
Part 1: Goals

7

Reverse Engineering For Everyone!

— by @mytechnotalent

Wait, what's reverse engineering?

Wikipedia defines it as:

Reverse engineering, also called backwards engineering or back

engineering, is the process by which an artificial object is deconstructed to

reveal its designs, architecture, code, or to extract knowledge from the

object. It is similar to scientific research, the only difference being that

scientific research is conducted into a natural phenomenon.

Whew, that was quite a mouthful, wasn't it? Well, it is one of the main reasons

why this tutorial set exists. To make reverse engineering as simple as possible.

This comprehensive set of reverse engineering tutorials covers x86, x64 as well

as 32-bit ARM and 64-bit architectures. If you're a newbie looking to learn

reversing, or just someone looking to revise on some concepts, you're at the right

place. As a beginner, these tutorials will carry you from nothing upto the mid-

basics of reverse engineering, a skill that everyone within the realm of cyber-

Part 1: Goals

8

security should possess. If you're here just to refresh some concepts, you can

conveniently use the side bar to take a look at the sections that has been covered

so far.

You can get the entire tutorial set in PDF or MOBI format. All these ebook

versions will get updated automatically as new tutorials will be added.

Download here: [PDF | MOBI]

Gitbook crafted with ♡ by @0xInfection

Part 1: Goals

9

The x86 Architecture

Let's dive in rightaway!

Part 1: Goals

10

Part 1: Goals

Essential to the discussion of basic reverse engineering is the concept of modern

malware analysis. Malware analysis is the understanding and examination of

information necessary to respond to a network intrusion.

This short tutorial will begin with the basic concepts of malware reverse

engineering and graduate to an entry-level basic examination of Assembly

Language.

The keys to the kingdom so to speak are rooted in the break-down of the

respective suspected malware binary and how to find it on your network and

ultimately to contain it.

Upon full identification of the files required for deeper analysis, it is critical to

develop signatures to detect malware infections throughout your network whether

it be a home based LAN or complex corporate WAN to which malware analysis is

necessary to develop host-based and network signatures.

To begin with the concept of a host-based signature, we need to understand that

these are utilized to find malicious code in a target machine. Host-based

signatures are also referred to as indicators which can identify files created or

edited by the infected code which can make hidden changes to a computers

registry. This is quite in contrast with antivirus signatures because these

concentrate on what the malware actually does rather than the make-up of the

malware which makes them more effective in finding malware that can migrate or

has been removed from the media.

In contrast, network signatures are used to find malicious code by examining

network traffic. It is important to note such tools as WireShark and the like are

often effective in such analysis.

Upon identification of these aforementioned signatures, the next step is to identify

what the malware is actually doing.

In our next lesson we will discuss techniques of malware analysis.

Part 1: Goals

11

Part 2: Techniques

There are two basic techniques that you can employ when analyzing malware.

The first being static analysis and the other being dynamic analysis.

Static analysis uses software tools to examine the executable without running the

actual decompiled instructions in Assembly. We will not focus on this type of

analysis here as we are going to focus on actual disassembled binaries instead

however in future courses we will.

Dynamic analysis uses disassemblers and debuggers to analyze malware

binaries while actually running them. The most popular tool in the market today is

called IDA which is a multi-platform, multi-processor disassembler and debugger.

There are other disassembler/debugger tools as well on the market today such as

Hopper Disassembler, OllyDbg and many more.

A disassembler will convert an executable binary written in Assembly, C, C++, etc

into Assembly Language instructions that you can debug and manipulate.

Reverse engineering is much more than just malware analysis. At the end of our

series, our capstone tutorial will utilize IDA as we will create a real-world scenario

where you will be tasked by the CEO of ABC Biochemicals to secretly try to

ethically hack his companies software that controls a bullet-proof door in a very

sensitive Bio-Chemical lab in order to test how well the software works against

real threats. The project will be very basic however it will ultimately showcase the

power of Assembly Language and how one can use it to reverse engineer and

ultimately provide solutions on how to better design the code to make it safer.

In our next lesson we will discuss various types of malware.

Part 1: Goals

12

Part 3: Types Of Malware

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Malware falls into several categories of which I will touch briefly upon below.

A backdoor is malicious code that embeds itself into a computer to allow a remote

attacker access with very little or sometimes no authority to execute various

commands on any respective local computer.

A botnet allows an attacker access to a system however receive instructions not

from one remote attacker but from a command-and-control server to which can

control an unlimited amount of computers at the same time.

A downloader is nothing more than malicious code that has only one purpose

which is to install other malicious software. Downloaders are frequently installed

when a hacker gains access to a system initially. The downloader then installs

additional software to control the system.

We find information access malware which gathers information from a computer

and sends it directly to a host such as a keylogger or password grabber and

usually used to obtain access to various online accounts that can be very

sensitive.

There are malicious programs that launch other malicious programs which use

non-standard options to get increased access or a greater cloaking/hiding

technique when penetrating a system.

One of the most dangerous forms of malware is the rootkit which hides the

existence of itself and additional malware from the user which makes it extremely

hard to locate. A rootkit can manipulate processes such as hiding their IP in an IP

scan so that a user may never know that they have a direct socket to a botnet or

other remote computer.

Scareware is used to trick a user into purchasing additional software to falsely

protect a user when there is no real threat whatsoever that exists. Once a user

pays to have the tricked software removed from the computer it then can stay

resident and later emerge in an altered form.

There are also various kinds of malware that send spam from a target machine

which generates income for the attacker by allowing them to sell various services

to other users.

The final form of malware is that of a traditional worm or virus which copies itself

and goes after other computers.

This is the end the road for now regarding our discussion of malware because we

first need to go back to the beginning and understand how a computer works at

it's base level.

Part 1: Goals

13

In our next lesson we will begin our long journey into x86 Assembly Language. In

order to truly understand the very basics of reverse engineering and malware we

need to over the next several months take a deep dive into the core and build our

way up.

Part 1: Goals

14

Part 4: x86 Assembly Intro

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Ladies and Gentlemen, boys and girls, children of all ages! We are about to

embark on a journey that will change your life forever!

There is vast material to cover to get a good understanding of Assembly

Language and why it is important to understand the basics.

The first question we must answer is what is x86 Assembly Language to which

the answer is a family of backward-compatible Assembly Languages which

provide compatibility back to the Intel 8000 series of microprocessors. x86

Assembly Languages are used to produce object code for the aforementioned

series of processors. It uses mnemonics to represent the instructions that the

CPU can execute.

Assembly Language for the x86 microprocessor works in conjunction with various

operating systems. We will focus on Linux Assembly Language utilizing the Intel

syntax in addition to learning how to program in C to which we will disassemble

the source code an analyze the respective Assembly.

x86 Assembly Language has two choices of syntax. The AT&T syntax was

dominant in the Unix world since the OS was developed at AT&T Bell Labs. In

contrast, the Intel syntax was originally used for the documentation of the x86

platform and was dominant in the MS-DOS and Windows environments.

For our purposes, when we are ultimately disassembling or debugging software,

whether it be in a Linux or Windows environment, we will see the Intel syntax in

large measure. This is essential whether we are examining a Windows binary in

PE format or a Linux binary in ELF format. More on that later in this tutorial.

The main differences between the two is in the AT&T syntax, the source comes

before the destination and in the Intel syntax, the destination comes before the

source. We will discuss this in more detail later in the tutorial.

Before you run for the door and regret embarking on this journey, remember,

some basic context helps to which we will develop throughout our quest. Many of

these topics may be confusing at this point which is perfectly normal as we will

develop them in time.

We will focus on Linux Assembly because Linux runs on a variety of hardware

and is capable of running devices such as a cell phone, personal computer or a

complex commercial server.

Linux is also open source and there are many versions. We will focus on Ubuntu

in our demonstrations which can be freely obtained. In contrast, the Windows

operating system is owned and controlled by one company, Microsoft, to which all

updates, security patches and service patches come directly from them where

Linux has millions of professionals providing the same absolutely free!

Part 1: Goals

15

We will also focus on a 32-bit architecture as ultimately most malware will be

written for such in order to infect as many systems as possible. 32-bit

applications/malware will work on 64-bit systems so we want to understand the

basics of the 32-bit world.

In our next lesson we discuss the binary number system. Grab your cup of coffee

you are going to need it!

Part 1: Goals

16

Part 5: Binary Number System

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Binary numbers are what define the core of a computer. A bit within a computer is

either on or off. A bit has either electricity turned on to it or it is absent of such. We

will dive into this deeper in future tutorials.

Puzzled and confused, where do we go from here?

Have no fear! The binary number system is here! It is important to understand that

in binary, each column has a value two times the column to its right and there are

only two digits in the base which happen to be 0 and 1.

In decimal, base 10, say we have the number 15 which means (1 x 10) + (5 x 1) =

15 therefore the 5 is the number times 1 and the 1 is that number times 10.

Binary works in a similar fashion however we are now referring to base 2. That

same number in binary is 1111. To illustrate:

Binary numbers are important because using them instead of the decimal system

simplifies the design of computers and related technologies. The simplest

definition of the binary number system is a system of numbering that uses only

two digits, as we mentioned above, to represent numbers necessary for a

computer architecture rather than using the digits 1 through 9 plus 0 to represent

such.

In our next lesson we discuss the hexadecimal number system. It only gets more

exciting from here!

Part 1: Goals

17

Part 6: Hexadecimal Number System

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Now that we are binary masters, it's time to tackle the numbering system of

numbering systems!

We learned in binary that each number represents a bit. If we combine 8 bits, we

get a byte. A byte can be further subdivided into its top 4 bits and its low 4 bits. A

combination of 4 bits is a nibble. Since 4 bits gives you the possible range from 0

- 15 a base 16 number system is easier to work with. Keep in mind when we say

base 16 we start with 0 and therefore 0 - 15 is 16 different numbers.

This exciting number system is called hexadecimal. The reason why we use this

number system is that in x86 Assembly it is much easier to express binary

number representations in hexadecimal than it is in any other numbering system.

Hexadecimal is similar to every other number system except in hexadecimal,

each column has a value of 16 times the value of the column to its right. The fun

part about hexadecimal is that not only do we have 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 we

have A, B, C, D, E and F and therefore 16 different symbols.

Lets look at a simple table to see how hexadecimal compares to decimal.

Ok I see the smoke coming out of your ears but its ok! In decimal, everything is

dealt with in the power of 10. Let's take the number 42 and examine it in decimal:

2 x 10 ^ 0 = 2

4 x 10 ^ 1 = 40

Remember 10 to the 0 power is 1 and 10 to the 1st power is 10, therefore, 2 + 40

= 42.

Part 1: Goals

18

Grab your coffee, here comes the fun stuff!

If we understand that decimal is a base 10 number system, we can create a

simple formula where b represents the base. In this case, b = 10.

(2 * b ^ 0) + (4 * b ^ 1)

(2 * 10 ^ 0) + (4 * 10 ^ 1) = 42

In binary, 42 decimal is 0010 1010 binary as follows:

0 x 2 ^ 0 = 0

1 x 2 ^ 1 = 2

0 x 2 ^ 2 = 0

1 x 2 ^ 3 = 8

0 x 2 ^ 4 = 0

1 x 2 ^ 5 = 32

0 x 2 ^ 6 = 0

0 x 2 ^ 7 = 0

0 + 2 + 0 + 8 + 0 + 32 + 0 + 0 = 42 decimal

In hexadecimal, everything is dealt with in the power of 16. Therefore 42 in

decimal is 2A in hexadecimal:

10 * 16 ^ 0 = 10

2 * 16 ^ 1 = 32

10 + 32 = 42 decimal => 2A hexadecimal

This is the same as saying:

10 * 1 = 10

2 * 16 = 32

10 + 32 = 42 decimal => 2A hexadecimal

Keep in mind 10 decimal is equal to A hexadecimal and 2 decimal is equal to 2

hexadecimal. In our formula above when we deal with A, B, C, D, E or F we need

to convert them to their decimal equivalent.

Lets take another example of F5 hexadecimal. This would be as follows:

5 x 16 ^ 0 = 5

15 x 16 ^ 1 = 240

5 + 240 = 245 decimal => F5 hexadecimal

Lets look at a binary to hexadecimal table:

Part 1: Goals

19

It is important to understand that every hexadecimal number is 4 bits long or

called a nibble. This will become critical when we are reverse engineering our C

programs into Assembly.

Lets look at this another way. Lets work with some more hexadecimal numbers

and convert them to decimal:

To re-emphasize F1CD as a simple conversion:

D --- 13 x 1 = 13

C --- 12 x 16 = 192

1 --- 1 x 256 = 256

F --- 15 x 4096 = 61,440

13 + 192 + 256 + 61,440 = 61,901

Addition in hexadecimal works as follows. From this point forward all numbers in

hexadecimal will have a 'h' next to the number:

Part 1: Goals

20

Another example is as such:

A final add example is as such:

Part 1: Goals

21

We will now focus on subtraction:

You are probably asking yourself why is this guy spending so much time going

over so many different ways of learning this! The answer is that each of us learn a

little different from the next. I wanted to show several representations of

hexadecimal compared to decimal and binary to help put together the whole

picture.

It is fundamental that you understand what is going on here in order to proceed

any further. If you have any questions, please comment below and I will be more

than happy to help!

In our next lesson we discuss switches, transistors and memory.

Part 1: Goals

22

Part 7: Transistors And Memory

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our last lesson, we took a very deep dive into the hexadecimal number system.

I am going to keep this weeks lesson short so that you can re-read last weeks

lesson. I can not emphasize how important it is to understand hexadecimal

number conversions in addition to the ability to manually add and subtract them.

In the real world, we have calculators, in the real world we use the Windows

operating system, in the real world professional reverse engineers use GUI

debuggers like IDA Pro and others.

The question is, why am I not jumping right into the core of what real reverse

engineers do? The answer is simple, one must have a deep respect and

understanding of the machine in order to become great. We will never change the

world without fully understanding it first. Patience and perseverance win the day.

I focus on on Linux and console-based programming because most professional

servers utilize Linux and therefore is the greatest threat of malware.

Understanding Linux Assembly allows you to very easily grasp the library-choking

portable executable format of Windows Assembly in a much deeper way.

As I step off the soap box, lets get back to the basics of computers so here we go!

When we ask ourselves what is a computer one must go down to as about as

basic as one can get.

Electronic computers are simply made out of transistor switches. Transistors are

microscopic crystals of silicon that use electrical properties of silicon to act as

switches. Modern computers have what are referred to as field-effect transistors.

Let's use an example of 3 pins. When an electrical voltage is applied to pin 1,

current then flows between pins 2 and 3. When the voltage is removed from the

first pin, current stops flowing between pins 2 and 3.

When we zoom out a bit we see that there are also diodes and capacitors when

taken together with the transistor switches we now have a memory cell. A

memory cell keeps a minimum current flow to which when you put a small voltage

on its input pin and a similar voltage on its select pin, a voltage will appear and

remain on its output pin. The output voltage remains in its set state until the

voltage is removed from the input pin in conjunction with the select pin.

Why is this important you ask. Very simply, the presence of voltage indicates a

binary 1 and the absence of voltage indicates a binary 0 therefore the memory

cell holds one binary digit or bit which is either 1 or 0 meaning on or off.

In our next lesson we will discuss bytes and words.

Part 1: Goals

23

Part 8 - Bytes, Words, Double Words,
etc...

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Memory is measured in bytes. A byte is 8 bits. Two bytes are called a word and

two words are called a double word which is four bytes (32-bit) and a quad word

is eight bytes (64-bit).

A byte is 8 bits and is 2^8 power which is 256. The number of binary numbers 8

bits in size is one of 256 values starting at 0 and going to 255.

Every byte of memory in a computer has its own unique address. Let's review the

disassembled instructions for a simple hello world application in Linux by setting a

breakpoint on the main function. We will use the GDB debugger:

Don't worry if this does not make sense yet. The point of utilizing this example is

to give you a sneak peek into our first program that we will examine in addition to

learning about memory in a computer.

Below is an examination of the ESP register. Again, it is not critical that you

understand what a register is or what ESP does. We simply want to see what a

memory location looks like:

We see the memory location of 0xffffd040 which of course is in hexadecimal. We

also see the value inside the ESP register which is 0xf7fac3dc which is also in

hexadecimal.

Part 1: Goals

24

It is important to understand that 0xffffd040 is 4 bytes and is a double word. As we

learned in Part 6: Hexadecimal Number System, each hexadecimal digit is 4 bits

long otherwise called a nibble. In 0xffffd040, lets look at the right most digit of 0. In

this example, 0 (hexadecimal) is 4 bits long. If we look at 40 (in hexadecimal), we

see that is a byte in length or 8 bits long. If we look at d040, we have two bytes or

a word in length. Finally, ffffd040 is a double word or 4 bytes in length which is 32-

bits long. The 0x at the beginning of the address just designates that is is a

hexadecimal value.

A computer program is nothing more than machine instructions stored in memory.

A 32-bit CPU fetches a double word from a memory address. A double word is 4

bytes in a row which is read from memory and loaded into the CPU. As soon as it

finishes executing, the CPU fetches the next machine instruction in memory from

the instruction pointer.

Those of you new to assembly have now had your first look. Don't get

discouraged or frustrated if you do not know what is going on here. We will take

our time and go through dozens of examples to break down each step in future

lessons. What is important is that you take your time and examine what each

lesson is discussing. Please always feel free to comment below with any

questions.

In our next tutorial we will discuss the basics of x86 Architecture.

Part 1: Goals

25

Part 9: x86 Basic Architecture

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

A computer application is simply a table of machine instructions stored in memory

to which the binary numbers which make up the program are unique only in the

way the CPU deals with them.

The basic architecture is made up of a CPU, memory and I/O devices which are

input/output devices which are all connected by a system bus as detailed below.

The CPU consists of 4 parts which are:

1)Control Unit - Retrieves and decodes instructions from the CPU and then

storing and retrieving them to and from memory.

2)Execution Unit - Where the execution of fetching and retrieving instructions

occurs.

3)Registers - Internal CPU memory locations used a temporary data storage.

4)Flags - Indicate events when execution occurs.

Part 1: Goals

26

We will discuss 32-bit x86 so therefore a 32-bit CPU first fetches a double word (4

bytes or 32-bits in length) from a specific address in memory and is read from

memory and loaded into the CPU. At this point the CPU looks at the binary

pattern of bits within the double word and begins executing the procedure that the

fetched machine instruction directs it to do.

Upon completion of executing an instruction, the CPU goes to memory and

fetches the next machine instruction in sequence. The CPU has a register, which

we will discuss registers in a future tutorial, called the EIP or instruction pointer

that contains the address of the next instruction to be fetched from memory and

then executed.

We can immediately see that if we controlled flow of EIP, we can alter the

program to do things it was NOT intended to do. This is a popular technique upon

which malware operates.

The entire fetch and execute process is tied to the system clock which is an

oscillator that emits square-wave pulses at precise intervals.

In our next tutorial we will dive deeper into the IA-32 Architecture with a

discussion of the General-purpose Registers.

Part 1: Goals

27

Part 10: General-purpose Registers

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The general-purpose registers are used to temporarily store data as it is

processed on the processor. The registers have evolved dramatically over time

and continue to do so. We will focus on 32-bit x86 architecture for our purposes.

Each new version of general-purpose registers is created to be backward

compatible with previous processors. This means that code utilizing 8-bit registers

on the 8080 chips will still function on today's 64-bit chipset.

General-purpose registers can be used to hold any type of data to which some

have acquired specific use which are used in programs. Lets review the 8

general-purpose registers in an IA-32 architecture.

EAX: Main register used in arithmetic calculations. Also known as accumulator, as

it holds results of arithmetic operations and function return values.

EBX: The Base Register. Pointer to data in the DS segment. Used to store the

base address of the program.

ECX: The Counter register is often used to hold a value representing the number

of times a process is to be repeated. Used for loop and string operations.

EDX: A general purpose register. Additionally used for I/O operations. In addition

will extend EAX to 64-bits.

ESI: Source Index register. Pointer to data in the segment pointed to by the DS

register. Used as an offset address in string and array operations. It holds the

address from where to read data.

EDI: Destination Index register. Pointer to data (or destination) in the segment

pointed to by the ES register. Used as an offset address in string and array

operations. It holds the implied write address of all string operations.

EBP: Base Pointer. Pointer to data on the stack (in the SS segment). It points to

the bottom of the current stack frame. It is used to reference local variables.

ESP: Stack Pointer (in the SS segment). It points to the top of the current stack

frame. It is used to reference local variables.

Keep in mind each of the above registers are 32-bit in length or 4 bytes in length.

Each of the lower 2 bytes of the EAX, EBX, ECX, and EDX registers can be

referenced by AX and then subdivided by the names AH, BH, CH and DH for high

bytes and AL, BL, CL and DL for the low bytes which are 1 byte each.

In addition, the ESI, EDI, EBP and ESP can be referenced by their 16-bit

equivalent which is SI, DI, BP, SP.

This can be a bit confusing to someone who has not studied computer

engineering however let me illustrate in the table below:

Part 1: Goals

28

EAX would have AX as its 16-bit segment and then you can further subdivide AX

into AL for the low 8 bits and AH for the high 8 bits. The same holds true for EBX,

ECX and EDX as well. EBX would have BX as its 16-bit segment and then you

can further subdivide BX into BL for the low 8 bits and BH for the high 8 bits. ECX

would have CX as its 16-bit segment and then you can further subdivide CX into

CL for the low 8 bits and CH for the high 8 bits. EDX would have DX as its 16-bit

segment and then you can further subdivide DX into DL for the low 8 bits and DH

for the high 8 bits.

ESI, EDI, EBP and ESP can be broken down into its 16-bit segments as follows:

ESI would have SI as its 16-bit segment, EDI would have DI as its 16-bit segment,

EBP would have BP as its 16-bit segment and ESP would have SP as its 16-bit

segment.

In our next tutorial we will continue our discussion of the IA-32 Architecture with

the Segment Registers.

Part 1: Goals

29

Part 11: Segment Registers

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The segment registers are used specifically for referencing memory locations.

There are three different methods of accessing system memory of which we will

focus on the flat memory model which is relevant for our purposes.

There are six segment registers which are as follows:

CS: Code segment register stores the base location of the code section (.text

section) which is used for data access.

DS: Data segment register stores the default location for variables (.data section)

which is used for data access.

ES: Extra segment register which is used during string operations.

SS: Stack segment register stores the base location of the stack segment and is

used when implicitly using the stack pointer or when explicitly using the base

pointer.

FS: Extra segment register.

GS: Extra segment register.

Each segment register is 16-bits and contains the pointer to the start of the

memory-specific segment. The CS register contains the pointer to the code

segment in memory. The code segment is where the instruction codes are stored

in memory. The processor retrieves instruction codes from memory based on the

CS register value and an offset value contained in the instruction pointer (EIP)

register. Keep in mind no program can explicitly load or change the CS register.

The processor assigns its values as the program is assigned a memory space.

The DS, ES, FS and GS segment registers are all used to point to data segments.

Each of the four separate data segments help the program separate data

elements to ensure that they do no overlap. The program loads the data segment

registers with the appropriate pointer value for the segments and then reference

individual memory locations using an offset value.

The stack segment register (SS) is used to point to the stack segment. The stack

contains data values passed to functions and procedures within the program.

Segment registers are considered part of the operating system and can neither

read nor be changed directly in almost all cases. When working in the protected

mode flat model (x86 architecture which is 32-bit), your program runs and

receives a 4GB address space to which any 32-bit register can potentially

address any of the four billion memory locations except for those protected areas

defined by the operating system. Physical memory may be larger than 4GB

however a 32-bit register can only express 4,294,967,296 different locations. If

you have more than 4GB of memory in your computer, the OS must arrange a

Part 1: Goals

30

4GB region within memory and your programs are limited to that new region. This

task is completed by the segment registers and the OS keeps close control of

this.

In our next tutorial we will continue our discussion of the IA-32 Architecture with

the Instruction Pointer Register.

Part 1: Goals

31

Part 12: Instruction Pointer Register

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The instruction pointer register called the EIP register is simply the most important

register you will deal with in any reverse engineering. The EIP keeps track of the

next instruction code to execute. EIP points to the next instruction to execute. If

you were to alter that pointer to jump to another area in the code you have

complete control over that program.

Lets jump ahead and dive into some code. Here is an example of a simple hello

world application in C that we will go into more detail much later in our tutorial

series. For our purposes today, we will see the raw POWER of assembly

language and particularly that of the EIP register and what we can do to

completely hack program control.

Don’t worry if you do not understand what it does or its functionality. What to take

note of here is the fact we have a function called unreachableFunction that is

never called by the main function. As you will see if we can control the EIP

register we can hack this program to execute that code!

We have simply compiled the code to work with the IA32 instruction set and ran

it. As you can see there is no call to the unreachableFunction of any kind as it is

unreachable under normal conditions as you can see the ‘Hello World!` printed

when executed.

Part 1: Goals

32

We have disassembled the program using the GDB Debugger. We have set a

breakpoint on the main function and ran the program. The => shows where EIP is

pointing to when we step to the next instruction. If we follow normal program flow,

‘Hello World! will print to the console and exit.

If we run the program again and do an examination of where EIP is pointing to we

will see:

We can see EIP is pointing to main+17 or the address of 0x680cec83.

Lets examine the unreachableFunction and see where it starts in memory and

write down that address.

Part 1: Goals

33

The next step is to set EIP to address 0x0804843b so that we hijack program flow

to run the unreachableFunction.

Now that we have hacked control of EIP, lets continue and watch how we have

hijacked the operation of a running program to our advantage!

Tada! We have hacked the program!

So the question in your mind is why did you show me this when I have no idea of

what any of this is? It is important to understand that when we are doing a lengthy

tutorial such as this we should sometimes look forward to see why we are taking

so many steps to learn the basics before we dive in. It is important however to

show you that if you stay with the tutorial your hard work will pay off as we will

learn how to hijack any running program to make it do whatever we want in

addition to proactively breaking down a malicious program so that we can not only

disable it but trace it back to a potential IP of where the hack originated.

In our next tutorial we will continue our discussion of the IA-32 Architecture with

the Control Registers.

Part 1: Goals

34

Part 13: Control Registers

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Their are five control registers which are used to determine the operating mode of

the CPU and the characteristics of the current executing task. Each control

register is as follows:

CR0: System flag that control the operating mode and various states of the

processor.

CR1: (Not Currently Implemented)

CR2: Memory page fault information.

CR3: Memory page directory information.

CR4: Flags that enable processor feathers and indicate feature capabilities of the

processor.

The values in each of the control registers can’t be directly accessed however the

data in the control register can be moved to one of the general-purpose registers

and once the data is in a GP register, a program can examine the bit flags in the

register to determine the operating status of the processor in conjunction with the

current running task.

If a change is required to a control register flag value, the change can be made to

the data in the GP register and the register moved to the CR. Low-level System

Programmers usually modify the values in control registers. Normal application

programs do not usually modify control register entries however they might query

flag values to determine the capabilities of the host processor chip on which the

program is currently running.

In our next tutorial we will continue our discussion of the IA-32 Architecture with

the topic of Flags.

Part 1: Goals

35

Part 14: Flags

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The topic of flags are one of the most extremely complex and complicated

concepts of assembly language and program flow control when reverse

engineering. This information below will become much clearer as we enter into

the final phase of our training when we reverse engineer C applications into

assembly language.

What is important here is to take away the fact that flags help control, check and

verify program execution and are a mechanism to determine whether each

operation that is performed by the processor is successful or not.

Flags are critical to assembly language applications as they are a check to verify

each programs functions successful execution.

We are dealing with 32-bit assembly to which a single 32-bit register which

contains a group of status, control and system flags exist. This register is called

the EFLAGS register as it contains 32 bits of information that are mapped to

represent specific flags of information.

There are three kinds of flags which are status flags, control flags and system

flags.

Status flags are as follows:

CF: Carry Flag

PF: Parity Flag

AF: Adjust Flag

ZF: Zero Flag

SF: Sign Flag

OF: Overflow Flag

The carry flag is set when a math operation on an unsigned integer value

generates a carry or borrow for the most significant bit. This is an overflow

condition for the register involved in the math operation. When this occurs, the

remaining data in the register is not the correct answer to the math operation.

The parity flag is used to indicate corrupt data as a result of a math operation in a

register. When checked, the parity flag is set if the total number of 1 bits in the

result is even and is cleared if the total number of 1 bits in the result is odd. When

the parity flag is checked, an application can determine whether the register has

been corrupted since the operation.

The adjust flag is used in Binary Coded Decimal math operations and is set if a

carry or borrow operation occurs from bit 3 of the register used for the calculation.

Part 1: Goals

36

The zero flag is set if the result of an operation is zero.

The sign flag is set to the most significant bit of the result which is the sign bit and

indicates whether the result is positive or negative.

The overflow flag is used in signed integer arithmetic when a positive value is too

big or a negative value is too small to be represented in the register.

Control flags are utilized to control specific behavior in the processor. The DF flag

which is the direction flag is used to control the way strings are handled by the

processor. When set, string instructions automatically decrement memory

addresses to get the next byte in the string. When cleared, string instructions

automatically increment memory addresses to get the next byte in the string.

System flags are used to control OS level operations which should NEVER be

modified by any respective program or application.

TF: Trap Flag

IF: Interrupt Enable Flag

IOPL: I/O Privilege Level Flag

NT: Nested Task Flag

RF: Resume Flag

VM: Virtual-8086 Mode Flag

AC: Alignment Check Flag

VIF: Virtual Interrupt Flag

VIP: Virtual Interrupt Pending Flag

ID: Identification Flag

The trap flag is set to enable single-step mode and when in this mode the

processor performs only one instruction code at a time, waiting for a signal to

perform the next instruction. This is essential when debugging.

The interrupt enable flag controls how the processor responds to signals received

from external sources.

The I/O privilege field indicates the input-output privilege level of the currently

running task and defines access levels for the input-output address space which

must be less than or equal to the access level required to access the respective

address space. In the case where it is not less than or equal to the access level

required, any request to access the address space will be denied.

The nested task flag controls whether the currently running task is linked to the

previously executed task and is used for chaining interrupted and called tasks.

The resume flag controls how the processor responds to exceptions when in

debugging mode.

The VM flag indicates that the processor is operating in virtual-8086 mode instead

of protected or real mode.

Part 1: Goals

37

The alignment check flag is used in conjunction with the AM bit in the CR0 control

register to enable alignment checking of memory references.

The virtual interrupt flag replicates the IF flag when the processor is operating in

virtual mode.

The virtual interrupt pending flag is used when the processor is operating in virtual

mode to indicate that n interrupt is pending.

The ID flag indicates whether the processor supports the CPUID instruction.

In our next tutorial we will discuss the stack.

Part 1: Goals

38

Part 15: Stack

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Functions are the most fundamental feature in software development. A function

allows you to organize code in a logical way to execute a specified task. It is not

critical that you understand how functions work at this stage it is only important

that you understand that when we start learning to develop, we want to minimize

duplication by using functions that can be called multiple times rather than

duplicate code taking up excessive memory.

When a program starts to execute a certain contiguous section of memory is set

aside for the program called the stack.

The stack pointer is a register that contains the top of the stack. The stack pointer

contains the smallest address, lets say for example 0x00001000, such that any

address smaller than 0x00001000 is considered garbage and any address greater

than 0x00001000 is considered valid.

The above address is random and is not an absolute where you will find the stack

pointer from program to program as it will vary. Lets look at what the stack looks

like from an abstract perspective:

The above diagram is what I want you to keep clear in your mind as that is what is

actually happening in memory. The next series of diagrams will show the opposite

of what is shown above.

You will see the stack growing upward in the below diagrams however in reality it

is growing downward from higher memory to lower memory.

In the addMe example below, the stack pointer (ESP), when examined in memory

on a breakpoint on the main function, lists 0xffffd050. When the program calls the

addMe function from main, ESP is now 0xffffd030 which is LOWER in memory.

Part 1: Goals

39

Therefore the stack grows DOWNWARD despite the diagram showing it pointing

upward. Just keep in mind when the arrows below are pointing upward they are

actually pointing to lower memory addresses.

The stack bottom is the largest valid address of the stack and is located in the

larger address area or top of the memory model. This can be confusing as the

stack bottom is higher in memory. The stack grows downward in memory and it is

critical that you understand that now as we go forward.

The stack limit is the smallest valid address of the stack. If the stack pointer gets

smaller than this, there is a stack overflow which can corrupt a program to allow

an attacker to take control of a system. Malware attempts to take advantage of

stack overflows. As of recent, there are protections build into modern OS that

attempt to prevent this from happening.

There are two operations on the stack which are push and pop. You can push one

or more registers by setting the stack pointer to a smaller value. This is usually

done by subtracting four times the number of registers to be pushed onto the

stack and copying the registers to the stack.

You can pop one or more registers by copying the data from the stack to the

registers, then to add a value to the stack pointer. This is usually done by adding

four times the number of registers to be popped on the stack.

Let us look at how the stack is used to implement functions. For each function call

there is a section of the stack reserved for the function. This is called the stack

frame.

Let’s look at the C program we created in tutorial 12 and examine what the main

function looks like:

We see two functions here. The first one is the unreachableFunction to which will

never execute under normal circumstances and we also see the main function

that will always be the first function to be called onto the stack.

When we run this program, the stack will look like this:

Part 1: Goals

40

We can see the stack frame for int main(void) above. It is also referred to as the

activation record. A stack frame exists whenever a function has started but yet to

complete. For example, inside of the body of the int main(void) there is a call to int

addMe(int a, int b) which takes two arguments a and b. There needs to be

assembly language code in int main(void) to push the arguments for int addMe(int

a, int b) onto the stack. Lets examine some code.

When we compile and run this program we will see the value of 5 to be print out

like this:

Very simply, int main(void) calls int addMe(int a, int b) first and will get put on the

stack like this:

Part 1: Goals

41

You can see that by placing the arguments on the stack, the stack frame for int
main(void) has increased in size. We also reserved space for the return value

which is computed by int addMe(int a, int b) and when the function returns, the

return value in int main(void) gets restored and execution continues in int
main(void) until it finishes.

Once we get the instructions for int addMe(int a, int b), the function may need

local variables so the function needs to push some space on the stack which

would look like:

Part 1: Goals

42

int addMe(int a, int b) can access the arguments passed to it from int
main(void) because the code in int main(void) places the arguments just as int
addMe(int a, int b) expects it.

FP is the frame pointer and points to the location where the stack pointer was just

before int addMe(int a, int b) moved the stack pointer or SP for int addMe(int a,
int b)’s own local variables.

The use of a frame pointer is essential when a function is likely to move the stack

pointer several times throughout the course of running the function. The idea is to

keep the frame pointer fixed for the duration of int addMe(int a, int b)’s stack

frame. In the meantime, the stack pointer can change values.

We can use the frame pointer to compute the locations in memory for both

arguments as well as local variables. Since it does not move, the computations for

those locations should be some fixed offset from the frame pointer.

Once it is time to exit int addMe(int a, int b), the stack pointer is set to where the

frame pointer is which pops off the int addMe(int a, int b) stack frame.

In sum, the stack is a special region of memory that stores temporary variables

created by each function including main. The stack is a LIFO which is last in, first

out data structure which is managed and optimized by the CPU closely. Every

time a function declares a new variable it is pushed onto the stack. Every time a

function exists, all of the variables pushed onto the stack by that function are

freed or deleted. Once a stack variable is freed, that region of memory becomes

available for other stack variables.

The advantage of the stack to store variables is that memory is managed for you.

You do not have to allocate memory manually or free it manually. The CPU

manages and organizes stack memory very efficiently and is very fast.

Part 1: Goals

43

It is critical that you understand that when a function exits, all of its variables are

popped off the stack and lost forever. The stack variables are local. The stack

grows and shrinks as functions push and pop local variables.

I can see your head spinning around and around. Keep in mind, these topics are

complicated and will continue to develop in future tutorials. We have been dealing

with a lot of confusing topics such as registers, memory and now the stack and it

can be overwhelming. If you ever have questions, please comment below and I

will help you to better understand this framework.

In our next tutorial we will discuss the heap.

Part 1: Goals

44

Part 16: Heap

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Our next step in the Basic Malware Reverse Engineering section focuses on the

heap. Keep in mind, the stack grows downward and the heap grows upward. It is

very, very important that you understand this concept as we progress forward in

our future tutorials.

The heap is the region of your computer's memory that is not managed

automatically for you, and is not as tightly managed by the CPU. It is free-floating

region of memory and is larger than the stack allocation of memory.

To allocate memory on the heap, you must use malloc() or calloc(), which are

built-in C functions. Once you have allocated memory on the heap, you are

responsible for freeing it by using free() to de-allocate that memory once you

don't need it any more.

If you don’t do this step, your program will have what is known as a memory leak.

That is, memory on the heap will still be set aside and won't be available to other

processes that need it.

Unlike the stack, the heap does not have size restrictions on variable size. The

only thing that would limit the heap is the physical limitations of your computer.

Heap memory is slightly slower to be read from and written to, because you have

to to use pointers to access memory on the heap. When we dive into our C

tutorial series we will demonstrate this.

Unlike the stack, variables created on the heap are accessible by any function,

anywhere in your program. Heap variables are essentially global in scope.

Part 1: Goals

45

If you need to allocate a large block of memory for something like a struct or a

large array and you need to keep that variable around for a good duration of the

program to which must be accessed globally, then you should choose the heap

for this purpose. If you need variables like arrays and structs that can change size

dynamically such as arrays that can grow or shrink as needed, then you will likely

need to allocate them on the heap, and use dynamic memory allocation functions

like malloc(), calloc(), realloc() and free() to manage that memory manually.

The next step is to dive into programming C in the Linux environment where we

step-by-step disassemble each C program so in effect you will be learning both C

programming and Assembly so that you can progress your skills in Malware

Analysis and Reverse Engineering.

I look forward to seeing you all next week when we take a comprehensive step-

by-step tutorial on how to install Linux on your current computer using the FREE

Virtual Box software tool.

Part 1: Goals

46

Part 17 – How To Install Linux

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

If you do not have Linux installed on a computer within your household, I would

suggest installing Virtual Box which is an open-source free virtual environment

which you can install on your existing computer to have a version of Linux you

can program with. Below is a link to download and install Virtual Box as there are

versions for both Windows and Mac.

https://www.virtualbox.org/wiki/Downloads

In addition, you will need a copy of Linux to which I will be working with Ubuntu.

Below is a link to download the .iso file to which you will install once you have

Virtual Box installed.

http://www.ubuntu.com/download/desktop

After you download the above .iso, go to your Download directory and first

execute and run the VirtualBox-5.0.24-108355-Win.exe or whatever version of

VirtualBox that is currently available. If you are running a Mac, you will download

the .dmg file. Simply double-click on the file to execute and run it.

Part 1: Goals

47

After you install VirtualBox-5.0.24-108355-Win.exe or the Mac .dmg file and you

will see this screen:

Click on the New button above which is located in the top-left corner of the screen

as it is a big blue cog-looking circle.

In the name field above, type Ubuntu and click the next button.

Part 1: Goals

48

It is important to click on the blue slider bar above and select an amount of ram

that points to an area in green so that it does not overwhelm your computer

resources. After moving the blue slider, click next.

Then click create.

Part 1: Goals

49

Then click next.

Then click next.

Part 1: Goals

50

Please move the dial up to 16.00 GB rather than 8.00 GB shown above then click

create.

The next step is to click on the green start button.

Part 1: Goals

51

The next step is to click on the yellow folder just above the cancel button.

The next step is to click on the .iso file that should be in your Download directory

and click open.

Part 1: Goals

52

The next step is to click start.

The next step is to let the install begin and click Install Ubuntu.

Part 1: Goals

53

The next step is to check each of the boxes to Download updates while installing

Ubuntu and click continue.

The next step is to select Erase disk and install Ubuntu and click install now.

Part 1: Goals

54

The next step is to click continue and progress forward to the screen where you

will select your timezone to which you will select continue.

The next step is to select your keyboard layout and click continue.

Part 1: Goals

55

The next step is to create a name for your account. I chose noroot and did the

same for the username. In addition, create a password and re-type it for

verification and click continue.

At this point it will take some time to install the operating system. When the

process is finished, click restart now. If the window locks up, click Power Off The

Machine and click close or next.

Part 1: Goals

56

At this point, click on the green start button.

Enter in your password that you created earlier and click enter on your

keyboard. You can click on the blue x buttons in the top right corner as they are

just some information you can close out.

Part 1: Goals

57

Congratulations! You have a working version of Linux!

Click on the top left icon and type terminal and double-click on the first Terminal

icon with the >_ in the window.

Part 1: Goals

58

You will see a Terminal icon at the bottom left of your screen. Right-click on it and

select Lock to Launcher so that it will be available for you once you close the

window.

In the terminal window type cd Desktop and press Enter. Then type mkdir Code

and press enter. The first command moves you into the Desktop directory and the

mkdir command creates a folder on the Desktop called Code so that we have a

place to store our software applications that we create.

It is important you keep your version of Linux up to date. Every time you login, you

should type the following commands. First, sudo apt-get update and press enter.

Part 1: Goals

59

Next you should then type sudo apt-get upgrade and press enter.

In order to work with 32-bit Assembly examination, we need to install the gcc

multilib package so that we can compile 32-bit versions of C code for

examination. Type sudo apt-get install gcc-multilib and press enter.

Finally click on Devices and click Insert Guest Additions CD Image… in order

to get a better working functionality out of your VM.

This has been a very long tutorial however necessary to get you a working copy

of Linux so that we can continue with our future tutorials.

I look forward to seeing you all next week when we learn how to use the vim text

editor to begin coding!

Part 1: Goals

60

Part 18 - vim Text Editor

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Now that we have a working version of Linux, we need a text editor that we can

work with in the terminal.

To begin, open your terminal and type:

This will open up the vi text editor. The first thing you need to type is the letter ‘i’ to

set the editor to insert mode so you may begin typing.

After you a done typing, press the ‘esc’ key and type ‘:wq’ and press enter.

Congratulations! You created your first file! This is a one time file that we need to

create in order to use our text editor they way we want it to perform.

The first line states set number which means we would like each file to show line

numbers as this is essential for debugging code. The set smartindent, set
tabstop, set shiftwidth and set expandtab statements set forth rules to properly

format code and allow 4 spaces per tab indent which will help our code to look

clean.

There are several commands you need to be aware of. Keep in mind, to go into

command mode rather than insert mode you must press the ‘esc’ key. Below are

the most common commands:

j or down-arrow [move cursor down one line]

k or up-arrow [move cursor up one line]

h or left-arrow [move cursor left one character]

l or right-arrow [move cursor right one character]

0 [move cursor to the start of the current line]

$ [move cursor to the end of the current line]

b [move cursor back to the beginning of preceding word]

dd [deletes the line the cursor is on]

D [deletes from the cursor position to the end of the line]

yy [copies the current line]

Part 1: Goals

61

p [puts the copied text after the cursor]

u [undo the last change to the file]

:w [save file]

:wq [save file and exit text editor]

:q! [quit text editor and do not save any changes]

You will be consistently moving between command mode ‘esc’ and insert mode

‘i’. Remember that when you want to insert characters you need to be in insert

mode and when you want to move the cursor other than moving to the next line,

you need to be in command mode.

Now that we have vi configured, lets install vim which has some better

functionality. Simply type:

Once that is installed instead of using vi we will now use vim.

I look forward to seeing you all next week when we talk about why it’s important to

learn Assembly Language.

Part 1: Goals

62

Part 19 - Why Learn Assembly

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Why learn Assembly Language? Java is the most in-demand programming

language and will get me a job immediately so why in the hell would I ever waste

my damn time learning this archaic Assembly Language crap?

So many people ask me this question and it is true, Java is HOT and in the

greatest demand and there is nothing wrong with learning Java however the

threats that face society more than anything in this world, above everything else,

is the Cyber Security threat. With that said, Java offers a great career path and I

would encourage you to learn it however Java is not the only game in town.

Most malware is written in higher-level languages however most malware authors

do not give the attackers their source code so they can properly deal with their

crafted attack.

The hackers use a multitude of high-level languages and the demand for new

professional Malware Analyst Reverse Engineers continue to grow daily.

When we examine malware, more than not we get only a compiled binary. The

only thing we can do with a compiled binary is to break it down, instruction-by-

instruction, in Assembly Language as EVERYTHING ultimately goes down to

Assembly Language.

When someone says Assembly Language is a dinosaur I say to those people, lets

have that conversation when your entire network is brought to its knees and you

can’t login to a single terminal or manipulate a single machine on your network.

Lets talk about how useless Assembly Language is at that time.

Understanding Assembly Language allows one to open a debugger on an a

running process. Each running program has a PID to which is a numerical value

which designates a running program. If we open a running process or any bit of

malware with a professional or open-source tool like GDB, we can see EXACTLY

what is going on and then grab the EIP instruction pointer to go where we need it

to go to have COMPLETE control over program flow.

Most malware is written, as I have stated, in a middle-level language and once

compiled it can be read by the hardware or OS as it is not human-readable. In

order for professional Cyber Security Engineers to understand this, they must

learn to read, write and properly debug Assembly.

Assembly Language is low-level and has many more instructions than you would

see in a higher-level application.

The prior 18 lessons in this tutorial series gave you the basics of x86 hardware.

As I have stated in prior tutorials, we will focus on 32-bit Assembly debugging as

most malware is going to try to affect as many systems as possible and although

Part 1: Goals

63

there is 64-bit malware, 32-bit malware is significantly more destructive and

dangerous and will be the focus of this series.

I look forward to seeing you all next week when we learn the basics of instruction

code handling.

Part 1: Goals

64

Part 20 - Instruction Code Handling

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

A CPU reads instruction codes that are stored in memory as each code set can

contain one of more bytes of information that guide the processor to perform a

very specific task. As each instruction code is read in from memory, any data

needed for the instruction code is also stored and read into memory.

Keep in mind, memory that contain instruction codes are no different than the

bytes that contain the data used by the CPU and special pointers are used to help

the CPU keep track of where in memory data is and where instruction codes are

stored.

A data pointer helps the CPU keep track of where the data area in memory starts

which is the stack. When new data elements are placed in the stack, the stack

pointer moves down in memory and as data is read from the stack the stack

pointer moves up in memory. Please review Part 15 – Stack if you don’t

understand this concept.

The instruction pointer is used to help the CPU keep track of which instruction

codes have already been processed and what code is to be processed next.

Please review Part 12 – Instruction Pointer Register if you don’t understand this

concept.

Each and every instruction code must include an opcode that defines the basic

function or task to be performed by the CPU to which opcodes are between 1 and

3 bytes in length and uniquely defines the function that is performed.

Lets examine a simple C program called test.c to get started.

All we are doing is creating a main function of type integer to which it has a void

parameter and returning 0. All this program does is simply exit the OS.

Lets compile and run this program.

Lets use the objdump tool to and find the main function within it.

Here is a snippet of the results you would get by running the above

command. Here are the contents of the main function. Keep in mind the below is

in Intel syntax as we spoke about in the last tutorial.

Part 1: Goals

65

On the far left we have the corresponding memory addresses. In the center we

have the opcodes and finally on the right we have the corresponding assembly

language in Intel syntax.

To keep this simple, lets examine memory address 80483de where we see op

codes b8 00 00 00 00. We can see that the b8 opcode corresponds with the mov
eax, 0x0 instruction on the right. The next series of 00 00 00 00 represents 4

bytes of the value 0. We see mov eax, 0x0 therefore the value of 0 is moved into

eax therefore representing the above code. Keep in mind, the IA-32 platform uses

what we call little-endian notation which means the lower-value bytes appear first

in order when reading right to left.

I want to make sure you have this straight in your head so lets pretend the value

above was:

mov eax, 0x1

In this scenario the corresponding opcode would be:

b8 01 00 00 00

If you are confused it is ok. Remember little-endian? Keep in mind eax is 32-bits

wide therefore that is 4 bytes (8 bits = 1 byte). The values are listed in reverse

order therefore we see the above representation.

I look forward to seeing you all next week when we dive into the details about how

to compile a program.

Part 1: Goals

66

Part 21 - How To Compile A Program

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s look again at last weeks C program and take a deeper look at how we turn

that source code into an executable file.

To compile this program in C, we simply type:

This single step will create exit.o which is the binary object file and exit which is

the binary executable file.

If we wanted to convert this C source code to Assembly, we need to use the GNU

compiler in the below fashion. Lets start by running the below command in the

terminal:

Let’s begin with the -S switch. The -S switch will create comparable AT&T Syntax

Assembly source code. The -m32 will create a 32-bit executable and the -O0 will

tell the compiler how much optimization to use when compiling the binary. That is

the capital O and the numeric 0. Numeric 0 in that case means no optimization

which means it is at the most human readable instruction set. If you were to

substitute a 1, 2 or 3 the amount of optimization increases as the values go up.

This step above creates exit.s which is the equivalent Assembly Language source

code as we mentioned above.

We then need to compile the Assembly source code into a binary object file which

will generate a exit.o file.

Part 1: Goals

67

Finally we need to use a linker to create the actual binary executable code from

the binary object file which will create an executable called exit.

Last week when we examined the executable file exit in a program called

objdump, and examined the main area we saw the following below except this

time we will use AT&T Assembly Language Syntax:

This command above will create the following output below:

Lets examine the code in the debugger. Let’s start GDB which is the GNU

debugger and first list the source code by typing l, then set a breakpoint on main

and run the program. Finally we will disassemble and review the output below:

In each of the three above examinations, you will essentially see the same set of

instructions which we will take a deeper look as to what is exactly going on in

future tutorials.

Throughout this tutorial series thus far we have been looking at Intel Syntax

Assembly Language. We are going to turn our focus to AT&T Syntax as I have

stated above as this is the natural syntax utilized in Linux with the GNU

Assembler and GNU Debugger.

The biggest different you will see is that in AT&T Syntax, the source and

destinations are reversed.

Part 1: Goals

68

AT&T Syntax : movl %esp, %ebp [This means move esp into ebp.]

Intel Syntax : mov esp, ebp [This means move ebp into esp.]

You will also see some additional variances as AT&T uses additional variances

which we will cover in a later tutorial.

If we wanted to create a pure Assembly Code program which does the same thing

above we would type:

To compile this we would use the GAS Assembler and Linker:

To run any executable in Linux you type ./ and the name of the binary executable.

In this case we type ./exit and press return. When we do so, nothing happens.

That is good as all we did was create a program that exited to the OS.

I look forward to seeing you all next week when we dive into more assembly code!

Part 1: Goals

69

Part 22 - ASM Program 1 [Moving
Immediate Data]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

I appreciate everyone being patient as it has taken 21 lessons to get to our first

ASM program however very necessary background had to be covered in order to

fully understand where we begin when developing assembly language.

We are going to create 32-bit assembly programs as most malware is written in

32-bit mode in order to attack the maximum amount of systems possible. Keep in

mind even though most of us ALL have 64-bit operating systems, 32-bit programs

can run on them.

For the most part we have been working with Intel syntax when it comes to

assembly however I am going to focus on the native AT&T syntax going forward.

It is very easy to convert back and forth between Intel and AT&T syntax as I have

demonstrated in prior tutorials.

Every assembly language program is divided into three sections:

1)Data Section: This section is used for declaring initialized data or constants as

this data does not ever change at runtime. You can declare constant values,

buffer sizes, file names, etc.

2)BSS Section: This section is used for declaring uninitialized data or variables.

3)Text Section: This section is used for the actual code sections as it begins with

a global _start which tells the kernel where execution begins.

Critical to any development is the use of comments. In the AT&T syntax we use

use the # symbol to declare a comment as any data after that symbol on a

respective line will be ignored by the compiler.

Keep in mind, assembly language statements are entered in one statement per

line as you do not have to end the line with a semicolon like many other

languages. The structure of a statement is as follows:

[label] mnemonic [operands] [comment]

A basic instruction has two parts of which the first one is the name of the

instruction or the mnemonic which is executed and the second part is the

operands or parameters of the command.

Our first program will demonstrate how to move immediate data to a register and

immediate data to memory.

Lets open VIM and create a program called moving_immediate_data.s and type

the following:

Part 1: Goals

70

To compile you type:

as –32 -o moving_immediate_data.o moving_immediate_data.s

ld -m elf_i386 -o moving_immediate_data moving_immediate_data.o

To run you type:

./moving_immediate_data

I would like to show you what it would look like in Intel syntax as well. Before we

examine this part you will need to type sudo apt-get install nasm in a command

prompt which will install the Netwide Assembler:

To compile you type:

nasm -f elf32 moving_immediate_data.asm

ld -m elf_i386 -o moving_immediate_data moving_immediate_data.o

To run you type:

./moving_immediate_data

Ok what the heck! There is no output! That is correct and you did not do anything

wrong. Many of our programs will not actually do anything as they are not much

more than sandbox programs that we will use in GDB for analysis and

manipulation.

Part 1: Goals

71

Next week we will dive into the GNU GDB debugger and see what is going on

under the hood.

I want to take some time and discuss the code at line 20 – 22 in the AT&T version

and the Intel Syntax version as well. This set of instructions takes advantage of

what we call a software interrupt. On line 20 in the AT&T Syntax, we movl $1,
%eax meaning we move the decimal value of 1 into eax which specifies the

sys_exit call which will properly terminate program execution back to Linux so that

there is no segmentation fault. On line 21, we movl $0, %ebx which moves 0 into

ebx to show that the program successfully executed and finally we see int $0x80.

Line 20 and 21 set up the software interrupt which we call on line 22 with the

instruction int $0x80. Let’s dive into this a little deeper.

In Linux, there are two distinct areas of memory. At the very bottom of memory in

any program execution we have the Kernel Space which is made up of the

Dispatcher section and the Vector Table.

At the very top of memory in any program execution we have the User Space

which is made up of The Stack, The Heap and finally your code all of which can

be illustrated in the below diagram:

Part 1: Goals

72

When we load the values as we demonstrated above and call INT 0x80, the very

next instruction’s address in the User Space, ASM Code section which is your

code, is placed into the Return Address area in The Stack. This is critical so that

when INT 0x80 does its work, it can properly know what instruction is to be

carried out next to ensure proper and sequential program execution.

Keep in mind in modern versions of Linux, we are utilizing Protected Mode which

means you do NOT have access to the Linux Kernel Space. Everything under the

long line that runs in the middle of the diagram above represents the Linux Kernel

Space.

The natural question is why can’t we access this? The answer is very simple,

Linux will NOT allow your code to access operating system internals as that would

be very dangerous as any Malware could manipulate those components of the

OS to track all sorts of things such as user keystrokes, activities and the like.

In addition, modern Linux OS architecture changes the address of these key

components constantly as new software is installed and removed in addition to

system patches and upgrades. This is the cornerstone of Protected Mode

operating systems.

The way that we have our code communicate with the Linux Kernel is through the

use of a kernel servies call gate which is a protected gateway between User

Space where your program is running and Kernel Space which is implemented

through the Linux Software Interrupt of 0x80.

At the very, very bottom of memory where segment 0, offset 0 exists is a lookup

table with 256 entries. Every entry is a memory address including segment and

offset portions which comprise of 4 bytes per entry as the first 1,024 bytes are

reserved for this table and NO OTHER CODE can be manipulated there. Each

address is called an interrupt vector which comprises the whole called the

interrupt vector table where every vector has a number from 0 to 255 to which

vector 0 starts off occupying bytes 0 to 3. This continues with vector 1 which

contains 4 to 7, etc.

Keep in mind, none of these addresses are part of permanent memory. What is

static is vector 0x80 which points to the services dispatcher which point to Linux

kernel service routines.

When the return address is popped off the stack returns to the next instruction,

the instruction is called the Interrupt Return or IRET which completes the

execution of program flow.

Take some time and look at the entire table of system calls by opening up a

terminal and typing:

cat /usr/include/asm/unistd_32.h

Below is a snapshot of just a few of them. As you can see the exit 1 represents

the sys_exit that we utilized in our above code.

Part 1: Goals

73

Starting with this lesson we will take a 3-step approach:

1)Program

2)Debug

3)Hack

Each week we will start with a program like you see here, the following week we

will take it into GDB and examine what exactly is going on at the assembly level

and finally in the third series of each week we will hack the data in GDB to change

it to whatever we want demonstrating the ability to control program flow which

includes learning how to hack malware to a point where it is not a threat.

We will not necessarily look at malware directly as I would rather focus on the

topics of assembly language programs that will give you the tools and

understanding so that ANY program can be debugged and manipulated to your

liking. That is the purpose of these tutorials.

The information you will learn in this tutorial series can be used with high-level

GUI debuggers like IDA Pro as well however I will focus only on the GNU GDB

debugger.

I look forward to seeing you all next week when we dive into creating our first

assembly debug!

Part 1: Goals

74

Part 23 - ASM Debugging 1 [Moving
Immediate Data]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s begin by loading the binary into GDB.

To load into GDB type:

gdb -q moving_immediate_dat

Let’s first set a breakpoint on start by typing b _start.

We can then run the program by typing r.

To then begin disassembly, we simply type disas.

We coded a nop which means no operation or 0x90 from an OPCODE

perspective for proper debugging purposes which the breakpoint properly hit. This

is good practice when creating assembly programs.

The native syntax as I have stated many times before is AT&T syntax which you

see above. I painfully go back and forth deliberately so that you have comfort in

each however going forward I will be sticking to the AT&T syntax however wanted

to show you a few examples of both. I will state again that if you ever want to see

Intel syntax simply type set-disassembly-flavor intel and you will have what you

are looking for.

We first use the command si which means step-into to advance to the next

instruction. What we see here at _start+0 is you are moving the hex value of

0x64 into EAX. This is simply moving decimal 100 or as the computer sees it, hex

0x64 into EAX which demonstrates moving an immediate value into a register.

Part 1: Goals

75

We step-into again and then use the command i r which keep in mind has a space

between them to give us information on the state of the CPU registers. We can

see EAX now has the value of 0x64 hex or 100 decimal.

After we step-into again and do a disas, we see that we have then moved the

value of 0x50 into the buffer label as can refer back to the source code from last

week to see.

When dealing with non-register data, we can use the print command above as we

type print /x buffer and it clearly shows us that the value inside buffer is 0x50.

The /x designation means show us the value in hex.

Consequently you can review slide 2 of this tutorial above you see at _start+5 the

immediate value of 0x50 loaded into the buffer label or in this case the address of

buffer which is 0x8049090 and we can examine it by using the examine

instruction by typing x/xb 0x8049090 which shows us one hex byte at that

location which yields 0x50.

We will be doing this with every program example so that we can dive into the

debugging process. If there are any questions, please leave them below in the

comments.

I look forward to seeing you all next week when we dive into creating our first

assembly hack!

Part 1: Goals

76

Part 24 - ASM Hacking 1 [Moving
Immediate Data]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s begin by loading the binary into GDB.

To load into GDB type:

gdb -q moving_immediate_data

Let’s first set a breakpoint on start by typing b _start.

We can then run the program by typing r.

To then begin disassembly, we simply type disas.

We coded a nop which means no operation or 0x90 from an OPCODE

perspective for proper debugging purposes which the breakpoint properly hit. This

is good practice when creating assembly programs.

Lets have some fun! At this point lets si once and do an i r to see that 0x64 has in

fact been moved into EAX.

Part 1: Goals

77

We can see EAX has the value of 0x64 or 100 decimal. Lets HACK that value

now by setting EAX to say something like 0x66 by typing set $eax = 0x66.

BAM! There we go! You can see the ULTIMATE power of assembly here! We just

hacked the value from 0x64 to 0x66 or 100 to 102 decimal. This is a trivial

example however you can clearly see when you learn to master these concepts

you develop a greater power over the computer. With each program that we

create, we will have a very simple lesson like this where we will hijack at least one

portion of the code so we can not only see how the program is created and

debugged but how we can manipulate it to whatever we want.

I look forward to seeing you all next week when we dive into creating our second

assembly program!

Part 1: Goals

78

Part 25 - ASM Program 2 [Moving Data
Between Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our second program we will demonstrate how we can move data between

registers. Moving data from one register to another is the fastest way to move

data. It is always advisable to keep data between registers as much as can be

engineered for speed.

Specifically we will move the value in EDX into EAX. We will initialize this program

with a simple immediate value of 22 decimal which will go into EDX and ultimately

into EAX.

Keep in mind you can only move similar registers between each other. We know

that EAX and EDX are 32-bit registers. We know that each of these registers can

be accessed by their 16-bit values as ax and dx respectively. You can’t move a

32-bit value into a 16-bit value and vice-versa.

I look forward to seeing you all next week when we dive into debugging our

second assembly program!

Part 1: Goals

79

Part 26 - ASM Debugging 2 [Moving Data
Between Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s debug the second program below:

Lets fire up GDB and break on _start, run the binary and disas:

Now lets si twice and i r:

As we can see the value of 0x16 or 22 decimal did move into EDX successfully.

Now lets si again.

Part 1: Goals

80

As you can see we have successfully moved EDX into EAX.

I look forward to seeing you all next week when we dive into hacking our second

assembly program!

Part 1: Goals

81

Part 27 - ASM Hacking 2 [Moving Data
Between Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s hack the second program below:

Lets fire up GDB and break on _start, run the binary and disas:

Now lets si twice and i r:

Part 1: Goals

82

As we can see the value of 0x16 or 22 decimal did move into EDX successfully.

This is what we did in the last lesson however here we are going to hack that

value to something else.

We can set $edx = 0x19 for example:

As you can see we easily hacked the value of EDX to 0x19 or 25 decimal.

Hopefully you see some very simple patterns now that we are diving into very

simple assembly language programs. The key is to understand how to manipulate

values and instructions so that you have complete control over the binary.

We are going to continue to move at a snails pace throughout the rest of this

tutorial as my goal is to give everyone very small bite-size examples of how to

understand x86 assembly.

I look forward to seeing you all next week when we dive into writing our third

assembly program!

Part 1: Goals

83

Part 28 - ASM Program 3 [Moving Data
Between Memory And Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our third program we will demonstrate how we can move data between memory

and registers.

Specifically we will move the value of inside the constant integer of 10 decimal

into ECX.

Keep in mind to assemble we type:

as –32 -o moving_data_between_memory_and_registers.o
moving_data_between_memory_and_registers.s

To link the object file we type:

ld -m elf_i386 -o moving_data_between_memory_and_registers
moving_data_between_memory_and_registers.o

I look forward to seeing you all next week when we dive into debugging our third

assembly program!

Part 1: Goals

84

Part 29 - ASM Debugging 3 [Moving Data
Between Memory And Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s debug!

Specifically we will move the value of inside the constant integer of 10 decimal

into ECX.

We open GDB in quiet mode and break on _start and run by following the

commands above.

Part 1: Goals

85

As we can see when we info registers the value of ECX is 0.

After we step into twice, we now see the value of ECX as 10 decimal of 0xa hex.

I look forward to seeing you all next week when we dive into hacking our third

assembly program!

Part 1: Goals

86

Part 30 - ASM Hacking 3 [Moving Data
Between Memory And Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s hack!

Specifically we will move the value of inside the constant integer of 10 decimal

into ECX like before.

We open GDB in quiet mode and break on _start and run by following the

commands above.

Part 1: Goals

87

As we can see when we info registers the value of ECX is 0. Let’s do a si and

another si.

As you can see the value of ECX is 10 decimal or 0xa hex as it was in the prior

lesson now lets hack that value to something else.

Let’s set $ecx = 1337 and do an i r.

As you can clearly see we have hacked the value of ECX to 0x539 hex or 1337

decimal.

As I have stated throughout this series. Each of these lessons are very bite-sized

examples so that you get the hard muscle memory on how to hack through a

variety of situations so that you ultimately have a complete mastery of processor

control.

I look forward to seeing you all next week when we dive into creating our fourth

assembly program!

Part 1: Goals

88

Part 31 - ASM Program 4 [Moving Data
Between Registers And Memory]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our fourth program we will demonstrate how we can move data between

registers and memory.

Specifically we will move the immediate value of 777 decimal into EAX. We then

move that value stored in EAX into the constant value in memory which initially

had the value of 10 decimal at runtime. Keep in mind we could have called the

value anything however I called it constant as it was set up as a constant in the

.data section.

You can clearly see it can be manipulated so it is NOT a constant. I chose

constant deliberately as if it was in pure form the value would stay 10 decimal or

0xa hex.

This code is purely an academic exercise as variable data normally would be set

up under the .bss section however I wanted to demonstrate that the above is

possible to show the absolute flexibility of assembly language.

Keep in mind to assemble we type:

as –32 -o moving_data_between_registers_and_memory.o
moving_data_between_registers_and_memory.s

To link the object file we type:

ld -m elf_i386 -o moving_data_between_registers_and_memory
moving_data_between_registers_and_memory.o

I look forward to seeing you all next week when we dive into debugging our fourth

assembly program!

Part 1: Goals

89

Part 32 - ASM Debugging 4 [Moving Data
Between Registers And Memory]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our fourth program we will demonstrate how we can move data between

registers and memory.

Specifically we will move the immediate value of 777 decimal into EAX. We then

move that value stored in EAX into the constant value in memory which initially

had the value of 10 decimal at runtime. Keep in mind we could have called the

value anything however I called it constant as it was set up as a constant in the

.data section.

As you can see above we go into GDB and clearly see that the value of constant

has been replaced with 777 decimal where in the code it was clearly set at 10

decimal in line 6 of the code at the beginning of this tutorial.

We can clearly see that in line 16 of the code the value of 777 decimal was

successfully moved into EAX and into the memory value of constant.

I look forward to seeing you all next week when we dive into hacking our fourth

assembly program!

Part 1: Goals

90

Part 33 - ASM Hacking 4 [Moving Data
Between Registers And Memory]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine the source code.

We again can see above that we will move the immediate value of 777 decimal

into EAX. We then move that value stored in EAX into the constant value in

memory which initially had the value of 10 decimal at runtime. Keep in mind we

could have called the value anything however I called it constant as it was set up

as a constant in the .data section.

As you can see above we go into GDB and clearly see that the value of constant

has been replaced with 777 decimal where in the code it was clearly set at 10

decimal in line 6 of the code at the beginning of this tutorial.

We can clearly see that in line 16 of the code the value of 777 decimal was

successfully moved into EAX and into the memory value of constant.

Now lets hack this thing!

Part 1: Goals

91

We took the very steps as we did last time with the debugging lesson. Here we

hack the value of constant to which we hack the value from 777 to 666.

I look forward to seeing you all next week when we dive into creating our fifth

assembly program!

Part 1: Goals

92

Part 34 - ASM Program 5 [Indirect
Addressing With Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our fifth program we will demonstrate how we can manipulate indirect

addressing with registers.

We can place more than one value in memory as indicated above. In the past, our

memory location contained one single value. In the above as you can see the

value of constants contains 11 separate values.

This creates a sequential series of data values placed in memory. Each data

value occupies one unit of memory which is an integer or 4 bytes.

We must use an index system to determine these values as what we have

created above is an array.

We will utilize the indexed memory mode where the memory address is

determined by a base address, an offset address to add to the base address and

the size of the data element, in our case an integer of 4 bytes and an index to

determine which data element to select.

Keep in mind an array starts with index 0. Therefore in the above code we see 1

moving into edi which is the 2nd index which ultimately goes into ebx.

We will dive deeper into this in the next lesson we debug however I want you to

take some time to study the code above and get a good grasp of what is going on.

Keep in mind to assemble we type:

as –32 -o indirect_addressing_with_registers.o
indirect_addressing_with_registers.s

To link the object file we type:

Part 1: Goals

93

ld -m elf_i386 -o indirect_addressing_with_registers
indirect_addressing_with_registers.o

I look forward to seeing you all next week when we dive into debugging our fifth

assembly program!

Part 1: Goals

94

Part 35 - ASM Debugging 5 [Indirect
Addressing With Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our fifth program we demonstrated how we can manipulate indirect addressing

with registers.

I want to start by addressing the question of why I use AT&T syntax. In previous

lessons I provided many ways to easily convert back and forth between AT&T

syntax and Intel syntax.

I deliberately choose this path so that it forces you to be comfortable with the

most complex flavor of x86. If you are confused with this syntax please review the

prior lessons as I go through the differences between both.

Let’s recap. We will use objdump to take a compiled binary such as the one

above that we compiled in our last lesson and show how we can view it’s Intel

source code.

objdump -d -M intel indirect_addressing_with_registers | grep _start.: -A24

Now back to our regularly scheduled program.

Let’s load the binary into GDB and break on _start, step a few steps and examine

6 of the 11 values inside the constants label.

Part 1: Goals

95

We then move the memory address of the constants label into edi and move the

immediate value of 25 decimal into the second index of our array. This is in

essence a source code hack as we are changing the original value of 8 to 25.

If you examine the source code you see line 18 where we load the value of 1 into

edi. Keep in mind this is the second value as arrays are 0 based.

You can see we changed the value of 8 decimal into 25 as explained.

This is our first introduction to arrays in assembly language. It is critical that you

understand how they work as you may someday be a Malware Analyst or

Reverse Engineer looking at the compiled binary of any number of higher-level

program compiled arrays.

In our next lesson we will manually hack one of the values in GDB. Keep in mind,

we will have to overwrite the contents inside an actual memory address with an

immediate value. The fun is only beginning!

I look forward to seeing you all next week when we dive into hacking our fifth

assembly program!

Part 1: Goals

96

Part 36 - ASM Hacking 5 [Indirect
Addressing With Registers]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s reexamine the source once more.

Let’s once again load the binary into GDB and break on _start.

As we look above we see the command print *0x804909e. We see that it yields a

value of 5 decimal. The binary at runtime puts the values inside the constants

label to a respective memory address.

In this case we see that the pointer to 0x804909e or *0x804909e holds 5 decimal

as we have stated above. An integer holds 4 bytes of data. The next value in our

array will be stored in 0x80490a2. This memory location will hold the value of 8.

If we were to continue to advance through the array we would move 4 bytes to the

next value and so forth. Remember each memory location in x86 32-bit assembly

holds 4 bytes of data.

Let’s hack!

Part 1: Goals

97

After we broke on _start and ran, we examined the array like we did in our prior

lesson. Here we hack the value at 0x80490a2 to 66 decimal instead of 8 decimal

and we can see that we successfully changed one element of the array.

This lesson is very important to understand how arrays are ultimately stored in

memory and how to manipulate and hack them. If you have any questions, please

leave them in the comments below.

I look forward to seeing you all next week when we dive into programming our

sixth assembly program!

Part 1: Goals

98

Part 37 - ASM Program 6 [CMOV
Instructions]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In our sixth program we will demonstrate how we can work with CMOV

instructions.

Before we dive into some code lets talk about CMOV is. CMOV can prevent the

processor from utilizing the JMP instructions and speeds up the respective binary.

There are unsigned CMOV instructions such as:

CMOVA or CMOVNBE = Above [Carry Flag or Zero Flag = 0]

CMOVAE or CMOVNB = Above Or Equal [Carry Flag = 0]

CMOVNC = Not Carry [Carry Flag = 0]

CMOVB or CMOVNAE = Below [Carry Flag = 1]

CMOVC = Carry [Carry Flag = 1]

CMOVBE or CMOVNA = Below Or Equal [Carry Flag or Zero Flag = 1]

CMOVE or CMOVZ = Equal [Zero Flag = 1]

CMOVNE or CMOVNZ = Not Equal [Zero Flag = 0]

CMOVP or CMOVPE = Parity [Parity Flag = 1]

CMOVNP or CMOVPO = Not Parity [Parity Flag =0]

There are also signed CMOV instructions such as:

CMOVGE or CMOVNL = Greater Or Equal [Sign Flag xor Overflow Flag = 0]

CMOVL or CMOVNGE = Less [Sign Flag xor Overflow Flag = 1]

CMOVLE or CMOVNG = Less Or Equal [Sign Flag xor Overflow Flag or ZF = 1]

CMOVO = Overflow [Overflow Flag = 1]

CMOVNO = Not Overflow [Overflow Flag = 0]

CMOVS = Sign NEGATIVE [Sign Flag = 1]

CMOVNS = Not Sign POSITIVE [Sign Flag = 0]

Keep in mind to review the relationships between the unsigned and signed

operations. The unsigned instructions utilize the CF, ZF and PF to determine the

difference between the two operands where the signed instructions utilize the SF

and OF to indicate the condition of the comparison between the operands.

If you need a refresher on the flag please review Part 14 on Flags in this series.

Part 1: Goals

99

The CMOV instructions rely on a mathematical instruction that sets the EFLAGS

register to operate and therefore saves the programmer to use JMP statements

after the compare statement. Lets examine some source code.

Ok lets begin with lines 21 and 22. This is nothing new that we have experienced

as we are simply moving the array into ebx.

On line 24 we see the find_smallest_value function to where we are cycling

through the array and using the CMOVB to find the lowest value ultimately.

We see cmp %ebx, %eax to which cmp subtracts the first operand from the

second and sets the EFLAGS register appropriately. At this point the cmovb is

used to replace the value in ebx with the value in eax if the value is smaller than

what was originally in the ebx register.

After we exit the loop we see three sets of sys_writes to first display our message,

second to display our converted integer to ascii value and then finally a period

and line feed.

Keep in mind to assemble we type:

Part 1: Goals

100

as –32 -o cmov_instructions.o cmov_instructions.s

To link the object file we type:

ld -m elf_i386 -o cmov_instructions cmov_instructions.o

I look forward to seeing you all next week when we dive into debugging our sixth

assembly program!

Part 1: Goals

101

Part 38 - ASM Debugging 6 [CMOV
Instructions]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Lets re-examine some source code.

Lets break on 0x08048092 which is line 31. Lets do a r to run and then type print
$ebx. We can see the value of 7.

Part 1: Goals

102

Ok now lets break on 0x080480b1 which is line 46. Remember when we are

examining the value of answer, it has been converted to its ascii printable

equivalent so in order to see the value of ‘7’ you would type x/1c &answer.

I look forward to seeing you all next week when we dive into hacking our sixth

assembly program!

Part 1: Goals

103

Part 39 - ASM Hacking 6 [CMOV
Instructions]

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s bring the binary into gdb.

Let’s now run the binary. We see that the smallest value is 7 which is expected.

Our final bit of instruction in this tutorial will teach you how to jump to any part of

the execution that you so choose.

We set $eip = 0x080480dd which is the exit routine. We see now that it bypasses

all of the code from the nop instruction when we broke on _start. You now can use

this command to jump anywhere inside of any binary within the debugger.

I look forward to seeing you all next week when we wrap up our tutorial series.

Part 1: Goals

104

Part 40 - Conclusion

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

This has been an extensive and hopefully beneficial tutorial series for you all.

Understanding assembly language is so important to everyone when trying to

understand how Malware works in addition to programming no matter bare-metal

assembly, c, c++ or even Java, Python or iOS or Android development.

If you are looking to pursue a career in Reverse Engineering, assembly will be

second nature to you. Most of us will pursue higher-level language development

as computers and devices are significantly more powerful today which allows for

rapid development languages.

I want to thank you all for joining me on this tutorial series and look forward to you

all making an impact in the future of tomorrow!

Part 1: Goals

105

The 32-bit ARM Architecture (Part 1)

Let's dive in rightaway!

Part 1: Goals

106

Part 1 - The Meaning Of Life

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will cover.

https://github.com/mytechnotalent/hacking_c-_arm64

Why C++? I primarily develop in Python professionally as an Automator however

with every day passing we see another Ransomware attack that further cripples

society in a catastrophic way.

This course is a comprehensive series where we learn every facet of C++ and

how it relates to the ARM 64 architecture as we will reverse engineer each step in

ARM 64 assembly language to get a full understanding of the environment.

There are roughly over 2,000 hacks a day world-wide and so few who truly

understand how the hacks are executed on a fundamental level. This course is

going to take a very basic and step-by-step approach to understanding low-level

architecture as it relates to the ARM 64.

In our next lesson we will set up our development environment.

Part 1: Goals

107

Part 2 – Number Systems

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

At the core of the microprocessor are a series of binary numbers which are either

+5V (on or 1) or 0V (off or 0). Each 0 or 1 represents a bit of information within the

microprocessor. A combination of 8 bits results in a single byte.

Before we dive into binary, lets examine the familiar decimal. If we take the

number 2017, we would understand this to be two thousand and seventeen.

Let’s take a look at the binary system and the basics of how it operates.

If we were to convert a binary number into decimal, we would very simply do the

following. Lets take a binary number of 0101 1101 and as you can see it is 93

decimal.

Adding the values in the value column gives us 0 + 64 + 0 + 16 + 8 + 4 + 0 + 1 =

93 decimal.

If we were to convert a decimal number into binary, we would check to see if a

subtraction is possible relative to the highest order bit and if so, a 1 would be

placed into the binary column to which the remainder would be carried into the

next row. Let’s consider the example of the decimal value of 120 which is 0111

1000 binary.

1)Can 128 fit inside of 120: No, therefore 0.

2)Can 64 fit inside of 120: Yes, therefore 1, then 120 – 64 = 56.

3)Can 32 fit inside of 56: Yes, therefore 1, then 56 – 32 = 24.

4)Can 16 fit inside of 24: Yes, therefore 1, then 24 – 16 = 8.

5)Can 8 fit inside of 8: Yes, therefore 1, then 8 – 8 = 0.

6)Can 4 fit inside of 0: No, therefore 0.

Part 1: Goals

108

7)Can 2 fit inside of 0: No, therefore 0.

8)Can 1 fit inside of 0: No, therefore 0.

When we want to convert binary to hex we simply work with the following table.

Lets convert a binary number such as 0101 1111 to hex. To do this we very

simply look at the table and compare each nibble which is a combination of 4 bits.

Keep in mind, 8 bits is equal to a byte and 2 nibbles are equal to a byte.

0101 = 5

1111 = F

Therefore 0101 1111 binary = 0x5f hex. The 0x notation denotes hex.

To go from hex to binary it’s very simple as you have to simply do the opposite

such as:

0x3a = 0011 1010

3 = 0011

A = 1010

It is important to understand that each hex digit is a nibble in length therefore two

hex digits are a byte in length.

To convert from hex to decimal we do the following:

0x5f = 95

5 = 5 x 16^1 = 5 x 16 = 80

F = 15 x 16^0 = 15 x 1 = 15

Therefore we can see that 80 + 15 = 95 which is 0x5f hex.

Finally to convert from decimal to hex. Lets take the number 850 decimal which is

352 hex.

We put the numbers together from bottom to the top and we get 352 hex.

Part 1: Goals

109

“Why the hell would I waste my time learning all this crap when the computer

does all this for me!”

If you happen to know any reverse engineers please if you would take a moment

and ask them the above question.

The reality is, if you do NOT have a very firm understanding of how all of the

above works, you will have a hard time getting a grasp on how the ARM

processor registers hold and manipulate data. You will also have a hard time

getting a grasp on how the ARM processor deals with a binary overflow and it’s

effect on how carry operations work nor will you understand how compare

operations work or even the most basic operations of the most simple assembly

code.

I am not suggesting you memorize the above, nor am I suggesting that you do a

thousand examples of each. All I ask is that you take the time to really understand

that literally everything and I mean everything goes down to binary bits in the

processor.

Whether you are creating, debugging or hacking an Assembly, Python, Java, C,

C++, R, JavaScript, or any other new language application that hits the street,

ultimately everything MUST go down to binary 0 and 1 to which represent a +5V

or 0V.

We as humans operate on the base 10 decimal system. The processor works on

a base 16 (hex) system. The registers we are dealing with in conjunction with

Linux are addressed in 32-bit sizes. When we begin discussion of the processor

registers, we will learn that each are 32-bits wide (technically the BCM2837 are

64-bit wide however our version of Linux that we are working with is 32-bit

therefore we only address 32-bits of each register).

Next week we will dive into binary addition! Stay tuned!

Part 1: Goals

110

Part 3 – Binary Addition

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Binary addition can occur in one of four different fashions:

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 0 (1) [One Plus One Equals Zero, Carry One]

Keep in mind the (1) means a carry bit. It very simply means an overflow.

Lets take the following 4-bit nibble example:

 0111

+ 0100

= 1011

We see an obvious carry in the 3rd bit. If the 8th bit had a carry then this would

generate a carry flag within the CPU.

Let’s examine an 8-bit number:

 01110000

+ 01010101

= 11000101

If we had:

 11110000

+ 11010101

= (1)11000101

Here we see a carry bit which would trigger the carry flag within the CPU to be 1

or true. We will discuss the carry flag in later tutorials. Please just keep in mind

this example to reference as it is very important to understand.

Next week we will dive into binary subtraction! Stay tuned!

Part 1: Goals

111

Part 4 – Binary Subtraction

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Binary subtraction is nothing more than adding the negative value of the number

to be subtracted. For example 8 + - 4, the starting point would be zero to which

we move 8 points in the positive direction and then four points in the negative

direction yielding a value of 4.

We represent a sign bit in binary to which bit 7 indicates the sign of number where

0 is positive and 1 is negative.

The above would represent -2.

We utilize the concept of twos compliment which inverts each bit and then finally

adding 1.

Lets examine binary 2.

00000010

Invert the bits.

11111101

Let’s examine a subtraction operation:

So what is the (1) you may ask, that is the overflow bit. In future tutorials we will

examine what we refer to as the overflow flag and carry flag.

Next week we will dive into word lengths! Stay tuned!

Part 1: Goals

112

Part 5 – Word Lengths

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The system on chip we are working with has a 32-bit ARM CPU. 32-bits is

actually 4 bytes of information which make up a word.

If you remember my prior tutorial on x86 Assembly, a word was 16-bits. Every

different architecture defines a word differently.

The most significant bit of a word for our ARM CPU is located at bit 31 therefore a

carry is generated if an overflow occurs there.

The lowest address in our architecture starts at 0x00000000 and goes to

0xFFFFFFFF. The processor sees memory in word blocks therefore every 4

bytes. A memory address associated with the start of a word is referred to as a

word boundary and is divisible by 4. For example here is our first word:

0x00000000

0x00000004

0x00000008

0x0000000C

So why is this important? There is the concept of fetching and executing to which

the processor deals with instructions to which it must work in this fashion for

proper execution.

Before we dive into coding assembly it is critical that you understand some basics

of how the CPU operates. There will be a number of more lectures going over the

framework so I appreciate everyone hanging in there!

Next week we will dive into registers! Stay tuned!

Part 1: Goals

113

Part 6 – Registers

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Our ARM microprocessor has internal storage which make any operation must

faster as there is no external memory access needed. There are two modes, User

and Thumb. We will be focusing on User Mode as we are ultimately focused on

developing for a system on chip within a Linux OS rather than bare-metal

programming which would be better suited on a microcontroller device.

In User Mode we have 16 registers and a CPSR register to which have a word

length each which is 32-bits each or 8 bytes each.

Registers R0 to R12 are multi-purpose registers to which R13 – R15 have a

unique purpose as well as the CPSR. Lets take a look at a simple table to

illustrate.

R0 GPR (General-Purpose Register)

R1 GPR (General-Purpose Register)

R2 GPR (General-Purpose Register)

R3 GPR (General-Purpose Register)

R4 GPR (General-Purpose Register)

R5 GPR (General-Purpose Register)

R6 GPR (General-Purpose Register)

R7 GPR (General-Purpose Register)

R8 GPR (General-Purpose Register)

R9 GPR (General-Purpose Register)

R10 GPR (General-Purpose Register)

R11 GPR (General-Purpose Register)

R12 GPR (General-Purpose Register)

R13 Stack Pointer

R14 Link Register

R15 Program Counter

CPSR Current Program Status Register

It is critical that we understand registers in a very detailed way. At this point we

understand R0 – R12 are general purpose and will be used to manipulate data as

we build our programs and additionally when you are hacking apart or reverse

engineering binaries from a hex dump on a cell phone or other ARM device, no

matter what high-level language it is written in, it must ultimately come down to

assembly which you need to understand registers and how they work to grasp

and understand of any such aforementioned operation.

The chip we are working with is known as a load and store machine. This means

we load a register with the contents of a register or memory location and we can

store a register with the contents of a memory or register location. For example:

Part 1: Goals

114

ldr, r4, [r10] @

 load r4 with the contents of r10, if r10 had the

decimal value of

 say 22, 22 would go to r4

str, r9, [r4] @

 store r9 contents into location in r4, if r9 had 0x02

hex,

 0x02 would be stored into location r4

The @ simply indicates to the compiler that what follows it on a given line is a

comment and to be ignored.

The next few weeks we will take our time and look at each of the special purpose

registers so you have a great understanding of what they do.

Next week we will dive into more information on the program counter! Stay tuned!

Part 1: Goals

115

Part 7 – Program Counter

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

We will dive into the registers over the coming weeks to make sure you obtain a

firm understand of their role and what they can do.

We begin with the PC or program counter. The program counter is responsible for

directing the CPU to what instruction will be executed next. The PC literally holds

the address of the instruction to be fetched next.

When coding you can refer to the PC as PC or R15 as register 15 is the program

counter. You MUST treat it with care as you can set it wrong and crash the

executable quite easily.

You can control the PC directly in code:

mov r15, 0x00000000

I would not suggest trying that as we are not in Thumb mode and that will cause a

fault as you would be going to an OS area rather than designated program area.

Regarding our ARM processor, we follow the standard calling convention meaning

params are passed by placing the param values into regs R0 – R3 before calling

the subroutine and the subroutine returns a value by putting it in R0 before

returning.

This is important to understand when we think about how execution flows when

dealing with a stack operation and the link register which we will discuss in future

tutorials.

When you are hacking or reversing a binary, controlling the PC is essential when

you want to test for subroutine execution and learning about how the program

flows in order to break it down and understand exactly what it is doing.

Next week we will dive into more information on the CPSR! Stay tuned!

Part 1: Goals

116

Part 8 - CPSR

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The CPSR register stores information about the program and the results of a

particular operation. Bits that are in the respective registers have pre-assigned

conditions that are tested for an occurrence which are flags.

There are 32-bits that total this register. The highest 4 we are concerned with

most which are:

Bit 31 – N = Negative Flag

Bit 30 – Z = Zero Flag

Bit 29 – C = Carry Flag (UNSIGNED OPERATIONS)

Bit 28 – V = Overflow flag (SIGNED OPERATIONS)

When the instruction completes the CPSR can get updated if it falls into one of

the aforementioned scenarios. If one of the conditions occurs, a 1 goes into the

respective bits.

There are two instructions that directly effect the CPSR flags which are CMP and

CMN. CMP is compare such as:

CMP R1, R0 @ notational subtraction where R1 – R0 and if

the result is 0, bit 30 Z would be set to 1

The most logical command that usually follows is BEQ = branch if equal, meaning

the zero flag was set and branches to another label within the code.

Regarding CMP, if two operands are equal then the result is zero. CMN makes

the same comparison but with the second operand negated for example:

CMN R1, R0 @ R1 - (-R0) or R1 + R0

When dealing with the SUB command, the result would NOT update the CPSR

you would have to use the SUBS command to make any flag update respectively.

Next week we will dive into more information on the Link Register! Stay tuned!

Part 1: Goals

117

Part 9 - Link Register

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The Link Register, R14, is used to hold the return address of a function call.

When a BL (branch with link) instruction performs a subroutine call, the link

register is set to the subroutine return address. BL jumps to another location in

the code and when complete allows a return to the point right after the BL code

section. When the subroutine returns, the link register returns the address back to

the program counter.

The link register does not require the writes and reads of the memory containing

the stack which can save a considerable percentage of execution time with

repeated calls of small subroutines.

When BL has executed, the return address which is the address of the next

instruction to be executed, is loaded into the LR or R14. When the subroutine has

finished, the LR is copied directly to the PC (Program Counter) or R15 and code

execution continues where it was prior in the sequential code source.

CODE TIME! Don’t be discouraged if you don’t understand everything in the code

example here. It will become clear over the next few lessons.

To compile:

as -o lr_demo.o lr_demo.s

ld -o lr_demo lr_demo.o

Part 1: Goals

118

The simple example I created here is pretty self-explanatory. We start and

proceed to the no_return subroutine and proceed to the my_function subroutine

then to the wrap_up subroutine and finally exit.

It is necessary that we jump into GDB which is our debugger to see exactly what

happens with each step:

As you can see with every step inside the debugger it shows you exactly the

progression from no_return to my_function skipping wrap_up until the program

counter gets the address from the link register.

Part 1: Goals

119

Here we see the progression from wrap_up to exit.

This is a fundamental operation when we see next week how the stack operates

as the LR is an essential part of this process.

Next week we will dive into the Stack Pointer! Stay tuned!

Part 1: Goals

120

Part 10 - Stack Pointer

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The Stack is an abstract data type to which is a LIFO (Last In First Out). When we

push a value onto the stack it goes into the Stack Pointer and when it is popped

off of the stack it pops the value off of the stack and into a register of your

choosing.

CODE TIME! Again, don’t be discouraged if you don’t understand everything in

the code example here. It will become clear over the next few lessons.

To compile:

as -o sp_demo.o sp_demo.s

ld -o sp_demo sp_demo.o

Once again lets load the binary into GDB to see what is happening.

Part 1: Goals

121

Lets step into one time.

We see hex 30 or 48 decimal moved into r7. Lets step into again.

Part 1: Goals

122

We see the value of the sp change from 0x7efff3a0 to 0xefff39c. That is a

movement backward 4 bytes. Why the heck is the stack pointer going backward

you may ask!

The answer revolves around the fact that the stack grows DOWNWARD. When

we say the top of the stack you can imagine a series of plates being placed

BENEATH of each other.

Originally the sp was at 0x7efff3a0.

When we pushed r7 onto the stack, the new value of the Stack Pointer is now

0x7efff39c so we can see the Stack truly grows DOWNWARD in memory.

Now lets step into again.

Part 1: Goals

123

We can see the value of hex 10 or decimal 16 moved into r7. Notice the sp did

not change.

Before we step into again, lets look at the value inside the sp.

Lets step into again.

We see the value in the stack was popped off the stack and put back into r7
therefore the value of hex 30 is back in r7 as well as the sp is back at 0x73fff3a0.

Part 1: Goals

124

Please take the time to type out the code, compile and link it and then step

through the binary in GDB. Stack operations are critical to understanding Reverse

Engineering and Malware Analysis as well as any debugging of any kind.

Next week we will dive into ARM Firmware Boot Procedures.

Part 1: Goals

125

Part 11 - ARM Firmware Boot Procedures

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s take a moment to talk about what happens when we first power on our

Raspberry Pi device.

As soon as the Pi receives power, the graphics processor is the first thing to run

as the processor is held in a reset state to which the GPU starts executing code.

The ROM reads from the SD card and reads bootcode.bin to which gets loaded

into memory in C2 cache and turns on the rest of the RAM to which start.elf then

loads.

The start.elf is an OS for the graphics processor and reads config.txt to which

you can mod. The kernel.img then gets loaded into 0x8000 in memory which is

the Linux kernel.

Once loaded, kernel.img turns on the CPU and starts running at 0x8000 in
memory.

If we wanted, we could create our own kernel.img to which we can hard code

machine code into a file and replace the original image and then reboot. Keep in

mind the ARM word size is 32 bit long which go from bit 0 to 31.

As stated, when kernel.img is loaded the first byte, which is 8-bits, is loaded into

address 0x8000.

Lets open up a hex editor and write the following:

FE FF FF EA

Save the file as kernel.img and reboot.

“Ok nothing happens, this sucks!”

Actually something did happen, you created your first bare-metal firmware! Time

to break out the champagne!

When the Pi boots, the below code when it reached kernel.img loads the

following:

FE FF FF EA

@ address 0x8000, 0xfe gets loaded.

@ address 0x8001, 0xff gets loaded.

@ address 0x8002, 0xff gets loaded.

@ address 0x8003, 0xea gets loaded.

“So what the hell is really going on?”

This set of commands simply executes an infinite loop.

Part 1: Goals

126

Review the datasheet:

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-

Peripherals.pdf

The above code has 3 parts to it:

1)Conditional – Set To Always

2)Op Code – Branch

3)Offset – How Far To Move Within The Current Location

Condition – bits 31-28: 0xe or 1110

Op Code – bits 27-24: 0xa or 1010

Offset – bits 23-0 -2

I know this may be a lot to wrap your mind around however it is critical that you

take the time and read the datasheet linked above. Do not cut corners if you truly

have the passion to understand the above. READ THE DATASHEET!

I will go through painstaking efforts to break everything down step-by-step

however there are exercises like the above that I am asking you to review the

datasheet above so you learn how to better understand where to look when you

are stuck on a particular routine or set of machine code. This is one of those times

I ask you to please read and research the datasheet above!

“I’m bored! Why the hell does this crap matter?”

Glad you asked! The single most dangerous malware on planet earth today is that

of the root-kit variety. If you do not have a basic understanding of the above, you

will never begin to even understand what a root-kit is as you progress in your

understanding.

Anyone can simply replace the kernel.img file with their own hacked version and

you can have total control over the entire process from boot.

Next week we will dive into the Von Neumann Architecture.

Part 1: Goals

127

Part 12 - Von Neumann Architecture

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

ARM is a load and store machine to which the Arithmetic Logic Unit only operates

on the registers themselves and any data that needs to be stored out to RAM, the

control unit moves the data between memory and the registers which share the

same data bus.

The CPU chip of this architecture holds a control unit and the arithmetic logic unit

(along with some local memory) and the main memory is in the form of RAM

sticks located on the motherboard.

A stored-program digital computer is one that keeps its program instructions, as

well as its data, in read-write, random-access memory or RAM.

Next week we will dive into the Instruction Pipeline.

Part 1: Goals

128

Part 13 - Instruction Pipeline

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The processor works with three separate phases which are:

1)Fetch Phase – The control unit grabs the instruction from memory and loads it

into the instruction register.

2)Decode Phase – The control unit configures all of the hardware within the

processor to perform the instruction.

3)Execute Phase – The processor computes the result of the instruction or

operation.

When the processor processes instruction 1 we refer to it as being in the fetch

phase. When the processor processes instruction 2, instruction 1 goes into the

decode phase and instruction 2 goes into the fetch phase. When the processor

processes instruction 3, instruction 2 goes into the decode stage and instruction 1

goes into the execute stage.

Keep in mind, if a branch instruction occurs, the pipeline might be flushed and

start over again with a fresh set of cycles.

You now have a strong basis and background of ARM Assembly and how it works

regarding its load and store capability between memory and the respective

registers and the basics of how the instruction set flows.

Next week we will dive into our first C++ program!

Part 1: Goals

129

Part 14 - ADD

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

In ARM Assembly, we have three instructions that handle addition, the first being

ADD, the second ADC (Add With Carry) and the final ADDS (Set Flag). This week

we will focus on ADD.

Let’s look at an example to illustrate:

Here we see that we move decimal 67 into r1 and decimal 53 into r2. We then

add r1 and r2 and put the result into r0.

"So what the heck is all that and why should I care?"

This series is going to be unlike any other in it's class. The goal is to take small

pieces of code and see exactly what it does. If you are going to understand how

to reverse a binary or malware of any kind, it is critical that you understand the

basics. Learning ARM Assembly basics will help you when reversing an iPhone or

Android. This tutorial series is going to work to take extremely small bites of code

and talk about:

1)The Code: (Here) we speak briefly about what the code does.

2)The Debug: We break down the binary in the GDB Debugger and step though

each instruction and see what specifically it does to program flow, register values

and flags.

3)The Hack: We hack a piece of the code to make it do whatever WE want!

This approach will allow you to spend just a few minutes each week to get a good

grasp on what is going on behind the scenes.

Next week we will dive into Debugging ADD.

Part 1: Goals

130

Part 15 - Debugging ADD

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our ADD example below:

Again we see that we move decimal 67 into r1 and decimal 53 into r2. We then

add r1 and r2 and put the result into r0.

Let’s compile:

as -o add.o add.s

ld -o add add.o

Let’s bring into GDB to debug:

gdb -q add

Part 1: Goals

131

We can see that when we b _start, break on start and r, run we see the

disassembly. If you do an i r we see the info registers where we notice our cpsr is
0x10.

As we step again and info registers:

Part 1: Goals

132

We notice 0x43 hex or 67 decimal into r1. We also notice that the flags are

unchanged (cpsr 0x10).

Let’s step again and info registers:

We can see r0 now holds 0x78 hex or 120 decimal. We successfully saw the add

instruction in place and we again notice that the flags register (cpsr) remains

unchanged by this operation.

Part 1: Goals

133

Next week we will dive into Hacking ADD.

Part 1: Goals

134

Part 16 - Hacking ADD

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s again review our ADD example below:

Let’s debug:

We see the value of 67 decimal is being moved into r1 below:

Part 1: Goals

135

Let’s hack! Lets set r1 = 66!

Now we see we have hacked the program so when it adds the values it will have

a different output. If you remember back to the last lecture, r0 = 120. Here we see

we have hacked r1 and now the value of r0 is 119!

Part 1: Goals

136

This is the power of understanding assembly. This is a VERY simple example

however with each new series as I have stated we will create a program, debug

and hack it.

This combination of instructions will help you to get hands on experience when

learning how to have absolute control over an application and in the case of

malware reverse engineering gives you the ability to make the binary do exactly

what you want!

Next week we will dive into ADDS.

Part 1: Goals

137

Part 17 - ADDS

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

ADDS is the same as ADD except it sets the flags accordingly in the CPSR.

Let’s look at an example to illustrate:

We add 100 decimal into r1, 4,294,967,295 into r2. We then add r1 and r2 and

place in r0.

We see adds which sets the flags in the CPSR. We have to remember when we

debug in GDB, the value of the CPSR is in hex. In order to see what flags are set,

we must convert the hex to binary. This will make sense as we start to debug and

hack this example in the coming tutorials.

You can compile the above by:

as -o adc.o adc.s

ld -o adc adc.o

We need to remember that bits 31, 20, 29 and 28 in the CPSR indicate the

following:

bit 31 - N = Negative Flag

bit 30 - Z = Zero Flag

bit 29 - C = Carry Flag

bit 28 - V = Overflow Flag

Therefore if the value in binary was 0110 of bit 31, 30, 29 and 28 (NZCV) that

would mean:

Negative Flag NOT Set

Zero Flag SET

Carry Flag SET

Overflow Flag NOT Set

Part 1: Goals

138

It is critical that you compile, debug and hack each exercise in order to

understand what is going on here.

Next week we will dive into Debugging ADDS.

Part 1: Goals

139

Part 18 – Debugging ADDS

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine our code:

We again add 100 decimal into r1, 4,294,967,295 into r2. We then add r1 and r2
and place in r0.

Lets debug:

We again see adds which sets the flags in the CPSR. We have to remember

when we debug in GDB, the value of the CPSR is in hex. In order to see what

flags are set, we must convert the hex to binary. This will make sense as we start

Part 1: Goals

140

to debug and hack this example in the coming tutorials.

We need to remember that bits 31, 20, 29 and 28 in the CPSR indicate the

following:

bit 31 - N = Negative Flag

bit 30 - Z = Zero Flag

bit 29 - C = Carry Flag

bit 28 - V = Overflow Flag

We see the CPSR at 10 hex. 10 hex in binary is 00010000.

Therefore if the value in binary was 00010000 of bit 31, 30, 29 and 28 (NZCV)

that would mean:

Negative Flag NOT Set

Zero Flag NOT SET

Carry Flag NOT SET

Overflow Flag Set

There is nothing in code above which set the Overflow Flag however in it’s

natural state upon executing this binary it is set.

Lets step through the program:

We see 64 hex or 100 decimal moved into r1 as expected. No change in the

CPSR. Lets step some more.

Part 1: Goals

141

We see the addition that transpires above and notice the value in r0 is 99
decimal after 100 decimal and 4294967295 decimal were added together. How

is that possible? The answer is simple, we overflowed the 32-bit register of r0
from this addition.

If we examine the CPSR we now see 20000010 hex or 0010 0000 0000 0000
0000 0000 0001 0000 binary. We only have to focus on the most significant bits

which are 0010:

The value in binary is 0010 of bit 31, 30, 29 and 28 (NZCV) that would mean:

Negative Flag NOT Set

Zero Flag NOT SET

Carry Flag SET

Overflow Flag NOT Set

We see that the Carry Flag was set and the Overflow Flag was NOT set. Why is

that?

The Carry Flag is a flag set when two unsigned numbers were added and the

result is larger than the register where it is saved. We are dealing with a 32-bit

register. We are also dealing with unsigned numbers therefore the CF is set and

the OF was not as the OF flag deals with signed numbers.

Next week we will dive into Hacking ADDS.

Part 1: Goals

142

Part 19 – Hacking ADDS

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s once again re-examine our code:

We again add 100 decimal into r1, 4,294,967,295 into r2. We then add r1 and r2
and place in r0.

Lets debug:

We again see adds which sets the flags in the CPSR. We have to remember

when we debug in GDB, the value of the CPSR is in hex. In order to see what

flags are set, we must convert the hex to binary. This will make sense as we start

Part 1: Goals

143

to debug and hack this example in the coming tutorials.

We need to remember that bits 31, 20, 29 and 28 in the CPSR indicate the

following:

bit 31 - N = Negative Flag

bit 30 - Z = Zero Flag

bit 29 - C = Carry Flag

bit 28 - V = Overflow Flag

We see the CPSR at 10 hex. 10 hex in binary is 0001.

Therefore if the value in binary was 0001 of bit 31, 30, 29 and 28 (NZCV) that

would mean:

Negative Flag NOT Set

Zero Flag NOT SET

Carry Flag NOT SET

Overflow Flag Set

Lets take a look if we step again:

Part 1: Goals

144

We see 4294967295 decimal or 0xffffffff in r2. We know if we step again we will

cause the CPSR to change from 0001 to 0010 which means:

The value in binary is 0010 of bit 31, 30, 29 and 28 (NZCV) that would mean:

Negative Flag NOT Set

Zero Flag NOT SET

Carry Flag SET

Overflow Flag NOT Set

This action sets the carry flag. However lets hack:

Part 1: Goals

145

We hacked r2 and changed the value to 1 decimal and 0x1 hex. NOW we know

before the CPSR went to 0010 last time however now that we hacked this, lets

see what happens to the CPSR when we step.

BAM! We hacked it and see r0 is 101 and therefore did NOT trigger the carry flag

and kept the CPSR at 0x10 hex which means 0001 binary which means:

Therefore if the value in binary was 0001 of bit 31, 30, 29 and 28 (NZCV) that

would mean:

Negative Flag NOT Set

Zero Flag NOT SET

Carry Flag NOT SET

Overflow Flag Set

It is so important that you understand this lesson in its entirety. If not, please

review the last two weeks lessons.

Part 1: Goals

146

Next week we will dive into ADC.

Part 1: Goals

147

Part 20 – ADC

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

ADC is the same as ADD except it adds a 1 if the carry flag is set. We need to

pay particular attention to the CPSR or Status Register when we work with ADC.

Let’s look at an example to illustrate:

We add 100 decimal into r1, 4,294,967,295 into r2, 100 decimal into r3 and 100
decimal into r4. We then add r1 and r2 and place in r0 and then add r3 and r4
and place into r5.

We see adds which sets the flags in the CPSR. We have to once again

remember when we debug in GDB, the value of the CPSR is in hex. In order to

see what flags are set, we must convert the hex to binary. This will make sense as

we start to debug and hack this example in the coming tutorials.

You can compile the above by:

as -o adc.o adc.s

ld -o adc adc.o

I want you to ask yourself what is going to happen when r3(100 decimal) is
added to r4(100 decimal)? What do you think the value of r5 will be with the

above example of setting the flags with the adds result? Think about the first

sentence in this tutorial and keep this in mind for the next tutorial.

Next week we will dive into Debugging ADC.

Part 1: Goals

148

Part 21 – Debugging ADC

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

To recap, ADC is the same as ADD except it adds a 1 if the carry flag is set. We

need to pay particular attention to the CPSR or Status Register when we work

with ADC.

Let’s review our code:

We add 100 decimal into r1, 4,294,967,295 into r2, 100 decimal into r3 and 100
decimal into r4. We then add r1 and r2 and place in r0 and then add r3 and r4
and place into r5.

We see adds which sets the flags in the CPSR. We have to once again

remember when we debug in GDB, the value of the CPSR is in hex. In order to

see what flags are set, we must convert the hex to binary. This will make sense as

we start to debug and hack this example in the coming tutorials.

Last week I raised a question where I wanted you to ask yourself what is going to

happen when r3(100 decimal) is added to r4(100 decimal)? What do you think

the value of r5 will be with the above example of setting the flags with the adds

result?

Part 1: Goals

149

Ok so we add 100 decimal and 100 decimal together in r3 and r4 and we get

201 decimal in r5! Is something broken? ADC is the same as ADD except it adds

a 1 if the carry flag is set. Therefore we get the extra 1 in r5.

We again need to remember that bits 31, 20, 29 and 28 in the CPSR indicate the

following:

bit 31 - N = Negative Flag

bit 30 - Z = Zero Flag

bit 29 - C = Carry Flag

Part 1: Goals

150

bit 28 - V = Overflow Flag

We see the CPSR at 20000010 hex. The most significant bits of 20000010 hex in

binary is 0010.

Therefore if the value in binary was 0010 of bit 31, 30, 29 and 28 (NZCV) that

would mean:

Negative Flag NOT Set

Zero Flag NOT Set

Carry Flag SET

Overflow Flag NOT Set

As we can clearly see the carry flag was set. I hope you can digest and

understand each of these very simple operations and how they have an effect on

the CPSR.

Next week we will dive into Hacking ADC.

Part 1: Goals

151

Part 22 – Hacking ADC

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

To recap again, ADC is the same as ADD except it adds a 1 if the carry flag is set.

We need to pay particular attention to the CPSR or Status Register when we work

with ADC.

Let’s again review our code:

We add 100 decimal into r1, 4,294,967,295 into r2, 100 decimal into r3 and 100
decimal into r4. We then add r1 and r2 and place in r0 and then add r3 and r4
and place into r5.

Part 1: Goals

152

We run the program and step to where we move 4,294,967,295 into r2. Let’s hack

that value in r2 and change it to 100 decimal.

Let’s step a few more times:

Part 1: Goals

153

Ok so now we add 100 decimal and 100 decimal together in r3 and r4 and we

get 200 decimal in r5! Do you remember last week when we had 201? Let’s

examine the CPSR below.

We again need to remember that bits 31, 20, 29 and 28 in the CPSR indicate the

following:

bit 31 - N = Negative Flag

bit 30 - Z = Zero Flag

bit 29 - C = Carry Flag

bit 28 - V = Overflow Flag

We see the CPSR at 10 hex. The most significant bits of 10 hex in binary is 0001.

Therefore if the value in binary was 0001 of bit 31, 30, 29 and 28 (NZCV) that

would mean:

Negative Flag NOT Set

Zero Flag NOT Set

Carry Flag NOT SET

Overflow Flag Set

Part 1: Goals

154

As we can clearly see the carry flag was NOT set. I hope you can digest and

understand each of these very simple operations and how they have an effect on

the CPSR. Please take the time and review last weeks lesson for comparison.

Next week we will dive into SUB.

Part 1: Goals

155

Part 23 – SUB

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Subtraction in ARM has four instructions which are SUB, SBC, RSB and RSC.

We will start today with SUB.

Please keep in mind when you add the S suffix on the end of each such as SUBS,

SBCS, RSBS, RSCS, it will affect the flags. We have spent enough time on flags

in the prior lessons so that you should have a firm grasp on this now.

Let’s examine an example of SUB:

To compile:

as -o sub.o sub.s

ld -o sub sub.o

We simply take 67 decimal and move into r1 and 53 decimal and move into r2
and subtract r1 – r2 and put the result in r0.

Next week we will dive into SUB debugging.

Part 1: Goals

156

Part 24 – Debugging SUB

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

As stated, subtraction in ARM has four instructions which are SUB, SBC, RSB

and RSC. We will start today with SUB.

Please keep in mind when you add the S suffix on the end of each such as SUBS,

SBCS, RSBS, RSCS, it will affect the flags. We have spent enough time on flags

in the prior lessons so that you should have a firm grasp on this now.

Let’s re-examine our example of SUB:

We simply take 67 decimal and move into r1 and 53 decimal and move into r2
and subtract r1 – r2 and put the result in r0.

Let’s debug.

Part 1: Goals

157

As we can see the registers are clear. Lets step through and see what the value

of r0 becomes.

As you can see above r0 now has decimal 14 which works as expected.

Next week we will dive into SUB hacking.

Part 1: Goals

158

Part 25 – Hacking SUB

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

As stated, subtraction in ARM has four instructions which are SUB, SBC, RSB

and RSC. We will start today with SUB.

Please keep in mind when you add the S suffix on the end of each such as SUBS,

SBCS, RSBS, RSCS, it will affect the flags. We have spent enough time on flags

in the prior lessons so that you should have a firm grasp on this now.

Let’s re-examine our example of SUB:

We simply take 67 decimal and move into r1 and 53 decimal and move into r2
and subtract r1 – r2 and put the result in r0.

Let’s hack.

Part 1: Goals

159

As we can see the registers are clear. Lets step through and see what the value

of r0 becomes when we do a little hacking.

Part 1: Goals

160

As you can see above r0 now has decimal 17 which works as expected as we

hacked the value of r2 to decimal 50 instead of decimal 53.

I want to thank you all for taking this journey to learn ARM Assembly. This is the

end of the series as I encourage you all to take what you have learned and

continue to work through the ARM instruction set and continue your progress.

This tutorial’s purpose was to provide you a solid foundation in ARM Assembly

and I believe we have done that. Thank you all and I look forward to seeing you

all become future Reverse Engineers!

Part 1: Goals

161

The 32-bit ARM Architecture (Part 2)

Let's dive in rightaway!

Part 1: Goals

162

Part 1 – The Meaning Of Life Part 2

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Welcome to the ARM Reverse Engineering tutorial. This is the third tutorial series

that I have done focusing on Assembly Language and Reverse Engineering.

The first series was on x86 Assembly and the second was on ARM Assembly.

This series will be an expansion series on ARM focusing on ARM Reverse

Engineering so rather than create programs directly in Assembly alone and then

Reverse Engineer the binary in Assembly we will work with Assembly and C

together and Reverse Engineer in Assembly so that you will get a flavor for a real-

world series of applications and what it looks like disassembled.

We will not be working with GUI tools such as IDA Pro as we will be working with

GDB in CLI shell. We will not be working in a traditional lab environment where

we are going to put a binary into a debugger rather we are going to SSH into the

ARM device and actually attach to a running process (PID) and Reverse Engineer

the process as it is running.

The first 13 weeks will be an exact review of the ARM Assembly series as it is

critical that we re-examine these concepts so that we have a very firm grasp when

it comes time to reverse our binaries.

I wanted to bring back the original quote below before we get started...

“So if I go to college and learn Java will I make a million dollars and have nice

things?”

I felt it necessary to start out this tutorial series with such a statement. This is

NOT an attack on Java as I have used Java in Android Development, Spring and

JavaEE. In today’s Agile environment, rapid-development is reality. With the

increased challenges in both the commercial market and the government sector,

software development will continue to focus on more robust libraries that will do

more with less. React, Python, Java, C# and the like will continue to grow not

shrink as the race for project completion augments with each passing second of

time.

Like it or not, hardware is getting smaller and smaller and the trend is going from

CISC to RISC. A CISC is your typical x86/x64 computer with a complex series of

instructions. CISC computers will always exist however with the trend going

toward cloud computing and the fact that RISC machines with a reduced

instruction set are so enormously powerful today, they are the obvious choice for

consumption.

How many cell phones do you think exist on earth today? Most of them are RISC

machines. How many of you have a Smart TV or Amazon Echo or any number of

devices considered part of the IOT or Internet Of Things? Each of these devices

have one thing in common – they are RISC and all are primarily ARM based.

Part 1: Goals

163

ARM is an advanced RISC machine. Compared to the very complex architecture

of a CISC, most ARM systems today are what is referred to as a SoC or system

on chip which is an integrated circuit which has all of the components of a

computer and electronic system on a single chip. This includes RF functionality as

well. These low-power embedded devices can run versions of Windows, Linux

and many other advanced operating systems.

“Well who cares about ARM, you can call it anything you want, I know Java and

that’s all I need to know cause when I program it works everywhere so I don’t

have to worry about anything under the hood.”

I again just want you to reflect on the above statement for a brief moment. As

every day continues to pass, more and more systems are becoming vulnerable to

attack and compromise. Taking the time to understand what is going on under the

hood can only help to curb this unfortunate reality.

This series will focus on ARM Reverse Engineering. We will work with a

Raspberry Pi 3 which contains the Broadcom BCM2837 SoC with a 4x ARM

Cortex-A53, 1.2GHz CPU and 1 GB LPDDR2 RAM. We will work with the

Raspbian Jessie, Linux-based operating system. If you don’t own a Raspberry Pi

3, they are usually available for $35 on Amazon or any number of retailers. If you

would like to learn more visit https://www.raspberrypi.org.

We will work solely in the terminal so no pretty pictures and graphics as we are

keeping it to the hardcore bare-bones utilizing the GNU toolkit to compile and

debug our code base.

Next week we will dive into the binary number system and compare and contrast

it with decimal and hexadecimal so we have a proper framework of understanding

to move forward.

Part 1: Goals

164

Part 11 - Firmware Boot Procedures

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s take a moment to talk about what happens when we first power on our

Raspberry Pi device.

As soon as the Pi receives power, the graphics processor is the first thing to run

as the processor is held in a reset state to which the GPU starts executing

code. The ROM reads from the SD card and reads bootcode.bin to which gets

loaded into memory in C2 cache and turns on the rest of the RAM to which

start.elf then loads.

The start.elf is an OS for the graphics processor and reads config.txt to which

you can mod. The kernel.img then gets loaded into 0x8000 in memory which is

the Linux kernel.

Once loaded, kernel.img turns on the CPU and starts running at 0x8000 in
memory.

If we wanted, we could create our own kernel.img to which we can hard code

machine code into a file and replace the original image and then reboot. Keep in

mind the ARM word size is 32 bit long which go from bit 0 to 31.

As stated, when kernel.img is loaded the first byte, which is 8-bits, is loaded into

address 0x800.

Lets open up a hex editor and write the following:

FE FF FF EA

Save the file as kernel.img and reboot.

“Ok nothing happens, this sucks!”

Actually something did happen, you created your first bare-metal firmware! Time

to break out the champagne!

When the Pi boots, the below code when it reached kernel.img loads the

following:

FE FF FF EA

@ address 0x8000, 0xfe gets loaded.

@ address 0x8001, 0xff gets loaded.

@ address 0x8002, 0xff gets loaded.

@ address 0x8003, 0xea gets loaded.

“So what the hell is really going on?”

This set of commands simply executes an infinite loop.

Part 1: Goals

165

Review the datasheet:

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-

Peripherals.pdf

The above code has 3 parts to it:

1)Conditional – Set To Always

2)Op Code – Branch

3)Offset – How Far To Move Within The Current Location

Condition – bits 31-28: 0xe or 1110

Op Code – bits 27-24: 0xa or 1010

Offset – bits 23-0 -2

I know this may be a lot to wrap your mind around however it is critical that you

take the time and read the datasheet linked above. Do not cut corners if you truly

have the passion to understand the above. READ THE DATASHEET!

I will go through painstaking efforts to break everything down step-by-step

however there are exercises like the above that I am asking you to review the

datasheet above so you learn how to better understand where to look when you

are stuck on a particular routine or set of machine code. This is one of those times

I ask you to please read and research the datasheet above!

“I’m bored! Why the hell does this crap matter?”

Glad you asked! The single most dangerous malware on planet earth today is that

of the root-kit variety. If you do not have a basic understanding of the above, you

will never begin to even understand what a root-kit is as you progress in your

understanding.

Anyone can simply replace the kernel.img file with their own hacked version and

you can have total control over the entire process from boot.

Next week we will dive into the Von Neumann Architecture.

Part 1: Goals

166

Part 14 - Hello World

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Today we begin our journey into the world of C++ and gaining a better

understanding of how C++ interacts with our ARM processor.

The prior lessons in this series focus on the basics of the ARM processor and

touch upon its architecture and how everything ultimately translates down to

Assembly Language and then ultimately opcodes into machine language.

We start with our first program in C++ which is our “Hello World” program. Let’s

dive in and break each line down step-by-step and see how this language

works. We will call this example1.cpp and save it to our device.

#include <iostream>

int main(void) {

 std::cout << “Hello World” std::endl;

 return 0;

}

To compile this we simply type:

g++ example1.cpp -o example1

We simply then type:

./example1

SUCCESS! We see “Hello World” printed to the standard output or terminal!

Lets break it down line by line:

Part 1: Goals

167

#include <iostream> is referred to as a preprocessor statement. These

preprocessor statements happen just before the compilation of the rest of the

code. The #include keyword will find a file called iostream and take all of the

contents of that file and paste it into the existing code we just created. These files

are also called header files.

We call iostream because we need a declaration for a function called cout and

endl. The cout function allows us to print text to the standard output or terminal

and the endl function creates a new line after the text has been displayed.

The main section which is of type integer is the entry point into the main

application or binary. You will notice a void inside the () which indicates that it

does not have any parameters which will be passed into the function.

The std indicates a namespace which is quite simply a mechanism to organize

code into logical groups in order to prevent name collisions when you are dealing

with multiple libraries.

You will see many examples where they declare a using namespace std; however

I will NEVER utilize this approach as it can cause naming collisions in more

complex applications.

The << operator is referred to as an overloaded operator. They are essentially a

function very similar to printf in the C language. We are simply moving the “Hello
World” string into the cout function through the use of the << overloaded

operator. We then push the endl which creates a new line to the console.

The final line is the return 0. Since our main function is of type int, we have to

return something. In C++ 11 there is no need for this in the main function however

is required for every other function. I will stick to tradition and simply include it.

The next stage is that we compile the file. The first thing that occurs is the entire

contents of the iostream header goes into the source file as we discussed. The

compile process is where the C++ code gets translated into machine code. The

next stage of compilation occurs when the rest of the lines of our existing code

are parsed through. Essentially we have all of the contents of iostream into a new

file and then all of the contents of our existing file added to a single file.

Compiling takes our text file the cpp file and converts it into an intermediate

format called an obj file. An abstract syntax tree is created which is a conversion

of constant data, variables and instructions.

Once the tree is created the code is generated. This means we now have

machine code that our ARM CPU will execute. Every cpp file (translation units)

which will have its own respective obj file associated with it.

Linking takes our obj files, our compiled files, in addition to the C++ Standard

Library and finds where each symbol and function is and link them all together

into one executable.

The concepts above may appear a bit confusing if you are new to programming

however as you code and compile and later debug and hack in Assembly

Language it will all become very clear and you will learn to master the processor.

Part 1: Goals

168

Next week we will dive into Debugging Hello World.

Part 1: Goals

169

Part 15 - Debugging Hello World

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code from last week.

Let’s debug! Let’s fire up GDB which is the GNU Debugger to which we will break

down the C++ binary and step through it line-by-line in ARM Assembly.

This is the ARM disassembly that we are seeing. No matter what language you

program in, it ultimately will go down to this level.

This might be a bit scary to you if you did not take my prior course on ARM

Assembly. If you need to do a refresher, please link back to that series.

You are probably asking yourself why we are not debugging with the original

source code and seeing how it matches nicely to the assembly. The answer is

when you are a professional Reverse Engineer, you do not get the luxury of

seeing source code when you are reversing binaries.

This is a childishly simple example and we will continue through the series with

very simple examples so that you can learn effective techniques. We are using a

text-based debugger here so that you fully understand what is going on and to

Part 1: Goals

170

also get some training if you had to ever attach yourself to a running process

inside a foreign machine you will know how to properly debug or hack.

I will focus SOLELY on this method rather than using a nice graphical debugger

like IDA or the like so that you are able to manipulate at a very low-level.

We start with loading the link register into r11 and adding 4 to the stack pointer

and then adding it to r11. This is simply a routine which will allow the binary to

preserve the link register and setting up space on the stack.

We notice memory address 0x10750 being loaded from memory to the register

r1. Let’s do a string examination and see what is located at that address.

Voila! We see our string. “Hello World!” located at that memory address.

Let’s set a breakpoint at main+16.

Let’s take a look at our register values.

Let’s now take a look at what is inside the r1 register and then step through the

binary.

Part 1: Goals

171

We see the “Hello World!” string now residing inside of r1 which resides at

memory address 0x10848. Finally let’s continue through the binary.

Understanding assembly and step-by-step debugging allows you to have

complete and ultimate control over any binary! More complex binaries can cause

you hours, days or weeks to truly Reverse Engineer however the techniques are

the same just more time consuming.

Reverse Engineering is the most sophisticated form of analysis in advanced

Computer Engineering. There are many tools that a professional Reverse

Engineer uses however each of those tools have a usage and purpose however

this technique is the most sophisticated and comprehensive.

Next week we will dive into Hacking Hello World.

Part 1: Goals

172

Part 16 - Hacking Hello World

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code from two weeks ago.

Let’s debug once again.

Let’s once again examine the contents of the string at memory address 0x10750
and continue through the execution of the program.

As you can see it holds the “Hello World!” string and when we continue through it

echo’s back to the terminal as such.

Let’s hack! Let’s now overwrite the value inside of the memory address with the

string, “Hacked World!” and continue execution.

Part 1: Goals

173

Woohoo! Our first hack! As you can see as you understand Assembly you have

ABSOLUTE control over the entire binary no matter what language it is written

in. In this very simple example we were able to hack the value inside the memory

address of 0x10750 to which when executed it echoed, “Hacked World!” to the

terminal or standard output.

Let’s again run the binary and do a disassembly.

Let’s now do the same procedure however lets si 3x and examine the string

inside of r1. We see that it contains, “Hello World!” as it has been successfully

ldr (load from memory into the register) at main+12.

Let’s now set r1 to “Hacked World!” and continue execution. As you can see we

now hacked it coming out of the register rather than in memory. You can clearly

begin to see there are a number of ways to hack anything and here is a simple

example of two such ways.

Part 1: Goals

174

Reverse Engineering is all about understanding how a program executes and

hijacking execution flow and changing values to suit our purpose! Today you took

your first step into this amazing journey!

Next week we will dive into constants.

Part 1: Goals

175

Part 17 - Constants

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

So far we have created, debugged and hacked a simple string echo to the

standard terminal. We will expand upon that example by adding a constant.

A constant in C++ is a value that will not change throughout program execution

(unless hacked). It is used such that you have a declaration early in the code so

that if your future program architecture ever changes you can redefine the

constant in one place rather than having to update code all through your code

base.

It is standard practice to code our constants in all CAPS so that when we see it

referenced somewhere in the code we know that value is a constant.

We start with our second program in C++ which is our “Constant” program. Let’s

dive in and break each line down step-by-step and see how this language

works. We will call this example2.cpp and save it to our device.

#include <iostream>

int main(void) {

 cons tint YEAR = 2017;

 std::cout << YEAR << std::endl;

 return 0;

}

To compile this we simply type:

g++ example2.cpp -o example2

We simply then type:

./example2

SUCCESS! We see “2017” printed to the standard output or terminal!

Part 1: Goals

176

Let’s break it down:

We utilize the const keyword to indicate a constant to which we assign it the

integer value of 2017.

We then utilize the cout function to print it to the standard output or terminal and

add a new line with the endl function.

That’s it! Very simple.

Next week we will dive into Debugging Constants.

Part 1: Goals

177

Part 18 – Debugging Constants

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review last week’s code.

Let’s debug!

As we can see the value in the memory address 0x10730 is equal to 2017. Let’s

continue and watch the value print to the standard output (terminal) as it did last

week when we ran it.

We can see very clearly that we move the value from memory into r1 and then we

branch to our cout function to print to the terminal. At this stage you should feel a

little more comfortable with understanding what the assembly is doing above.

Next week we will dive into Hacking Constants.

Part 1: Goals

178

Part 19 – Hacking Constants

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our original code.

Let’s hack!

As we can see the value in the memory address 0x10730 is equal to 2017. Let’s

change that value in memory to 1981. Let’s continue and watch the value turn to

1981! Successful hack!

Let’s hack a second way! Re-start the program and set a breakpoint at main+28

and continue to the breakpoint.

Part 1: Goals

179

Let's continue and we see the value in r1 is 2017. Let’s change the value in r1 to

1981. We continue and see the program successfully hacked to 1981!

Next week we will dive into Character Variables.

Part 1: Goals

180

Part 20 – Character Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The next stage in our journey is that of character variables. Unlike the strings we

have dealt with thus far, a character only takes up one byte of data.

Keep in mind, when we deal with any character data, we deal with literally two hex

digits which are the ASCII code that represents an actual character that we see

on our respective terminals.

Remember that each hex digit is 4 bits in length. Therefore two hex digits are 8

bits in length or a byte long.

To recap, each character translates down to an ASCII code in hex which the

processor understands. The value of n is 0x6e hex or 110 decimal. You can

review any ASCII table to see where we derived this value. This will come in

handy in the next lesson.

We start with our third program in C++ which is our “Character Variable”

program. Let’s dive in and break each line down step-by-step and see how this

language works. We will call this example3.cpp and save it to our device.

#include <iostream>

int main(void) {

 char yes_no = ‘n’;

 std::cout << yes_no << std::endl;

 return 0;

}

To compile this we simply type:

Part 1: Goals

181

g++ example3.cpp -o example3

We simply then type:

./example3

SUCCESS! We see “n” printed to the standard output or terminal!

Let’s break it down:

We utilize the char keyword to indicate a character variable to which we assign it

the value of n.

We then utilize the cout function to print it to the standard output or terminal and

add a new line with the endl function.

That’s it! Very simple.

Next week we will dive into Debugging Character Variables.

Part 1: Goals

182

Part 21 – Debugging Character Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code.

Let’s debug!

Woah! This is confusing. I don’t see any clear memory addresses being loaded

into a register to manipulate the data.

Let’s keep in mind that we are dealing with a single byte character variable.

If you remember from last week each character translates down to an ASCII code

in hex which the processor understands. The value of n is 0x6e hex or 110
decimal. You can review any ASCII table to see where we derived this value.

We do see 0x6e at main+12 which is the character ‘n’.

Part 1: Goals

183

If we step into a few times we notice the value has been placed into r3. When we

print the value in r3 we now see our ‘n’ character.

Let’s continue.

We now see the ‘n’ printed to the standard output as expected.

It is important that you understand this process and understand that each

character translates into an ASCII value to which the processor loads directly into

a respective register. Our previous experience we have seen a string loaded

directly into a memory location and this is not the case here.

Next week we will dive into Hacking Character Variables.

Part 1: Goals

184

Part 22 – Hacking Character Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code.

Let’s hack!

We again see the direct value of 0x6e moved into r3 at main+12 which is our ‘n’.

After stepping into 4 times and verify the value in r3 which we clearly see as ‘n’.

Let’s hack the value in r3 to a ‘y’ and then reexamine the value in r3. We can now

clearly see it has been changed to ‘y’.

Part 1: Goals

185

As we continue we successfully see our hack worked! We see the value of ‘y’

printing to the standard output.

Next week we will dive into Boolean Variables.

Part 1: Goals

186

Part 23 – Boolean Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The next stage in our journey is that of Boolean variables. The name goes back to

the great George Boole to which all modern computer science has derived.

At the lowest level a value is either 0 or 1, false or true, + < 5 volts or +5 volts, etc.

Let’s examine our code.

#include <iostream>

int main(void) {

 bool isHacked = false;

 std::cout << isHacked << std::endl;

 return 0;

}

To compile this we simply type:

g++ example4.cpp -o example4

./example4

SUCCESS! We see 0 printed to the standard output or terminal!

Let’s break it down:

Part 1: Goals

187

We create a boolean variable called isHacked to which we assign a value of

false or 0. When we run the binary we clearly see the value 0 that successfully

was echoed to the standard output.

Next week we will dive into Debugging Boolean Variables.

Part 1: Goals

188

Part 24 – Debugging Boolean Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine our code.

Let’s debug.

Let’s step 4 times and disassemble.

Part 1: Goals

189

Let’s examine what is now in r3.

As we can clearly see the value in isHacked is 0 or false which makes sense

based on our c++ source code.

I know these lessons may seem trivial however Reverse Engineering is all about

breaking things down in their most basic components. Reverse Engineering is

about patience and logical flow. It is critical that you take the time and work

through all of these examples with a Raspberry Pi device so that you can have a

proper appreciation for how the process actually works.

Next week we will dive into Hacking Boolean Variables.

Part 1: Goals

190

Part 25 – Hacking Boolean Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine our code.

Let’s hack!

Let’s break at main, run and disas in addition to step into four times.

Part 1: Goals

191

We see that 0 or FALSE is moved into r3 at main+12.

Very simply we set r3 to 1 or TRUE and continue execution to which we notice

that the Boolean variable isHacked is now TRUE.

It’s that simple folks! These elementary examples will help build your mental

library of examples of how to approach everything in code and understanding how

to take control of code execution no matter what!

Next week we will dive into Integer Variables.

Part 1: Goals

192

Part 26 – Integer Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The next stage in our journey is that of Integer variables.

A 32-bit register can store 2^32 different values. The range of integer values that

can be stored in 32 bits depends on the integer representation used. With the two

most common representations, the range is 0 through 4,294,967,295 (2^32 − 1)

for representation as an (unsigned) binary number, and −2,147,483,648 (−2^31)

through 2,147,483,647 (2^31 − 1) for representation as two's complement.

Keep in mind with 32-bit memory addresses you can directly access a maximum

of 4 GB of byte-addressable memory.

Let’s examine our code.

#include <iostream>

int main(void) {

 int myNumber = 777;

 std::cout << myNumber << std::endl;

 return 0;

}

To compile this we simply type:

g++ example5.cpp -o example5

./example5

Part 1: Goals

193

SUCCESS! We see 777 printed to the standard output or terminal!

Let’s break it down:

We assign the integer 777 directly into the variable myNumber and then print it

out to the terminal with the c++ cout function.

Next week we will dive into Debugging Integer Variables.

Part 1: Goals

194

Part 27 – Debugging Integer Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code. I again want to include the below information from last

week’s lesson to emphasize what is going on regarding integers.

A 32-bit register can store 2^32 different values. The range of integer values that

can be stored in 32 bits depends on the integer representation used. With the two

most common representations, the range is 0 through 4,294,967,295 (2^32 − 1)

for representation as an (unsigned) binary number, and −2,147,483,648 (−2^31)

through 2,147,483,647 (2^31 − 1) for representation as two's complement.

Keep in mind with 32-bit memory addresses you can directly access a maximum

of 4 GB of byte-addressable memory.

Let’s debug!

We see at main+12 the address at 0x10730 loading data into r3. Let’s take a

closer look.

Part 1: Goals

195

When we examine the data inside 0x10730 we clearly see the integer 777
present. When we continue we see 777 echoed back to the terminal which makes

sense as we utilized the cout function within c++.#linux #arm #asm #cplusplus

#reverseengineering

Next week we will dive into Hacking Integer Variables.

Part 1: Goals

196

Part 28 – Hacking Integer Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s review our code.

Let’s hack!

Let’s take a look again inside the memory location of 0x10730.

As we can clearly see the integer value of 777 appears and when we continue it

echoes out to the terminal the value of 777 which corresponds with our c++

function cout.

Let’s hack the value inside of 0x10730 and set the value to 666 and then

reexamine the value inside 0x10730 and continue.

Part 1: Goals

197

Success! As we can see we hacked the value to 666 as we continue we see it

echoed out to stdout.

Next week we will dive into Float Variables.

Part 1: Goals

198

Part 29 – Float Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

The next stage in our journey is that of Floating-Point variables.

A floating-point variable is different from an integer as it has a fractional value

attached to which we designate with a period.

Let’s examine our code.

#include <iostream>

float main(void) {

 int myNumber = 1337.1;

 std::cout << myNumber << std::endl;

 return 0;

}

To compile this we simply type:

g++ example6.cpp -o example6

./example6

SUCCESS! We see 1337.1 printed to the standard output or terminal!

Let’s break it down:

We assign the floating-point variable directly into the variable myNumber and

then print it out to the terminal with the c++ cout function.

Part 1: Goals

199

Thus far we have a good understanding of the ARM registers however next week

we will introduce the registers within the math co-processor that work with

floating-point variables. The registers you have worked with up to now only store

whole numbers or integers and at the Assembly level, any fractional value must

be manipulated through the math co-processor registers.

Next week we will dive into Debugging Float Variables.

Part 1: Goals

200

Part 30 – Debugging Float Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine our code.

#include <iostream>

int main(void) {

 float myNumber = 1337.1;

 std::cout << myNumber << std::endl;

 return 0;

}

Let’s debug!

Part 1: Goals

201

Let’s break on main+20 and continue to that point.

Let’s examine what value is inside r11-8. We clearly see it is 1337.09998 which

approximates our value in our original c++ code. Keep in mind a float has roughly

7 decimal digits of precision and that is why we do not see 1337.1 so please

remember that as we go forward.

We can also see this value in high memory.

Let’s break on main+28 and continue.

Part 1: Goals

202

We see a strange new instruction. We see vldr and the value within r11, #8 being

moved into s0. So what is s0? We have a math co-processor which has a series

of additional registers that work with decimal or floating-point numbers. Here we

see an example of such to which the value of 1337.09998 is being moved into

s0. The vldr instruction loads a constant value into every element of a single-

precision or double-precision register such as s0.

We can only see these special registers if we do a info registers all command as

we do below.

Below we see the value now being moved into s0.

Next week we will dive into Hacking Float Variables.

Part 1: Goals

203

Part 31 – Hacking Float Variables

For a complete table of contents of all the lessons please click below as it will give

you a brief of each lesson in addition to the topics it will

cover. https://github.com/mytechnotalent/Reverse-Engineering-Tutorial

Let’s re-examine our code.

#include <iostream>

int main(void) {

 int myNumber = 1337.1;

 std::cout << myNumber << std::endl;

 return 0;

}

Let’s review last week’s tutorial.

Part 1: Goals

204

Let’s break on main+20 and continue to that point.

Let’s examine what value is inside r11-8. We clearly see it is 1337.09998 which

approximates our value in our original c++ code. Keep in mind a float has roughly

7 decimal digits of precision and that is why we do not see 1337.1 so please

remember that as we go forward.

We can also see this value in high memory.

Let’s break on main+28 and continue.

Part 1: Goals

205

We see a strange new instruction. We see vldr and the value within r11, #8 being

moved into s0. So what is s0? We have a math co-processor which has a series

of additional registers that work with decimal or floating-point numbers. Here we

see an example of such to which the value of 1337.09998 is being moved into

s0. The vldr instruction loads a constant value into every element of a single-

precision or double-precision register such as s0.

We can only see these special registers if we do a info registers all command as

we do below.

Below we see the value now being moved into s0.

Let’s hack!

Let’s now look at the registers and see what has transpired.

