Proof*. 1. Choose $m = \left[\frac{n}{2}\right] + 2$ and consider the Banach space $X = H^m(U) \cap H^1_0(U)$. According to Theorem 3 in §5.3.2 $X \subset C^2(\bar{U})$. We define the linear, compact operator $A: X \to X$ by setting Af = u, where u is the unique solution of

(23)
$$\begin{cases} Lu = f & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Next define the cone

$$C = \{ u \in X \mid u \ge 0 \text{ in } U \}.$$

According to the maximum principle, $A: C \to C$.

2. Hereafter fix any function $w \in C$, $w \not\equiv 0$. Employing the strong maximum principle and Hopf's Lemma, we deduce

(24)
$$v > 0 \text{ in } U, \quad \frac{\partial v}{\partial \nu} < 0 \text{ on } \partial U$$

for v = A(w).

Remember that w=0 on ∂U . So in view of (24) there exists a constant $\mu>0$ so that

$$(25) \mu v \ge w in U.$$

3. Fix $\epsilon > 0$, $\eta > 0$, and consider then the equation

$$(26) u = \eta A[u + \epsilon w]$$

for the unknown $u \in C$. We claim that

(27) if (26) has a solution
$$u$$
, then $\eta \leq \mu$.

To verify this assertion, suppose in fact $u \in C$ solves (26). We compute

$$u \ge \eta A[\epsilon w] = \eta \epsilon v \ge \frac{\eta}{\mu} \ \epsilon w,$$

according to (25). Hence

$$u \ge \eta A u \ge \frac{\eta^2 \epsilon}{\mu} A w = \frac{\eta^2 \epsilon}{\mu} \ v \ge \left(\frac{\eta}{\mu}\right)^2 \epsilon w.$$

^{*}Omit on first reading.

Continuing, we deduce

$$u \ge \left(\frac{\eta}{\mu}\right)^k \epsilon w \quad (k = 1, \dots),$$

a contradiction unless $\eta \leq \mu$. This observation confirms the assertion (27).

4. Define

$$S_\epsilon := \{u \in C \mid \text{ there exists } 0 \leq \eta \leq 2\mu \text{ such that } u = \eta A[u + \epsilon w]\}.$$

We next assert

(28)
$$S_{\epsilon}$$
 is unbounded in X .

For otherwise we could apply Schaefer's fixed point theorem (to be proved later, as Theorem 4 in §9.2.2), to deduce that the equation

$$u = 2\mu A[u + \epsilon w]$$

has a solution, in contradiction to (27).

5. Owing to (28), there exist

$$(29) 0 \le \eta_{\epsilon} \le 2\mu$$

and $v_{\epsilon} \in C$, with $||v_{\epsilon}||_{X} \geq 1$, satisfying

(30)
$$v_{\epsilon} = \eta_{\epsilon} A[v_{\epsilon} + \epsilon w].$$

Renormalize by setting

$$(31) u_{\epsilon} := \frac{v_{\epsilon}}{\|v_{\epsilon}\|_{X}}.$$

Using (29)–(31) and the compactness of the operator A, we obtain a subsequence $\epsilon_k \to 0$ so that

$$\eta_{\epsilon_k} \to \eta$$
 and $u_{\epsilon_k} \to u$ in X .

Then (31) implies

$$||u||_X = 1, \ u \in C.$$

Since $u_{\epsilon} = \eta_{\epsilon} A \left[u_{\epsilon} + \frac{\epsilon w}{\|v_{\epsilon}\|_{X}} \right]$, we deduce in the limit that $u = \eta A u$. In view of (32), $\eta > 0$. We may consequently rewrite the above to read

$$\begin{cases} Lw_1 = \lambda_1 w_1 & \text{in } U \\ w_1 = 0 & \text{on } \partial U, \end{cases}$$

for $\lambda_1 = \eta$, $u = w_1$. Thus λ_1 is a real eigenvalue for the operator L, taken with zero boundary conditions, and $w_1 \geq 0$ is a corresponding eigenfunction. In view of the strong maximum principle and Hopf's Lemma, we have

(33)
$$w_1 > 0 \text{ in } U, \ \frac{\partial w_1}{\partial \nu} < 0 \text{ on } \partial U.$$

Additionally, we know w_1 is smooth, owing to the regularity theory in §6.3.

6. All expressions occurring in steps 1–5 above are real. Suppose now $\lambda \in \mathbb{C}$ and u is a complex-valued solution of

(34)
$$\begin{cases} Lu = \lambda u & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Now choose any smooth function $w:U\to\mathbb{R},$ with w>0 in U, and set $v:=\frac{u}{n}.$ We compute

(35)
$$\lambda v = \frac{1}{w}L(vw) \quad \text{by (34)}$$

$$= Lv - cv - \frac{2}{w} \sum_{i,j=1}^{n} a^{ij} w_{x_j} v_{x_i} + \frac{v}{w} Lw.$$

Writing

$$Kv := -\sum_{i,j=1}^n a^{ij} v_{x_i x_j} + \sum_{i=1}^n b_i' v_{x_i}$$

for $b_i':=b^i-\frac{2}{w}\sum_{j=1}^n a^{ij}w_{x_j}$ $(1\leq i\leq n),$ we deduce from (35) that

(36)
$$Kv + \left(\frac{Lw}{w} - \lambda\right)v = 0 \quad \text{in } U.$$

Take complex conjugates:

(37)
$$K\bar{v} + \left(\frac{Lw}{w} - \bar{\lambda}\right)\bar{v} = 0 \quad \text{in } U.$$

Next we compute

(38)
$$K(|v|^2) = K(v\bar{v}) = \bar{v}Kv + vK\bar{v} - 2\sum_{i,j=1}^n a^{ij}v_{x_i}\bar{v}_{x_j} \le \bar{v}Kv + vK\bar{v},$$

since

$$\sum_{i,j=1}^n a^{ij} \xi_i \bar{\xi}_j = \sum_{i,j=1}^n a^{ij} (\operatorname{Re}(\xi_i) \operatorname{Re}(\xi_j) + \operatorname{Im}(\xi_i) \operatorname{Im}(\xi_j)) \ge 0$$

for $\xi \in \mathbb{C}^n$. Combining (36)–(38), we discover

$$K(|v|^2) \le 2\left(\operatorname{Re}\lambda - \frac{Lw}{w}\right)|v|^2.$$

Now choose

$$(39) w := w_1^{1-\epsilon}$$

for $0 < \epsilon < 1$. Then

$$Lw = \frac{(1-\epsilon)}{w_1^{\epsilon}}Lw_1 + \frac{\epsilon(1-\epsilon)}{w_1^{1+\epsilon}}\sum_{i,j=1}^n a^{ij}w_{1,x_i}w_{1,x_j} + \epsilon cw_1^{1-\epsilon} \geq (1-\epsilon)\lambda_1w.$$

Consequently

$$K(|v|^2) \le 2(\operatorname{Re} \lambda - (1 - \epsilon)\lambda_1)|v|^2$$
 in U .

Thus if $\operatorname{Re}(\lambda) \leq (1-\epsilon)\lambda_1$, then $K(|v|^2) \leq 0$ in U. As v=0 on ∂U , according to (33) and (39), we deduce from the maximum principle that $v=\frac{u}{w}=0$ in U. Thus $u\equiv 0$ in U and so λ cannot be an eigenvalue. This conclusion obtains for each $\epsilon>0$, and so $\operatorname{Re}\lambda\geq\lambda_1$ if λ is any complex eigenvalue.

7. Finally, let u be any (possibly complex-valued) solution of

(40)
$$\begin{cases} Lu = \lambda_1 u & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Since Re(u) and Im(u) also solve (40), we may as well suppose from the outset u is real-valued. Replacing u by -u if needs be, we may also suppose u > 0 somewhere in U. Now set

(41)
$$\chi := \sup \{ \mu > 0 \mid w_1 - \mu u \ge 0 \text{ in } U \}.$$

Then $0 < \chi < \infty$. Write $v = w_1 - \chi u$; so that $v \ge 0$ in U and

$$\begin{cases} Lv = \lambda_1 v \ge 0 & \text{in } U \\ v = 0 & \text{on } \partial U. \end{cases}$$

Now if v is not identically zero, the strong maximum principle and Hopf's Lemma imply

$$v > 0$$
 in U , $\frac{\partial v}{\partial \nu} < 0$ on ∂U .

Thus

$$v - \epsilon u \ge 0$$
 in U for some $\epsilon > 0$,

and so

$$w_1 - (\chi + \epsilon)u \ge 0$$
 in U ,

a contradiction to (41). Hence $v \equiv 0$ in U, and so u is a multiple of w_1 .