0

42. In this exercise we evaluate the integral

var(X) =
1

σ
√

2π

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ2

dx

(a) Using integration by parts, show that∫
w2e−w2

dw = −1
2
we−w2

+
1
2

∫
e−w2

dw

(b) Using (14.3), show that the improper integral∫ ∞

−∞
w2e−w2

dw

is equal to
√

π/2. [You will need L’Hôpital’s rule.]

(c) Rewrite

var(X) =
∫ ∞

−∞

(
x − μ

σ
√

2

)2 √
2σ√
π

e−(x−μ)2/2σ2
dx

and substitute w = (x − μ)/σ
√

2 to get

var(X) =
2σ2

√
π

∫ ∞

−∞
w2e−w2

dx

(d) Use (b) to show that var(X) = σ2.

43. Prove the following for the function g(x) = e−x2
.

(a) g(x) is an even function (i.e., symmetric with respect to the y-axis).

(b) g(x) is increasing for x < 0 and decreasing for x > 0. It has a local (also global) maximum value
of 1 at x = 0.

(c) The inflection points of g(x) are at x = ±1/
√

2.

(d) limx→−∞ g(x) = limx→∞ g(x) = 0

44. Explain how to obtain the graph of the function f(x) = 1
σ
√

2π
e−(x−μ)2/2σ2

from the graph of the

function g(x) = e−x2
by shifting and scaling. Combine what you discovered with the results of

Exercise 43 to prove (a) – (d) from Theorem 14. [Hint: To discover how to transform g(x) to obtain

f(x), rewrite the exponent of e as −
(

1
σ
√

2
(x − μ)

)2

.]

45. Using formula (14.10), prove the claims about the “68-95-99.7 rule” that we made in (14.9).
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15 The Uniform and the Exponential Distributions

In this section we explore continuous distributions. The uniform distribution is
the simplest of all, having a constant function for its probability density function.
As the continuous analogue of the geometric distribution, we study the exponen-
tial distribution.

The Uniform Distribution

We have already mentioned the uniform distribution in Section 13. Now we say a
bit more about it.

Definition 41 The Uniform Distribution
A continuous random variable U is said to be distributed uniformly over the interval
[a, b] in R if its probability density function is given by

f(x) =

⎧⎨
⎩

1
b − a

if a ≤ x ≤ b

0 otherwise

Sometimes, the uniform distribution is taken to be 1/(b − a) on the open interval
(a, b). (This makes no difference to us.)

Clearly, f(x) ≥ 0 for all x in R. Since
� ∞

−∞
f(x) dx =

� b

a

1
b − a

dx =
1

b − a
(b − a) = 1

it follows that f(x) is indeed a probability density function. The integral we
calculated is the area of the shaded rectangle in Figure 15.1a.

x

f (x)=11

0
a

a b

b-a

x

f (x)=11

0
b

a b

b-a

x1 x2
FIGURE 15.1

Uniform distribution

If x1, x2 ∈ [a, b], then

P (x1 ≤ U ≤ x2) =
� x2

x1

1
b − a

dx =
x2 − x1

b − a
(15.1)

is the area of the rectangle over [x1, x2] of height 1/(b − a); see Figure 15.1b.
The probability P (x1 ≤ U ≤ x2) depends only on the difference x2−x1, which

is the length of the interval [x1, x2]. Thus, all intervals of the same length in [a, b]
are equally likely (hence the word “uniform”).

Example 15.1 Random Numbers

The uniform distribution over the interval [0, 1] is given by

f(x) =
�

1 if 0 ≤ x ≤ 1

0 otherwise
Consider intervals within [0, 1] whose length is 10−5. According to what we just
said, the intervals
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[0, 0.00001), [0.00001, 0.00002), [0.00002, 0.00003), . . . , [0.99999, 1) (15.2)

are equally likely to occur.
Assume that a computer can handle numbers with up to five decimal places

only (thus, for instance, it cannot distinguish between 0.345671 and 0.345674).
The computer thinks that each of the intervals in (15.2) contains only one number
(namely, the left endpoint).

Because the distribution is uniform, picking any of those numbers (or the
corresponding intervals) is as likely as picking any other number (interval). We
say that all these numbers are equally likely to occur. We know that the probability
that a continuous random variable is exactly equal to a real number is zero. When
we say that a random number generator picks any number from the interval [0, 1)
with equal chance, we mean it in the sense explained above. (This explains the
principle; in practice, what we said needs to be modified a bit so that— as is
common—a random number generator picks numbers either from a closed interval
[0, 1] or (more often) from an open interval (0, 1).)

Suppose that a computer knows how to pick random numbers from the interval
(0, 1). How can you use it to generate random numbers from the interval (3, 8)?
From (a, b)? (See Exercise 17).

Example 15.2 Simulating Probability Using a Random Number Generator

In Example 2.7 in Section 2 we modelled the behaviour of a molecule that, during
each time interval, has a 15% chance of leaving a given region.

To simulate the probability, we used a random number generator on [0, 1] and
defined the simulation to run in the following way. The computer picks a random
number x in [0, 1]. If x ≤ 0.15, then the molecule leaves the region, and if x > 0.15,
then the molecule stays in the region. This works because the probability of picking
a number less than or equal to 0.15 is

P (0 ≤ U ≤ 0.15) =
0.15 − 0
1 − 0

= 0.15

(We used (15.1) with a = 0, b = 1, x1 = 0, and x2 = 0.15.)

Let U be a uniform distribution on [a, b]. Recall that its probability density function
is 1/(b − a) if a ≤ x ≤ b and 0 otherwise. The expected value of U is

E(U) =
∫ ∞

−∞
xf(x) dx

=
∫ b

a

x
1

b − a
dx

=
1

b − a

x2

2

∣∣∣∣
b

a

=
1

b − a

b2 − a2

2

=
a + b

2
since b2 − a2 = (b − a)(b + a). Thus, the mean is (not surprisingly) the midpoint
of the interval [a, b].

The median of U is (a + b)/2 as well: the vertical line that goes through the
midpoint of [a, b] divides the rectangle over [a, b] into two rectangles of equal area.
The uniform distribution does not have a mode (or, equivalently, we can say that
every number is the mode).
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are equally likely to occur.
Assume that a computer can handle numbers with up to five decimal places

only (thus, for instance, it cannot distinguish between 0.345671 and 0.345674).
The computer thinks that each of the intervals in (15.2) contains only one number
(namely, the left endpoint).

Because the distribution is uniform, picking any of those numbers (or the
corresponding intervals) is as likely as picking any other number (interval). We
say that all these numbers are equally likely to occur. We know that the probability
that a continuous random variable is exactly equal to a real number is zero. When
we say that a random number generator picks any number from the interval [0, 1)
with equal chance, we mean it in the sense explained above. (This explains the
principle; in practice, what we said needs to be modified a bit so that— as is
common—a random number generator picks numbers either from a closed interval
[0, 1] or (more often) from an open interval (0, 1).)

Suppose that a computer knows how to pick random numbers from the interval
(0, 1). How can you use it to generate random numbers from the interval (3, 8)?
From (a, b)? (See Exercise 17).

Example 15.2 Simulating Probability Using a Random Number Generator

In Example 2.7 in Section 2 we modelled the behaviour of a molecule that, during
each time interval, has a 15% chance of leaving a given region.

To simulate the probability, we used a random number generator on [0, 1] and
defined the simulation to run in the following way. The computer picks a random
number x in [0, 1]. If x ≤ 0.15, then the molecule leaves the region, and if x > 0.15,
then the molecule stays in the region. This works because the probability of picking
a number less than or equal to 0.15 is

P (0 ≤ U ≤ 0.15) =
0.15 − 0
1 − 0

= 0.15

(We used (15.1) with a = 0, b = 1, x1 = 0, and x2 = 0.15.)

Let U be a uniform distribution on [a, b]. Recall that its probability density function
is 1/(b − a) if a ≤ x ≤ b and 0 otherwise. The expected value of U is

E(U) =
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∣∣∣∣
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2
since b2 − a2 = (b − a)(b + a). Thus, the mean is (not surprisingly) the midpoint
of the interval [a, b].

The median of U is (a + b)/2 as well: the vertical line that goes through the
midpoint of [a, b] divides the rectangle over [a, b] into two rectangles of equal area.
The uniform distribution does not have a mode (or, equivalently, we can say that
every number is the mode).
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To calculate the variance, we start with

E(U2) =
∫ b

a

x2 1
b − a

dx =
1

b − a

x3

3

∣∣∣∣
b

a

=
1

b − a

b3 − a3

3
=

b2 + ab + a2

3

since b3 − a3 = (b − a)(b2 + ab + a2). The variance is (after simplifying fractions)

var(U) = E(U2) − (E(U))2

=
b2 + ab + a2

3
−

(
a + b

2

)2

=
(b − a)2

12

The Exponential Distribution

Recall that the geometric distribution measures the number of trials (or the time,
measured in discrete intervals) until the first success. The exponential distribution
is a continuous-time analogue of the geometric distribution. It measures the exact
time when the first success occurs.

Getting the probability mass function for the geometric distribution was, more
or less, straightforward. Deriving the probability density function for the expo-
nential distribution, on the other hand, is more challenging (for completeness, we
discuss it in the Appendix at the end of this section).

To start, we define a concept that is analogous to the rate of change in calculus.

Definition 42 Probabilistic Rate
If p(Δt) is the probability of an event occurring during the time interval Δt, then
the probabilistic rate λ is given by

λ = lim
Δt→0

p(Δt)
Δt

provided that the limit exists.

The units of the probabilistic rate are 1/time. For small Δt, λ ≈ p(Δt)/Δt, i.e.,

p(Δt) ≈ λΔt

For instance, if the rate is λ = 5/second, then the approximate probability of the
event occurring in Δt = 0.01 seconds is p = 5 · 0.01 = 0.05.

The time interval must be small. If, say, Δt = 0.3, then p ≈ λΔt = 5·0.3 = 1.5
cannot represent a probability.

Theorem 18 The Exponential Distribution
Assume that an event occurs at a constant probabilistic rate of λ, and let T be
the random variable that measures the time until the first event occurs. The
probability density function of T is given by

f(t) = λ e−λt

for t ≥ 0. The cumulative distribution function is given by

F (t) = 1 − e−λt

for t ≥ 0.

We discuss the proof of this theorem in the Appendix.

Definition 43 The Exponential Distribution
The random variable T from Theorem 18 is said to be exponentially distributed
with parameter λ.

Section 15 The Uniform and the Exponential Distributions P1-189

Example 15.3 Molecular Diffusion, Continuous Case

Consider the continuous-time analogue of the molecule that diffuses out of a given
region during a fixed-length time interval (see, for instance, Example 11.2 in Sec-
tion 11). Suppose that the molecule leaves the region with the probabilistic rate
of λ = 0.2/hour and denote by T the exact time when it leaves the region. The
probability density function of T is given by

f(t) = 0.2 e−0.2t

(Figure 15.2a) and its cumulative distribution function is

F (t) = 1 − e−0.2t

(Figure 15.2b).
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FIGURE 15.2

Exponential distribution for
molecular diffusion

From

F (t) = P (T ≤ t) = 1 − e−0.2t

we get the probability

P (T > t) = e−0.2t

that the molecule is still inside the region.
The probability that a molecule leaves between 2 hours and 4 hours after the

start of the experiment is

P (2 ≤ T ≤ 4) =
∫ 4

2

0.2 e−0.2t dt

=
(
−e−0.2t

)∣∣∣
4

2

=
(
−e−0.2(4)

)
−

(
−e−0.2(2)

)

= −e−0.8 + e−0.4 ≈ 0.220991

This probability is equal to the area of the shaded region in Figure 15.3.
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FIGURE 15.3

Probability as area for expo-
nential distribution
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To calculate the variance, we start with

E(U2) =
∫ b

a

x2 1
b − a

dx =
1

b − a

x3

3

∣∣∣∣
b

a

=
1

b − a

b3 − a3

3
=

b2 + ab + a2

3

since b3 − a3 = (b − a)(b2 + ab + a2). The variance is (after simplifying fractions)

var(U) = E(U2) − (E(U))2

=
b2 + ab + a2

3
−

(
a + b

2

)2

=
(b − a)2

12

The Exponential Distribution

Recall that the geometric distribution measures the number of trials (or the time,
measured in discrete intervals) until the first success. The exponential distribution
is a continuous-time analogue of the geometric distribution. It measures the exact
time when the first success occurs.

Getting the probability mass function for the geometric distribution was, more
or less, straightforward. Deriving the probability density function for the expo-
nential distribution, on the other hand, is more challenging (for completeness, we
discuss it in the Appendix at the end of this section).

To start, we define a concept that is analogous to the rate of change in calculus.

Definition 42 Probabilistic Rate
If p(Δt) is the probability of an event occurring during the time interval Δt, then
the probabilistic rate λ is given by

λ = lim
Δt→0

p(Δt)
Δt

provided that the limit exists.

The units of the probabilistic rate are 1/time. For small Δt, λ ≈ p(Δt)/Δt, i.e.,

p(Δt) ≈ λΔt

For instance, if the rate is λ = 5/second, then the approximate probability of the
event occurring in Δt = 0.01 seconds is p = 5 · 0.01 = 0.05.

The time interval must be small. If, say, Δt = 0.3, then p ≈ λΔt = 5·0.3 = 1.5
cannot represent a probability.

Theorem 18 The Exponential Distribution
Assume that an event occurs at a constant probabilistic rate of λ, and let T be
the random variable that measures the time until the first event occurs. The
probability density function of T is given by

f(t) = λ e−λt

for t ≥ 0. The cumulative distribution function is given by

F (t) = 1 − e−λt

for t ≥ 0.

We discuss the proof of this theorem in the Appendix.

Definition 43 The Exponential Distribution
The random variable T from Theorem 18 is said to be exponentially distributed
with parameter λ.

Section 15 The Uniform and the Exponential Distributions P1-189

Example 15.3 Molecular Diffusion, Continuous Case

Consider the continuous-time analogue of the molecule that diffuses out of a given
region during a fixed-length time interval (see, for instance, Example 11.2 in Sec-
tion 11). Suppose that the molecule leaves the region with the probabilistic rate
of λ = 0.2/hour and denote by T the exact time when it leaves the region. The
probability density function of T is given by

f(t) = 0.2 e−0.2t
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Instead of integrating, we could have used the cumulative distribution function:

P (2 ≤ T ≤ 4) = F (4) − F (2)

=
(
1 − e−0.2(4)

)
−

(
1 − e−0.2(2)

)

= −e−0.8 + e−0.4 ≈ 0.220991

Assume that the lifespan of an organism is modelled by the exponential distribu-
tion with parameter λ. In that case, the cumulative distribution function is

F (t) = P (T ≤ t) = 1 − e−λt

The survivorship function, i.e., the probability of being alive at time t, is given by

s(t) = P (T > t)
= 1 − P (T ≤ t)
= 1 − F (t)
= 1 − (1 − e−λt) = e−λt (15.3)

Example 15.4 Lifetime of a Cat

To an extent, we can model the lifetime of an animal (or a cell, or a plant) using
the exponential distribution.

Assume that the lifetime of a cat is distributed exponentially with a proba-
bilistic rate of λ = 1/8 year−1.

(a) Find the probability that the cat will live longer than 15 years.

(b) Assume that the cat is 10 years old. What is the probability that it will live
for at least another 15 years?

Let T be the random variable that measures the lifetime of the cat. The cumulative
distribution function is F (t) = 1 − e−t/8, and s(t) = e−t/8 is the survivorship
function.

(a) The probability that the cat will live longer than 15 years is

P (T > 15) = s(15) = e−15/8 ≈ 0.153355

So the cat has a bit over a 15% chance of living longer than 15 years.

(b) This is a question about conditional probability. We know that the cat has
already lived for 10 years, and so we need to find the probability that T > 25
given that T > 10, i.e., P (T > 25 |T > 10). Using the formula for the conditional
probability (see Definition 12 in Section 4), we get

P (T > 25 |T > 10) =
P ((T > 25) ∩ (T > 10))

P (T > 10)
The intersection of the events T > 25 (cat lives longer than 25 years) and T > 10
(cat lives longer than 10 years) is T > 25. Thus,

P (T > 25 |T > 10) =
P (T > 25)
P (T > 10)

=
s(25)
s(10)

=
e−25/8

e−10/8
= e−15/8 ≈ 0.153355

Note that the probabilities in (a) and (b) are equal. It is certainly not realistic to
expect that a cat that has lived for 10 years has the same chance of living at least
15 more years as a newborn kitten.
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Thus, the exponential distribution is not appropriate as a model for all aspects
of a cat’s lifetime. But it is good enough as an approximation for certain aspects
(such as the one we discussed in part (a)) to be still considered useful.

The property that the probabilities in (a) and (b) in Example 15.4 are equal is
called the non-aging property. Interpreted for short time intervals, it means that
the probability that an individual lives a bit longer is independent of its age. Or
(using complementary events) the probability that an individual dies during a
short interval of time is independent of its age. This kind of situation occurs with
species that are lot more likely to be killed by random events than to die of old
age (such as insects).

Example 15.5 Aftershocks of an Earthquake

Assume that the time between successive aftershocks of an earthquake is expo-
nentially distributed with parameter λ = 0.45/day. An aftershock just occurred.
What is the probability that there will be no aftershocks for more than 2 days?

Denote by T the time until the next aftershock. It is given that T is exponentially
distributed; its cumulative distribution function is

F (t) = 1 − e−λt = 1 − e−0.45t

The probability that there will be no aftershocks for more than 2 days is

P (T > 2) = 1 − P (T ≤ 2) = 1 − F (2) = e−0.45(2) ≈ 0.406570

i.e., about 41%. Note that we could have made this calculation a bit shorter by
using the survivorship function s(t) = e−0.45t:

P (T > 2) = s(2) = e−0.45(2) ≈ 0.406570

Assume that T is exponentially distributed with parameter λ. Using calculus, we
can prove that

E(T ) =
∫ ∞

0

tf(t) dt =
∫ ∞

0

tλ e−λt dt =
1
λ

See Exercise 18(a). In Exercise 18(b) we discuss the details of the calculation

var(T ) =
∫ ∞

0

(
t − 1

λ

)2

f(t) dt =
∫ ∞

0

(
t − 1

λ

)2

λ e−λt dt =
1
λ2

Thus, the mean of an exponential distribution is equal to its standard deviation.
An illustration: the average time between aftershocks in Example 15.5 is

E(T ) =
1

0.45
≈ 2.22

days.

Example 15.6 Lifetime of an Insect

Assume that s(t) = e−0.8t is the survivorship function of an insect, where the time
is measured in months (thus, λ = 0.8/month).

The expected value (the expected time of being alive) for the insect is 1/λ =
1/0.8 = 1.25 months. We compute

s(1) = e−0.8 ≈ 0.449329
s(2) = e−1.6 ≈ 0.201897
s(3) = e−2.4 ≈ 0.090718

Thus, about 45% of the insects will survive the first month, and only about 9%
will survive the third month.
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Instead of integrating, we could have used the cumulative distribution function:

P (2 ≤ T ≤ 4) = F (4) − F (2)

=
(
1 − e−0.2(4)

)
−

(
1 − e−0.2(2)

)

= −e−0.8 + e−0.4 ≈ 0.220991

Assume that the lifespan of an organism is modelled by the exponential distribu-
tion with parameter λ. In that case, the cumulative distribution function is

F (t) = P (T ≤ t) = 1 − e−λt

The survivorship function, i.e., the probability of being alive at time t, is given by

s(t) = P (T > t)
= 1 − P (T ≤ t)
= 1 − F (t)
= 1 − (1 − e−λt) = e−λt (15.3)

Example 15.4 Lifetime of a Cat

To an extent, we can model the lifetime of an animal (or a cell, or a plant) using
the exponential distribution.

Assume that the lifetime of a cat is distributed exponentially with a proba-
bilistic rate of λ = 1/8 year−1.

(a) Find the probability that the cat will live longer than 15 years.

(b) Assume that the cat is 10 years old. What is the probability that it will live
for at least another 15 years?

Let T be the random variable that measures the lifetime of the cat. The cumulative
distribution function is F (t) = 1 − e−t/8, and s(t) = e−t/8 is the survivorship
function.

(a) The probability that the cat will live longer than 15 years is

P (T > 15) = s(15) = e−15/8 ≈ 0.153355

So the cat has a bit over a 15% chance of living longer than 15 years.

(b) This is a question about conditional probability. We know that the cat has
already lived for 10 years, and so we need to find the probability that T > 25
given that T > 10, i.e., P (T > 25 |T > 10). Using the formula for the conditional
probability (see Definition 12 in Section 4), we get

P (T > 25 |T > 10) =
P ((T > 25) ∩ (T > 10))

P (T > 10)
The intersection of the events T > 25 (cat lives longer than 25 years) and T > 10
(cat lives longer than 10 years) is T > 25. Thus,

P (T > 25 |T > 10) =
P (T > 25)
P (T > 10)

=
s(25)
s(10)

=
e−25/8

e−10/8
= e−15/8 ≈ 0.153355

Note that the probabilities in (a) and (b) are equal. It is certainly not realistic to
expect that a cat that has lived for 10 years has the same chance of living at least
15 more years as a newborn kitten.

Section 15 The Uniform and the Exponential Distributions P1-191

Thus, the exponential distribution is not appropriate as a model for all aspects
of a cat’s lifetime. But it is good enough as an approximation for certain aspects
(such as the one we discussed in part (a)) to be still considered useful.

The property that the probabilities in (a) and (b) in Example 15.4 are equal is
called the non-aging property. Interpreted for short time intervals, it means that
the probability that an individual lives a bit longer is independent of its age. Or
(using complementary events) the probability that an individual dies during a
short interval of time is independent of its age. This kind of situation occurs with
species that are lot more likely to be killed by random events than to die of old
age (such as insects).

Example 15.5 Aftershocks of an Earthquake

Assume that the time between successive aftershocks of an earthquake is expo-
nentially distributed with parameter λ = 0.45/day. An aftershock just occurred.
What is the probability that there will be no aftershocks for more than 2 days?

Denote by T the time until the next aftershock. It is given that T is exponentially
distributed; its cumulative distribution function is

F (t) = 1 − e−λt = 1 − e−0.45t

The probability that there will be no aftershocks for more than 2 days is

P (T > 2) = 1 − P (T ≤ 2) = 1 − F (2) = e−0.45(2) ≈ 0.406570

i.e., about 41%. Note that we could have made this calculation a bit shorter by
using the survivorship function s(t) = e−0.45t:

P (T > 2) = s(2) = e−0.45(2) ≈ 0.406570

Assume that T is exponentially distributed with parameter λ. Using calculus, we
can prove that

E(T ) =
∫ ∞

0

tf(t) dt =
∫ ∞

0

tλ e−λt dt =
1
λ

See Exercise 18(a). In Exercise 18(b) we discuss the details of the calculation

var(T ) =
∫ ∞

0

(
t − 1

λ

)2

f(t) dt =
∫ ∞

0

(
t − 1

λ

)2

λ e−λt dt =
1
λ2

Thus, the mean of an exponential distribution is equal to its standard deviation.
An illustration: the average time between aftershocks in Example 15.5 is

E(T ) =
1

0.45
≈ 2.22

days.

Example 15.6 Lifetime of an Insect

Assume that s(t) = e−0.8t is the survivorship function of an insect, where the time
is measured in months (thus, λ = 0.8/month).

The expected value (the expected time of being alive) for the insect is 1/λ =
1/0.8 = 1.25 months. We compute

s(1) = e−0.8 ≈ 0.449329
s(2) = e−1.6 ≈ 0.201897
s(3) = e−2.4 ≈ 0.090718

Thus, about 45% of the insects will survive the first month, and only about 9%
will survive the third month.
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The median of the exponentially distributed random variable T is the value of t
such that

F (t) = 0.5
1 − e−λt = 0.5

e−λt = 0.5
−λt = ln 0.5

t = − ln 0.5
λ

=
ln 2
λ

(since ln 0.5 = ln 2−1 = − ln 2). Look familiar? See Exercise 19.

Appendix: Probability Density Function for the Exponential
Distribution

We now prove Theorem 18.
In all calculations that involve the probabilistic rate we assume that Δt is small

enough to guarantee that the quantities representing probabilities make sense (i.e.,
are smaller than or equal to 1).

At time t = 0 we start an experiment and measure the time until the first
success. Denote by p(t) the probability that, at time t, the success has not occurred
yet (to make it shorter, we say that at time t the experiment is a no-success). As
in calculus, we will compute

p(t + Δt) − p(t)
Δt

and take the limit.
The term p(t + Δt) is the probability that the experiment is a no-success at

t + Δt. It is equal to

p(t + Δt) = (probability of no-success at time t)
· (probability of no-success during Δt)

= p(t) · (probability of no-success during Δt) (15.4)

The probabilistic rate of success is λ, and thus the probability of success during
the time interval Δt is λΔt. Equation (15.4) implies that

p(t + Δt) = p(t)(1 − λΔt)

Rearrange the terms as follows:

p(t + Δt) = p(t) − λΔtp(t)
p(t + Δt) − p(t)

Δt
= −λp(t)

In the limit, as Δt → 0, we obtain

p�(t) = −λp(t) (15.5)

We recognize (15.5) as the basic exponential decay (λ > 0) differential equation.
The solution is

p(t) = Ce−λt

where C = p(0). Since the initial state of the experiment is a no-success, p(0) = 1
and so C = 1. The expression for the probability is

p(t) = e−λt

Let T be the exact time when the first success occurs. Then P (T > t) = p(t),
since success has not occurred up to and including t. It follows that the cumulative
distribution function F (t) is given by

F (t) = P (T ≤ t) = 1 − P (T > t) = 1 − p(t) = 1 − e−λt

Section 15 The Uniform and the Exponential Distributions P1-193

By the Fundamental Theorem of Calculus, the probability density function of T
is f(t) = F �(t) = λ e−λt.

Summary The probability density function of the uniform distribution is a constant func-
tion. Using the uniform distribution, we can explain random number generation.
The exact time until the first success occurs is described with the exponential
distribution. In certain situations, we can model the lifetime of an organism
with the help of the exponential distribution.

15 Exercises

1. A uniformly distributed random variable on the interval [0, b] has a variance of 12. What is its mean?

2. A uniformly distributed random variable on the interval [a, 10] has a mean of 1. What is its variance?

3–8 Assume that X is an exponentially distributed random variable.

(a) Find each probability.

(b) Make a sketch of the probability density function and shade the region whose area is equal to the
probability from (a).

3. Events occur at a constant rate of 0.2 per second. Find the probability that the first event occurs
between times 2 and 6.

4. Events occur at a constant rate of 3 per second. Find the probability that the first event occurs
between times 0.1 and 0.9.

5. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
before t = 3.

6. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
after t = 4.

7. Events occur at a constant rate of 2.4 per second. Find the probability that the first event occurs
before t = 0.3 or after t = 1.2.

8. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
before t = 2 or after t = 4.

9. Suppose that the survivorship curve for an insect is given by s(t) = e−0.4t, where t is measured in
months. What is the mean lifetime of an insect? What ratio of insects will survive 3 months?

10. Suppose that the survivorship curve for a mosquito is given by s(t) = e−0.2t, where t is measured in
months. What is the mean lifetime of a mosquito? What ratio of mosquitoes will survive 8 months?

11. Suppose that the lifetime of a radioactive atom is exponentially distributed with an expected lifespan
of 4 hours. Find the probability that the atom will not decay during the first 3 hours. Find the
probability that the atom will decay after 6 hours.

12. The lifetime of a radioactive atom is known to be exponentially distributed with an expected lifespan
of 12 days. Find the probability that the atom will decay between 6 days and 10 days from the moment
we start observing it.

13. Assume that the lifetime of a guinea pig is distributed exponentially with a probabilistic rate of
λ = 0.18/year.

(a) What is the average lifespan of a guinea pig?
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The median of the exponentially distributed random variable T is the value of t
such that

F (t) = 0.5
1 − e−λt = 0.5

e−λt = 0.5
−λt = ln 0.5

t = − ln 0.5
λ

=
ln 2
λ

(since ln 0.5 = ln 2−1 = − ln 2). Look familiar? See Exercise 19.

Appendix: Probability Density Function for the Exponential
Distribution

We now prove Theorem 18.
In all calculations that involve the probabilistic rate we assume that Δt is small

enough to guarantee that the quantities representing probabilities make sense (i.e.,
are smaller than or equal to 1).

At time t = 0 we start an experiment and measure the time until the first
success. Denote by p(t) the probability that, at time t, the success has not occurred
yet (to make it shorter, we say that at time t the experiment is a no-success). As
in calculus, we will compute

p(t + Δt) − p(t)
Δt

and take the limit.
The term p(t + Δt) is the probability that the experiment is a no-success at

t + Δt. It is equal to

p(t + Δt) = (probability of no-success at time t)
· (probability of no-success during Δt)

= p(t) · (probability of no-success during Δt) (15.4)

The probabilistic rate of success is λ, and thus the probability of success during
the time interval Δt is λΔt. Equation (15.4) implies that

p(t + Δt) = p(t)(1 − λΔt)

Rearrange the terms as follows:

p(t + Δt) = p(t) − λΔtp(t)
p(t + Δt) − p(t)

Δt
= −λp(t)

In the limit, as Δt → 0, we obtain

p�(t) = −λp(t) (15.5)

We recognize (15.5) as the basic exponential decay (λ > 0) differential equation.
The solution is

p(t) = Ce−λt

where C = p(0). Since the initial state of the experiment is a no-success, p(0) = 1
and so C = 1. The expression for the probability is

p(t) = e−λt

Let T be the exact time when the first success occurs. Then P (T > t) = p(t),
since success has not occurred up to and including t. It follows that the cumulative
distribution function F (t) is given by

F (t) = P (T ≤ t) = 1 − P (T > t) = 1 − p(t) = 1 − e−λt

Section 15 The Uniform and the Exponential Distributions P1-193

By the Fundamental Theorem of Calculus, the probability density function of T
is f(t) = F �(t) = λ e−λt.

Summary The probability density function of the uniform distribution is a constant func-
tion. Using the uniform distribution, we can explain random number generation.
The exact time until the first success occurs is described with the exponential
distribution. In certain situations, we can model the lifetime of an organism
with the help of the exponential distribution.

15 Exercises

1. A uniformly distributed random variable on the interval [0, b] has a variance of 12. What is its mean?

2. A uniformly distributed random variable on the interval [a, 10] has a mean of 1. What is its variance?

3–8 Assume that X is an exponentially distributed random variable.

(a) Find each probability.

(b) Make a sketch of the probability density function and shade the region whose area is equal to the
probability from (a).

3. Events occur at a constant rate of 0.2 per second. Find the probability that the first event occurs
between times 2 and 6.

4. Events occur at a constant rate of 3 per second. Find the probability that the first event occurs
between times 0.1 and 0.9.

5. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
before t = 3.

6. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
after t = 4.

7. Events occur at a constant rate of 2.4 per second. Find the probability that the first event occurs
before t = 0.3 or after t = 1.2.

8. Events occur at a constant rate of 1.5 per second. Find the probability that the first event occurs
before t = 2 or after t = 4.

9. Suppose that the survivorship curve for an insect is given by s(t) = e−0.4t, where t is measured in
months. What is the mean lifetime of an insect? What ratio of insects will survive 3 months?

10. Suppose that the survivorship curve for a mosquito is given by s(t) = e−0.2t, where t is measured in
months. What is the mean lifetime of a mosquito? What ratio of mosquitoes will survive 8 months?

11. Suppose that the lifetime of a radioactive atom is exponentially distributed with an expected lifespan
of 4 hours. Find the probability that the atom will not decay during the first 3 hours. Find the
probability that the atom will decay after 6 hours.

12. The lifetime of a radioactive atom is known to be exponentially distributed with an expected lifespan
of 12 days. Find the probability that the atom will decay between 6 days and 10 days from the moment
we start observing it.

13. Assume that the lifetime of a guinea pig is distributed exponentially with a probabilistic rate of
λ = 0.18/year.

(a) What is the average lifespan of a guinea pig?
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(b) What is the chance that a guinea pig will live longer than 6 years?

(c) Using conditional probability, compute the chance that a 2-year-old guinea pig will live at least
another 6 years. Compare with your answer to (b).

14. The lifetime of a Dalmatian is distributed exponentially with a probabilistic rate of λ = 0.077/year.

(a) What is the average lifespan of a Dalmatian?

(b) What is the chance that a Dalmatian will live longer than 12 years?

(c) Using conditional probability, compute the chance that a 5-year-old Dalmatian will live at least
another 12 years. Compare with your answer to (b).

15–16 The exponential distribution implies an exponentially decreasing survivorship curve, which means
that an organism is more likely to die when young. Explain what kind of survivorship is implied by each
(non-exponential) graph.

15. 16.
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17. Find a formula for a linear function that maps (0, 1) to (3, 8). Explain how you can use this function to
generate random numbers in (3, 8), assuming that you can generate random numbers in (0, 1). Adjust
this construction so that you are able to generate random numbers from any interval (a, b).

18. We calculate the integrals that we need for the mean and the variance of the exponential distribution.

(a) Using integration by parts with u = t and v� = e−λt, show that∫ ∞

0

tλ e−λt dt =
1
λ

(b) Use integration by parts twice (start with u = (t − 1/λ)2 and v� = e−λt) to verify that∫ ∞

0

(
t − 1

λ

)2

λ e−λt dt =
1
λ2

19. Assume that s(t) = e−λt describes the decay of a radioactive substance. Find its half-life. Also, find
the median of the exponentially distributed random variable whose cumulative distribution function
is F (t) = 1 − e−λt. Explain why the half-life and the median are equal.

20. Assume that the random variable T describing the lifetime of a radioactive atom is distributed ex-
ponentially with parameter λ = 30/year. Find the time t0 such that P (T > t0) = 1/2. What is the
meaning of t0? How is it related to the median of T?
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(b) What is the chance that a guinea pig will live longer than 6 years?

(c) Using conditional probability, compute the chance that a 2-year-old guinea pig will live at least
another 6 years. Compare with your answer to (b).

14. The lifetime of a Dalmatian is distributed exponentially with a probabilistic rate of λ = 0.077/year.

(a) What is the average lifespan of a Dalmatian?

(b) What is the chance that a Dalmatian will live longer than 12 years?

(c) Using conditional probability, compute the chance that a 5-year-old Dalmatian will live at least
another 12 years. Compare with your answer to (b).

15–16 The exponential distribution implies an exponentially decreasing survivorship curve, which means
that an organism is more likely to die when young. Explain what kind of survivorship is implied by each
(non-exponential) graph.
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17. Find a formula for a linear function that maps (0, 1) to (3, 8). Explain how you can use this function to
generate random numbers in (3, 8), assuming that you can generate random numbers in (0, 1). Adjust
this construction so that you are able to generate random numbers from any interval (a, b).

18. We calculate the integrals that we need for the mean and the variance of the exponential distribution.

(a) Using integration by parts with u = t and v� = e−λt, show that∫ ∞

0

tλ e−λt dt =
1
λ

(b) Use integration by parts twice (start with u = (t − 1/λ)2 and v� = e−λt) to verify that∫ ∞

0

(
t − 1

λ

)2

λ e−λt dt =
1
λ2

19. Assume that s(t) = e−λt describes the decay of a radioactive substance. Find its half-life. Also, find
the median of the exponentially distributed random variable whose cumulative distribution function
is F (t) = 1 − e−λt. Explain why the half-life and the median are equal.

20. Assume that the random variable T describing the lifetime of a radioactive atom is distributed ex-
ponentially with parameter λ = 30/year. Find the time t0 such that P (T > t0) = 1/2. What is the
meaning of t0? How is it related to the median of T?
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properties of, P1-94.
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