Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

J ADVANCED

dVvd

PROGRAMMING

Uttam K. Roy

Assistant Professor
Department of Information Technology
Jadavpur University, Kolkata

OXTFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2015
The moral rights of the author/s have been asserted.
First published in 2015

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-945550-8
ISBN-10: 0-19-945550-3

Typeset in Times New Roman
by Mukesh Technologies Pvt. Ltd, Puducherry 605005
Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.
Oxford University Press disclaims any responsibility for the material contained therein.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

Dedicated to
my beloved wife Banhishikha
and
my sweet baby Rimisha

Copyrighted Materials

Copyright @ 2015 Oxford University Press Retrieved from www.knovel.com

ABout THE AuTHOR

Uttam K. Roy is presently Assistant Professor in the Department
of Information Technology, Jadavpur University, Kolkata. He com-
pleted his M Tech in Computer Science and Engineering, and PhD
from Jadavpur University, Kolkata. For excellence in academics,
he was awarded scholarships from UGC and Jadavpur University.
In addition to his 12-year teaching experience, he has been a tech-
nical consultant and system administrator.

Dr Roy’s research interests include bio-informatics, voice
processing, optimization, RFID, and distributed and wireless com-
puting. He has contributed numerous research papers to various international journals and
conferences, and has supervised many postgraduate-level and PhD dissertations. He has
also authored Web Technologies, published by Oxford University Press, India in 2010.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

PREFACE

The power of Java is unquestionable and is well-known to everyone in the software community. Numerous
books are available on core Java. However, the real power of Java primarily lies in Java’s advanced concepts.
Although there are many books available on these topics, most of them focus on a specific technology. For
example, it is not impossible to find dozens of books on Socket programming, RMI, JNI, Servlets, JSP, and
JDBC, but it is almost impossible to find any engineering/science curriculum, which has subjects like these.
However, topics such as Network Programming and Advanced Java are very common. In these circumstances,
it is not convenient for students having “Advanced Java” as a subject in his/her course to purchase all the
necessary books and comprehend all the concepts included therein.

This book aims to bring almost all the advanced concepts of Java under a common roof so that experienced
programmers can easily find relevant information whenever necessary and can become experts in this field.
Needless to say, readers of this book should have good working knowledge of core Java.

ABOUT THE BOOK

This book covers, in depth and with extensive examples and references, the primary technical issues that
every Java expert should understand, such as JNI, Socket programming, RMI, JavaMail, Java XML-RPC,
Soap, Security, Servlet, JSP, JDBC, Hibernate, JNDI, JMS, CORBA, and many others. Each chapter
provides detailed working examples illustrating the functioning of these technologies and how they can
be used to build robust Java-based applications. This book provides real-world examples supported with
ample screenshots so that readers can understand and easily apply them to Java-based applications they
would develop in the future.

Although this book is intended as a textbook for undergraduate- and postgraduate-level courses on Advanced
Java, it can also be used as a supplementary textbook for undergraduate/postgraduate courses on network
programming, server-side programming, Enterprise Java, and GUI programming. The book is also a useful
resource for researchers to learn to write different kinds of distributed applications effectively and efficiently
using various Java concepts. In addition, it will provide useful background and reference information for
professionals working in the area of Java-based web applications.

CONTENT AND STRUCTURE

The book is organized into twenty eight chapters, each covering a unique topic in detail. The chapters have
been grouped into three parts:

¢ Part [—Inside Java
¢ Part [I—Network Programming
* Part [II—Enterprise Java

In Part I (Chapters 1-11), important Java concepts such as Exception Handling, Multi-threading, Garbage
Collection, Collection Framework, Generic Programming, Reflection, JNI, AWT and Swing, and Java and
XML, among others, have been discussed. Part II (Chapters 12—18) includes networking concepts such
as Socket programming, RMI, The JavaMail API, and Java XML-RPC. Part III (Chapters 19-28) covers
concepts of Java Enterprise Edition such as Servlet, JSP, JDBC, Hibernate, INDI, JMS, CORBA, and JSF.

PREFACE i

Chapter 1 gives a quick summary of six important Java tools (jhat, jdb, javap, javadoc, and jcmd) out
of many powerful tools that come with JDK to help Java developers in better programming. Other tools have
been discussed in the remaining chapters.

Chapter 2 covers Java exception handling. It helps programmers to understand what exceptions are and
how they are handled. It also gives a brief description of exception classes and their hierarchy.

In Chapter 3, we discuss multi-threaded processes in Java. A multi-threaded process has two or
more parts which can run concurrently and each part can do a designated task at the same time. Multi-
threading enables us to write programs in a way where multiple activities can proceed concurrently in the
same program.

Chapter 4 first describes the basics of the working of Garbage Collection inside HotSpot. It then gives an
overview of the available garbage collectors with their functions and performance metrics. It also demonstrates
how to select and configure a collector and set sizes for the memory areas on which the collector operates.
Finally, it lists some of the most commonly used options that affect garbage collector behaviour.

Chapter 5 explains a powerful unified architecture, known as collection framework, provided by Java.
Java provides high-quality implementation of collection interfaces resulting in unquestionable performance
and quality of programs. Java not only provides the different implementations of an interface, but also allows
us to interchange these implementations seamlessly.

In Chapter 6, we talk about Java generics, which was one of the extensions added to Java 1.5. Generics
allows us to write parameterized classes, interfaces, and methods where parameters are type names. This also
helps us to detect more bugs at compile time and fix them then and there.

Chapter 7 throws light on the concept of Java reflection APIs. The reflection API in Java enables us to
examine and/or modify the properties, behaviour, or other elements of an object at run-time. An understanding
of reflection will help us in comprehending the tools (NetBeans, Eclipse, Spring) that use this API.

Chapter 8 covers the Java Native Interface (JNI) which is an API that allows Java code to interoperate
with applications and libraries written in other programming languages such as C and C++. It is a two-way
interface that allows Java applications to invoke the native method, and native methods to interact with the
Java code.

Chapter 9 gives us a detailed understanding of Java AWT concepts, background philosophy, and practical
concerns with an introduction to Swing which is an extension to AWT.

Chapter 10 expounds on the Java APIs for XML (eXtensible Markup Language), which is a key technology
for structured data representation and transfer. It is used virtually everywhere, from small- to large-scale
legacy applications. Java also promotes portability and is an obvious choice to work with XML documents.
Java APIs for XML make it easier to use XML from the Java programming language. It also provides sample
applications that you can run.

Chapter 11 outlines how applications process some input and generate some output. Java provides a rich
set of classes and interfaces as a separate package java. io for such Input and Output (I/O). Java also provides
another package java.nio containing Non-blocking I/O (NIO) API, which, in some situations, can give a big
performance boost over blocking IO. In this chapter, we have also given an overview of how all these classes
are grouped with their purposes.

Chapter 12 demonstrates how one can use Java network APIs to write basic network programs easily and
quickly. Java has some distinct advantages over other programming languages as far as network applications
are concerned. In addition, Java can handle network security issues extremely well. Features such as platform
independence and garbage collection allows us to develop efficient and elegant network applications without
worrying about system crashes, spread of viruses, or stealing of sensitive data.

vin PREFACE

In Chapter 13, we lay emphasis on Java implementation of socket API. Sockets can be used as lower-level
tools for IPC in local processes as well as processes running on different computers. Sockets are particularly
useful when we want to write client—server applications.

In Chapter 14, we explore how Java’s object-oriented version of RPC (known as Remote Method
Invocation) can be easily used to develop sophisticated networking applications. This technology elevates
network programming to a higher plane.

Chapter 15 deals with the primary protocols for delivery and accessing of emails such as Simple Mail
Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access Protocol (IMAP).

In Chapter 16, we cover the structure of applets, their execution philosophy, and other applet-specific
issues. Applets are Java programs that usually run within web browsers and give more power to the browsers.

Chapter 17 outlines XML-RPC, the XML-based Remote Procedure Call (RPC) protocol. In this protocol,
eXtensible Markup Language (XML) is used to describe a Remote Procedure Call. It is a very simple and
portable way to call remote procedures over HTTP.

Chapter 18 illustrates the Simple Object Access Protocol (SOAP), which is an extension to XML-RPC.
SOAP can be used in a wide variety of systems ranging from messaging systems to RPC.

Chapter 19 brings to the fore almost all the aspects of Java security mechanism from secure language
features to the security APIs, tools, and built-in provider services, highlighting key packages and classes.

Chapter 20 elucidates the powerful Java server-side technology called Servlets. They usually run inside a
Java-enabled web server and extend its capabilities. Since servlets are written in Java and Java is an extremely
powerful language, even a simple web server bundled with servlets becomes unquestionably powerful.

Chapter 21 describes the Java Server pages which is an extension to Servlets. It is one of the many server-
side technologies used to build dynamic web applications that has caught the attention of web developers due
to several reasons.

In Chapter 22, we discuss an important technique called Java DataBase Connectivity (JDBC), which
allows us to access databases through Java programs. It provides Java classes and interfaces to fire SQL and
PL/SQL statements, process results (if any), and perform other operations common to databases.

Chapter 23 presents Hibernate, an open source Object Relational Mapping (ORM) tool. It allows us to
persist Plain Old Java Objects (POJO) to the database.

Chapter 24 examines the Java Naming and Directory Service. It allows us to associate (called binding)
names with objects and to find (called lookup) those objects later by their names.

Chapter 25 reviews another Java technology used to write distributed applications that can communicate
in a loosely coupled way. Messaging is often used to coordinate programs in dissimilar systems or written
in different programming languages.

In Chapter 26, we study some other J2EE technologies, especially, JavaBean and EJB. Since JavaBean
is the fundamental component technology and is a basic building block of EJB, we have primarily focused
on this technology in this chapter.

Chapter 27 simplifies the generic concept of CORBA (Common Object Request Broker Architecture),
which is a specification that describes how heterogeneous objects can interoperate. CORBA objects can be
created/accessed using virtually any programming language (such as Java, C, C++, Smalltalk, and Ada) and
can exist on any platform (such as Windows, Unix, Linux, and Solaris).

In Chapter 28, we look into the primary concepts of Java Server Faces (JSF), which is a Java-based
framework for creating web-based user interfaces. It combines the power of Struts and Swing and follows
Model-View—Controller (MVC) architecture. Many examples, starting with a simple example JSF application,
have been provided.

PREFACE 1x

ACKNOWLEDGEMENTS

Bringing together important advanced Java concepts under a common roof is no easy task. The exercise was
even more difficult due to the large volume of the manuscript. I, therefore, had a very tough time. However,
the support from colleagues and many other key people led to successful completion of this project. I thank
all of them.

I am extremely grateful to the reviewers, as their feedback helped me in improving the technical accuracy
and presentation of the chapters.

It is said that “behind every successful man, there is a woman”. People will decide if I am successful.
However, the woman in front, not behind me, is none other than my beloved wife Banhishikha Roy. No words
can describe her contribution towards this work. I acknowledge her patience from the bottom of my heart. She
always took some time out to help me develop the manuscript. This book would not have been successfully
completed without her understanding and cooperation.

The other “woman” is my six-year-old little girl, Rimisha. While working on the more demanding topics
of the manuscript, my little daughter’s presence, even late at night, would calm me and bring a smile to my
face. I love her dearly

I have taken utmost care to eliminate any technical or typographical errors in the book and urge
readers to send in their comments, constructive criticism, and suggestions, preferably through email
(u_roy@it.jusl.ac.in and royuttam@gmail.com). I appreciate your feedback and hope you enjoy reading
this book.

Uttam K. Roy

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

Brier CONTENTS

Features of the Book
Preface

Detailed Contents

PART I: INSIDE JAVA

Java Tools

Exception Handling
Multi-threading
Garbage Collection
Collection Framework
Generic Programming
Reflection

Java Native Interface
AWT and Swing

Java and XML
Input/Output

e R B o e

—_ =

PART II: NETWORK PROGRAMMING

12. Basic Networking

13. Socket Programming

14. Remote Method Invocation
15. Java Mail API

16. Applets

17. Java XML-RPC

18. Java and SOAP

PART lIl: ENTERPRISE JAVA

19. Security

20. Servlet

21. Java Server Pages

22. Java Database Connectivity (JDBC)
23. Hibernate

24. Java Naming and Directory Interface
25. Java Message Service

26. Introduction to J2EE

27. Java and CORBA

28. Java Server Faces

Answers to Objective-type Questions [84
Index
About the Author [833]

BEEEm =

—
—
U

—
|98
U

—
9]
o0

—
oo
DO

[\S]
—
~

i

= Fl
- =
~J

[N}
~
5

HE
B ||oco
= |

%)
\O
DO

~
[\
—

=
=
O

=~
N
o

g

N
S
U

N
9]
~

9]
oo
U

=N
IN\S}
N

N
N
~

D
\O
NS}

N
—
~

~
%}
\O

~
~
S

0
S
—_

DeTaiLED CONTENTS

Features of the Book
Preface
Brief Contents

PART I: INSIDE JAVA

1. JavaTools

1.1
1.2
1.3
1.4
1.5
1.6
1.7

3l
Introduction Kl
Javadoc Kl
Javap [
Jemd 9]
Jhat [12]
Jdb [13]
Jar [18]
1.7.1 Syntax
1.7.2 Creating a JAR File
1.7.3 Viewing Contents of a JAR File
1.7.4 Extracting the Content
1.7.5 Updating a JAR File [21]
1.7.6 Manifest File [21]

2. Exception Handling

2.1
2.2
23
24

2.5
2.6

2.7

Exceptions
Handling Exceptions
An Example
Types of Exceptions
2.4.1 Checked Exceptions
2.4.2 Unchecked/Runtime Exceptions
Catching Exception
Tracing Stack
2.6.1 Multiple Catch Blocks
2.6.2 throw [311
2.6.3 throws [33]
2.6.4 finally
An example [33]
Some properties

[29]

mwl o[]St
=1|8=) oof|o]|I][=

2.6.5 try-with-resources Statement [37]

2.6.6 Nested try-catch
Custom Exception Classes

3. Multi-threading

3.1
32

Introduction
Main Thread

[45]

33
34

35
3.6
3.7
3.8
3.9

3.10
3.11

4. Garbage Collection

4.1
4.2

43
4.4
4.5
4.6
4.7

4.8
4.9

4.10
4.11
4.12

=]

Using Sleep [46]
Creating Thread [47]
3.4.1 Extending Thread

3.4.2 Implementing Runnable
Interrupting Thread [49]
Suspending and Resuming [51]
Thread Priority [52]
Using join() [53]
Synchronization 53]
3.9.1 Synchronization and Atomicity

Deadlock
Inter-thread Communication

Introduction

Exploring JVM

4.2.1 Performance [69]

JVM Options

Garbage Collection

Generational Garbage Collector

HotSpot’s Garbage Collection

Available Collectors

4.7.1 Serial Collector [Z3]

4.7.2 Parallel Collector

4.1.3 Parallel Compacting
Collector [77]

4.7.4 Concurrent Collector

Some Commands

Tools

4.9.1 jstatd

492 jps

4.9.3 jmap

4.9.4 jstar [81]

Tuning Memory Size

Tuning Heap Size

Tuning Young Generation

4.12.1 Tuning Survivor Space [83]

||| [N | =N B~ N|n
1541 | 15| K= | et | e \O||co| | —||\O

~J
\O

Xii CONTENTS

4.13 Accessing GC from Java Program
4.13.1 Inspecting GC Parameters
4.13.2 Explicit Garbage Collection
4.13.3 finalize()
4.14 Appendix
5. Collection Framework
5.1 Introduction
5.2 Benefits
5.3 Collection Interfaces
5.4 Collection Implementation

5.5

6. Generic Programming

6.1
6.2
6.3
6.4
6.5
6.6

5.4.1 Set

HashSet
LinkedHashSet
SortedSet
TreeSet

List

ArrayList
LinkedList
Queue [100]
LinkedList
PriorityQueue [102]
Map

HashMap
LinkedHashMap
SortedMap [103]
TreeMap
Algorithms

5.5.1 Sorting

Custom sort
Shuffling
Manipulation [107
Reversing (107
Swapping [107]
Copying

Filling

Adding
Searching
Finding Extreme Values [108]
Counting Frequency

542

543

544

5.4.5

5.4.6

552
553

554
555
5.5.6

E

—
—
8]

Introduction

Motivation

Solution

Collection Framework and Generics
Type Naming

Generic Methods and Constructors

—
—
EN

—
—
EN

—
—
N

—
—
~

—
—
~

6.7

6.8

6.9
6.10

6.11
6.12
6.13

. Reflection

7.1

7.2

7.3

7.4

Type Inference 118
6.7.1 Generic Methods

6.7.2 Constructors 119

6.7.3 Classes [1I9]

Bounded Type Parameters 119
6.8.1 Multiple Bounds

Generics and Sub-type 121
Wildcards 122

6.10.1 Upper-bound Wildcard
6.10.2 Lower-bound Wildcard
6.10.3 Unbounded Wildcard

6.10.4 Wildcard and Sub-typing [123]

Type Erasure 125
Backward Compatibility 126
Restrictions on Generics 127

6.13.1 Cannot Specify Primitive
Type Arguments 127
Cannot Declare Static Fields
of Type Parameters |127
Cannot Create Instances of
Type Parameters [127
Cannot Use instanceof
Cannot Create Generic
Arrays [128

Limitations on Exception
Cannot Use .class 129

6.13.2

6.13.3

6.13.4
6.13.5

6.13.6
6.13.7

128

Introduction 133
7.1.1 Pros and Cons of Reflection [133
Classes 134
7.2.1 Class

Using getClass()

Using .class 135

Using forName()

Using TYPE field
7.2.2 Modifier
Inspecting Class 137
7.3.1 Getting Class Information [137]
7.3.2 Getting Class Modifiers [133]
7.3.3 Finding Implemented

Interfaces (138
7.3.4 Finding Inheritance Hierarchy
7.3.5 Finding Annotations [139]
Finding Class Members
7.4.1 Getting Fields [140]
7.4.2 Getting Methods
7.4.3 Getting Constructors

EE

140

143

7.5 Working with Class Members

7.5.1
7.5.2
7.5.3

7.5.4
7.5.5
7.5.6

7.5.7

7.5.8

7.5.9
7.5.10

Field Type [143]
Field Modifiers [I44]
Accessing Fields [144]
Accessing forbidden
fields
Modifying final
fields
Method Modifiers
Method Information [I140]
Invoking Methods
Accessing forbidden
methods

143

Debugging with Reflection [148

Getting Constructor
Modifiers
Instantiating Objects [I49)
Arrays [130]
Checking array

types
Creating new

arrays (151

7.6 Dynamic Proxy
7.6.1 Designing Dynamic Proxy [I31]

7.6.2

Invocation Handlers [133]

7.7 Disadvantage of Reflection

. Java Native Interface

8.1 Introduction
8.2 Java Program with C/C++

8.3
8.4
8.5

8.6

8.7

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
Using

Writing Java Program 159
Compiling Java Program

Create Header File

151

[—
W
wn

[—
)
o0

—
)l
\O

160

Implement Native Method

Create Shared Library
Running the Program [162
CH++

Syntax Difference in C/C++

Using
8.5.1

Passin
8.6.1
8.6.2
8.6.3

Java Package

JNI Types and Data
Structures [165

g Arguments

Passing Primitives (167
Passing Strings 168

Passing Primitive Array

Accessing Java Code from Native
Program

8.7.1

Passing Object Array

163

163

164

167

171

8.8
8.9
8.10

CONTENTS xm

Creating Objects
Exception Handling in JNI
Appendix

9. AWT and Swing

9.1
9.2

9.3

9.5

9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

9.14

9.15
9.16

9.17

Introduction

AWT Class Hierarchy

9.2.1 Component |183

9.2.2 Container [183

9.2.3 Controls

Creating Container

9.3.1 Empty Frame |185
9.3.2 Frame with a Title
Adding Components

9.4.1 Adding a Label
9.4.2 Adding a Button [186
Layout

9.5.1 FlowLayout (187

9.5.2 GridLayout (187

9.5.3 BorderLayout |188
Using Panel

Text Field

TextArea

List

Checkbox

Check Box Group

Choice

Event Handling

9.13.1 Event Sources |192
9.13.2 Event Classes [192]
9.13.3 Event Listeners |194
9.13.4 Example

9.13.5 Adapter Classes [197]
Dialog Boxes

9.14.1 Simple Dialog
9.14.2 File Dialog
ScrollBar

Menu
9.16.1
Swing
9.17.1
9.17.2
9.17.3
9.17.4
9.17.5
9.17.6
9.17.7
9.17.8

Popup Menu (201

JTextField
JPasswordField
JTable
JComboBox (205
JProgressBar 205
JList

_
N
~

_
N
~

—
[~
[~

g

—
]
15

—
cO
U

—
cO
\O

—
cO
\O

—
\O
=

—
\O
=

—
\O
—

—
\O
—

—
\O
O

—
\O
O

198

200
200

202

Containment Hierarchy
Adding Components [203

Xiv CON

10. Java and XML

10.1
10.2
10.3
10.4

10.5

10.6

10.7

10.8

10.9

TENTS

9.17.9
9.17.10
9.17.11
9.17.12

JTree [207]
JColorChooser [209]
Dialogs [210]

Appendix A: Methods of
Important Event Listener

Interfaces [212]

217
Introduction 1217]
XML and DOM [217]
DOM Nodes E
The Node Interface 221]
10.4.1 Node Properties [221]
Document Node 225

10.5.1 Document Node
Properties [223]

10.5.2 Document Node Methods [223]
Element Node 227
10.6.1 Element Node Properties [227]
10.6.2 Element Node Methods [227]
Text Node 228
10.7.1 Text Node Properties
10.7.2 Text Node Methods
Attr Node 229
10.8.1 attr Node Properties
Parsing XML 229
10.9.1 Creating Document
10.9.2 Navigating DOM Tree
Using root node [230]
Getting all child nodes [231]
Using getElements

ByTagName [232]
Using getElementByld [233]
Getting attributes

of an element
Viewing DOM [233]
Manipulating DOM Tree [236]
Creating a node
Setting an attribute [237]
Adding a node [237]
Inserting a node [238]
Deleting a node [239]
Cloning a node
10.9.4 Java DTD Validation

10.9.3

11.

Input/Output

11.1 Introduction ﬁ

11.2 Streams 247
11.2.1 Byte Stream

11.3
11.4
11.5
11.6
11.7
11.8
11.9

11.10

11.2.2
11.2.3
11.2.4

Character Stream [231]
Bridging Stream [231]
Buffered Stream [232]
Buffered byte

stream [232]
Buffered character

stream [232]
Reading from Keyboard [233]
Reading character [233]
Reading string [233]

11.2.5

11.2.6 Console

Formatting 254
Data Streams E
Object Stream 255]
Reading/writing Arrays via Streams 256
Pipes 256
File I/O 253]
Path [258]

11.9.1 Creating a Path [238]
11.9.2 Retrieving Path Information

11.9.3 Path Operations [239]
Removing redundancy [239]
Converting to URI [239]
Joining paths [239]

11.9.4 Comparing Paths [239

File

11.10.1
11.10.2
11.10.3
11.10.4
11.10.5
11.10.6

260
Checking Existence [260]
Creating File [260]
Deleting File [260]
Copying a File [260]
File Attribute 2611
Reading, Writing, Creating
Files 2611

11.10.7 Random Access Files [262]

11.10.8 Working with Directories [263]
Listing Directory
Contents [263]
11.10.9 Walking Directory
Tree [263]
11.10.10 Watching Directory

PART II: NETWORK PROGRAMMING

12. Basic Networking

12.1
12.2

12.3

12.4

273
Java and the Net 273
Java Networking Classes and
Interfaces 273
Getting Network Interfaces 274

12.3.1 Getting Interface Addresses [273]
12.3.2 Getting Interface Properties (276
URL 277
12.4.1 Creating URL

12.4.2 Parsing URL [277]

12.4.3 Web Page Retrieval [278]

12.5 URLConnection 279
12.6 HttpURLConnection ﬂ
12.6.1 URLEncoder/URLDecoder |2
12.7 Proxy 283
12.7.1 Using Command Line
Arguments [283]
12.7.2 Using System Properties (283
12.7.3 Using Proxy Class
12.8 ProxySelector 283
13. Socket Programming 287
13.1 Introduction 287
13.2 Client/server Programs [288]
13.3 Sockets [289]
13.3.1 Types of Socket [290]
13.3.2 Ports [290]
13.3.3 Socket Address [290]
13.3.4 Socket Address and Java
13.3.5 Reserved Ports 291
13.4 TCP Sockets [292

13.4.1 The ServerSocket Class [294]
13.4.2 The Socket Class
13.4.3 An Application (297
13.4.4 Complete Example
13.4.5 Running Example Program [299
13.4.6 Handling Multiple Client
Requests 300
Iterative solution [300
13.4.7 Concurrently Solution [302
13.4.8 Sending and Receiving Objects
Using TCP
Serializing an object [306]
Reconstructing objects [308]

13.5

13.6
13.7

13.8

13.9

13.10

CONTENTS xv

271

13.4.9 An Example
13.4.10 Writing the Server [310]
Writing interfaces [310]
Implementing
interfaces [310]
Implementing
server |311
Implementing client [312]
Running the example [313]
UDP Sockets 313
13.5.1 Datagram Packets
13.5.2 Datagram Server [313]
13.5.3 Datagram Client
13.5.4 Receiving Multiple
Datagrams (319
13.5.5 Sending and Receiving Objects
Using UDP [321]
13.5.6 Sending an Object [321]
13.5.7 Reconstructing

the Object
13.5.8 Running the Application [323]

Multicasting 323
Multicast Sockets 323

13.7.1 Multicast Addresses (324
13.7.2 MulticastSocket Class [323]
13.7.3 Sending Data [326]
13.7.4 Receiving Data |326
13.7.5 Complete Example [327]
13.7.6 Another Multicasting
Example [328]
13.7.7 A Text Conference
Example
Appendix A (Useful Methods of
ServerSocket Class) 332
13.8.1 Constructors [332]
13.8.2 Methods
Appendix B (Useful Methods of
Socket Class) 334
13.9.1 Constructors
13.9.2 Methods
Appendix C (Useful Methods of
DatagramSocket Class) 338
13.10.1 Constructors [338]
13.10.2 Methods [333]

XVI

14.

CONTENTS

13.11 Appendix D (Useful Methods of
DatagramPacket Class) 341
13.11.1 Constructors
13.11.2 Methods

13.12 Appendix E (Useful Methods of
MulticastSocket Class) 343
13.12.1 Constructors
13.12.2 Methods

Remote Method Invocation

14.1 Introduction 1348|
14.2 Remote Method Invocation [348]
14.2.1 Application Components
14.2.2 Basic Steps 330
14.3 Java RMI Interfaces and Classes |3
14.4 An Application
14.4.1 Writing an Interface [332]
14.4.2 Writing Implementation
class
Implementing the remote
interface
Providing method
implementation [333]
Writing Constructor — [336]
14.4.3 Writing an RMI Server [336]
Creating a remote
object [337]
Exporting the object [337]
Registering the stub [360]
14.4.4 Writing an RMI Client B611
14.5 Compiling the Program B63]
14.5.1 Compiling Server [363]
14.5.2 Compiling Client [363]
14.6 Generating Stub Classes
14.7 Running the Program
14.7.1 Start Server
14.7.2 Start Client [363]
14.7.3 Understanding Object
Registry [363]
14.7.4 Using RMI URL 367
14.8 Callback 369
14.8.1 Creating Interfaces [370]
14.8.2 Implementing Interfaces [371]
14.8.3 Writing the Server 3711
14.8.4 Writing the Client [372]
14.8.5 Compiling the Application [372]
14.8.6 Running the Application 322
14.9 Another Callback Application 373

9]

1

(9%
O

5

(o8]
N
B~

(o8]
N
B~

14.10 Dynamic Object Activation 375
14.10.1 Basic Idea [3Z3
14.10.2 Implementation [373]
14.10.3 The Activation
Protocol 3751
14.10.4 An Example 376
Writing implementation
class [376]
Writing server
class 3771
Compiling and running the
program [379]
14.11 Dynamic Class Downloading 1379
14.12 An Example [380]

\O

(98]

8
14.12.1 Writing an RMI Server [3811
Write an interface 3811
Implement the interface
381
Implement the server [382]
14.12.2 Writing a Client
14.12.3 Compiling the Program [383]
Creating interface
classes [386]
Compiling server [386]
Compiling client 3871
14.12.4 Runmning the Application [387]
14.12.5 Start Client [3838]

15. Java Mail API
15.1 E-mail 392
15.2 JavaMail API 392
15.3 Installing JavaMail API (393
15.4 Sending Emails 393

15.4.1 Creating a Session
Object
15.4.2 Compose a Message [393]
15.4.3 Sending the Mail [396]
15.4.4 Compiling and Running the
Program [397)
15.5 Sending Emails Directly
Using Socket
15.6 Secured SMTP
15.6.1 Using SSL [399]
15.6.2 Using TLS 399
15.6.3 Providing Authentication
Information
15.7 Email Message Revisited 403
15.7.1 MIME

97

| o8)

98]
o0

16.

15.7.2 Single-part Message
15.7.3 Multi-part MIME
Message
15.7.4 Composing a Mixed
Message
15.7.5 Compiling the Program
15.8 Email with HTML Content 1408|
15.9 Accessing Email [409]
159.1 POP
159.2 IMAP
15.9.3 Secured Mail Access
15.9.4 JavaMail API Support
15.9.5 Reading Email
15.9.6 Using Authenticator
15.10 Deleting Mails 1413]
15.11 Replying to Mails [414]
15.12 Forwarding Mails E
15.13 Copying Emails [415]
15.14 List of SMTP, POP3 and
IMAP Servers
Applets
16.1 Client Side Java 421
16.2 Life Cycle [422]
16.2.1 init()
16.2.2 start()
16.2.3 paint()
16.2.4 stop()
16.2.5 destroy()
16.3 Writing an Applet 4206
16.4 Generating Class File [426]
16.5 Running the Applet [426]
16.5.1 The Applet Tag
16.6 Security 1430]
16.7 Utility Methods [431]
16.8 Using Status Bar [432]
16.9 AppletContext Interface [432]
16.10 Document Base and Code Base E
16.11 Passing Parameter [434]
16.11.1 Retrieving Parameter
16.12 Event Handling
16.13 Communication Between Two
Applets 436

16.13.1 Using getApplet()
Method
16.13.2 Using getApplets()
Method
16.13.3 A Sample Application

CONTENTS xvin

16.14 Loading Web Pages
16.15 Interacting with JavaScript Code

17. Java XML-RPC

18.

17.1 Introduction |[445

17.2 XML-RPC Operational Principle
17.3 Data Types 447
17.3.1 Basic Data Types

17.3.2 Compound Data Types
17.4 XML-RPC Messages 451
17.4.1 Request Message
17.4.2 Response Message
17.4.3 Fault Message
17.5 Java XML-RPC
17.6 Installing the Apache XML-RPC
Java Library
17.7 XML-RPC versus Java
Data Types 1455]
17.8 Example [456]
17.8.1 Writing the Server
17.8.2 Writing the Client
17.8.3 Running the Application 439
17.9 Dynamic Proxies 1460
17.10 Using XmlRpcServlet [462]
17.11 Using ServletWebServer [464]
17.12 Introspection [466]

17.12.1 Example
Listing methods

43

\O

B

Finding method signature

Getting help
17.13 Limitations of XML-RPC

Java and Soap

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Introduction

Differences with XML-RPC
Soap Architecture

SOAP Flavors

SOAP Messages

SOAP Binding

RPC Using SOAP

Web Service

JAX-WS

N

71

B
~
1

N
~
N

BN (BN | EEN | BEN | BE | BN
|
\O||\O ||| ||

N
0
-

N
-

8

18.9.1 Developing Web Service 481
18.9.2 Deploying Web Service 1482

18.9.3 Invoking Web Service 148
18.9.4 Tracking SOAP
messages

xvil CONTENTS

18.9.5 Using WSDL

18.9.6 Document Style

18.9.7 Using Tomcat to Deploy Web
Service 490

PART lll: ENTERPRISE JAVA

19. Security

19.1
19.2

19.3
19.4

19.5

Introduction |503

Java Security Architecture [504]
19.2.1 Language Security [304]
19.2.2 Basic Security

19.2.3 Java Cryptography
Architecture (JCA) [303]
Secret-key

cryptography [303]
Public-key
cryptography [306]

19.2.4 Public Key Infrastructure
(PKI) [306]

Public key certificates [300]
Certificate format [306]

Digital signature [307]

Key and certificate store [307]

19.2.5 PKI Tools [307]

Secure Communication 1508

SSL [508]

19.4.1 What does SSL do? [303]

19.4.2 How does it do? [308]

19.4.3 An Example [309]

Writing the server [309]

Writing the client [310]

Compiling and running the
application [310]

19.4.4 Using Client Authentication

19.4.5 Using KeyStore [B13]

19.4.6 Ignoring Server
Certificates [317]

19.4.7 Working with HTTPS [317]

keytool Revisited 519

19.5.1 KeyStore [319]

19.5.2 Keystore Entries [320]
Truststore [520]

19.5.3 Keystore Aliases [320]

19.5.4 Public Key Generation [320]

19.5.5 Changing Password [321]

[eel| (=]

18.9.8 Using Ant to Build War File
18.9.9 Asynchronous Client
Polling
Callback

19.5.6 Generating a Certificate

Chain [321]

19.5.7 Generating a Certificate
Using Openssl [322]

19.6 Generating Keys 524

19.6.1 Public Key Generation
19.6.2 Private Key
Generation

19.7 Working with Keystore 525

19.8

19.9

19.10

19.11

19.12
19.13

19.7.1 Reading Keystore
19.7.2 Extracting Private Keys from
Keystore |525
19.7.3 Storing Private Key and
Certificate in Keystore [520]
Working with Certificates 526
19.8.1 Reading Certificate
Information [527]
19.8.2 Creating Certificate [527]
19.8.3 Converting Certificates |528
19.8.4 SignedObject [329)
19.8.5 SealedObject [331]
19.8.6 GuardedObject
Secure RMI
19.9.1 Writing Custom Socket
Factories 538
Secure XML-RPC 539
19.10.1 Using XmlRpcServiet [339]
19.10.2 Using Secure
XML-RPC
Signing and Verifying JAR 542
19.11.1 Signing JAR
Signature (.SF) file
Signature block file [544]
19.11.2 Verifying JAR
Multiple Signatures for a JAR File (544
Access Control 545
19.13.1 Installing Built-in Security
Manager
19.13.2 Policy Files [340]

19.14

20. Servlet

20.1
20.2
20.3

20.4

20.5
20.6

20.7
20.8
20.9

20.10

20.11
20.12

19.13.3 Policy File Syntax [547
Keystore entry
Grant entry
Permission entry

19.13.4 Custom Permission
Class [549]

An application 550

o
a
N

(9]
(9]
~

Server-side Java
Advantages Over Applets

(9]
(9]
o0

[V,
(9]
o0

Servlet Alternatives

20.3.1 Common Gateway Interface
(CGI) [538]
20.3.2 Proprietary APIs [333]
20.3.3 Active Server Pages
(ASP) [339
20.3.4 Server-side JavaScript [339]
Servlet Strengths 55
20.4.1 Efficient [339]
20.4.2 Persistent [339]
20.4.3 Portable [339]
20.4.4 Robust [339]
20.4.5 Extensible [339]
20.4.6 Secure [360]
20.4.7 Cost-effective [560]

\O

W
[N
(=}

Servlet Architecture

(941
(@)}
—

Servlet Life Cycle

20.6.1 init() 382
20.6.2 service() [362]

20.6.3 destroy() [362]
20.6.4 Other Methods [363]

(941
N
58

GenericServlet
HttpServlet

(941
N
58

(941
N
N

First Servlet

20.9.1 Installing Apache Tomcat
Web Server [363]

20.9.2 Building and Installing
Servlet [366]

20.9.3 Invoking Serviet [367]

Passing Parameters to Servlets 568

20.10.1 Passing Parameters Directly

to a Servlet [363]
20.10.2 Passing Parameters Directly

to a Servlet [363]

W
o)
\O

Retrieving Parameters

(93]
~
[y

Server-Side Include

21.

20.13 Cookies 574
20.13.1 Limitations of Cookies [373]
20.14 Filters 575
20.14.1 Deploying Filter
20.15 Problems with Servlet 577
20.16 Security Issues 578
20.17 Appendix A: List of SSI Servlet
Variables 578
Java Server Pages
21.1 Introduction and Marketplace 1583
21.2 JSP and HTTP [584]
21.3 JSP Engines [584]
21.3.1 Tomcat
21.3.2 Java Web Server [586]
21.3.3 WebLogic [386
21.3.4 WebSphere [586]
21.4 How JSP Works 1586/
21.5 JSP and Servlet [587]
21.5.1 Translation and
Compilation 587
21.6 Anatomy of a JSP Page 1590
21.7 JSP Syntax [591]
21.8 JSP Components [591]
21.8.1 Directives (591
Page directive 592
Include directive 1594
21.8.2 Comments [594
21.8.3 Expressions 3935
21.8.4 Scriptlets
Conditional processing 596
21.8.5 Declarations 1596
21.8.6 Scope of JSP Objects [597]
21.8.7 Implicit Objects [398]
21.8.8 Variables, Methods, and
Classes
Synchronization 601
21.8.9 Standard Actions 1602
21.8.10 Tag Extensions
Tag type
Writing tags
21.8.11 [Iterating a Tag Body
21.8.12 Sharing Data Between JSP
Pages (011
21.9 Beans 612

CONTENTS xix

21.9.1 useBean (612
21.9.2 setProperty

XX

22.

CONTENTS

21.10 Session Tracking m
21.10.1 Hidden fields
21.10.2 URL Rewriting (616
21.10.3 Cookies [616]
21.10.4 Session API [617
21.11 Users Passing Control and Data
between Pages
21.11.1 Passing Control [619)
21.11.2 Passing Data [619]
21.12 Sharing Session and Application
Data
Java Database Connectivity
(JDBC)
22.1 Introduction 625
22.2 JDBC Drivers [625]
22.2.1 JDBC-ODBC Bridge
(Type 1)
22.2.2 Native-API, Partly Java
(Type 2)
22.2.3 Middleware, Pure Java
(Type 3)
22.2.4 Pure Java Driver
(Type 4)
22.3 JDBC Architecture 626
22.4 JDBC Classes and Interfaces [627]
22.5 Basic Steps [627]
22.6 Loading a Driver [628]
22.7 Making a Connection Q
22.8 Execute SQL Statement 1631]
22.9 SQL Statements [6371]
22.9.1 Simple Statement [632]
22.9.2 Atomic Transaction [633]
22.9.3 Pre-compiled Statement [637]
22.9.4 SQL Statements to Call
Stored Procedures [638]
22.10 Retrieving Result 1640|
22.11 Getting Database Information E
22.12 Scrollable and Updatable ResultSet [642]
22.12.1 Scrollability Type (643
22.12.2 Concurrency Type 643
22.12.3 Examples (643
22.13 Result Set Metadata 647

21.9.3 getProperty
21.9.4 Complete Example
21.9.5 Other Usage 614

23. Hibernate

23.1
23.2
233
23.4
235
23.6
23.7

23.8
23.9

23.10

23.11

23.12
23.13

23.14
23.15

23.16
23.17
23.18
23.19

Introduction [657]
Installing Hibernate [658
Basic Steps
Writing POJO Class
Creating a Table 659

Writing a Hibernate Application [659
Compiling and Running

Application 1663
Using Annotation [664]
Environment Setup for Hibernate
Annotation 664
Book Application Using
Annotation 664
Function of Different
Annotations 665
Object Life Cycle 666
Hibernate Query Language 667]

23.13.1 From [667]

23.13.2 Select [667]

23.13.3 Where [663]

23.13.4 Filtering [6638]

23.13.5 Order by [668]

23.13.6 Group by [668]

23.13.7 Parameter Binding [663]

23.13.8 Update [669]

23.13.9 Delete [669)
23.13.10 Insert [669]
23.13.11 Aggregate Methods [70]
Using Native SQL Query 1670]
Named Queries [670]
23.15.1 Defining Named Queries
23.15.2 Calling Named Queries [672]
Generating DDL @
Syntax of O/R Mapping File | 674
Generator Class [676]
Hibernate Tools [677]

23.19.1 Using Hibernate Tools
with Ant [677]

Ant Task [678]
Configuring Task [673]
Exporters [679]
Controlling Reverse
Engineering [633]
Controlling POJO Code
Generation [633]

23.19.2
23.19.3
23.19.4
23.19.5

23.19.6

24. Java Naming and Directory

Interface

24.1

242

243

24.4

24.5
24.6
24.7

24.8

24.9

24.10

24.11
24.12

N
o
N E

Naming Concepts ‘
24.1.1 Naming Convention [693]
24.1.2 Naming Context
24.1.3 Binding

Directory Concepts m
24.2.1 Directory Context

Java Naming and Directory

Interface 1694]
An Example [693]

24.4.1 Writing the Server [693]
24.4.2 Writing the Client [696]
24.4.3 Running Application [696]

Specifying JNDI Properties 697]
Name Servers 6971
Using ApacheDS 98

24.7.1 Installing and Starting

ApacheDS
24.7.2 JNDI Properties for

ApacheDS
Calculator RMI Application

Using LDAP
Calculator RMI-IIOP Application
Using JNDI
24.9.1 Server [699]

24.9.2 Client [700]

24.9.3 Running the Application [700]
Naming Operations

24.10.1 Adding, Replacing and
Removing Binding
Looking Up
Renaming

Listing

Using list()

Using listBindings() [702]
Working with Subcontext
Working with Directory

24.12.1 Reading Attributes [703]
24.12.2 Binding with

Attributes (704

Creating Subcontext with
Attributes (705

Adding Attributes [703]
Modifying Attributes [706]
Removing Attributes |706

24.10.2
24.10.3
24.10.4

~
e
S

-
S
%)

24.12.3

24.12.4
24.12.5
24.12.6

CONTENTS xxi

24.12.7 Batch Operation on
Attributes 707

24.12.8 Search
Basic search
Filters

25. Java Message Service 714
25.1 Messaging |714]
252 JMS API [714]
25.3 JMS Components [713]
25.4 Messaging Models [713]

25.4.1 Point-to-Point
25.4.2 Publish/Subscribe
25.5 Message Consumption
25.5.1 Synchronous |717
25.5.2 Asynchronous (717
25.6 Programming Model
25.7 Installing Open MQ
25.8 Writing JMS Application
25.9 Writing a P2P Producer
25.9.1 Running Example [723]
25.10 Writing a P2P Synchronous
Consumer
25.11 Writing a P2P Asynchronous
Consumer |725]
25.12 Writing a Pub/Sub Producer [726]
25.13 Writing a Pub/Sub Synchronous
Consumer 726
25.14 Running this Example [727]
25.15 Writing a Pub/Sub Asynchronous
Consumer 727
25.16 Browsing Queue E
25.17 Using JNDI [729]
25.18 Reliability Mechanisms [731]
25.18.1 Acknowledgement [732]
25.18.2 Message Persistence [/32]
25.18.3 Message Priority [/32]
25.18.4 Message Expiration [732]
25.18.5 Temporary Destinations [/33]
25.19 Transacted Session
26. Introduction to J2EE
26.1 Overview of J2EE 1739
26.2 Introduction to JavaBeans [740

26.2.1 Properties
26.2.2 Accessor Methods

XX

27.

CONTENTS

26.3 Bean Builder
26.4 Advantages of JavaBeans
26.5 BDK Introspection

||
A
N =

~
N
[\®]

26.6

26.7
26.8
26.9
26.10

26.11

26.12

26.5.1 Design Patterns

Properties

26.6.1 Simple Properties

26.6.2 Bound Properties

26.6.3 Constrained Properties
Implementing constrained

property support
Implementing constrained
property Listener

Example

26.6.4 Indexed Properties [Z31]

Beanlnfo Interface

Persistence

Customizer

JavaBeans API

EJB

26.11.1

26.11.2

26.11.3

26.11.4

N
~
=

~
N
%)

~
N
N

|
W
Nellied

~
(@)}
—

Benefits of EJB

Usage Scenario

EJB Architecture
Session Beans
Stateless session beans
Stateful session beans
26.11.5 Entity Beans

26.11.6 Message Driven Beans
Introduction to Struts Framework
26.12.1 Basic Idea [763]

Java and CORBA

27.1 Introduction
27.2 CORBA Architecture

770

L770]

273
27.4

27.2.1 IDL [771]

27.2.2 ORB [ZZ11

27.2.3 IIOP [ZZ11

27.2.4 IOR [Z711

Java IDL 772
Developing CORBA Applications [772
27.4.1 Write an Interface Using

IDL [772]

Mapping IDL Interface to
Java [773]

Implementing the Interface
Writing the Server
Binding IOR to naming

service [773]

27.4.2

2743
27.4.4

28.

27.4.5 Writing the Client

27.5 Compiling Applications 777
27.6 Running the Application [777]
27.7 Using Properties [778]
27.8 Stringified Object Reference [779]
27.9 Using URL [780]
27.9.1 Using corbaloc
27.9.2 Using corbaname (781
27.10 Using Tie |782]
27.11 Persistent Objects [782]
27.11.1 Running Persistent
Application
27.12 Callback
27.13 Using Dynamic Invocation Interface
(DII) 787
27.14 Using Dynamic Skeleton Interface
(DSI) 789
27.14.1 Basic Steps 789
27.14.2 An Example
27.15 Using Out and Inout Parameter |791
27.15.1 Invoking Operation
Using Holder Classes [792]
27.15.2 An Example [792]
27.16 RMI-IIOP 793

27.16.1 An Example [793]

Writing an interface [793]
Implementing the interface

794

Writing the server
Writing the client
Compiling server files
Compiling client files
Running the application

795

27.17 IDL to Java Language Mapping
Java Server Faces (801]
28.1 Introduction (801
28.2 First Application 802

28.2.1 Installing JSF [302]

28.2.2 Writing a JSF Page [803]

28.2.3 Deploying the Application

504

28.2.4 Testing the Application [805]

28.3 Request Processing Life-cycle

28.3.1 Restore View [806]

806

28.3.2 Apply Request Values [807]

28.3.3 Process Validations [807]

28.3.4 Update Model Values
28.3.5 Invoke Application [808
28.3.6 Render Response 808

CONTENTS xxim

Custom tags |821
Composite components (823
Remove |824

28.4 Tracing Phases 808 28.8.4 Converter Tags |524
28.5 Managed Bean 809 28.8.5 Displaying Messages (827
28.5.1 Using faces-config.xml 28.8.6 Validations |828
File 28.9 AJAX [830)
28.5.2 Using @ManagedBean 28.10 Event Handling [831]
Annotation [811 28.10.1 Value Change Listener [831]
28.5.3 Scope Annotations |81/ Using value-ChangeListener
28.5.4 @ManagedProperty attribute [331]
Annotation (812 28.10.2 Using
28.6 Accessing Managed Bean <f:value ChangeListener>
Programmatically 813 Tag
28.6.1 Using javax.faces.context. 28.10.3 Action Listener [532)]
ExternalContext Using actioneListener
28.6.2 Using javax.el. ELContext attribute [832]
28.6.3 Using evaluate ExpressionGet() 28.10.4 Using <f:actionListener>
Method Tag 1833
28.7 Basic JSF Tags 1814] 28.11 An Event Handling Example 1833]
28.8 Expression Language [817] 28.12 Page Navigation [834]

28.8.1 Value Expression (818

28.8.2 Method Expression |819

28.8.3 Facelets
Templates

28.12.1 Auto Navigation

28.12.2 Using Managed Bean [833]

28.12.3 Using Navigation Rule in
Faces-config.xml

Answers to Objective-type Questions [841]

Index
About the Author [833]

-5
o ™

Copyrighted Materials
Copyright © 2015 Oxford niversity Press Retrieved from www.knovel.com

CHaAPTER 1
CHAPTER 2
CHaPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHaAPTER 7
CHAPTER 8
CHAPTER 9
CHapTER 10

CHaPTER 11

Java Tools

Exception Handling
Multi-threading
Garbage Collection
Collection Framework
Generic Programming
Reflection

Java Native Interface
AWT and Swing

Java and XML
Input/Output

CHAPTER - 1

Java Tools

Key OBJECTIVES

After completing this chapter readers will be able to—

» write doc comments and use javadoc to generate HTML documentation files
» understand how to use the Java debugger jdb

» getan idea about packaging of a set of files into a single one and vice versa
» understand how to fire diagnostic commands to JVM using jemd

* learn how to analyze JVM heap dump file used jhat tool

* learn how to quickly find the method signatures of a class using javap

1.1 INTRODUCTION

Java beginners often use javac and java to compile and run Java programs. However, JDK comes
with a lot of other powerful tools such as jar, jhat, jdb, javap, javadoc, jemd, javah, keytool,
jconsole, jps, jstatd, jstat, jinfo, jmap, jstack and many more to enable Java developers to
program better. This chapter gives a quick reference of the first six (not in order) tools available
default with the Java JDK. Other tools have been discussed in various other chapters. For example,
jstat has been discussed in detail in Chapter 4 and javan has been discussed in Chapter 8.

1.2 JAVADOC

Documentation is an important part of program code. It not only helps others to understand the
program, but helps the author to remind how his/her own older programs also work. Since external
documentation may easily become outdated as the program changes, Java encourages us to write
documentation directly in the source code. It requires less efforts to update documentation as and
when program code changes.

Java standardizes the syntax and semantics of writing documentation. It also provides a tool
javadoc to generate HTML files to view the documentation from a web browser in a convenient way.

4 ADVANCED JAVA PROGRAMMING

Note that Java also uses this tool to generate Java API specification from the source code. In fact, if
we have the source code, we ourselves can generate this. We can also generate HTML documentation
similar to the Java API reference pages using javadoc. This section discusses how to write
documentation and how to generate HTML files using javadoc command.

Since documentation comments (or simply doc comments) go directly in the source code, we
must hide it from Java compiler. So, documentation is written as special comments between the
character sequence /** and */ that begin and end the comment respectively. Note that the starting
delimiter must be /** (not /*), otherwise, javadoc tool will not process the comments. Here is an
example of single line comment:

/** This is a single line java doc comment. */

Comments can spread multiple lines:

/**

This is an example of comments
that spans multiple lines.

*/

The javadoc preserves all white spaces between /** and */. However, if leading asterisks on
each line are used, white spaces (blanks and tabs) preceding the initial asterisk (*) characters are
discarded. Here is an example:

/ * *

* This is also an example of comments
* that spans multiple lines.
*/

A doc comment may be attached with only class, interface, constructor, method, or field
declarations by writing the comment immediate before them. The following is a comment attached
with a class x.

/** Represents the class of two-dimensional geometrical points. */
public class Point {}

Similarly, the following attaches a comment with a method.

public class Point {
private int x, y;
/** Returns x coordinate of the point */
public int getX () { return x; }

}

The first sentence of each doc comment should be a summary sentence, containing a concise but
complete description of the declared entity. The javadoc tool ignores any doc comment placed in
the body of a method.

public class Point {
private int x, vy;
public int getY () {
/** This comment will not be processed by javadoc */
return y;
}
}

So far, we have seen how to write a simple doc comment. Let us now generate the HTML files,
using javadoc command. It parses the declarations and documentation comments in the specified
file(s) and produces a set of HTML pages describing, by default, the public and protected classes,
interfaces, constructors, methods, and fields. We can pass either a series of Java package names or

source files to javadoc as argument(s). Here is an example:
javadoc Point.java

JAVATOOLS 5

This generates a set of files. The output of this command is show below:
Creating destination directory: "point\"

Loading source file Point.java...

Constructing Javadoc information...

Standard Doclet version 1.7.0 07

Building tree for all the packages and classes...
Generating point\Point.html...

Generating point\package-frame.html...

Generating point\package-summary.html...
Generating point\package-tree.html...

Generating point\constant-values.html...

Building index for all the packages and classes...
Generating point\overview-tree.html...

Generating point\index-all.html...

Generating point\deprecated-list.html...

Building index for all classes...

Generating pointlallclasses-frame.html...
Generating point\allclasses-noframe.html...
Generating point\index.html...

Generating point\help-doc.html...

As we can see, a set of files is generated in the current directory. The index.html file is the front
page with frames. If we open this file using a browser, it looks like this:

(llee =
[} Generated Documentatior x

| € = C [filey//E/ajp/intro/javadoc/indexhtml w =

|}
All Classes Package 'Class Tree Deprecated Index Help -

Point Prev Class NextClass Frames No Frames

Summary: Nested | Field | Constr | Method Detaik: Field | Constr | Method

Class Point

java.lang.Object
Point

public class Point
extends java.lang.Object

Represents the class of two-dimensional geometrical points.

Constructor Summary

Constructors
Constructor and Description
| Point()

We can place HTML tags inside the description part as usual. For example, the below example
makes use of tag to impose more importance:
The javc is an import tool.

In addition to main description, doc comment may have an optional tag section. The main
description starts after the starting delimiter /** and must end before the tag section. The tag section
contains special tags, which are used to generate well-formatted API about the code being documented.

6 ADVANCED JAVA PROGRAMMING

The tags take the form etagname. For example, in comments for methods we can use ¢param and
ereturn tags (if applicable) to describe the method’s parameters and return value, respectively. The
eparam tag should be followed by the parameter’s name, and then a description of that parameter.
Here is an example:

/**

@param x the X coordinate of the point
*/
public void setX(int x) { this.x = x; }

Similarly, the ereturn tag is followed simply by a description of the return value.

/**

Qreturn the X coordinate of the point
*/
public int getX() { return x; }

The argument to a tag includes any text following the tag up to, but not including, either the next
tag, or the end of the doc comment.

The summary of frequently used tags is shown in Table 1.1:

Table 1.1: Build doc comments tags

Tag with syntax Description

@author name-text Adds an “Author” entry with the specified name-text

{@code text} Displays text in code font

{@docRoot} Represents the relative path to the generated document’s (destination) root

directory from any generated page.

@deprecated deprecated-text Adds an “Deprecated” entry with the specified deprecated-text

@exception class-name description Adds a “Throws” subheading to the generated documentation, with the class-
name and description text

{@inheritDoc} Inherits a comment from the nearest inheritable class or implementable
interface

{@link package.class#member Inserts an in-line link with visible text label that points to the documentation for

label} the specified package, class or member name of a referenced class

{@linkplain package.class#member Similar to {@link}, except the link’s label is displayed in plain text than code
label} font

{@literal text} Displays text without interpreting the text as HTML markup or nested javadoc
tags

@param parameter-name Adds a parameter with the specified parameter-name followed by the

description specified description to the “Parameters” section

@return description Adds a “Returns” section with the description text

@see reference Adds a “See Also” heading with a link or text entry that points to reference

@serial field-description | include | Used in the doc comment for a default serializable field

exclude

@serialData data-description Documents the data written by the writeObject() or writeExternal() methods

@serialField field-name field-type Documents an ObjectStreamField component

field-description

@since since-text Adds a “Since” heading with the specified since-text to the generated
documentation

(Contd)

JAVATOOLS 7

Table 1.1: (Contd)

@throws class-name description Similar to @exception tag

{@value package.classt#field} When {@value} is used in the doc comment of a static field, it displays the
value of that constant

@version version-text Adds a “Version” subheading with the specified version-text to the generated
docs when the -version option is used

Some types of tags can be repeated while others cannot. For example, ereturn tag should appear
only once whereas @see tag may appear any number of times. This implies that the tag section may
contain any number of tags. Tag names are case-sensitive.

There are two kinds of tags: block tags, and in-line tags. The block tags (also called standalone
tags) take the form etagname and in-line tags appear within curly braces, as {@tagname}. A block tag
must start at the beginning of a line or after any leading spaces and an optional asterisk. Otherwise
javadoc will ignore them. An in-line tag can appear anywhere in the comment. Here is an example:

/* *
See this infinite loop {@code while(true);}
*/
We can also use one argument custom tags in the form @tagname. Here is an example:
@task Re-visit the documentation

To enable this tag, use -tag option to the javadoc int in the following form:
-tag tagname:Xaoptcmf:"caption"

Here tagname is the tag to be processed and caption is the heading to be used for this tag. The
Xaoptemf part of the argument determines where in the source code the tag is allowed to be placed,

and whether the tag can be disabled (using X). Here is an example:
javadoc -tag task:a:"Remainder" Point.java

It tells that the tag etask is allowed to be placed in all places, and the heading for this tag will

be Remainder.

1.3 JAVAP

This command line tool displays information in brief about the methods, constructors and fields
present in the specified class(es). The syntax of using javap is:
javap <options> <classes>

The name of the class(es) must be a fully qualified class name (i.e., including package name).
Here is an example:
javap java.lang.Object

This displays the information of the class object (the root class of Java class hierarchy) in the
package java.lang. Here is the sample output:
Compiled from "Object.java"
public class java.lang.Object {
public java.lang.Object();
public final native java.lang.Class<?> getClass();
public native int hashCode () ;
public boolean equals(java.lang.Object) ;
protected native java.lang.Object clone ()throws
java.lang.CloneNotSupportedException;
public java.lang.String toString() ;

8 ADVANCED JAVA PROGRAMMING

public final native void notify();

public final native void notifyAll();

public final native void wait (long) throws java.lang.InterruptedException;
public final void wait (long, int) throws java.lang.InterruptedException;
public final void wait() throws java.lang.InterruptedException;

protected void finalize() throws java.lang.Throwable;

static {};

}

Note that javap does not show the code of the methods/constructors. It shows only the prototypes
of methods/constructors. It is useful especially to those who want to quickly find the method signatures
of a class. For example, if you do not have any IDE and want to quickly know the methods available
on java.lang.String class, use the following simple command:

javap java.lang.String

The javap command displays its output to stdout. If you want to store the output in a file, use the
following command instead:
javap java.lang.String > out.txt

Ifno option is specified, javap tool prints the package, protected, and public fields and methods of the
specified classes. In fact the output of the command can be customized using options. The set of options
themselves can be viewed using —help or --help Or -2 options or without using any options as follows:

javap

It displays the available options with a brief description as follows:

Usage: javap <options> <classes>
where possible options include:

-help --help -2 Print this usage message
-version Version information
-v -verbose Print additional information
-1 Print line number and local variable tables
-public Show only public classes and members
-protected Show protected/public classes and members
-package Show package/protected/public classes
and members (default)
-p -private Show all classes and members
-c Disassemble the code
-s Print internal type signatures
-sysinfo Show system info (path, size, date, MD5 hash)
of class being processed
-constants Show static final constants
-classpath <path> Specify where to find user class files
-bootclasspath <path> Override location of bootstrap class files

The options are self-explanatory. For example —p option is used to show all including the private
members of the class. This tool can also be used to disassemble the byte code in a readable format
using —c option. Note a Java class file contains the so called byte code, which is translatable to op-
codes/mnemonics. Consider the following simple Java class:

public class HelloWorld {
public static void main(String[] args) {
System.out.print ("Hello World!");
}
}

Compile this program and use the following command to see the contents of the Helloworld
class file in op-code format:
javap -c HelloWorld

JAVATOOLS 9

A part of the output is shown here:
Compiled from "HelloWorld.java"

public class HelloWorld {
public HelloWorld() ;
Code:
0: aload 0
1: invokespecial #1 // Method java/lang/Object."<init>": ()V

4: return public static void main(java.lang.Stringl[]);

Code:
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: 1ldc #3 // String Hello World!
5: invokevirtual #4 // Method java/io/PrintStream.print: (Ljava/lang/String;)V
8: return

}

It is easy to see the relation between the source code and the byte code To print more information,
use the following command:

javap -c -s -verbose HelloWorld

1.4 JCMD

This tool is used to send diagnostic commands to a specified JVM. To demonstrate how to work
with jcmd, we shall first write a simple Java program as follows:

public class LoopForEver {

public static void main(String[] args) {
while (true);
}

}

The code is really simple having only an infinite loop. The loop is inserted deliberately so that it
makes a JVM up all the time and we can inspect the JVM properties in the meanwhile. Compile the
program and run it in a terminal using the following command:

java LoopForEver

This makes a JVM running indefinitely. The jcmd expects lvmid of the target JVM. A lvmid, is
typically, but not necessarily, the operating system’s process identifier for the JVM process. To find
Ivmid of the JVM, we can use the command without any arguments:

jcmd

It displays all JVMs running on the local machine listed by lvmid followed by main class as follows:

432 LoopForEver
3724 sun.tools.jcmd.JCmd

To know the commands that we can give to a JVM, specify the lvmid along with help to the

command as follows:
jcmd 432 help

This displays a list of commands that we can give to the JVM identified by the lvmid 432. Here
is a sample output of the command:

10 ADVANCED JAVA PROGRAMMING

432:

The following commands are available:
VM.commercial features
ManagementAgent.stop
ManagementAgent.start local
ManagementAgent.start
Thread.print
GC.class_histogram
GC.heap_dump
GC.run_finalization

GC.run

VM.uptime

VM. flags

VM.system properties
VM.command line

VM.version

help

We can then apply any of the listed commands. To get help about a specific command specify
the command after help. For example, to see how to use Gc.heap_ dump command, use the following

command:
jemd 4680 help GC.heap dump

This generates a help content as follows:

4680:
GC.heap_dump
Generate a HPROF format dump of the Java heap.

Impact: High: Depends on Java heap size and content. Request a full GC unless
the '-all' option is specified.

Syntax : GC.heap dump [options] <filename>

Arguments:
filename : Name of the dump file (STRING, no default value)

Options: (options must be specified using the <key> or <key>=<value> syntax)
-all : [optional] Dump all objects, including unreachable objects

(BOOLEAN, false)

So, to store the snapshot of the JVM heap in a file myHeap, we can use the following command:

jemd 432 GC.heap dump myHeap

This dump file can be analyzed using a tool like jhat (java heap analysis tool) discussed later in
this chapter. Here is another command that gives the JVM version:
jemd 432 VM.version

432:
Java HotSpot (TM) Client VM version 23.3-b01
JDK 7.0 _07

The following command shows the flags (including default flags) used to start the JVM:

jemd 432 VM. flags

432:

-XX:InitialHeapSize=16777216 -XX:MaxHeapSize=268435456 -XX:-
UselLargePagesIndividualAllocation

There is also a command pPerfcounters.print that displays all the performance-related counters
of the specified JVM.
jemd 432 PerfCounter.print

JAVATOOLS 11

A small portion of the output is shown here:

432:

java.ci.totalTime=1690
java.cls.loadedClasses=353
java.cls.sharedLoadedClasses=0
java.cls.sharedUnloadedClasses=0
java.cls.unloadedClasses=0
java.property.java.class.path=".
java.property.java.endorsed.dirs="D:\Java\jdkl.7.0 07\jre\lib\endorsed"
java.property.java.ext.dirs="D:\Java\jdkl.7.0 07\jre\lib\ext;C:\Windows\Sun\Jav
a\lib\ext"

java.property.java.home="D:\Java\jdkl.7.0 07\jre"
java.property.java.library.path="D:\Java\jdkl.7.0 07\bin;C:\Windows\Sun\Java\bi
n;C:\Windows\system32;C:\Windows;D:\Java\

jdk1.7.0 07\bin;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem; C:\Wind
ows\System32\WindowsPowerShell\v1l.0\;D:\M

ySQLAMySQL Server 5.0\bin;C:\Program Files (x86)\SSH Communications
Security\SSH Secure Shell;."

java.property.java.version="1.7.0 07"

java.property.java.vm.info="mixed mode"

java.property.java.vm.name="Java HotSpot (TM) Client VM"
java.property.java.vm.specification.name="Java Virtual Machine Specification”
java.property.java.vm.specification.vendor="0Oracle Corporation"
java.property.java.vm.specification.version="1.7"
java.property.java.vm.vendor="Oracle Corporation"
java.property.java.vm.version="23.3-b01"

java.rt.vmArgs=""

Another powerful feature of jemd is that it allows us to control Java Flight Recordings (JFR)
from command line. To do this JFR must be enabled by starting the application using the flags
-XX:+UnlockCommercialFeatures -XX:+FlightRecorder to JVM as follows:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder LoopForEver

We can see that JFR commands have been enabled by using jcmd. The commands relevant to
Java Flight Recorder are: JFR.start, JFR.stop, JFR.check and JFR. dump. The JFR.start command
is used to control how and when actual recording should happen. For example, to start a recording
after 2 seconds with duration 30 seconds on the JVM with the identifier 432 and save it to the file
“r30s.jfr” in the current directory, use the following:

jemd 432 JFR.start name=test delay=2s duration=30s filename=r30s.jfr

This recording is identified by the name “test”, which is used by other JFR commands. A flight
recording can be fired by specifying options to the JVM directly. For example, the following does
the same thing as above:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -

XX:StartFlightRecording=delay=20s,duration=30s, name=test, filename=r30s.jfr

LoopForEver

The JFr.check displays the status of all recording command. For example:

jemd 432 JFR.check

To stop a recording, use JFR.stop command specifying the name of the recording to be stopped
as follows:

jcemd 432 JFR.stop name=test

Finally, to dump the recordings to a file, we can use The JFR.dump command as follows:

jcmd 432 JFR.dump name=test file name=r30s.jfr

Note that jcmd must be used on the same machine where the JVM is running, and have the same
effective user and group identifiers that were used to launch the JVM.

12 ADVANCED JAVA PROGRAMMING

1.5 JHAT

The jnat (java heap analysis tool) is a useful tool to retrieve information from a heap dump file
created using a tool like jmap.

It is a valuable tool for debugging and understanding programs. It allows us to navigate object
structures to learn how objects are interconnected in a program at runtime. It also allows us to trace
the references to a given object from the root set, which is particularly useful for tracking down
unnecessary object retention known as “memory leaks”. It takes the following form:

jhat [options] <heap-dump-file>

It parses the specified dump file and starts a web server. A web browser may then be used to get
desired data. The web server supports a few pre-designed queries as well as custom queries written
in OQL (Object Query Language), which is a language similar to SQL to query heap dumps.

We shall use the same LoopForEver.java program to demonstrate this tool. To use jhat, we have
to dump heap information in a file. There are several ways to generate a java heap dump:

+ Use jmap with -dump option to obtain a heap dump at runtime;

+ Use jeconsole option to obtain a heap dump via HotSpotDiagnosticMXBean at runtime;

« Use java by specifying -XX:+HeapDumpOnOutOfMemoryError VM option; Heap dump will be generated when
OutOfMemoryError is thrown;

. Use jemd;

« Use hprof.

The standard tool jmap may be used for this purpose. However, jmap expects a local VM identifier
(Ivmid), which is typically, but not necessarily, the operating system’s process identifier for the JVM
process. We can use Java tools such as jcmd or jps to find such lvmid. We used jcmd as follows:

Jjemd

A sample output of this command is shown below:

5000 LoopForEver

3468 sun.tools.jcmd.JCmd

We can easily see that the lvmid of the process is 5000. This ID can be used to create a dump file
using jmap command as follows:

Jjmap -dump:file=myHeap 5000

Here myHeap is the name of the file where we want to dump and 5000 is the lvmid of the JVM
running the application. If everything is fine, you will see the following message:

Dumping heap to E:\ajp\intro\myHeap ...

Heap dump file created

The file myHeap contains a snapshot of all the live objects and classes at the moment it was created.
Diagnosed process may be terminated after dumping heap with jmap. There is also a straightforward
way to generate the dump file using java command as follows:

java -Xrunhprof:file=myHeap, format=b LoopForEver

When this program terminates (terminate using ctr1l c as this program loops forever), a dump
file is generated. This is useful if your program does not take sufficient time to run to create the dump
file using jmap command. The jcnmd command can also be used to create the dump file as follows:

jcmd 5000 GC.heap dump myHeap

The dump file is now ready to be used by jhat. Use the following command to start jhat:
jhat myHeap

JAVATOOLS 13

If everything goes right, the following message appears:

Reading from myHeap...

Dump file created Tue Jan 27 12:03:28 IST 2015
Snapshot read, resolving...

Resolving 5941 objects...

Chasing references, expect 1 dots.

Eliminating duplicate references.

Snapshot resolved.

Started HTTP server on port 7000

Server is ready.

The jhat can obviously be started on a separate computer having the dump file. Usually analyzers
choose to zip the dump and move it to machine more accessible to them and with enough resource.
The jnat parses the heap dump and make the data available on a web server that it runs by default
on port 7000. Use -port option to start the web server on a different port. To check the data provided
by jhat, use the following URL in a web browser while jhat is still running.

http://172.16.5.82:7000/

For local computers, instead of IP address, we can use 1ocalhost or any loopback address such
as 127.0.0.1. The page looks like this:

[All Classes (excluding plat x '\

¢ - ¢ (172165827000 o =
All Classes (excluding platform) i

Package <Default Package>

class LoopForEver [0x469ad20]
Other Queries

o All classes including platform
* Show all members of the rootset
* Show instance counts for all classes (including platform)
+ Show instance counts for all classes (excluding platform)
* Show heap histogram
o Show finalizer summary

ute ject Query Langu uery

As we can see, this page contains some readymade queries.

They let us surf along all the classes and objects. We shall be able to check how many instances
of each class were alive in the moment the heap was created. By clicking on a query link, we can
reach other pages containing other queries. The last link is interesting as it allows us to write custom
queries using OQL. The jhat also provides a useful page to get help on OQL. The URL of this page
with the default port is:

http://172.16.5.82:7000/0glhelp/

1.6 JDB

A good programmer should have good skills to debug programs. This skill enables the programmer
to find any subtle bugs or defects which are not visible during code review or comes when a particular
situation occurs and removes them. The old method of debugging that uses print statements here
and there in the program makes the program simply ugly. Although, they can be removed before
delivering the program finally, they make a simple program almost unreadable.

This section introduces you to the command line, interactive, Java runtime debugger known as
jdb which is a very useful tool to debug Java code. The jdb tool allows us to query to a JVM and
displays information. The JVM may be started by the jdb itself or may be an existing one.

14 ADVANCED JAVA PROGRAMMING

We shall first use jdb to start a JVM and to debug an application. To demonstrate how jdo works,
we shall use the following Java program:

public class Test {

int v = 4;

public static void main(String[] args) {
int x = 2, yv = 3;
int z = add(x, vy);
Test t = new Test();
t.set (6);
System.out.println (x+"+"+y+"="+2z);

}

public static int add(int a, int b) {

int ¢ = a + b;
return c;
}
public void set(int x) { v = x; }

}

Although, it is a very simple and correct program that does not do any useful task, it keeps the
program logic simple and helps us concentrate on only debugging the program. Compile this program
with the -g option as follows:

javac —-g Test.java

The -g option tells the compiler to place all debugging information in the generated class file
Test.class. The application is ready to be run and debugged using 5db. Like other commands, you
can use —help option to see the syntax of using jdb. We can start a debugging session for our Test.
class application as follows:

jdb Test

If everything goes fine, you see the following message:

Initializing jdb ...

>

This starts a new Java VM, stops it before executing the first statement of the class. We can now
apply various commands at this prompt. To see the available commands we can use help command.

We need to give run command at the prompt to start the application. However, if we run the
application, it will exit immediately as the main method does not have anything that will make the
application waiting. All we see is the output of the main method. But that is just not what we want to
see. To see program state at different time of its execution, we set a breakpoint before applying the
run command, so that when the program is run, the execution stops at that breakpoint. We can set
breakpoints in two ways: using stop in or stop at commands. The former sets a breakpoint in a
specified method and the latter sets a breakpoint at a given line number and their respective syntax are:

stop in <class id>.<method>[(argument type,...)]
stop at <class id>:<line>

Let’s set a breakpoint at the beginning of the main() method as follows:

> stop in Test.main(java.lang.String[])

Deferring breakpoint Test.main(java.lang.String[]).

It will be set after the class is loaded.

>

We must specify class name. However, specifying the parameter is mandatory if there are
overloaded methods. So the following command will also work:

stop in Test.main

Since the application has not yet started, the class Test has not yet been loaded in the JVM, the
breakpoint is not immediately set. Instead it postpones setting the breakpoint till class is actually
loaded. We can now give the run command.

JAVATOOLS 15

> run

run Test

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable

>

VM Started: Set deferred breakpoint Test.main

Breakpoint hit: "thread=main", Test.main(), line=3 bci=0
4 int x =2, y = 3;
main (1]

The jdp loads the class Test (that was specified when we started jdb) and sets the breakpoint that
we configured earlier and tries to execute main method and allows JVM to proceed. The JVM reaches
the first breakpoint and stops. It is also possible to run any class by specifying it as an argument to
the run command. Anyway, we can see the line about to be executed using list command.

main[1l] list

1 public class Test {

2 int v = 4;

3 public static void main(String[] args)
4 => int x =2, y = 3;

5 int z = add(x, vy);

6 Test t = new Test();

7 t.set (6);

8 System.out.println (x+"+"+y+"="+z);

9 }

10 public static int add(int a, int b) {

The line to be executed is shown by =>. To execute current line next command is used:

main[l] next
>

Step completed: "thread=main", Test.main(), line=4 bci=2
4 int y = 3;

It executes the current line and shows the next line to be executed. Let us apply another next
command:

main[1l] next

>

Step completed: "thread=main", Test.main(), line=5 bci=4

5 int z = add(x, vy);

If a line contains a method call, the next command completes that too. To step over the function
call, we use step command:

main[l] step

>

Step completed: "thread=main", Test.add(), line=11 bci=0

11 int ¢ = a + b;

As we can see, the control has now gone inside the add () method. This way we can issue as many
next and step commands as we want to execute instructions. To finish the execution of the current
function add () and to go back to the caller main (), we can use step up command:

main[l] step up

>

Step completed: "thread=main", Test.main(), line=5 bci=9

5 int z = add(x, vy);

Let us apply the next command twice. Then to see the values of all local variables including the

arguments passed in a method, we can use 1ocals command:

main[l] locals
Method arguments:
args = instance of java.lang.String[0] (id=372)

16 ADVANCED JAVA PROGRAMMING

Local variables:

X = 2
y = 3
z =5

t = instance of Test (1id=373)

To print the value of a specific variable, use print command:

main[l] print x
x = 2

To change the value of a variable X, use set command:

main[l] set x=10
x=10 10

We can verify the assignment using print command again:

main[l] print x
x = 10

To print the field v of the object t use t.v.

main[l] print t.v
t.v =4

To see detailed information about the object, use dump command:

main[l] dump t
t={
v: 4

}

We can see what all classes are currently loaded in the JVM by using the c1asses command.
main[l] classes

The following shows a small portion of the output:
** classes list **

Test

boolean/(]

bytel]

char|[]

double[]

float[]

int[]
java.io.BufferedInputStream
java.io.BufferedOutputStream
java.io.BufferedReader
java.io.BufferedWriter
java.io.Closeable
java.io.ExpiringCache
java.io.ExpiringCache$1l
java.io.ExpiringCache$Entry
java.io.File
java.io.FileDescriptor
java.io.FileDescriptors$l
java.io.FileInputStream
java.io.FileOutputStream

To know the information about a class, we can use class command specifying the class as an
argument:
main[l] class Test

Class: Test
extends: java.lang.Object

The class command shows the name of super class, interfaces implemented, nested classes etc.
To see which methods are available on a class, use methods command:

JAVATOOLS 17

main[l] methods Test

** methods list **

Test <init> ()

Test main(java.lang.String[])

Test add(int, int)

Test set (int)

java.lang.Object <init> ()
java.lang.Object registerNatives ()
java.lang.Object getClass|()
java.lang.Object hashCode ()
java.lang.Object equals(java.lang.Object)
java.lang.Object clone()
java.lang.Object toString()
java.lang.Object notify ()
java.lang.Object notifyAll ()
java.lang.Object wait (long)
java.lang.Object wait(long, int)
java.lang.Object wait ()
java.lang.Object finalize()
java.lang.Object <clinit>()

The methods command lists method signatures of the methods written in given class as well as

inherited from the super class. Similarly, to see which fields are available on a class, use fie1ds command:

main[1l] fields Test

** fields list **

int v

Note that Test has only one field v. Watching where in the code, a particular field is being accessed
or modified is an important part of debugging. This is done using the watch command. However, to
use this command effectively, we first set up another command which gets called when any such watch
point is hit. We can do this using the command monitor. It takes another command as an argument
and executes the latter command when the following scenarios are encountered:

« afield access/modification watch point is reached

* abreakpoint is reached

* next, step, step up, stepi commands are executed

« amethod is entered/exited while tracing of methods is ON

Here is an example:
main[l] monitor list

This way we can set up as many monitors as we want. Each monitor is identified by an integer
number which can be used to remove the monitor later. The list of monitors together with their ids
can be listed using the same monitor command without any argument:

main[1l] monitor

1: list

We can now set up a watch point as follows:

main[l] watch Test.v

Set watch modification of Test.v

Apply the next command to see the behaviour now:

main[l] next
>

Field (Test.v) is 0, will be 4: "thread=main", Test.<init>(), line=2 bci=6
2 int v = 4;
1 public class Test {

2 => int v = 4;

18 ADVANCED JAVA PROGRAMMING

3 public static void main(String[] args) {
4 int x =2, y = 3;

5 int z = add(x, vy);

6 Test t = new Test();

7 t.set (6);

8 System.out.println (x+"+"+y+"="+2z) ;

9 }

10 public static int add(int a, int b) {

Use unwatch command if you do not watch a field any more
main[l] unwatch Test.v
Removed: watch modification of Test.v
Use unmonitor command to remove the monitor if it is no longer necessary.
main[l] unmonitor 1
Unmonitoring 1: list
To see all break points at a particular moment use clear command:
main[l] clear
Breakpoints set:
breakpoint Test.main
To continue the execution continuously (i.e. until a break point is reached) use cont command:

main[l] cont
> 243=5

The application exited
And finally, to exit JDB, use exit or quit command.

Note that jdo may be used to connect to an already started JVM using Java Debug Interface (JDI).
The JDI is a high-level Java API that defines the mechanisms for communication between debuggers
and similar systems and running (usually remote) JVMs. The connection is established with so called
connectors. The JDK traditionally ships a set of connectors the jdb can use to connect to a JVM such as
SACoreAttachingConnector,SADebugServerAttachingConnector,andSAPIDAttachingConnectOL
You can see the available connectors using the following command:

jdb -listconnectors

This lists all available connectors with a small description of the arguments they take. The following
command instructs db to use a connector named sun.jvm.hotspot.jdi.SAPIDAttachingConnector
to connect to a JVM having PID 1234:

jdb -connect sun.jvm.hotspot.jdi.SAPIDAttachingConnector:pid=1234

Once jdb is connected to the JVM, you can fire commands as usual.

1.7 JAR

A Java ARchive (JAR) is a file that bundles multiple files into a single one. A JAR file usually
contains the class files and auxiliary resources. Specifically, JAR files bring the following benefits:

« Java programs (including core Java API) are distributed usually as JAR files.

* JARfiles use ZIP file format. So, we can compress/decompress files.

+ Since, JAR file contains a bundle of files, a set of files can be transferred over the network using single request/
response pair that takes less time.

« We can optionally seal packages stored in JAR files to enforce version consistency. Sealing a package within a
JAR file ensures the availability of all classes defined in that package.

« This also makes distributing a set of files as a single file easy.

JAVATOOLS 19

« ltis possible to digitally sign a JAR file containing software that requires special privilege. This allows end users
to allow/disallow the privilege by checking the signature and the author’s digital certificate.

+ We can extend the functionality to the Java core platform using JAR files with its packaging for extension features.

+ JARfiles can contain special file to hold metadata about the actual files. This allows us to configure the application
on the fly.

1.7.1 Syntax

Note that JAR files as similar to Unix’s/Linux’s tar (tape archive) files and the tool jar also has
similar command-line options. To check the available options, run the command without any option:

jar
Usage: jar {ctxui}[vfmOMe] [jar-file] [manifest-file] [entry-point] [-C dir]
files
Options:

-c create new archive

-t list table of contents for archive

-x extract named (or all) files from archive

-u update existing archive

-v generate verbose output on standard output

-f specify archive file name

-m include manifest information from specified manifest file

-e specify application entry point for stand-alone application

bundled into an executable jar file

-0 store only; use no ZIP compression

-M do not create a manifest file for the entries

-1 generate index information for the specified jar files

-C change to the specified directory and include the following file
If any file is a directory then it is processed recursively.
The manifest file name, the archive file name and the entry point name are
specified in the same order as the 'm', 'f' and 'e' flags.

Example 1: to archive two class files into an archive called classes.jar:
jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest' and archive all the
files in the foo/ directory into 'classes.jar':
jar cvfm classes.jar mymanifest -C foo/

The output is self explanatory. It not only shows the options available, but some examples as well.

1.7.2 Creating a JAR file

To create a JAR file use ¢ option:
jar cf jarFile files (s)

Here £ specifies the output JAR filename and files (s) argument is a space-separated list of one
or more files to be bundled in the JAR file. Note that use of - (hyphen) before options is optional for
jar tool. To see what files are being added, we can optionally use v option. The order of options is
not important. Here is an example:

jar cvf shapes.jar Point.class Circle.class

This packages two files Point.class and circle.class in the current directory into a JAR file
shapes.jar and places it in the current directory. Make sure that the input files exist in the current
directory. If everything goes fine, you will see the following output:

added manifest
adding: Point.class(in = 255) (out= 192) (deflated 24%)
adding: Circle.class(in = 257) (out= 193) (deflated 24%)

20 ADVANCED JAVA PROGRAMMING

Although, files packaged in a JAR are usually Java classes, they can be virtually any kind of files.
We can also specify the name of directories whose contents are to be packaged:
jar -cvf all.jar shapes/ comp/

This packages all files under shapes and comp directory in a JAR file a11.jar. If we extract the
content, the same directory structure will be created. We can instruct jar to change the directory
temporarily during execution using —c option.

For example, this command changes to the directory comp and adds the HDD.class from that
directory to test.jar:

jar cvf test.jar -C comp HDD.class

This command changes to the comp directory and adds all files to test.jar (without creating a
comp directory in the jar file), then changes back to the original directory and adds Point.class to
test.jar.

jar cvf test.jar -C comp . Point.class

This command changes to the comp directory and adds all files to test.jar (without creating
a comp directory in the jar file), then changes back to the original directory and changes to shapes
directory and adds all files to test.jar and finally returns to the original directory.

jar cvf test.jar -C comp . -C shapes .

JAR files use ZIP file format. So, in addition to bundle a set of files into a single one, we can use
it for compressing and decompressing files. The following command compresses the file circle.
class and puts the resultant data in a file circle.jar:

jar cvf Circle.jar Circle.class

Note that the size of JAR file need not necessarily be less than the original file. The compression
ratio depends on several factors including size of the input file, and the distribution of content and
so on. To avoid ZIP compression, we can use 0 option as follows:

jar cvf0 Circle.jar Circle.class

1.7.3 Viewing Contents of a JAR file

The t option is used to list table of contents of a JAR file as follows:
jar tf jar-file
Here jar-file argument is the path and name of the JAR file whose contents we want to view.

For example the following command displays the content of the file shapes.jar:
jar tf shapes.jar

The output is displayed on the screen as follows:

META-INF/

META-INF/MANIFEST .MF

Point.class

Circle.class

Note that t option merely displays the content of a JAR file; it does not extract the content. The

procedure to extract the content of a JAR file is shown in the next section.

1.7.4 Extracting the Content

The general syntax to extract the contents of a JAR file is:
jar xf jar-file [archived-file(s)]

JAVATOOLS 21

Here, the jar-file argument is the name of the JAR file from which one extracts files and optional
archived-file (s) argument is the space-separated list of the files to be extracted from the archive.
If this archived-file (s) argument is not present, the jar tool extracts the entire contents. Here is
an example:

jar xvf shapes.jar

This extracts the content of shapes.jar and puts it in the current directory. We’ve used v option to
see the files being extracted. A sample output is shown here:

created: META-INF/

inflated: META-INF/MANIFEST.MF
inflated: Point.class

inflated: Circle.class

The jar extracts contents of a JAR file and writes them to the current directory, reproducing the
directory structure that the files have in the archive. The original JAR file remains unchanged. The
following command extracts only Point.class form shapes.jar.

jar -xvf shapes.jar Point.class

This way we can extract as many number of files as we wish.

1.7.5 Updating a JAR file

To add more files or to update the content of some files already in an existing archive, we use u
option. The following command updates the Point.class in shapes.jar.
jar uvf shapes.jar Point.class

This does not change the content of the JAR itself. So the content remains same as follows:

META-INF/
META-INF/MANIFEST .MF
Point.class
Circle.class

If no files in the archive have the same pathname as the specified file(s), specified file(s) are
added to the JAR file. So, the following command adds the file Rectangle.class to the shapes.jar:

jar uvf shapes.jar Rectangle.class

The content of the JAR now looks like this:

META-INF/
META-INF/MANIFEST .MF
Point.class
Circle.class
Rectangle.class

Unfortunately, there is no provision to remove a file from a JAR.

1.7.6 Manifest File

In a JAR file, there exists a special file called manifest file that contains “meta” information about
the other files that are packaged in the archive and always has the pathname META-INF/MANIFEST.
vr. This metadata enables the JAR file to support a wide range of functionality, including electronic
signing, version control, package sealing, and others.

A manifest’s entries take the form of header: value pairs. Exactly what file information should

be recorded in the manifest depends on how you intend to use the JAR file. If none is specified, jar
creates a default manifest file with a content as follows:

22 ADVANCED JAVA PROGRAMMING

Manifest-Version: 1.0

Created-By: 1.7.0_07 (Oracle Corporation)

This tells that the manifest file conforms to version 1.0 of the manifest specification and was
created by the JDK version 1.7.0 07. Note that a manifest file typically contains digest information
which is not included in the default manifest. A detailed discussion about digests and signing is given
in Chapter 19. The generation of default manifest file can be prevented using m option.

To add more content to the manifest file, m option is used together with the filename containing
entries to be added. The general syntax is this:
jar cfm jar-file manifest-entry-file input-file(s)

Before adding some entries, let us understand the functionality of some entries. Note that the
execution of an application starts from a class file containing a special method with the following
signature:

public static void main(String[] args)

A class having this function can act as an entry point of an application. If a class start.class is
an entry class (i.e. having a main () method), we can specify this using a manifest entry as:

Main-Class: Start

To add this entry to a JAR file’s manifest, create a text file (say myManifest.txt) containing the
above line and use the following command:
jar -cvfm shapes.jar myManifest.txt Point.class Circle.class Start.class

If you extract the JAR file, you will see the content of the manifest file as:
Manifest-Version: 1.0
Created-By: 1.7.0_07
Main-Class: Start

(Oracle Corporation)

The JAR file has now become runnable and can be run directly using Java command as follows:
java —Jjar shapes.jar

The jar tool also has an option e that allows us to specify the main class as follows:
jar -cvfe shapes.jar Start Point.class Circle.class Start.class

However, to add other entries to the manifest file, m option must be used. If a JAR file references
other JAR file(s), it can be specified in the manifest file. For example, if a JAR file shapes.jar
references class of another JAR start.jar, it can be specified in the manifest file of shapes.jar

as follows:

Class-Path: start.jar

In general any number of JAR files separated by space can be specified. This way, we can add
more and more functionality using the manifest file.

KEYWORDS

Block tags—Tags that take the form @tagname and
must start at the beginning of a line or after any leading
spaces and an optional asterisk

Doc comments—Java documentation comments to
be processed by javadoc tool

Heap dump—A file that contains data representing
the snapshot of a JVM heap

In-line tags—Tags that appear within curly braces,
as {@tagname} and can appear anywhere in the
comment

jar—A Java tool that can bundle multiple files into a
single one and vice versa.

javadoc—A Java toll used to generate HTML
documentation pages from doc comments

javap—A command line tool that displays information
in brief about the methods, constructors and fields
present in the specified class(es)

jemd— A Java tool used to send diagnostic commands
to a specified JVM

jdb—A command line, interactive, Java tool used to
debug Java code

JDI—Ahigh-level Java APl that defines the mechanisms
for communication between debuggers and similar

SUMMARY

Java beginners often use javac and java to compile
and run Java programs. However, JDK comes with
a lot of other powerful tools such as jar, jhat, jdb,
javap, javadoc, javah, jcmd, keytool, jconsole, jps,
jstatd, jstat, jinfo, jmap, jstack and many more
to enable Java developers to program better.

Java standardizes the syntax and semantics of writing
documentation. It also provides a tool javadoc to
generate HTML files to view the documentation from
a web browser in a convenient way.

The javap command line tool displays information
in brief about the methods, constructors and fields
presentin the specified class(es). Itis useful especially
to those who want to quickly find the method signatures
in a class.

The jcmd tool is used to send diagnostic commands
to a specified JVM. Another powerful feature of jcmd

WEB RESOURCES

http://docs.oracle.com/javase/7/docs/
technotes/tools/solaris/javadoc.html
javadoc - The Java API Documentation Generator
http://docs.oracle.com/javase/tutorial/
deployment/jar/
Lesson: Packaging Programs in JAR Files
http://docs.oracle.com/javase/7/docs/

technotes/tools/solaris/jcmd.html
jemd

EXERCISES
Objective-type Questions

JAVATOOLS 23

systems and running (usually remote) JVMs

jhat—A Java toll used to retrieve information from a
heap dump

Ivmid—An identifier which typically, but not necessarily,
is the operating system’s process identifier for the JVM
process

OQL—A query language similar to SQL and used to
query heap dumps

is that it allows us to control Java Flight Recordings
(JFR) from command line.

The jnat (java heap analysis tool) is a useful tool to
retrieve information from a heap dump file. It parses the
specified dump file and starts a web server. Aweb browser
may then be used to get the desired data. The web server
supports a few pre-designed queries as well as custom
queries written in OQL (Object Query Language), which
is a language similar to SQL to query heap dumps.

Java comes with a command line, interactive, runtime
debugger known as ;db which is a very useful tool to
debug Java code. The jdb tool allows us to query to
a JVM and displays information.

The jar tool can bundle multiple files into a single one
and vice versa. It use ZIP file format. So, in addition to
bundling a set of files into a single one, we can use it
for compressing and decompressing files.

http://docs.oracle.com/javase/7/docs/
technotes/tools/share/jhat.html

jhat - Java Heap Analysis Tool
http://docs.oracle.com/javase/7/docs/
technotes/tools/windows/jdb.html

jdb - The Java Debugger
http://docs.oracle.com/javase/7/docs/

technotes/tools/windows/javap.html
javap - The Java Class File Disassembler

1. Which of the following is used to compile Java
code?
(a) jar
(b) javac

(c) javadoc
(d) java

2. Which of the following is used to execute Java

code?
(a) javap (c) javah
(b) javac (d) java

24

10.

1.

12.

. Javaisa

ADVANCED JAVA PROGRAMMING

Which of the following is used to create HTML
documentation pages?
(a) javac
(b) javadoc

(c) jdoc
(d) jdb

Which of the following is used to debug Java

programs?
(a) javac (c) jdoc
(b) javadoc (d) jdb

With javadoc, which of the following denotes a
javadoc comment?
(a) /**
(b) /1#

() I*
(d) /1

Which javadoc tag is used to denote a comment
for a method parameter?

(a) @param (c) @parameter

(b) @method (d) @argument

Name the tools that lie in the jdk
(a) javab, javadoc, javav
(b) javac, javatxt & javah
(c) javak, javadoc & javah
(d) javac, javadoc, javah

programming language
Second generation

Third generation

Fourth generation

None of these

(a)
(b)
(c)
(d)

The javac converts program into
(a) Hexadecimal code

(b) Octal code

(c) Byte code

(d) Object code

What is the full form of JDK
(a) Joint Development Kit
(b) Java Demonstrate Kit
(c) Java Development Keyword
(d) Java Development Kit

What is the full form of JVM?
(a) Joint Virtual Machine
(b) Java Vital Machine
(c) Java Virtual Machanic
(d) Java Virtual Machine

Which of the following is the correct form of a Java
file name?

13.

14.

15.

16.

17.

18.

19.

20.

<filename>.java

Java.<filename>
<filename>_java
Java_<filename>

(a)
(b)
(c)
(d)
Which of the following features is not supported
by Java?

(a) Abstraction

(b) Pointer

(c) Polymorphism
(d) Inheritance

The jdb is used to
(a) Create a jar archive
(b) Debug a Java program
(c) Create C header file
(d) Generate Java documentation

The jar is used to
(a) Create a jar archive
(b) Debug a java program
(c) Create C header file
(d) Generate Java documentation

What is the meaning of jar?
(a) Java ARchive
(b) Java ARray
(c) Java ARchitecture
(d) Java Advanced Routine

Match the following.
(i) java1)isatool for debugging Java program
(ii) javah 2)is atool for creating C-like header
files
javap 3) runs java bytecode

(i

)
(iv) jdb 4) prints Java code representation
(a) i-3,ii-2,iii-1
(b) i-3, ii-2, iii-4, iv-1
(c) i-1,ii-2, iii-3, iv-4
(d) i-2,ii-1, iii-3, iv-4
JVMis a

(a) Debugger
(b) Assembler

(c) Compiler
(d) Interpreter

Bytecode is given as input to
(a) Linker (c) JVM
(b) Assembler (d) Compiler

What is the purpose of debugging?
(a) Developing software
(b) Editing software
(c) Removing errors from code
(d) All of the above

Subjective-type Questions
1.
2.

JAVATOOLS 25

What does javadoc command do?

Explain with examples the syntax of javadoc
command.

Which delimiters are used to write javadoc
comments?

Describe briefly the different files generated by
javadoc.

5. Describe the structure of javadoc comments.

6. What is difference between block tags and in-line

tag?

7. Write the name of a few tags for methods.

8. Write the examples of repeatable and non-

repeatable tags.

What is the function of javap command?

10.

1.
12.

13.

14.
15.
16.
17.
18.

Describe with examples the syntax of javap
command.

What is the function of jcmd?

Describe with examples the syntax of jemd
command.

Demonstrate how jemd can be used as flight
recorder command.

What is the full form of jhat?

What is the function of jhat command?
How do you obtain a JVM dump file?
What is the function of jdb?

Demonstrate how jdm can be used in step by step
program debugging.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER - 2

ExcerTioN HANDLING

Key OBJECTIVES

After completing this chapter readers will be able to—

» understand what exceptions are

e get an idea about exception handling mechanism
* learn Java exception class hierarchy

» use keywords try, catch, throw, throws and finally
e learn how to use try-with-resource statement

* write new exception classes

2.1 EXCEPTIONS

Exceptions are exceptional/unusual/abnormal events that occur during the execution of programs.

To understand, what exceptions really are, consider the following simple program:
class ExceptionTest {
public static void main(String[] args) {
int d = 0, result;
result = 100/d;
System.out.println(result) ;
}
}

Since, division by 0 is invalid, we say that an exception occurs during the division. Consider the
following array declaration.

int[] a = new int[4];

al5] = o6;

Since, any index out of the range 0 to 3, is invalid, an exception occurs when the second statement
is executed. The following array declaration also results in an exception, since the size of any array
can never be negative.

int b = new int [-3];

EXCEPTION HANDLING 27

Consider the following class declarations:

class X {}

class Y extends X {}

With these declarations, the following type cast results in an exception:

X x = new X();

Yy = (Y)x;

In the following example, since the string is null, 1ength () method will cause an exception.

String s = null;

int len = s.length();

Since the following string contains characters, parseInt () method results in an exception.

String s = "abc";

int i = Integer.parselnt(s);

With these examples, you might have an idea of what exceptions are now. In practice, there are
many exceptional situations that may occur during the execution of a program. A highlight of such
exceptions will be discussed in due course.

Anyway, what happens if an exception really occurs? The exception disrupts the normal flow of
execution and terminates the program abruptly. Yes, that’s the default behaviour of JVM. Consider
that a program has the following series of statements:

statement 1;

statement 2;

statement 3;

statement 4;

If an exception occurs at statement 2, rest of the code will not be executed. Indeed, if our first
program is executed, JVM terminates the program with the following message:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at ExceptionTest.main (ExceptionTest.java:6)

How will you feel if your program, which takes a very long time to run, terminates
abnormally just before its completion? Certainly, not good. Fortunately, Java provides a standard
and robust framework to cope up with exceptional scenarios, known as Java Exception
Handling.

2.2 HANDLING EXCEPTIONS

Five keywords are used for exception handling. They are try, catch, throw, throws and finally.
In this mechanism, we place a piece of vulnerable code (i.e., which might cause some exception) in
a block called try block, which looks like this:
try {
//code to inspect...

}

When an exception occurs during the execution of the code in the try block, JVM creates an
exception object and declares that something wrong has happened. The exception object contains a
lot of useful debugging information such as name of thread, file name, line of code at which exception
occurred, name of exception and it’s description etc. The process of creating this object and disclosing
itis called throwing the exception. Throwing an exception disrupts the normal flow of execution. The
JVM then tries to find code (called handler) that wants to handle (resolve) the exceptional situation.
If found, it passes the newly created object to this handler, which is said to be catching the exception.
The handler is specified by catch block immediately after the try block as follows:

28 ADVANCED JAVA PROGRAMMING

try {
//code to inspect...
}
catch(..) {
//code to handle the exception
}

The catch block declares a parameter that specifies the type of exception it can handle.

2.3 AN EXAMPLE

Let us now apply this mechanism to our division example. Since, the division operation may
throw an exception, we guard it using a try block as follows:

try {
result = 100/d;
}

If the value of d is zero, an exception occurs during the division operation. The JVM creates an
object representing the exception and throws the object which essentially disrupts the normal control
of execution and places it just after the try block. The JVM then looks for an appropriate catch block
that can hold the object thrown. Note that if JVM does not find any suitable catch block, it forwards
the exception to a default handler which prints exception description and stack trace and terminates
the program without executing any further instruction. Since, the division operation throws an
ArithmeticException object, we add a catch block that can receive the exception object as follows:

catch (ArithmeticException e) {

System.out.println ("An arithmetic exception occurred.");
result = 100;

}

This causes to receive the thrown object which can be accessed through e. This handler handles
the exception by simply printing a message and setting the value of result to 100. The control of
execution then comes after the catch block and continues. Here is the complete source code:

class ExceptionTest {

public static void main(String[] args) {

int d = 0, result;

try {
result = 100/d;

}

catch (ArithmeticException e) {
System.out.println ("An arithmetic exception occurred.");
result = 100;

}

System.out.println ("After catch block");

}

Ifthis program is executed, it no longer terminates abruptly. The result of the program is as follows:

An arithmetic exception occurred.
After catch block

2.4 TYPES OF EXCEPTIONS

Java platform provides a hierarchy of exception classes [Figure 2.1:] that represent various
exceptional situations. Let us have a brief overview of these classes.

EXCEPTION HANDLING 29

The hierarchy is created by having one (or more) exception extend another exception. The root
of this exception class hierarchy is the Throwable class. Conventionally, two subclasses of this class,
namely Exception and Error are provided to indicate exceptional situations.

Throwable
(Checked)

/\

Exception Error
(Checked) (Unchecked)

SQLException | | IOException | |IOError| |VirtuaIMachineError

RuntimeException
(Unchecked)

SecurityException| | NullPointerException

Figure 2.1: Java Exception class hierarchy

The class Error represents serious problematic scenarios (we shall call them errors) that
applications can neither anticipate nor recover from. Examples of such errors are out of memory
error, stack overflow error, class format error, no class definition found error etc.

The class Exception represents rest of the exceptional scenarios that applications can catch and
handle. Usually, exceptions are categorized into two groups: checked exceptions and unchecked
exceptions.

2.4.1 Checked Exceptions

Checked exceptions are those that must be caught or declared to be thrown. Java considers
Throwable and any of its subclass that is not also a subclass of either RuntimeException Or Exrror
as checked exceptions. Checked exceptions should be handled in the code to avoid compile
time errors.

2.4.2 Unchecked/Runtime Exceptions

Unchecked exceptions (also called runtime exceptions) are those which need not be caught
or declared to be thrown explicitly. Note that checked and unchecked exceptions are functionally
equivalent. We can do everything with checked exceptions that can also be done with unchecked
exceptions, and vice versa.

2.5 CATCHING EXCEPTION

Note that Java exceptions are organized into a hierarchy. The advantage of this hierarchy is
that if we write a catch block to catch a certain exception in the hierarchy, then it can also catch all
subclasses of that exception too. It means, we can catch all exceptions from that certain exception
and down the hierarchy. For example, since FileNotFoundException is a subclass of ToException,

30 ADVANCED JAVA PROGRAMMING

the following catch block can catch T0Exception as well as all other sub classes of 10Exception

including FileNotFoundException:
catch (IOException ioce) {}

2.6 TRACING STACK

The Throwable class has several useful methods to collect detailed information about an exception.
For example, printStackTrace() method prints a stack trace of the current exception on the standard

error. Consider the following program:
class TracingStack {
static void g() {
int r = 2/0;
}
static void f() {
g();

}
public static void main (String args[]) {

£0)
}
}

This results in the following output:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at TracingStack.g(TracingStack.java:3)
at TracingStack.f (TracingStack.java:6)
at TracingStack.main (TracingStack.java:9)

The first line contains the name and description of the exception whereas rest of the lines locate
the source of exception.

2.6.1 Multiple Catch Blocks

A single try block may have multiple catch blocks. This usually happens if try block throws more
than one type of exceptions and we want to handle them differently. It takes the following form:
try {
//code that throws exception

}
catch (Exceptionl e) {
//handle this way

}
catch (Exception2 e) {
//handle that way

}

When an exception is thrown, the control of execution comes immediately after the enclosing
try block. The JVM then searches for a matched catch block and if one is found, it is executed and
control goes to the end of the try-catch. This implies that even if multiple catch blocks exist, only
matched one (if there is any) is executed. The following example uses two catch blocks:

class MultipleCatch {
public static void main (String argsl[]) {
try {
String a = args[0];
int b = 2/0;

EXCEPTION HANDLING 31

catch (ArrayIndexOutOfBoundsException e) {
System.out.println(e);

}

catch (ArithmeticException e) {
System.out.println(e);

}

}

The two statements in the try block can throw two exceptions. The former one throws an
ArrayIndexOutOfBoundsException if no command line argument is passed to this program. If
the first statement is passed (i.e., a command line argument is passed), second one throws an
ArithmeticException. To catch these two exceptions, we have provided two catch blocks. The
former one is responsible to catch ArrayIndexoutOfBoundsException wWhereas the later one catches

ArithmeticException

Multiple catch blocks may also be used in the case where all the exceptions thrown inside the
try-block are the same type or subclasses of that type. The following illustrates that:

try(
//code that throws IOException

}

catch (FileNotFoundException e){ }

catch (IOException e) {}

Here, all 10Exceptions are being handled by the second catch block except FileNotFoundException.
The first catch block handles FileNot FoundException differently. Note that only the first catch-block
that matches with a thrown exception will only handle an exception.

Catching many exceptions in a try block makes the code ugly. If multiple catch blocks have
similar code, in Java SE 7 and later, we can combine multiple catch blocks into a single one using
pipe (]) operator as follows:

catch (ArrayIndexOutOfBoundsException|ArithmeticException e) {

System.out.println(e);

}

This single catch block can handle ArrayIndexoutofBoundsException as well as
ArithmeticException. It also reduces code duplication The parameter in a multi-catch block is
implicitly final and hence cannot be modified.

Order of catch blocks does matter. Consider the following catch blocks:

catch (Exception e) {}

catch (ArrayIndexOutOfBoundsException e) {}

Since, Exception is the superclass of all the exceptions, all the exceptions (including
ArrayIndexOutOfBoundsException) Will be caught by the first catch block. So, second catch block
is unreachable and results in a compilation error. In general, catch blocks must be arranged from

most specific to most general. So, the following catch blocks are valid:
catch (ArrayIndexOutOfBoundsException e) {}
catch (Exception e) {}

Here, the first catch block only catches ArrayTndexoutofBoundsException whereas second one
catches everything else.

2.6.2 throw

Java programming language also allows us to explicitly throw an exception using throw keyword.
The following program unconditionally creates an Exception object and throws it:

32 ADVANCED JAVA PROGRAMMING

class ThrowTest {
public static void main(Stringl[] args) {
try {
throw new Exception("test");
}
catch (Exception e) {
System.out.println(e);

}

}

Note that in practice, an exception is thrown only if an unusual situation occurs. The above
program unconditionally throws an exception only to demonstrate the throw clause.

Only objects that are instances of Throwable class (or one of its subclasses) may be thrown by
the throw statement. Similarly, only this class or one of its subclasses can be the argument type in
a catch clause.

A catch block can take necessary actions after catching an exception. However, if it thinks
that it has not been able to handle the exception completely, it can re-throw the exception
expecting that some code else will handle it completely. Re-throwing an exception is done
with the same throw keyword except that no new exception object is created. It takes the following

form:

try {
//code that throws exception

}

catch (Exception e) {
//do as much as possible with e
//then re-throw it
throw e;

}

The following is a concrete example to illustrate this:
class ReThrowTest {
void f () throws Exception {
try { throw new Exception(); }
catch (Exception e) ({
System.out.println ("Handled paritally in £()");
throw e;
}
}
void g() {
try { £07 }
catch (Exception e) {
System.out.println ("Handled completely in g()");
}
}
public static void main(String[] args) {
new ReThrowTest ().g();
}
}

Here, the catch block in method £ () catches an exception and prints a message. It thinks that the
there is something else to do with this exception and re-throws the exception expecting that the caller
will do that. The catch block of caller method g () catches the exception and takes further steps. This
program results in the following output:

Handled partially in £ ()
Handled completely in g()

EXCEPTION HANDLING 33

2.6.3 throws

A method must specify the list of checked exceptions that it might (directly/indirectly) raise but
does not handle them using throws clause as follows:

return-type method-name (parameter list) throws list-of-exceptions {

}

The tnrows clause goes after the parameter list and before method body. This specification
enables callers of the method either to guard themselves by using appropriate try-catch blocks or to
re-declare it. Here is an example:

void f () throws Exception {

throw new Exception("throws test");

}

This method unconditionally throws an Exception object. It specifies, using throws clause that it
might throw an Exception object during its execution. This specification helps the caller to identify
the list of exceptions it must deal with. A caller can:

« call the method f() within a try block and provide appropriate catch block to handle the exception.
« declare the exception to be re-thrown using a separate throws clause.
« use both the above together.

The following example uses a try-catch block:
void g() {
try {
£0);
}
catch (Exception e) {
/]
}
}

It is useful if g () knows what exactly it should do if £ () throws an exception. Otherwise, g ()
may re-specify it using a separate throws clause as follows:
void g () throws Exception ({
£0);
}

It is also possible to handle the £xception using a try-catch block and still declare it to be thrown
as follows:
void g () throws Exception {
try {
£0;
}
catch (Exception e) {
//take actions...
throw e;
}
}

In this case, g () takes necessary steps in the catch block as far as it can and re-throws the caught
exception expecting that some code else will handle it completely.

A method can only throw objects of the same class or subclass mentioned in the throws clause. In

other words, throws clause must include classes (or super classes) whose instances are actually thrown.
void f() throws java.io.IOException {
throw new Exception ("throws test");

}

34 ADVANCED JAVA PROGRAMMING

The above function is invalid as it throws a super class Exception object but declares a
IOException to be thrown. However, the following is acceptable:
void f() throws Exception ({
throw new java.io.IOException("throws test");
}
A method that declares a checked exception to be thrown may not actually throw it. For example,
the following method declares to throw a checked exception InterruptedException, but does not

actually throw it:
void h() throws InterruptedException { }

A throws clause may include a comma-separated list of exceptions:

void h() throws InterruptedException, IllegalAccessException,
ClassNotFoundException { }

Although, it is not mandatory, we may also specify unchecked exceptions in the throws

clause.
void h() throws NullPointerException { }

2.6.4 finally

Sometimes it is very much necessary to execute a piece of statements before a block of code
is exited. For example, if a file or a database connection is opened, they should ideally be closed
regardless of any problems that may occur. Java exception handling mechanism provides a
try-finally clause for this purpose. This helps the program to guard (such as recover resources)

itself even if an unexpected exception occurs. It takes the following form:
try {
// code with multiple exit points...
}
//zero or more catch blocks
finally {
//this gets always executed no matter how try block exited
}
The final1y block is similar to catch block except that it always gets executed when try block
exits no matter how it is exited. As long as finally block does not throw any exception, the control
returns to the point from where this finally block was called and try block returns in the appropriate

manncer.

Let us now inspect when and in which cases a finally block gets executed. In the simplest case, the
try block runs to the end with no exception thrown. The finally block will be executed just after

the try block.
class FinallyTest {
public static void main(String args[]) {
try { }
finally { System.out.println("In finally"); }

}
}

It results in the following output:

In finally

The try block throws an exception and it is caught by a matching catch block. The finally block
will execute right after the catch block executes.

EXCEPTION HANDLING 35

class FinallyTest {
public static void main (String args[]) {
try { throw new Exception();}
catch (Exception e) { System.out.println("In catch"); }
finally { System.out.println("In finally"); }

}

It produces the following result:
In catch
In finally

If catch block throws an exception further, before passing it to the caller, finally block is

executed.
class FinallyTest {
public static void main(String args[]) throws Exception ({
try { throw new Exception(); }
catch (Exception e) ({
System.out.println("In catch");
throw new Exception();

}
finally { System.out.println("In finally"); }

}
It also produces the same result. What happens if an exception is thrown but there is no matching
catch block? The exception object is thrown to the caller. But, before throwing the exception, the

finally block is executed.
class FinallyTest {

public static void main(String args[]) throws Exception ({
try { throw new Exception();}
finally { System.out.println("In finally "); }

}
A return statement is encountered before the try block completes. But, before it returns to caller,

the finally block is still executed.
class FinallyTest {
public static void main(String argsl[]) {
try { return; }
finally { System.out.println("In finally "); }

}

2.6.4.1 An Example

Since, a finally block is always executed regardless of what happens in the try block, it is a
perfect place to write clean up code (such as closing a file or socket/database connection) that may
otherwise be bypassed by statements such as return, break, continue etc. Here is an example:

FileInputStream fis = new FileInputStream("aFile.txt");

try {

//file related operations...

}
catch (IOException e) {
System.out.println(e);
}
finally {
fis.close();

}

36 ADVANCED JAVA PROGRAMMING

If an exception is thrown during file opening, neither try nor finally blocks get executed. Since,
the file is not opened, there is no need to close it. Otherwise (i.e., the file is successfully opened), if
try block throws an T0Exception, it is caught by the catch block. The finally block will execute right
after the catch block executes. This ensures that if the file is opened, it is also closed.

Since, the final1y block itself may throw an exception, it may be put in an enclosing try-catch
block as follows:
try {
FileInputStream fis = new FileInputStream("aFile.txt");
try {
//file related operations...
}
finally {
fis.close();
}
}

catch (Exception e) {
//..
}

This can handle all of the checked exceptions. Alternatively, the code of the finally block may
be put in another try-catch clause:
FileInputStream fis = new FilelInputStream("aFile.txt");
try {
//file related operations...
}
finally {
try {
fis.close();
}
catch (Exception e} {
//...
}
}

2.6.4.2 Some Properties

The fina11y block, if used, must be placed after all catch blocks. So, the following is illegal as

finally block does not follow all catch blocks:
try {
YV
}
finally { }
catch (Exception e) {}

However, probably you have already noticed that a fina11y block may exist without any catch
block as follows:
try {
VA
}
finally { }

Every try block may have at most one fina11y block. The following is illegal:
try {
/...
}
finally { }
finally { }

EXCEPTION HANDLING 37

2.6.5 try-with-resources Statement

The finally block, no doubt, provides a cleaner way to clean up resources. However, if we forget
to close resources, we shall get runtime exceptions which are hard to debug. We might look into the
entire program to make sure that all resources will get closed for all possible scenarios. Fortunately,
Java 7 and later provides an even better mechanism known as try with resource statement. It enables
us to create resources in the try statement and use them in the try block. When the try block exits by
any means, the Java Runtime Environment automatically close these resources. The try with resource

statement look like this:
try (Aresource ar = new AResource()) {
//use it
}

The following is an example:
try (FileInputStream fis = new FilelInputStream("a.txt")) {
//use this file

}

In the try statement, we open a file and use it in the try block. When this try block exits, no matter
how it exits, runtime environment will certainly close the file. So, we can freely create resources and
use them. The only requirement is that the resource class must directly or indirectly implement java.
lang.AutoCloseable interface. Hopefully, most of the resources implement this interface, and may
be used in try with resource statement.

We can also create our own resource implementing this interface which has a single method
close () as follows:
class MyResource implements AutoCloseable {
public void close() {
System.out.println ("In MyResource’s close()");

}
}

We can then use it in the try statement:
class TryWithResourcesTest {

public static void main(String args[]) throws Exception {
try (MyResource mr = new MyResource()) {
/]

}

}

When executed, it prints the following message:
MyResource’s close ()

Multiple resource may also be created in the try statement:

try (
FileInputStream fis = new FilelInputStream("a.txt");
FileOutputStream fos = new FileOutputStream("b.txt") ;
Socket s = new Socket ("localhost",6789);

) o
/...

}

It creates three resources in the try statement separated by semicolon (;). When try exits, the
close () methods on all these three resources are automatically called in the opposite order of their
creation.

38 ADVANCED JAVA PROGRAMMING

Like an ordinary try statement, a try-with-resources statement can have catch and finally blocks. If
present, they are executed after the resources created have been closed. Consider the following program:

class TryWithResourcesTest {

public static void main(String args[]) throws Exception {
try (MyResource mr = new MyResource()) {
/]
}
finally {

System.out.println("In finally");

}
This prints the following message:

In MyResource’s close()

In finally

Note that exceptions may occur when JRE calls c1ose () method on resources created in try-with-
resource statement. Exception may also occur in the try block. If both occur, earlier exceptions are
suppressed and the exception that occurs in the try block is finally thrown. The suppressed exception
may be recovered for handling using getsuppressed () method of Throwable class. The following
program illustrates this:

class TryWithResourcesTestl {

public static void main(String args[]) throws Exception {
try {
try (MyResource mr = new MyResource()) {

System.out.println ("Throwing from try block");
throw new Exception("try block");

}
catch (Exception e) ({
System.out.println(e);
Throwable[] t = e.getSuppressed();
System.out.println ("Suppressed exception...");
for (int i=0;i<t.length;i++)
System.out.println(t[i]);

}
class MyResource implements AutoCloseable {

public void close() throws Exception {
System.out.println ("Throwing from close()");
throw new Exception("close()");

}

In this program, we create resource in the try-with-resource statement and throw an Exception
from the try block. As expected, before forwarding this exception to the enclosing code, JRE tries to
invoke close () method on the resource. However, close () method itself throws a new Exception
which gets suppressed and the earlier Exception is finally forwarded to the outer catch block. We
have retrieved the suppressed exception using getsupressed () method. If we execute the program,
the following results:

Throwing from try block

Throwing from close()

java.lang.Exception: try block

Suppressed exception...
java.lang.Exception: close()

EXCEPTION HANDLING 39

2.6.6 Nested try-catch

It is possible that exception handlers are nested within one another. This means a try, catch ora
finally block can in turn contain another set of try-catch-finally blocks. For example, in the following
code, a try block contains another try-catch sequence.

try f

statement 1;
try {
statement 2;

}

catch (Exception e) { }

}

catch (Exception e) { }

A catch block can also contain another try-catch sequence as follows:
try {
statement 1;
}
catch (Exception e) {
try {
statement 2;

}
catch (Exception el) { }

}

Or even finally can contain other try-catch blocks:
try {
statement 1;
}
finally {
try {
statement 2;

}

catch (Exception e) { }

}

Consider the following example:
FileInputStream fis = null;
try {

fis = new FileInputStream("aFile.txt");

}
catch (IOException e) {
fis.close();

}

Since, the code in the catch block itself can throw an exception, we can put this code in a separate
try-catch as follows:
FileInputStream fis = null;
try {
fis = new FileInputStream("aFile.txt");

}
catch (IOException e) {

try {
fis.close();

}
catch (Exception el) { }

}

If anything goes wrong in fis . close () statement (e.g. fis is null), an exception is thrown, However,
inner catch block can catch that exception and handle it.

40 ADVANCED JAVA PROGRAMMING

2.7 CUSTOM EXCEPTION CLASSES

Sometimes it is required to develop meaningful exceptions based on application requirements.
Fortunately, Java also allows us to create new exception classes.

Since, only instances of Throwable class (or one of its subclasses) may be thrown, user-defined
exception classes must inherit (directly or indirectly) this class. The following is a user-defined
exception class that extends Exception class:

class InsufficientAmountException extends Exception {

long amount;
InsufficientAmountException (long amount) {
this.amount = amount;

}

To increase readability, it is recommended to append the string “Exception” to the names of all
classes that inherit (directly or indirectly) from the Exception class. Here is another example:
class ExcessiveAmountException extends Exception {
long amount;
ExcessiveAmountException (long amount) {
this.amount = amount;

}

We can then use these two exception classes just like ordinary exception classes as follows:
class Bank {
static long MaximumAmount = 15000;
public void withdraw(long accNo, long amount)
throws InsufficientAmountException, ExcessiveAmountException {
long balance = getBalance (accNo) ;
if (balance < amount)
throw new InsufficientAmountException (amount) ;
if (amount > MaximumAmount)
throw new ExcessiveAmountException (amount) ;
//else withdraw...
}
private long getBalance (long accNo) {
return 0;

}

These exceptions classes can also be used in the catch blocks. The following example illustrates this:
class UserException ({
public static void main (String args[]) {
Bank b = new Bank();
try |
b.withdraw (0, 20000) ;
}
catch (ExcessiveAmountException e) {
System.out.println(e);
}

catch(InsufficientAmountException e) {
System.out.println(e);

}

If executed, it results in the following output:
InsufficientAmountException

KEYWORDS

catch block—Contains code to handle exceptions

Checked Exception—A set of exceptions that must
be caught or declared to be thrown

Custom Exception classes—User-defined exception
classes that represent meaningful exceptional situations

Error—A subclass of Throwable that represents serious
problematic scenarios (we shall call them errors) that
applications can neither anticipate nor recover from

Exception—A subclass of Throwable that represents
exceptional scenarios that applications can catch and
handle

Exception hierarchy—A hierarchy of Java
exception classes that represent various exceptional
situations

Exceptions—Exceptional or unusual or abnormal
events that occur during the execution of programs

finally block—Contains code that always gets
executed no matter how try block exited

SUMMARY

Exceptions are exceptional/unusual/abnormal events
that occur during the execution of programs. Five
keywords are used for exception handling—try,
catch, throw, throws and finally. Atry block contains
code to be examined. A try block is followed by one or
more catch blocks and/or one finally block. Exceptions
are thrown and caught by the respective catch block (if
any). The finally block, if present, is always executed
irrespective of how try block exits.

In Java, exceptional scenarios are represented by
various classes which are organized in a hierarchy. The
class Throwable is the root of this class hierarchy. The
Throwable class has several useful methods to collect
detailed information about an exception. Two subclasses
of this class are Exception and Error. The class
Error represents serious problematic scenarios that
applications can neither anticipate nor recover from them.
The class Exception represents rest of the exceptional
scenarios that applications can catch and handle.

Usually, exceptions are categorized into two groups:
checked exceptions and unchecked exceptions.

WEB RESOURCES

http://docs.oracle.com/javase/tutorial/
essential/exceptions/
Lesson: Exceptions

EXCEPTION HANDLING 41

Nested try-catch— A try, catch or a finally block
containing another set of try-catch-finally blocks

Runtime exception—A set of exceptions that need not
be caught or declared to be thrown explicitly

throw—A keyword used to throw an exception
explicitly
Throwable—The root class of Java exception class
hierarchy

throws—A keyword used to specify a set of exceptions
a method might throw during its execution

try block—Used to contain a piece of code to be
examined

Try-with-resource statement—A construct that
allows us to use resources that get closed automatically
by the Java Runtime Environment

Unchecked Exceptions—A set of exceptions that
need not be caught or declared to be thrown explicitly

Checked exceptions are those that must be caught or
declared to be thrown. Java considers Throwable and
any of its subclass that is not also a subclass of either
RuntimeException OfF Error as checked exceptions.
Unchecked exceptions (also called runtime exceptions)
are those which need not be caught or declared to be
thrown explicitly.

It is also possible to explicitly throw an exception
using throw keyword. A method must specify the list
of checked exceptions that it might (directly/indirectly)
raise but does not handle them using throws clause.
Java 7 and later provides mechanism known as try with
resource statement that enables us to create and use
resources that get closed automatically by the Java
Runtime Environment.

It is possible for exception handlers to be nested within
one another. Thismeans a try, catch orafinally block
can in turn contain another set of try-catch-finally blocks.

Itis also possible to define custom exception classes
which must inherit (directly or indirectly) the class
Throwable.

http://www.tutorialspoint.com/java/java_
exceptions.htm
Java Exception Handling

42 ADVANCED JAVA PROGRAMMING

http://tutorials.jenkov.com/java-exception-
handling/index.html

Java Exception Handling
http://howtodoinjava.com/2013/04/04/java-
exception-handling-best-practices/

Java exception handling best practices
http://www.journaldev.com/1696/java-
exception-handling-tutorial-with-examples-
and-best-practices

Java Exception Handling Tutorial with Examples and Best
Practices

EXERCISES

http://www.javaworld.com/article/2076700/
core-java/exceptions-in-java.html
Exceptions in Java
http://www.Jjavatpoint.com/exception-
handling-and-checked-and-unchecked-
exception
Exception Handling in Java

http://www.urz.uni-heidelberg.de/
Unterstuetzung/Hinweise/Einzel/Java/
EckelJavaTutor/TIJ311.htm

Error Handling with Exceptions

Objective-type Questions

1. The class at the top of exception class hierarchy
is

(a

(b

(c

(d

) ArithmeticException
) Throwable

) Class

) Exception

2. What will be the output of the program?
public class Test {

public static void main(String[] args)
try {
return;
}
finally {
System.out.println("Finally");

}

(a) Finally

(b) Compilation error.

(c) The code runs with no output.

(d) An exception is thrown at runtime.

3. What will be the output of the program?
public class Test {

public static void main(String[] args)
try {
int x = 0;
int y =5 / x;

System.out.println ("finished") ;
}catch (ArithmeticException ae) {
System.out.println ("Exception") ;
}catch (Exception e) {
System.out.println ("Arithmetic
Exception");

{

{

) Compilation error.

) finished

) Exception

) Arithmetic Exception

(a

(b

(c

(d

4. An exception thrown from outside try block will
(a) return the program normally

(b) be ignored
(c) terminate the program
(d) none of the above

5. Which of the following causes an exception
(a) Arun-time error
(b) A hardware malfunction
(c) An operating system problem
(d) A syntax error

6. When does exception occur in Java?
(a) At compilation time

(b) Atruntime
(c) Anytime
(d) None of the mentioned
7. Which of these keywords is not a part of exception
handling?
(a) try (c) finally
(b) catch (d) thrown

8. Which of the following keywords is used to
examine exceptions?

(a) try (c) finally
(b) catch (d) throw
9. Which of the following keywords is used to handle
exception?
(a) try (c) throw
(b) catch (d) throws

10.

1.

12.

13.

14.

15.

16.

17.

Which of the following keywords is used to throw
an exception explicitly?
(a) try
(b) catch

(c) throw
(d) throws

The key words used with exception handling are:
(a) try, catch, handle
(b) try, hold, finally
(c) throw, catch, conclude
(d) try, catch, finally

Arithmetic Exception is
(a) A checked exception
(b) An unchecked exception
(c) An error
(d) None of the above

Which of following exception is thrown by the
int z=2/0;7

(a) ClassNotFoundException

(b) NullPointerException

(c) ArithmeticException

(d) SecurityException

Checked exceptions are processed by
(a) Java compiler
(b) Java interpreter
(c) Both (a) and (b)

(d) None of the above

Unchecked exceptions are processed by
(a) Java compiler

(b) Java interpreter
(c) Both (a) and (b)
(d) None of the above

Which one of the following statements is
correct?
(a) The ‘try’ block must be followed by a ‘catch’
block.
(b) The ‘try’ block must be followed by a ‘finally’
block.
(c) The ‘try’ block must be followed by either
a ‘catch’ block or a ‘finally’ block.
(d) The ‘try’ block must be followed by at
least one ‘catch’ block and one ‘finally’
block.

Creating an exception object and handling it to
the run time system is called
(a) exception handling
(b) catching exception
(c) passing exception
(d) throwing exception

18.

19.

20.

21.

22.

23.

24.

25.

EXCEPTION HANDLING 43

Which of the following is an example of runtime
exception?
(a) FileNotFoundException

(b) IOException
(c) lllegalClassFormatException
(d) ClassCastException

Which of the following is the super class of all
exception classes?
(a) Exception
(b) Throwable

(c) RuntimeException
(d) 1OException

Which of the following blocks gets executed
compulsorily whether exception is caught or not?
(a) finally (c) throws
(b) throw (d) catch

Which of the following is true of the object thrown
by a throw clause?
(a) It must be an Exception type

(b) It must be a Throwable type
(c) It must be an Error type
(d) It must be a String type

Which of the following methods is used to print
the description of an exception?
(a) traceException()

(b) printStackTrace()
(c) printDescription()
(d) printStack()

Which of the following exceptions is thrown if
an array element is accessed beyond the array
size?

(a) ArraylndexOutOfBounds

(b) IndexOutOfBoundsException
(c) IndexOutOfBounds
(d) ArraylndexOutOfBounds Exception

Which of the following is true when we write
custom exception classes?
(a) Extend the class Exception

(b) Create our own try and catch block
(c) Use finally block
(d) Use throws keyword

Which of the following is true about the Error and
Exception classes?

(a) The Error class is final and the Exception

class is not.

(b) The Exception class is final and the Error
is not.
Both classes extend Throwable.
Both classes implement Throwable.

44 ADVANCED JAVA PROGRAMMING

26. Predict the output of the following Java program. 28. Which of the following is thrown by the read()

class Test { method of InputStream class?
public static void main(String args[]) { (a) Exception
try | (b) FileNotFoundException
throw 2;

} (c) ReadException
catch (int e) | (d) IOException

System.out.println 29. What will be the output of the following program?

("Exception toe)i public class Test{

public static void main(String argsl[]) {
System.out.print ("Before ");

try |
(a) Exception 2 (c) Compilation Error }catch (Throwable‘t) { .
(b) Exception 0 (d) Noneoftheabove System.out.print("Inside ");

}

27. What will be the output of the program? System.out.print ("End ") ;

public class Test { }
public static void main (String[] args) {

try { (a) Before End
int x = 0; (b) Before Inside
int y = x / 5; (c) Inside End
System.out.println("finished"); (d) Before Inside End
}catch (ArithmeticException ae) {
System.out.println ("Exception"); 30. What causes an lllegalMonitorStateException?
}catch (Exception e) { (a) Two threads call a static synchronized
System.out.println("Arithmetic method at the same time.
Exception"); (b) Athread invokes wait() on an object that is

already waiting.
(c) Athread invokes notify() on an object that

o) is not waiting.
(a) Compilation error (c) Exception _ (d) A thread calls wait() or notify() before
(b) finished (d) Arithmetic Exception acquiring an object’s monitor.

Subjective-type Questions

1. What is the difference between checked and 11. What is the difference between
unchecked exceptions? ClassNotFoundException and

n
2. What is the difference between throw and throws NoClassDefFoundError?
keyword? 12. Whatare the advantages of using exception handling?

3. What do you mean by exception propagation? 13. Why are Errors not checked?

4. What are the two types of exceptions in 14. Why are Runtime Exceptions not checked?
Java? What are the differences between

. - oo N
them? 15. Whatis meant by ‘re-throwing’ an exception? How

do you re-throw an exception?

i 2
5. Why do you use multiple catch blocks? 16. Write some important methods of Exception Class?

. . . ”
6. How will you write new exception classes 17. What is the usefulness of multiple catch blocks?

7. }Nhat’ |'s the difference between ‘Exception’ and 18. What s the use of throws keyword?
error’ in Java?

. . o , 19. When do you use a catch block and when do you
8. Describe the principle of finally’ block. use a finally block?
. L "

9. What happens if an exception is not caught? 20. Write some example scenarios when finally block

10. Describe the exception hierarchy in Java is not executed.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER -3

MULTI-THREADING

Key OBJECTIVES

After completing this chapter readers will be able to—

* understand what multi-threaded programs are

e learn how to write multi-threaded programs

* learn how to interrupt, suspend and resume threads

» get an idea about inter-thread communication

» understand what synchronized methods and blocks are
* deal with deadlock

3.1 INTRODUCTION

A thread is a control/flow/path of execution that exists within a process. A process may have one
or more threads in it and is referred to as single-threaded or multi-threaded process respectively.
In a single-threaded process, there is only one flow to execution of instructions, whereas a multi-
threaded process has multiple sets of instructions that are executed concurrently; it hence has multiple
concurrent flows/paths of execution.

So, a multi-threaded process has two or more parts that can run concurrently and each part can
do a designated task at the same time. Multi-threading enables us to write programs in a way where
multiple activities can proceed concurrently in the same program. However, note that a system having
only one execution core executes multiple threads in an interleaved way resulting in no extra benefit
in terms of effective execution time.

In this chapter, we shall discuss how to work with multi-threaded processes in Java.

3.2 MAIN THREAD

When we supply a program to the JVM for execution, it creates one thread and associates the
program’s main () method. The thread then executes the statement contained in the main () method.

46 ADVANCED JAVA PROGRAMMING

Since, it is the first thread that starts running when a program begins, it is said to be main/primary
thread. Other threads, if required, may be spawned from this main thread.

Though we do not create the main thread explicitly, we can inspect and control its properties.
However, to work with main thread, we must have a reference to the Thread object corresponding
to the main thread. This can be accomplished using Thread’s static currentThread () method that
returns a reference to the currently executing thread object. So, a reference to the main Thread object
can be obtained using the following statement in the main () method:

Thread t = Thread.currentThread() ;

We can then access the main thread via this reference. The following program illustrates this:

class ThreadInfo {
public static void main (String args[]) {
Thread t = Thread.currentThread();

System.out.println("Current Thread: "+t);
System.out.println ("Name: "+t.getName());
System.out.println ("Id: "+t.getId()):
System.out.println("Priority: "+t.getPriority());
System.out.println("State: "+t.getState());

System.out.println ("Changing name and priority...");
t.setName ("Primary") ;
t.setPriority(8);

System.out.println ("After name and priority change...");
System.out.println ("Current Thread: "+t);
System.out.println("Name: "+t.getName()) ;
System.out.println("Priority: "+t.getPriority());

}

}

Every thread has a name for identification purposes. Note that it is just a string. So, multiple threads
may have the same name. When a thread is created, a new name is generated for it if none is specified.

The above program first prints some of the thread properties such as its name, id, priority, etc.
It then changes the name and priority and displays them again. It results in the following output:

Current Thread: Thread[main,5,main]
Name: main

Id: 1

Priority: 5

State: RUNNABLE

Changing name and priority...

After name and priority change...
Current Thread: Thread[Primary,8,main]
Name: Primary

Priority: 8

The information between ‘[‘ and °]” includes the name of the thread, its priority and the name

of thread group where this thread belongs in order. We see indeed that the name of the thread was
“main”. Later it was changed to “primary”.

3.3 USING sleep

A thread should ideally consume minimum CPU cycles. Think about a thread that prints current
system time up to second accuracy. Since the second part of time changes only after 1 second, it is
better to print the time and wait for one second. This makes processor time available to the other
threads of the application or other applications that might be running on a computer system.

MULTI-THREADING 47

A thread can be made suspended using s1eep () method that has the following overloaded versions:

public static void sleep(long millis)

public static void sleep(long millis, int nanos)

They cause the currently executing thread to cease execution for the specified duration. The former
version takes the duration in milliseconds, whereas the latter one allows us to specify the duration
in milliseconds and nanoseconds. Consider the following program:

public class SleepDemo {

public static void main (String args([]) {
for(;;) {
System.out.println("Local date and time: "+new Jjava.util.Date());
try {

Thread.sleep(1000) ;
}catch (InterruptedException ie) {}
}
}
}

In this program, the main thread prints the current date and time and waits for 1 second and
repeats this all over again. When it waits, it releases the CPU which can be used by other threads or

applications. The following is sample output of this program.

Local date and time: Sat Apr 26 11:41:46 IST 2014
Local date and time: Sat Apr 26 11:41:47 IST 2014
Local date and time: Sat Apr 26 11:41:48 IST 2014
Local date and time: Sat Apr 26 11:41:49 IST 2014
Local date and time: Sat Apr 26 11:41:50 IST 2014
Local date and time: Sat Apr 26 11:41:51 IST 2014
Local date and time: Sat Apr 26 11:41:52 IST 2014
Local date and time: Sat Apr 26 11:41:53 IST 2014

Since this program runs for ever, use crt1-c to terminate the program. Note that duration specified in
sleep () is not guaranteed to be precise, because it is limited by the facilities provided by the underlying
OS. Also, the sleep () may throw an InterruptedException if the current thread is interrupted.
Either case, don’t assume that sieep () will suspend the thread for precisely the duration specified.

3.4 CREATING THREAD

There are two ways to create threads: by extending the java.lang. Thread class and implementing
the java.lang.Runnable interface.

3.4.1 Extending Thread

One way to create threads is to write a class extending the Thread class and overriding its run ()

method as follows:

public class SimpleThread extends Thread {

public void run() {

for(int i = 0; 1 < 4; i++)
System.out.println ("In MyThread: "+i);
}
/]
}

The run () method provides the entry point for the thread. It contains codes to be executed
concurrently with other threads. Our run () method simply prints a message five times. The objects

of this class are called threads. The following creates one thread object:
SimpleThread st = new SimpleThread();

48 ADVANCED JAVA PROGRAMMING

When, this thread starts, the codes in the run () method get executed concurrently with other
codes. Note that in a uni-processor system, the codes run in interleaved way. Anyway, this thread
does not start automatically. It is started using its inherited start () method as follows:

st.start();

When this statement is encountered, JVM creates a new control of execution and associates the
run () method with it and returns to the caller immediately. The two threads, the current thread and
the newly created one are then run concurrently. The current thread executes statements after start ()
method and new thread executes the statements in run () method. Here is the complete source code:

public class SimpleThread extends Thread {

public void run() {
for(int i = 0; 1 < 4; i++)
System.out.println("In MyThread: "+i);
}
public static void main (String args[]) {
SimpleThread st = new SimpleThread();
st.start ()
for(int i = 0; 1 < 6; i++)
System.out.println("In main thread: "+i);
}
}

Here, the main thread creates a new thread and calls its start () method which spawns a new
control of execution and returns to the main thread immediately. The main thread then executes the
statements after the start () method whereas the new thread executes the run () method concurrently.

A sample output is shown below:

In main thread: 0
In MyThread: O
In MyThread: 1
In main thread: 1
In main thread: 2
In MyThread: 2
In main thread: 3
In MyThread: 3
In main thread: 4
In main thread: 5

Note that the output may vary next time you run the program. This happens because the

operating system may use a different interleaving pattern depending on its scheduling policy and
other parameters.

3.4.2 Implementing Runnable

Although, we can create threads extending the Thread class, it has an inherent problem. Since,
Java does not support multiple inheritance for classes, if a class has to extend another class, it cannot
extend Thread. Fortunately, Java provides an alternative way to create threads where we create a
class implementing the Runnable interface as follows:

public class MyClass implements Runnable {
public void run() {
for(int i = 0; 1 < 4; i++)
System.out.println("In MyThread: "+i);
}
/]
}

The class implements the run () method of Runnable interface. Note that an object of this
class is not a thread; it is merely runnable in the sense that its run (), method can be executed

concurrently with other codes. The thread object is created using any of the following constructors
of Thread class:

MULTI-THREADING 49

public Thread(Runnable target)
public Thread(Runnable target, String name)

Both take a runnable object as first argument and create a thread object. So, we use the former
one passing a runnable object as follows:
Thread t = new Thread(new MyClass());

This is an ordinary thread and can be started as usual:
t.start();

It eventually calls runnable object’s run () method. Here is the complete source code using

Runnable interface:
public class MyClass implements Runnable {
public void run() {
for(int i = 0; 1 < 4; i++)
System.out.println("In MyThread: "+i);
}
public static void main(String args[]) {
Thread t = new Thread(new MyClass());
t.start () ;
for(int i = 0; 1 < 6; i++)
System.out.println("In main thread: "+i);

}

This generates a similar output as shown below:
In main thread: 0
In MyThread: 0

In main thread: 1
In MyThread: 1

In main thread: 2
In MyThread: 2

In main thread: 3
In MyThread: 3

In main thread: 4
In main thread: 5

Again note that the output may vary every time you run the program.

3.5 INTERRUPTING THREAD

Interrupting a thread means requesting it to stop what it is currently doing and do something else.
The request is sent to a thread using its interrupt () method that sets the thread’s interrupt flag.
However, how will the thread identify that it has been interrupted?

Note that methods such as sleep (), wait (), join() etc. throw an InterruptedException if
they find interrupt flag set. So, a thread can use any of these methods in a try block and provide an
appropriate catch block which gets executed when it is interrupted. In this way, a thread can determine
if it is interrupted or not. The following program demonstrates this:

class Timer extends Thread ({
public void run{() {
while (true) {

System.out.println("Timer running. Date & time: "+new java.util.Date());

try {
Thread.sleep (1000) ;

}catch (InterruptedException e) {
System.out.println("Timer was interrupted");
return;

50 ADVANCED JAVA PROGRAMMING

public class InterruptDemo {

public static void main(String args[]) throws InterruptedException {
Timer t = new Timer();
t.start();

Thread.sleep (4000);
t.interrupt();
}

Here, main thread creates and starts a child thread that continuously prints current date and time
and sleeps for 1 second. The main thread, after 4 seconds, calls child thread’s interrupt () method
that sets child thread’s interrupt flag. If the child thread is sleeping at that time, s1eep () throws an
InterruptedException When it returns. Otherwise, when s1eep () method is encountered the next
time, it throws an Interruptedexception. Either case, the catch block is executed and the child
thread can respond to this interruption.

It is up to the thread exactly how it will respond to an interrupt. However, it is very common that
the thread dies upon interruption. In our example, the child thread prints a message and returns. It
is also up to the thread how quickly it will respond. For example, if the thread receives an interrupt
in the middle of some heavyweight computation, it can only respond at the end of the computation.

The following is a sample output of the program:

Timer running. Date & time: Sun Apr 27 11:45:14 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:15 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:16 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:17 IST 2014
Timer was interrupted

Alternatively, a thread may use static interrupted () method to check if it was interrupted. The
method returns a true if the interrupt flag is set; false otherwise. So, a thread, on its way to normal
work, may devote some time to inspect the method’s return value as follows:

while (true) {
//do normal work
//check it was interrupted
if (Thread.interrupted()) {
//it was interrupted, respond
}
}

At any time, if interrupted () method returns the value true, it understands that an interrupt
request was sent to it. The following program illustrates this:
class Timer extends Thread {

public void run() {
while (true) {
System.out.println ("Timer running. Date & time: "+new Jjava.util.Date());

if (Thread.interrupted()) {
System.out.println("Timer was interrupted");
return;

}
}
public class InterruptDemol {

public static void main(String args[]) throws InterruptedException {
Timer t = new Timer () ;
t.start();

Thread.sleep (20) ;
t.interrupt();

MULTI-THREADING 51

The child thread, upon interrupt, responds by printing a message and terminating itself. Here is
a sample output of this program:

Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer was interrupted

Note that interrupted () method clears the interrupt flag of the thread. This means if the method is
called twice in succession, the second call would return fa1se unless the current thread is interrupted
again in the meanwhile.

3.6 SUSPENDING AND RESUMING

A thread may be suspended and resumed using the combination of wait () and notify () methods.
The following program illustrates this:
class MyThread extends Thread {

boolean active = true;
public void Suspend() { active=false; }
public synchronized void Resume () {
active = true;
notify();
}
public synchronized void run() {
try {

while (true) {
if (active) {
System.out.println ("Running...");
Thread.sleep (500) ;
}

else {
System.out.println("Suspended...");
wait () ;
}
}
}catch (Exception e) {e.printStackTrace();}

}
}

public class SuspendResume {

public static void main(String args[]) throws Exception {
MyThread mt = new MyThread() ;
mt.start();

while (true) {
Thread.sleep (1000) ;
mt.Suspend () ;
Thread.sleep (1000) ;
mt.Resume () ;

}

The class MyThread has a boolean field active that represents the current status of the thread. The
methods suspend () and Resume () change this flag to suspend and resume a thread respectively. The
main thread suspends and resumes after every 1 second. Here is a sample output:

Running. ..
Running...
Running...

52 ADVANCED JAVA PROGRAMMING

Suspended. ..
Running...
Running...
Running. ..
Suspended. ..
Running...
Running...
Running...
Suspended. ..
Running. ..
Running...
Running...
Suspended. ..
Running. ..
Running...
Suspended. ..

Since the program runs for ever, press ctrl-C to terminate the program.

3.7 THREAD PRIORITY

In Java, every thread has a priority. Higher priority threads get more preference in terms of CPU,
I/O time, etc. than lower priority threads. However, how threads with different priorities should be
handled depends absolutely on the underlying platform specifically on its scheduling algorithm.
Conceptually, threads of equal priority should get equal chance. Similarly, higher priority threads
should ideally receive more importance than lower priority ones.

Priorities are represented by integer numbers from 1 (lowest) to 10 (highest) which are represented
by two static final fields Mm1N_PRTORITY and MaX PRTORITY Of Thread class respectively. A new thread
receives its initial priority equal to the priority of its creator thread. The JVM assigns a priority value
equal to the final field NorM PRTORITY to the main thread. Java defines these fields as follows:

public final static int MIN_PRIORITY = 1;

public final static int NORM PRIORITY = 5;
public final static int MAX PRIORITY = 10;

The following program prints their values:

public class MinMaxPriority {
public static void main(String args[]) {
System.out.println("Lowest thread priority: "+Thread.MIN PRIORITY);
System.out.println("Normal thread priority: "+Thread.NORM PRIORITY) ;
System.out.println("Highest thread priority: "+Thread.MAX PRIORITY) ;
}
}

It generates the following output:
Lowest thread priority: 1
Normal thread priority: 5
Highest thread priority: 10

The following methods are available to work with priority:

public final int getPriority ()
public final void setPriority(int newPriority)

The former returns the current priority of the thread, whereas the latter assigns the priority specified
to the thread. The following program demonstrates their usage:

public class PriorityDemo extends Thread {
public void run() {
System.out.println("Child's initial priority: "+getPriority());
setPriority(3);
System.out.println ("After change, child's priority: "+getPriority()):;
}

MULTI-THREADING 53

public static void main (String args([]) {
Thread t = Thread.currentThread();
System.out.println("Main's initial priority: "+t.getPriority());
t.setPriority(7);
System.out.println ("After change, main's priority: "+t.getPriority());
new PriorityDemo () .start();

It results in the following output:

Main's initial priority: 5

After change, main's priority: 7

Child's initial priority: 7

After change, child's priority: 3

Note that a priority merely tells how important a thread should get with respect to others. Programs
with multiple threads, specifically with different priorities, may behave differently at different
platforms especially on preemptive and non-preemptive ones. The following program demonstrates
how two threads with different priorities are handled.

class MyThread extends Thread ({

int count = 0;
public int getCount () { return count; }
public void run() {

while (true) count++;
}
}
public class PriorityTest {
public static void main(String args[]) throws InterruptedException {
MyThread tl = new MyThread();
MyThread t2 = new MyThread();
tl.setPriority(Thread.MAX PRIORITY) ;
t2.setPriority(Thread.MIN PRIORITY) ;
tl.start();
t2.start () ;
Thread.sleep(100);
System.out.println ("Thread 1 count: "+tl.getCount());
System.out.println("Thread 2 count: "+t2.getCount());
}
}

The main thread creates and starts two threads; one having highest priority and the other one
having lowest priority. The two threads continuously increment their respective local variable count.
The main thread waits for 100 milliseconds and prints the current values of the local count variable
of the two threads. A sample output of this program is shown when it was run under Windows 7.

Thread 1 count: 43802164

Thread 2 count: 40580567

Note that the actual values may vary in different platforms and of course at different times. Since,
the two children thread do not finish, terminate the program by pressing Ctrl-C.

3.8 USING join()

Multiple threads run concurrently; one does not wait for the other. However, sometimes it is
necessary that a thread should not proceed further until another thread finishes its task. For example,
consider a simple program having two threads; one of which sorts an array and the other prints the
sorted array. Obviously, the print thread must not start printing until sort thread sorts the array. This
type of dependency can be achieved using join () method. It makes the caller blocked until the
called thread dies.

54 ADVANCED JAVA PROGRAMMING

So, if a thread t2 depends on t1, the code for t2 should look like this:

//do independent tasks
tl.join(); //wait for tl to terminate
//do remaining task

The following program illustrates this:

class MyThread extends Thread ({
int[] a;
MyThread (int[] ar) {
a = ar;
start();
}
public void run() {
java.util.Arrays.sort(a);
System.out.println("Child completed sorting.");
}
}

public class JoinDemo {

public static void main(String args[]) throws Exception {
int afl] = {2, 6, 4, 0, 1, 5, 3};
MyThread t = new MyThread(a);
t.join();
System.out.println("Main printing array elements are :");
for(int 1 = 0; 1 < a.length; i++)

System.out.print (al[i]l+" ")
}

}

Here, child thread sorts the array and main thread prints it. The main thread creates a child thread
passing an array to be sorted. It then starts the child thread. Since, child thread may take some time
to sort the array, main thread must not proceed for printing immediately. That’s why it calls child
thread’s join () method that makes the main thread waiting. The join() returns when child terminates
after sorting the array. The main thread can then be sure that the array is sorted and can safely print
the array. This results in the following output:

Child completed sorting.

Main printing array elements are :

0123456

If you omit the join () method from the program, it is no longer guaranteed that the elements
will be printed in sorted order. Here is a sample incorrect output:

Main printing array elements are :
01 2 3 4 Child completed sorting.
56

Here is another example that demonstrates the importance of join() method in a multi-threaded

program:
class MyThread extends Thread {
int[] a;
MyThread (int[] ar) {
a = ar;
start ();

}
public void run() {
java.util.Arrays.sort(a);
}
}
public class JoinTest {
public static void main(String args[]) throws Exception ({
int afl] = {2,3,4,0,1}, b[] = {6,9,8,7,5};
MyThread tl = new MyThread(a);
MyThread t2 = new MyThread (b) ;

MULTI-THREADING 55

tl.join();
t2.join();
int result[] = merge(a,b);

for (int i=0;i<result.length;i++)
System.out.print (result[i]+" ");
}
static int[] merge(intl[] a, int[] b) {
int i=0, j=0, k=0;
int[] result = new int[a.length+b.length];
while (i < a.length && j < b.length) {

if(ali] < b[j]) result[k++]=ali++];
else result[k++] = b[j++];
}
while (i<a.length) result[k++] = al[i++];
while (j<b.length) result[k++] = b[j++];

return result;

The main thread has two unsorted arrays a and b. It wants to sort them and merge them to form
a third sorted array. However, main thread itself does not want to sort them; instead it gets them
sorted using two new threads. The main thread simply merges them after getting them sorted. So,
main thread creates two new threads passing on array to be sorted to each and starts them. The
two children threads then concurrently sort their respective array. The task of the main thread is to
merge these two sorted arrays to form a third sorted one. However, main thread can start merging
if two children threads sort them and terminates. So, it invokes their respective join () methods.
Here is a sample output:

0123456789

Omit the two join () statements from the program and see the behaviour. You may get a wrong
output as follows:
0123469875

3.9 SYNCHRONIZATION

There are many situations where multiple threads access common objects. When two or more
threads access the same object, the state of the object is not guaranteed to be correct all the time
if special care is not taken. To understand how it can happen, consider the following simple class:

class Counter {

int val = 0;
void inc () { val++; }
void decr() { val--; }

}

The class counter has a single field va1 (initialized to 0) that gets incremented and decremented
by two methods inc () and der () respectively. What should be the value of va1 if these two methods
on a Counter object are invoked same number of times? Obviously, the value should remain 0.
However, that may not be the case in a multithreading environment. To illustrate this, see the
following program:

public class RaceConditionDemo extends Thread {

Counter c;
RaceConditionDemo (Counter c¢) { this.c = c; start(); }
public void run() {
for (int i=0;1<10000;i++) c.dcr();
}
public static void main(String args[]) throws Exception ({
Counter ¢ = new Counter();

56 ADVANCED JAVA PROGRAMMING

RaceConditionDemo rc = new RaceConditionDemo (c) ;
for (int i=0;1i<10000;i++) c.inc();

rc.join();

System.out.println("Final value of c.val: "+c.val);

Here, the main thread creates a counter object ¢ and a child thread with this object. The main
thread and the child thread then concurrently invoke inc () and decr () methods on ¢ 1000 times
respectively. At end, main thread prints the final value of c.va1. When we executed this program
5 times, we got these values: -502, -394, 240, 505 and -664. What is wrong in the above program?
Why it is not giving the correct result?

This happens since two non-atomic operations val++ and val-- are executed in overlapped way.
Note that these are high level instructions. Although, they look simple, JVM translates them into
multiple steps. For example, va1++ will probably be translated into the following steps:

A. Getvalue of val
B. Increment this value by 1
C. Putitbacktoval

Similarly, JVM will probably translate va1-- into following:

D. Getvalue of val
E. Decrement this value by 1
F. Putitback to val

If these two sets of instructions are executed concurrently, they may be interleaved as A B D E
C F. If this happens, val will have wrong final value -1. If last two instructions are interchanged, the
value will again have wrong value 1. Like these two, there are many other such interleaving patterns
for which va1 will have incorrect value. This situation is popularly known as race condition, and the
segment of code where resources are shared by multiple threads is known as critical section. For a class
like counter, this incorrect result might not be too harmful. However, consider the following class:
class Account {

int balance = 0;
void inc() { val++; }
void decr() { val--; }

}

Here, even a small deviation from the correct balance is not acceptable. So, we must have some
mechanism to avoid this inconsistency. In general, we can avoid problem, if we can ensure that critical
sections are not executed in interleaved fashion.

Fortunately, Java allows us to specify this using the keyword synchronized. Two versions
exist: synchronized methods and synchronized blocks. A method is made synchronized by adding
a synchronized keyword before its declaration:

class X{

synchronized void f () {
VA
}

}

Let us briefly understand what happens when a method is declared as synchronized. In Java,
every object has an internal entity called internal lock or intrinsic lock or monitor lock or simply
lock or monitor. 1t is like a privilege that only one thread can "own" at any one time. It can also be
thought of as a room that one thread can “occupy” at any one time. So, if a thread does own a lock
of an object, no other thread can own the lock of the same object until the thread that owns the lock

MULTI-THREADING 57

releases it. Addition of a synchronized keyword means just requesting to own a lock. When a thread
invokes a non-static synchronized method on an object, it makes a request to own the lock of the
associated object. If the lock is not yet owned by some thread else, the requesting thread is given the
lock. Otherwise, it must wait until the lock is available. However, it must contend with other waiting
threads to own the lock. The lock is released when the owner quits the method.

So, a synchronized keyword before a method essentially tells the JVM
+ not to interleave multiple parallel invocations of the method on the same object.

« toensure that when one thread is executing a synchronized method on an object, all other threads wait before
invoking other synchronized methods on the same object.

With this understanding, we can rewrite our counter class as follows:
class Counter

int val = 0;
synchronized void inc() { val++; }
synchronized void dcr() { val--; }

}

Both the methods have been declared with synchronized keyword. Let us now understand how
two threads access a counter object without interfering. When main thread executes, inc () on c,
it owns c’s lock. Before finishing this method, the child thread cannot own the lock of c; therefore
cannot execute dcr () . Similarly, when child thread executes dcr (), it owns the lock of c. During that
time main thread waits. So, these methods are executed without any form of interleaving. However,
we have no control whatsoever on the order these methods are executed. Needless to say that the
program will give the correct result this time.

What would you do if you wanted to synchronize a shorter block of code instead of an entire
method? Java has the other option called synchronized block that takes the following form:

synchronized (o) {
//code to be synchronized

}

Here, o is some object that provides the lock. Our counter class may be written as:
class Counter {

int val = 0;
Object o = new Object();
void inc () {

//other codes
synchronized (o) {
val++;
}
//other codes
}
void dcr () {
//other codes
synchronized (o) {
val--;
}
//other codes
}
}

Note that a synchronized method is a specific case of synchronized block where the lock is

obtained from the concerned object.

synchronized void f() {
//some code

}

58 ADVANCED JAVA PROGRAMMING

The above declaration is equivalent to

void f£() {
synchronized (this) {
//some code
}
}

It is also possible to make a static method synchronized as follows:
class X
synchronized static void g() { /*body*/ }
}
However, what happens if it is invoked since a static method is not associated with an object? In
this case, the c1ass object associated with the method’s class provides the lock. So, it is equivalent to

class X {
static void g () {
synchronized (X.class) { /*body*/ }
}
}

Since, access to static and non-static methods are handled by different locks and since a static
field may be accessed by both non-static and static methods, care should be taken when using both.

Consider a slightly modified version of our counter class:
class Counter {

static int val = 0;
synchronized void inc() { val++; }
synchronized static void dcr() { val--; }

}

Here, the static field is incremented and decremented by a synchronized non-static and a
synchronized static method respectively. However, if they are invoked on a counter object c, inc ()
uses the ¢’s lock whereas dcr () uses lock of counter’s class object. This means that the methods
may get interleaved raising an incorrect result again. The following is a potential solution using
synchronized block:

class Counter {

static int val = 0;
void inc () {
synchronized (Counter.class) {
val++;

}

}

static void dcr() {
synchronized (Counter.class) {

val--;

}

}

}

Here, both va1++ and val-- statements are synchronized using the same lock obtained from
Counter’s Class object.

Synchronized blocks sometimes may make programs more efficient than synchronized methods.
Consider the following class declaration:

class X {
int i1, 1i2;
void incl () { il++; }
void inc2 () { i2++; }

}

Suppose that multiple threads access the method inc1 () and also inc2 (). So, fields may have
incorrect values. Here is a solution using synchronized methods:

MULTI-THREADING 59

class X {
int i1, 1i2;
synchronized void incl () { il++; }
synchronized void inc2 () { i2++; }

}
However, since we have used synchronized methods, execution of inci () unnecessarily
blocks inc2 () and vice versa that reduces amount of concurrency. A more efficient solution using

synchronized block may be written as follows:

class X {
int i1, 12;
Object ol = new Object(), o2 = new Object();

void incl () {
synchronized(ol) {
il4++;
}
}
void inc2 () {
synchronized(o2) {
i24+;

}
}
}
Here, multiple concurrent execution of inc1 () and inc2 () will work properly; at the same time
one will not block the other.

3.9.1 Synchronization and Atomicity

Note that the synchronized keyword does not make a method/block atomic.

// this block is NOT atomic!

synchronized (o) {

sl;
s2;

}

It merely tells that if one thread gets a lock on o, no other thread can get the lock on the same
object o. Similarly, the synchronized keyword below merely ensures that if one thread gets a lock
on o1, no other thread can get the lock on the same object o1.

// this block is NOT atomic!

synchronized(ol) {

s3;
s4;

}

So, if two threads execute these two blocks, the execution sequence may be sl, s3, s2, s4. This
implies that neither of the blocks is atomic. Unfortunately, there is no built-in support for atomic
code blocks in Java.

3.10 DEADLOCK

Deadlock is a situation where two or more threads wait for each other indefinitely.

We know that the synchronized keyword may cause the executing thread to block while trying
to acquire the lock on the specified object. Since, the thread might already hold locks associated with
other objects, two or more threads could each be waiting for one another to release a lock. As a result,
they will end up waiting forever. Specifically, a deadlock may occur when multiple threads need the
same locks but obtain them in different order. The following program illustrates this:

60 ADVANCED JAVA PROGRAMMING

class MyThread extends Thread {
String rl, r2;
int id;
MyThread(int i, String sl, String s2) {
id = i;
rl = sl;
r2 = s2;
start();
}
public void run() {
synchronized(rl) {
System.out.println("Thread "+id+" obtained a lock on "+rl);
try {
Thread.sleep(1000) ;
}catch (Exception e) {}
System.out.println("Thread "+id+" is waiting to obtain a lock on "+r2);
synchronized(r2) {
System.out.println ("Thread "+id+" obtained a lock on "+r2);

}

}
}
public class DeadlockDemo {
public static void main(String args[]) throws Exception ({
int al] = {2, 6, 4, 0, 1, 5, 3};
String rl = new String("R1"), r2 = new String("R2");
MyThread tl = new MyThread(l, rl, r2);
MyThread t2 = new MyThread (2, r2, rl);
}

}

Here, main thread creates two string objects r1 and r2 and are passed to the MyThread’ s constructor
in opposite order to create two threads t1 and t2. The thread t1 tries to acquire locks on r1 and r2
in this order whereas t2 wants to acquire locks on the same object but in opposite order. This results
in a circular wait and hence deadlock. Here is a sample output:

Thread 1 obtained a lock on R1

Thread 2 obtained a lock on R2

Thread 1 is waiting to obtain a lock on R2

Thread 2 is waiting to obtain a lock on R1

Note that a deadlock always occurs if the above program is run. In practice, deadlocks may not
occur all the time, and instead occur for certain data sets which are often difficult to predict. So, testing
for deadlocks is difficult, as deadlocks depend on timing, load, and environment, and thus might
happen infrequently or only under certain circumstances. This warns us that extreme care should be
taken when writing synchronized multi-threaded programs.

One way to prevent deadlock is to make sure that all locks are always taken in the same order by
any thread. For the following two threads, deadlocks cannot occur.

MyThread tl = new MyThread(l, rl, r2);

MyThread t2 = new MyThread (2, rl, r2);

Here, both threads obtain locks on rl and r2 in the same order; hence deadlock can never occur.
Lock ordering is a simple but effective way of preventing deadlock. However, it may only be useful
if we have complete knowledge of all the locks at compile time. Moreover there may be situations,
where lock ordering is not possible.

Another way to prevent deadlock requires threads to acquire all the locks that are needed during
execution before proceeding.

synchronized (MyThread.class) {
synchronized(rl) {
System.out.println("Thread "+id+" obtained a lock on "+rl);

MULTI-THREADING 61

try {
Thread.sleep (1000) ;
}catch (Exception e) {}
System.out.println ("Thread "+id+" is waiting to obtain a lock on "+r2);
synchronized(r2) {
System.out.println("Thread "+id+" obtained a lock on "+r2);
}
}
}

This makes use of an additional lock which controls acquisition of two locks in a non-overlapped
way. Since, a thread will either acquire all locks or none, there is no circular wait which implies
no deadlock. However, since a thread may hold locks, required for short time, during the thread’s
entire execution period (possibly very long), the effective utilization of the locks may be low. In
practice, deadlock prevention or avoidance or detection requires special algorithms, many of which
can be found in a standard book on operating system. Unfortunately, there is no best and foolproof
algorithm for these purposes. So, a little care of the program design may help us getting out of the
deadlock situation. So how will you know that there are chances of deadlock. The following are some
conditions where there may be a chance of deadlock:

+ The code contains any nested synchronized block
« Asynchronized method calls another synchronized method
« The code obtains locks on different objects

3.11 INTER-THREAD COMMUNICATION

We rarely write multi-threaded programs where threads run independently. If threads are really
independent, it is probably a good idea to write multiple programs, one for each thread. A useful
multithreaded-program is one where multiple threads run concurrently in a cooperating manner to
perform a designated task. Consider a simple program having two threads as follows:

The child thread finds (produces) prime numbers and stores them in a variable and main thread
prints them. This is a specific example of class producer-consumer problem. Although, this example
is not much useful, it helps us in understanding how to write multi-threaded programs where threads
communicate with one another.

One simple but elegant solution is to use a variable shared by these two threads. The child thread
stores a new prime number here and main thread prints it. The solution must satisfy the following
basic requirements:

¢« Main thread must not print the same prime number more than once i.e. after printing a number, main thread must
wait for the child thread to generate a new one.
« Similarly, the child thread must not generate a new prime number before the main thread prints the previous one.

This tells us that a high degree of cooperation is needed between these two threads. A potential

solution is shown below:
public class ThreadCommSpin extends Thread {
static int turn = 0;
int buf[], n = 2;
public int nextPrime () {
while (true) {
boolean prime=true;
for(int i=2;i<=n/2;i++) if(n%i == 0) {prime = false;break;}
if (prime) return n++;
else n++;
}
}

62 ADVANCED JAVA PROGRAMMING

public ThreadCommSpin (int[] a) {buf = a;start();}

public void run() {
while (true) {
while (turn != 0);
buf[0]=nextPrime () ;
turn = 1;
}
}
public static void main (String args[]) throws Exception ({
int[] a = new int[1];
ThreadCommSpin st = new ThreadCommSpin (a);
while (true) {
while (turn != 1);
System.out.print (a[0]+" ");
turn = 0;

}
}
}

Both main and child thread use a shared one element array to read and write prime numbers.
The coordination is achieved using another shared variable turn which determines a thread’s turn.
It is child’s turn if the value of turn is 0, else it is main thread’s turn. A thread waits by spinning
in a while loop until it gets its own turn. This means a thread consumes CPU cycles even if it is not
its turn. However, ideally, if a thread finds that it is the other thread’s turn, it should wait without
consuming any CPU cycles further. So the above solution is inefficient.

Fortunately, to avoid unnecessary polling, Java provides a framework that uses wait (), notify ()
and notifyall () methods. These methods are implemented in java. lang.0bject, hence is available
in all Java objects. To write an inter-thread communication solution, let us understand the functionality
of these methods:

wait()

This method places the invoking thread in the wait set associated with this object. While the thread
waits, it relinquishes lock on this object. Since, it relinquishes the lock, it must first acquire the lock.
That is why, wait () method must be used within a synchronized method/block. The thread becomes
disabled until either another thread invokes the notify () method or the notifyall () method on the
same object, or interrupts the waiting thread.

notify ()

It wakes up a single thread that is waiting (called wait () method) on this object's lock. In case
of multiple threads waiting, one of them is arbitrary chosen. The calling thread then relinquishes
the lock on the object. The awakened thread then competes in the usual manner with other threads
(if any) to get the lock back and proceeds further.

This method must also be called within a synchronized method/block.

notifyall ()
This is similar to not i fy () method except that it awakens all waiting threads on the current object.
With this knowledge, we can rewrite our previous program as follows:

public class ThreadComm extends Thread ({
static int turn = 0;
int bufl], n = 2;
public int nextPrime () {
while (true) {
boolean prime=true;
for (int 1=2;i<=n/2;i++) 1if(n%i == 0) {prime = false;break;}

if (prime)
else n++;

}

return n++;

}

MULTI-THREADING 63

public ThreadComm(int[] a) {buf = a;start();}
public void run() {
while (true) {
synchronized (buf) {
while (turn != 0)
try {
buf.wait();
}catch (Exception e) {e.printStackTrace();}
buf[0] = nextPrime();
turn = 1;
buf.notify();

}
}
}

public static void main(String args|[])

int[] a new int[1];
ThreadComm st new ThreadComm (a
while (true) {
synchronized(a) {
while (turn 1)
System.out.print (a[0]+"
turn = 0;
a.notify();
}

a.wait();

")

)i

throws Exception {

Here, since the initial value of turn is 0, the main thread waits until child thread generates a prime
number and notifies the main thread. Similarly, after generating a prime number, the child thread waits
until main threads print it and notifies the child thread. A partial output of this program is shown below:

2 35 7 11 13 17 19 23 29 31 37 41
107 109 113 127 131 137 139 149 151
223 227 229 233 239 241 251 257 263
337 347 349 353 359 367 373 379 383
457 461 463 467 479 487 491 499 503
593 599 601 607 613 617 619 631 641

KEYWORDS

Atomic—An indivisible piece of code

Critical section—A segment of code where resources
are shared by multiple threads

Deadlock—A situation where two or more threads wait
for each other indefinitely

Interrupt—Requesting a thread to stop what it is
currently doing and do something else

InterruptedException— An exception which is thrown
when a thread is waiting, sleeping, or otherwise
occupied, and the thread is interrupted, either before
or during the activity

43 47 53 59

61 67 71 73
173 179 181
281 283 293
409 419 421
541 547 557
659 661 673

79 83 89 97
191 193 197
307 311 313
431 433 439
563 569 571
677 683 691

101
199
317
443
577
701

103
211
331
449
587
709

157
269
389
509
643

163
271
397
521
647

167
277
401
523
653

join()—Makes the caller waiting for the called thread
to die

Lock—An internal entity used to synchronize code

Main Thread—The first thread that starts running
when a program begins

Priority—An integer number from 1 to 10 that
represents the importance of a thread

Race condition—A situation where outcome of a
program depends on the order of interleaving of threads

Runnable—The interface a thread class implements

64 ADVANCED JAVA PROGRAMMING

sleep()—Causes the currently executing thread to
sleep (temporarily cease execution) for the specified
number of milliseconds, subject to the precision and
accuracy of system timers and schedulers

start()—Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this
thread.

SUMMARY

Athread is a control/flow/path of execution that exists
within a process. A process may have one or more
threads in it and is referred to as single-threaded or
multi-threaded process respectively.

When we supply a program to the JVM for execution,
it creates one thread and associates the program’s
main () method. Since, it is the first thread that starts
running when a program begins, it is said to be main/
primary thread. Other threads, if required, may be
spawned from this main thread.

There are two ways to create threads; by extending
the java.lang.Thread class and implementing the
java.lang.Runnable interface. If a class has to extend
another class, itimplements the runnable interface to
be a thread class. In both the cases, the run () method
provides the entry point for the thread.

A thread may be suspended temporarily to avoid
consuming CPU cycles unnecessarily using sleep()
method. A thread may be suspended and resumed
using the combination of wait () and notify ()
methods.

Interrupting a thread means requesting it to stop what
itis currently doing and do something else. The request
is sent to a thread using its interrupt () method.

In Java, every thread has a priority. Higher priority
threads get more preference in terms of CPU, 1/0
time, etc. than lower priority threads. Priorities are

WEB RESOURCES

http://docs.oracle.com/javase/tutorial/
essential/concurrency/

Lesson: Concurrency
https://www.ibm.com/developerworks/library/
j-thread/

Writing multithreaded Java applications
http://www.tutorialspoint.com/java/java_
multithreading.htm

Java - Multithreading
http://tutorials.jenkov.com/java-
concurrency/index.html

Synchronized blocks—Blocks of codes created with
synchronized keyword

Synchronized methods—Methods declared with the
synchronized keyword

Thread—A control or flow or path of execution that
exists within a process

represented by integer numbers from 1 (lowest) to
10 (highest) which are represented by two static final
fields MIN PRIORITY and MAX PRIORITY Of Thread
class respectively.

However, sometimes it is necessary that a thread
should not proceed further until another thread finishes
its task. This type of dependency can be achieved
using join () method.

Java provides synchronized keyword to deal with race
condition. Two versions exist: synchronized methods
and synchronized blocks. A method or a block is made
synchronized by adding a synchronized keyword
before its declaration. The synchronized keyword does
not make a method/block atomic. Unfortunately, there
is no built-in support for atomic code blocks in Java.

Deadlock is a situation where two or more threads
wait for each other indefinitely. Some of the situations
where there may be a chance of deadlock are i)
The code contains any nested synchronized block
ii) A synchronized method calls another synchronized
method iii) The code obtains locks on different
objects.

A useful multithreaded-program is one where multiple
threads run concurrently in a cooperating manner to
perform a designated task. Threads communicate
using the methods wait(), notify() and notifyAll()
methods.

Java Concurrency / Multithreading Tutorial
http://www.javatpoint.com/multithreading

Multithreading in Java
http://www3.ntu.edu.sg/home/ehchua/
programming/java/J5e multithreading.html

Java Programming Tutorial: Multithreading & Concurrent
Programming
http://www.nakov.com/inetjava/lectures/
part-l-sockets/InetJava-1.3-Multithreading.
html

Multithreading and Thread Synchronization

EXERCISES

Objective-type Questions

MULTI-THREADING 65

1. In Java, a thread can be created by
(a) Extending the Thread class
(b) Implementing Runnable interface
(c) Both (a) and (b)
(d) None of these

2. Which one of the following methods is used to
start a thread execution?

(@) run() (c) resume()
(b) init() (d) start()
3. When a class extends the Thread class, it should
override method
(a) start() (c) execute()
(b) init() (d) run()

4. Which two are valid constructors for Thread?
(i) Thread()

ii) Thread(Runnable r, String s)

Thread(Runnable r, ThreadGroup g)

Thread(String s, ThreadGroup g)

Thread(int priority)

(i) and (iii) (c) (i) and (ii)

(i) and (iv) (d) (i) and (v)

5. Which three are methods of the Object class?
(i) sleep(long ms); (v) interrupt();

(i) notify(); (vi) wait(long ms);
iii) isInterrupted(); (vii) notifyAll();

iv) synchronized();

a) (i), (vi), (vii) (c) (i), (ii), (vi)

b) (i), (iv), (Vi) (d) (i), (vi), (vii)

—_ o~

Py

6. Consider the following class declaration:
class X implements Runnable {/*...*/}
Which of the following code segments is used to
start a new thread?
(a) new Thread(new X()).start();
(b) new X().start();
(c) Thread t = new Thread(X); t.start();
(d) X x=new X(); x.start();

7. Which of the following methods cannot directly
cause a thread to stop executing?
(a) setPriority() (c) notify()
(b) wait() (d) interrupt()

8. Which of the following methods causes a thread
to stop executing?
(a) wait() (c) terminate()
(b) stop() (d) pause()

10.

1.

12.

13.

14.

15.

16.

. Which of the following methods is used to release

the CPU voluntarily?

(a) release() (c) giveUp()
(b) suspend() (d) yield()

Which of the following methods must be
implemented in a class that implements Runnable
interface?

(a) start() (c) execute()

(b) run() (d) call()

Which of the following types is used to represent
thread priority in Java ?

(a) float (c) int

(b) double (d) long

What is the output of this program?
class Test {
public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println(t);

(a) Thread[main,5,main]
(b) Thread[5,main]
(c) Thread[main,0]
(d) Thread[main,5]

What is the default thread priority used in Java?
(@ 0 (c) 5
(b) 1 (d) 10

Which of the following constants is used to
represent the default priority of a thread?

(a) DEF_PRIORITY

(b) DEFAULAT_PRIORITY

(c) NORM_PRIORITY

(d) NORMAL_PRIORITY

The isAlive() method is used to
(a) know whether a thread is running or not
(b) know whether a thread was created or not
(c) restart a thread after stopping it
(d) resume a thread after blocking it

Which of the following keywords are used to make
a method synchronized?

(a) atomic (c) synchronized

(b) block (d) unit

66 ADVANCED JAVA PROGRAMMING

17.

18.

19.

20.

21.

22.

23.

24.

Which of the following is the priority range in Java?
(a) 1-10 (c) 5-10
(b) 0-9 (d) 1-5

Which of the following statements is false?

(a) The sleep() method should be enclosed in
try-catch block

(b) The yield() method should be enclosed in
try-catch block.

(c) A thread can be temporarily suspended
from running by using the wait() method.

(d) A join() causes the caller to wait till the
called thread terminates

What happens if two threads having same priority
are started?
(a) The thread whose name lexicographically
precedes the other is executed first.
(b) Both of them will be executed simultaneously.
(c) None of them will be executed.
(d) Itis dependent on the operating system.

Deadlock is a situation when .
(a) two or more threads have circular
dependency on an object
(b) two or more threads are trying to access
the same object
(c) two or more threads are waiting for a
resource
(d) None of these
Which of these statements is incorrect?
(a) Two threads in Java can have same priority.
(b) Bymultithreading CPU’sidle timeis minimized,
and we can take maximum use of it.
(c) By multitasking CPU’s idle time is minimized,
and we can take maximum use of it.
(d)

A thread can exist only in two states,
running and blocked.

Which of the following interfaces is used to create
a thread
(a) Startable
(b) Runnable

(c) Executable
(d) Thread

Which of the following methods contains the body
of the thread?
(a) run()

(b) start()

(c) stop()
(d) main()

Which of the following classes or interfaces
defines the wait(), notify(),and notifyAll() methods?
(@) Thread (c) Object
(b) Runnable (d) Class

25.

26.

27.

28.

29.

30.

Which of the following methods is used to change
the priority of a thread?

(a) setPriority() (c) newPriority()

(b) changePriority() (d) updatePriority()

How many locks does an object have?

(@) 1 (c) 3
(b) 2 (d) 4
A dead thread
(a) is discarded
(b) must wait until all other threads execute

before it is restarted
cannot be restarted
is synchronized

(c)
(d)

What is the output of the following program ?
public class Test {
public static void main (Stringl]
args) throws Exception {
Thread.sleep (1000) ;
System.out.println ("Sleeping");

(a)
(b)

Compilation error.
An exception is thrown at runtime.

(c) The code executes normally, but nothing
is printed.

(d) The code executes normally and prints
"sleeping"”.

Consider the following class
public class MyClass implements Runnable
{
public void run() {
// some code here

}
}

Which of the following will create and start this
thread?

(a)
(b)
(c)
(d)

new Runnable(MyClass).start();
new Thread(MyClass).run();

new Thread(new MyClass()).start();
new MyClass().start();

What happens if an unchecked exception is
thrown from a try block and there is no matching
catch block?

(a) The program ignores the exception.

(b) The program terminates immediately.

(c) The method throws the exception to its caller.
(d) Compilation error.

Subjective-type Questions

MULTI-THREADING 67

. What are the differences between a process and

a thread?

What are the benefits of multi-threaded
programming?

Show the different ways we can create threads in
Java with their relative merits and demerits.

4. Explain the life cycle of a thread in Java.

10.
1.

12.

13.

Explain with example inter-thread communication
techniques.

How do you make a method synchronized? How
does it differ from a non-synchronized method?

Discuss the relative advantages and disadvantages
of synchronized methods and synchronized blocks.

What is a deadlock? How does it differ from
starvation?

. How will you say that a program may suffer from

a deadlock?
What is the difference between yield and sleeping?

What is race condition? How will you find and
solve race condition?

How does thread synchronization occur inside a
monitor?

How can we pause the execution of a Thread for
a specific time?

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

What do you understand about Thread
Priority?

What happens when we make a static method
synchronized?

What is the function of join() method? Write a real
world program that uses join() method.

Write a Java program to solve the producer-
consumer problem in Java?

Write a program which will result in deadlock.
Now fix the deadlock in your program.

Is it possible to create new thread by calling its
run() method directly? If not, why?

Write some common problems that may arise in
multi-threading environment?

What is the difference when the synchronized
keyword is applied to a static method or to a non-
static method?

What is difference between notify() and
notifyAll()?

What happens when start() is called?
What is main thread? When is it created?

Briefly describe how Java implements
synchronization.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER - 4

GARBAGE COLLECTION

Key OBJECTIVES

After completing this chapter readers will be able to—

» understand the importance of garbage collector
» understand how garbage collector works

» getan idea about different garbage collectors

+ select and tune parameters of garbage collector
* monitor the performance of garbage collector

* learn a set of useful commands

4.1 INTRODUCTION

Currently Java runs on more than 850 million personal computers worldwide, and on billions
of devices worldwide, including mobile and TV devices. One of the key reasons for such legendary
success is the ability to tune its performance to realize high performance and massive scalability. This
is achieved through the maturing evolution and continuous engineering of its runtime environment
and multithreaded garbage collector. Knowing even a little about JVM’s garbage collector can greatly
help in improving the performance of your Java applications.

HotSpot, originally released as the “Java HotSpot Performance Engine” is JVM maintained and
distributed by Oracle. Since, in this book, only Oracle’s implementation of Java has been considered,
the “JVM?” always refers to “HotSpot”.

This chapter first describes the basics of how Garbage Collection works inside HotSpot. Then,
it gives an overview of available garbage collectors with their functions and performance metrics.
It also demonstrates how to select and configure a collector and set sizes for the memory areas on
which the collector operates. Finally, it lists some of the most commonly used options that affect
garbage collector behaviour.

GARBAGE COLLECTION 69

4.2 EXPLORING JVM

In this section, an overview of the JVM is provided along with an introduction to Garbage
Collection and performance.

JVM may be thought of as an abstract computing machine that executes Java programs (in byte
codes) in it. A JVM for a specific operating system, along with other tasks, translates the Java byte
codes into instructions on the local operating system. The specific part that performs this translation
is called Just-In-Time (JIT) compiler. This way, platform independence is achieved. The architecture
is shown in Figure 4.1:

| Class loader Subsystem Ij

1L

Heap Method Threads Native Internal Registers

Area Threads

Execution Engine

Runtime Data Area

v
Native Method Native
JIT Garbage Interface Libraries

Compiler Collector

Figure 4.1: JVM architecture

The primary components of JVM architecture are the class loader, the runtime data areas, and
the execution engine. The key components related to performance are highlighted in the picture.
The section of memory where all objects (local or member) are stored is called heap. It is worth
noting that class static members are created in method area. The heap is managed by the garbage
collector.

4.2.1 Performance

Performance tuning is usually done by choosing the heap size and the most appropriate
garbage collector for an application. Performance tuning usually refers to optimizing the following
criteria:

« Responsiveness—It refers to how quickly an application or system responds to a request. Tuning responsiveness
means minimizing response time.

« Throughput—The percentage of time not utilized in garbage collection.

« Garbage collection overhead—The percentage of total time spent in garbage collection, that is, the inverse of
throughput

+ Pause time—The duration when application execution is stopped while garbage collection occurs.

+ Frequency of collection—How often collection occurs, relative to application execution.

+ Promptness—The time between when an object becomes garbage and when the memory becomes
available.

70 ADVANCED JAVA PROGRAMMING

4.3 JVM OPTIONS

Several options and environment variables are available that can affect the performance
characteristics of the HotSpot JVM. These options start with —x or —xx. The available —x options
may be listed using the following command:

java —-X

The partial output of this command is shown below:

-Xms<size> set initial Java heap size

-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size

The options related to garbage collector start with —xx. Note that —x options are not standard
options. So, they may not work on all VM implementations. The —x and —xx options are subject to
change without notice in subsequent releases of the JDK.

Options that do not require any value (Boolean options) are turned on and off with -xx : +<option>
and -xx: -<option> respectively (i.e., + for adding and — for removing option). Options that require
numeric value are set with -xx: <option>=<number>. Numbers can include ‘m’ or ‘M’ for megabytes,
‘k’ or ‘K’ for kilobytes, and ‘g’ or ‘G’ for gigabytes. For example, 2k is the same as 2048. String
options are set with -xx:<option>=<string>.

The options below are loosely categorized into groups as follows:

« Debugging options—Usually used to enable tracing, printing, or output of VM information.

+ Behavioural options—Used to change the basic behaviour of the VM.

« Garbage First (G1) Garbage Collection Options

. Performance tuning options—Behaves like knobs which can be used to tune VM performance.

A detailed list of available options may be found in Appendix.

4.4 GARBAGE COLLECTION

A garbage object (or simply garbage) is one that can no longer be reached through any pointer/
reference in the running program. Since, such objects can never be accessed/used, it is worth reclaiming
memory occupied by them and allocating to others (if any).

Garbage collection refers to the process of indentifying garbage objects and freeing (called
reclaiming) heap memory occupied by them. Note that, in a programming language like C/C++, it
is solely the programmer’s task to track and collect garbage. However, in Java, garbage is collected
automatically by a special component (a separate thread), called garbage collector. This way, it
relieves programmers from memory management and helps them to devote more time on actual logic.

Although Java shields the programmer from garbage collection, it is worth understanding some
aspects of this hidden implementation. By knowing some assumptions (represented by parameters)
made by garbage collectors, it is possible to tune those parameters to achieve improved performance
without knowing actual implementation.

4.5 GENERATIONAL GARBAGE COLLECTOR

The basic function of any garbage collector is to identify garbage objects. One of the possibilities
is to start with reachable objects and find other objects reachable from them and so on. The objects left
over are garbage objects. The time taken by this approach is proportional to the number of reachable

GARBAGE COLLECTION 71

objects. For applications that maintain huge live data, this time (overhead) becomes significant and
is not acceptable. Although, there exists other native algorithms, they also essentially examine all
reachable objects, thereby not suitable for large applications.

Java intelligently found an efficient algorithm that minimizes the time required to reclaim garbage
objects. The algorithm is solely based on some observed facts, most importantly weak generational
hypothesis, which states that most objects survive for only a short period of time. The property is
best described in Figure 4.2:

A

Number of objects

m

Figure 4.2: Weak generational hypothesis

Lifetime

The x indicates the survival duration of objects and y axis corresponds to the number of objects
having that duration. The shaded area shows typical distribution of objects having different lifetimes.
The sharp peak at the left indicates that large number of objects have very short lifetime i.e., die
immediately after creation and hence candidate for reclaim. However, some objects (for example
Iterator objects) survives even after a long time so the distribution stretches out to the right. The
lump to the right of the initial peak indicates that some objects live for the intermediate duration

Although, not all applications have the same distribution, a surprisingly large number has this
behaviour. Java makes use of this property (most objects die young) to devise an efficient garbage
collection algorithm.

Keeping the above property in mind, Java divides its heap into two sections that hold objects of
different ages. Objects are created in the first section and move to the other section as they become
aged. The first section holds short aged objects and is called young generation. When it fills up, a
garbage collection occurs. Since, according to weak generational hypothesis, most objects in the
young generation die soon, very few objects live. So, the collection takes place very quickly as its time
is proportional to the number of live objects. That’s why this collection is called minor collection.
During minor collection, no other heap sections are checked for garbage. This generation is typically
smaller and its occupancy grows more rapidly.

During any minor collection (for all collectors), all application threads are stopped until the
operation completes. This is why minor collections are said to be stop-the-world events.

When a young generation object becomes sufficiently aged (i.e., survives a predefined number
of minor collections), it is eventually promoted or tenured to the second section. This section has
relatively higher aged objects hence is called renured generation (or old generation) [Figure 4.3:].

72 ADVANCED JAVA PROGRAMMING

Young generation Old generation ~ Permanent generation
A A A
-~ ~" ~~ N

Heap

Figure 4.3: JVM memory representation

When tenured generation fills up, a garbage collection occurs where all generations are collected.
Since, it takes longer time than minor collections because a significantly larger number of objects is
involved, it is called major collection. Since, it collects all generations, it is sometimes called fu//

collection. The old generation is typically larger than the young generation and its occupancy grows
more slowly.

Major collections in some collectors are also stop-the-world events. Since, a major collection
is usually much slower as it involves all live objects, for applications that require quick guaranteed
response, major collections should be minimized. The length of stop-the-world event for a major
garbage collection also depends on the garbage collector selected.

The minor collection algorithm typically puts a premium on speed, since it is frequent. On the

other hand, the major collection algorithm is more space efficient, as the old generation takes up
most of the heap and works well with low garbage densities.

In addition, beyond heap, JVM stores some objects that are closely related for its own operation.
For example objects describing classes and methods and other reflective data are stored here. The
permanent generation is populated by the JVM at runtime based on classes in use by the application.
In addition, Java SE library classes and methods may be stored here. JVM occasionally loads and
unloads objects here and hence these objects are called permanent generation.

4.6 HOTSPOT'S GARBAGE COLLECTION

In the previous section, we have described the basic philosophy of generational garbage collection.
In this section, let us know how it is implemented in HotSpot.

The organization of generations for all collectors in HotSpot JVM except parallel collector is
shown in Figure 4.4:

Young generation Old generation Permanent generation

PN N
~ ~ ~~ N

’

o
c
()]
c
®©
<
S
(]

o

Eden
Survivor 0
Survivor 1

Virtual
Tenured
Virtual

Heap

Figure 4.4: JVM memory for non-parallel GC

GARBAGE COLLECTION 73

The same for parallel collector is shown in Figure 4.5: The size of the allocated space to
JVM may be specified with the -xmx option. However, it does not use all unless it is needed. The
space to be used may be specified using -xms option. If the value of the -xms option is smaller than
the value of the -xmx option, some space remains uncommitted and is shown as virtual in the figure.

The heap and the permanent generation comprises the entire memory allocated to a JVM. The
entire allocated space is divided into the young, tenured and permanent generations.

Old generation Young generation Permanent generation
A A N
-~ N ~~ ™

o — E

e

o © © c s | o 2

5 2 | 2 g S| 2 5

c E E T |2 IS

|0_J > > S S E
(222N)] o

Heap

Figure 4.5: JVM memory for parallel GC

The young generation consists of a space called Eden and two smaller survivor spaces (often referred
to as_from and t0). We shall refer to these survivor spaces as SO and S1. When a JVM starts, all these
areas are empty [Figure 4.6: (i)]. Most of the objects are initially allocated in Eden [Figure 4.6: (ii)].

Eden Eden

11l

S0 S1 S0 S1
@) (ii)

Figure 4.6: Initial young generation (i) Empty Eden (ii) Allocated some objects

When the Eden is full [Figure 4.7: (i)], a minor collection occurs. During this phase, the live objects
in Eden are identified. This has been shown in Figure 4.7: (i). The shaded objects are unreachable
objects and others are live objects. Live objects are moved to the survivor space SO and unreferenced
objects are deleted [Figure 4.7: (ii)]. Live objects that are too large to fit in SO are directly copied to
the old generation (not shown in figure). The objects in the survivor space are marked with numbers
that indicate the number of times the objects survived (1 in our case) during minor collection.

Eden

INRRNENAND

i

SO S1

|:| garbage |:| live
(i) (i)
Figure 4.7: 18t Minor collection (i) Before (ii) After

74 ADVANCED JAVA PROGRAMMING

The Eden becomes eventually full again [Figure 4.8: (i)] and as a result second minor collection
occurs. During this time not only Eden is checked for garbage, but the survivor space S0 is checked
also. The live objects from Eden are moved to the other survivor space i.e., S1. The live objects
(if any) from the first survivor space (S0) are also moved to S1 with their age incremented. Now,
both Eden and SO are cleared. If the target survivor space becomes full, the live objects from Eden
or other survivor space are tenured, irrespective of their age.

Eden Eden

INNRNENND
[l

2l
S1 SO S1

(i) (ii)
Figure 4.8: 2" Minor collection (i) Before (ii) After

Note that one survivor space is empty at any time, and serves as the destination of any live
objects in Eden and the other survivor space during the next minor collection. Also note that there
are differently aged objects in the survivor space. The survivor spaces essentially keep objects that
have survived at least one minor collection and have thus been given more chances to die before
being considered “aged enough” to be tenured to the old generation.

In this way, objects move between survivor spaces until their age reaches a certain threshold
(say 3). These “too old” objects are moved to the tenured generation [Figure 4.9: (ii)] during the
next minor collection.

Eden Eden

JHoooooon, prodbooood
(] [l

SO S1 SO S1

-

Tenured
(i) (i)
Figure 4.9: Object promotion (i) Before (ii) After

So, the tenured generation contains objects that have survived some number of minor collections
as well as some large objects that may be allocated directly in the old generation. Objects continue
to move to the tenured generation space as minor GCs continue to occur. Eventually, the tenured
generation fills up and a major GC occurs where all generations are collected. Typically, the young
generation is collected first and the old generation collection algorithm is run on both the old and
permanent generations. If compaction option is selected, each generation is compacted separately.

GARBAGE COLLECTION 75

Ifthe young generation is collected first and the old generation does not have sufficient space to accept
objects likely to be promoted, the young generation collection algorithm is not run (except for Concurrent
Mark-Sweep collector). Instead, the old generation collection algorithm is run on all generations.

4.7 AVAILABLE COLLECTORS

HotSpot provides multiple garbage collectors to satisfy different requirements for both large and
small applications. People who need high performance may select the appropriate garbage collector
and configure it to meet their needs best. However, it is not an easy task at all. Java 5.0 and later is
intelligent enough to select a garbage collector based on the class of the host where the application
runs. Although, this default garbage collector, no doubt, improves the performance to some extent,
it is, by no means, always the best choice for every application. To achieve the desired level of
performance, it is recommended to select a garbage collector explicitly and tune its parameters.

The HotSpot JVM provides different collectors, each with different performance characteristics:
serial collector, parallel collector, parallel compact collector and concurrent collector.

4.7.1 Serial Collector

For serial garbage collector, single thread is used to perform all garbage collection responsibilities.
That is both young and old generations are collected serially, in a stop-the-world fashion
[Figure 4.10:]. The application execution is suspended during the collection.

Application threads Vv vy A A
v > "_L’_'_L’

Minor collection Mark-sweep-compact

GC thread l

vovov vov oy
(i) (i)
Figure 4.10: Serial collector (i) Young generation collection (ii) Old generation collection

For collecting young generation, the algorithm described in the previous section is used. For
old generation, serial collector uses a 3-phase mark-sweep-compact collection algorithm, a brief
description of which is given below:

This collection algorithm has three phases: mark, sweep and compact. In mark phase, live
objects are identified. In the next phase, the collector sweeps the garbage over the generations. In the
compact phase, live objects are slid towards the beginning of the old generation. This leaves free space
(if any) as a single contiguous block at the other end.

Since, serial collector always uses single thread, it cannot leverage multi-processor system. That’s
why, it is recommended to use this collector in a uni-processor system. However, it may be useful
on multiprocessors for applications that need heap of up to100 MB.

The strength of this collector however, lies in its single thread as there is no communication
overhead between threads. Try avoiding other collectors that cost additional overhead if your
application does not need special behaviour.

76 ADVANCED JAVA PROGRAMMING

Use the option -xx:+Useserialcc to select serial collector. The following command selects a
serial collector and prints its details:
java -XX:+UseSerialGC -XX:+PrintGCDetails —version

A sample output is shown below:

java version "1.7.0 07"

Java (TM) SE Runtime Environment (build 1.7.0 07-bll)

Java HotSpot (TM) Client VM (build 23.3-b01, mixed mode, sharing)

Heap
def new generation total 4928K, used 369K [0x23f10000, 0x24460000, 0x29460000)
eden space 4416K, $ used [0x23f10000, 0x23fo6c5f8, 0x24360000)
from space 512K, % used [0x24360000, 0x24360000, 0x243e0000)
to space 512K, % used [0x243e0000, 0x243e0000, 0x24460000)
tenured generation total 10944K, used OK [0x29460000, 0x29f10000, 0x33£10000)
the space 10944K, % used [0x29460000, 0x29460000, 0x29460200, 0x29f10000)

compacting perm gen total 12288K, used 69K [0x33£f10000, 0x34b10000, 0x37£10000)
the space 12288K, 0% used [0x33f10000, 0x33f21408, 0x33f21600, 0x34b10000)
ro space 10240K, 45% used [0x37£10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38£98000, 0x39510000)

4.7.2 Parallel Collector

The serial garbage collector may not be the best choice for all applications. For example, heavily
threaded large applications that run on a multi-processor machine having large memory, expect
special behaviour from garbage collector. In such a case, usually parallel collector (also known as
the throughput collector) exhibits better performance than the serial one.

% % __
1

Application threads |

Minor collection Mark-sweep-compact
GC thread
vovovy vovov Ty
(i) (i)

Figure 4.11: Parallel collector (i) Young generation collection (ii) Old generation collection

For parallel garbage collector, as its name implies, multiple threads are used to perform minor
collections [Figure 4.11: (i)]. Since, it uses multiple threads leveraging multi-processor system, it
can decrease garbage collection overhead significantly and hence increases application throughput.
However, it is still a stop-the-world collector. Moreover, it uses the same single-threaded mark-sweep-
compact algorithm [Figure 4.11: (ii)] for collecting old generation.

This collector is best suited for applications (having medium to large-sized data sets) that are run
on multiprocessor or multi-threaded hardware. Applications having pause time constraints should not
use this collector, since infrequent, but potentially long, old generation collections will still occur.

Use the option -xx: +UseParallelcc to select parallel collector. The following command selects
a parallel collector and prints its details:
java -XX:+UseParallelGC -XX:+PrintGCDetails -version

GARBAGE COLLECTION 77

A sample output is shown below:

java version "1.7.0 07"

Java (TM) SE Runtime Environment (build 1.7.0 07-bll)

Java HotSpot (TM) Client VM (build 23.3-b01, mixed mode)

Heap

PSYoungGen total 4800K, used 416K [0x12e40000, 0x13390000, 0x18390000)
eden space 4160K, 10% used [0x12e40000,0x12ea8208,0x13250000)
from space 640K, 0% used [0x132f0000,0x132£0000,0x13390000)
to space 640K, 0% used [0x13250000,0x13250000,0x132£0000)

Par0ldGen total 10944K, used OK [0x08390000, 0x08e40000, 0x12e40000)
object space 10944K, 0% used [0x08390000,0x08390000,0x08e40000)
PSPermGen total 12288K, used 1363K [0x04390000, 0x04£90000, 0x08390000)

object space 12288K, 11% used [0x04390000,0x044e4d20,0x04£90000)

4.7.3 Parallel Compacting Collector

Note that the parallel collector uses multiple threads for minor collections only. For major
collection, still single thread is used which may degrade performance significantly. In Java 5 and
later, a concept called parallel compaction has been introduced that allows parallel collector to
perform even major collections in parallel. The algorithm consists of three phases: mark, summary
and compact.

The algorithm divides each generation into fixed-sized regions. In the mark phase, an initial set
of live objects directly reachable from the application code is identified first and is distributed among
garbage collection threads. These threads then mark other live objects in parallel [Figure 4.12: (ii)].

The summary phase inspects the density of the live objects in each region. Due to previous
compactions, it is expected that regions towards left are denser than regions towards right.
The denser regions yield very little space and are not worth the cost of compacting them. So, summary
phase starts from the leftmost region and finds a point beyond which compacting is cost-effective.
The regions to the left of that point are referred to as the dense prefix. Note that the summary
phase is currently implemented as a serial phase [Figure 4.12: (ii)]. Parallel summary phase may be
implemented but not as important as parallelization of the mark and compact phases.

In the compaction phase, only non-dense regions are compacted.

Use -xx:+UseParallelOldGC to enable parallel compaction.

é H H H e H H : H H I_ ..
Application threads | .) Mark phase
v Minor collection v * v
l Summary phase

GC thread l T T
Compact phase

Yoy v oy

L2 A B

Figure 4.12: Parallel Compact collector (i) Young generation collection
(i) Old generation collection

Applications having pause time constraints may use this collector as it reduces old generation
collection time.

78 ADVANCED JAVA PROGRAMMING

4.7.4 Concurrent Collector

Note that all of the serial, parallel and parallel compact collectors are stop-the-world collectors.
This means they suspend the application during the garbage collection. This may not be acceptable
for application for which response time is much more important.

Fortunately, Java provides a fourth collector called concurrent collector (also called low-latency
collector) that performs most of its work while the application is still running. This makes garbage
collection pauses short. Since, old generation collections, though infrequent, result in relatively long
pauses, a concurrent mark-sweep algorithm has been introduced for it.

The algorithms have primarily four phases: initial mark, concurrent mark, remark and concurrent
sweep. In the initial mark phase, only the live objects directly reachable from the application code
are identified. This phase is short stop-the-world event and uses a single thread [Figure 4.13:]. In
the next phase, the collector concurrently marks all live objects that are transitively reachable from
this set. This phase is not the stop-the-world event. So it does not pause the application. However,
since the application runs and probably updates reference fields concurrently with this phase, all live
objects may not be marked at the end of this phase.

Y ¥V V¥

—
Irlitial mark

Application threads .. Cloncurrent mark

A\
GC threads l Remark
Y —
i i i Concurrent sweep
VoY vo¥

Figure 4.13: Old generation collection in concurrent collector

To cope up with this problem, the collector suspends the application in the remark phase and
finalizes marking by revisiting any objects that were modified during the concurrent marking.
Since, remark pause is more substantial than the initial mark, multiple threads are run in parallel
to increase its efficiency. This is a stop-the-world event. However, since this phase uses multiple
threads [Figure 4.13:], the pause time is expected to be short.

The remark phase gives the guarantee that all live objects in the heap have been marked. So, the
last phase reclaims all the garbage that has been left.

Note that many phases run concurrently with the application and can decrease application
performance. This is a typical trade-off for most collectors that attempt to reduce pause times. Also
note that this collector is the only non-compacting collector. It certainly runs a compaction algorithm
after reclaiming garbage.

The concurrent collector is selected with the option -xx: +UseConcMarksweepcc. The following
command selects a parallel collector and prints its details:
java -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -version

A sample output is shown below:

java version "1.7.0 07"

Java (TM) SE Runtime Environment (build 1.7.0 07-bll)
Java HotSpot (TM) Client VM (build 23.3-b01, mixed mode)
Heap

GARBAGE COLLECTION 79

par new generation total 4928K, used 369K [0x04390000, 0x048e0000, 0x098e0000)

eden space 4416K, $ used [0x04390000, 0x043ec668, 0x047e0000)
from space 512K, % used [0x047e0000, 0x047e0000, 0x04860000)

to space 512K, % used [0x04860000, 0x04860000, 0x048e0000)
concurrent mark-sweep generation total 10944K, used OK [0x098e0000,
0x14390000)

0x0a390000,

concurrent-mark-sweep perm gen total 12288K, used 1363K [0x14390000, 0x14£90000,

0x18390000)

4.8 SOME COMMANDS

Printing information about current GC used
java -XX:+PrintGCDetails -version

A sample result for serial collector is shown below:

java version "1.7.0 07"

Java (TM) SE Runtime Environment (build 1.7.0 07-bll)

Java HotSpot (TM) Client VM (build 23.3-b01, mixed mode, sharing)
Heap

def new generation total 4928K, used 369K [0x23f10000, 0x24460000, 0x29460000)

eden space 4416K, % used [0x23f10000, 0x23f6c668, 0x24360000)
from space 512K, % used [0x24360000, 0x24360000, 0x243e0000)
to space 512K, $ used [0x243e0000, 0x243e0000, 0x24460000)
tenured generation total 10944K, used 0K [0x29460000, 0x29f10000, 0x33f10000)
the space 10944K, % used [0x29460000, 0x29460000, 0x29460200, 0x29£10000)
compacting perm gen total 12288K, used 69K [0x33f10000, 0x34b10000, 0x37£10000)
the space 12288K, % used [0x33f10000, 0x33f21408, 0x33f21600, 0x34b10000)
ro space 10240K, 45% used [0x37f10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38£98000, 0x39510000)

Storing GC information in a file gc.txt
java -XX:+PrintGCDetails -Xloggc:gc.txt -version

Show all VM related settings:

java -XshowSettings:vm —-version

A sample result is shown below:

VM settings:
Max. Heap Size (Estimated): 247.50M
Ergonomics Machine Class: client
Using VM: Java HotSpot (TM) Client VM

Set maximum Java heap size 120 MB and show VM settings:
java -Xmx120m -XshowSettings:vm -version

The result is now given below:

VM settings:
Max. Heap Size: 120.00M
Ergonomics Machine Class: client
Using VM: Java HotSpot (TM) Client VM

Set maximum Java heap size 2 MB and print VM details:

java -Xmx2m -XX:+PrintGCDetails -version

The result is now given below:
Heap
def new generation total 960K, used 330K [0x33910000, 0x33al10000,
eden space 896K, 36% used [0x33910000, 0x339629f0, 0x339£f0000)
from space 64K, % used [0x339f0000, 0x339f0000, 0x33a00000)
to space 64K, % used [0x33a00000, 0x33a00000, 0x33a10000)

0x33b10000)

80 ADVANCED JAVA PROGRAMMING

tenured generation total 1024K, used 0K [0x33b10000, 0x33cl0000, 0x33f10000)

the space 1024K, % used [0x33b10000, 0x33b10000, 0x33b10200, 0x33c10000)
compacting perm gen total 12288K, used 96K [0x33f10000, 0x34b10000, 0x37£10000)
the space 12288K, 0% used [0x33f10000, 0x33£f28018, 0x33£28200, 0x34b10000)

ro space 10240K, 45% used [0x37£10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38£98000, 0x39510000)

4.9 TOOLS

There are tools to monitor GC. The primary monitoring tools in HotSpot JVM are jstat and
jmap. Sometimes, we need other helping tools such as jps and jstatd to monitor a Java application.

4.9.1 jstatd

It is an RMI server application that monitors for the creation and termination JVMs and allows
tools such as jps, jstat to monitor these JVMs remotely through it. This requires an RMI registry
running on the local host. The jstatd tries to find an RMI registry on the default port (1099), or on
the port indicated by the -p port option. If no RMI registry is found, it creates one bound to the port
indicated by the -p port option or to the default port if -p option is absent.

The jstatd can only monitor JVMs for which it has the appropriate access permissions. The
following policy file will allow the jstatd server to run without any security exceptions.

grant codebase "file:D:/Java/jdkl.7.0 07/lib/tools.jar" {

permission java.security.AllPermission;

bi

Here, p: /Java/jdk1.7.0 07 is the Java installation home directory. To use this policy, save it in
afile ystatd.all.policy and run the jstatd server as follows:

jstatd -J-Djava.security.policy=jstatd.all.policy

The RMI server consults an RMI registry running locally on default port 1099 (starts a new one
if no such registry is found). We can now start a JVM and can be monitored remotely by tools such
as jps and jstat.

4.9.2 jps

The jps command lists the local VM identifier, or lvmid, for each instrumented JVM found on the
target system. This Ivmid is typically, but not necessarily, the operating system’s process identifier
for the JVM process. This lvmid is required for other tools such as jmap, jstat. A typical output of
jps command is shown below:

E:\ajp\gc>jps

3928 Loop

3380 Jps

Here, Loop is Java program running under the supervision of a JVM having lvmid 3928. If you
want to find the Ivmid of JVMs running on a different machine (say 172.16.5.81), start jstatd first
as described in the previous section and then use the following command:

jps 172.16.5.81

4.9.3 jmap

This command prints shared object memory maps or heap memory details of a specified process
or executable core file or a remote debug server. The following command prints the heap information
for the process having lvmid 3928

GARBAGE COLLECTION 81

E:\ajp\gc>jmap -heap 3928

Attaching to process ID 3928, please wait...
Debugger attached successfully.

Client compiler detected.

JVM version is 23.3-b01

using thread-local object allocation.

Mark Sweep Compact GC

Heap Configuration:

MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 268435456 (256.0MB)
NewSize = 1048576 (1.0MB)
MaxNewSize = 4294901760 (4095.9375MB)
0ldSize = 4194304 (4.0MB)
NewRatio =2
SurvivorRatio =38
PermSize = 12582912 (12.0MB)
MaxPermSize = 67108864 (64.0MB)
GlHeapRegionSize = 0 (0.0MB)

Heap Usage:

New Generation (Eden + 1 Survivor Space):
capacity = 5046272 (4.8125MB)
used = 1690792 (1.6124649047851562MB)
free = 3355480 (3.2000350952148438MB)
33.50576425527598% used

Eden Space:
capacity = 4521984 (4.3125MB)
used = 1549200 (1.4774322509765625MB)
free = 2972784 (2.8350677490234375MB)
34.25929857336956% used

From Space:
capacity = 524288 (0.5MB)
used = 141592 (0.13503265380859375MB)
free = 382696 (0.36496734619140625MB)
27.00653076171875% used

To Space:
capacity = 524288 (0.5MB)
used = 0 (0.0MB)
free = 524288 (0.5MB)
0.0% used

tenured generation:
capacity = 11206656 (10.6875MB)
used = 0 (0.0MB)
free = 11206656 (10.6875MB)
0.0% used

Perm Generation:
capacity = 12582912 (12.0MB)
used = 109832 (0.10474395751953125MB)
free = 12473080 (11.895256042480469MB)
0.8728663126627604% used

10737 interned Strings occupying 806464 bytes.

4.9.4 jstat

The jstat tool displays performance statistics for an instrumented HotSpot Java virtual machine
(JVM). The target JVM is identified by its virtual machine identifier, or lvmid. The jstat command
takes options and displays useful information. The following command shows all the options available:

jstat —options

82 ADVANCED JAVA PROGRAMMING

The function of each option is explained in Table 4.1:

Table 4.1: jstat options

Options Explanation

class Statistics on the behaviour of the class loader.

compiler Statistics of the behaviour of the HotSpot Just-in-Time compiler.

gc Statistics of the behaviour of the garbage collected heap.

gccause Summary of garbage collection statistics (same as -gcutil), with the cause of the last
and current (if applicable) garbage collection events.

gccapacity Statistics of the capacities of the generations and their corresponding spaces.

gcnew Statistics of the behaviour of the new generation.

gcnewcapacity Statistics of the sizes of the new generations and its corresponding spaces.

gcold Statistics of the behaviour of the old and permanent generations.

gcoldcapacity Statistics of the sizes of the old generation.

gcpermcapacity Statistics of the sizes of the permanent generation.

geutil Summary of garbage collection statistics.

printcompilation HotSpot compilation method statistics.

The following command summarizes the garbage collection statistics for the JVM having lvmid

3928:
jstat -gcutil 3928

A sample output of the above command is shown below:

S0 s1 E 0 P YGC YGCT FGC FGCT GCT

0.00 27.01 64.69 0.00 0.87 7 0.011 0 0.000 0.011

If you monitor a JVM running on a different host having IP address 172.16.5.81, start jstatd in
that machine first. Then use the following jstat command:

jstat -gcutil 3928@172.16.5.81

4.10 TUNING MEMORY SIZE

The performance of a collector depends on the size of heap and generations. In this section, we
shall discuss which parameters have been defined to control total size of the heap and the sizes of
the generations and their impact on the performance.

4.11 TUNING HEAP SIZE

Note that the size of the total allocated space and the space to be used initially may be specified
with the -Xmx and -Xms options respectively. If the value of the -Xms option is smaller than the
value of the -Xmx option, some space remains uncommitted. The uncommitted space is sometimes
called virtual. The different generations can grow to the limit of the virtual space as needed.

Note that throughput depends on free space in a generation. Since collections occur when
generations fill up, less the free space in a generation, more frequently the generation fills up and
collection occurs. This implies throughput proportional to the space available in a generation. To
improve throughput, JVM tries to maintain a significant amount of space free in generations. The
allowable range of percentage of free space is specified by two boundary values and are set as

-XX:MinHeapFreeRatio=<minimum>and—XX:MaxHeapFreeRatio=<maximum>

GARBAGE COLLECTION 83

The default values of these two parameters are 40 and 70 respectively. If the percent of free space
in a generation falls below this minimum, the generation is grown subject to the maximum size of the
generation. Similarly, if the percentage of free space exceeds the maximum the generation is shrunk
subject to the minimum size of the generation.

How do these parameters affect the performance? Small MinHeapFreeratio indicates slow startup
as generation size is small and is properly sized after many collections. This may slow down the
performance of large server applications. Some rules for server applications are:

* Allocate as much memory as possible to the JVM if large pauses are not any problem

+ Take -Xms and -Xmx same. This helps us to make sizing decisions. However, if the choice is poor, JVM will fail
to make up.

. Since allocation can be parallelized, for more processors, allocate more memory

4.12 TUNING YOUNG GENERATION

The size of the young generation also does matter. The larger the young generation, the
less frequently minor collections occur and throughput increases. However, for a given heap
size, tenured generation decreases if young generation increases, which increases the frequency
of major collections. Since, major collection takes relatively long time, throughput decreases
significantly. The size of these two generations is controlled by a parameter called newratio
which is the ratio between young generation size to tenured generation size. This parameter is set
as —xX:NewRatio=<ratio>. A value 2 of NewRatio indicates that the size of tenured generation
is double the size of young generation. In addition, the size of young generation is bounded by
two parameters Newsize and MaxNewSize.

4.12.1 Tuning Survivor Space

Although, the size of the survivor space is not an important metric for performance, it may be
tuned using the parameter survivorRatio which is ration between survivor space size to Eden space
size and is set as -xx:SurvivorRatio=<ratio>. A value 8 of survivorRatio indicates that the size
of Eden space should be 8 times the size of one survivor space.

Smaller survivor space overflows frequently resulting in live objects to be copied directly to the
tenured generation. If survivor spaces are too large, most space will remain unused most of the time.

4.13 ACCESSING GC FROM JAVA PROGRAM

Although, not so powerful, we can interact with the garbage collector from within Java programs
such as inspecting some parameters, invoking garbage collector. However, parameters can only be
set when a JVM starts using command line options.

4.13.1 Inspecting GC Parameters

When a program runs in a JVM, we can also inspect some of its parameters from the program.
This is done using the class java.lang.Runtime that corresponds to a JVM. This class provides
methods to interface with the environment. The following are some methods:

public long maxMemory ()
public long totalMemory ()
public long freeMemory ()

84 ADVANCED JAVA PROGRAMMING

The maxMemory () returns the maximum amount of memory, in bytes, that the virtual machine
will attempt to use.

4.13.2 Explicit Garbage Collection

An application can invoke the garbage collector explicitly using static gc () method of
System class.
public static void gc()

A call to this method causes a major collection.
System.gc () is equivalent to the following call:
Runtime.getRuntime () .gc ()

Since, gc () always causes a major collection to be done even if a minor collection is sufficient, it
may greatly impact the performance. Usually, JVM’s determination of when it is appropriate is better.
So, invoking garbage collector explicitly should be avoided. If there are still problems related to pause
time or others, the parameters of the collector may be carefully selected instead. The JVM may be
instructed to ignore the explicit call to a collector using gc () using -xx: +DisableExplicitGC option.

4.13.3 finalize()

Every Java object inherits a method finalize () from object class and is called by the garbage
collector before it reclaims the object. The intent is for finalize () to release system resources such
as open files or open sockets before getting collected. So, it gives us the last chance for any object
to perform cleanup activity. The following program illustrates this:

class FinalizeDemo {
public void finalize() {
System.out.println ("object is garbage collected");
}
public static void main(String args[]) throws Exception {
new FinalizeDemo () ;
System.gc () ;
}
}

This program creates an unnamed object and calls the garbage collector explicitly using system.
gec (). Since the object has no reference pointing to it, it is a garbage object and is collected by the
garbage collector. The collector calls the fina1ize () method before collecting it. Here is a sample
output:

object is garbage collected

4.14 APPENDIX

Table 4.2: -X options

Option Purpose

-Xms Sets the initial heap size for when the JVM starts
—-Xmx Sets the maximum heap size

—-Xmn Sets the size of the Young Generation

-XX:PermSize Sets the starting size of the Permanent Generation
-XX:MaxPermSize Sets the maximum size of the Permanent Generation

-XX options

Table 4.3: Debugging Options

GARBAGE COLLECTION 85

Option and Default Value

Description

-XX:-ClITime

Displays time spent in JIT Compiler

-XX:ErrorFile=./hs_err_pid<pid>.log

Saves the error data to the specified file if an error occurs

-XX:-ExtendedDTraceProbes

Enables performance-impacting dtrace probes. (Solaris
only.)

-XX:HeapDumpPath=./java_pid<pid>.
hprof

Path to directory or filename for heap dump

-XX:-HeapDumpOnOutOfMemoryError

Dumps heap to file when java.lang.OutOfMemoryError is
thrown.

-XX:OnError="<cmd args>;<cmd args>"

Executes user-defined commands on fatal error

<cmd args>"

-XX:0nOutOfMemoryError="<cmd args>;

Executes user-defined commands when an
OutOfMemoryError is first thrown.

-XX:-PrintClassHistogram

Displays a histogram of class instances on Ctrl-Break.
Equivalent to jmap -histo command

-XX:-PrintConcurrentLocks

Displays java.util.concurrent locks in Ctrl-Break thread
dump. Equivalent to jstack - command

-XX:-PrintCommandLineFlags

Displays flags that appeared on the command line

-XX:-PrintCompilation

Displays message when a method is compiled

-XX:-PrintGC

Displays messages at garbage collection

-XX:-PrintGCDetails

Prints more details at garbage collection

-XX:-PrintGCTimeStamps

Prints timestamps at garbage collection

-XX:-PrintTenuringDistribution

Displays tenuring age information

-XX:-PrintAdaptiveSizePolicy

Enables printing of information about adaptive generation
sizing.

-XX:-TraceClassLoading

Traces loading of classes

-XX:-TraceClassLoadingPreorder

Traces all classes loaded in order referenced

-XX:-TraceClassResolution

Traces constant pool resolutions

-XX:-TraceClassUnloading

Traces unloading of classes

-XX:-TraceLoaderConstraints

Traces recording of loader constraints

-XX:+PerfSaveDataToFile

Saves jvmstat binary data on exit

-XX:ParallelGCThreads=n

Sets the number of garbage collection threads in the young
and old parallel garbage collectors

-XX:+UseCompressedOops

Enables the use of compressed pointers

-XX:+AlwaysPreTouch

Pre-touch the Java heap during JVM initialization

-XX:AllocatePrefetchDistance=n

Sets the prefetch distance for object allocation

-XX:InlineSmallCode=n

Inline a previously compiled method only if its generated
native code size is less than this

-XX:MaxInlineSize=35

Maximum bytecode size of a method to be inlined

-XX:FreqInlineSize=n

Maximum bytecode size of a frequently executed method to
be inlined

-XX:LoopUnrollLimit=n

Unroll loop bodies with server compiler intermediate
representation node count less than this value

(Contd)

86 ADVANCED JAVA PROGRAMMING

Table 4.3: (Contd)

-XX:InitialTenuringThreshold=7

Sets the initial tenuring threshold for use in adaptive GC
sizing in the parallel young collector

-XX:MaxTenuringThreshold=n

Sets the maximum tenuring threshold for use in adaptive GC
sizing

-Xloggc:<filename>

Logs GC verbose output to specified file. The verbose
output is controlled by the normal verbose GC flags

-XX:-UseGCLogFileRotation

Enables GC log rotation, requires -Xloggc

-XX:NumberOfGClogFiles=1

Sets the number of files to use when rotating logs, must
be >= 1. The rotated log files will use the following naming
scheme, <filename>.0, <filename>.1, ..., <filename>.n-1.

-XX:GCLogFileSize=8K

The size of the log file at which point the log will be rotated,
must be >= 8K.

Table 4.4: Behavioural Options

Option and Default Value

Description

-XX:-AllowUserSignalHandlers

Does not complain if the application installs signal handlers.
(Solaris and Linux only.).

-XX:-DisableExplicitGC

Enables calls to System.gc(). Use -XX:+DisableExplicitGC to
disable it.

-XX:+FailOverToOldVerifier

Fails over to old verifier when the new type checker fails.

-XX:+HandlePromotionFailure

The youngest generation collection does not require a
guarantee of full promotion of all live objects.

-XX:+MaxFDLimit

Bumps the number of file descriptors to max. (Solaris only.)

-XX:PreBlockSpin=10

Spins count variable for use with -XX:+UseSpinning. Controls
the maximum spin iterations allowed before entering operating
system thread synchronization code.

-XX:-RelaxAccessControlCheck

Relaxes the access control checks in the verifier.

-XX:+ScavengeBeforeFullGC

Does young generation GC prior to a full GC.

-XX:+UseAltSigs

Uses alternate signals instead of SIGUSR1 and SIGUSR2 for
VM internal signals.

-XX:+UseBoundThreads

Binds user level threads to kernel threads. (Solaris only.)

-XX:-UseConcMarkSweepGC

Uses concurrent mark-sweep collection for the old generation.

-XX:+UseGCOverheadLimit

Uses a policy that limits the proportion of the VM’s time that is
spent in GC before an OutOfMemory error is thrown.

-XX:+UseLWPSynchronization

Uses LWP-based instead of thread-based synchronization.

-XX:-UseParallelGC

Uses parallel garbage collection for scavenges.

-XX:-UseParallelOIdGC

Uses parallel garbage collection for the full collections. Enabling
this option automatically sets -XX:+UseParallelGC.

-XX:-UseSerialGC

Uses serial garbage collection.

-XX:+UseTLAB

Uses thread-local object allocation

-XX:+UseSplitVerifier

Uses the new type checker with StackMapTable attributes.

-XX:+UseThreadPeriorities

Uses native thread priorities.

-XX:+UseVMinterruptiblelO

Thread interrupt before or with EINTR for 1/O operations results
in OS_INTRPT.

GARBAGE COLLECTION 87

Table 4.5: Garbage First (G1) Garbage Collection Options

Option and Default Value

Description

-XX:+UseG1GC

Uses the Garbage First (G1) Collector.

-XX:MaxGCPauseMillis=n

Sets a target for the maximum GC pause time.

-XX:InitiatingHeapOccupancyPercent=n

Percentage of the (entire) heap occupancy to start a
concurrent GC cycle.

-XX:NewRatio=n

Ratio of old/new generation sizes. The default value is 2.

-XX:SurvivorRatio=n

Ratio of eden/survivor space size. The default value is 8.

-XX:MaxTenuringThreshold=n

Maximum value for tenuring threshold. The default value is 15.

-XX:ParallelGCThreads=n

Sets the number of threads used during parallel phases of
the garbage collectors.

-XX:ConcGCThreads=n

Number of threads concurrent garbage collectors will use.

-XX:G1ReservePercent=n

Sets the amount of heap that is reserved as a false ceiling to
reduce the possibility of promotion failure. The default value is 10.

-XX:G1HeapRegionSize=n

With G1 the Java heap is subdivided into uniformly sized
regions. This sets the size of the individual sub-divisions.

Table 4.6: Performance Options

Option and Default Value

Description

-XX:+AggressiveOpts

Turns on point performance compiler optimizations that are
expected to be default in upcoming releases.

-XX:CompileThreshold=10000

No. of method invocations/branches before compiling
[-client: 1,500].

-XX:LargePageSizelnBytes=4m

Sets the large page size used for the Java heap. [amd64: 2m.].

-XX:MaxHeapFreeRatio=70

Maximum percentage of heap free after GC to avoid
shrinking.

-XX:MaxNewSize=size

Maximum size of new generation (in bytes).

-XX:MaxPermSize=size

Size of the Permanent Generation.

-XX:MinHeapFreeRatio=ratio

Minimum percentage of heap free after GC to avoid expansion.

-XX:NewRatio=ratio

Ratio of old/new generation sizes.

-XX:NewSize=size

Default size of new generation (in bytes).

-XX:ReservedCodeCacheSize=size

Reserved code cache size (in bytes).

-XX:SurvivorRatio=size

Ratio of eden/survivor space size.

-XX:TargetSurvivorRatio=ratio

Desired percentage of survivor space used after scavenge.

-XX:ThreadStackSize=size

Thread Stack Size (in Kbytes).

-XX:+UseBiasedLocking

Enable biased locking. For more details, see this tuning
example.

-XX:+UseFastAccessorMethods

Uses optimized versions of Get<Primitive>Field.

-XX:-UselSM

Uses Intimate Shared Memory.

-XX:+UselLargePages Uses large page memory.
-XX:+UseMPSS Uses Multiple Page Size Support w/4mb pages for the heap.
-XX:+UseStringCache Enables caching of commonly allocated strings.

(Contd)

88 ADVANCED JAVA PROGRAMMING

Table 4.6: (Contd)

-XX:AllocatePrefetchLines=lines

Number of cache lines to load after the last object allocation
using prefetch instructions generated in JIT compiled code.

-XX:AllocatePrefetchStyle=value

Generates code style for prefetch instructions.

-XX:+UseCompressedStrings

Uses a byte[] for Strings which can be represented as pure
ASCII.

-XX:+OptimizeStringConcat

Optimizes String concatenation operations where possible.

KEYWORDS

Atop-the-world event—An event when occurs stops
all other activities

Concurrent Collector—A type of collector that performs
most of its work while the application is still running

finalize()—A method which is called by the garbage
collector on an object before it reclaims the object

Garbage Collector—A component of Java that is
responsible for indentifying garbage objects and
freeing heap memory occupied by them

Generational hypothesis—A hypothesis that states
that most objects survive for only a short period of time

Major collection— Process of garbage collection
done on all generations

Minor collection—Process of garbage collection done
on young generation

SUMMARY

One of the key reasons of Java’s legendary success
is its garbage collector which can greatly help in
improving performance of your Java applications.
Garbage collection refers to the process of indentifying
garbage objects and freeing heap memory occupied by
them. In Java, garbage is collected automatically by a
special component, called garbage collector.

The garbage collector uses a hypothesis called
weak generational hypothesis, which states that most
objects survive for only a short period of time. Java
divides heap into different segments such as young,
old and permanent generations where different aged
objects are kept. From time to time garbage collector
identifies garbage objects and claims their memory
using techniques such as minor and major collections.

JVM provides different collectors, each with different
performance characteristics: serial collector, parallel
collector, parallel compact collector and concurrent
collector.

Since, serial collector always uses single thread,
it cannot leverage multi-processor system. This

Parallel Collector—A type of garbage collector
that uses multiple threads perform minor
collections

Parallel Concurrent Collector—An extension to
parallel collector where major collections are also
done in parallel

Permanent generation—The portion of the heap
from where objects are occasionally loaded and
unloaded

Serial Collector—A type of garbage collector that
uses single thread

Tenured generation—The portion of the heap where
relatively higher aged objects are kept

Yung generation—The portion of the heap which
contains short aged objects

collection algorithm has three phases: mark, sweep
and compact. The strength of this collector however,
lies in its single thread as there is no communication
overhead between threads.

For parallel garbage collector, as its name implies,
multiple threads are used to perform minor collections.
Parallel collector uses multiple threads for minor
collections only. For major collection, still single
thread is used which may degrade performance
significantly. In Java 5 and later, a concept called
parallel compaction has been introduced that allows
parallel collector to perform even major collections
in parallel.

Java provides a fourth collector called concurrent
collector (also called low-latency collector) that
performs most of its work while the application is still
running

There are tools to monitor GC. The primary monitoring
tools in HotSpot JVM are jstat and jmap. Sometimes,
we need other helping tools such are jps and jstatd
to monitor a Java application.

WEB RESOURCES

http://www.oracle.com/webfolder/
technetwork/tutorials/obe/java/gc0l/index.
html

Java Garbage Collection Basics
http://www.oracle.com/technetwork/java/
javase/memorymanagement-whitepaper-150215.
pdf

Memory Management in the Java HotSpot™ Virtual Machine
http://www.azulsystems.com/sites/default/
files/images/Understanding%20Java%20

Garbage%$20Collection%20v2%20 (1) .pdf
Understanding Java Garbage Collection

EXERCISES
Objective-type Questions

GARBAGE COLLECTION 89

http://buytaert.net/files/hipeac05-paper.pdf
Garbage Collection Hints
http://mfinocchiaro.files.wordpress.
com/2008/07/java-virtual-machine-neutral.
pdf
Java Performance Tuning
http://www.academia.edu/1260340/CMS_and_
Gl _Collector in Java 7 Hotspot Overview
Comparisons_and Performance Metrics
Comparisons and Performance Metrics

1. When is the object B in the following code eligible

for garbage collection?

void start() {

A a = new A();

B b = new B();

a.s(b);

b = null; /* Line 5 */

a = null; /* Line 6 */
System.out.println (“start completed”);
/* Line 7 */

(a) Afterline 5
(b) After line 6
(c) Afterline 7
(d) There is no way to be absolutely certain.

2. Where will be the most chance of the garbage
collector being invoked?
class HappyGarbageOl {
public static void main (String argsl[]) {
HappyGarbage0l h = new HappyGarbage01 () ;
h.methodA () ;
}
Object methodA() {/* Line 6 */
Object objl = new Object():;
Object [] obj2 = new Object[1l];
obj2[0] = objl;
objl = null;
return obj2[01];

(a) Afterline 9

(b) After line 10

(c) Atfterline 11
)

(d) Garbage collector never invoked in

methodA()

3. At what point is the Bar object, created on line 6,
eligible for garbage collection?
class Test {
String f£() {
String s = new String();
return s;

}

public static void main (String argsl[]) {
Test t = new Test(); /* Line 7 */
String sl = t.f(); /* Line 8 */
sl = new String(); /* Line 9 */
System.out.println(sl);

}

}

(a) Afterline 8

(b) After line 9

(c) After line 4, when f() completes
(d) Afterline 10

/* Line 3 */

4. Which operator is used by Java run time
implementations to free the memory of an object
when it is no longer needed?

(a) delete (c) new
(b) free (d) None of the mentioned

5. Which function is used to perform some action
when the object is to be destroyed?
(a) finalize() (c) main()
(b) delete() (d) None of the mentioned

6. Which of the following statements are incorrect?
(a) Default constructor is called at the time of
declaration of the object if a constructor
has not been defined.
(b) Constructor can be parameterized.

90 ADVANCED JAVA PROGRAMMING

(c) finalize() method is called when an object
goes out of scope and is no longer needed.

(d) finalize() method must be declared
protected.

7. How can you force garbage collection of an
object?
(a) Garbage collection cannot be forced.
(b) Call System.gc().
(c) Call Runtime.gc().
(d) Set all references to the object to new
values(null, for example).

8. When is the Demo object eligible for garbage
collection?
class Test {
private Demo d;
void start () {
d = new Demo () ;
this.takeDemo (d) ;
} /* Line 6 */
void takeDemo (Demo demo) {
null;
new Demo () ;

/* Line 5 */

demo =
demo =
}
}

After line 5

After line 6

After the start() method completes

When the instance running this code is
made eligible for garbage collection.

(a
(b
(c
(d

—_— — — —

9. After line 8 runs, how many objects are eligible
for garbage collection?
public class X {
public static void main(String [] args) {
X x = new X();
X x2 = ml(x); /* Line 4 */
X x4 = new X();
x2 = x4; /* Line 6 */
doComplexStuff () ;
}
static X ml (X mx) {
mx = new X();
return mx;
}
}

(@) 0 (c) 2
(b) 1 (d) 3
10. Which of the following options is used to set initial
heap size?

(a) -Xmx<size>
(b) -Xss<size>

(c) -Xms<size>
(d) None of the above

11. JVM options start with
(@) -X
(b) -XX

(c) -JVM
(d) Both a) and b)

12.

13.

14.

15.

16.

17.

18.

19.

20.

If garbage collection occurs on young generation,
it is called
(a) Major collection
(b) Minor collection
(c) Small collection
(d) Young collection

If garbage collection occurs on all generations, it
is called
(a) Major collection
(b) Minor collection
(c) Large collection
(d) Young collection

The portion of heap where short aged objects are
kept is called

(a) New generation

(b) Young generation

(c) Fresh generation

(d) First generation

The portion of heap where relatively long aged
objects are kept is called

(a) Old generation

(b) Permanent generation

(c) Previous generation

(d) Second generation

The garbage collector that uses a single thread is
called

(a) Simple collector

(b) One-thread collector

(c) Single collector

(d) Serial collector

Which one is not a HotSpot’s garbage collector?
(a) Serial collector
(b) Parallel collector
(c) Concurrent collector
(d) Roubust collector

Which one of the following is not a HotSpot's
monitoring tool?
(a) jstat
(b) jmap

(c) Jps
(d) jvm

Which one of the following is not a step in serial
collector?
(a) Mark
(b) Identify

(c) Sweep
(d) Compact

Which of the following options is used to select
serial collector?
(a) -XX:+UseSerialGC
(b) -XX:+UseParallelOIdGC
(c) -XX:+UseConcMarkSweepGC
(d) None of the above

Subjective-type Questions

1.

GARBAGE COLLECTION 91

Why are two survior spaces maintained in young
generation by HotSpot?

. How do you identify minor and major garbage

collection in Java?

What is the structure of Java Heap? What is Perm
Gen space in Heap?

How do you find GC resulted due to calling
System.gc()?

What is the difference between Parallel and
Paralle compact Garbage collector?

. When does an Object becomes eligible for

Garbage collection in Java?

What is finalize method in Java? When does
Garbage collector call finalize method in Java?

. Can we force Garbage collector to run at any

time?

Does Garbage collection occur in permanent
generation space in JVM?

10.
1.

12.

13.

14.

15.

16.

17.

18.

How do you monitor garbage collection activities?

Which part of the memory is involved in Garbage
Collection? Stack or Heap?

What is the responsiblity of Garbage Collector?

What are the different ways to make an object
eligible for Garbage Collection when itis no longer
needed?

How can the Garbage Collection be requested?

What is the purpose of overriding finalize()
method?

How many times does the garbage collector call
the finalize() method for an object?

What happens if an uncaught exception is thrown
from during the execution of the finalize() method
of an object?

How do you enable/disable call of finalize()
method of exit of the application?

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER -5

CoLLECTION FRAMEWORK

Key OBJECTIVES

After completing this chapter readers will be able to—

* understand architecture of collection framework

» familiarize core collection classes and interfaces

» use commonly used collections classes and interfaces

» use commonly used collection algorithms

» cvaluate the performance of implementations of interfaces and algorithms

5.1 INTRODUCTION

It is often necessary to store and manipulate a group of objects. Earlier versions (1.2) of Java
provided unrelated classes such as vector, Hashtable, Stack, Properties, Dictionary etc.to
work with aggregate data. Although, they provided sufficient functionalities, they lacked a common
framework. As a result, the way of using these classes varies quite a bit.

In version 1.2, Java provided a unified architecture, known as collection framework for
representing and manipulating aggregate objects. A collection is basically a container that encapsulates
multiple objects into a single unit. Examples include a list of employees, a set of numbers, a set of
processes, a queue of requests etc.

All collections frameworks primarily contains three parts: interfaces, implementation and
algorithms.

Interfaces

These abstract data types define the functionality of collections. These enable collections to be
manipulated in a unified way irrespective of their internal implementation. For example, all collection
interfaces define a method add () that may be used to add an element to the collection. However, the
element itself may be added at the end (for queue) or at an arbitrary location (for set) of the collection.
Collection interfaces are provided in the package java.util.

COLLECTION FRAMEWORK 93

Implementation

These are classes implementing those interfaces. Although, they use reusable data structures,
their behaviour differs for different collection types. We use them to create different types of
collections in our program. Implementation classes are provided in java.util and java.util.
concurrent package.

Algorithms

In addition, collection framework defines a set of methods (usually static) for important operations
such as searching, sorting, shuffling of objects which implement collection interfaces. These methods
behave polymorphically; i.e. work differently on different implementations.

5.2 BENEFITS

Java collection frameworks provide the following benefits:

Less Programming Effort

The framework itself provides interfaces and implementation of commonly used concepts such
as sets, lists, queues, maps etc. So, programmers can devote more time on the program logic instead
of their implementation.

High Quality and Performance

Java provides high-quality implementation of collection interfaces resulting in unquestionable
performance and quality of our programs. Java not only provides different implementations of an
interface, but also allows us to interchange these implementations seamlessly. So, a program may
suddenly switch a different implementation without minimal effort still maintaining the quality and
performance.

Interoperability

Collection framework also facilitates the interoperability among unrelated classes eliminating
the need of writing adapter and/or conversion classes. Since, most methods take a collection (top
level interface) parameter, different implementations may be passed back and forth.

Quick Learning

Although, Java provided a set of classes for representing group of object prior to version 1.2,
these ad hoc classes had a little consistency among them. So programmers had to learn each of them
from scratch resulting in high unintentional error. Since, collection interfaces form a hierarchy,
understanding relation among them is not difficult. As a result one can become a master in this area
in a substantially less time.

Flexible Redesign

Writing a new implementation as a part of this framework is simply a matter of fun. It has
become an extremely easy task to write a new implementation and use it in our program without
major modification.

94 ADVANCED JAVA PROGRAMMING

5.3 COLLECTION INTERFACES

As mentioned earlier, collection interfaces define behaviour of commonly used concepts and
establishes relations among them. The core collection interfaces and their hierarchy is shown in
Figure 5.1: For simplicity, the major interfaces are shown here. These interfaces are the foundation
of Java collection framework. They create abstract types and enable us to manipulate collections
independently of their implementations. All core collection interfaces are generic. However, they
may also be used as ordinary interfaces. The detail information about generics may be found in the
next chapter.

Note that map doesn’t inherit collection. However, it is considered as a part of collections

framework.
«interface» «interface»
Collection Map
A
«interface» «interface» «interface» «interface»
Set List Queue SortedMap
‘ /\
<interface» «interface» «interface»
SortedSet Deque BlockingQueue
y / A
interfaces «interface» «interface»
NavigableSet BlockingDeque TransferQueue

Figure 5.1: Core collection interface hierarchy

The following is a brief description of top level interfaces.

Collection

The root interface in the hierarchy is collection interface. It represents a general group of objects,
called elements. It defines primitive operations on collections such as adding[add ()], removing
[remove ()] elements, checking existence of an element [contains ()], size [size ()] of collection
etc. It also provides methods for bulk operations such as addall (), removeAll(), retainAll(),
containsAll (), clear () etc. The toarray () method acts as bridge between collections and older
APIs that expect arrays on input.

Java does not provide a direct implementation of this interface. However, implementations are
provided for more specific collection types such as Set, List, Queue etc.

Set

This interface models the mathematical set that contains an unordered collection of objects
without any duplicates. It contains only methods inherited from collection. However, since a set
cannot contain duplicate elements, it does add restrictions on those methods. Set also changes the
contract of equals () and hashCode () operations so that set objects can be compared meaningfully
irrespective of their implementation. Note that two sets are equal if they contain the same elements.

COLLECTION FRAMEWORK 95

List

A 1ist is an ordered collection and can contain duplicate elements. It is like a dynamic array.
It allows us to have precise control over the elements inserted and deleted. We can access elements
by their position (integer index). In addition to the operations inherited from collection, List
interface provides useful methods to add, remove, replace elements based on specified position and
arbitrary range operations on the list.

Queue

This interface models queue where elements are added and removed in a specific order, typically in
a first-in-first-out (FIFO) manner. It defines additional operations for insertion, removal and inspection.
Although queues typically arrange elements in a FIFO order, other arrangements (such as LIFO) are
also possible. Every oueue implementation must specify its ordering properties.

Map

It represents key-value pairs. The keys will be unique and each key can map to at most one value.
Although, it does not ensure element ordering, some implementations guarantee it. To interoperate with
other collection classes/interfaces, it provides three collection views, which allow a map's contents
to be viewed as a set of keys, collection of values, or set of key-value mappings.

5.4 COLLECTION IMPLEMENTATION

As noted earlier, Java does not provide any implementation for root interface Collection. Instead
it provides implementation of more specific interfaces such as set, List, Queue etc. All collection
implementations provide two constructors: one that takes no argument and one that takes a collection
argument. The following sections discuss how to work with these collections.

5.4.1 Set

Java provides three general-purpose implementations for set interface: Hashset, LinkedHashSet
and Treeset [Figure 5.2:].

«interface»

Set
HashSet || LinkedHashSet | «interface»
SortedSet
T
| TreeSet |

Figure 5.2: Set implementations

Neither of the implementations allows random-access to an element in a set. To retrieve elements
from the Set, we can either use Tterator or for-each loop.

96 ADVANCED JAVA PROGRAMMING

5.4.1.1 HashSet

Since, Hashset implements set interface, it does not guarantee any insertion and iteration orders.
However, it may contain null element. This class is a hash-based implementation and internally it
uses HashMap which is one of the Mmap implementations. It offers constant time performance for certain
operations such as add (), remove (), contains () and size () assuming that the hash function has
distributed the elements equitably among the buckets. However, iteration time is proportional to the
sum of number of elements and number of buckets. So, number of buckets should not be very high
(load factor should not be very small) if iteration time is important.

Hashset has multiple constructors that give us the flexibility to create instances in different ways.

Set empty = new HashSet(); //{}

Set even = new HashSet (Arrays.asList(0,2,4)); //{0, 2, 4}

Set copy = new HashSet (even) ; //create from existing Set

Set blank = new HashSet (8); //initial capacity 8

Set nullSet = new HashSet (8, 1); //initial capacity 8, load factor 1

Elements in a Hashset are added using add () method.

even.add (6) ; //10, 2, 4, 6}

even.add(8) ; //{0, 2, 4, 6, 8}

The method add () returns false if the element already exists else it returns t rue. Elements may

be retrieved using the for-each construct as follows:
for (Object o:even) System.out.print (o+"™ ");

It prints all the elements of the Set even:
02468

Alternatively, the iterator may be used to traverse the set. An iterator object iterates over the
elements in a collection. Its functionalities are specified by java.util.Tterator interface having
the following methods:

hasNext () — Returns true if there are more elements in the collection; false otherwise
next () — Returns the next element
remove () — Deletes the last element returned from the collection

Here is an example of how to use iterator:

Iterator i = even.iterator();

while (i.hasNext ()) System.out.print(i.next()+" ");

The iterator () method on a collection returns an Iterator object which knows how to step
through the elements in the underlying collection.

A for loop may also be used:
for (Iterator i = even.iterator();i.hasNext();)

System.out.print (i.next ()+" ");
The method size() returns the cardinality of the set:

int sz = even.size(); //sz =5

This method may also be used to check if the set is empty:
if (blank.size() == 0) System.out.println("empty set");

Alternatively, i sEmpty () method may be used:

boolean el = even.isEmpty(); //el = false
boolean e2 = blank.isEmpty(); //e2 = true
if (blank.isEmpty()) System.out.println("empty set");

COLLECTION FRAMEWORK 97

The existence of an element may be checked using contains() method:

even.contains (6) ; //cl
even.contains (10); //c2

true
false

boolean cl
boolean c2

To obtain an array containing all of the elements of a set, we use toarray () method:
Object[] a = even.toArray();

The method remove () is used to remove the specified element.

even.remove (4);//{0, 2, 6, 8}

It returns true if set contains element or false otherwise. To remove all elements, we use the

bulk operation clear ().
even.clear(); //{}

Let us now use some of the bulk operations to perform mathematical set operations such as union,
intersection, set difference etc. For this purpose, we create two sets as follows:

Set sl = new HashSet (Arrays.asList (1, 2, 3)):
Set s2 = new HashSet (Arrays.aslList(2, 3, 4, 5));

The union of these two sets may then be obtained as follows:

Set s3 = new HashSet(sl); //s3 {1, 2, 3}
s3.addAll (s2); //s3 {1, 2, 3, 4, 5}

In the first statement, s3 contains all the elements of sl. In the second statement,
all elements of s2 are added to s3 using addal1l () method.The intersection of sl and s2 is
obtained as follows:

s3 = new HashSet (sl); //s3 = {1, 2, 3}

s3.retainAll (s2); //s3 = {2, 3}

The retainall () method keeps only the elements that are contained in the specified collection. In
other words, it removes from this collection all of its elements that are not contained in the specified
collection. Similarly, the set difference is obtained as follows:

s3 = new HashSet (sl); //s3 {1, 2, 3}

s3.removeAll (s2); //s3 {1}

This implementation is not thread-safe. So, explicit synchronization is needed if multiple
threads access a Hashset concurrently. Alternatively a synchronized version may be obtained using

Collections.synchronizedSet()IneﬂuxiasfbHO“SZ
Set syncSet = Collections.synchronizedSet (new HashSet ());

5.4.1.2 LinkedHashSet

Although set interface does not mandate any iteration order, the chaotic ordering provided by
HashSet may be avoided using LinkedHashset implementation. It is an extension to Hashset and
uses linked list and hash table internally. It provides the predictable iteration order without incurring
the increased cost associated with Treeset. An ordered copy of a specified set may be created using
this class as follows:

Set aSet = ..;

Set orderedSet = new LinkedHashSet (s);

This class provides all operations of set interface and has an effect similar to Hashset implementation.
As it maintains a linked list, it exhibits slightly slower performance than Hashset. However, iteration
time for a LinkedHashset is proportional to the size of the set, not to its capacity. Note that iteration
time for a Hashset is proportional to the capacity and is likely to be longer than LinkedHashset.

This implementation is not also thread-safe. Fortunately, Java provides a synchronized version

which may be obtained as follows:
Set syncSet = Collections.synchronizedSet (new LinkedHashSet());

98 ADVANCED JAVA PROGRAMMING

5.4.2 SortedSet

This is an extended interface of set and provides a total ordering on its elements. The elements
are arranged according to natural ordering. A Comparator may also be supplied if custom ordering
is required. It provides several other methods related to elements ordering.

5.4.2.1 TreeSet

As its name implies, it is a tree-based implementation of sortedset and provides guaranteed log(n)
time cost for the basic operations such as add (), remove () and contains (). Like other collection
interfaces, it also defines a constructor that takes a collection object.

SortedSet ss = new TreeSet (Arrays.asList(2,3,5)); //{2,3,5}

This creates an ordered set of three elements with 2 as the first and 5 as the last. These elements
can be checked using the following:

Object fe = ss.first(); //fe
Object le = ss.last(); //le

2
5

The add () method adds the specified element in tree such that the resultant set remains

sorted.
ss.add(1l); //ss = {1, 2, 3, 5}
ss.add(4); //ss = {1, 2, 3, 4, 5}

A sorted subset may be obtained using any one of the methods headset (), tailSet () and
subset (). The headset () returns a view of the portion of this set whose elements are strictly
less than the specified element. The tailset () does similar except that it considers the relation
‘greater’.

SortedSet sl
SortedSet s2

ss.headSet (3); //sl
ss.tailSet (3); //s2

{1, 2}
{3, 4, 5}

The subset () returns a view of the portion of this set whose elements range from the first argument
(inclusive), to the second argument (exclusive).
SortedSet s3 = ss.subSet(2, 5); //s3 = {2, 3, 4}

Note that they do not create any copy. So changes in the original set are reflected in this set, and
vice versa.

Note that this implementation is not synchronized. If multiple threads access a tree set
concurrently, and at least one of the threads modifies the set, it must be synchronized externally.
The easiest way is to use static synchronizedSortedset () method of collection class during
creation time:

SortedSet s = Collections.synchronizedSortedSet (new
TreeSet (Arrays.asList(2,3,5)));

5.4.3 List

One of the commonly used collection type is List. Unlike sets, lists are ordered collection and
allow duplicate elements. It defines additional methods for positional (indexed) access to list elements,
beyond those specified in the col1ection interface. List indices start from zero. In addition to normal
Iterator, List interface provides a special iterator, called a ListIterator, that allows element
insertion and replacement, and bidirectional access. It also provides a method to obtain an iterator
that starts at a specified index in the list.

COLLECTION FRAMEWORK 99

Java provides two implementations of this interface: ArrayList and LinkedList [Figure 5.3:].

«interface»
List

ArrayList LinkedList Vector

Figure 5.3: List implementations

5.4.3.1 ArrayList

It is a resizable array implementation of 1.ist interface and is roughly equivalent to vector. Each
ArrayList instance has a capacity which is always at least as large as the number of elements present.
As elements are added and removed, its capacity grows or shrinks automatically. To reduce incremental
reallocation, a high capacity may be specified using ensurecapacity () adding large number of elements.

Like other collection implementations, ArrayList also has multiple constructors that give us the
flexibility to create instances in different ways.

List el = new ArrayList(); //empty list
List 1 = new ArrayList (Arrays.asList(2,3)); //1 = 2->3
List 11 = new ArrayList (10); //empty, initial capacity 10

Since, a List is an ordered collection, in addition to the inherited method add () that appends
the specified element to the end of a list, it provides an overloaded version that inserts the specified
element at the specified position.

l.add(2); //append, 1 = 2->3->2

l.add (2, 4); //insert 4 at index 2, 1 = 2->3->4->2

List also allows us to retrieve an element from the specified position. The following retrieves the
element from index 1.

Object ol = l.get(1l); //ol = 3

A normal iterator may be used to traverse the entire list. In addition, the 1istTterator () method
returns a ListIterator that allows bidirectional traversal of the list, inserting/deleting elements
during traversal etc. A ListTterator has a cursor which is positioned between elements. The elements
before and after the cursor are returned by the call of previous () and next () methods respectively.

ListIterator 1i = l.listIterator(); //sets cursor at the begining
while (1li.hasNext ()) System.out.print(li.next()+" ");

It prints

2->3->4->2

This time the cursor is set at the end of the list. The following traverses the list in the backward

direction:
while (li.hasPrevious()) System.out.print(li.previous()+" ");
It prints
2=->4->3->2

Like sortedset, List also provides a method to view the portion of this list between start index
(inclusive) and end index (exclusive).
List sl = l.subList (1, 3);: //sl = 3->4

100 ADVANCED JAVA PROGRAMMING

Note that any non-structural changes in the returned list are reflected in this list, and vice versa.

The method size () returns the number of elements in the list:
int sz = l.size(); //sz = 4

This method may also be used to check if the list is empty:
if(el.size() == 0) System.out.println("empty list");

Alternatively, i sEmpty () method may be used:

boolean el = 1l.isEmpty(); //el = false
boolean e2 = el.isEmpty(); //e2 = true
if(11l.isEmpty()) System.out.println("empty list");

Two versions exist to remove elements; one that removes an element from the specified index
and one that removes specified element.

1.remove (2); //remove element from index 2, 1 = 2->3->2

1l.remove (new Integer(3)); //remove the element 2, 1 = 2->2

Also two versions exist to find the position of a given element in the list. They return the index
of the first occurrence and last occurrence of the specified element.

int first = 1.indexOf (2); //first = 0;

int last = 1l.lastIndexOf (2); //last = 1;

An element at the specified position in this list may be replaced with the specified element using
set () method:

1.set (0, 4); //1 = 4->2

To remove all elements, we use the bulk operation clear ().

l.clear(); //remove all, 1 =

This implementation is not also thread-safe. The synchronized version may be obtained as

follows:
List synclList = Collections.synchronizedList (new ArrayList());

5.4.3.2 LinkedList

This class implements two collection interfaces, List and beque and provides all operations of these
two interfaces. Internally uses doubly linked list. So, some operations execute in time proportional
to the index value. The usage of LinkedList is similar to ArrayList. The Deque specific operations
are described in the following section.

This implementation is not also thread-safe. To get the synchronized version, the following code

may be used:
List syncList = Collections.synchronizedList (new LinkedList());

5.4.4 Queue

It is a collection to hold elements prior to processing. Like List, it also represents an ordered
collection of elements. Queues implementations can order elements in FIFO (queue), LIFO (stack)
and priority basis. These implementations generally do not accept null elements.

Queue provides two forms of methods for inserting, deleting and inspecting elements. One form
throws an exception if the operation fails. The other form returns a special value such as null or false,
depending on the operation. A summary of basic queue operations is shown in Table 5.1:

COLLECTION FRAMEWORK 101

Table 5.1: Queue methods

Methods throwing exception Methods return special value
Insert add(e) offer(e)
Delete remove() poll()
Inspect element() peek()

Java provides two implementations of this interface: LinkedList and Priorityoueue [Figure 5.4:].

«interface»
Queue

N

| LinkedList | | PriorityQueue |

Figure 5.4: Queue implementations

5.4.41 LinkedList

Note that LinkedList implements two collection interfaces List and gueue. This section only
describes the functionality of LinkedList with respect to gueue. LinkedList has two constructors:
zero argument constructor that constructs an empty queue and other constructs a queue containing
the elements of the specified collection.

Queue empty = new LinkedList(); //empty queue

Queue g = new LinkedList (Arrays.asList(1,3)); //q = 1->3

The queue q has only two elements with 1 at the front and 3 at the rear end. Other elements may
be added using either of the two methods, add () or offer (). The following code adds two elements.

g.add (5) ; //q = 1->3->5

g.offer(7); //q = 1->3->5->7

Note that elements are added at the rear end of the queue. The add () method returns true on success
and throws an exception otherwise. The of fer () method returns true on success and false otherwise.
The latter is generally preferable as add () behaves differently for success and failure situations. Since,
LinkedList is a collection, its elements may be inspected using iterator or for-each loop:

for (Object o:q) System.out.print (o+" ");

or

Iterator i = g.iterator();

while (i.hasNext ()) System.out.print(i.next()+" ");

Both print all the elements in the queue as follows:
1357

Like adding elements, there are two forms of methods for deleting elements:

g.remove () ; //q = 3=->5->7

q.poll(); //q = 5->7

Note that elements are deleted from a queue from the front end. It also provides two methods that
return the element at the head of the queue without removing it from the queue.

Object e = g.element(); //e =5
Object el = g.peek(); //el =5

102 ADVANCED JAVA PROGRAMMING

Although a queue orders elements in FIFO order, a LIFO ordered queue (i.e. stack) may be

created as follows:
Queue lifo = Collections.asLifoQueue (new LinkedList());

Elements are removed in the opposite order they were added in.
lifo.add (1) ;
lifo.add(2);
1ifo.add(3);
lifo.add(4);

(int)lifo.remove (//ml

int ml)
(int)lifo.remove () ; //m2

int m2

I
=~

5.4.4.2 PriorityQueue

The ninkedrist implementation of gueue interface arranges elements in FIFO order. This
means that the head element is always the oldest among the elements present. In PriorityQueue
implementation a priority heap is maintained where the least element always sits at the top (head).
Element’s class must implement comparable interface which has comparison method compareTo ().
The elements are compared using comparedTo () method and least element sits at the top (head) of
the heap. So, head element is always the least among all the elements.

Note that priorityoueue does not specify how other elements are exactly stored in heap. It only
ensures that head element is always the least element.

Like other collection implementations, it also provides various constructors:

Queue empty = new PriorityQueue(); //empty queue
Queue g = new PriorityQueue (Arrays.asList(7,4,5)); //4 is at head

Elements are added using add() or offer() methods. However, it always ensures that least element
sits at the head.

g.add (3) ; //3 is at head

g.add (6) ; //3 is still at head

g.offer(2); //2 is at head

Note that the iterator returned by the iterator() method does not ensure that elements are traversed
in any particular order. So, resultant sequence may not be sorted in natural order.

Iterator i = g.iterator();
while (i.hasNext ()) System.out.print(i.next()+" ");

The above code prints a sample sequence as 2 4 3 7 6 5. The heap is rearranged after every

delete operation:

Object ol = g.remove(); //ol
Object 02 = g.poll(); //02

2, 3 is at head now
3, 4 is at head now

The head element may be inspected using element () or peek () methods:

Object e = g.element(); //e = 4
Object el = g.peek(); //el = 4
5.4.5 Map

This interface models a set of key-value pairs. The keys are unique and each key corresponds
to one value. For example, we may have a collection of login-password pair. The password may
be stored/retrieved for a given login. Map defines necessary methods such as put (), get () for this
purpose. It also defines other methods such as remove (), containsKey (), containsvValue (), size (),
isEmpty () etc.

COLLECTION FRAMEWORK 103

«interface»
Map

_—

«interface» | HashMap || Hashtable || LinkedHashMap ‘
SortedMap
A

TreeMap

Figure 5.5: Map implementations

The Java provides three general-purpose implementations: HashMap, LinkedHashMap, and TreeMap
[Figure 5.5:].

5.4.5.1 HashMap

It implements map interface and provides all map operations. Internally uses hash table and allows
null key and value.

The advantage of HashuMap is that it offers constant time [i.e. O(1)] performance for operations
such as add (), remove (), contains () and size (). However, iteration time is proportional to the
sum of number of key-value pairs present and number of buckets. So, if iteration time is important,
number of buckets should not be very high (load factor should not be very small).

Each HasnhMap object is characterized by two parameters: capacity and load factor. The capacity
is the number of buckets in the hash table. The load factor controls when to rebuild the internal data
structures.

It provides a number of constructors to create maps:

Map m = new HashMap () ; //empty map

Map ml = new HashMap (8) ; //initial capacity 8

Map m2 = new HashMap (6, 1); //initial capacity 6, load factor 1
Map m3 = new HashMap (m) ; //m3 = m

Key-value pairs are inserted using put() method as follows:

m.put ("uttam", "uttaml") ; //key="uttam", value="uttaml"
m.put ("bibhas", "bibhasl"); //key="bibhas", value="bibhasl"
m.put ("parama", "paramal") ; //key="parama", value="parama"

Once the key-value pairs are stored, the value corresponding to a key may be retrieved using the
get () method specifying the key.

String pl = (String)m.get ("uttam"); //pl
String p2 (String)m.get ("parama");//p2

"uttaml"
"paramal"

There are convenient methods like containskey () and containsvalue () which may be used to
check the existence of any key or value.

boolean bl = m.containsKey ("uttam"); //bl = true
boolean b2 = m.containsKey ("banhi"); //b2 = false
boolean b3 = m.containsValue ("bibhasl"); //b3 = true
boolean b4 = m.containsValue ("samiran"); //b4 = false

There are three ways to view the key-value collection in the map: as a set of keys, collection of
values and set of key-value entries. The method keyset () returns a set of all keys which may be
used to retrieve corresponding values.

104 ADVANCED JAVA PROGRAMMING

Set keys = m.keySet();
for (Object k:keys) System.out.println (k+"->"+m.get (k));
All the values in the map, in turn, may be obtained using values () method.
Collection values = m.values();
for (Object v:values) System.out.print(v+" ");
The method entryset (), on the other hand, returns a set of Map.Entry objects each of which
consists of a key and a value.
Set entries = m.entrySet();
for (Object o:entries) {
Map.Entry e = (Map.Entry)o;
System.out.println (e.getKey () +"->"+e.getValue());
}
Another common operation is to remove mappings which is done using remove () method that
removes the entry corresponding to the specified key. Here is an example:
m.remove ("uttam"); //removes entry for the key "uttam"

The method clear () removes all the entries from the map.
m.clear();

The following is an application of HashMap that generates a frequency table of the characters
found in the specified file pass as a command line argument.
import java.io.*;
import java.util.*;
public class CharacterCount {
public static void main(String[] args) throws Exception {
Map m = new HashMap () ;
FileInputStream fis = new FileInputStream(new File (args[0]));
while (fis.available() > 0) {
char a = (char) fis.read();
Integer freqg = (Integer)m.get(a);
m.put(a, (freq == null) ? 1 : freqg + 1);
}
Set keys = m.keySet();
for (Object k:keys) System.out.println (k+"->"+m.get (k));

}

Java also provides another hash based Map implementation: Hashtable. Although Hashtable and
HashMap are functionally similar, there are subtle differences. For example, HashMap is not thread-
safe while Hashtable is a thread-safe collection. However, HashMap exhibits better performance in a
single-threaded environment than Hashtable. In mult-threaded environment, a synchronized version

of map may be obtained as follows:
Map syncMap = Collections.synchronizedMap (new HashMap());

Alternatively, we may use java.concurrent.ConcurrentHashMap Which is thread-safe version
of HashMap. It is more scalable and performs better than synchronized zHashMap in multi-threaded
environment. However, in single-threaded environment HashMap is slightly better.

5.4.5.2 LinkedHashMap

Note that Map interface does not mandate any iteration order. The HashMap implementation does
not also ensure any ordering. This chaotic ordering is not sometimes desirable and may be avoided
using LinkedHashMap implementation. It extends HashMap and uses a doubly linked list and hash
table internally. It provides the predictable iteration order. An ordered copy of a specified map may

be created using this class as follows:
Map aMap = ...
Map orderedMap = new LinkedHashMap (aMap) ;

COLLECTION FRAMEWORK 105

This class provides all operations of mMap interface and has an effect similar to HashMap
implementation. As it maintains a linked list, it exhibits slightly slower performance than HashMap.
However, iteration time for a LinkedHashMap is proportional to the size of the map, not to its
capacity. Note that iteration time for a HashMap is proportional to the capacity and is likely to be
longer than LinkedHashMap.

This implementation is not also thread-safe. Fortunately, Java provides a synchronized version
which may be obtained as follows:
Map syncSet = Collections.synchronizedMap (new LinkedHashMap());

5.4.6 SortedMap

This is a sub-interface of Map and models sorted maps where entries are ordered with respect to
key in natural ordering or using a comparator specified during map creation. It defines some operation
meaningful for sorted maps such as firstkey (), lastKey (), headMap (), tailMap () etc.

5.4.6.1 TreeMap

It is ared-black tree implementation of sortedMap which is a sub interface of Map. It takes 1092 (n)

time for get (), put (), remove () and containsKey () methods. It provides several constructors:
SortedMap sm = new TreeMap(); //empty map
SortedMap sml = new TreeMap (sm) ; //create from existig sorted map

A sorted map may also be created from an ordinary unsorted map as follows:

Map m = new HashMap () ; //unsorted map
m.put ("uttam", "uttaml") ; //add some entries
m.put ("bibhas", "bibhasl") ;

m.put ("parama", "paramal") ;

m.put ("samiran", "samiranl") ;

sm = new TreeMap(m); //get sorted from unsorted one

The methods entrySet(), keyset() and values() give the sorted view when iterating over the map.
Set keys = sm.keySet();

for (Object k:keys) System.out.println (k+"->"+sm.get (k));

This results in the following result:

bibhas->bibhasl

parama->paramal

samiran->samiranl

uttam->uttaml

The two special keys—the lowest (first) and the highest (last) keys are obtained as follows:
String kl = (String)sm.firstKey(); //kl = "bibhas"

String k2 = (String)sm.lastKey(); //k2 = "uttam"

Analogous to Hashset, the head and tail views may be retrieved as:

SortedMap hm = sm.headMap ("samiran"); //hm = {bibhas=bibhasl, parama=paramal}
SortedMap tm = sm.tailMap("samiran"); //tm = {samiran=samiranl, uttam=uttaml}

5.5 ALGORITHMS

Like arrays class which has various methods for manipulating arrays, collections class provides
several static methods to perform common collection operations such as sorting, searching etc. Most
of these methods operate on List objects, except a few which operate on arbitrary collection objects.
The following sections briefly describe how to use these methods.

106 ADVANCED JAVA PROGRAMMING

5.5.1 Sorting

Java provides two classes Treeset and TreeMap for sorted sets and maps. However, there is no
implementation for sorted list. Sorting of a List is done with the sort () method.

The sort () method arranges the elements of a i st instance according to an ordering relationship.
This method uses a slightly optimized stable merge sort algorithm. Its one form takes a 1.i st instance
and arranges its elements according to natural ordering. The following sorts a list of integers and

prints its elements:
List 1 = new ArraylList (Arrays.asList (3, 5, 4, 2, 3, 2, 1, 3));
Collections.sort (1) ; //increasing order
System.out.println ("Increasing order\n"+1);

This program segment merely demonstrates how to use collection algorithms. The element’s class
must implement comparable interface. This is mandatory since this version of sort () uses element’s
compareTo () method to compare them. Otherwise a ClassCastException will be thrown. A sample
output of the above code segment looks like this:

Increasing order
[, 2, 2, 3, 3, 3, 4, 5]

5.5.1.1 Custom Sort

The other form takes a Comparator in addition to a List and sorts the elements with the
comparator. This version is useful if an ordering (e.g. decreasing order) other than natural ordering
is required or the element’s class does not implement comparable interface. For custom ordering,
we first create a class that implements the comparator interface which has single method compare ().

class IntegerComparator implements Comparator {

public int compare (Object ol, Object 02) {
return (Integer)o2 - (Integer)ol;
}

}

The compare () method is implemented according to the desired ordering. The above class is
capable of comparing two integers in such a way that they may be arranged in decreasing order. We
can then sort a given list in decreasing order as:

Collections.sort(l, new IntegerComparator());//decreasing order
System.out.println ("Decreasing order\n"+1);

Alternatively, we can define an unnamed Comparator class and use it as follows:

Collections.sort(l, new Comparator () {
public int compare (Object ol, Object 02) {
return (Integer)o2 - (Integer)ol;
}}); //decreasing order

System.out.println ("Decreasing order\n"+1) ;

A sample output of the above code segment look like this:

Decreasing order
(5, 4, 3, 3, 3, 2, 2, 1]

5.5.2 Shuffling

The opposite of sort is shuffle which arranges list elements arbitrarily. Shuffling is sometimes
necessary such as generating test cases, data for games etc. using a default or a specified source of
randomness. Two versions of shuffle () method exist. One operates on a List using a default source
of randomness.

COLLECTION FRAMEWORK 107

Collections.shuffle(l);
System.out.println ("After Shuffling\n"+1);

This traverses the list backwards and swaps the current element with a randomly selected element
whose position is selected from first to the current position, inclusive. When executed, it produced
the following list:

After Shuffling

(5, 3, 1, 4, 2, 2, 3, 3]

The other form of shuffle () requires a Random object to be specified explicitly.

Collections.shuffle (1, new Random()) ;

5.5.3 Manipulation

In addition to sorting and shuffling, collections class also provides a set of methods for
manipulating lists in different ways.

5.5.3.1 Reversing

The method reverse () reverses the order of the elements in the specified list. The following pair
of statements sorts an array in decreasing order:

Collections.sort(1l);
Collections.reverse (1) ;

The final list will look like this:
(5, 4, 3, 3, 3, 2, 2, 1]

5.5.3.2 Swapping

The swap () method swaps elements of two specified positions of a specified list. The following
is equivalent to reversing a list.

int sz = 1l.size();
for (int i=0;i<sz/2;i++)
Collections.swap(l, i, sz-1-1);

5.5.3.3 Copying

The copy () method copies all elements of a specified source list to another specified destination
list.
Collections.copy(ll, 1);

It copies all elements of 1 to 11. Note that the size of 11 must be at least equal to the size of 1. Other
elements, if any, of 11 are not affected.

5.5.3.4 Filling

For re-initialization, fi11 () method may be used. It replaces all of the elements of the specified
list with the specified element.
Collections.fill(11,0);

This puts a 0 in every position of the list 11.

5.5.3.5 Adding

The adda11 () method operates on Collection. It adds all of the specified elements to the specified
collection. The following adds three integers to the list 11.
Collections.addAll (11, -1, -2, -3);

108 ADVANCED JAVA PROGRAMMING

5.5.4 Searching

Searching an element in a collection of elements is common in many programs. The
binarysSearch () method searches the specified list for the specified object. As its name implies,
it uses binary search algorithm which requires the list to be sorted prior to use in this algorithm. The
behaviour of this algorithm is not defined if it is applied on an unsorted list. It is common to use
sort () method to sort the List before a call to binarySearch ().

It also has two versions: one takes a List and an element to look for and assumes that the
List is sorted in ascending order according to the natural ordering. The following are some

examples:
Collections.sort (1); //1=[1, 2, 2, 3, 3, 3, 4, 5]
int in = Collections.binarySearch(l, 4); //in = 6
in = Collections.binarySearch(l, 2); //in =1
in = Collections.binarySearch(l, 3); //in = 3

For unsuccessful search, it returns a value (-(insertion point) - 1), where the insertion point is the

point at which the value would be inserted into the list.
in = Collections.binarySearch(l, 0); //in = -1

So, if the element is not present, it may be inserted using the following:

if(in < 0) l.add(-in-1, 0); //1=[0, 1, 2, 2, 3, 3, 3, 4, 5]
in = Collections.binarySearch(l, 6); //in = -10
if(in < 0) l.add(-in-1, 6); //1=11, 2, 2, 3, 3, 3, 4, 5, 6]

5.5.5 Finding Extreme values

The max () and min () return the maximum and minimum element of the specified list

respectively.
int min = (int)Collections.min (1) ; //min = 0
int max = (int)Collections.max (1) ; //max = 6

5.5.6 Counting frequency

The frequency () method operates on general collection. It returns the number of occurrences
of a specified element in the specified collection.

int fre = Collections.frequency(l,2); //fre
fre = Collections.frequency(l,3); //fre

2
3

The following program prints the frequency table of characters of the specified file.
import java.util.*;
import java.io.*;
public class FrequencyCount {
public static void main(String args[]) throws Exception {
List 1 = new ArrayList();
FileInputStream fis = new FileInputStream(new File(args[0]));
while (fis.available() > 0)
l.add((char) fis.read()):;

for(char ¢ = '"A';c<="z"';c++)
System.out.println(c+" "+Collections.frequency(l,c));

KEYWORDS

Algorithms—A set of static methods to perform
common collection operations such as sorting,
searching etc.

ArrayList—A resizable array implementation of List
interface

Collection—A container that encapsulates multiple
objects into a single unit

HashMap—It implements Map interface and provides
all map operations. Internally uses hash table and
allows null key and value

HashSet—This class is a hash-based implementation
of Setinterface and offers constant time performance
for certain operations

LinkedHashMap—It extends HashMap and uses a
doubly linked list and hash table internally, providing
the predictable iteration order

LinkedHashSet—It is an extension to HashSet and
uses linked list and hash table internally and provides
the predictable iteration order without incurring the
increased cost associated with TreesSet.

LinkedList—A class that implements two collection
interfaces, List and Deque and provides all
operations of these two interfaces.

SUMMARY

In version 1.2, Java provided a unified architecture,
known as collection framework for representing
and manipulating aggregate objects. All collections
frameworks primarily contains three parts: interfaces,
implementation and algorithms. The root interface
in the hierarchy is Collection that defines primitive
operations on collections interface. Other commonly
used interfaces are, Set, List, Queue, Map etc.

Java provides three general-purpose implementations
for Set interface: HashSet, LinkedHashSet and
TreeSet. The HashSet is a hash-based implementation
and offers constant time performance for certain
operations. LinkedHashSet is an extension to HashSet
and uses linked list and hash table internally and
avoids the chaotic ordering. The TreeSet is tree based
implementation and provides guaranteed log(n) time
cost for the basic operations.

One of the commonly used collection type is List. Unlike
sets, lists are ordered collection and allow duplicate
elements. Java provides two implementations of this
interface: ArrayList and LinkedList. Itis a resizable array

COLLECTION FRAMEWORK 109

List—An interface that models an ordered collection
and can contain duplicate elements.

Map—It represents key-value pairs where keys are
unique and each key can map to at most one value

PriorityQueue—The LinkedList implementation
of Queue interface arranges elements in FIFO order.

Queue—This interface models queue where elements
are added and removed in a specific order, typically in
a first-in-first-out (FIFO) manner.

Set—An interface that models the mathematical set
that contains an unordered collection of objects without
any duplicates

SortedMap—This is a sub-interface of Map and
models sorted maps where entries are ordered with
respect to key

SortedSet—An extended interface of Set and
provides a total ordering on its elements

TreeSet—A tree based implementation of SortedsSet
and provides guaranteed log(n) time cost for the basic
operations

TreeMap—It is a red-black tree implementation of
SortedMap.

implementation of List interface and is roughly equivalent
to Vector. The LinkedList class implements two collection
interfaces, List and Deque and provides all operations of
these two interfaces. Internally uses doubly linked list.
Itis a collection to hold elements prior to processing.
Like List, it also represents an ordered collection of
elements. Java provides two implementations of this
interface: LinkedList and PriorityQueue. The LinkedList
implementation of Queue interface arranges elements
in FIFO order. This means that the head element is
always the oldest among the elements present.

The Map interface models a set of key-value pairs.
The keys are unique and each key corresponds to
one value. The Java provides three general-purpose
implementations: HashMap, LinkedHashMap, and
TreeMap.

The HashMap internally uses hash table and allows
null key and value. The LinkedHashMap extends
HashMap and uses a doubly linked list and hash table
internally and avoids chaotic ordering. The TreeMap
is a red-black tree implementation of SortedMap

110 ADVANCED JAVA PROGRAMMING

which is a sub interface of Map. It takes log2(n) time
for get(), put(), remove() and containsKey() methods.

Collections class provides several static methods to
perform common collection operations such as sorting,

WEB RESOURCES

http://docs.oracle.com/javase/7/docs/
technotes/guides/collections/

The Collections Framework
http://www.digilife.be/quickreferences/PT/
Java%$20Collections%$20Framework.pdf

Java Collections Framework
http://homepage.cs.uiowa.edu/~slonnegr/
oosd/22Collections.pdf

Collection Framework
http://www.eecs.yorku.ca/course
archive/2011-12/W/2011/1lectures/04%20The%20

EXERCISES
Objective-type Questions

searching etc. Most of these methods operate on
List objects, except a few which operate on arbitrary
Collection objects.

Java%$20Collections%$20Framework.pdf

Lecture 4. The Java Collections Framework
http://softeng.polito.it/slides/07-
JavaCollections.pdf

Java Collection Framework
http://people.cs.aau.dk/~torp/Teaching/E01/
Oop/handouts/collections.pdf

Collections in Java
http://www.tutorialspoint.com/java/java_
collections.htm

Java Collections Framework

1. Which of these packages contains all the
collection classes?
(a) java.lang
(b) java.util

(c) java.net
(d) java.awt

2. Which of these classes is not part of Java’'s
collection framework?
(a) Map
(b) Array

(c) Stack
(d) Queue

3. Which of these interfaces is not a part of Java’s
collection framework?
(a) List
(b) Set

(c) SortedMap
(d) SortedList

4. Which of these methods deletes all the elements
from invoking collection?
(a) clear()
(b) reset()

(c) delete()
(d) refresh()

5. What is Collection in Java?
(a) A group of objects
(b) A group of classes
(c) A group of interfaces
(d) None of the mentioned

6. What is the output of this program?
import java.util.*;
class Array {

public static void main(String args([]) {
int array[] = new int [5];
for (int i = 5; 1 > 0; 1i--)
array[5-1i] = 1i;
Arrays.fill (array, 1, 4, 8);
for (int i = 0; 1 < 5 ; 1i++)

System.out.print (array[i]);

}

(a) 12885 (c) 58881
(b) 12845 (d) 54881

7. What is the output of this program?
import java.util.*;
class vector {
public static void main(String argsl[]) {

Vector obj = new Vector(4,2);
obj.addElement (new Integer(3));
obj.addElement (new Integer(2));
obj.addElement (new Integer(5));
obj.removeAll (obj);
System.out.println (obj

LisEmpty ());
}
}
(@) 0 (c) True
(b) 1 (d) False

8. What is the output of this program?
import java.util.*;
class stack {
public static void main(String args[]){

Stack obj = new Stack();
obj.push (new Integer(3));
obj.push (new Integer(2));
obj.pop () ;
obj.push (new Integer(5));
System.out.println (obj) ;

(@) [3,3] (c) [3, 2, 5]
(b) [3,2] d) [3,5,2]

9. What is the output of this program?
import java.util.*;
class hashtable {
public static void main(String argsl[]) {
Hashtable obj = new Hashtable();
obj.put ("A", new Integer(3));
obj.put ("B", new Integer (2
obj.put ("C", new Integer (8
obj.remove (new String("A")
System.out.print (obj) ;

’

))
));
);

10. What is the output of this program?
import java.util.*;
class Bitset {
public static void main(String args[]) {
BitSet obj new BitSet (5);
for (int i 0; 1 < 5; ++1)

obj.clear(2);
System.out.print (obj);
}

(@ {0,1,3,4} (c) {0, 1
(b) 2,4} (d) {0, 0,0,

{0 , 2,3,
{0, 1, 3

4}
, 4}
11. Which of these interfaces declares core method
that all collections will have?

(a) set (c) Comparator
(b) EventListner (d) Collection

12. Which of these interfaces handles sequences?

(a) Set (c) Comparator
(b) List (d) Collection
13. Which of these interfaces must contain a unique
element?
(a) Set (c) Array
(b) List (d) Collection

COLLECTION FRAMEWORK 111

14. Which of these is Basic interface that all other
interfaces inherit?
(a) Set
(b) Array

(c) List
(d) Collection

15. What is the output of this program?

import java.util.*;
class Maps {

public static void main(String args[]) {

TreeMap obj = new TreeMap () ;

obj.put ("A", new Integer(l));

obj.put ("B", new Integer(2));

3))

’
’

obj.put ("C", new Integer (
System.out.println (obj
) .entrySet ());
}
(a) [A, B, C] (c) {A=1,B=2, C=3}
(b) 1,2, 3] (d) [A=1, B=2, C=3]

16. What is the output of this program?
import java.util.*;
class Array {
public static void main(String args[]) {

int array[] = new int [5];

for (int i = 5; 1 > 0; i--)
array[5 - 1] = 1i;

Arrays.sort (array);

for (int i = 0; 1 < 5; ++1)

System.out.print (array[i]);;

(a) 12345
(b) 54321

(c) 1234
(d) 5432

17. Suppose you would like to create an instance of
a new Map that has an iteration order that is the
same as the iteration order of an existing instance
of a Map. Which concrete implementation of
the Map interface should be used for the new
instance?

(@) TreeMap

(b) HashMap

(c) LinkedHashMap

(d) The answer depends on the implementation
of the existing instance.

18. Which class does not override the equals() and
hashCode() methods, inheriting them directly from
class Object?

(a) String
(b) Double

(c) StringBuffer
(d) Character

19. Which collection class allows you to grow or shrink its
size and provides indexed access to its elements,
but whose methods are not synchronized?

112 ADVANCED JAVA PROGRAMMING

20.

21.

22.

1.

(a) HashSet
(b) LinkedHashSet

(c) List
(d) ArrayList

(a) Map
(b) Set

(c) List
(d) Collection

You need to store elements in a collection that 23. Which collection class allows you to associate
guarantees that no duplicates are stored and all its elements with key values, and allows you
elements can be accessed in natural order. Which to retrieve objects in FIFO (first-in, first-out)
interface provides that capability? sequence?
(a) Map (c) List (a) ArrayList (c) HashMap
(b) Set (d) Collection (b) LinkedHashMap (d) TreeMap
Which interface does java.util.Hashtable 24. Which collection class allows you to access its
implement? elements by associating a key with an element's
(a) Map (c) HashTable value, and provides synchronization?
(b) List (d) Collection (a) SortedMap (c) TreeSet
o) - (b) TreeMap (d) Hashtable
Which interface provides the capability to store
objects using a key-value pair?
Subjective-type Questions
What is Java Collections Framework? List out 12. What is the difference between ArrayList and
some benefits of Collections framework. LinkedList?
What are the basic interfaces of Java Collections 13. Which collection classes provide random access
Framework? of its elements?
3. Whatis an lterator? 14. Which collection classes are thread-safe?
4. Whatis the difference between Enumeration and 15. What are concurrent Collection Classes?
lterator interface? 16. What is BlockingQueue?
5. What are the different ways to iterate over a list? 17. Whatis Queue and Stack? List their differences.
i ?
6. How does HashMap work in Java? 18. Whatis Comparable and Comparator interface?
7. \éVhlat are E[h::‘fdlfft'a?rent Collection views provided 19. Whatis the difference between Comparable and
y Map Intertace: Comparator interface?
What is the difference between HashMap and 20. How can we sort a list of Objects?
Hashtable?
) 21. How can we create a synchronized collection
How do you decide between HashMap and from the given collection?
TreeMap?
22. What are the common algorithms implemented

10.

1.

What are the similarities and differences
between ArrayList and Vector?

What is the difference between Array and
ArrayList? When will you use Array over
ArrayList?

in Collections Framework?

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER - 6

GENERIC PROGRAMMING

Key OBJECTIVES

After completing this chapter readers will be able to—

» understand the purpose of Java generics

* write generic classes, interfaces and methods

» getan idea about type inference and type erasure

» use generic collections classes and interfaces

» understand bounded type parameter and different wildcards
* know the limitations of Java generics

6.1 INTRODUCTION

Bugs are inevitable in any software. However, careful programming can reduce them. Several
extensions were added to JDK 1.5. One of these was Java generics, which helps us to detect more
bugs at compile time and fix them then and there. This allows us simply to avoid some runtime errors
and handling them prior to coming into play.

Generics allows us to write parameterized classes, interfaces and methods where parameters
are type names. If you are already familiar with C++ templates, you’ll soon realize that there
are both similarities and important differences. If you are not familiar with lookalike constructs
from elsewhere, don’t worry, all the better; you can start afresh, without unlearning any
misconceptions.

Although, the primary usage of generics is to abstract over types when working with collections,
it is possible to write custom generic classes, interfaces and methods. The following section describes
the basic problems the Java generics solve and how it solves the problem with the help of custom
classes.

114 ADVANCED JAVA PROGRAMMING

6.2 MOTIVATION

Since, java.lang.0bject is top-level class in Java class hierarchy, it is possible to write general-
purpose classes and methods that operate on object. To understand this statement, consider the
following class:

class Wrapper {

Object o;
void set (Object o) { this.o = o; }
Object get() { return o; }

}

This class represents a general-purpose wrapper class. Since, internally it maintains a reference
of type object, which is the super class of all other types, it can hold arbitrary Java object. So, the
following statement is valid:

Wrapper w = new Wrapper();

w.set (new String("abc"));

It creates a wrapper instance and stores a string object in it using its add () method. Since,
any object may be added, and get () method returns it as an object instance, it is necessary to
type cast:

String s = (String)w.get();

Since, the wrapper indeed holds a string object, object to string casting is correct. Compiler
also remains silent as it observes that the statement is syntactically correct. However, the situation may
not be as simple as above. A careless programmer (or by mistake), may write a statement as follows:

Integer x = (Integer)w.get();

Note that type of the object held is string. So, casting it to an Integer type is illegal. Although,
Java can determine this anomaly at runtime and informs us by throwing a classCastException, there
is no provision to determine it at compile time as there is no syntax error in the statement. Since,
compiler only cares about syntax, it cannot restrict programmers from such incorrect type casting.
Since, the above code still compiles, we wouldn’t know anything is wrong until runtime.

It is also possible to keep different type of object at different time.

w.set (new String("xyz"));

w.set (new Integer(2));

The wrapper object, does not, anyway indicate that it is capable of holding specific type of objects.
So, if we want to restrict the contained type to something specific (like st ring), our only option would
be to specify the requirement in documentation. If the class had been a generic one, these mistakes
could have been caught by the compiler and rectified then and there.

6.3 SOLUTION

Using Java’s generics, lets rewrite our wrapper class as follows.
class Wrapper <T> {

T o;
void set (T o) { this.o = o; }
T get() { return o; }

}

Although, it introduces some new syntax, there is nothing to worry about. It is very much
similar to our previous version except that it uses a formal type parameter T. All occurrences of
object have been substituted by T. The <T> after class name indicates that the class is a generic one.
The type parameters can be used throughout the generic declaration in a way almost similar to that
of ordinary types.

GENERIC PROGRAMMING 115

To refer to this generic type, we supply a concrete type name as argument.
Wrapper<String> w;

We specify the type argument (string in this case) within angular brackets. We might imagine that
Wrapper<String> stands for a version of wrapper where T has been uniformly replaced by string.
However, it is misleading, because the declaration of a generic is never actually expanded in this
way. In fact, during compilation, all generic information will be removed entirely using a process
called type erasure which we shall discuss in detail later in this chapter.

Like any other variable declaration, the above line does not actually create a new object. It simply
declares a reference to a wrapper<string> (pronounced as “Wrapper of String”). To instantiate this
class, the new keyword is used, as usual, along with the type name (may be omitted in some cases)
within angular brackets between the class name and the parenthesis:

w = new Wrapper<String>();

We can also do these things in one line, such as:
Wrapper<String> w = new Wrapper<String>();

To understand the syntax of generic class declaration, you can compare it with method declaration.
Remember that during a method declaration, we use formal parameters to hold actual arguments
passed during method call. For example,

public static int add(int a, int b) { // int a, int b are formal parameters
return a + b ;

}
During the invocation, the formal parameters are substituted by the actual arguments. For example,

// method call: formal parameters substituted by actual arguments

int result = add(2, 3);: // 2 and 3 are actual arguments

Type parameters used in the class declaration have the same purpose as the formal parameters
used in the method declaration. A class can use formal type parameters to receive type arguments.
The type names used during instantiation are called actual type arguments. During instance creation,
such as wrapper<string>, all occurrences of the formal type parameter T are replaced by the actual
type argument string.

Anyway, with this additional type information, compiler can perform type check during compile-
time and ensure that there will be no runtime class cast error. Since, w is a kind of ‘wrapper of string’
now, only string objects can be stored in it.

w.set (new String(“abc”));

Note that even if w is a generic instance, this syntax is exactly same as the previous one. However,
any attempt to store an object other than string will result in a compilation error:

w.set (new Integer()); //compilation error

This wrapper is now targeted at only string, meaning only string instances can be stored into
this wrapper. Accordingly, if we try to keep something else in it, the compiler will complain. The
stored element may also be retrieved directly without a type cast as follows:

String s = w.get();

The compiler knows that this wrapper can only contain st ring instances, so casts are not necessary.
An attempt to cast to a different type will also result in a compilation error alerting you to what
previously would have been a runtime bug.

Integer 1 = (Integer)w.get(); //compilation error

Instead of relying on the programmer to keep track of object types and performing casts, which
could lead to failures at runtime difficult to debug and solve, the compiler can help the programmer
enforce a greater number of type checks and detect more failures at compile time.

116 ADVANCED JAVA PROGRAMMING

Needless to say wrappers for other types (reference types only) may be created and used using
the usual way as and when needed:

Wrapper<Integer> wi = new Wrapper<Integer>(); //wrapper of Integer

wi.set (new Integer(4));

Integer 1 = wi.get();

It is possible to make both classes and interfaces generic. A class or an interface is generic if it
accepts one or more type parameters. In general, any number of type parameters may be specified.
They are specified in angular brackets separated by comma (,) and follow the class (or the interface)

name as follows:
class Pair <K, V> {/*...*/}

These parameters typically appear in the type’s methods, either as the type method’s parameter
list or as the type of its return value.
class Pair <K, V> {
void put(K k, V v);
V get (K k) {/*...*/}
}
Here two type parameters x and v are introduced after the class name. Then K appears as
the argument type of the get () and put () method and V appears as the return type of get ()
method.

This section simply demonstrates the fundamental concepts of Java generics. We shall discuss
several other issues in subsequent sections. However, since Java generics is extensively used in
collection framework, let us be quickly familiar with how to use generic collection classes and
interfaces.

6.4 COLLECTION FRAMEWORK AND GENERICS

The primary usage of generics is to abstract over types when working with collections. In practice,
we hardly write new generic types. However, we should recognize the syntax and learn how to use
generics. Before generics, an example usage of collection class looks like this:

List 1 = new ArrayList();

1.add (new Integer (4));

Integer i = (Integer)l.get(0);

Look at the cast in the last line. Since, the get () method returns an object instance, to assign it
to a variable of type Integer, the cast is required.

However, the cast is annoying. It not only introduces clutter, but there is also a possibility of
ClassCastException at run time due to wrong cast being used by mistake. Moreover, if we want to
mark a list as being restricted to contain a particular data type, there is no provision before generics.

Most of the collection classes and interfaces including .ist have been upgraded using generics
in Java 1.5 version. So, we can rewrite the above program fragment using generics:

List<Integer> intList = new ArrayList<Integer>();

intList.add(new Integer(4));

Integer i = intList.get(0);

Now, look at the way the variable intList has been declared. It is no longer a general list, but a
‘List of Integer’, written as List<Integer>. Indeed the List is a generic interface whose declaration
looks like:

public interface List<E> extends Collection<E> { /*...*/}

The type correctness of the program can be checked at compile-time now. When we declare
intList as List<Integer> (1.6 ‘List of Integer’), this holds true wherever and whenever it is used

GENERIC PROGRAMMING 117

hereafter, and the compiler guarantees it. Since, intList can now contain only Integer objects,
adding anything else will be a compilation error:

intList.add (new String(“abc”)); //compilation error

Another interesting point is that the cast is no longer necessary. Java also introduces a new for
loop to iterate generic lists:
for (Integer item : intList)
System.out.println (item) ;
Similar to generic collection classes, most of the collection classes are also generic. One example
of such a generic interface is comparable which is written as:

package java.lang;

import java.util.*;

public interface Comparable<T> ({
public int compareTo (T o);

}

6.5 TYPE NAMING

Unlike ordinary variables, type variables are named by single uppercase letters. It helps us to
differentiate type variables and ordinary class or interface name. The most commonly used type
parameter names are:

T - Type

S,U,V etc. - 2nd, 3rd, 4th types

V - Value

E - Element (used extensively by the Java Collections Framework)
K - Key

N - Number

Table 6.1: summarizes some of the frequently used terms in generics:
Table 6.1: Terminologies in Java generics

Generic Term Meaning

List<E> Generic Type, E is called formal parameter
List<Integer> Parameterized type, Integer is actual argument here
<T extends Comparable> Upper-bounded type parameter

List<?> Unbounded wildcard

<? extends T> Bounded wildcard

<? super T> Bounded wildcard

List Raw type

<T extends Comparable<T>> Recursive bounded type parameter

6.6 GENERIC METHODS AND CONSTRUCTORS

Like classes and interfaces, methods (including constructors) may use type parameters and are
called generic methods. They are useful if we don’t want to make the whole class generic. Generic
methods may be a member of generic as well as non-generic classes. The following shows a generic
method as part of non-generic class.

class X {
static <T> void print (T t) {
System.out.println(t.getClass () .getName()) ;
}
}

118 ADVANCED JAVA PROGRAMMING

This takes a single type parameter which appears before the return type. It prints the type
information of the object passed to it. The type parameter’s scope is limited to the method in which
it’s declared. We call this method like a normal method except that we specify the type parameter

before the method name:

X.<Integer>print (new Integer(2));

X.<String>print (new String("aa"));

The type of object must be same or a subtype of type argument. The value of type parameter may
be inferred from method parameter and may be omitted:

X.print (new Integer (2));

X.print (new String("aa"));

Like generic type, a generic method may take any number of type parameters. Both static
and non-static generic methods are allowed. A non-static method may use class’s type parameter
(if any).

class Y <S> {

<T> void print(S s, T t) {
System.out.println(s.getClass () .getName ()) ;
System.out.println(t.getClass () .getName()) ;

}
}

The complete syntax for invoking this method would be:

Y<Integer> y = new Y<Integer>();

y.<Integer, String>print (new Integer(2), new String("aa")):

However, since the type parameters may be inferred from method parameter, we may omit
them:

y.print (new Integer(2), new String(“aa”));

The following section describes more about type inference.

6.7 TYPE INFERENCE

Sometimes it is possible to find some type information automatically from the arguments passed
to methods or constructors. This ability is known as type inference and may

. Determine the types of the arguments.
. Determine the type that the result is being assigned, or returned (if available).
. Find the most specific type that works with all of the arguments.

The following sections illustrate these.

6.7.1 Generic methods

Type inference sometimes allows us to invoke a generic method like an ordinary method. Consider

the following example:
class A {
static <T> void £(T t){};
}
The generic method £ () defines one type parameter named T. Java compiler can infer the type
argument even if it is not explicitly specified during method call.
A.f(2); //T is Integer

However, we can also specify the type argument explicitly:
A.<Integer>f (2); //Explicit type argument, T is Integer

GENERIC PROGRAMMING 119

The method argument must be convertible to the explicit type argument. So, the following is
correct:

A.<Number>f (2); //OK, T is Number and Integer can be converted to Number

However, the following is not correct as 2 cannot be cast to String.

A.<String>f (2); //Error, T is String, however Integer can’t be cast to String

6.7.2 Constructors

Type inference is also possible for constructors. Consider the following class:
class X <T> {
T t;
<S>X(T t, S s) {}
}
The class x takes a single type parameter T. The constructor for x itself takes another type
parameter and uses class’s type parameter as well. Compiler can infer these type parameters from

the constructor call:
new X<>("", 3); //T is String and S is Integer

We can also specify type argument for the class explicitly:

new X<String>("", 3); //T is String and S is Integer
new X<Object>("", 3); //T is Object and S is Integer

Both arguments may also be specified explicitly.

new <Integer>X<String>("", 3); //T is String and S is Integer
new <Number>X<String>("", 3); //T is String and S is Number
new <Integer>X<Object>("", 3); //T is Object and S is Integer
new <Number>X<Object>("", 3); //T is Object and S is Number

6.7.3 Classes

It is also possible to infer class’s type argument even if constructor does not use it. Consider the

following class:
class X <T> {
<5>X (S s) {}
}
To help compiler to infer class’s type argument, we use <> (called diamond) as follows:

X<Integer> x = new X<>(""); //T is Integer, S is String

Note that to take advantage of type inference during generic class instantiation, we must use the
diamond. Otherwise, the compiler generates an unchecked conversion warning:

X<Integer> x1 = new X(""); //warning

This happens because the constructor x () refers to the x raw type.

6.8 BOUNDED TYPE PARAMETERS

The generic classes or methods we have written may take any reference type arguments.
For example, the wrapper class can take arbitrary arguments:

Wrapper<Integer> wi;

Wrapper<Double> wd;

Wrapper<String> ws;

Wrapper<Exception> we;

Wrapper<Object> wo;

/...

120 ADVANCED JAVA PROGRAMMING

However, if we want to restrict that wrapper to only accept certain arguments, we specify it as
bounded type parameter:

class Wrapper <T extends Number> {/*...*/}

This tells that the type argument to wrapper can only be either Number or anything that extends
Number. Note that, the keyword extends is used in a general sense to mean either extends for classes
or implements for interfaces.

The generic type name is similar to unbounded generic type except that if we try to use any type
that is not Number, it results in a compilation error.

Wrapper<String> ws;
Wrapper<Exception> we;
Wrapper<Object> wo;

The above types are now wrong as neither String nor Exception Nor object is a sub-type of
Number. However, the following remains still valid:

Wrapper<Integer> wi;
Wrapper<Double> wd;

Bounded type parameters can be used with interfaces as well as methods.

interface MyIntf <T extends Number> {}

static <T extends Number> void printNumber (T t) {}

static <T extends Comparable<T>> int max(T a, T b) {/*...*/}

The interface MyInt £ and the method printNumber () only take argument of type Number or its
sub-type whereas max () takes argument of type Comparable<T> or its sub-type.

6.8.1 Multiple bounds

A type parameter may have more than one bound and is written as:
<T extends C & Il & I2>

It means T must be a subtype of c, 11 and 12. In general if multiple bounds are specified, the
type variable must be a subtype of all listed bound types. If one of the bounds is a class, it must be
specified first. Given the following types:

class C { /* ... */ }

interface I { /* ... */ }

The following bound specification is wrong as the class name is not specified first in the bound list.
<T extends I & C>

The correct one is:
<T extends C & I>

We can’t have more than one class in multiple bounds. The following are some other examples:

<T extends C> //T has bound C

<T extends I> //T has bound I

<T extends C & I> //T has bound C and I

<T, S extends C> //T is unbounded, S has bound C

<T, S extends I> //T is unbounded, S has bound I

<T, S extends C & I> //T is unbounded, S has bound C and I
<T extends C, S> //T has bound C, S is unbounded

<T extends I, S> //T has bound I, S is unbounded

<T extends C & I, S> //T has bound C and I, S is unbounded
<T extends C, S extends C> //Both T and S have bound C

<T extends C, S extends I> //T has bound C, S has bound I

<T extends I, S extends C> //T has bound I, S has bound C

<T extends C & I, S extends C & I> //Both T and S have bound C &

GENERIC PROGRAMMING 121

Note that Java does not allow us to use super keyword when declaring a bounded type parameter.
So, the following is wrong:
class X <T super Number> {}

6.9 GENERICS AND SUB-TYPE

The sub-type and super-type relationships with respect to generics appear to be confusing to
beginners. However, understanding them is important and clearly makes you better equipped to
work with generics.

In Java, we know that a reference of type T may refer to an object of type s if s is either T or s
is a sub-type of T. For example, an object type reference can hold an object or any of its sub-type
object such as Tnteger.

Object oRef = new Object(); //oRef refers to an Object
String sRef = new String("Java"); //sRef refers to a String
oRef = sRef; //oRef now refers to a String

Similarly, the following is also valid as Integer and Double are sub-type of Number:

Number nRef = new Integer (2); //nRef refers to an Integer

nRef = new Double(3.2); //nRef now refers to a Double

The same is also true for generics.

List<Number> 1ln = new ArrayList<>();

In.add(new Integer(2));

1n.add (new Double (3.2));

Since, Integer and Double are sub-type of Number, a list of Number may hold Integer as well as
Double objects. However, List<Integer> is not a subtype of List<Number>. Consider the following
example:

List<Integer> 1li = new ArrayList<Integer>();

In = 1i;

Here we have created a 1ist of Integer and assigned it to a List of Number. It seems to be
obvious as — “a List of Integer is indeed a List of Number”. But this is not correct in the generics
world! [Figure 6.1:]

Number List<Number> Object
A S

Integer [List<Integer> | | List<Number> | | List<Integer> |
(i) (i) (iii)

Figure 6.1: Generics and sub-typing (i) Integer is a sub-type of Number (ii) However,
List<Integer> is not a sub-type of List<Number> (iii) Their common parent is Object

This piece of code does not compile because if it could have compiled we could add a pouble
object as follows:
In.add (new Double (3.2));

This could have resulted in classCastException at runtime and type safety could not be achieved.

In general, given two concrete types 2 and B, AClass<a> has no relationship to aclass<i>,
regardless of whether or not 2 and B are related. The common parent of Acl1ass<a> and Aclass

122 ADVANCED JAVA PROGRAMMING

is object. To illustrate this, a beautiful example was given in Java’s tutorial. We are also using that
example to demonstrate this.

Consider the following type hierarchy:

class Animal {/*...*/}

class Lion extends Animal {/*...*/}

class Butterfly extends Animal {/*...*/}

Since, Lion and Butterfly are kind (sub-type) of animal, either may be supplied when an animal
is required:

Animal a = new Lion(); //a refers to a lion

a = new Butterfly(); //a now refers to a butterfly

We know that lions are kept in lion cages (with bars strong enough to prevent the lions from
going out):

List<Lion> lionCage = new ArrayList<Lion>();

lionCage.add (new Lion());

Similarly, butterflies are kept in cages whose bars need not be so strong but should be spaced

closely enough to hold in the butterflies:

List<Butterfly> butterflyCage = new ArrayList<Butterfly>();
butterflyCage.add (new Butterfly());

Now, think about a cage of an animal.
List<Animal> animalCage = new ArrayList<Animal>();

Since, it is an animal cage, it should ideally be capable of keeping all animals including a lion
and a butterfly. So, its bars should not only be strong, but also spaced closely. If such a cage really
exists, it is possible to keep a lion as well as a butterfly together there.

animalCage.add(new Lion());

animalCage.add (new Butterfly());

Now, let us think about this question: “Is a lion cage a kind of animal cage? i.e. is List<Lion> a
kind of List<Animal> oris List<Butterfly>akind of List<animal>". If we think critically, we shall
find the answer as “no” in both cases. This is because ideally, if a lion cage could have been a kind
of animal cage, we could keep butterflies there since a butterfly is also a kind of animal. However,
bars of a lion cage are not close enough to prevent butterflies from escape. Therefore, the following
assignment is wrong:

animalCage = lionCage; //compile time error

Similarly, a butterfly cage is not a kind of general animal cage as it is too weak to keep lions.
Therefore, the following assignment is also wrong:

animalCage = butterflyCage; //compile time error

Java generics tutorial developer ironically added the following:

Before generics, the animals could be kept in improper kinds of cages. As a result, it would be
possible for them to escape.

6.10 WILDCARDS

So, how do you specify a “List of some kind of animal” syntactically? This is represented as:
List<? extends Animal> someAnimalCage;

and is read as “List of unknown type which is either animal or a sub-type of it”. So, for this
type of cage, either a lion cage or a butterfly cage may be provided [Figure 6.2:].

someAnimalCage = lionCage;
someAnimalCage = butterflyCage;

GENERIC PROGRAMMING 123

| List<? extends Animal> |

List<Animal>

List<Butterfly> List<Butterfly>
(i) (ii)
Figure 6.2: Wildcards (i) Without wildcard (ii) With wildcard

In generics, an unknown type is represented by the wildcard character “?”. It may be used as
the type of a parameter, field, or local variable. Although, it may be used as a return type, being
more specific is better. However, the wildcard is never used as a type argument for a generic method
invocation, a generic class instance creation, or a super type.

6.10.1 Upper-bound wildcard

Since, <? extends Animal> represents any type bounded by the type animal, it is said to be
bounded wildcard with the upper bound Animal.

Note that, the keyword extends is used in a general sense to mean either extends for classes or
implements for interfaces.

However, we cannot add any lions or butterflies to this kind of cage. This is because, if
someAnimalCage refers to a lion cage (bars are not so close) and if we put some butterflies there,
they will fly away. Similarly, if someAnimalcage refers to a butterfly cage (bars are not so strong)
and if we put some lions there, they will break the cage and escape. So the following are incorrect:

someAnimalCage.add (new Lion());

someAnimalCage.add (new Butterfly());

What will the usage of this kind of cage be then? Don’t worry. Although, we cannot put anything
(except null) there, we can still view its contents.

for (Animal an: someAnimalCage)

an.free () ; //assume that the Animal class has a method free ()

Since, someAnimalCage contains Animal or any sub-type of animal, it is safe to assign its elements

to an Animal type variable.

A method may also use such upper-bounded wildcards.
static void f(List<? extends Animal> 1) {/*...*/}

With this declaration, the method f () may be invoked supplying both 1ioncage as well as

butterflyCage:
f (lionCage) ; //OK
f (butterflyCage) ; //OK

The method £ () can access the list elements as type Animal:
static void f(List<? extends Animal> 1) {

for (Animal elem : 1) {

/] ...

}
}
Similarly, if we want to write the method that works on List<Number>, List<Integer>,

List<Double>, List<Float> etc., we specify it as:

static void g(List<? extends Number> 1) {/*...*/}

In general, for an “in” parameter that serves up data to the function, an upper-bounded wildcard
is used.

124 ADVANCED JAVA PROGRAMMING

6.10.2 Lower-bound wildcard

Like an upper bounded wildcard that restricts the unknown type to be a specific type or a subtype
of that type, a lower bounded wildcard restricts the unknown type to be a specific type or a super
type of that type. A lower bounded wildcard is written in the same way except the keyword super

is used instead of extends.
List<? super Integer> list;

This represents a ‘List of unknown type that is either integer or any super type of it’.
The list type that this list can hold is Integer types. Consider the following lists:

List<Number> 1ln = new ArrayList<Number>();
List<Object> lo = new ArrayList<Object>();
List<Integer> 1li = new ArrayList<Integer>();

With this, the following are correct:

list = 1i;
list = 1n;
list = lo;

Since, the list can hold an Tnteger type or any of it’s super type object, it is always safe to add
Integer objects to this list.
list.add (new Integer(2));

However, since we do know what type of list it actually is, list elements can be type cast to
Object only:

for (Object o : list)
System.out.println (o) ;

It is not possible to specify both upper bound and lower bound for a wildcard simultaneously.

6.10.3 Unbounded wildcard

Java generics also provides another kind of wildcard called unbounded wildcard and is represented
as ‘?’. For example, 1ist<?> represents a list of unknown types and can hold arbitrary types of lists.
To appreciate its concept, let us try to write a method that prints the list of any type:

It could look like this:
static void printList (List<Object> list) {
for (Object o : list)
System.out.print (o + " ");
}

Note that even if string, Integer and Double etc. are sub-types of object, List<String>,
List<Integer>, List<Double> etc. are not sub-types of List<oObject>. So, we can only pass
List<Object> to this method. This means, this method can only print list of object and no other.

To write a generic printList () method, we can use List<?>:
static void printList (List<?> list) {
for (Object o : list)
System.out.print(o + " ");

}

We can now pass different kinds of lists to this method for printing:

List<Integer> 1li = ...
List<String> ls
List<Double> 1d
printList (1i);
printList(ls);
printList (1d);

GENERIC PROGRAMMING 125

Like upper-bounded list, adding elements is not allowed.

List<?> list = new ArrayList<String>();

list.add (new Object()); // compile time error

When the actual type parameter is 2, it stands for some unknown type. The add () method takes
arguments of type T, the element type of the list. An argument to add () must be a subtype of this
unknown type. Since we don’t know what type that is, we cannot pass anything in. The sole exception
is null, which is a member of every type.

C++ templates do not provide any facility like bounded or unbounded type. This is another point
where Java generics differs from C++ templates.

6.10.4 Wildcard and sub-typing

We know that although Integer is a subtype of Number, there is no relationship between
List<Integer>and List<Number>. Figure 6.3: shows the relationships between several List classes
declared with both upper and lower bounded and unbounded wildcards.

List<?>]

|List<? extends Number>| [List<? super Integer>|

[List<? extends Integer>| [List<? super Number>]|

List<Integer> List<Number>

Figure 6.3: A hierarchy of several generic List class declarations

6.11 TYPE ERASURE

Note that generics was introduced for compile time type-checking and has no implication at
run time. Accordingly, compiler uses a technique called zype erasure where it takes the following
steps:

« Replace all type parameters with their bounds or Object (for unbounded type parameters). Therefore, the resultant
bytecode contains only ordinary classes, interfaces, and methods.

« Insert type casts if necessary to preserve type safety.

* Generate bridge methods to preserve polymorphism in extended generic types.

For example, if we have a generic class like below:
class Wrapper <T> {

T o;
void set (T o) { this.o = o; }
T get() { return o; }

}

The Java compiler replaces it with Object, since T is unbounded:
class Wrapper {

Object o;

void set (Object o) { this.o = o; }

Object get() { return o; }
}

126 ADVANCED JAVA PROGRAMMING

This class looks like an ordinary class. The compiler also inserts the required downcast operator

in the user codes. For example, consider the following user code:
Wrapper<String> w = new Wrapper<String>();
w.set (new String("abc"));
String s = w.get();

It will be replaced by

Wrapper w = new Wrapper () ;

w.set (new String("abc")); //upcast is type-safe

String s = (String)w.get(); // compiler inserts downcast operation

Similarly, consider the following class that uses a bounded type parameter:
class Wrapper <T extends Integer> {

T o;
void set (T o) { this.o = o; }
T get() { return o; }

}

The Java compiler replaces the bounded type parameter T with the bound Integer:
class Wrapper <T extends Integer> {
Integer o;
void set (Integer o) { this.o = o; }
Integer get() { return o; }
}
The Java compiler also erases type parameters in generic methods. Consider the following generic

method:
class X {
static <T> void print(T t) {/*..*/}
}
Since, T is unbounded, the Java compiler replaces it with Object:
class X {
static void print(Object t) {/*..*/}
}
The implication of type erasure is that the type argument is not available at runtime for use in
casts or as the argument to the instanceof method.

Generics are often compared with templates in C++. However, unlike C++ templates, which
creates a new type for each type argument, in Java generics there is just one class file which is used
to create instances for all the type arguments.

The full details of erasure are beyond the scope of this book. However, the simple description we
just gave isn’t far from the truth. It is good to know a bit about this.

6.12 BACKWARD COMPATIBILITY

Note that lots of API classes (such as the Collections classes) were not generic prior to JDK 5.0.
So, to get pre-generics behaviour, Java provides raw types. A raw type is the name of a generic class
or interface without any type arguments. For example, given the generic Wrapper class:

class Wrapper <T> ({

T o;
void set (T o) { this.o = o; }
T get() { return o; }

}

To create a parameterized type, we specify an actual type argument for the formal type
parameter T:
Wrapper<String> ws = new Wrapper<String>();

GENERIC PROGRAMMING 127

It is possible to omit the actual type argument which gives rise to a raw type:

Wrapper w = new Wrapper();

Therefore, wrapper is the raw type of the generic type wrapper<T>. However, a non-generic class
or interface type is not a raw type. For backward compatibility, assigning a parameterized type to

its raw type is allowed:

Wrapper<String> ws = new Wrapper<String>();
Wrapper w = wWs; // OK

However, for reverse assignment, a warning is given:

Wrapper w = new Wrapper () ; // w is a raw type of Wrapper<T>
Wrapper<String> ws = w; // warning: unchecked conversion

The warning indicates that the compiler is not responsible for type checks which is postponed
till runtime. Since, for raw types, no compilation time type checking is done, we should not use
it unless it is unavoidable.

6.13 RESTRICTIONS ON GENERICS

Although, Java generics is an extremely powerful tool, it is not free from drawbacks. The following
sections highlight some of its limitations.

6.13.1 Cannot Specify Primitive Type Arguments

Consider the following parameterized type:

class X <T> {/*...*/}

When instantiating X type objects, it is possible to specify only non-primitive type arguments.
So all the following statements give rise to compilation error:

X<int> xi; //compilation error, int is used
X<double> xd = new X<>(); //compilation error, double is used
X<char> xc = new X<char>(); //compilation error, char is used

6.13.2 Cannot Declare Static Fields of Type Parameters

Since, a class’s static field is a class-level variable, which is shared by all of the instances of
the class, declaring static fields of type parameters are prohibited. So, the following results in a

compilation error:

class X <T> {

static T a; //compilation error

}

Consider the following variable declarations:

X<Integer> xi = new X<Integer>();

X<Double> xd = new X<Double>();

X<String> xs = new X<String>();

If static fields of type parameter would have been allowed, what would be the actual type of a?
It cannot be Integer, Double, and string simultaneously. This is why declaring static fields of type
parameters is prohibited.

6.13.3 Cannot Create Instances of Type Parameters

It is not possible to create an instance of a type parameter. So, the following class declaration
results in a compilation error:

class X <T> {
T t = new T(); //compilation error

}

128 ADVANCED JAVA PROGRAMMING

However, using reflection we have a way out:

class X <T> {
T t;
X (Class<T> c) throws Exception ({
t = c.newInstance();
}
}

6.13.4 Cannot Use instanceof

Since, type erasure removes all type parameters from generic code, it is not possible to ascertain
what arguments were passed. Accordingly, verifying which parameterized type for a generic type
is being used at runtime is not possible. In fact Java does not allow us to use instanceof operator
for generic types:

List<Integer> 1 = new ArrayList<Integer>();

if (1 instanceof ArrayList<Integer>) ({ //compilation error

/*Lo00x/

}

6.13.5 Cannot create Generic arrays

It is not also possible to create arrays of parameterized types. So, the following code results in
a compilation error:
List<Integer>[] al = new List<Integer>[4]; // compile-time error

However, we may cast from object[] to T[] with a risk of unchecked cast and warning. That
is why it is better to use Collection classes such as arrayList and HashMap instead of arrays. Those
classes are also implemented on top of array in Java but JDK handles the type-safety using generics
carefully.

6.13.6 Limitations on exception

A generic class cannot extend the Throwable class directly or indirectly. So, the following classes
will result in compile error:
//X extends Throwable directly, compilation error

class X<T> extends Throwable { /*... */ }
//Y extends Throwable indirectly, compilation error
class Y<T> extends Exception { /*... */ }

A generic type cannot also be used in throw clause:

try {
throw new ArrayList<Integer>(); //compilation error

}

The catch clause cannot also use type parameter:

static <T> void f() {
try { /*... */ }
catch(T t) {} //compilation error

}

However, we can use a type parameter in a throws clause:

class X<T extends Exception> {
public void f() throws T { /*... */} // OK
}

6.13.7 Cannot use .class

GENERIC PROGRAMMING 129

We cannot use .class for parameterized types. So the following are wrong:

Class ¢ = List<String>.class; //illegal
c = List<Integer>.class; //illegal
c = List<Double>.class; //illegal

This is because unlike C++ templates, in Java generics, a separate class is not generated for each
type argument. So, we must use raw type instead of parameterized type:

Class c¢ = List.class;

KEYWORDS

Bounded type parameter—A type parameter that
accepts a restricted set of arguments

Generics—A construct to write parameterized classes,
interfaces and methods

Lower-bounded wildcard—The wildcard that
represents a set of unknown types restricted by a
lower bound

Type argument—An argument passed to generic type
or method/constructor call

Type erasure—A technique by which Java compiler
translates generic classes/interfaces/methods to their
no-generic counterparts

SUMMARY

Java generics allows us to write parameterized
classes, interfaces and methods where parameters are
type names. Although, the primary usage of generics is
to abstract over types when working with collections, it
is possible to write custom generic classes, interfaces
and methods. Instead of relying on the programmer to
keep track of object types and performing casts, which
could lead to failures at runtime difficult to debug and
solve, the compiler can help the programmer enforce
a greater number of type checks and detect more
failures at compile time.

It is possible to make both classes and interfaces
generic. A class or an interface is generic if it accepts
one or more type parameters. In general, any number
of type parameters may be specified. They are
specified in angular brackets separated by comma (,)
and follow the class (or the interface) name

Like classes and interfaces, methods (including
constructors) may use type parameters and are called
generic methods. Sometimes it is possible to find some
type information automatically from the arguments

Type inference—Ability to find some type information
automatically from the arguments passed to methods
or constructors.

Type parameter—A parameter accepted by generic
class, interface or method

Upper-bounded wildcard—The wildcard that
represents a set of unknown types restricted by an
upper bound

Wildcard—The ‘?’ character used to represent an
unknown type in generics

Unbounded wildcard—The wildcard that represents
any unknown type

passed to methods or constructors. This ability is
known as type inference.

Itis also possible to restrict the argument that a generic
type/method will use using bounded type parameter. It
is written as the type parameter followed by the extends
keyword followed by the bound. Atype parameter may
have more than one bound. If one of the bounds is a
class, it must be specified first.

The sub-typing differs in generics from traditional sub-
typing. In general, given two concrete types A and B,
AClass<A> has no relationship to AClass, regardless
of whether or not A and B are related. The common
parent of AClass<A> and AClass is Object.

To establish sub-typing relationship, wildcard was
introduced and is represented by the character ‘?’.
Three versions of wildcard exist. Upper-bounded
wildcard represents unknown types which is either a
given type or its sub-type. Lower-bounded wildcard
represents unknown types which is either a given type
or its super-type. Unbounded wildcard represents any
unknown types.

130 ADVANCED JAVA PROGRAMMING

Compiler uses a technique called type erasure to
convert generic types/methods to their non-generic
counterpart. It generates just one class file which is
used to create instances