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Proof*. 1. Choose m = [%] + 2 and comnsider the Banach space X =
H™U)N H}(U). According to Theorem 3 in §5.3.2 X C C?(U). We define
the linear, compact operator A : X — X by setting Af = u, where u is the
unique solution of

(23) {Lu:f in U

u=0 onoU.
Next define the cone
C={ueX|u>0inU}.

According to the maximum principle, A : C — C.

2. Hereafter fix any function w € C, w # 0. Employing the strong
maximum principle and Hopf’s Lemma, we deduce

v

81/<0 on oU

(24) v>0 inU,

for v = A(w).
Remember that w = 0 on 0U. So in view of (24) there exists a constant
> 0 so that

(25) po >w in U.
3. Fix € > 0, n > 0, and consider then the equation
(26) u=nAu+ ew]
for the unknown u € C. We claim that
(27) if (26) has a solution u, then n < u.
To verify this assertion, suppose in fact u € C solves (26). We compute
u > nAlew] = nev > Z ew,

according to (25). Hence

2 2 2
uZnAuZEszﬂvz(ﬂ) cw,
H H H

*Omit on first reading.
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Continuing, we deduce

a contradiction unless 7 < u. This observation confirms the assertion (27).

4. Define

Se ;= {u € C| there exists 0 < n < 2y such that u = nAfu + ew]}.
We next assert
(28) Se is unbounded in X.

For otherwise we could apply Schaefer’s fixed point theorem (to be proved
later, as Theorem 4 in §9.2.2), to deduce that the equation

u=2uAlu + ew|

has a solution, in contradiction to (27).

5. Owing to (28), there exist
(29) 0<n <2u
and v, € C, with ||ve||x > 1, satisfying
(30) Ve = N A[ve + ew).

Renormalize by setting
Ve

(31) Ue 1= —.
T luellx

Using (29)—(31) and the compactness of the operator A, we obtain a subse-
quence €; — 0 so that

Ne, — N and ue, — u in X.
Then (31) implies

(32) lullx =1, u€C.

Since ue = n.A [uf + ﬂﬁ"’;] , we deduce in the limit that u = nAu. In view
of (32), n > 0. We may consequently rewrite the above to read

Lwl = /\1w1 inU
w; =0 on 8U,
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for A1 = 1, w = w1. Thus A; is a real eigenvalue for the operator L, taken
with zero boundary conditions, and w; > 0 is a corresponding eigenfunction.
In view of the strong maximum principle and Hopf’s Lemma, we have

(33) w; >0 in U, %UV_1<O on aU.

Additionally, we know w; is smooth, owing to the regularity theory in §6.3.

6. All expressions occurring in steps 1-5 above are real. Suppose now
A € C and u is a complex-valued solution of

(34) {Luz)\u in U

u=0 ondU.

Now choose any smooth function w : U — R, with w > 0 in U, and set
v := ~. We compute

v = %L(vw) by (34)

=Lv—cv— " 'JZ_I a“wg, vz, + ELw.

Writing

n n
- 1j /
Kv:=— E vy + E b; vz,
i=1

4,j=1

for b} :=b" — 23" | a¥wy; (1 < i< n), we deduce from (35) that

L
(36) Kv+(zf”-—/\)v=o in U.
Take complex conjugates:

Lw -
(37) K17+(Ew——/\)1‘)=0 in U.

Next we compute

n
(38)  K(|v|?) = K(v0) = 1Kv +vKv — 2 Z aijvziq‘)xj < 9Kv + vK7,
ij=1

since
n

> a6€ =) a(Re(&) Re(€;) + Im(&) Im(€;)) > 0

i,j=1 i5=1
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for £ € C". Combining (36)—(38), we discover

K(jv]?) <2 (Re/\ - I;U_w) v|?.

Now choose
(39) w=w

for 0 < e < 1. Then

1—c¢ e(l—€) o= ;. —
Lw = ( wi )Lwl * : %+e) Z az]wlvzz‘wlvzj + ecw} 2 (1-ehw.
ij=1
Consequently

K([v|*) < 2(ReX — (1 —e)A)|v* inU.
Thus if Re(\) < (1—€)A1, then K(|v[?) < 0in U. As v =0 on 9U, according

to (33) and (39), we deduce from the maximum principle that v = =0
in U. Thus v = 0 in U and so A cannot be an eigenvalue. This conclusion

obtains for each € > 0, and so Re A > A; if A is any complex eigenvalue.
7. Finally, let u be any (possibly complex-valued) solution of

{Lu——-/\lu inU

(40) u=0 on oU.

Since Re(u) and Im(u) also solve (40), we may as well suppose from the
outset u is real-valued. Replacing u by —u if needs be, we may also suppose
u > 0 somewhere in U. Now set

(41) x :=sup{u >0 |w —pu>0in U}
Then 0 < x < oo. Write v = w; — xu; so that v > 0in U and

Lv=XAv>0 inU
v=20 on oU.

Now if v is not identically zero, the strong maximum principle and Hopf’s
Lemma imply

v>0in U, ?—U<0 on OU.
ov
Thus
v—eu>0 in U for some € > 0,
and so

wi—(x+€u>0 inU,

a contradiction to (41). Hence v = 0 in U, and so u is a multiple of w;. O



