
Week 01 Lab Exercise

Linked Lists

Objectives

To re-acquaint you with C programming

To manipulate a linked list data structure

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 1, 2 or 3 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 2

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Background

At the end of COMP1511, you dealt with linked lists. Over the break, you haven't

forgotten linked lists (have you?), but a bit of revision never hurts, especially when many

of the data structures we'll deal with later are based on linked lists. So... on with this

simple linked list exercise...

Setting Up

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

To keep your files manageable, it's worth doing each lab exercise in a separate directory

(folder). We suggest creating a subdirectory in your home directory called "COMP2521"

or "cs2521", and then creating a subdirectory under that called "labs", and then

subdirectories "lab01", "lab02", etc.

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week01/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

NOTE:

In the example interactions, we assume that you are typing at a terminal emulator

running a shell, and the shell is giving you a $ prompt. All the text that you type is in

monospace bold; and all the text that is printed to you is in monospace.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

IntList.h interface definition for the IntList ADT

IntList.c implementation of the IntList ADT (incomplete)

testIntList.c a program for testing the IntList ADT

sortIntList.c a program that uses the IntList ADT to sort a list of numbers

Before you start using these programs, it's worth looking at the code. If there are any

constructs you don't understand, ask your tutor.

Once you've understood the programs, the next thing to do is to run the command:

$ make

Don't worry if you don't understand the Makefile; we'll be taking a closer look at make in

lectures. Note: you will need to run make to recompile the program each time you make

changes to the code.

The make command will produce messages which show the commands it is running, and

will eventually leave two executable files in your working directory (along with some .o
files):

testIntList

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/files/IntList.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/files/IntList.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/files/testIntList.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week01/files/sortIntList.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

This is the executable for the testIntList.c program. It reads a sorted list of integers

from standard input, then reads another integer and tries to insert it into the list (while

keeping the list ordered), and then prints out the resulting list. It doesn't work at the

moment because the code to insert the integer is incomplete. Here is an example

interaction with the program:

$./testIntList
Enter some numbers (must be in ascending order): 2 3 5 7
Enter number to insert: 4

Original list:
2
3
5
7
List after inserting 4:
2
3
5
7

Note that the program in its current state does not actually insert the number. Once

you've got the program working, it should behave like so:

$./testIntList
Enter some numbers (must be in ascending order): 2 3 5 7
Enter number to insert: 4

Original list:
2
3
5
7
List after inserting 4:
2
3
4
5
7

sortIntList
This is the executable for the sortIntList.c program. It reads a list of integers (which

can be unordered) from standard input, then prints that list, then attempts to make a

sorted (in ascending order) copy of the list, and then prints the sorted list. It doesn't

work at the moment because the code to produce the sorted list is incomplete. Here is

an example interaction with the program (once it is implemented correctly):

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$./sortIntList -v
3 7 2 5
Ctrl-D
Original:
3
7
2
5
Sorted:
2
3
5
7

If you omit the -v command-line parameter (the v stands for verbose), the sortIntList
program will only display the final sorted list.

$./sortIntList
3 7 2 5
Ctrl-D
2
3
5
7

Task 1

Implement the IntListInsertInOrder() function in IntList.c, which takes an IntList

and an integer and inserts the integer into the appropriate place in the list, so that the

list remains sorted (in ascending order). The function can assume that the given list is

sorted (and you don't need to check that it is sorted). The function should accept and

insert duplicate values. You'll need to handle a number of different cases, such as: (a)

empty list, (b) smallest value, (c) largest value, (d) value somewhere in the middle.

Discuss with your classmates and propose test cases that test these and any other cases

that you can think of.

To help you visualise the problem, here is a diagram of an IntList that contains some

items:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

When you think you're done, use the make command to compile the testIntList
program, and then run it to test your code. Run it multiple times to test different cases.

For example, does it work when the original list is empty? (To test for an empty list, just

press enter when you are prompted for the list.)

Here's an example test run:

$./testIntList
Enter some numbers (must be in ascending order): 2 3 5
Enter number to insert: 4

Original list:
2
3
5
List after inserting 4:
2
3
4
5

The IntListRep struct contains multiple fields that must be kept up to date as the list is

changed. If you don't maintain all of these fields correctly, even if you inserted the

number into the right place, a loud error message will be printed, and you should go

back and fix your code.

$./testIntList
Enter some numbers (must be in ascending order): 2 3 5
Enter number to insert: 4

Original list:
2
3
5

struct IntListNode

int data 2

struct IntListNode *next

struct IntListNode

int data 5

struct IntListNode *next

struct IntListNode

int data 7

struct IntListNode *next

IntList l struct IntListRep

struct IntListNode *last
struct IntListNode *first

int size 3

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

List after inserting 4:
2
3
4
5

####
#
####
#
#

error: IntListOK returned false, which means the list was not updated correctly. Please see
the IntListOK function for details.

Try to be thorough with your testing and test as many cases as you can think of, as the

next task relies on IntListInsertInOrder working.

Task 2

Implement the IntListSortedCopy() function in IntList.c, which takes an IntList

(which may be unordered), and returns an sorted copy of the list. You must use the

IntListInsertInOrder() function that you implemented in Task 1.

HINT:

Recall from Task 1 that IntListInsertInOrder() assumes that the given list is sorted,

and ensures that the list remains sorted (if you've implemented it correctly).

When you think you're done, use the make command to recompile the sortIntList
program, and then run it to test your code. Here's an example test run:

$./sortIntList
3 7 2 5
Ctrl-D
2
3
5
7

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

We can make testing much less tedious by placing our test input in files (so that we don't

have to manually enter the input each time). Make a directory called tests, and create

files containing your test cases in that directory with one test case in each file. A useful

naming strategy is to call the test files 01, 02, etc. Here's an example test file which

corresponds to the test run above:

3
7
2
5

WARNING:

Make sure your test files contain exactly one integer per line and don't contain any

unnecessary whitespace (such as leading/trailing spaces). Also make sure your test

files do not contain any blank lines at the end.

Now we can run tests by making the sortIntList program read from our test files

instead of from the terminal. For example:

$./sortIntList < tests/01
2
3
5
7

To check that your program is producing the correct results (without eyeballing the

output every time), you can compare it to the output of a known correct sorting

program. For example, you could run both your sortIntList and the built-in sort
command on a test case, and then compare the results using the diff command (see

man diff for details). If your program is correct, diff will produce no output, as there

will be no difference. The following shows an example of how to do this:

$ sort -n < tests/01 > tests/01.exp # generate correct result
$./sortIntList < tests/01 > tests/01.out # generate *your* result
$ diff -Bb tests/01.exp tests/01.out # if correct, no output

If you produce a decent number of tests (10-20), as you should, then running tests one

by one using the above is a bit tedious. You could simplify the testing by using this shell

script:

#!/bin/sh

for t in 01 02 03 04 05 # TODO: add the rest of your test files to this list

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

do
echo === Test $t ===
sort -n < tests/$t > tests/$t.exp
./sortIntList < tests/$t > tests/$t.out 2>&1

if diff -Bb tests/$t.exp tests/$t.out > /dev/null 2>&1
then

echo "Passed"
else

echo "Failed - check differences between tests/$t.exp and tests/$t.out"
fi

done

If you put the above in a file called run_tests, and then run the command:

$ sh run_tests

The script will run all your test cases and tell you whether each test case passed or

failed. If any of your tests fail, then you should go back and fix your code. Note that bugs

could reside in either IntListInsertInOrder or IntListSortedCopy - you'll need to

check both functions.

NOTE:

If you get error messages like:

$'\r': command not found
syntax error near unexpected token `$'do\r''

then run the command dos2unix script-name (where script-name is the name of the

script) and try again.

Submission

You need to submit one file: IntList.c. You can submit via the command line using the

give command:

$ give cs2521 lab01 IntList.c

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

Most of the marks for this lab will come from automarking. To receive the rest of the

marks, you must show your work to your tutor during your Week 1, 2 or 3 lab session.

You will be marked based on the following criteria:

Code correctness (4 marks)

These marks will come from automarking. Automarking will be run after submissions

have closed. After automarking is run you will be able to view your results here.

Code style (1 mark)

Code with good style should have these qualities: consistent indentation and spacing, no

repetition of code, no overly complicated logic, no overly long functions, correct use of C

constructs (such as if statements and while loops), and comments where appropriate.

See the style guide.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/resources/style_guide.html
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 02 Lab Exercise

Recursion

Objectives

To practice recursion

To practice using linked lists

To practice defining recursive helper functions

Admin

Marks 5 (see the Assessment section for more details)

Demo no demo required

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 3

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week02/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

unzip the downloaded file.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week02/downloads/files.zip
https://www.cse.unsw.edu.au/~cs2521/23T2/

If you've done the above correctly, you should now have a Makefile and several main

programs for the tasks below.

Task 1 - GCD

The greatest common divisor, or GCD, of two integers and is the largest integer that

divides both and with no remainder. For example, the GCD of and is because

 and , and there is no larger integer than divides both.

One way to calculate the GCD would be to totally factor both numbers and find common

factors, but there is a much faster and easier way to do it.

If is the remainder when we divide by , then the common divisors of and are

precisely the same as the common divisors of and , so the following identity holds:

If we start with any two positive integers, and apply this identity repeatedly, will

eventually become zero, and the other number in the pair is the greatest common

divisor.

This is an amazing method known as Euclid's algorithm, and is probably the oldest

known non-trivial algorithm; it was first described in Euclid's Elements in around 300 BC.

Your task is to implement the following function in gcd.c:

int gcd(int a, int b);

This function should find the GCD of two integers using Euclid's algorithm as described

above. You can assume that a and b are non-negative, and that at most one of them is 0.

Testing

gcd.c contains a main function which allows you to test your gcd function. The main

function takes two command-line arguments which are the two integers. Here are some

a b

a b 16 28 4
16 = 4 × 4 28 = 4 × 7

r a b a b

b r

gcd(a, b) = gcd(b, r)

r

Note: You must use recursion. A non-recursive solution will not receive any marks.

Note: We have provided hints for some of the tasks in this lab, which can be found

in the appendix at the bottom of this page. Only look at them if you're stuck and

have no ideas - if you have an idea but you're not sure if it will work, try it first!

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

examples of its usage:

$ make
...
$./gcd 16 28
The GCD of 16 and 28 is 4
$./gcd 25 15
The GCD of 25 and 15 is 5
$./gcd 12 72
The GCD of 12 and 72 is 12
$./gcd 64 25
The GCD of 64 and 25 is 1
$./gcd 0 42
The GCD of 0 and 42 is 42

Task 2 - A Plague of Rabbits

I have a terrible rabbit problem.

I used to have a pair of baby rabbits; they were extremely cute and fluffy, so of course I

got them. But the shopkeeper I got them from - a guy named Leonardo, of Pisa Pets -

didn't tell me they would mature very fast, and breed even faster.

After a month, I had a mature pair of rabbits... and, of course, they bred. Damn.

So, a month later, I had a pair of adults and a pair of baby rabbits.

And a month later, I had two pairs of adults, and another pair of baby rabbits.

And a month later, I had three pairs of adults, and two pairs of baby rabbits.

And a month later, I had five pairs of adults, and three pairs of baby rabbits.

HELP! I HAVE SO MANY RABBITS, I'M GOING HOPPING MAD!

Can you help me figure out how many rabbits I'll have? Given that I started with one pair

of baby rabbits, implement the following function in rabbits.c that tells me how many

rabbits I'll have after a given number of months.

long long rabbits(int months);

You can assume I won't ask about any time longer than 60 months - surely the rabbits

will have taken over the world by then...

A long long is like an int, but is 8 bytes in size, so it can store larger values than

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Testing

rabbits.c contains a main function which allows you to test your rabbits function. The

main function accepts one command-line argument which is the number of months. Here

are some examples of its usage:

$ make
...
$./rabbits 0
Number of rabbits after 0 month(s): 2
$./rabbits 1
Number of rabbits after 1 month(s): 2
$./rabbits 2
Number of rabbits after 2 month(s): 4
$./rabbits 12
Number of rabbits after 12 month(s): 466
$./rabbits 42
... after a long pause ...
Number of rabbits after 42 month(s): 866988874
$./rabbits 60
... after several hours ...
Number of rabbits after 60 month(s): 5009461563922

Task 3 - Find the Last Element of a Linked List

Recursion works really well with linked lists, because a linked list can be defined

recursively as follows:

This means we usually have a base case where the node pointer is NULL, and a recursive

case where we do something with the current value and recursively call the function on

can be stored in an int.

Note: You must use recursion. A non-recursive solution will not receive any marks.

A linked list is either:

Empty, or

A node containing a value followed by a (smaller) linked list

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

the rest of the list. Depending on the problem, there may be more base cases or

recursive cases.

Your task is to implement this function in listTail.c:

int listTail(struct node *list);

This function should use recursion to find the last value in the given list. You can assume

that the list is not empty.

Testing

listTail.c contains a main function which allows you to test your listTail function.

The main function:

Reads the size of the list

Reads the values of the list

Displays the list

Calls listTail

Displays the result

Here are some examples of its usage:

$ make
...
$./listTail
Enter list size: 7
Enter list values: 6 8 9 2 5 1 3
List: [6, 8, 9, 2, 5, 1, 3]
The last element is: 3
$./listTail
Enter list size: 4
Enter list values: 2 5 2 1
List: [2, 5, 2, 1]
The last element is: 1
$./listTail
Enter list size: 1
Enter list values: 42
List: [42]
The last element is: 42

Note: You must use recursion. A non-recursive solution will not receive any marks.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 4 - Find the Largest Element of a Linked List

Your task is to implement this function in listMax.c:

int listMax(struct node *list);

This function should use recursion to find the largest value in the given list. You can

assume that the list is not empty.

Testing

listMax.c contains a main function which allows you to test your listMax function. The

main function:

Reads the size of the list

Reads the values of the list

Displays the list

Calls listMax
Displays the result

Here are some examples of its usage:

$ make
...
$./listMax
Enter list size: 5
Enter list values: 7 2 6 8 0
List: [7, 2, 6, 8, 0]
The maximum element is: 8
$./listMax
Enter list size: 5
Enter list values: 9 6 1 8 8
List: [9, 6, 1, 8, 8]
The maximum element is: 9
$./listMax
Enter list size: 4
Enter list values: 2 5 2 1
List: [2, 5, 2, 1]
The maximum element is: 5
$./listMax
Enter list size: 1
Enter list values: 42

Note: You must use recursion. A non-recursive solution will not receive any marks.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

List: [42]
The maximum element is: 42

Task 5 - Using Recursive Helper Functions

Often in this course, a list will be represented by two structures, one for the usual list

node, and one which contains a pointer to the head of the list (along with other data

about the list such as its size), usually called a wrapper or container struct. In this case,

since we want to recurse on the nodes, not the wrapper struct, we need to implement a

helper function which takes in a node pointer and then call it from the original function.

For example:

int listFunc(struct list *list) {
return listFuncHelper(list->head);

}

Your task is to implement this function in listSum.c:

int listSum(struct list *list);

This function should use a recursive helper function that takes in a node pointer to find

the sum of a linked list.

Testing

listSum.c contains a main function which allows you to test your listSum function. The

main function:

Reads the size of the list

Reads the values of the list

Displays the list

Calls listSum
Displays the result

Here are some examples of its usage:

$ make
...
$./listSum
Enter list size: 9

Note: You must use recursion. A non-recursive solution will not receive any marks.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Enter list values: 8 1 5 9 6 4 9 5 1
List: [8, 1, 5, 9, 6, 4, 9, 5, 1]
The sum of the values in the list is: 48
$./listSum
Enter list size: 6
Enter list values: 2 4 3 7 0 4
List: [2, 4, 3, 7, 0, 4]
The sum of the values in the list is: 20
$./listSum
Enter list size: 5
Enter list values: 3 5 2 4 1
List: [3, 5, 2, 4, 1]
The sum of the values in the list is: 15
$./listSum
Enter list size: 2
Enter list values: 42 -4
List: [42, -4]
The sum of the values in the list is: 38
$./listSum
Enter list size: 0
List: []
The sum of the values in the list is: 0

Task 6 - Insert into an Ordered Linked List

Your task is to implement this function in listInsertOrdered.c:

void listInsertOrdered(struct list *list, int value);

This function should use recursion to insert the given value into an ordered linked list.

The list should remain ordered after inserting the value. The function should be able to

insert duplicates.

The given file contains a newNode function. You can use this in your solution.

Testing

listInsertOrdered.c contains a main function which allows you to test your

listInsertOrdered function. The main function:

Reads the size of the list

Note: You must use recursion. A non-recursive solution will not receive any marks.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Reads the values of the list

Displays the list

Reads the value to insert

Calls listInsertOrdered
Displays the updated list

Here are some examples of its usage:

$ make
...
$./listInsertOrdered
Enter list size: 3
Enter list values (must be in ascending order): 2 5 7
List: [2, 5, 7]
Enter value to insert: 1
List after inserting 1: [1, 2, 5, 7]
$./listInsertOrdered
Enter list size: 3
Enter list values (must be in ascending order): 2 5 7
List: [2, 5, 7]
Enter value to insert: 3
List after inserting 3: [2, 3, 5, 7]
$./listInsertOrdered
Enter list size: 3
Enter list values (must be in ascending order): 2 5 7
List: [2, 5, 7]
Enter value to insert: 5
List after inserting 5: [2, 5, 5, 7]
$./listInsertOrdered
Enter list size: 3
Enter list values (must be in ascending order): 2 5 7
List: [2, 5, 7]
Enter value to insert: 6
List after inserting 6: [2, 5, 6, 7]
$./listInsertOrdered
Enter list size: 3
Enter list values (must be in ascending order): 2 5 7
List: [2, 5, 7]
Enter value to insert: 8
List after inserting 8: [2, 5, 7, 8]
$./listInsertOrdered
Enter list size: 0
List: []
Enter value to insert: 42
List after inserting 42: [42]

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 7 - Insert into the n'th Position in a Linked List

Your task is to implement this function in listInsertNth.c:

void listInsertNth(struct list *list, int n, int value);

This function should use recursion to insert the given value before position n of the

linked list. The list elements are numbered in the same manner as array elements, so

the first element in the list is considered to be at position 0, the second element is

considered to be at position 1, and so on. If there are less than n elements in the list, the

new value should be inserted at the end of the list. You can assume that n is non-

negative.

The given file contains a newNode function. You can use this in your solution.

Testing

listInsertNth.c contains a main function which allows you to test your listInsertNth
function. The main function:

Reads the size of the list

Reads the values of the list

Displays the list

Reads the values of n and value

Calls listInsertNth
Displays the updated list

Here are some examples of its usage:

$ make
...
$./listInsertNth
Enter list size: 3
Enter list values: 16 7 8
List: [16, 7, 8]
Enter position and value to insert: 0 12
List after inserting 12 at position 0: [12, 16, 7, 8]
$./listInsertNth
Enter list size: 3
Enter list values: 16 7 8
List: [16, 7, 8]

Note: You must use recursion. A non-recursive solution will not receive any marks.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Enter position and value to insert: 1 12
List after inserting 12 at position 1: [16, 12, 7, 8]
$./listInsertNth
Enter list size: 3
Enter list values: 16 7 8
List: [16, 7, 8]
Enter position and value to insert: 2 12
List after inserting 12 at position 2: [16, 7, 12, 8]
$./listInsertNth
Enter list size: 3
Enter list values: 16 7 8
List: [16, 7, 8]
Enter position and value to insert: 3 12
List after inserting 12 at position 3: [16, 7, 8, 12]
$./listInsertNth
Enter list size: 3
Enter list values: 16 7 8
List: [16, 7, 8]
Enter position and value to insert: 4 12
List after inserting 12 at position 4: [16, 7, 8, 12]
$./listInsertNth
Enter list size: 1
Enter list values: 42
List: [42]
Enter position and value to insert: 0 16
List after inserting 16 at position 0: [16, 42]
$./listInsertNth
Enter list size: 0
List: []
Enter position and value to insert: 0 2
List after inserting 2 at position 0: [2]
$./listInsertNth
Enter list size: 0
List: []
Enter position and value to insert: 10 2
List after inserting 2 at position 10: [2]

Submission

Submit via the command line using the give command:

$ give cs2521 lab02 gcd.c rabbits.c listTail.c listMax.c listSum.c listInsertOrdered.c
listInsertNth.c

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

All of the marks for this lab will come from automarking, so there is no need to show

your code, however, your tutors may still come around and check whether you are

comfortable with using recursion. The marks will be distributed as follows:

Task Mark

Task 1 - gcd 0.75

Task 2 - rabbits 0.75

Task 3 - listTail 0.70

Task 4 - listMax 0.70

Task 5 - listSum 0.70

Task 6 - listInsertOrdered 0.70

Task 7 - listInsertNth 0.70

Automarking will be run after submissions have closed. After automarking is run you will

be able to view your results here.

Appendix

Hints

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

You should give each task at least 10 minutes of thought and working out before looking

at these hints.

Hints for gcd

Hints for rabbits

Hints for listTail

Hints for listMax

Hints for listInsertOrdered

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

Hint 1 (base case)

Hint 2 (recursive case)

Hint 1

Hint 1 (base case)

Hint 1 (base case)

Hint 2 (recursive case)

Hint 1 (base case)

Hint 2 (base case)

Hint 3 (recursive case)

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
https://www.cse.unsw.edu.au/~cs2521/23T2/

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G
COMP2521 23T2

mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 03 Lab Exercise

Algorithm Analysis and ADTs

Objectives

To perform theoretical and empirical complexity analysis

To get practice with linked lists

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 3, 4 or 5 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 4

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week03/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

theoretical-analysis.txt a template to fill in your answers for Task 1

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/theoretical-analysis.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

empirical-analysis.txt a template to fill in your answers for Task 2

List.h interface to the List ADT for Task 3

List.c incomplete implementation of the List ADT for Task 3

runList.c a main program for testing the List ADT

You'll also need to copy in some files from the week 1 lab. You can use the cp command

to do this (or you can use the file browser). The files you need from the week 1 lab are

IntList.h, IntList.c and sortIntList.c.

WARNING:

This lab assumes that your sortIntList program from the week 1 lab mostly works,

and that your IntListSortedCopy function uses IntListInsertInOrder. If this is not

the case, then you should use the sample solution.

Now run the command:

$ make

This will leave the following executable files in your working directory:

sortIntList
This is the same sortIntList executable as in the Week 1 lab. It reads a list of integers

from standard input, creates a sorted (in ascending order) copy of the list, and then

prints the sorted list.

runList
This is an interactive command-line program for testing the List ADT. More details about

this will be given in Task 3.

Task 1 - Theoretical Analysis

In this task, we will perform theoretical analysis on the IntListInsertInOrder
function from the week 1 lab.

Theoretical analysis is one method for analysing the time complexity of an algorithm. It

involves looking at the high-level description of the algorithm (i.e., the pseudocode) or

the code itself (if it is implemented) and counting the number of operations (e.g.,

assignments, arithmetic operations, array accesses) performed in terms of the input

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/empirical-analysis.txt
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/List.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/List.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week03/files/runList.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

size. Often, it is adequate to count the number of line executions, since each line of code

usually contains a constant number of operations.

Open theoretical-analysis.txt. Your task is to analyse the best case, the worst case,

and the average case time complexities of the IntListInsertInOrder function, and

enter your answers and explanations into the corresponding sections of the file.

NOTE:

Example

To explain best case, worst case, and average case, we will refer to the following

function that performs a linear search on an unordered array of size (this is just an

example, you need to analyse the IntListInsertInOrder function as stated above):

int linearSearch(int A[], int n, int elem) {
for (int i = 0; i < n; i++) {

if (A[i] == elem) {
return i;

}
}
return -1;

}

The best case time complexity occurs when the input has some property which

enables the algorithm to complete as quickly as possible. For linear search, the best

case would occur when the element being searched for is the first element of the

array, because the function would return 0 straight away without needing to

examine any of the other elements. Since the function only needs to examine one

item, regardless of the size of the array, the best case time complexity is .

The worst case time complexity occurs when the input has some property which

causes the algorithm to take as long as possible to complete. For linear search, the

worst case would be where the element being searched for is not present in the

array. Since the function must examine all items, the worst case time complexity

is .

The average case time complexity is determined by making a reasonable

assumption about all the possible kinds of input for the algorithm, and then finding

the average number of operations/line executions over all of these inputs. For linear

search, one possible reasonable assumption is that each element has an equal

chance of being searched. Under this assumption, the average number of elements

examined by the function will be , so the average case time complexity is .

n

O(1)

n

O(n)

n/2 O(n)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Remember that time complexity is a measure of how an algorithm scales as the input

size increases. Therefore, you shouldn't make an assumption about the input size and

then use it to analyse the time complexity. For example, it is not valid to reason that

"if the array has only one item, then linear search only needs to examine one item, so

the best case time complexity of the algorithm is " because this explanation

does not apply to a larger array. Notice that our explanation for the best case time

complexity of linear search does not make any assumptions about the size of the

array.

NOTE:

You can assume that malloc is .

Task 2 - Empirical Analysis

In this task, we will perform empirical analysis on the sortIntList program from the

week 1 lab and compare the time taken by this program with the time taken by the built-

in Unix sort command.

Empirical analysis involves running the algorithm on inputs of varying size and

composition, recording the amount of time it takes on each run, and plotting the results.

The shape of the plot directly corresponds to the time complexity of the algorithm.

The types of inputs we are interested in are random, sorted and reverse-sorted.

We will use the built-in seq command to generate numbers. Try out the command - it will

generate all integers from 1 up to whatever number you give it.

$ seq 10
$ seq 100

Since we also want random and reverse-sorted inputs, we will pass the output of seq to a

second command, sort, to reorder the numbers the way we want them.

$ seq 100 | sort -R # random
$ seq 100 # sorted
$ seq 100 | sort -nr # reverse-sorted

NOTE:

O(1)

O(1)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If you're not familiar with Unix/Linux conventions, the | is a "pipe" that connects two

commands, e.g. C |C . The standard output (stdout) of the command C will be

directly connected to the standard input (stdin) of the command C , so that whatever

C writes, C reads.

Now that we know how to generate all the types of inputs, we need to pass the inputs to

our sortIntList program and the built-in sort program. This can be achieved by using

another pipe symbol. The following commands are for random input - you should be able

to deduce the commands for sorted and reverse-sorted inputs. Try the commands

yourself - do they correctly sort the numbers?

$ seq 100 | sort -R | ./sortIntList # pass random input to sortIntList
$ seq 100 | sort -R | sort -n # pass random input to built-in sort program

Finally, we need to use the time command so we can actually obtain the timing data.

The time command takes another command, runs it, and then displays how long it took.

The following command times the ls command:

$ /usr/bin/time ls
...
0.00user 0.00system 0:00.00elapsed 66%CPU (0avgtext+0avgdata 2516maxresident)k
0inputs+0outputs (0major+141minor)pagefaults 0swaps

Similarly, we can add /usr/bin/time to the above commands, but since we are only

interested in how long the sorting takes (and not the input generation), we only add it to

the final part of the command.

pass random input to sortIntList and time it
$ seq 100 | sort -R | /usr/bin/time ./sortIntList
pass random input to built-in sort program and time it
$ seq 100 | sort -R | /usr/bin/time sort -n

Notice that the time command produces three times: user, system and elapsed. (Since

the ls command is very fast, it will say 0.00 for all of them, but for a complex program

like sortIntList, they will be different.) Here is what the different times mean:

user time time spent doing normal computation

system time time spent executing system operations, such as input/output

elapsed/real time wall-clock time between when the command starts and finishes

The elapsed/real time is affected by the load on the machine, and so is not reliable. The

system time should be similar for both commands (same amount of input/output). The

value that is most useful is the user time, which represents the time that the program

1 2 1

2

1 2

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

spent doing computation. Note that the time will vary if you run the same command

multiple times. This is because the timing uses sampling and may sample the program

at different points during the different executions. Hence, you should run the same

timing test multiple times and take an average.

Before you start collecting timing data, there are two issues we need to resolve. Firstly,

the sortIntList and sort programs sort their input and print the result to stdout. But

we are not interested in the output of these programs, since we know that the programs

are correct. All we care about is the time that the programs take. To ignore the output,

we can redirect it to /dev/null, like so:

pass random input to sortIntList and time it
$ seq 100 | sort -R | /usr/bin/time ./sortIntList > /dev/null
pass random input to built-in sort program and time it
$ seq 100 | sort -R | /usr/bin/time sort -n > /dev/null

Secondly, the time command produces a bunch of extra information that we don't need.

In fact, we only care about the user time. Thankfully, the time command allows us to

customise how its output is formatted so that we can make it only show user time.

pass random input to sortIntList and time it
$ seq 100 | sort -R | /usr/bin/time -f "%U" ./sortIntList > /dev/null
pass random input to built-in sort program and time it
$ seq 100 | sort -R | /usr/bin/time -f "%U" sort -n > /dev/null

Now the commands produce just a single time, which makes the data easier to collate.

Great! Now you can start collecting timing data using commands similar to the ones

above. If you think you'll get tired of entering commands over and over again, we have

provided a script at the end of this lab exercise that will collect data for you.

You'll find that both sortIntList and sort sort small lists (e.g., up to 10000) very

quickly, so there'll be very little difference between them in the timing data for these

input sizes. You should use progressively larger list sizes such as 20000, 40000, 80000

and 100000 until there is an appreciable difference between them.

If you find that the sortIntList program takes a long time on some input types but is

very fast on other input types as the input size increases, you can stop testing the slow

input types and test the program with the fast input types only. You should keep

increasing the input size until sortIntList takes at least 0.5 seconds on the fastest

input type.

Put your results in the table in empirical-analysis.txt. You need to fill in three

columns: (1) Number of Runs, which indicates how many runs of each program were

used to compute the average time-cost (5 runs is sufficient), (2) Avg Time for sortIntList,

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

which lists the average time-costs for sortIntList and (3) Avg Time for sort, which lists

the average time-costs for sort.

Write some short paragraphs under the table to explain any patterns and trends that you

notice in the timing results. Don't just re-state the timing result in words; try to explain

why they happened. Also explain what you think the time complexity of the sortIntList

program is for each of the input types (random, sorted and reverse-sorted). If you want

to double-check your answers, you could plot the results (e.g., on Google Sheets or

Excel).

Hint: Since the sortIntList program was compiled from your code in IntList.c, you

should refer to your code in your explanation.

Task 3 - List ADT

In lectures, we considered three different ways of implementing a List ADT: an array, a

singly linked list, and a doubly linked list.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

3 1 4

struct list

int size

int items[MAX]

3

struct list

int size

struct node *head

3

struct list

int size

struct node *head

3

struct node *tail

struct node

struct node *next

int value 3

struct node

struct node *next

int value 1

struct node

struct node *next

int value 4

struct node

struct node *prev

int value 3

struct node *next

struct node

struct node *prev

int value 1

struct node *next

struct node

struct node *prev

int value 4

struct node *next

Array Implementation

Singly Linked List Implementation

Doubly Linked List Implementation

In a doubly linked list, each node contains two pointers: one to the next node (as in a

singly linked list) and one to the previous node, and the list struct contains pointers to

the first and last nodes.

The doubly linked list implementation has a clear advantage over the other two, in that

we can very efficiently insert and remove items at the start and end if we needed to.

With the array implementation, we would not be able to efficiently insert and remove

items at the start (unless it was implemented as a circular array), and with the singly

linked list implementation, we would not be able to efficiently insert and remove items at

the end - even if the list struct had a tail pointer, removing from the end would still be

inefficient.

Note: A List ADT is not to be confused with a linked list. A List ADT represents a

linear collection of elements which could be implemented in a number of ways,

including a linked list.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

The main disadvantage of the doubly linked list implementation is that it uses more

space (one extra pointer in each node). Furthermore, a disadvantage of linked list

approaches in general is that we can't efficiently get the element at a specific index.

However, it is well worth the cost if we need to frequently operate on both the start and

end of the list.

Your task is to finish the doubly linked list implementation of the List ADT in List.c that

was started in lectures. Most of the functions are complete already, but you need to

implement the following:

ListAddStart - adds an element to the start of the list

ListAddEnd - adds an element to the end of the list

ListDeleteEnd - deletes an element from the end of the list

To help you test your implementation, we have provided a command-line program

runList which lets you perform operations on a list such as adding to the start, deleting

from the end, and so on. Here is an example run of the program once it is working

correctly:

$ make
...
$./runList
Interactive List Tester
Enter ? to see the list of commands.
> +e 1
Added 1 to the end of the list
> +s 3
Added 3 to the start of the list
> +e 4
Added 4 to the end of the list
> p
[3, 1, 4]
> s
The size of the list is 3
> -s
Deleted 3 from the start of the list
> f
The first element in the list is 1
> -e
Deleted 4 from the end of the list
> p
[1]
> q
$

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

You should use the ? command to see what other commands are available and test with

them as well. Test thoroughly - doubly linked lists are tricky and it is very easy to make

small mistakes which break the list (as was discovered by yours truly!).

Submission

You need to submit three files: theoretical-analysis.txt, empirical-analysis.txt

and List.c. You must submit all of these files, even if you did not complete all

of the tasks. You can submit via the command line using the give command:

$ give cs2521 lab03 theoretical-analysis.txt empirical-analysis.txt List.c

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

Tasks 1 and 2 are handmarked. To receive a mark for these tasks, you must show your

work to your tutor during your Week 3, 4 or 5 lab session. You will be marked based on

the following criteria:

Theoretical analysis (1.5 marks)

These marks are for how accurate you are with the time complexities that you obtained

in Task 1 and the quality of your explanations.

Empirical analysis (2 marks)

These marks are for (1) whether you collected an adequate amount of timing data and

(2) how well you can explain the trends/patterns in the timing results you collected in

Task 2. Note: you don't need to understand or explain how Unix sort works, but you

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

should be be able to relate trends in your timing results for sortIntList to the functions

that you wrote.

List ADT (1.5 marks)

These marks are for the correctness of your List ADT implementation in Task 3, and will

come from automarking. Automarking will be run after submissions have closed. After

automarking is run you will be able to view your results here.

Appendix

Task 2 script

This is a shell script to help you collect timing data for Task 2. You likely won't fully

understand it unless you've taken COMP2041 or had prior experience with shell

scripting, but feel free to use it anyway.

To use this script, copy it to a file, make sure sortIntList has been compiled, and then

run sh script-name, where script-name is the name of the file you copied the script to.

#!/bin/sh

num_runs=5

for order in random sorted reverse # NOTE: feel free to change this list
do

for input_size in 10000 20000 40000 # TODO: add more input sizes
do

for program in ./sortIntList "sort -n"
do

echo
echo "Input size: $input_size, Order: $order, Program: $program"
for i in $(seq 1 $num_runs)
do

case $order in
random)

seq -f %1.0f $input_size | sort -R | /usr/bin/time -f "%U" $program
> /dev/null

;;
sorted)

seq -f %1.0f $input_size | /usr/bin/time -f "%U" $program >
/dev/null

;;
reverse)

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

seq -f %1.0f $input_size | sort -nr | /usr/bin/time -f "%U"
$program > /dev/null

;;
esac

done
done

done
done

NOTE:

If you get error messages like:

$'\r': command not found
syntax error near unexpected token `$'do\r''

then run the command dos2unix script-name (where script-name is the name of the

script) and try again.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 04 Lab Exercise

Binary Search Trees

Objectives

To explore the implementation of binary search trees

To get some practice with binary search trees

To implement a level-order traversal

To get some practice with complexity analysis

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 4, 5 or 7 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 5

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Background

In lectures, we introduced the binary search tree data type and implemented some

operations on it. In this week's lab, we will implement some additional operations on it.

Recall that a binary search tree is an ordered binary tree with the following properties:

the tree consists of a (possibly empty) collection of linked nodes

each node contains a single integer value, and has links to two subtrees

either or both subtrees of a given node may be empty

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

all values in a node's left subtree will be less than the value in the node

all values in a node's right subtree will be greater than the value in the node

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week04/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

bst.h interface for the BST module

bst.c implementation of the BST module (incomplete)

Queue.h interface for the Queue ADT

Queue.c implementation of the Queue ADT (complete)

testBst.c a main program to read values into a tree and then display the tree

runBst.c interactive test program for the BST module

tests/ a sub-directory containing some basic test cases

analysis.txt a template for you to enter your time complexity analysis

There is quite a lot of code provided, but most of it is complete, and you don't

necessarily need to read it... although reading other people's code is generally a useful

exercise. The main code to look at initially is testBst.c. This is the main program that

will be used for testing the additions you make to the BST module.

The next files you should look at are the header files, to find what operations they

provide. Finally, you should open the bst.c file, since that's the file you need to modify

for the tasks below.

Compile the initial version of the files with make:

$ make
clang -Wall -Werror -g -fsanitize=address,leak,undefined -c -o runBst.o runBst.c
clang -Wall -Werror -g -fsanitize=address,leak,undefined -c -o bst.o bst.c
clang -Wall -Werror -g -fsanitize=address,leak,undefined -c -o Queue.o Queue.c

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/bst.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/bst.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/Queue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/testBst.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/runBst.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/tests/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week04/files/analysis.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

clang -Wall -Werror -g -fsanitize=address,leak,undefined -o runBst runBst.o bst.o Queue.o
clang -Wall -Werror -g -fsanitize=address,leak,undefined -c -o testBst.o testBst.c
clang -Wall -Werror -g -fsanitize=address,leak,undefined -o testBst testBst.o bst.o Queue.o

This will produce two executables:

testBst
This program reads in numbers from standard input, inserts the numbers into a binary

search tree, and then runs each of the BST functions once on the given tree. Once you've

completed all the tasks, the program should behave like the following:

$./testBst
5 3 7 1 4 6 9
Ctrl-D
BST:
 5
 / \
 / \
 / \
 3 7
 / \ / \
1 4 6 9

#nodes: 7
#leaves: 4
Range: 8

In-order: 1 3 4 5 6 7 9
Pre-order: 5 3 1 4 7 6 9
Post-order: 1 4 3 6 9 7 5
Level-order: 5 3 7 1 4 6 9

Deleting all the leaves in the BST...
New BST:
 5
 / \
3 7

The tests directory contains some sample inputs and expected outputs for the testBst

program. The t.in files contain the sample inputs and the t.exp files contain the

corresponding expected outputs. You can make the testBst program read input from the

input files by using input redirection:

$./testBst < tests/2.in
BST:
 5
 / \

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

 / \
 / \
 3 7
 / \ / \
1 4 6 9

#nodes: 7
#leaves: 4
Range: 8
...

We strongly advise you to do your own testing in addition to using the given tests, as the

given tests are (intentionally) not very extensive.

runBst
This program allows you to test the BST functions interactively by entering commands in

the terminal. Here is an example run of the program (once you've completed all the

tasks):

$./runBst
Interactive BST Tester
Enter ? to see the list of commands.
> + 6 8 4 1 9 3 5
Inserted 6
Inserted 8
Inserted 4
Inserted 1
Inserted 9
Inserted 3
Inserted 5
> p
 6
 / \
 4 8
 / \ \
1 5 9
 \
 3
> n
The BST contains 7 nodes
> l
The BST contains 3 leaves
> r
The range of the BST is 8
> P
Pre-order traversal: 6 4 1 3 5 8 9
> L

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Level-order traversal: 6 4 8 1 5 9 3
> d
Deleted all the leaves in the BST
> p
 6
 / \
 4 8
 /
1
> l
The tree contains 2 leaves
> L
Level-order traversal: 6 4 8 1
> d
Deleted all the leaves in the BST
> p
 6
 /
4
> d
Deleted all the leaves in the BST
> p
6
> q

Task 1 - Count Leaves in a BST

Implement bstNumLeaves() which returns a count of the number of leaf nodes in the

given BST. A leaf node is any node whose left and right subtrees are empty. The following

diagram shows some sample trees, with the leaf nodes highlighted in red.

Once you think you've got the function working, test it by recompiling with make and

running either (or both) of the test programs.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

When you're certain that the function works correctly, determine its worst case time

complexity and write it in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the number of nodes in the tree, or , where is the

height of the tree.

Task 2 - Find the Range of a BST

Implement bstRange() which returns the range of the given BST. The range of a BST is

the difference between its smallest and largest values. If the given tree is empty, the

function should return -1. For example, consider the following BST:

The range of this BST is 27, because the largest value is 30, the smallest value is 3, and

.

Once you think you've got the function working, test it by recompiling with make and

running either (or both) of the test programs.

When you're certain that the function works correctly, determine its worst case time

complexity and write it in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the number of nodes in the tree, or , where is the

height of the tree.

Since the binary search trees in this lab are not guaranteed to be balanced, the

height of a tree with nodes can vary significantly. This means for some algorithms,

expressing their time complexity in terms of can give a more accurate measure of

efficiency. An example of this is searching a BST - an efficient implementation

involves only going down one branch of the tree, so its efficiency depends on the

height of the tree, rather than the total number of nodes.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 3 - Delete the Leaves of a BST

Implement bstDeleteLeaves() which deletes all the leaf nodes in the given BST and

returns the root of the updated tree. The following diagram shows the result of

repeatedly applying the function to a sample tree.

Once you think you've got the function working, test it by recompiling with make and

running either (or both) of the test programs.

When you're certain that the function works correctly, determine its worst case time

complexity and write it in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the number of nodes in the tree, or , where is the

height of the tree.

Task 4 - Level-Order Traversal of a BST

Implement bstLevelOrder() which prints the values in the BST in level-order on a single

line separated by spaces (i.e., the same format as the other traverse-and-print

functions). Do not print a newline. The following diagram aims to give an idea of how

level-order traversal scans the nodes in a tree:

The output from this traversal would be: 5 3 7 2 4 6 9 1 8.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Level-order traversal cannot be done recursively (at least not easily) and is typically

implemented using a queue. The algorithm is roughly as follows:

Level Order Traversal(BST t):
initialise an empty queue
add t's root node to the queue
while the queue is not empty do

remove the node at the front of the queue
print the value in the node
add its left child (if any) to the queue
add its right child (if any) to the queue

end while

You must implement this algorithm by making use of the Queue ADT provided. Note that

the Queue ADT stores pointers (void * is a generic pointer type). This is because you

should store node pointers in the queue rather than integers - if the queue stored

integers then after dequeuing an integer, there would be no easy way to add its children

to the queue.

When you're certain that the function works correctly, determine its worst case time

complexity and write it in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the number of nodes in the tree, or , where is the

height of the tree.

Submission

You need to submit two files: bst.c and analysis.txt. You must submit all of these

files, even if you did not complete all of the tasks. You can submit via the

command line using the give command:

$ give cs2521 lab04 bst.c analysis.txt

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

Most of the marks for this lab will come from automarking. To receive the rest of the

marks, you must show your work to your tutor during your Week 4, 5 or 7 lab session.

You will be marked based on the following criteria:

Code correctness (4 marks)

These marks will come from automarking. Automarking will be run after submissions

have closed. After automarking is run you will be able to view your results here.

Complexity analysis (1 mark)

This mark is based on how accurate you were with your time complexity analysis and the

quality of your explanations in analysis.txt.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 05 Lab Exercise

Graphs and Social Networks

Objectives

To explore an application of graphs

To get some practice with graph problems

To perform complexity analysis on graph algorithms

To implement some basic features of social networks

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 5, 7 or 8 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 7

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Background

In lectures, we learned that a graph is a collection of vertices and edges between them.

This very abstract definition allows for many real-world scenarios and systems to be

modelled by graphs - for example, maps, social networks, and the web. In this lab, we

will explore an application of graphs in a simple social network app called Friendbook.

Friendbook

Friendbook is a very simple social network app with the following features:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

People can sign up with their name. For simplicity, people are identified by their

names, so two people cannot have the same name.

People can friend other people (i.e., add them as friends). Friending goes both ways,

so if you add someone as a friend, you become their friend as well.

People can unfriend their friends (i.e., remove them from their friends list). This also

goes both ways.

People can see a count of how many friends they have.

People can see a list of their friends.

People can see a list of the mutual friends that they share with someone else.

People can receive friend recommendations. Friendbook has two different methods of

generating recommendations:

1. The first method only recommends friends of friends, and ranks friend

recommendations in order of the number of mutual friends, so people who you

share more mutual friends with will be recommended first.

2. The second method recommends friends of friends first, and then friends of friends

of friends next, and then friends of friends of friends of friends, and so on. Anyone

who can be reached by following friendship links can be recommended.

Names as Vertices

All of the graph implementations we have seen so far have used integer vertices

numbered from to , where is the number of vertices. This is convenient, as

vertex numbers can double as indices into the adjacency matrix or adjacency list. But in

Friendbook, the vertices are people (names), so how do we represent this internally?

It turns out we don't need to do that much more work. If we give each person an integer

ID between and and store a mapping between names and IDs, then we can

continue to use the graph representations that we are familiar with. A simple way to

implement this mapping would be to store all the names in an array, and let the ID of

each person be the index containing their name in the array. The first person in the array

would have an ID of , the second person in the array would have an ID of , and so on.

If we wanted to answer a question involving one or more people, we can scan this array

to determine their ID, and then use this ID to query the matrix/list. For example, suppose

this is our internal representation:

0 n − 1 n

0 n − 1

0 1

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Now suppose we wanted to find out if Harry and Draco are friends. First, we need to find

the vertex numbers associated with Harry and Draco, so we perform a linear scan of the

array of names (called labels), and find that Harry is associated with a vertex number of

, and Draco is associated with a vertex number of . The adjacency list for vertex

does not contain vertex , so we can conclude that Harry and Draco are not friends.

Unfortunately, this translation between names and vertex numbers adds quite a bit of

overhead to our graph operations. Converting from vertex numbers to names is easy, as

we can go straight to the relevant index in the array (), but converting from names

to vertex numbers requires a linear scan of the array, which is . So what was once

an operation (checking if an edge exists) is now an operation. We can

improve the efficiency of the name to vertex number conversion by using a data

structure that allows for efficient searching, such as a binary search tree.

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week05/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

0 3 0
3

O(1)
O(n)

O(1) O(n)

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/downloads/files.zip
https://www.cse.unsw.edu.au/~cs2521/23T2/

Makefile a set of dependencies used to control compilation

Fb.c an incomplete implementation of the Friendbook ADT

Fb.h the interface for the Friendbook ADT

List.c a complete implementation of the List ADT

List.h the interface for the List ADT

Map.c a complete implementation of the Map ADT

Map.h the interface for the Map ADT

Queue.c a complete implementation of the Queue ADT

Queue.h the interface for the Queue ADT

runFb.c a program that provides a command-line interface to the Friendbook ADT

analysis.txt a template for you to enter your time complexity analysis

Once you've got these files, the first thing to do is to run the command

$ make

This will compile the initial version of the files, and produce the ./runFb executable.

File Walkthrough

runFb.c

runFb.c provides a command-line interface to the Friendbook ADT. It creates a

Friendbook instance, and then accepts commands to interact with it. Here is an example

session with the program once it is working correctly:

$./runFb
Friendbook v1.0
Enter ? to see the list of commands.
> ?
Commands:
 + <name> add a new person
 l list the names of all people
 f <name1> <name2> friend two people
 u <name1> <name2> unfriend two people
 s <name1> <name2> get the friendship status of two people
 n <name> get the number of friends a person has
 m <name1> <name2> list all mutual friends of two people
 r <name> get friend recommendations for a person based on mutual friends
 R <name> get friend recommendations for a person based on friendship
closeness
 ? show this message
 q quit

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Fb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Fb.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/List.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/List.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Map.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Map.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Queue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/runFb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week05/files/analysis.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

> + Harry
Harry was successfully added to Friendbook!
> + Ron
Ron was successfully added to Friendbook!
> + Hermione
Hermione was successfully added to Friendbook!
> f Harry Ron
Successfully friended Harry and Ron!
> f Ron Hermione
Successfully friended Ron and Hermione!
> s Harry Ron
Harry and Ron are friends.
> n Harry
Harry has 1 friend.
> n Ron
Ron has 2 friends.
> s Harry Hermione
Harry and Hermione are not friends.
> m Harry Hermione
Harry and Hermione's mutual friends:

Ron
> r Harry
Harry's friend recommendations

Hermione 1 mutual friends
> u Harry Ron
Successfully unfriended Harry and Ron!
> s Harry Ron
Harry and Ron are not friends.
> q
$

Fb.c
Fb.c implements the Friendbook ADT. Most of the functions are complete, however, it

would be helpful to read through these functions to get a good idea of how they

manipulate and obtain information from the graph representation, how they create and

return lists of names, and how they convert people's names to vertex numbers. You

should also read the definition of struct fb and make sure you understand the purpose

of each field.

List.h
List.h defines the interface to the List ADT. Some operations require a list of names to

be returned to the user, and the List ADT is used for this purpose. To see how to create a

list and add names to the list, you should read some of the already-completed functions

in the Friendbook ADT.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Map.h
Map.h defines the interface to the Map ADT, which is used to map people's names to IDs.

An important thing to note is that the Map ADT is not strictly necessary - it is only used

for efficiency reasons. If we didn't have access to the Map ADT and wanted to know the

ID of a particular person, we could simply scan the names array until we found the index

containing that person's name, and their ID would be that index.

Queue.h
Queue.h defines the interface to the Queue ADT. The Queue ADT is currently not used.

Task 1 - Counting Friends

Implement the FbNumFriends() function in Fb.c, which takes the name of a person and

returns the number of friends they have.

Once you think you've got the function working, test it by recompiling with make and

running the runFb program.

When you're certain that the function works correctly, determine its worst case time

complexity and write in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the total number of people.

NOTE:

It is possible to speed up testing by entering your commands into a file and making

the runFb program read in commands from the file. Here's an example command file

that tests a very simple case:

+ Harry
+ Ron
+ Hermione
f Harry Ron
f Ron Hermione
n Harry
n Ron
n Hermione

n n

Important: The Map ADT uses an inefficient binary search tree implementation, but

you should assume that it uses an AVL tree for complexity analysis.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Suppose the file is called num-friends-1.txt. Then, the following command will run

the runFb program using the commands from the file and echo the commands to the

terminal to make it easy to see which operations are being performed.

$./runFb -e < num-friends-1.txt

If you've implemented the function correctly, you should get the following output:

Friendbook v1.0
Enter ? to see the list of commands.
> + Harry
Harry was successfully added to Friendbook!
> + Ron
Ron was successfully added to Friendbook!
> + Hermione
Hermione was successfully added to Friendbook!
> f Harry Ron
Successfully friended Harry and Ron!
> f Ron Hermione
Successfully friended Ron and Hermione!
> n Harry
Harry has 1 friend.
> n Ron
Ron has 2 friends.
> n Hermione
Hermione has 1 friend.

Task 2 - Unfriending :(

Implement the FbUnfriend() function in Fb.c, which takes the names of two people, and

unfriends them if they are friends. The function should return true if the people were

friends and were successfully unfriended, and false if the two people were not friends

(and so they could not be unfriended).

Once you think you've got the function working, test it by recompiling with make and

running the runFb program.

When you're certain that the function works correctly, determine its worst case time

complexity and write in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the total number of people.n n

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 3 - Finding Mutual Friends

Implement the FbMutualFriends() function in Fb.c, which takes the names of two

people, and returns a list of all their mutual friends. A person is a mutual friend of two

people if that person is friends with both of those people. To illustrate this, here is an

example:

In the example, Harry and Hermione have three mutual friends: Neville, Ron and Luna.

Draco and Vincent have one mutual friend: Gregory. Harry and Draco have no mutual

friends.

HINT:

To find out how to create a list and add names to it, see the comments in List.h, or

read one of the existing functions in Fb.c that use the List ADT.

Once you think you've got the function working, test it by recompiling with make and

running the runFb program.

When you're certain that the function works correctly, determine its worst case time

complexity and write in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the total number of people.

Task 4 - Generating Friend Recommendations

n n

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Implement the FbFriendRecs1() function in Fb.c, which takes the name of a person and

finds friend recommendations for them. The function should store the recommendations

for them in the given recs array and return the number of recommendations stored in

the array.

The function should only recommend people who are friends of friends of the person. In

other words, it should only recommend people who share at least one mutual friend with

the person. Obviously, it should not recommend someone who is already the person's

friend.

Each recommendation consists of the name of the person being recommended and the

number of mutual friends they share with the given person.

The recommendations should be sorted in descending order on the number of mutual

friends shared, since someone with more mutual friends is more likely to be known by

the person, and is therefore more likely to be added as a friend. If two people share the

same number of mutual friends, they may be sorted in any order.

For example, consider the following scenario:

If FbFriendRecs1() is called with the name "Harry", the following output should be

produced:

Harry's friend recommendations:
Neville 3 mutual friends
Lavender 2 mutual friends
Draco 1 mutual friends

Explanation: Neville should be recommended first as he shares three mutual friends

with Harry: Luna, Ron and Hermione. Lavender should be recommended next as she

shares two mutual friends with Harry: Ron and Hermione. Draco should be recommended

last as he shares just one mutual friend with Harry: Hermione. (Note: There is no typo on

the last line - it is left as "friends" for simplicity's sake.)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Once you think you've got the function working, test it by recompiling with make and

running the runFb program.

When you're certain that the function works correctly, determine its worst case time

complexity and write in analysis.txt along with an explanation. The time complexity

should be in terms of , where is the total number of people.

HINT:

If you're not sure how to order the recommendations properly, consider the following:

Given that there are people, what is the largest number of mutual friends two

people could have? What is the smallest number of mutual friends two people could

have? Your solution doesn't need to be efficient, so you can consider a brute-force

approach.

Optional Task

NOTE:

This task is optional. It is not worth any marks.

Implement the FbFriendRecs2() function in Fb.c, which takes the name of a person and

finds friend recommendations for them. The function should return a list containing the

names of all the people being recommended, with the names being ordered as described

below.

Unlike FbFriendRecs1, this function should recommend all people who are reachable

from the given person via friendship links (not just people who share a mutual friend),

and should recommend people who are "closer" to the person first. In other words,

friends of friends of the person should be recommended first, then friends of friends of

friends, and so on. Obviously, it should not recommend someone who is already the

person's friend. If multiple people are the same "distance" from the person, they can be

recommended in any order.

Limit the number of recommendations to 20 to avoid generating too many

recommendations.

For example, consider the same scenario as in Part 2:

n n

n

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If FbFriendRecs2() was called with the name "Luna", the following is one possible valid

output:

Luna's friend recommendations:
Ron
Hermione
Draco
Lavender
Vincent
Gregory

Explanation: Ron and Hermione are the closest people to Luna who are not also her

friends, so they are recommended first. The example output recommends Ron first and

then Hermione, but it would be equally valid to recommend Hermione first and then Ron.

Draco and Lavender are the next furthest away, so they are recommended next. It would

be valid to recommend Lavender before Draco. Vincent and Gregory are the next

furthest away, so they are printed next. Once again, it would be valid to recommend

Gregory before Vincent.

When you think you are done, use the make command to recompile the runFb program

and then develop some scenarios to test your code.

HINT:

You will need to use a graph traversal algorithm to complete this task. But which one?

You can review the graph traversal algorithms here, and then follow the pseudocode

of your chosen algorithm.

HINT:

COMP2521 23T2

http://www.cse.unsw.edu.au/~cs2521/20T2/lecs/graph-traversal/slides.html
https://www.cse.unsw.edu.au/~cs2521/23T2/

Use the following printf format: "\t%s\n"

Submission

You need to submit two files: Fb.c and analysis.txt. You must submit all of these

files, even if you did not complete all of the tasks. You can submit via the

command line using the give command:

$ give cs2521 lab05 Fb.c analysis.txt

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

Most of the marks for this lab will come from automarking. To receive the rest of the

marks, you must show your work to your tutor during Week 5, 7 or 8 lab session. You will

be marked based on the following criteria:

Code correctness (4 marks)

These marks will come from automarking. Automarking will be run after submissions

have closed. After automarking is run you will be able to view your results here.

Complexity analysis (1 mark)

This mark is based on how accurate you were with the time complexities that you

obtained in Part 4 and the quality of your explanations.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 07 Lab Exercise

Graph Search Algorithms and Maze Solvers

Objectives

To explore an application of graphs

To get some practice implementing graph search algorithms

To perform complexity analysis on graph algorithms

To understand the difference between BFS and DFS

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 7, 8 or 9 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 8

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Background

In lectures, we learned about two basic graph search algorithms: breadth-first search

(BFS) and depth-first search (DFS). BFS explores the vertices in order of distance from

the starting vertex, and is guaranteed to find the shortest path to any vertex (in an

unweighted graph). Meanwhile, DFS tries to explore as far as possible by following edges

to unvisited vertices before backtracking. In this lab, we will explore the differences

between these algorithms by implementing our own maze solvers!

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Mazes and Graphs

Almost everyone has seen a maze before - a maze is a collection of walls and paths,

typically with a start and finish. But how can we represent a maze using a graph?

Visually, it's quite easy - given a maze, we can treat each uninterrupted stretch

(uninterrupted meaning no turns or intersections) as an edge, and create vertices at the

ends of each edge. For example, here is a maze and its graph equivalent:

This maze was taken from this Computerphile video

In this graph representation, each vertex would consist of an identifier, a set of

coordinates and a list of neighbours (up to four). However, producing this graph

representation is quite complex. For mazes that have a grid layout, it is simpler to treat

each every cell of the grid as a potential vertex. Then, identifying neighbours for each

vertex is easy - all we need to do is to check the four adjacent cells. If an adjacent cell is

a wall cell, then it is not a vertex (and hence not a neighbour), otherwise it must be a

neighbour.

In this new representation, all we need is a 2D matrix (array) of booleans to indicate

whether a cell is a wall or a path, and it is up to the user of the maze to determine where

the vertices and edges are. This is the representation that we will be using in the lab.

COMP2521 23T2

https://www.youtube.com/watch?v=rop0W4QDOUI
https://www.cse.unsw.edu.au/~cs2521/23T2/

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week07/downloads/files.zip

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

cell.h the definition of the cell data type used by the rest of the code

Maze.h the interface to the Maze ADT

Maze.o a precompiled implementation of the Maze ADT

Queue.h the interface to the Queue ADT

Queue.o a precompiled implementation of the Queue ADT

Stack.h the interface to the Stack ADT

Stack.o a precompiled implementation of the Stack ADT

matrix.h the interface to utility functions for creating matrices (2D arrays)

matrix.o a precompiled implementation of the utility functions for

matrices

solve.h the interface to the maze solver, used by solver.c

solveBfs.c an implementation of the maze solver using breadth-first search

solveDfs.c an implementation of the maze solver using depth-first search

solveDfsBacktrack.c an implementation of the maze solver using recursive depth-first

search

solveKeepLeft.c an implementation of the maze solver using the "keep left"

strategy

solver.c a driver program that creates a maze and runs a maze-solving

algorithm on it

mazes/ a directory containing example mazes

analysis.txt a template for you to fill in your answers for Task 3

Once you've got these files, the first thing to do is to run the command

Important: This lab must be completed on CSE systems.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/cell.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Maze.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Maze.o
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Queue.o
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Stack.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/Stack.o
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/matrix.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/matrix.o
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solve.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solveBfs.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solveDfs.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solveDfsBacktrack.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solveKeepLeft.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/solver.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/mazes/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week07/files/analysis.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

$ make

This will compile the initial version of the files, and produce four executables:

./solveBfs, ./solveDfs, ./solveDfsBacktrack and ./solveKeepLeft.

File Walkthrough

solver.c

solver.c is the entry point of the program. Given the path to a maze file, it opens the

file, creates a maze from it and then calls solve(), which should solve the maze.

cell.h
cell.h contains the definition of the cell data type used by the rest of the code. A cell is

simply represented by two integers: a row number and a column number.

NOTE:

A struct cell is a struct, not a struct pointer, so you should access a struct cell
using the dot operator rather than the arrow operator. You can also easily create new

struct cell instances without using malloc. Here are some examples of its usage:

struct cell x = {1, 2}; // cell (1, 2)
struct cell a = {.row = 1, .col = 2}; // also cell (1, 2) but more explicit
struct cell y = {x.row, x.col + 1}; // this is the cell to the right of x
struct cell z = x; // this is a copy of x
z.row = z.row + 1; // this modifies z to be the cell under it

Maze.h
Maze.h defines the interface to the Maze ADT, which provides all the functionality

required to access information about the maze. In addition to storing the structure of the

maze, the Maze ADT also keeps track of the state of all of the cells during a traversal so

it can display the maze and produce an animation. You should read Maze.h, as you will

be using many of its interface functions.

Queue.h and Stack.h
Queue.h and Stack.h define the interfaces to the Queue and Stack ADTs respectively. You

will need these ADTs to implement your solvers, so you should read the header files to

find out how to use them.

matrix.h
matrix.h defines the interface to some useful functions involving matrices/2D arrays

that you may want to use to implement your solvers.

solveBfs.c, solveDfs.c, solveDfsBacktrack.c and solveKeepLeft.c

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

These files (will) contain the implementation of your maze solvers, each using a different

algorithm. Only two of these are compulsory tasks - the others are there if you are

looking for a challenge.

Maze files

The mazes/ directory contains some example mazes that you can use to test your maze

solvers. You can create your own mazes, but to ensure that the mazes are read in

correctly, you must follow the format specified in Maze.h.

Note that you will not be able to access the implementation of the Maze, Queue and

Stack ADTs. This is because we want to reinforce the notion that users of an ADT should

treat it as a black box, and need not and should not care about its internal

representation and implementation. As we have only provided the object files, which are

machine specific, this lab can only be completed reliably on CSE systems.

Task 1

Implement the solve() function in solveBfs.c which takes in a maze and tries to find a

path from start to finish using the breadth-first search algorithm. If there is a path, the

function should mark the path on the maze using the MazeMarkPath() function and

return true. Otherwise, the function should return false.

While searching the maze, you should call MazeVisit() every time you visit a cell. This

will cause the maze to be redisplayed with the most recently visited cell marked.

Important: Additionally, MazeVisit will return true if the cell you passed it was the

finishing cell.

When you want to test your function, use the make command to recompile the program

and then run ./solveBfs maze-file, where maze-file is one of the maze files in the

mazes/ directory.

WARNING:

In order for the maze to display properly, you must ensure that your terminal window

is large enough to fit the entire maze. Otherwise, you may observe strange behaviour,

such as wall cells being visited. You may need to reduce your terminal's font size for

the largest mazes.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

For example, running ./solveBfs mazes/small-1.txt should produce an animation like

the following:

Your code does not have to produce this exact animation - other animations are possible

depending on the order in which you visit neighbours. Here is another possible animation

produced from a different visit order:

If there is no path from start to finish, then eventually, every cell that is reachable from

the starting cell will be visited. Here is a possible animation for small-2.txt, which is not

solveable:

You can adjust the speed of the animation by providing an additional command-line

argument to the program - a number between 1 and 11, where 1 is the slowest and 11 is

the fastest. The default speed is 3.

HINT:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Here is the pseudocode for the BFS algorithm for general graphs:

bfs(g, src):
Inputs: graph g
 starting vertex src

create visited and predecessor arrays
create queue and enqueue src

mark src as visited
while the queue is not empty:

dequeue v

for all edges (v, w) where w has not been visited:
mark w as visited
set predecessor of w to v
enqueue w

You can follow this pattern in this task, however note that you will need to adapt it for

mazes and you should stop the search as soon as you have found the exit. You also

need to mark the path after you have found the exit.

HINT:

You may find the createXYZ functions in matrix.h useful for creating visited and

predecessor arrays. If you do use these functions, make sure to free the arrays once

you no longer need them with the corresponding free functions. Avoid memory leaks!

Task 2

Implement the solve() function in solveDfs.c which also tries to solve the given maze

but instead uses the depth-first search algorithm. Use the iterative implementation of

the algorithm (i.e., the version that uses a stack), do not use recursion. When you

think you are done, use the make command to recompile the program and then run

./solveDfs maze-file.

Here are some possible animations produced from ./solveDfs mazes/small-1.txt:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

NOTE:

You should avoid creating small offshoots that don't get explored like in the following

animation:

This is not proper DFS behaviour and you may be penalised slightly if your code

produces an animation like this.

HINT:

Here is the pseudocode for the DFS algorithm for general graphs:

dfs(g, src):
Inputs: graph g
 starting vertex src

create visited and predecessor arrays
create stack and push src

while the stack is not empty:
pop v

if v has been visited:
continue (i.e., return to beginning of loop)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

mark v as visited

for all edges (v, w) where w has not been visited:
set predecessor of w to v
push w

Task 3

Congratulations for completing your maze solver! Now it's time to analyse the

complexity of your algorithms. Given a maze with cells in total (i.e.,

), what would be the time complexity of your BFS and DFS

algorithms? Enter your answers into analysis.txt, along with an explanation for each

answer. Important: you should ignore the maze-displaying code when analysing the

time complexity, as that code only exists to produce an animation.

Optional Challenge Task 1

NOTE:

This task is optional. It is not worth any marks, and there is no submission for it.

One slight advantage of depth-first search over breadth-first search is that it can be

easily implemented recursively, and therefore does not require any additional data

structures such as a queue or stack. Recursive depth-first search also induces

backtracking behaviour, which occurs when there are no more new vertices to visit from

a particular vertex (say B), and you backtrack to the previous vertex (say A) on your

current path to continue searching. In the code, backtracking behaviour occurs when the

function call where B was visited returns to the call where A was visited.

The backtracking behaviour of recursive depth-first search allows us to produce more

natural movement in our animations. Instead of immediately jumping to a new cell once

we reach a dead end (like in iterative depth-first search), we show the backwards

movement along the path until a new cell is found. Here are some examples of recursive

depth-first search and backtracking in action:

n

n = width × height

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If there is no path from start to finish, then eventually, every cell that is reachable from

the starting cell will be visited, and the algorithm will backtrack all the way back to the

starting cell, like so:

Implement this algorithm in solveDfsBacktrack.c. Once you are done, use the make
command to recompile the program and then run ./solveDfsBacktrack maze-file.

HINT:

To show the backtracking movement, you will need to call MazeVisit more than once

on the same cell.

Optional Challenge Task 2

NOTE:

This task is optional. It is not worth any marks, and there is no submission for it.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

A nice trick to remember for maze solving is that if both the start and finish are on the

edges of the maze, then it is possible to solve the maze by following the left or right wall

all around the maze. If your goal is simply to find the finish, then this algorithm requires

only constant memory (!), as all you need to keep track of is which cell you are at

and what direction you are moving. (If you want to show a path that doesn't involve

moving backwards over where you've already been, however, then you will still need a

predecessor array.) Note that this is not a graph-search algorithm - it's just a simple

algorithm that works for certain mazes. Here is the keep-left algorithm in action:

If there is no path from start to finish, then eventually, you will loop back to the start and

you can use this to deduce that there is no path.

Notice that if there are cycles in the maze (like the one above), this algorithm may not

visit all the cells in the maze - this is why it is only guaranteed to work if the start and

finish are on the edges of the maze.

Implement this algorithm in solveKeepLeft.c. Once you are done, use the make
command to recompile the program and then run ./solveKeepLeft maze-file.

Submission

You need to submit three files: solveBfs.c, solveDfs.c and analysis.txt. You must

submit all of these files, even if you did not complete all of the tasks. You can

O(1)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

submit via the command line using the give command:

$ give cs2521 lab07 solveBfs.c solveDfs.c analysis.txt

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

There is no automarking for this lab. To receive a mark, you must show your work to your

tutor during your Week 7, 8 or 9 lab session. You will be marked based on the following

criteria:

Code correctness (3 marks)

These marks are for the correctness of your code for Parts 1 and 2. To demonstrate the

correctness of your code, your tutor will run your submission on a few select mazes.

Complexity analysis (1 mark)

This mark is for how accurate you were with the time complexities that you obtained in

Part 3 and the quality of your explanations.

Code style (1 mark)

Code with good style should have these qualities: consistent indentation and spacing, no

repetition of code, no overly complicated logic, no overly long functions, correct use of C

constructs (such as if statements and while loops), and comments where appropriate.

See the style guide.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/resources/style_guide.html
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
https://www.cse.unsw.edu.au/~cs2521/23T2/

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G
COMP2521 23T2

mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 08 Lab Exercise

Weighted Graphs and Grid Planning

Objectives

To explore an application of weighted graphs and minimum spanning trees

To gain a better understanding of minimum spanning trees and MST algorithms

To see how graphs might be used with real-world data

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 8, 9 or 10 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 9

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

Background

When dealing with weighted graphs in the real world, especially networks, there is often

a desire to connect nodes in the cheapest way possible, as connecting or traversing

nodes usually incurs material, labour or time costs. This is where minimum spanning

trees are most useful.

A minimum spanning tree is a subset of the edges of a weighted graph that connects all

the vertices together with the minimum possible total edge weight. Minimum spanning

trees have applications in the design of networks, such as computer networks,

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

telecommunications networks and transportation networks. They also have other

practical applications such as in cluster analysis and circuit design. In this lab, we will

focus on their use in designing electrical networks.

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week08/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

Graph.h the interface for the Graph ADT

Graph.c an incomplete implementation of the Graph ADT

Pq.h the interface for the Priority Queue ADT

Pq.c a complete implementation of the Priority Queue ADT

place.h the definition of the place and power line data types

gridPlanner.c a main program to read in locations and design electrical grids

planner.c an implementation of the grid-planning algorithm (incomplete)

planner.h the interface to the grid-planning algorithm, used by gridPlanner.c

testGraphMst.c a main program to test the minimum spanning tree algorithm

tests/ a sub-directory containing a collection of test cases

Once you've got these files, the first thing to do is to run the command

$ make

This will compile the initial version of the files, and produce the ./testGraphMst and

./gridPlanner executables.

File Walkthrough

Graph.h

Graph.h defines the interface to the Graph ADT. The graphs produced by this ADT are

undirected, which means that edges are always bidirectional, and weighted, which

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/Graph.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/Graph.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/Pq.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/Pq.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/place.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/gridPlanner.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/planner.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/planner.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/testGraphMst.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week08/files/tests/
https://www.cse.unsw.edu.au/~cs2521/23T2/

means that each edge has a weight that indicates some kind of cost. The interface

describes some additional rules/restrictions: edge weights are doubles and must be

positive, and self-loops (edges going from a vertex to itself) aren't allowed.

Graph.c
Graph.c contains the implementation of the Graph ADT. The implementation is almost

complete except for the GraphMst function, which computes the minimum spanning tree

of a given graph. Completing this will be one of the tasks in this lab.

testGraphMst.c
testGraphMst.c reads in graph data from standard input, calls GraphMst to produce a

minimum spanning tree of the graph, and then displays the result.

To read in a graph, the program first reads in an integer representing the number of

vertices in the graph, and then reads in edges. Each edge is represented by three

comma-separated values: two integers which are the endpoints of the edge and a

double which is the weight of the edge. Here are some examples of entering graph data

into the program:

$./testGraphMst
3
0, 1, 5.0
0, 2, 4.0
1, 2, 3.0
Ctrl-D
...
$./testGraphMst < tests/graphMst/1.in # from a file
...

The program has two output modes. If not given any command-line arguments, the

program will output the original graph and the minimum spanning tree in plain text.

$./testGraphMst < tests/graphMst/1.in
Graph:
Number of vertices: 3
Number of edges: 3
Edge 0 - 1: 5.000000
Edge 0 - 2: 4.000000
Edge 1 - 2: 3.000000

Minimum Spanning Tree:
Number of vertices: 3
Number of edges: 2
Edge 0 - 2: 4.000000
Edge 1 - 2: 3.000000

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If the program is given the command-line argument -v, it will output HTML instead. If

you redirect the output to a .html file, you can open the file in your web browser, which

will give you a nice visualisation of the result.

$./testGraphMst -v < tests/graphMst/1.in > tests/graphMst/1.html
$ # now open the file in a web browser

Pq.h

Pq.h defines the interface to the priority queue ADT. A priority queue is somewhat like a

queue except that each item has a priority, and items are removed in priority order. This

particular priority queue stores edges and removes the edge with the lowest weight first

(i.e., lower weight = higher priority).

place.h
place.h contains the definition of the place and power line data types used by the rest

of the code. A place is represented by a name and two integers x and y representing its

coordinates on a map. A power line is represented by the two locations which it goes

between.

NOTE:

struct places and struct powerLines are structs, not struct pointers, so you should

access them using the dot operator rather than the arrow operator. You can also easily

create copies of struct places and new struct powerLines without using malloc.

gridPlanner.c
gridPlanner.c reads in a series of places from standard input (one per line), calls

planGrid1 or planGrid2, which determine where to build power lines to minimise cost,

and then displays the result. Like testGraphMst.c, this program also has two output

modes: plain text and visualiser.

Every place is either a city or a power plant. Places are represented by four comma-

separated values: (1) a string which is either "city" or "plant", (2) the name of the place,

(3) its x-coordinate, and (4) its y-coordinate. See the input files in the

tests/gridPlanner directory for examples.

planner.c
This file will contain the implementation of your grid planning algorithm. planGrid1

designs an electrical grid for the simple scenario where there may be many cities but

just one power plant. planGrid2 handles more complex (but realistic) scenarios where

there may be many power plants, and is left as a challenge task.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 1

Implement the GraphMst() function in Graph.c which takes in a graph and returns a

minimum spanning tree of the graph as a new graph. If the given graph has no minimum

spanning tree, the function should return NULL. If the graph has multiple minimum

spanning trees, you can return any of them.

You may use any minimum spanning tree algorithm you like. You can (and are

encouraged to) make use of the priority queue ADT that we've supplied.

When you think you are done, use the make command to recompile the testGraphMst

program and use the provided input files (and/or your own) in the tests/graphMst
directory to test your code. Each input file t.in has a corresponding expected output file

t.exp. For example:

$./testGraphMst < tests/graphMst/1.in
Graph:
Number of vertices: 3
Number of edges: 3
Edge 0 - 1: 5.000000
Edge 0 - 2: 4.000000
Edge 1 - 2: 3.000000

Minimum Spanning Tree:
Number of vertices: 3
Number of edges: 2
Edge 0 - 2: 4.000000
Edge 1 - 2: 3.000000
$./testGraphMst < tests/graphMst/1.in > tests/graphMst/1.out
$ # compare 1.out with 1.exp manually or with diff

A more interesting way to test is to add the -v flag to toggle the program's visualiser

mode. This will cause the program to spew a bunch of HTML that isn't very useful on the

terminal, so redirect the output to an .html file instead:

$./testGraphMst -v < tests/graphMst/1.in > tests/graphMst/1.html

Now open the file in your web browser to get a nice visualisation of the result. For

example, here is what the visualisation for 3.in should look like:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

The edges of the MST (if it exists) will be highlighted in green. The vertices will always be

initially arranged in a circle, but you can change how the graph looks by dragging the

vertices around the canvas.

NOTE:

The .html file must be in the tests/graphMst directory for the visualiser to work,

because the visualiser depends on other files in that directory (style.css and

visualiser.js). Alternatively, you can move style.css and visualiser.js to the

same directory as the .html file.

Task 2

Implement the planGrid1() function in planner.c which takes an array of cities (of size

numCities) and a power plant, and determines the most optimal (i.e., cost-minimising)

configuration of power lines such that every city has access to electricity. The function

should fill the given powerLines array with the required power lines and return the

number of power lines stored in the array. If there are multiple optimal configurations,

you can choose any of them.

You can make the following simplifying assumptions:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Cost is directly proportional to the total length of power lines used, so you should aim

to minimise this total length.

Power lines can only be built between pairs of cities or between a city and a power

plant, so you can't create a new place and build a power line to it.

You can assume the land is flat so that there is no additional cost from a difference in

altitude. The cost of a power line between two locations and will

therefore be directly proportional to

Please note that you are not required to calculate the total cost - you are only required to

find the configuration of power lines that would minimise the cost.

When you think you are done, use the make command to recompile the gridPlanner
program and use the provided input files (and/or your own) in the tests/gridPlanner
directory to test your code. For example:

$./gridPlanner < tests/gridPlanner/1.in
City Sydney at (870, 204)
City Melbourne at (727, 94)
City Adelaide at (581, 174)
City Alice Springs at (474, 469)
City Darwin at (406, 736)
City Perth at (65, 254)
City Brisbane at (910, 374)
Power Plant Canberra at (821, 165)
Power line between Sydney (870, 204) and Canberra (821, 165)
Power line between Sydney (870, 204) and Brisbane (910, 374)
Power line between Melbourne (727, 94) and Canberra (821, 165)
Power line between Melbourne (727, 94) and Adelaide (581, 174)
Power line between Adelaide (581, 174) and Alice Springs (474, 469)
Power line between Alice Springs (474, 469) and Darwin (406, 736)
Power line between Alice Springs (474, 469) and Perth (65, 254)
$./gridPlanner < tests/gridPlanner/1.in > tests/gridPlanner/1.out
$ # compare 1.out with 1.exp

Each input file t.in has a corresponding expected output file t.exp, but you are not

required to match the exact order of power lines or match the order of place names for

each power line. For example, it would be valid for the power line between Sydney and

Canberra to read:

Power line between Canberra (821, 165) and Sydney (870, 204)

You can also test by using the program's visualiser mode:

$./gridPlanner -v < tests/gridPlanner/1.in > tests/gridPlanner/1.html

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Here is what the visualisation for 1.in should look like:

NOTE:

The .html file must be in the tests/gridPlanner directory for the visualiser to work,

because the visualiser depends on other files in that directory (style.css and

visualiser.js). Alternatively, you can move style.css and visualiser.js to the

same directory as the .html file.

NOTE:

Only the input files 1.in, 2.in and 3.in are relevant for this task. The other input files

(challenge1.in and challenge2.in) are relevant for the challenge task.

Optional Challenge Task

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

NOTE:

This task is optional. It is not worth any marks.

Implement the planGrid2() function in planner.c which also designs a minimal cost

electrical grid, but can take into account multiple power plants, unlike planGrid1(). You

can make the same simplifying assumptions as in the previous task.

When you think you are done, use the make command to recompile the gridPlanner
program and run it with the provided input files tests/gridPlanner/challenge1.in and

tests/gridPlanner/challenge2.in. For example, here's what the visualisation for 8.in

should look like:

Submission

You need to submit two files: Graph.c and planner.c. You must submit all of these

files, even if you did not complete all of the tasks. You can submit via the

command line using the give command:

$ give cs2521 lab08 Graph.c planner.c

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

Most of the marks for this lab will come from automarking. To receive the rest of the

marks, you must show your work to your tutor during your Week 8, 9 or 10 lab session.

You will be marked based on the following criteria:

Code correctness (4 marks)

These marks will come from automarking. Automarking will be run after submissions

have closed. After automarking is run you will be able to view your results here.

Code style (1 mark)

This mark is based on your code style. Code with good style should have these qualities:

consistent indentation and spacing, no repetition of code, no overly complicated logic,

no overly long functions, correct use of C constructs (such as if statements and while
loops), and comments where appropriate. See the style guide.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/resources/style_guide.html
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Week 09 Lab Exercise

 Sort Detective

Objectives

To familiarise yourself with practical aspects of computational complexity

To practice a systematic approach to problem solving

To apply sound scientific reasoning in reaching conclusions

To hone your analysis skills

To identify algorithms from their behaviour

Admin

Marks 5 (see the Assessment section for more details)

Demo in the Week 9 or 10 lab session

Submit see the Submission section

Deadline to submit to give 5pm Monday of Week 10

Late penalty 0.2% per hour or part thereof, submissions later than 5

days not accepted

NOTE:

In this lab, you are allowed to work with a partner. If you do, you must:

Include both names and zids in your report

Indicate whose sort programs you used in your report

Both submit the report

Demo the report as a pair at your lab session in Week 9 or 10 to get marks

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

You are allowed to work with a student from another lab. However, you must still

demo the report as a pair.

Background

A very long time ago, in a burst of enthusiasm, Richard Buckland wrote a collection of

sort programs. Sadly, he forgot to give the programs meaningful names, so when he

later passed them on to COMP2521 lecturers to use for this lab, he couldn't tell us which

program used which algorithm. All that he could remember is that the sorting algorithms

he used came from the following list:

Bubble sort

standard bubble sort (bubble-up)

Insertion sort

standard insertion sort

Selection sort

standard unstable selection sort

Merge sort

standard merge sort

Naive quicksort

uses the leftmost element as the pivot

Median-of-three quicksort

uses the median of the first, middle and last elements as the pivot

Randomised quicksort

uses a randomly chosen element as the pivot

Bogosort

repeatedly generates permutations of its input until one is found that is sorted

Despite not knowing which program uses which algorithm, Richard did remember a few

things about the programs:

All of the programs read their input from stdin and write the sorted version of the data

to stdout

Sorting happens line-by-line, like the Unix sort program

There is a limit on the size of the input the programs can process (10,000,000 lines),

because they read their input into a fixed size array and sort it there, before writing

out the sorted result

The programs all expect each line to start with a number, which acts as the sorting

key. The sorting is numeric, which means that the programs all behave something like

the Unix sort program run with the -n option. If no number is present at the start of a

line, it will be treated as a zero value.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$./sortX < data > sorted_data
behaves like
$ sort -n < data > sorted_data

Your task is to help us identify the specific sorting algorithms used in two of these

programs. You will not be able to view the source code. Instead, you will have to try to

identify the algorithms using only the programs' observable behaviour when sorting

different data. Note that since the programs are only available in binary format, they will

most likely only run on the CSE machines, so you'll have to do your work there.

In the setup phase, we will give you access to two different sort programs; each lab pair

or individual gets a different (randomly chosen) pair of programs. The first phase of the

task is to design and write up the experimental framework that you plan to use to solve

the problem. In the second phase, you should gather data on the execution behaviour of

the two programs according to your exerimental setup. You then add the data to your

report and analyse it to reach a conclusion on which algorithm each of the supplied

programs contains.

To make your task a little simpler, we've supplied a program to generate data in the

correct format for the sorting programs to use.

$ /web/cs2521/23T2/labs/week09/scripts/gen 5 R
1 nwl
5 arz
4 hcd
2 rbb
3 mqb
$ /web/cs2521/23T2/labs/week09/scripts/gen
Not enough arguments
Usage: /web/cs2521/23T2/labs/week09/scripts/gen N A|D|R [S]
 N = number of lines
 A|D|R = Ascending|Descending|Random
 S = seed for Random
$

Use the gen program however you like, or not at all. Note that the gen program always

generates a unique set of keys (from 1..N). This won't enable you to test stability, so

you'll need to come up with some more data of your own. Note that the seed argument

allows you to generate the same sequence of "random" numbers; if you want to test

both sort programs on the same random sequence, use the same seed.

Note that the setup script (below) will put a copy of the gen executable into your lab

directory, so you can run it as ./gen rather than having to type the long file name.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ /web/cs2521/23T2/labs/week09/setup

This must be run on the CSE machines, either via VLAB or SSH. This command will set up

two symbolic links in your directory called sortA and sortB which reference executable

programs under the class account. The setup command also gives you a copy of the gen

program and timeit shell script.

If you are working in a pair and you are using your partner's sort programs, run the

setup command above, and then delete your own sort programs with the rm command:

$ rm sortA sortB

Then get your partner to run the following command in their lab directory:

$ ls -l sortA sortB
lrwxrwxrwx 1 ... sortA -> long-path-ending-with-sort...A
lrwxrwxrwx 1 ... sortB -> long-path-ending-with-sort...B

Finally, copy the long paths that you obtained to create symlinks (shortcuts) to the sort

programs:

$ ln -s long-path-ending-with-sort...A sortA
$ ln -s long-path-ending-with-sort...B sortB

This will give you the same symbolic link as your partner so you can both investigate the

same sort programs. Make sure you remember whose sort programs you are

using.

You can check that the sortA and sortB programs actually do sorting by running

something like the following:

$./gen 5 R
... unsorted output ...
$./gen 5 R | ./sortA
... sorted output ...
$./gen 5 R | ./sortB
... sorted output ...

Phase 1: Designing your Experiment

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Plan the set of tests which you will use to deduce which sorting algorithm is used by

each sort program. This is to ensure that by the time you begin investigating and

experimenting with the actual sort programs you have thoroughly thought about what

kind of behaviour to look for and what further experimentation might be necessary when

analysing your findings.

We expect this will involve coming up with numerous sequences of test data to use, and

what differences (and why) you expect to be able to observe from different types of

sorting algorithms. Typical properties to look for are execution time and output stability.

Of course, when designing tests you cannot anticipate all possible results which might

occur during your experiment. This is the nature of scientific experimentation. But by

formalising what you expect to occur and how you will respond, you can better account

for unexpected behavior and sensibly revise your design or create new tests once the

experiment is under way.

Your experimental design should detail the tests you have devised and explain, with

clear reasons, how you will be able to distinguish each algorithm you might be given. You

do not need to include all the input data you intend to use, only a description or small

sample of it (you may put this in the appendix if you wish).

Write up the experimental design as Part 1 of your report. You can produce the report

using whatever tools you want (e.g., OpenOffice, Google Docs, raw HTML, etc.), but it

must eventually be submitted as a PDF. Most document processing systems and Web

browsers can produce PDF.

There is no size requirement for the report; it is the quality of the report which matters. If

you want to include detailed reporting of timing results, then put these in an appendix.

Your report should be clear, scientific/systematic in approach, and all reasoning and

assumptions should be explicit. Make sure you ask your tutor if you are unclear about

what is expected.

To help you get started, a template for the report is available. Note that a fault in many

of the reports in the past is that they simply report observations without attempting to

analyze them or explain why these results occurred. For this lab try to get beyond just

stating observations and explain them.

Phase 2: Run Experiment and Analyse Results

The setup command has given you two sort programs to identify. As noted earlier, each

sort program reads from standard input and writes to standard output, and assumes that

each input line contains a numeric key (first field) and an arbitrary string following the

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week09/report-template.html
https://www.cse.unsw.edu.au/~cs2521/23T2/

key. The output should be in ascending order, based on the numeric ordering of the keys.

All programs should produce the same output for a given input when the keys are

unique.

The following examples show some useful ways of running the sort programs, and

auxiliary commands to help collect useful data on their behaviour:

generate some data, put in a file called "mydata"
$./gen 100 R > mydata
sort the data using sortA, put the result in "sortedA"
$./sortA < mydata > sortedA
sort the data using sortB, put the result in "sortedB"
$./sortB < mydata > sortedB
sort the data using Unix sort
$ sort -n < mydata > sorted
check that the sortA and sortB programs actaully sorted
$ diff sorted sortedA # should show no diffs
$ diff sorted sortedB # should show no diffs
run a large sort and throw away the result
$./gen 100000 R | ./sortA > /dev/null
repeat the above, but get timing data on sortA
$./gen 100000 R | time ./sortA > /dev/null
repeat the timing, but with better output format
$./gen 100000 R | /usr/bin/time --format="%U seconds" ./sortA > /dev/null

You should now carry out the experiment you designed in Phase 1. Collect and record all

of the data, and then summarize it in your report. You can use whatever tools you like to

produce useful summaries (e.g. plot graphs of time vs data size). Then analyze the data,

draw conclusions, and explain them.

To help with the experiments, we have provided a shell script called timeit to collect

timing data. As supplied, this script times the built-in sort program, which is not helpful

for you, so you'll need to modify it to use one of your sortA or sortB programs. You could

use it as follows:

set up appropriate testing for sortA
$ gedit timeit
collect timing data
$ sh timeit
set up appropriate testing for sortB
$ gedit timeit
collect timing data
$ sh timeit

Note that some tests will take a long time to run with large data. You can remove the

large data sizes from the outer for loop if you can't wait, but you should probably add

more smaller sizes to get more data points to try to determine execution cost trends.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Unfortunately, students cannot leave jobs running in the background after logging out,

so you'll need to stay logged in to a CSE machine while you're running tests.

Tips for measuring: the Unix time command works by sampling and will likely produce

different results for the same program run multiple times (the timeit script will do this

for you). Take an average over a number of timings to account for this. Also, beware of

claiming too much accuracy. You can't really claim more than one or two significant

digits on an average from the time command.

The precise format of your report is up to you, but it must include:

a summary of the results for each program

an argument, based on the observed behaviour, for what sorting algorithm you think

each program is using

Submission

Your submission for this lab is a report containing an experimental design and

results/analysis from carrying out the experiment. It should be submitted as a PDF file

called report.pdf. You can submit via the command line using the give command:

$ give cs2521 lab09 report.pdf

You can also submit via give's web interface. You can submit multiple times. Only your

last submission will be marked. You can check the files you have submitted here.

WARNING:

After you submit, you must check that your submission was successful by going to

your submissions page. Check that the timestamp is correct. If your submission does

not appear under Last Submission or the timestamp is not correct, then resubmit.

Assessment

There is no automarking for this lab. To receive a mark, you must show your report to

your tutor during your Week 9 or 10 lab session. You will be marked based on the

following criteria:

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://cgi.cse.unsw.edu.au/~cs2521/23T2/view/main.cgi/
https://www.cse.unsw.edu.au/~cs2521/23T2/

Methodology (2 marks)

Your report should contain an easy-to-understand description and justification of your

methodology. What experiments and tests did you run, how did you run them, and why?

Results and Analysis (2 marks)

Your report should include the results you obtained from your experiments, including a

table of timing results (and possibly some graphs) from your timing experiments, sample

input and output from your stability tests, and results from any other experiments you

ran. You should also include an analysis of these results: what did the results tell you

about what the sorting algorithms could/couldn't be?

Accuracy (1 mark)

This mark is for whether you were able to accurately identify the sorting algorithms used

by your sort programs. Your conclusions must logically follow from your results - if they

are inconsistent with your results or if multiple sorting algorithms were possible based

on your results and you didn't properly narrow it down to one algorithm, you may be

penalised. If you worked with someone else, make sure to let your tutor know which one

of you ran the setup command at the start of the lab (and hence whose sort programs

you used), since each student is given a different pair of sort programs.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Debugging with GDB and Valgrind

Objectives

To learn about debugging with GDB

To debug memory errors and leaks using Valgrind

Admin

This lab is not marked and there is no submission for it. However, we highly recommend

that you attempt it so that you can use GDB and Valgrind in your future labs and

assignments.

Resources

You may want to consult the following resources:

GDB Quickstart: Breakpoints and Printing Values

Breaking, Stepping Over, and Stepping into Functions

Debugging - GDB Tutorial (another great tutorial)

This very helpful guide was written by tutors of this course.

Guide to Memory Management and Debugging in C

Setting Up

Create a directory for this lab, change into it, and run the following command:

COMP2521 23T2

https://www.youtube.com/watch?v=5yZIFmplXsw
https://www.youtube.com/watch?v=OHUFeuBkBuI
https://www.youtube.com/watch?v=bWH-nL7v5F4
https://github.com/D0D0123/MemoryGuideC/
https://www.cse.unsw.edu.au/~cs2521/23T2/

$ unzip /web/cs2521/23T2/labs/week11/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

sorter.c a buggy program with a simple sorting function

Set.h interface definition for a Set ADT

Set.c buggy implementation of the Set ADT using a binary search tree

testSet.c main program for testing the Set ADT

If you run the make command, it will build two executables: sorter and testSet. Both

of these programs are buggy. Before you fix the bugs in the programs, make copies of

sorter.c and Set.c as follows:

$ cp sorter.c sorter.bad.c

$ cp Set.c Set.bad.c

NOTE:

We usually compile our programs with AddressSanitizer, but we are not using it in this

lab to demonstrate how to use GDB. After you complete this lab, you can try

compiling with AddressSanitizer to see just how helpful it is :)

Task 1 - Debugging the Sorter

The aim of the sorter program is to generate a small array containing random numbers,

print it, sort the array using bubble sort, and then print the sorted array. It repeats this

process five times, generating different random array contents each time.

If the sorter were correct, you would observe something like the following:

$./sorter

Test #1

Sorting: 83 86 77 15 93 35 86 92 49 21

Sorted : 15 21 35 49 77 83 86 86 92 93

Test #2

Sorting: 62 27 90 59 63 26 40 26 72 36

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/files/sorter.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/files/Set.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/files/Set.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week11/files/testSet.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

Sorted : 26 26 27 36 40 59 62 63 72 90

Test #3

Sorting: 11 68 67 29 82 30 62 23 67 35

Sorted : 11 23 29 30 35 62 67 67 68 82

Test #4

Sorting: 29 02 22 58 69 67 93 56 11 42

Sorted : 02 11 22 29 42 56 58 67 69 93

Test #5

Sorting: 29 73 21 19 84 37 98 24 15 70

Sorted : 15 19 21 24 29 37 70 73 84 98

Unfortunately, what you actually observe is:

$./sorter

Test #1

Sorting: 83 86 77 15 93 35 86 92 49 21

Segmentation fault

You may get a different set of random numbers to the above, and maybe even a

different error message depending on which machine you're working on, but that doesn't

affect the exercise. The program should be able to sort any set of random numbers, but

clearly there's a problem.

So, what to do...? You may have noticed that when the programs were compiled, they

used the -g flag, which sets them up to be used with gdb. Run the program under

control of gdb to find out where it is crashing.

$ gdb -q ./sorter

Reading symbols from ./sorter...

(gdb) run

Starting program: some-long-path-name-ending-in/sorter

Test #1

Sorting: 83 86 77 15 93 35 86 92 49 21

Program received signal SIGSEGV, Segmentation fault.

0xXXX...XXX in sort (a=0xXXX...XXX, n=10) at sorter.c:37

37 if (a[j] < a[j - 1]) {

(gdb)

where the XXX...XXX are large hexadecimal numbers, which may vary from machine to

machine. The exact value is not important.

The gdb command can be quite verbose, and part of the skill of using it is working what

to ignore. I've highlighted the critical output in red above.

In the sample output above, you can see the line where the error has occured.

Sometimes it's useful to get more context than just a single line. You can do this from

within gdb using the list command, e.g.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

(gdb) list

32 static void sort(int a[], int n) {

33 int i, j, nswaps;

34 for (i = 0; i < n; i++) {

35 nswaps = 0;

36 for (j = n - 1; j > i; j++) {

37 if (a[j] < a[j - 1]) {

38 int tmp;

39 tmp = a[j];

40 a[j] = a[j - 1];

41 a[j - 1] = tmp;

(gdb)

An alternative to using list is simply to keep the program open in an edit window while

you run gdb in a separate window. GDB also provides a mode so that you can monitor

the code and do debugging in a single terminal window; run the gdb command with the

-tui option. Yet another alternative is to use a program like ddd, which provides a GUI

front-end to gdb. For this lab, it may be simpler to stick with plain gdb, which has the

advantage that it will be available on all Linux machines.

Use gdb to find out more information about the state of the program at the point where

it crashed. You can find out about the current state of your program in gdb using

commands like where and print:

(gdb) where // verify where the program was executing when it crashed

... // - gdb gave you a line number above; this will tell you which

function

(gdb) print n // show the value of the parameter 'n'

...

(gdb) print a // show the value of the parameter 'a'

... // - this is the address of the start of the array

(gdb) print *a // show the first element in the array

...

(gdb) print a[0] // show the first element in the array

...

(gdb) print a[2] // show the third element in the array

...

(gdb) print *a@5 // show the first 5 elements in the array

...

(gdb) print a[j] // show the j'th element of the array

...

Keep examining variables until you find something that looks anomalous. You will then

need to find out how it got that way. You could look at the code again and you might spot

the error. If not, continue...

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

One useful way to find out how your program reached its current erroneous state, is to

set a breakpoint on the sort function and observe the behaviour as that function

executes.

(gdb) break sort

...

(gdb) run

... // stops at breakpoint ... start of sort function

(gdb) next

... // execute next statement, then check variable values

(gdb) next

...

If examining the variables at each step doesn't help you to find the problem quickly,

then try adding a breakpoint on line 39 (where the error occurs), and re-running the

program. After it stops each time, check the value of variables. After each stop/check,

you can continue the program with the continue command.

Once you've found the problem, change the code to try to fix it, recompile, and see

whether the program now exhibits the expected behaviour.

Task 2 - Debugging the Set

If you simply compile the testSet program without change, it will behave as follows:

$./testSet

Test 1: Create set

Passed

Test 2: Add to set

Segmentation fault

Note that this program uses assertions to aid debugging. While assertions provide some

information, they may not provide enough to work out what the problem is (e.g. "what is

the value of variable i?").

Now run the program under gdb's control, observe the values of variables when it

crashes, and use this information to determine the causes of the problems.

Note that this program has multiple bugs, so after you fixed one, another will

probably manifest itself when you recompile and test. Repeat the above until testSet

exhibits the expected behaviour.

Once the Set ADT has been implemented correctly, then the testSet program should

produce something like the following:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$./testSet

Test 1: Create set

Passed

Test 2: Add to set

Passed

Test 3: Add duplicates

Passed

Test 4: Add more to set

Passed

Test 5: Print set

2 4 6 7 9

Check manually

Test 6: Free set

Now check for memory errors and leaks using valgrind

Note that even though a program behaves as expected, this does not guarantee that the

code is correct. The code may contain memory errors, which occur when your program

tries to read from or write to a memory location that it shouldn't. The code may also

contain memory leaks, which occur when your program dynamically allocates memory

(using malloc), but doesn't free it once it's no longer needed. Memory errors are more

difficult to debug, as they don't always manifest themselves, so a program with memory

errors may run normally one time, but abnormally the next. They also often lead to

strange behaviour that occurs far away from the source of the actual problem.

Run the program in valgrind to see if the code contains any memory errors or leaks. If

your code does contain memory errors or leaks, you might get output that looks like the

following:

$ valgrind ./testSet

==15336== Memcheck, a memory error detector

==15336== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==15336== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==15336== Command: ./testSet

==15336==

Test 1: Create set

==15336== Invalid write of size 4

==15336== at 0x1098A4: SetNew (Set.c:38)

==15336== by 0x1091BD: main (testSet.c:18)

==15336== Address 0x4a43488 is 0 bytes after a block of size 8 alloc'd

==15336== at 0x48357BF: malloc (vg_replace_malloc.c:299)

==15336== by 0x10985F: SetNew (Set.c:31)

==15336== by 0x1091BD: main (testSet.c:18)

...

...

...

==15336== HEAP SUMMARY:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

==15336== in use at exit: 56 bytes in 3 blocks

==15336== total heap usage: 7 allocs, 4 frees, 1,152 bytes allocated

==15336==

==15336== LEAK SUMMARY:

==15336== definitely lost: 56 bytes in 3 blocks

==15336== indirectly lost: 0 bytes in 0 blocks

==15336== possibly lost: 0 bytes in 0 blocks

==15336== still reachable: 0 bytes in 0 blocks

==15336== suppressed: 0 bytes in 0 blocks

==15336== Rerun with --leak-check=full to see details of leaked memory

==15336==

==15336== For counts of detected and suppressed errors, rerun with: -v

==15336== ERROR SUMMARY: 19 errors from 19 contexts (suppressed: 0 from 0)

Valgrind gives detailed information of memory errors. If your program tried to read from

an invalid memory location, Valgrind will report an invalid read. If your program tried to

write to an invalid memory location, Valgrind will report an invalid write and tell you the

size of the data item that your program wrote. In the above example, Valgrind reported

an 'Invalid write of size 4', which means the program likely tried to write an int to an

invalid memory address (since an int is 4 bytes). Valgrind will also tell you the line on

which the error occurred. For example, (Set.c:38) means Line 38 in Set.c.

From this output, it is up to you to figure out the cause of the error and fix it. Here are

some common causes of memory errors:

Not allocating enough memory - this is common with strings/structs

Trying to access an index beyond the end of an array

Reading and using an uninitialised value

Use after free - this is where you free a block memory and then try to access it

afterwards.

Double free - this is where you free the same block of memory twice.

Valgrind also summarises memory leaks. You can get more detailed information about

memory leaks by using the --leak-check=full option, as the output above suggests.

$ valgrind --leak-check=full ./testSet

...

...

...

==15280==

==15280== HEAP SUMMARY:

==15280== in use at exit: 56 bytes in 3 blocks

==15280== total heap usage: 7 allocs, 4 frees, 1,152 bytes allocated

==15280==

==15280== 8 bytes in 1 blocks are definitely lost in loss record 1 of 3

==15280== at 0x48357BF: malloc (vg_replace_malloc.c:299)

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

==15280== by 0x10985F: SetNew (Set.c:31)

==15280== by 0x1091BD: main (testSet.c:18)

==15280==

==15280== 24 bytes in 1 blocks are definitely lost in loss record 2 of 3

==15280== at 0x48357BF: malloc (vg_replace_malloc.c:299)

==15280== by 0x1099F7: newNode (Set.c:80)

==15280== by 0x109982: doSetAdd (Set.c:68)

==15280== by 0x1099D1: doSetAdd (Set.c:74)

==15280== by 0x1099D1: doSetAdd (Set.c:74)

==15280== by 0x109944: SetAdd (Set.c:61)

==15280== by 0x1095B2: main (testSet.c:66)

==15280==

==15280== 24 bytes in 1 blocks are definitely lost in loss record 3 of 3

==15280== at 0x48357BF: malloc (vg_replace_malloc.c:299)

==15280== by 0x1099F7: newNode (Set.c:80)

==15280== by 0x109982: doSetAdd (Set.c:68)

==15280== by 0x1099A4: doSetAdd (Set.c:72)

==15280== by 0x1099D1: doSetAdd (Set.c:74)

==15280== by 0x109944: SetAdd (Set.c:61)

==15280== by 0x1095C3: main (testSet.c:67)

==15280==

==15280== LEAK SUMMARY:

==15280== definitely lost: 56 bytes in 3 blocks

==15280== indirectly lost: 0 bytes in 0 blocks

==15280== possibly lost: 0 bytes in 0 blocks

==15280== still reachable: 0 bytes in 0 blocks

==15280== suppressed: 0 bytes in 0 blocks

==15280==

==15280== For counts of detected and suppressed errors, rerun with: -v

==15280== ERROR SUMMARY: 22 errors from 22 contexts (suppressed: 0 from 0)

Valgrind will tell you where the memory that was leaked was allocated. From there, you

should be able to figure out why you aren't freeing the memory and where you should be

freeing it.

Once you have fixed all the memory errors and leaks, Valgrind should output something

like the following:

$ valgrind ./testSet

==22805== Memcheck, a memory error detector

==22805== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==22805== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==22805== Command: ./testSet

==22805==

Test 1: Create set

Passed

Test 2: Add to set

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Passed

Test 3: Add duplicates

Passed

Test 4: Add more to set

Passed

Test 5: Print set

2 4 6 7 9

Check manually

Test 6: Free set

Now check for memory errors and leaks using valgrind

==22805==

==22805== HEAP SUMMARY:

==22805== in use at exit: 0 bytes in 0 blocks

==22805== total heap usage: 7 allocs, 7 frees, 1,160 bytes allocated

==22805==

==22805== All heap blocks were freed -- no leaks are possible

==22805==

==22805== For counts of detected and suppressed errors, rerun with: -v

==22805== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Extras

Command-Line Arguments

You can run a program that requires command-line arguments in GDB by including the

command-line arguments in the run command. For example:

$ gdb -q ./args

Reading symbols from ./args...done.

(gdb) run hello world

Starting program: some-long-path-name-ending-in/args

...

args[0] = ./args

args[1] = hello

args[2] = world

(gdb)

IO Redirection

To redirect input and output when running programs in GDB, you can use < and > the

same way as you would when running a program in the shell. For example:

$ gdb -q ./prog

Reading symbols from ./prog...done.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

(gdb) run arg1 arg2 < input.txt > output.txt

Starting program: some-long-path-name-ending-in/prog

...

(gdb)

Frame Switching

In GDB, the where command produces a stack trace of the current state of the program,

with functions numbered starting from 0. Sometimes, you may want to know the value of

an argument, variable or expression in a function other than the currently executing

function (i.e., one of its callers). You can switch to the stack frame of another function on

the stack by using the frame command. For example, the command frame 2 will cause

you to switch to the stack frame of the function numbered 2.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

ADTs and Queues

Objectives

To acquaint you with the queue ADT

To understand the difference between interface and implementation in ADTs

To manipulate a list-based data structure

To manipulate an array-based data structure

To implement core queue operations

Admin

This lab is not marked and there is no submission for it.

Background

At the end of COMP1511, you may have learned about the stack ADT, a last-in first-out

(LIFO) collection of elements. Very closely related is the queue ADT, which is first-in first-

out (FIFO). Since the queue is an important data structure that we'll be using in some

tree and graph algorithms later, it will be useful to have a look at it in more detail.

Queues

You should be reasonably familiar with the concept of a queue in the real world. The way

it works in computing is exactly the same! A queue is a linear data structure, with a front

and a back. Items enter the queue by joining the back of the queue, and items are

removed one at a time from the front of the queue. The operations of adding an item to

the back and removing an item from the front are known as enqueuing and dequeuing

respectively.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

ADTs

A queue is an example of an abstract data type (ADT), which is a data type whose

implementation details are hidden from the user. This means that users of an ADT do not

have access to its internal representation, and thus cannot access or manipulate the

data directly. Instead, users must interact with the ADT through its interface, which

defines the operations that are allowed to be performed on the ADT.

In terms of code, the interface to an ADT is defined in its header (*.h) file, and consists of

a collection of function declarations. The implementation of these functions are

contained in the corresponding *.c file. Only the header file is #included in the main

program, which means that users of the ADT do not have access to the internal

representation of the ADT (i.e., the fields contained in the struct) and do not know how

the functions declared in the header file are implemented.

You can think of an ADT as a box with buttons on the outside corresponding to each of

the operations that can be performed on the ADT. For example, the queue ADT has two

main operations: enqueue and dequeue. If a user enqueues some items, they can expect

that when they dequeue, they will get the items back in the same order, because that is

how a queue is expected to work. The user is not concerned with the mechanism inside

the box (the implementation).

Queue Implementations

A queue can be implemented in several different ways, for example, using a linked list or

using an array. Although each implementation should produce the same queue-like

behaviour, some implementations may be more efficient than others so it is important to

analyse the implementations and choose the right one to use. Here are the different

queue implementations we will explore:

List Queue

In this implementation, the items in the queue are stored in a linked list. To enqueue an

item, the item is added to the end of the list, and to dequeue an item, the item is

removed from the beginning of the list. To enable both operations to be efficient, the

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

queue contains pointers to the first and last nodes in the list. Here are some diagrams

demonstrating the enqueue and dequeue operations on the list queue:

After enqueuing 5:

After dequeuing 3:

Array Queue

In this implementation, the items in the queue are stored in an array. To enqueue an

item, the item is simply placed in the next available slot in the array, and to dequeue an

item, the item at index 0 is removed and the rest of the items are shifted down. Since

the implementation uses an array, the array may become full and if more items need to

be inserted, the array will need to be expanded. Also, since the array will usually not be

full, we will need to keep track of both the number of items (i.e., the size of the queue)

and the size of the array (i.e., the capacity). Here are some diagrams demonstrating the

enqueue and dequeue operations on the array queue:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

After enqueuing 5:

After dequeuing 3:

NOTE:

In these diagrams, when an array index is empty, that simply means that the value at

that index is irrelevant, so it could contain any value.

The following diagrams show the behaviour of the array queue when the queue becomes

full and more items need to be inserted:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

After enqueuing 5:

To make room for the new item, the array is resized to double its original size. Note that

the capacity field is updated to reflect the new size of the array.

Circular Array Queue

This implementation is similar to the array queue, except that when we dequeue, we

don't shift the rest of the items down - we simply leave them and the next index

becomes the front of the queue. If the front of the queue was at the end of the array,

then it circles back to the start of the array (which is where the name circular array

comes from). If enough enqueues and dequeues are performed, the queue may circle

around the array many times. Since the front of the queue is not necessarily at index 0

anymore, another variable is needed to keep track of the index containing the item at

the front of the queue. The following diagrams demonstrate the behaviour of the queue:

NOTE:

Just like with the ArrayQueue, in these diagrams, when an array index is empty, that

simply means that the value at that index is irrelevant, so it could contain any value.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

After enqueuing 5:

After dequeuing 3:

When enough enqueues and dequeues are performed, the back of the queue will wrap

around the end of the array, as shown in the following diagrams:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

After enqueuing 3:

Note that when the array becomes full, we will still need to resize the array if another

item needs to be enqueued. One of the tasks in this lab will involve working out what

needs to be done during a resizing.

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week12/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

Queue.h interface to the Queue ADT

ListQueue.c implementation of the Queue ADT using a linked list

(incomplete)

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/ListQueue.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

ArrayQueue.c implementation of the Queue ADT using an array (complete)

CircularArrayQueue.c implementation of the Queue ADT using a circular array

(incomplete)

testQueue.c tests for the Queue ADT

runQueue.c interactive test program for the Queue ADT

Before you start using these programs, it's worth having a quick look at the code,

especially the Queue ADT interface and its various implementations. If there are any

constructs you don't understand, ask your tutor.

Once you've understood the programs, run the command:

$ make

This will leave these executable files in your working directory (along with some .o files):

testListQueue, testArrayQueue, testCircularArrayQueue
These executables run tests on each of the queue implementations. All of the tests come

from the same source file testQueue.c - you should read this file to see what the tests

do. Currently, only testArrayQueue passes all the tests, as the ListQueue and

CircularArrayQueue implementations are incomplete. Once you've got both of them

working, all programs should produce the following output:

$./testListQueue
Test 1...
Passed!
Test 2...
Passed!
Test 3...
Passed!
Test 4...
Passed!
Test 5...
This is left blank for you to add your own test.

As the output suggests, we recommend you to add your own test to the testQueue5()
function in testQueue.c, as the given tests may not cover all the possible edge cases.

runListQueue, runArrayQueue, runCircularArrayQueue

These executables allow you to test the queue implementations interactively by entering

commands in the terminal. Here is an example run of the program (once you've got the

queue implementations working):

$./runListQueue
Interactive Queue Tester

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/ArrayQueue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/CircularArrayQueue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/testQueue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week12/files/runQueue.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

Enter ? to see the list of commands.
> ?
Commands:
 + <num> enqueue an element
 - dequeue an element
 f get the front element
 s get the queue size
 d call QueueDebugPrint
 ? show this message
 q quit

> + 3
Enqueued 3
> + 1
Enqueued 1
> + 4
Enqueued 4
> s
Queue size is 3
> f
Front element is 3
> -
Dequeued 3
> -
Dequeued 1
> f
Front element is 4
> -
Dequeued 4
> s
Queue size is 0
> q

Task 1

Complete the ListQueue implementation by implementing the enqueuing and dequeuing

functions in ListQueue.c.

To get an idea of how these functions should behave, you can refer to the diagrams

above. You must implement the functions as described above.

Once you think you have got the functions working, recompile and run the tests for

ListQueue:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$ make
...
$./testListQueue

If you get an assertion failed message, that means you didn't pass all the tests, and

you'll need to fix your code. For example, here is one error message you might get:

$./testListQueue
testListQueue: testQueue.c:32: testQueue1: Assertion `QueueSize(q) == 10' failed.
Aborted

This particular message says that the assertion on line 32 of testQueue.c failed, and

hence you should go to line 32 of testQueue.c, see what the test does, and then try to

figure out where your code is going wrong.

Once you pass tests 1 to 4, you can be fairly certain that your ListQueue implementation

works.

NOTE:

The Queue ADT provides a debugging function, QueueDebugPrint, which you can

modify to print any information about the queue that you think would be useful for

debugging. You can then call this in your other functions to help debug. Of course, you

should remove the calls once you have got everything working.

Task 2

Complete the CircularArrayQueue implementation by implementing the enqueuing and

dequeuing functions in CircularArrayQueue.c.

To get an idea of how these functions should behave, you can refer to the diagrams

above. You must implement the functions as described above.

Keep in mind that your enqueuing function must be able to handle the situation where

the array containing the items is full and needs to be expanded. You may implement the

expansion in any way you want, as long as it allows the queue to continue behaving as

expected (i.e., items should always be dequeued in the same order as they were

enqueued). You do not need to reduce the size of the array if the number of items goes

below a certain threshold.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

HINT:

A good rule of thumb is to double the size of the array each time it needs to be

expanded. You may want to look into realloc(3) for expanding the array. (For an

example of how to use realloc, you can look at ArrayQueue.c).

WARNING:

Don't just blindly copy code from ArrayQueue.c, as that code is specific to the array

queue implementation. You should first think about whether the code is appropriate

for the circular array queue.

Once you think that you have got the functions working, recompile and run the tests for

CircularArrayQueue:

$ make
...
$./testCircularArrayQueue

Unlike in the previous task, passing tests 1 to 4 does not guarantee that your

implementation is correct. We strongly recommend that you add at least one more test

to testQueue.c to cover some additional cases, especially those that exercise the array-

resizing part of your implementation.

You may add as many tests or as few tests as you like. You will not be submitting your

tests, and you will not be marked on your tests. However, note that the given tests do

not cover all the cases that your code is expected to handle, so if you choose not to

write any tests, you may not know whether your code handles these cases correctly.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://linux.die.net/man/3/realloc
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Binary Search Trees and Student Records

Objectives

To learn how structs can be stored in binary search trees

To get some practice with binary search trees

To explore a use of function pointers

Admin

This lab is not marked and there is no submission for it.

Background

Comparison Functions

So far, most of the examples you have seen of binary search trees have been of

integers. But binary search trees don't have to contain integers - any data type whose

values can be ordered from smallest to largest can be stored in a binary search tree. For

example, here is an example of a binary search tree that contains strings:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

With integers, the < and > operators (which are available in virtually every programming

language) can be used to easily determine the ordering of values. In higher-level

programming languages (such as Python), the same operators can be used to compare

strings, but in C, string comparison is usually performed using the strcmp function. This

function takes in the two strings to be compared and returns:

a negative integer if the first string is lexicographically (alphabetically) less than the

second string

zero if the two strings are equal (i.e., they contain the exact same sequence of

characters)

a positive integer if the first string is lexicographically greater than the second string

This kind of function that takes in two values of the same data type and "compares"

them by returning a negative, zero or positive integer is typically called a comparison

function or comparator. strcmp, mentioned above, is a comparison function for strings.

In the context of binary search trees, the return value of a comparison function is very

useful, as it determines how we should proceed when inserting into or searching a binary

search tree. Suppose we have a binary search tree of strings. If we call

strcmp(s, n->value), where s is the string being inserted/searched for and n->value is

the string value in the current node, a negative return value indicates that we should go

left (as s is "less than" the string in the current node), a positive return value indicates

that we should go right, and a return value of zero indicates that s is already in the tree.

Here is what a search function for a tree of strings might look like:

bool doTreeSearch(Node n, char *s) {
// not found
if (n == NULL) {

return false;
}

int cmp = strcmp(s, n->value);
if (cmp < 0) {

return doTreeSearch(n->left, s);
} else if (cmp > 0) {

return doTreeSearch(n->right, s);
} else { // (cmp == 0)

return true;
}

}

We can write comparison functions for any data type. We can even write one for

integers, even though integers can already be easily compared with the < and >

operators.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

int compareInts(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else {

return 0;
}

}

Why not just return a - b? Because a - b is susceptible to integer overflow/underflows!

Comparison functions are especially useful when we have defined our own data type (by

defining our own struct), because they allow us to isolate the logic for comparisons

(which could be complex) into a separate function, which improves readability. It also

allows us to take advantage of function pointers if we have defined multiple comparison

functions for the same data type, which we will see later.

A Custom Data Type - The Student Record

Suppose we have defined our own student record data type that consists of a zid and

name. Its definition looks like:

struct record {
int zid; // must be between 1 and 9999999
char name[16]; // must be at most 15 chars in length

};

Suppose we now want to implement a binary search tree of records, ordered on zid, for

efficient searching. How do we define the comparison function for this tree? Firstly, since

the binary search tree is ordered on zid and zids are unique (we'll never have two

students with the same zid), the comparison function will never need to be concerned

with names. Furthermore, since zids are integers, our comparison function should be

similar to a comparison function for integers, except that it takes in records, rather than

integers. Here is one possible implementation, based on the compareInts function

above:

int compareByZid(struct record a, struct record b) {
if (a.zid < b.zid) {

return -1;
} else if (a.zid > b.zid) {

return 1;
} else {

return 0;
}

}

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Since zids are restricted to be between 1 and 9999999, there is no risk of an integer

overflow/underflow, and so we can simplify the function down to the following:

int compareByZid(struct record a, struct record b) {
return a.zid - b.zid;

}

With this comparison function, we can now easily implement the search, insertion and

deletion algorithms for our tree.

We can now search efficiently by zid. But what if we want to be able to search by name?

The first tree won't be able to help us, as it is ordered on zid. We would need another

tree ordered on the name field, which means we need another comparison function!

Think about how you would implement this function. It should have the same interface

as compareByZid:

int compareByName(struct record a, struct record b);

If you thought of this comparison function:

int compareByName(struct record a, struct record b) {
return strcmp(a.name, b.name);

}

You're on the right track, but there is a problem. Zids are unique, so if compareByZid
returns 0, then we know we have found the right record, as there can't be another record

with the same zid. On the other hand, names are not unique, so it is possible for

compareByName to return 0 for two records that have the same name, but different zids.

Suppose we had the following binary search tree, which uses compareByName as its

comparison function:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If we wanted to insert the record of another student named "Tom", our insertion function

(which uses compareByName) would not insert the record, as compareByName would say

that the new record is equivalent to the existing record with the name "Tom".

Thus, any comparison function must use a combination of fields/attributes that is

guaranteed to be unique. compareByZid, which we implemented above, only needs to

use the zid field, as zids are unique. For compareByName, this means also comparing the

records' zids in case the names happened to match. Here is the improved

compareByName:

int compareByName(struct record a, struct record b) {
int cmp = strcmp(a.name, b.name);

// if names are not the same, return the result of strcmp
if (cmp != 0) {

return cmp;

// names are the same, so compare zids
} else {

return compareByZid(a, b);
}

}

Now that we have comparison functions for zid and name, we can implement two binary

search trees - one ordered on zid and another ordered on name.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Since we now have two trees containing the same data, it is important to note that any

operation that modifies one of the trees must be performed on both trees, otherwise

there would be inconsistencies. For example, if a record is inserted into the zid-ordered

tree, it must also be inserted into the name-ordered tree. The same goes for deletion.

Function Pointers

We can now search records efficiently by zid and by name, but let's have a closer look at

the implementation of these trees. Here are the insertion functions:

Node doTreeZidInsert(Node n, struct record
r) {

if (n == NULL) {
return newNode(r);

}

int cmp = compareByZid(r, n->value);
if (cmp < 0) {

n->left = doTreeZidInsert(n->left,
r);

} else if (cmp > 0) {
n->right = doTreeZidInsert(n->right,

r);
}
return n;

}

Node doTreeNameInsert(Node n, struct record
r) {

if (n == NULL) {
return newNode(r);

}

int cmp = compareByName(r, n->value);
if (cmp < 0) {

n->left = doTreeNameInsert(n->left,
r);

} else if (cmp > 0) {
n->right = doTreeNameInsert(n-

>right, r);
}
return n;

}

Can you see a problem with the above code? If you guessed code duplication, you'd be

right! Other than the comparison function used, these functions are virtually identical.

This problem only becomes worse when we consider that we also need functions for

search and deletion.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

This is where function pointers come in! Instead of hard-coding calls to the various

comparison functions (which would require multiple tree implementations and lots of

code duplication), we can let the user decide what comparison function to use by

passing in a pointer to the function when they create the tree. To create a tree ordered

on zid, the user can pass in a pointer to compareByZid, and to create a tree ordered on

name, the user can pass in a pointer to compareByName.

In this new implementation, each tree struct now contains a pointer to the root node, as

well as a pointer to the comparison function that should be used in that tree.

// the tree struct
struct tree {

Node root;
int (*compare)(struct record, struct record);

};

Tree TreeNew(int (*compare)(struct record, struct record)) {
Tree t = malloc(sizeof(*t));
// malloc error checking here

t->root = NULL;
t->compare = compare;
return t;

}

Now that each tree has a configurable comparison function, both of our trees can use

the same tree implementation. Here is the new insertion function. Take notice of how the

comparison function is called.

Node doTreeInsert(Tree t, Node n, struct record r) {
if (n == NULL) {

return newNode(r);
}

int cmp = t->compare(r, n->value);
if (cmp < 0) {

n->left = doTreeInsert(t, n->left, r);
} else if (cmp > 0) {

n->right = doTreeInsert(t, n->right, r);
}
return n;

}

Saving Space

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Above, we assumed that each tree node contains a record struct. This means if we

create multiple search trees (ordered on different fields or attributes), there will be

multiple copies of each record, which will consume a lot of space.

To save space, we can let each tree node store a pointer to a record rather than the full

record itself. That way, only one copy of each record needs to exist.

Setting Up

Create a directory for this lab, change into it, and run the following command:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$ unzip /web/cs2521/23T2/labs/week13/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

runDb.c a program that provides a command-line interface to the StudentDb ADT

runTest.c a program that produces output for a few tests

List.c implementation of the List ADT (complete)

List.h interface to the List ADT

Record.c implementation of the Record ADT (complete)

Record.h interface to the Record ADT

StudentDb.c implementation of the StudentDb ADT (incomplete)

StudentDb.h interface to the StudentDb ADT

Tree.c implementation of the Tree ADT (incomplete)

Tree.h interface to the Tree ADT

tests/ a sub-directory containing expected output for some tests

Once you've got these files, the first thing to do is to run the command

$ make

This will compile the initial version of the files, and produce two executables: ./runDb
and ./runTest.

File Walkthrough

runDb.c
runDb.c provides a command-line interface to the StudentDb ADT. It creates a

StudentDb object, and then accepts commands to interact with it, including inserting

student records into the database, searching for records, and deleting records. Here is an

example session with the program:

$./runDb
StudentDB v1.0
Enter ? to see the list of commands.
> ?
Commands:
 + <zid> <family name> <given name> add a student record

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/runDb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/runTest.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/List.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/List.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/Record.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/Record.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/StudentDb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/StudentDb.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/Tree.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/Tree.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week13/files/tests/
https://www.cse.unsw.edu.au/~cs2521/23T2/

 lz list all records in order of zid
 ln list all records in order of name
 d <zid> delete a student record
 fz <zid> find a student record by zid
 fn <family name> <given name> find student records by name
 ? show this message
 q quit

> + 1 Stark Tony
Successfully inserted record!
> + 2 Banner Bruce
Successfully inserted record!
> + 6 Rogers Steve
Successfully inserted record!
> + 4 Pym Hank
Successfully inserted record!
> + 3 Romanoff Natasha
Successfully inserted record!
> lz
1|Stark|Tony
2|Banner|Bruce
3|Romanoff|Natasha
4|Pym|Hank
6|Rogers|Steve
> ln
> fz 1
Found a record:
1|Stark|Tony
> fz 3
Found a record:
3|Romanoff|Natasha
> fn Rogers Steve
No records found
> d 1
Successfully deleted record!
> lz
2|Banner|Bruce
3|Romanoff|Natasha
4|Pym|Hank
6|Rogers|Steve
> fz 1
No records with zid '1'
> q
$

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Note that the program doesn't correctly perform operations involving names. We will add

code to fix this later.

StudentDb.c
StudentDb.c implements the StudentDb ADT, which handles student records. A user can

attempt to insert a student record by calling the DbInsert() function, and the StudentDb

ADT will insert the record if there is not already a record with the same zid. The

StudentDb ADT also provides other useful operations, such as deleting a record with a

given zid, finding a record with a given zid or name, and listing all the records in order of

zid or name.

You should have a read of the functions in StudentDb.c to understand how they use the

Tree and Record ADTs. Note that at the moment, only the operations involving insertion

and zid work.

Tree.c
Tree.c implements the Tree ADT, which is used to enable efficient searching of records.

Notice that the TreeNew function (which creates a new tree) takes in a function pointer to

a comparison function which determines how the records should be ordered. You should

read the DbNew function in StudentDb.c to see how it passes the comparison functions to

TreeNew. You should also have a quick read of the search, insertion and deletion

algorithms in Tree.c to see how they access and call the comparison function.

List.c
List.c implements the List ADT, which is used to create a list of records. Note that the

list has no sorting capabilities, so if you want the records to be ordered in a particular

way, you must ensure they are appended in that order.

Record.c
Record.c implements the Record ADT. You should read the definition of struct record to

see what a student record consists of, but since this is an ADT, you won't be able to

access the fields directly - you'll need to use the RecordGetXYZ functions listed in

Record.h to access them. This ADT is fully implemented, so you do not need to modify it.

Header files

StudentDb, Tree, List and Record are ADTs, and their associated header files contain

extensive descriptions of their interface functions. If you are unsure about what a certain

ADT function does or is supposed to do, you should read its description in the relevant

header file.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Additional Notes

Dummy Records

If you have read through the functions in StudentDb.c, you would have noticed the use

of so-called "dummy records" in DbFindByZid and DbDeleteByZid. What are they and

why do we need them?

Suppose that the StudentDb contains a number of records and we want to find a record

with a given zid. We should search the tree that is ordered on zid, but TreeSearch takes

in a record, not a zid. So what should we pass into TreeSearch?

That is where the dummy record comes in! Because the comparison function used by the

zid-ordered tree only inspects the zid of each record (see compareByZid), two records

that have the same zid will be considered equal, no matter what names they contain.

Hence, we can create a dummy record that contains the zid we are searching for, along

with some dummy names (an empty string is fine), and pass this into TreeSearch. If the

tree does contain a record with that zid, it will consider this record as being equal to the

dummy record, and return the real record.

This is why it is important that compareByZid only compares the zids of the records, and

not any other fields. If compareByZid also compared the names of the records, this

wouldn't work.

Task 1

Implement the compareByName() comparison function in StudentDb.c. The function

should compare the two given records by name (family name first, then given name) and

then by zid if the names are equal. Name comparison should be case-sensitive, which

means you should use strcmp.

When you think you're done, run the following command to test your code:

$./runTest 1

This command runs some tests for the compareByName function and prints the results to

stdout. You should compare the results to the expected output in tests/1.exp.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Once your program is producing the correct output for compareByName, modify the DbNew
function in StudentDb.c so that the db->byName tree actually uses the new comparison

function.

Task 2

First, make sure you have modified the DbNew function in StudentDb.c so that the

db->byName tree uses the new comparison function.

Now implement the TreeSearchBetween() function in Tree.c. This function should

search the tree for all records that are considered (by the tree's comparison function) to

be between the records lower and upper (inclusive), and return them all in a list in order.

In order for the search to be as efficient as possible, the function should visit as few

nodes as possible.

When you think you're done, run the following command to test your code:

$./runTest 2

This command runs some tests for the TreeSearchBetween function and prints the results

to stdout. You should compare the results to the expected output in tests/2.exp.

HINT:

We have provided a stub helper function, doTreeSearchBetween(), to help you get

started. It is recommended that you implement and use this function, but you can

write your own helper function if you want. If you want to use the function, you should

uncomment it and also uncomment the function prototype at the top of the file.

NOTE:

What does "visit as few nodes as possible" mean? Essentially, it means that you

shouldn't visit nodes unnecessarily. A basic in-order traversal that adds the requested

records to the list would be extremely easy to implement, but also very inefficient, as

it would need to visit all nodes in the tree.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 3

Implement the DbFindByName() function in StudentDb.c. This function should find all the

records that have the same family name and given name as the provided family name

and given name, and return them in a list in increasing order of zid.

Also implement the DbListByName() function in StudentDb.c. This function should

display all the records in the database in order of name (family name first). It should

print the records in the same format as the format produced by the list-by-zid command,

for example:

2|Banner|Bruce
4|Pym|Hank
6|Rogers|Steve
3|Romanoff|Natasha
1|Stark|Tony

HINT:

Use the TreeSearchBetween function that you implemented in Task 2. If you're trying

to use TreeSearchBetween but you are unsure about what lower and upper should be,

think about how you could use dummy records to extract just the range of records

that you need (see the Additional Notes section above).

Once you are done, recompile the runDb program with the make command and run it. Use

commands to insert records, search for records (by zid and by name), and list records

(by zid and by name). Does your DbFindByName function work when there are multiple

records with the same name? Do the records get returned in the correct order (i.e., in

increasing order of zid)? What if there are no records with the given name? Test

thoroughly.

NOTE:

It is possible to speed up testing by entering your commands into a file and making

the runDb program read in commands from the file. Here's an example command file

that tests a very simple case:

+ 1 Stark Tony
fn Stark Tony

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Suppose the file is called commands.txt. Then, the following command will run the

runDb program using the commands from the file and echo the commands to the

terminal to make it easy to see which operations are being performed.

$./runDb -e < commands.txt

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Graphs and Social Networks

(Adjacency Matrix)

Objectives

To explore an application of graphs

To get some practice with graph problems

To perform complexity analysis on graph algorithms

To implement some basic features of social networks

Admin

This lab is not marked and there is no submission for it.

Background

In lectures, we learned that a graph is a collection of vertices and edges between them.

This very abstract definition allows for many real-world scenarios and systems to be

modelled by graphs - for example, maps, social networks, and the web. In this lab, we

will explore an application of graphs in a simple social network app called Friendbook.

Friendbook

Friendbook is a very simple social network app with the following features:

People can sign up with their name. For simplicity, people are identified by their

names, so two people cannot have the same name.

People can friend other people (i.e., add them as friends). Friending goes both ways,

so if you add someone as a friend, you become their friend as well.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

People can unfriend their friends (i.e., remove them from their friends list). This also

goes both ways.

People can see a count of how many friends they have.

People can see a list of their friends.

People can see a list of the mutual friends that they share with someone else.

People can receive friend recommendations. Friendbook has two different methods of

generating recommendations:

1. The first method only recommends friends of friends, and ranks friend

recommendations in order of the number of mutual friends, so people who you

share more mutual friends with will be recommended first.

2. The second method recommends friends of friends first, and then friends of friends

of friends next, and then friends of friends of friends of friends, and so on. Anyone

who can be reached by following friendship links can be recommended.

Names as Vertices

All of the graph implementations we have seen so far have used integer vertices

numbered from to , where is the number of vertices. This is convenient, as

vertex numbers can double as indices into the adjacency matrix or adjacency list. But in

Friendbook, the vertices are people (names), so how do we represent this internally?

It turns out we don't need to do that much more work. If we give each person an integer

ID between and and store a mapping between names and IDs, then we can

continue to use the graph representations that we are familiar with. A simple way to

implement this mapping would be to store all the names in an array, and let the ID of

each person be the index containing their name in the array. The first person in the array

would have an ID of , the second person in the array would have an ID of , and so on.

If we wanted to answer a question involving one or more people, we can scan this array

to determine their ID, and then use this ID to query the matrix/list. For example, suppose

this is our internal representation:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Now suppose we wanted to find out if Harry and Draco are friends. First, we need to find

the vertex numbers associated with Harry and Draco, so we perform a linear scan of the

array of names (called labels), and find that Harry is associated with a vertex number of

, and Draco is associated with a vertex number of . Entry of the adjacency

matrix contains a , so we can conclude that Harry and Draco are not friends.

Unfortunately, this translation between names and vertex numbers adds quite a bit of

overhead to our graph operations. Converting from vertex numbers to names is easy, as

we can go straight to the relevant index in the array (), but converting from names

to vertex numbers requires a linear scan of the array, which is . So what was once

an operation (checking if an edge exists) is now an operation. We can improve

the efficiency of the name to vertex number conversion by using a data structure that

allows for efficient searching, such as a binary search tree.

Setting Up

Create a directory for this lab, change into it, and run the following command:

$ unzip /web/cs2521/23T2/labs/week14/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/downloads/files.zip
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Makefile
https://www.cse.unsw.edu.au/~cs2521/23T2/

Fb.c an incomplete implementation of the Friendbook ADT

Fb.h the interface for the Friendbook ADT

List.c a complete implementation of the List ADT

List.h the interface for the List ADT

Map.c a complete implementation of the Map ADT

Map.h the interface for the Map ADT

Queue.c a complete implementation of the Queue ADT

Queue.h the interface for the Queue ADT

runFb.c a program that provides a command-line interface to the Friendbook ADT

analysis.txt a template for you to fill in your answers for Task 4

Once you've got these files, the first thing to do is to run the command

$ make

This will compile the initial version of the files, and produce the ./runFb executable.

File Walkthrough

runFb.c
runFb.c provides a command-line interface to the Friendbook ADT. It creates a

Friendbook instance, and then accepts commands to interact with it. Here is an example

session with the program:

$./runFb
Friendbook v1.0
Enter ? to see the list of commands.
> ?
Commands:
 + <name> add a new person
 l list the names of all people
 f <name1> <name2> friend two people
 u <name1> <name2> unfriend two people
 s <name1> <name2> get the friendship status of two people
 n <name> get the number of friends a person has
 m <name1> <name2> list all mutual friends of two people
 r <name> get friend recommendations for a person based on mutual friends
 R <name> get friend recommendations for a person based on friendship
closeness
 ? show this message
 q quit

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Fb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Fb.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/List.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/List.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Map.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Map.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Queue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/runFb.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week14/files/analysis.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

> + Harry
Harry was successfully added to Friendbook!
> + Ron
Ron was successfully added to Friendbook!
> + Hermione
Hermione was successfully added to Friendbook!
> f Harry Ron
Successfully friended Harry and Ron!
> f Ron Hermione
Successfully friended Ron and Hermione!
> s Harry Ron
Harry and Ron are friends.
> u Harry Ron
Could not unfriend Harry and Ron - they are not friends.
> s Harry Ron
Harry and Ron are friends.
> s Harry Hermione
Harry and Hermione are not friends.
> m Harry Hermione
Harry and Hermione's mutual friends:

> r Harry
> R Harry
> q
$

Note that the program currently does not correctly unfriend people. It also does not

compute mutual friends or generate friend recommendations. In the above example, Ron

should be a mutual friend of Harry and Hermione, and Harry should receive Hermione as

a friend recommendation. Your task will be to implement these operations.

Fb.c
Fb.c implements the Friendbook ADT. Most of the functions are complete, however, it

would be helpful to read through these functions to get a good idea of how they

manipulate and obtain information from the graph representation, how they create and

return lists of names, and how they convert people's names to vertex numbers. You

should also read the definition of struct fb and make sure you understand the purpose

of each field.

List.h
List.h defines the interface to the List ADT. Some operations require a list of names to

be returned to the user, and the List ADT is used for this purpose. To see how to create a

list and add names to the list, you should read some of the already-completed functions

in the Friendbook ADT.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Map.h
Map.h defines the interface to the Map ADT, which is used to map people's names to IDs.

An important thing to note is that the Map ADT is not strictly necessary - it is only used

for efficiency reasons. If we didn't have access to the Map ADT and wanted to know the

ID of a particular person, we could simply scan the names array until we found the index

containing that person's name, and their ID would be that index.

Queue.h
Queue.h defines the interface to the Queue ADT. The Queue ADT is currently not used.

Task 1

Implement the FbUnfriend() function in Fb.c, which takes the names of two people, and

unfriends them if they are friends. The function should return true if the people were

friends and were successfully unfriended, and false if the two people were not friends (so

they could not be unfriended).

When you think you are done, use the make command to recompile the runFb program

and then run it to test your code.

Task 2

Implement the FbMutualFriends() function in Fb.c, which takes the names of two

people, and returns a list of all their mutual friends. A person is a mutual friend of two

people if that person is friends with both of those people. To illustrate this, here is an

example:

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

In the example, Harry and Hermione have three mutual friends: Neville, Ron and Luna.

Draco and Vincent have one mutual friend: Gregory. Harry and Draco have no mutual

friends.

HINT:

To find out how to create a list and add names to it, see the comments in List.h, or

read one of the existing functions in Fb.c that use the List ADT.

WARNING:

You are forbidden from using the list iterator functions (the functions whose names

start with ListIt). These functions are meant to be used by runFb.c only.

When you think you are done, use the make command to recompile the runFb program

and then develop some scenarios to test your code. You can even use the example from

above.

NOTE:

It is possible to speed up testing by entering your commands into a file and making

the runFb program read in commands from the file. Here's an example command file

that tests a very simple case:

+ Harry
+ Ron
+ Hermione
f Harry Ron
f Ron Hermione

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

m Harry Hermione

Suppose the file is called mutual-friends-1.txt. Then, the following command will

run the runFb program using the commands from the file and echo the commands to

the terminal to make it easy to see which operations are being performed.

$./runFb -e < mutual-friends-1.txt

If you've implemented the function correctly, you should get Ron as the only mutual

friend of Harry and Hermione. However, this is a very simple case - you should add

more people and friendships to test other cases.

NOTE:

In this task and the next, ensure that you don't introduce memory leaks into the

program by freeing data structures that you create once they are no longer needed.

For example, if you malloc a temporary array or create a temporary list in your

function that is no longer needed after the function returns, you should free it. You can

use the valgrind command to check for memory leaks:

$ valgrind -q --leak-check=full ./runFb -e < mutual-friends-1.txt
...

If the program contains memory leaks, valgrind will report an error after the program

exits. You can find out more about valgrind and memory leaks in the debugging lab.

Task 3

Implement the FbFriendRecs1() function in Fb.c, which takes the name of a person and

generates and prints friend recommendations for them. This function should only

recommend people who are friends of friends of the person. In other words, it should

only recommend people who share at least one mutual friend with the person.

Obviously, it should not recommend someone who is already the person's friend.

The recommendations should be printed in descending order on the number of mutual

friends shared, since someone with more mutual friends is more likely to be known by

the person, and is therefore more likely to be added as a friend. If two people share the

same number of mutual friends, they may be printed in any order. The number of mutual

friends should also be displayed next to each recommendation.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

For example, consider the following scenario:

If FbFriendRecs1() is called with the name "Harry", the function should produce the

following output:

Harry's friend recommendations
Neville 3 mutual friends
Lavender 2 mutual friends
Draco 1 mutual friends

Explanation: Neville should be recommended first as he shares three mutual friends

with Harry: Luna, Ron and Hermione. Lavender should be recommended next as she

shares two mutual friends with Harry: Ron and Hermione. Draco should be recommended

last as he shares just one mutual friend with Harry: Hermione. (Note: There is no typo on

the last line - it is left as "friends" for simplicity's sake.)

When you think you are done, use the make command to recompile the runFb program

and then develop some scenarios to test your code. You can even use the example from

above.

NOTE:

To ensure that your output matches the expected output format, use the following

printf format: "\t%-20s%4d mutual friends\n"

HINT:

If you're unsure about how to print the recommendations in sorted order, consider the

following: Given that there are people, what is the largest number of mutual friends

two people could have? What is the smallest number of mutual friends two people

could have? Finally, if you know how many mutual friends each person has, how can

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

you force them to be printed in the right order? Note that your solution does not need

to be efficient.

Task 4

Congratulations on completing the above functions! Now, it's time to do some

complexity analysis.

Open analysis.txt. This file contains three sections - one for each of the functions you

implemented. You need to determine the worst case time complexities of each of these

functions and enter them in the file under the corresponding section, along with an

explanation of your answer.

Important: The Map ADT uses an inefficient binary search tree implementation, but you

should assume that it uses an AVL tree for complexity analysis.

HINT:

If you used any functions from the List, Map or Queue ADTs, either directly or

indirectly (i.e., via a helper function), the time complexities of these functions will

affect the time complexity of your solution. You should consult the header files of

these ADTs to find out these time complexities.

Optional Task

NOTE:

This task is optional. It is not worth any marks.

Implement the FbFriendRecs2() function in Fb.c, which takes the name of a person and

generates and prints friend recommendations for them. Unlike FbFriendRecs1, this

function can recommend all people who are reachable from the person via friendship

links (not just people who share a mutual friend), and should recommend people who are

"closer" to the person first. In other words, friends of friends of the person should be

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

recommended first, then friends of friends of friends, and so on. Obviously, it should not

recommend someone who is already the person's friend. If multiple people are the same

"distance" from the person, they can be recommended in any order.

Limit the number of recommendations to 20 to avoid generating too many

recommendations.

This recommendation method only needs to list people's names - no additional

information is required.

For example, consider the same scenario as in Part 2:

If FbFriendRecs2() was called with the name "Luna", the following is one possible valid

output:

Luna's friend recommendations
Ron
Hermione
Draco
Lavender
Vincent
Gregory

Explanation: Ron and Hermione are the closest people to Luna who are not also her

friends, so they are recommended first. The example output recommends Ron first and

then Hermione, but it would be equally valid to recommend Hermione first and then Ron.

Draco and Lavender are the next furthest away, so they are recommended next. It would

be valid to recommend Lavender before Draco. Vincent and Gregory are the next

furthest away, so they are printed next. Once again, it would be valid to recommend

Gregory before Vincent.

When you think you are done, use the make command to recompile the runFb program

and then develop some scenarios to test your code.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

HINT:

You will need to use a graph traversal algorithm to complete this task. But which one?

You can review the graph traversal algorithms here, and then follow the pseudocode

of your chosen algorithm.

HINT:

Use the following printf format: "\t%s\n"

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

http://www.cse.unsw.edu.au/~cs2521/20T2/lecs/graph-traversal/slides.html
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Directed Graphs and Web Crawlers

Objectives

To implement a web crawler

To see how directed graphs might be used with real-world data

Admin

This lab is not marked and there is no submission for it.

Background

We can view the World Wide Web as a massive directed graph, where pages (identified by URLs)

are the vertices and hyperlinks are the directed edges. Unlike the graphs we have studied in

lectures, there is not a single central representation (e.g. adjacency matrix) for all the edges in

the graph of the web; such a data structure would clearly be way too large to store. Instead, the

"edges" are embedded in the "vertices". Despite the unusual representation, the Web is clearly a

graph, so the aim of this lab exercise is to build an in-memory graph structure for a very, very

small subset of the Web.

Web crawlers are programs that navigate the Web automatically, moving from page to page,

processing each page they visit. Crawlers typically use a standard graph traversal algorithm to:

maintain a list of pages to visit (a ToDo list)

"visit" the next page by grabbing its HTML content

scan the HTML to extract whatever features they are interested in

collect hyperlinks from the visited page, and add these to the ToDo list

repeat the above steps (until there are no more pages to visit :-)

You need to implement such a crawler, using a collection of supplied ADTs and a partially

complete main program. Your crawler processes each page by finding any hyperlinks and

inserting the implied edges into a directed Graph ADT based on an adjacency matrix. One

difference between this Graph ADT and the ones we have looked at in lectures is that you

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

dynamically add information about vertices, as well as edges. The following diagram shows what

an instance of the Graph ADT might look like:

The Graph data structure allows for maxV vertices (URLs), where maxV is supplied when graph is

created. Initially, there are no vertices or edges, but as the crawler examines the web, it adds the

URLs of any pages that it visits and records the hyperlinks between them. This diagram shows

what a web crawler might have discovered had it started crawling from the URL

http://x.com/index.html, and so far examined four web pages.

If we number the four pages from 0..3, with

page (vertex) 0 being http://x.com/index.html
page (vertex) 1 being http://x.com/category/index.html
page (vertex) 2 being http://x.com/products.html
page (vertex) 3 being http://x.com/products/abc.html

The vertices array holds the actual URL strings and also, effectively, provides the mapping

between URLs and vertex numbers. The edges array is a standard adjacency matrix. The top row

tells us that page 0 has hyperlinks to pages 1 and 2. The second row tells us that page 1 has a

hyperlink back to page 0. The third row similarly shows a hyperlink from page 2 back to page 0,

but also a hyperlink to page 3.

Setting Up

Set up a directory for this lab, change into that directory, and run the following command:

$ unzip /web/cs2521/23T2/labs/week15/downloads/files.zip

If you're working at home, download files.zip by clicking on the above link and then run the

unzip command on the downloaded file.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/downloads/files.zip
https://www.cse.unsw.edu.au/~cs2521/23T2/

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

crawl.c a main program that implements a web crawler (incomplete)

url_file.h, url_file.c provides a file-like interface to webpages

html.h, html.c provides functions for extracting URLs from HTML

Graph.h, Graph.c a Graph ADT interface and implementation

Queue.h, Queue.c a Queue ADT interface and implementation

Stack.h, Stack.c a Stack ADT interface and implementation

Set.h, Set.c a Set ADT interface and implementation

The only file you need to modify is crawl.c, but you need to understand at least the interfaces to

the functions in the various ADTs. This is described in comments in the .h files. You can also see

examples of using the ADT functions in the t?.c files. Note that there's no test file for the HTML

parsing and URL-extracting code, because the supplied version of crawl.c effectively provides

this.

Note that HTML parsing code was borrowed from Dartmouth College. If you looks at the code, it

has quite a different style to the rest of the code. This provides an interesting comparison with

our code.

The crawl program is used as follows:

$./crawl StartingURL MaxURLsInGraph

The StartingURL tells you which URL to start the crawl from, and should be of the form

http://x.y.z/. The crawler uses this URL as both the starting point and uses a normalised

version as the base against which to interpret other URLs.

The MaxURLsInGraph specifies the maximum number of URLs that can be stored in the Graph.

Once this many URLs have been scanned, the crawling will stop, or will stop earlier if there are no

more URLs left in the ToDo list.

If you compile then run the supplied crawler on the UNSW handbook, you would see something

like:

$./crawl http://www.handbook.unsw.edu.au/2017/ 100
Found: 'http://www.unsw.edu.au'
Found: 'https://my.unsw.edu.au/'
Found: 'https://student.unsw.edu.au/'
Found: 'http://www.futurestudents.unsw.edu.au/'
Found: 'http://timetable.unsw.edu.au/'
Found: 'https://student.unsw.edu.au/node/62'
Found: 'http://www.library.unsw.edu.au/'
Found: 'http://www.handbook.unsw.edu.au/2017/'
Found: 'http://www.unsw.edu.au/faculties'
Found: 'https://student.unsw.edu.au/node/4431'
Found: 'https://student.unsw.edu.au/node/128'

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/crawl.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/url_file.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/url_file.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/html.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/html.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Graph.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Graph.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Queue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Stack.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Stack.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Set.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week15/files/Set.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

Found: 'http://www.unsw.edu.au/contacts'
Found: 'http://www.handbook.unsw.edu.au/general/current/SSAPO/previousEditions.html'
Found: 'http://www.handbook.unsw.edu.au/undergraduate/2017/'
Found: 'http://www.handbook.unsw.edu.au/postgraduate/2017/'
Found: 'http://www.handbook.unsw.edu.au/research/2017/'
Found: 'http://www.handbook.unsw.edu.au/nonaward/2017/'
Found: 'http://www.unsw.edu.au/future-students/domestic-undergraduate'
Found: 'http://www.unsw.edu.au/future-students/postgraduate-coursework'
Found: 'http://research.unsw.edu.au/future-students'
Found: 'http://www.international.unsw.edu.au/#1'
Found: 'https://student.unsw.edu.au/node/1334'
Found: 'https://moodle.telt.unsw.edu.au/login/index.php'
Found: 'https://student.unsw.edu.au/node/943'
Found: 'https://apply.unsw.edu.au/'
Found: 'https://student.unsw.edu.au/node/5450'
Found: 'http://cgi.cse.unsw.edu.au/~nss/feest/'
Found: 'http://www.unsw.edu.au/privacy'
Found: 'http://www.unsw.edu.au/copyright-disclaimer'
Found: 'http://www.unsw.edu.au/accessibility'

The supplied crawler simply scans the URL given on the command line, prints out any URLs that it

finds, and then stops. It does not attempt to traverse any further than the supplied page. The

second command-line argument, which limits the size of the Graph, is effectively ignored here,

since the supplied code does not build a Graph; you need to add the code to do this.

If you run the supplied "crawler" on http://www.cse.unsw.edu.au, you don't get very much,

because the CSE website recently moved under the Engineering Faculty system and the above

URL is just a redirection page to the new site. Copying/pasting the redirection URL gives you more

interesting results. Before you go running the "crawler" on other websites ... DON'T! See the

comments below.

HTML is a language which is difficult to parse given the way it is frequently used, and the

GetNextURL() make some approximations which, while they wouldn't be acceptable in a real Web

crawler, are OK for this lab.

Exercise

Your task is to modify crawl.c so that it follows any URLs it finds and builds a Graph of the small

region of the Web that it traverses before bumping in to the MaxURLsInGraph limit.

Important: running crawlers outside the UNSW domain is problematic. Running crawlers that

make very frequent URL requests is problematic. So...

DO NOT run your crawler on any website outside UNSW

YOU MUST include a delay (sleep(1)) between each URL access

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

If you don't do the above, there's a chance that angry sites that are being hammered by your

crawler will block UNSW from future access to those sites. Breaches of the above will result in

disciplinary action.

Your crawler can do either a breadth-first or depth-first search, and should follow roughly the

graph traversal strategy described in lectures and tutes:

add firstURL to the ToDo list
initialise Graph to hold up to maxURLs
initialise set of Seen URLs
while (ToDo list not empty and Graph not filled) {

grab Next URL from ToDo list
if (not allowed) continue
foreach line in the opened URL {

foreach URL on that line {
if (Graph not filled or both URLs in Graph)

add an edge from Next to this URL
if (this URL not Seen already) {

add it to the Seen set
add it to the ToDo list

}
}

}
close the opened URL
sleep(1)

}

This does not give all the details. You need to work them out yourself, based on the supplied ADT

functions and your understanding of generic graph traversal. If you use a Stack for the ToDo list,

your crawler will end up doing a depth-first search. If you use a Queue for the ToDo list, your

crawler will end up doing a breadth-first search.

A couple more things to note:

(not allowed) refers to not using URLs outside UNSW

the ToDo list is a Stack or Queue rather than a List

if you don't include the sleep(1) you will smash whatever web server you access

If you test the crawler out on www.cse.unsw.edu.au, you don't get particularly interesting results,

because you'll build a large adjacency matrix, most of which is empty, before you bump into

MaxURLsInGraph. To assist in doing some feasible crawling and getting some more interesting

output, I have set up a tiny set of self-contained web pages that you can crawl, starting from:

$./crawl https://cgi.cse.unsw.edu.au/~cs2521/mini-web/ 30

You should use GraphShow() to check whether you are building a plausible Graph. Note that

GraphShow() has two modes:

GraphShow(g, 0) shows the URL for each vertex, followed by an indented list of connected

vertices

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

GraphShow(g, 1) shows just the adjacency matrix in a very compact form; it does not show the

stored URLs

Challenges

There are several aspects of the crawler that you could look to improve:

The existing crawler grabs all sorts of URLs that do not represent Web pages. Modify the code

so that it filters out non-HTML output.

The supplied GetNextURL() function does a reasonable job on finding URLs, but doesn't handle

relative URLs. Find online or write your own, or modify the existing code, to make a new

GetNextURL() that handles a wider range of URLs.

Modify GraphShow() so that it can (also) produce output (JSON) that could be fed into a graph

drawing tool such as sigmajs, to produce beautiful graph diagrams.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://sigmajs.org/
https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Weighted Graphs and Geo Data

Objectives

To implement a variant of path finding in a weighted graph

To see how graphs might be used with real-world data

Admin

This lab is not marked and there is no submission for it.

Background

Geographic data is widely available, thanks to sites such as GeoNames. For this lab, we

have downloaded data files from the City Distance Dataset by John Burkardt from the

Department of Scientific Computing at Florida State University. The dataset that we will

use contains information about distances between 30 prominent cities/locations around

the world. These are great-circle distances; we'll assume that these are the distances

that an aircraft would fly between two cities. The data that we have forms a complete

graph in that there is a distance recorded for every pair of cities.

The following diagram shows a subset of the data from the City Distance Dataset.

COMP2521 23T2

http://www.geonames.org/
http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
https://www.cse.unsw.edu.au/~cs2521/23T2/

Map from "BlankMap-World-v2" by original uploader: Roke

Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons

The data comes in two files:

ha30_dist.txt
This file contains a matrix of distances between cities. This is essentially the adjacency

matrix for a weighted graph where the vertices are cities and the edge weights

correspond to distances between cities. As you would expect for an adjacency matrix,

the leading diagonal contains all zeroes (in this case, corresponding to the fact that a

city has a distance of zero from itself).

ha30_name.txt
This file contains one city name per line. If we number the lines starting from zero, then

the line number corresponds to the vertex number for the city on that line. For example,

the Azores is on line 0, so vertex 0 corresponds to the Azores, and the first line in the

distance file gives distances from the Azores to the other 29 cities. The last line (line 29)

tells us that Tokyo is vertex 29, and the last line in the distance files gives distances

between Tokyo and all other cities.

Setting Up

Set up a directory for this lab, change into that directory, and run the following

command:

$ unzip /web/cs2521/23T2/labs/week16/downloads/files.zip

COMP2521 23T2

http://commons.wikimedia.org/wiki/File:BlankMap-World-v2.png#mediaviewer/File:BlankMap-World-v2.png
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/downloads/files.zip
https://www.cse.unsw.edu.au/~cs2521/23T2/

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

travel.c main program to load and manipulate the graph

Graph.h the interface for the Graph ADT

Graph.c an incomplete implementation of the Graph ADT

Queue.h the interface for the Queue ADT

Queue.c a complete implementation of the Queue ADT

ha30_name.txt the city name file described above

ha30_dist.txt the distance matrix file described above

The Makefile produces a file called travel based on the main program in travel.c and

the functions in Graph.c. The travel program takes either zero or two command line

arguments:

$./travel
... displays the entire graph ...
... produces lots of output, so either redirect to a file or use less ...
$./travel from-city to-city
... display a route to fly between specified cities ...

If given zero arguments, it simply displays the graph. If given two arguments, it treats

the first city as a starting point and the second city as a destination, and determines a

route between the two cities, based on "hops" between cities with direct flights.

Read the main() function so that you understand how it works, and, in particular, how it

invokes the functions that you need to implement.

The Graph ADT in this week's lab has a GraphRep data structure that is a standard

adjacency matrix representation of the kind we looked at in lectures. However, some

aspects of it are different to the GraphRep from lectures.

Note that city names are not stored as part of the GraphRep data structure. The Graph

ADT deals with vertices using their numeric ID. The main program maintains the list of

city names and passes this list to the showGraph() function when it is called to display

the graph. This means that the calling interface for the showGraph() function is different

to the showGraph() function from the Graph ADT in lectures.

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/travel.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/Graph.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/Graph.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/Queue.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/Queue.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/ha30_name.txt
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week16/files/ha30_dist.txt
https://www.cse.unsw.edu.au/~cs2521/23T2/

Another difference between this Graph ADT and the one used in lectures is that the

values stored in the matrix are not simply zero and one, but represent the distances

between vertices. In other words, we're dealing with a weighted graph. A weight value of

zero indicates that there is no edge between two vertices, while a non-zero weight

indicates that there is an edge.

The main program makes some changes to the edges implied by the distance matrix as

it copies them into the Graph. The values in the ha30_dist.txt file are given in units of

"hundreds of miles"; we want them in units of kilometres so each distance is converted

before it is added to the graph as the weight of an edge. Since every city has a distance

to every other city (except itself), this gives us a complete graph.

As supplied, Graph.c has an incomplete implementation of the findPath() function. If

you compile the travel program and try to find any route, it will simply tell you that

there isn't one. Your task will be to implement this function.

Exercise

Implement the findPath(g, src, dest, max, path) function. This function takes a

graph g, two vertex numbers src and dest, a maximum flight distance max, and fills the

path array with a sequence of vertex numbers giving the "shortest" path from src to

dest such that no edge on the path has weight larger than max. The function returns the

number of vertices stored in the path array; if it cannot find a path, it returns zero. The

path array is assumed to have enough space to hold the longest possible path (which

would include all vertices).

This could be solved with a standard BFS graph traversal algorithm, but there are two

twists for this application:

The edges in the graph represent real distances, but the user of the travel program

(the traveller) isn't necessarily worried about real distances. They are more worried

about the number of take-offs and landings (which they find scary), so the length of a

path is measured in terms of the number of edges, not the sum of the edge weights.

Thus, the "shortest" path is the one with the minimum number of edges.

While the traveller isn't concerned about how far a single flight goes, aircrafts are

affected by this (because they hold a limited amount of fuel). The max parameter for

findPath() allows a user to specify that they only want to consider flights whose

length is at most max kilometres (i.e. only edges whose weight is not more than max).

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Your implementation of findPath() must satisfy both of the above.

In implementing findPath(), you can make use of the Queue ADT that we've supplied.

Note that the default value for max, set in the main function, is 10000km. Making the

maximum flight distance smaller produces more interesting paths (see below), but if you

make it too small (e.g., 5000km) you will end up isolating Australia from the rest of the

world. With a maximum flight distance of 6000km, the only way out of Australia is via

Guam. If you make the maximum flight distance large enough (e.g., possibly reflecting

an improvement in aircraft technology), every city will be reachable from every other

city in a single hop.

Here are some example routes (don't expect them to closely match reality):

when no max distance is given on the command line,
we assume that planes can fly up to 10000km before refuelling
$./travel Berlin Chicago
Least-hops route:
Berlin
-> Chicago
$./travel Sydney Chicago
Least-hops route:
Sydney
-> Honolulu
-> Chicago
$./travel Sydney London
Least-hops route:
Sydney
-> Shanghai
-> London
$./travel London Sydney
Least-hops route:
London
-> Shanghai
-> Sydney
$./travel Sydney 'Buenos Aires'
Least-hops route:
Sydney
-> Honolulu
-> Chicago
-> Buenos Aires
if planes can fly up to 6000km before refuelling
$./travel Sydney London 6000
Least-hops route:
Sydney
-> Guam
-> Manila

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

-> Bombay
-> Baghdad
-> London
if planes can fly up to 5000km before refuelling
you can't leave Australia under this scenario
$./travel Sydney 'Buenos Aires' 5000
No route from Sydney to Buenos Aires
if planes can fly up to 7000km before refuelling
$./travel Sydney 'Buenos Aires' 7000
Least-hops route:
Sydney
-> Guam
-> Honolulu
-> Chicago
-> Panama City
-> Buenos Aires
if planes can fly up to 8000km before refuelling
$./travel Sydney 'Buenos Aires' 8000
Least-hops route:
Sydney
-> Guam
-> Honolulu
-> Mexico City
-> Buenos Aires
if planes can fly up to 11000km before refuelling
$./travel Sydney 'Buenos Aires' 11000
Least-hops route:
Sydney
-> Bombay
-> Azores
-> Buenos Aires
if planes can fly up to 12000km before refuelling
we can reach Buenos Aires in a single flight
$./travel Sydney 'Buenos Aires' 12000
Least-hops route:
Sydney
-> Buenos Aires
$./travel Bombay Chicago 5000
Least-hops route:
Bombay
-> Istanbul
-> Azores
-> Montreal
-> Chicago
$./travel Sydney Sydney

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Least-hops route:
Sydney

The above routes were generated using an algorithm that checks vertices in numeric

order (vertex 0 before vertex 1 before vertex 2, etc.). If you check vertices in a different

order, you may generate different, but possibly equally valid, routes.

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

Extra Lab Exercise

Hashing and Profiling

Objectives

To learn about hash tables and the effectiveness of hash functions

To learn about analysis of program performance via profiling

Admin

This lab is not marked and there is no submission for it.

Background

In lectures, we examined hashing as a key-based search/storage data structure. Under

ideal circumstances, hashing can give access to stored items via a key value. Two

critical components in a hashing scheme were: the hash function (which converts key

values into indexes), and the collision resolution method (which deals with several keys

hashing to the same index value). In this lab, we deal with a hash table implementation

that uses Sedgewick's "universal" hashing function on character strings, and uses the

separate chaining mechanism for collision resolution.

Setting Up

Set up a directory for this lab, change into that directory, and run the following

command:

$ unzip /web/cs2521/23T2/labs/week17/downloads/files.zip

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/downloads/files.zip
https://www.cse.unsw.edu.au/~cs2521/23T2/

If you're working at home, download files.zip by clicking on the above link and then

run the unzip command on the downloaded file.

If you've done the above correctly, you should now have the following files:

Makefile a set of dependencies used to control compilation

words.c a main program that reads words and builds a hash table from the words

HashTable.h the interface for the Hash Table ADT

HashTable.c an incomplete implementation of the Hash Table ADT

List.h the interface for the List ADT

List.c a complete implementation of the List ADT

Item.h the interface for the Item ADT

Item.c a complete implementation of the Item ADT

mkwords.c a main program that generates random words

Compiling with make will produce two executables: mkwords and words. The mkwords

program is fully functional and produces sequences of words using a random number

generator with an (optional) seed. For example:

$./mkwords 10 3
allpnl
ahebpveeloatic
ualoubyy
hssaif
rywt
tiehaelsh
oheom
vmoe
jeabzsa
zqa

The example above produces 10 "words" using a random number generator seed of 3. If

you want to generate really random (i.e. unreproduceable) word lists, don't supply a

seed parameter and mkwords will use an effectively random seed.

Note that mkwords will inevitably produce duplicate words for any reasonable-sized N;

the insertion function for the hash table checks for and handles duplicates.

The words program also executes to completion, but since the HashTableStats()
function is incomplete, you won't get particularly interesting output. See below for

examples of what the output from words looks like.

You should begin by looking primarily at the code in these files:

COMP2521 23T2

https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/Makefile
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/words.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/HashTable.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/HashTable.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/List.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/List.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/Item.h
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/Item.c
https://cgi.cse.unsw.edu.au/~cs2521/23T2/labs/week17/files/mkwords.c
https://www.cse.unsw.edu.au/~cs2521/23T2/

words.c
This contains a program that reads the words in a specified file file, loads it into a hash

table, and then prints statistics about the hash table. After inserting each word into the

hash table, the program immediately searches for it, to make sure that it was actually

inserted. It then searches for several "words" not in the input; these should not be found

in the hash table. Finally, it clears all of the memory used by the hash table and exits.

The words program takes two command-line parameters: the name of the file to read

from; the number of slots in the hash table (best if this is a prime number).

The words program can also read from its standard input if the filename is given as a

single minus sign. However, when reading from standard input, it only performs the tests

for words not in the input.

HashTable.c
This provides an implementation of a hash table that uses separate chaining for collision

resolution. The hash table consists of an indexed array of lists, which are based on the

List data type. The core hash table functions (insert, delete, search) are all quite simple,

and consist of using the hash function to find the appropriate list, and then carrying out

the relevant operation using the appropriate List function. All of the hash table function

are complete except for HashTableStats().

Other relevant code is in List.c which provides a standard implementation of a linked

list of items, which you can assume is correct. Similarly, the file Item.c contains an

implementation for items; normally, this would be done simply as a set of macros, but

we have used functions for some of the operations to create entries in the profile.

Task 1

Your first task is to complete the HashTableStats() function in HashTable.c. This

function should print the following information about the hash table:

the number of slots in the hash table array

the number of items stored in the (lists of the) hash table

information about the lengths of chains in a table containing

the length of chains (use zero length for unused array slots)

the number (frequency) of chains with this length

The table should have a row for each chain length from 0 up to the maximum chain

length. You'll need to work out the maximum chain length, and then allocate an array of

counters of the appropriate size.

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

When functioning correctly, the program should behave as follows:

$./mkwords 2000 13 > wordsfile
$./words wordsfile 1777
Reading words from wordsfile
Hash Table Stats:
Number of slots = 1777
Number of items = 1970
Chain length distribution
 Length #Chains
 0 585
 1 657
 2 351
 3 139
 4 33
 5 11
 7 1
Testing completed OK

Note that you could produce the same output, without needing an intermediate file,

using the command:

$./mkwords 2000 13 | ./words - 1777

The above commands insert 2000 words (1970 distinct words) into a hash table with

1777 slots. The output tells us that there are 585 unused slots in the hash table (chain

length 0), and 657 slots with chains of length 1, etc. If there are no chains of a given

length, then nothing is written for that length, e.g.

$./mkwords 1000 7 | ./words - 101
Reading words from stdin
Hash Table Stats:
Number of slots = 101
Number of items = 991
Chain length distribution
 Length #Chains
 2 1
 4 2
 5 2
 6 6
 7 16
 8 12
 9 13
 10 15
 11 8
 12 6
 13 5

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

 14 5
 15 3
 16 3
 17 1
 18 2
 19 1
Testing completed OK
$

This output is for a small hash table with just 101 slots. Since there is no entry for 0, all

of the slots in the hash tables have been used (i.e. no slots with zero items). Since there

are no entries for 1 and 3, this tells us there are no chains of length 1 or 3; this is not in

itself interesting, and is just way that it works out for this data. Many of the slots have

overflow chains of length 10; hits on any of these hash table entries will result in us

examining up to 10 items. We can also see that the longest chain contains 19 items.

Ideally, we would like each chain to contain a small number of items; this means that the

hash table needs to have a number of slots that is proportional to the number of items

(e.g. if the has function works perfectly and we have n items and n/3 slots, we'd expect

each chain to be of length ~3).

Execution Profiling

Execution profilers measure statistics like the number of times each function is called

and the average time spent executing each function, in order to identify which functions

are contributing most to the cost of executing the program. Raw timing data (e.g. using

the time command) gives you an overview of how fast a program is, but an execution

profile gives you detailed information about where it's spending all of its time, and thus

where you should focus any attempts at improving its performance.

The standard execution profiler on Linux is gprof. In order to profile a C program, the

program needs to be compiled and linked with the -pg flag. When you compiled the

words program with make earlier, you may have noticed that -pg appeared on each line

with gcc.

Programs compiled with -pg include additional code that monitors the execution of the

program and measures:

overall execution time

how many times each function is called

which functions call which other functions

how much time it takes to execute each function

To generate an execution profile, run commands like the following:

$./mkwords 100000 3 | ./words - 50033
....

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

$ gprof words | less

The mkwords program outputs 100000 words, and passes them to the words program

which inserts them into a hash table with 50033 slots. Since mkwords may produce

duplicates when generating large numbers of words, the actual number of distinct words

added to the hash table may be less than the number of words requested (in this case,

90893 distinct items will be inserted). Remember that for each word in the input, there

will be one insert operation (to add it to the hash table) and one search operation (to

check that it was added).

Since gprof produces quite a lot of output, it is useful to pipe it through the less

command, which allows us to scroll through output one screenful at a time.

The output from gprof has two parts:

flat profile: how much time was spent in each funtion; how many times it was called

graph profile: how many times was each function called from which other functions

For this lab, we consider only the flat profile, although you might want to check the

graph profile to see if it gives you any information that might be useful to tune the

program.

If you execute the words program as above, then the flat profile will look approximately

like:

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ns/call ns/call name
 44.50 0.04 0.04 200004 200.24 200.24 hash
 33.37 0.07 0.03 200004 150.18 150.18 ListSearch
 11.12 0.08 0.01 100004 100.12 450.53 HashTableSearch
 11.12 0.09 0.01 100000 100.12 450.53 HashTableInsert
 0.00 0.09 0.00 378051 0.00 0.00 cmp
 0.00 0.09 0.00 100001 0.00 0.00 ItemGet
 0.00 0.09 0.00 100000 0.00 0.00 newItem
 0.00 0.09 0.00 90936 0.00 0.00 ListInsert
 0.00 0.09 0.00 90936 0.00 0.00 dropItem
 0.00 0.09 0.00 50033 0.00 0.00 ListLength
 0.00 0.09 0.00 50033 0.00 0.00 dropList
 0.00 0.09 0.00 50033 0.00 0.00 newList
 0.00 0.09 0.00 1 0.00 0.00 HashTableStats
 0.00 0.09 0.00 1 0.00 0.00 dropHashTable
 0.00 0.09 0.00 1 0.00 0.00 newHashTable

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Warning: Note that, for the same input, the counts of function calls should be

consistent across all machines, and you should be able to explain (from looking at the

code) where the counts come from. However, the timing (being sampling-based) may

differ from machine to machine, and even differ between executions of the program on

the same machine. This may result in significantly different times, different percentages,

and even a different ordering of functions. Given such variations, is this kind of profile

even useful? Yes, because the most time-consuming functions will be consistently higher

than all of the others, and thus give you a basis for tuning.

Each line gives some statistics for one function in the program. The "% time" column

indicates the percentage of execution time that was spent in the function. The

(approximate) total running time of the program can be obtained by reading down the

"cumulative seconds" column; the final value is the total time. The "self seconds" column

gives the total time spent executing that function, during the entire course of program

execution; the values in this column are added to obtain the "cumulative seconds"

column. The "calls" column indicates the total number of times that the function was

called during program execution. The "self ms/call" gives the average time spent in each

call of the function, while the "total ms/call" gives the time spent in this function plus

any of the functions it calls.

In the above profile, you can see that the program takes a total of 0.06 seconds to run

(the last value in the "cumulative seconds" column). Function-wise, most of the time is

spent in the hash() function. The next most expensive consumers of execution time are

ListSearch() and ListLength(). (However, as noted above, you may observe different

functions and quite different percentages.)

You might be surprised to see that most of the functions appear to cost 0.00ms to run.

The most likely explanation here is that the cost of executing the function is, on average,

less than 0.005 ms, which is rounded down to zero. Such a small cost may mean that the

function itself is not inherently inefficient; if it features prominently in the cumulative

time, you need to consider why it's being called so many times (which is where the

graph profile helps).

In the above example, the hash() function is called many times, but can't be called less

times (why not?), so if we want to tune the performance of this program, we would need

to improve the speed of the hash() function (but without sacrificing its good

performance in spreading hash values across the index range). If we make the hashing

distribution worse while making the hash() function faster, we might simply end up

moving the cost from the hash() function to some other function such as ListSearch().

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

Task 2

For testing the words program, you will want to use some reasonably large inputs. Try

running your program as follows:

$./mkwords 1000000 | ./words - 424247

Note that the above command inserts 857424 distinct words into a hash table with

424247 slots. Clearly, since there are more words than slots, chains of length greater

than one will occur frequently in this table. You could try adding more slots to the table

to see how this improves the average/maximum chain length. You could also try

inserting more words, to do some serious stress testing. We suggest keeping the ratio of

words to slots at less than 2:1, and ideally closer to 1:1 (which is aiming at one slot per

word).

Remember that the whole point of minimising chain lengths is that the worst case lookup

cost is proportional to the maximum chain length, and the average case cost is

proportional to the average chain length. You will quickly notice, while running with large

inputs, that different slot numbers produce different average chain lengths, and those

examples with shorter average chain lengths run much faster than those with longer

average chain lengths.

If you want an alternative word set, there is a dictionary of 90,000 English words and a

dictionary of 5 million place names (from the GeoNames database) which you could use

on the CSE workstations. Try the following commands:

$./words /web/cs2521/23T2/labs/week17/data/dict 49999
$./words /web/cs2521/23T2/labs/week17/data/dict 50000
$./words /web/cs2521/23T2/labs/week17/data/places 1048576
$./words /web/cs2521/23T2/labs/week17/data/places 1048573

Don't copy these files to your own directory as they are quite large.

Consider the questions below, using the above command and variations on it (see

below). Put your answers in a text file called answers.txt.

Your answers file should (ultimately) contain:

answers to the questions below

output from words to illustrate your answers (where appropriate)

flat profiles to illustrate your answers (where appropriate)

analyses/explanations for all answers

COMP2521 23T2

https://www.geonames.org/
https://www.cse.unsw.edu.au/~cs2521/23T2/

The precise format of the answers file is not important. What is important is that you

explain your answers, using relevant evidence from both the from the profile output and

the output of the words program.

a. The mkwords 1000000 3 command produces 857424 distinct words. What is the

maximum chain length if a hash table size of 85711 is used? How does the chain

length distribution change if the hash table size is 100000? 214283? 400000?

400837? 857144? 857137?

b. Every other number above (i.e. 85711, 214283, 400837, 857137) is prime. It is often

noted that using prime numbers appropriately in the hash function leads to a better

distribution of hash values, and thus generally shorter chains. Does this appear to be

the case for the hash table sizes in the previous question?

c. An "optimal" hash table would have all slots occupied and have all chains of length

roughly (nwords/nslots). In practice, this is impossible to achieve in the general case,

and what we want is a table with relatively short chains, with as few slots as possible

(small size of hash table), and not too many empty slots. Can you find a suitable hash

table size that keeps the maximum chain length under 10, and has most chains with

length 1 or 2, but also uses more than 2/3 of the slots?

d. Compare both the outputs and the profiles for the two commands:

$./words /web/cs2521/23T2/labs/week17/data/places 1048576
$./words /web/cs2521/23T2/labs/week17/data/places 1048573

What does this tell you about hash table search performance when the hash function

is significantly sub-optimal?

e. Examine the profiles from running the command:

$./mkwords 1000000 | ./words - N

For a number of different values of N, what are the most costly functions (in terms of

overall time)?

f. Suggest how the individual functions might be improved. Suggest how the overall

performance might be improved.

g. Implement your suggestions and then give a new profile to show the improvement,

and explain how the profile shows the improvement.

If you want some prime numbers to use for testing different table sizes, there are a large

number of them in:

/web/cs2521/23T2/labs/week17/data/primes

COMP2521 23T2

https://www.cse.unsw.edu.au/~cs2521/23T2/

COMP2521 23T2: Data Structures and Algorithms is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs2521@cse.unsw.edu.au

CRICOS Provider 00098G

COMP2521 23T2

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs2521@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~cs2521/23T2/

	COMP2521 Lab 1
	COMP2521 Lab 2
	COMP2521 Lab 3
	COMP2521 Lab 4
	COMP2521 Lab 5
	COMP2521 Lab 7
	COMP2521 Lab 8
	COMP2521 Lab 9
	COMP2521 Lab 11
	COMP2521 Lab 12
	COMP2521 Lab 13
	COMP2521 Lab 14
	COMP2521 Lab 15
	COMP2521 Lab 16
	COMP2521 Lab 17

