
Assistant Professor
Department of Information Technology

Jadavpur University, Kolkata

 Java ADVANCED

 PROGRAMMING

Uttam K. Roy

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2015

The moral rights of the author/s have been asserted.

First published in 2015

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-945550-8
ISBN-10: 0-19-945550-3

Typeset in Times New Roman
by Mukesh Technologies Pvt. Ltd, Puducherry 605005

Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Dedicated to
my beloved wife Banhishikha

and
my sweet baby Rimisha

About the Author

Uttam K. Roy is presently Assistant Professor in the Department
of Information Technology, Jadavpur University, Kolkata. He com-
pleted his M Tech in Computer Science and Engineering, and Ph D
from Jadavpur University, Kolkata. For excellence in academics,
he was awarded scholarships from UGC and Jadavpur University.
In addition to his 12-year teaching experience, he has been a tech-
nical consultant and system administrator.

Dr Roy’s research interests include bio-informatics, voice
processing, optimization, RFID, and distributed and wireless com-

puting. He has contributed numerous research papers to various international journals and
conferences, and has supervised many postgraduate-level and Ph D dissertations. He has
also authored Web Technologies, published by Oxford University Press, India in 2010.

Preface

The power of Java is unquestionable and is well-known to everyone in the software community. Numerous
books are available on core Java. However, the real power of Java primarily lies in Java’s advanced concepts.
Although there are many books available on these topics, most of them focus on a specific technology. For
example, it is not impossible to find dozens of books on Socket programming, RMI, JNI, Servlets, JSP, and
JDBC, but it is almost impossible to find any engineering/science curriculum, which has subjects like these.
However, topics such as Network Programming and Advanced Java are very common. In these circumstances,
it is not convenient for students having “Advanced Java” as a subject in his/her course to purchase all the
necessary books and comprehend all the concepts included therein.

This book aims to bring almost all the advanced concepts of Java under a common roof so that experienced
programmers can easily find relevant information whenever necessary and can become experts in this field.
Needless to say, readers of this book should have good working knowledge of core Java.

ABOUT  THE BOOK

This book covers, in depth and with extensive examples and references, the primary technical issues that
every Java expert should understand, such as JNI, Socket programming, RMI, JavaMail, Java XML-RPC,
Soap, Security, Servlet, JSP, JDBC, Hibernate, JNDI, JMS, CORBA, and many others. Each chapter
provides detailed working examples illustrating the functioning of these technologies and how they can
be used to build robust Java-based applications. This book provides real-world examples supported with
ample screenshots so that readers can understand and easily apply them to Java-based applications they
would develop in the future.

Although this book is intended as a textbook for undergraduate- and postgraduate-level courses on Advanced
Java, it can also be used as a supplementary textbook for undergraduate/postgraduate courses on network
programming, server-side programming, Enterprise Java, and GUI programming. The book is also a useful
resource for researchers to learn to write different kinds of distributed applications effectively and efficiently
using various Java concepts. In addition, it will provide useful background and reference information for
professionals working in the area of Java-based web applications.

CONTENT AND STRUCTURE

The book is organized into twenty eight chapters, each covering a unique topic in detail. The chapters have
been grouped into three parts:

•  Part I—Inside Java
•  Part II—Network Programming
•  Part III—Enterprise Java

In Part I (Chapters 1–11), important Java concepts such as Exception Handling, Multi-threading, Garbage
Collection, Collection Framework, Generic Programming, Reflection, JNI, AWT and Swing, and Java and
XML, among others, have been discussed. Part II (Chapters 12–18) includes networking concepts such
as Socket programming, RMI, The JavaMail API, and Java XML-RPC. Part III (Chapters 19–28) covers
concepts of Java Enterprise Edition such as Servlet, JSP, JDBC, Hibernate, JNDI, JMS, CORBA, and JSF.

PREFACE﻿  vii

Chapter 1 gives a quick summary of six important Java tools (jhat, jdb, javap, javadoc, and jcmd) out
of many powerful tools that come with JDK to help Java developers in better programming. Other tools have
been discussed in the remaining chapters.

Chapter 2 covers Java exception handling. It helps programmers to understand what exceptions are and
how they are handled. It also gives a brief description of exception classes and their hierarchy.

In Chapter 3, we discuss multi-threaded processes in Java. A multi-threaded process has two or
more parts which can run concurrently and each part can do a designated task at the same time. Multi-
threading enables us to write programs in a way where multiple activities can proceed concurrently in the
same program.

Chapter 4 first describes the basics of the working of Garbage Collection inside HotSpot. It then gives an
overview of the available garbage collectors with their functions and performance metrics. It also demonstrates
how to select and configure a collector and set sizes for the memory areas on which the collector operates.
Finally, it lists some of the most commonly used options that affect garbage collector behaviour.

Chapter 5 explains a powerful unified architecture, known as collection framework, provided by Java.
Java provides high-quality implementation of collection interfaces resulting in unquestionable performance
and quality of programs. Java not only provides the different implementations of an interface, but also allows
us to interchange these implementations seamlessly.

In Chapter 6, we talk about Java generics, which was one of the extensions added to Java 1.5. Generics
allows us to write parameterized classes, interfaces, and methods where parameters are type names. This also
helps us to detect more bugs at compile time and fix them then and there.

Chapter 7 throws light on the concept of Java reflection APIs. The reflection API in Java enables us to
examine and/or modify the properties, behaviour, or other elements of an object at run-time. An understanding
of reflection will help us in comprehending the tools (NetBeans, Eclipse, Spring) that use this API.

Chapter 8 covers the Java Native Interface (JNI) which is an API that allows Java code to interoperate
with applications and libraries written in other programming languages such as C and C++. It is a two-way
interface that allows Java applications to invoke the native method, and native methods to interact with the
Java code.

Chapter 9 gives us a detailed understanding of Java AWT concepts, background philosophy, and practical
concerns with an introduction to Swing which is an extension to AWT.

Chapter 10 expounds on the Java APIs for XML (eXtensible Markup Language), which is a key technology
for structured data representation and transfer. It is used virtually everywhere, from small- to large-scale
legacy applications. Java also promotes portability and is an obvious choice to work with XML documents.
Java APIs for XML make it easier to use XML from the Java programming language. It also provides sample
applications that you can run.

Chapter 11 outlines how applications process some input and generate some output. Java provides a rich
set of classes and interfaces as a separate package java.io for such Input and Output (I/O). Java also provides
another package java.nio containing Non-blocking I/O (NIO) API, which, in some situations, can give a big
performance boost over blocking IO. In this chapter, we have also given an overview of how all these classes
are grouped with their purposes.

Chapter 12 demonstrates how one can use Java network APIs to write basic network programs easily and
quickly. Java has some distinct advantages over other programming languages as far as network applications
are concerned. In addition, Java can handle network security issues extremely well. Features such as platform
independence and garbage collection allows us to develop efficient and elegant network applications without
worrying about system crashes, spread of viruses, or stealing of sensitive data.

viii  PREFACE

In Chapter 13, we lay emphasis on Java implementation of socket API. Sockets can be used as lower-level
tools for IPC in local processes as well as processes running on different computers. Sockets are particularly
useful when we want to write client–server applications.

In Chapter 14, we explore how Java’s object-oriented version of RPC (known as Remote Method
Invocation) can be easily used to develop sophisticated networking applications. This technology elevates
network programming to a higher plane.

Chapter 15 deals with the primary protocols for delivery and accessing of emails such as Simple Mail
Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access Protocol (IMAP).

In Chapter 16, we cover the structure of applets, their execution philosophy, and other applet-specific
issues. Applets are Java programs that usually run within web browsers and give more power to the browsers.

Chapter 17 outlines XML-RPC, the XML-based Remote Procedure Call (RPC) protocol. In this protocol,
eXtensible Markup Language (XML) is used to describe a Remote Procedure Call. It is a very simple and
portable way to call remote procedures over HTTP.

Chapter 18 illustrates the Simple Object Access Protocol (SOAP), which is an extension to XML-RPC.
SOAP can be used in a wide variety of systems ranging from messaging systems to RPC.

Chapter 19 brings to the fore almost all the aspects of Java security mechanism from secure language
features to the security APIs, tools, and built-in provider services, highlighting key packages and classes.

Chapter 20 elucidates the powerful Java server-side technology called Servlets. They usually run inside a
Java-enabled web server and extend its capabilities. Since servlets are written in Java and Java is an extremely
powerful language, even a simple web server bundled with servlets becomes unquestionably powerful.

Chapter 21 describes the Java Server pages which is an extension to Servlets. It is one of the many server-
side technologies used to build dynamic web applications that has caught the attention of web developers due
to several reasons.

In Chapter 22, we discuss an important technique called Java DataBase Connectivity (JDBC), which
allows us to access databases through Java programs. It provides Java classes and interfaces to fire SQL and
PL/SQL statements, process results (if any), and perform other operations common to databases.

Chapter 23 presents Hibernate, an open source Object Relational Mapping (ORM) tool. It allows us to
persist Plain Old Java Objects (POJO) to the database.

Chapter 24 examines the Java Naming and Directory Service. It allows us to associate (called binding)
names with objects and to find (called lookup) those objects later by their names.

Chapter 25 reviews another Java technology used to write distributed applications that can communicate
in a loosely coupled way. Messaging is often used to coordinate programs in dissimilar systems or written
in different programming languages.

In Chapter 26, we study some other J2EE technologies, especially, JavaBean and EJB. Since JavaBean
is the fundamental component technology and is a basic building block of EJB, we have primarily focused
on this technology in this chapter.

Chapter 27 simplifies the generic concept of CORBA (Common Object Request Broker Architecture),
which is a specification that describes how heterogeneous objects can interoperate. CORBA objects can be
created/accessed using virtually any programming language (such as Java, C, C++, Smalltalk, and Ada) and
can exist on any platform (such as Windows, Unix, Linux, and Solaris).

In Chapter 28, we look into the primary concepts of Java Server Faces (JSF), which is a Java-based
framework for creating web-based user interfaces. It combines the power of Struts and Swing and follows
Model–View–Controller (MVC) architecture. Many examples, starting with a simple example JSF application,
have been provided.

PREFACE﻿  ix

ACKNOWLEDGEMENTS

Bringing together important advanced Java concepts under a common roof is no easy task. The exercise was
even more difficult due to the large volume of the manuscript. I, therefore, had a very tough time. However,
the support from colleagues and many other key people led to successful completion of this project. I thank
all of them.

I am extremely grateful to the reviewers, as their feedback helped me in improving the technical accuracy
and presentation of the chapters.

It is said that “behind every successful man, there is a woman”. People will decide if I am successful.
However, the woman in front, not behind me, is none other than my beloved wife Banhishikha Roy. No words
can describe her contribution towards this work. I acknowledge her patience from the bottom of my heart. She
always took some time out to help me develop the manuscript. This book would not have been successfully
completed without her understanding and cooperation.

The other “woman” is my six-year-old little girl, Rimisha. While working on the more demanding topics
of the manuscript, my little daughter’s presence, even late at night, would calm me and bring a smile to my
face. I love her dearly

I have taken utmost care to eliminate any technical or typographical errors in the book and urge
readers to send in their comments, constructive criticism, and suggestions, preferably through email
(u_roy@it.jusl.ac.in and royuttam@gmail.com). I appreciate your feedback and hope you enjoy reading
this book.

Uttam K. Roy

Brief Contents

Features of the Book  iv

Preface  vi

Detailed Contents  xi

PART I: INSIDE JAVA� 1

	 1.	 Java Tools� 3
	 2.	 Exception Handling� 26
	 3.	 Multi-threading� 45
	 4.	 Garbage Collection� 68
	 5.	 Collection Framework� 92
	 6.	 Generic Programming� 113
	 7.	 Reflection� 133
	 8.	 Java Native Interface� 158
	 9.	 AWT and Swing� 182
	10.	 Java and XML� 217
	11.	 Input/Output� 247

PART II: NETWORK PROGRAMMING� 271

	12.	 Basic Networking � 273
	13.	 Socket Programming � 287
	14.	 Remote Method Invocation� 348
	15.	 Java Mail API� 392
	16.	 Applets� 421
	17.	 Java XML-RPC� 445
	18.	 Java and SOAP� 475

PART III: ENTERPRISE JAVA� 501

19.	 Security� 503
20.	 Servlet� 557
21.	 Java Server Pages� 583
22.	 Java Database Connectivity (JDBC)� 625
23.	 Hibernate� 657
24.	 Java Naming and Directory Interface� 692
25.	 Java Message Service� 714
26.	 Introduction to J2EE� 739
27.	 Java and CORBA� 770
28.	 Java Server Faces� 801
Answers to Objective-type Questions  841
Index  849
About the Author  855

Detailed Contents

Features of the Book  iv

Preface  vi

Brief Contents  x

PART I: INSIDE JAVA� 1

1.	 Java Tools� 3
	 1.1	 Introduction� 3
	 1.2	 Javadoc� 3
	 1.3	 Javap� 7
	 1.4	 Jcmd� 9
	 1.5	 Jhat� 12
	 1.6	 Jdb� 13
	 1.7	 Jar � 18
	 1.7.1	 Syntax  19
	 1.7.2	 Creating a JAR File  19
	 1.7.3	 Viewing Contents of a JAR File  20
	 1.7.4	 Extracting the Content  20
	 1.7.5	 Updating a JAR File  21
	 1.7.6	 Manifest File  21

2.	 Exception Handling� 26
	 2.1	 Exceptions� 26
	 2.2	 Handling Exceptions� 27
	 2.3	 An Example� 28
	 2.4	 Types of Exceptions� 28
	 2.4.1	 Checked Exceptions  29
	 2.4.2	 Unchecked/Runtime Exceptions  29
	 2.5	 Catching Exception� 29
	 2.6	 Tracing Stack� 30
	 2.6.1	 Multiple Catch Blocks  30
	 2.6.2	 throw  31
	 2.6.3	 throws  33
	 2.6.4	 finally  34
		 An example  35
		 Some properties  36
	 2.6.5	 try-with-resources Statement  37
	 2.6.6	 Nested try-catch  39
	 2.7	 Custom Exception Classes� 40

3.	 Multi-threading� 45
	 3.1	 Introduction� 45
	 3.2	 Main Thread� 45

	 3.3	 Using Sleep� 46
	 3.4	 Creating Thread� 47
	 3.4.1	 Extending Thread  47
	 3.4.2	 Implementing Runnable  48
	 3.5	 Interrupting Thread� 49
	 3.6	 Suspending and Resuming� 51
	 3.7	 Thread Priority� 52
	 3.8	 Using join()� 53
	 3.9	 Synchronization� 55
	 3.9.1	 �Synchronization and Atomicity  59
	 3.10	 Deadlock� 59
	 3.11	 Inter-thread Communication� 61

4.	 Garbage Collection� 68
	 4.1	 Introduction� 68
	 4.2	 Exploring JVM� 69
	 4.2.1	 Performance  69
	 4.3	 JVM Options� 70
	 4.4	 Garbage Collection� 70
	 4.5	 Generational Garbage Collector� 70
	 4.6	 HotSpot’s Garbage Collection� 72
	 4.7	 Available Collectors� 75
	 4.7.1	 Serial Collector  75
	 4.7.2	 Parallel Collector  76
	 4.7.3	 �Parallel Compacting

Collector  77
	 4.7.4	 Concurrent Collector  78
	 4.8	 Some Commands� 79
	 4.9	 Tools� 80
	 4.9.1	 jstatd  80
	 4.9.2	 jps  80
	 4.9.3	 jmap  80
	 4.9.4	 jstat  81
	 4.10	 Tuning Memory Size� 82
	 4.11	 Tuning Heap Size� 82
	 4.12	 Tuning Young Generation� 83
	 4.12.1	 Tuning Survivor Space  83

xii  CONTENTS

	 4.13	 Accessing GC from Java Program� 83
	 4.13.1	 Inspecting GC Parameters  83
	 4.13.2	 Explicit Garbage Collection  84
	 4.13.3	 finalize()  84
	 4.14	 Appendix� 84

5.	 Collection Framework� 92
	 5.1	 Introduction� 92
	 5.2	 Benefits� 93
	 5.3	 Collection Interfaces� 94
	 5.4	 Collection Implementation� 95
	 5.4.1	 Set  95
	 	 HashSet  96
	 	 LinkedHashSet  97
	 5.4.2	 SortedSet  98
	 	 TreeSet  98
	 5.4.3	 List  98
	 	 ArrayList  99
	 	 LinkedList  100
	 5.4.4	 Queue  100
	 	 LinkedList  101
	 	 PriorityQueue  102
	 5.4.5	 Map  102
	 	 HashMap  103
	 	 LinkedHashMap  104
	 5.4.6 	SortedMap  105
	 	 TreeMap  105
	 5.5	 Algorithms� 105
	 5.5.1	 Sorting  106
	 	 Custom sort  106
	 5.5.2	 Shuffling  106
	 5.5.3	 Manipulation  107
	 	 Reversing  107
	 	 Swapping  107
	 	 Copying  107
	 	 Filling  107
	 	 Adding  107
	 5.5.4	 Searching  108
	 5.5.5	 Finding Extreme Values  108
	 5.5.6	 Counting Frequency  108

6.	 Generic Programming� 113
	 6.1	 Introduction� 113
	 6.2	 Motivation� 114
	 6.3	 Solution � 114
	 6.4	 Collection Framework and Generics � 116
	 6.5	 Type Naming � 117
	 6.6	 Generic Methods and Constructors � 117

	 6.7	 Type Inference � 118
	 6.7.1	 Generic Methods  118
	 6.7.2	 Constructors  119
	 6.7.3	 Classes  119
	 6.8	 Bounded Type Parameters� 119
	 6.8.1	 Multiple Bounds  120
	 6.9	 Generics and Sub-type� 121
	 6.10	 Wildcards � 122
	 6.10.1	 Upper-bound Wildcard  123
	 6.10.2	 Lower-bound Wildcard  124
	 6.10.3	 Unbounded Wildcard  124
	 6.10.4	 Wildcard and Sub-typing  125
	 6.11	 Type Erasure � 125
	 6.12	 Backward Compatibility� 126
	 6.13	 Restrictions on Generics � 127
	 6.13.1	 �Cannot Specify Primitive

Type Arguments  127
	 6.13.2	 �Cannot Declare Static Fields

of Type Parameters  127
	 6.13.3	 �Cannot Create Instances of

Type Parameters  127
	 6.13.4	 �Cannot Use instanceof  128
	 6.13.5	 �Cannot Create Generic

Arrays  128
	 6.13.6	 Limitations on Exception  128
	 6.13.7	 Cannot Use .class  129

7.	 Reflection� 133
	 7.1	 Introduction � 133
	 7.1.1	 Pros and Cons of Reflection  133
	 7.2	 Classes � 134
	 7.2.1	 Class  134
	 	 Using getClass()  134
	 	 Using .class   135
	 	 Using forName()  135
	 	 Using TYPE field  136
	 7.2.2	 Modifier  136
	 7.3	 Inspecting Class� 137
	 7.3.1	 Getting Class Information  137
	 7.3.2	 Getting Class Modifiers  138
	 7.3.3	 �Finding Implemented

Interfaces  138
	 7.3.4	 Finding Inheritance Hierarchy  139
	 7.3.5	 Finding Annotations  139
	 7.4	 Finding Class Members� 140
	 7.4.1	 Getting Fields  140
	 7.4.2	 Getting Methods  142
	 7.4.3	 Getting Constructors  143

CONTENTS  xiii

	 7.5	 Working with Class Members� 143
	 7.5.1	 Field Type  143
	 7.5.2	 Field Modifiers  144
	 7.5.3	 Accessing Fields  144
		 �Accessing forbidden

  fields  145
		 �Modifying final

  fields  145
	 7.5.4	 Method Modifiers  146
	 7.5.5	 Method Information  146
	 7.5.6	 Invoking Methods  147
		 �Accessing forbidden

  methods  147
	 7.5.7	 Debugging with Reflection  148
	 7.5.8	 �Getting Constructor

Modifiers  149
	 7.5.9	 Instantiating Objects  149
	 7.5.10	 Arrays  150
		 �Checking array

  types  150
		 �Creating new

  arrays  151
	 7.6	 Dynamic Proxy� 151
	 7.6.1	 Designing Dynamic Proxy  151
	 7.6.2	 Invocation Handlers  153
	 7.7	 Disadvantage of Reflection� 155

8.	 Java Native Interface� 158
	 8.1	 Introduction� 158
	 8.2	 Java Program with C/C++� 159
	 8.2.1	 Writing Java Program  159
	 8.2.2	 Compiling Java Program  160
	 8.2.3	 Create Header File  160
	 8.2.4	 Implement Native Method  161
	 8.2.5	 Create Shared Library  162
	 8.2.6	 Running the Program  162
	 8.3	 Using C++� 163
	 8.4	 Syntax Difference in C/C++� 163
	 8.5	 Using Java Package� 164
	 8.5.1	 �JNI Types and Data

Structures  165
	 8.6	 Passing Arguments� 167
	 8.6.1	 Passing Primitives  167
	 8.6.2	 Passing Strings  168
	 8.6.3	 Passing Primitive Array  169
	 8.7	� Accessing Java Code from Native

Program� 171
	 8.7.1	 Passing Object Array  172

	 8.8	 Creating Objects� 174
	 8.9	 Exception Handling in JNI� 174
	 8.10	 Appendix� 177

9.	 AWT and Swing� 182
	 9.1	 Introduction� 182
	 9.2	 AWT Class Hierarchy� 183
	 9.2.1	 Component  183
	 9.2.2	 Container  183
	 9.2.3	 Controls  185
	 9.3	 Creating Container� 185
	 9.3.1	 Empty Frame  185
	 9.3.2	 Frame with a Title  185
	 9.4	 Adding Components� 186
	 9.4.1	 Adding a Label  186
	 9.4.2	 Adding a Button  186
	 9.5	 Layout� 187
	 9.5.1	 FlowLayout  187
	 9.5.2	 GridLayout  187
	 9.5.3	 BorderLayout  188
	 9.6	 Using Panel� 189
	 9.7	 Text Field� 189
	 9.8	 TextArea� 190
	 9.9	 List� 190
	 9.10	 Checkbox� 191
	 9.11	 Check Box Group� 191
	 9.12	 Choice� 192
	 9.13	 Event Handling� 192
	 9.13.1	 Event Sources  192
	 9.13.2	 Event Classes  192
	 9.13.3	 Event Listeners  194
	 9.13.4	 Example  194
	 9.13.5	 Adapter Classes  197
	 9.14	 Dialog Boxes � 198
	 9.14.1	 Simple Dialog  198
	 9.14.2	 File Dialog  199
	 9.15	 ScrollBar � 200
	 9.16	 Menu � 200
	 9.16.1	 Popup Menu  201
	 9.17	 Swing� 202
	 9.17.1	 Containment Hierarchy  203
	 9.17.2	 Adding Components  203
	 9.17.3	 JTextField  203
	 9.17.4	 JPasswordField  204
	 9.17.5	 JTable  204
	 9.17.6	 JComboBox  205
	 9.17.7	 JProgressBar  205
	 9.17.8	 JList  206

xiv  CONTENTS

	 9.17.9	 JTree  207
	 9.17.10	 JColorChooser  209
	 9.17.11	 Dialogs  210
	 9.17.12	 �Appendix A: Methods of

Important Event Listener
Interfaces  212

10.	  Java and XML� 217
	 10.1	 Introduction� 217
	 10.2	 XML and DOM� 217
	 10.3	 DOM Nodes� 219
	 10.4	 The Node Interface� 221
	 10.4.1	 Node Properties  221
	 10.5	 Document Node� 225
	 10.5.1	 �Document Node

Properties  225
	 10.5.2	 Document Node Methods  225
	 10.6	 Element Node� 227
	 10.6.1	 Element Node Properties  227
	 10.6.2	Element Node Methods  227
	 10.7	 Text Node� 228
	 10.7.1	 Text Node Properties  228
	 10.7.2	 Text Node Methods  228
	 10.8	 Attr Node� 229
	 10.8.1	 Attr Node Properties  229
	 10.9	 Parsing XML� 229
	 10.9.1	 Creating Document  230
	 10.9.2	 Navigating DOM Tree  230
		 Using root node  230
		 �Getting all child nodes  231
		 �Using getElements

  ByTagName  232
		 �Using getElementById  233
		 �Getting attributes

  of an element  233
		 Viewing DOM  235
	 10.9.3	 Manipulating DOM Tree  236
		 Creating a node  236
		 �Setting an attribute  237
		 Adding a node  237
		 Inserting a node  238
		 Deleting a node  239
		 Cloning a node  240
	 10.9.4	 Java DTD Validation  241

11.	  Input/Output� 247
	 11.1	 Introduction� 247
	 11.2	 Streams� 247
	 11.2.1	 Byte Stream  249
	 11.2.2	 Character Stream  251
	 11.2.3	 Bridging Stream  251
	 11.2.4	 Buffered Stream  252
		 �Buffered byte

  stream  252
		 �Buffered character

  stream  252
	 11.2.5	 Reading from Keyboard  253
		 �Reading character  253
		 Reading string  253
	 11.2.6	 Console  254
	 11.3	 Formatting� 254
	 11.4	 Data Streams� 255
	 11.5	 Object Stream� 255
	 11.6	� Reading/writing Arrays via Streams� 256
	 11.7	 Pipes� 256
	 11.8	 File I/O� 258
	 11.9	 Path� 258
	 11.9.1	 Creating a Path  258
	 11.9.2	 �Retrieving Path Information 

258
	 11.9.3	 Path Operations  259
		 �Removing redundancy  259
		 �Converting to URI  259
		 Joining paths  259
	 11.9.4	 Comparing Paths  259
	 11.10	 File� 260
	 11.10.1	 Checking Existence  260
	 11.10.2	 Creating File  260
	 11.10.3	 Deleting File  260
	 11.10.4	 Copying a File  260
	 11.10.5	 File Attribute  261
	 11.10.6	 �Reading, Writing, Creating

Files  261
	 11.10.7	 Random Access Files  262
	 11.10.8	  Working with Directories  263
		 �Listing Directory

  Contents  263
	 11.10.9	 �Walking Directory

Tree  263
	 11.10.10	 Watching Directory  264

CONTENTS  xv

PART II: NETWORK PROGRAMMING� 271

12.	 Basic Networking � 273
	 12.1	 Java and the Net� 273
	 12.2	� Java Networking Classes and

Interfaces� 273
	 12.3	 Getting Network Interfaces� 274
	 12.3.1	 Getting Interface Addresses  275
	 12.3.2	 Getting Interface Properties  276
	 12.4	 URL� 277
	 12.4.1	 Creating URL  277
	 12.4.2	 Parsing URL  277
	 12.4.3	 Web Page Retrieval  278
	 12.5	 URLConnection� 279
	 12.6	 HttpURLConnection� 280
	 12.6.1	 �URLEncoder/URLDecoder  281
	 12.7	 Proxy� 283
	 12.7.1	 �Using Command Line

Arguments  283
	 12.7.2	 Using System Properties  283
	 12.7.3	 Using Proxy Class  283
	 12.8	 ProxySelector� 283

13.	  Socket Programming � 287
	 13.1	 Introduction� 287
	 13.2	 Client/server Programs� 288
	 13.3	 Sockets� 289
	 13.3.1	 Types of Socket  290
	 13.3.2	 Ports  290
	 13.3.3	 Socket Address  290
	 13.3.4	 Socket Address and Java  291
	 13.3.5	 Reserved Ports  291
	 13.4	 TCP Sockets� 292
	 13.4.1	 The ServerSocket Class  294
	 13.4.2	 The Socket Class  296
	 13.4.3	 An Application  297
	 13.4.4	 Complete Example  298
	 13.4.5	 Running Example Program  299
	 13.4.6	 �Handling Multiple Client

Requests  300
		 Iterative solution  300
	 13.4.7	 Concurrently Solution  302
	 13.4.8	 �Sending and Receiving Objects

Using TCP  306
		 �Serializing an object  306
		 �Reconstructing objects  308

	 13.4.9	 An Example  309
	 13.4.10	 Writing the Server  310
		 �Writing interfaces  310
		 �Implementing

  interfaces  310
		 �Implementing

  server  311
		 �Implementing client  312
		 �Running the example  313
	 13.5	 UDP Sockets� 313
	 13.5.1	 Datagram Packets  315
	 13.5.2	 Datagram Server  315
	 13.5.3	 Datagram Client  317
	 13.5.4	 �Receiving Multiple

Datagrams  319
	 13.5.5	 �Sending and Receiving Objects

Using UDP  321
	 13.5.6	 Sending an Object  321
	 13.5.7	 �Reconstructing

  the Object  322
	 13.5.8	 Running the Application  323
	 13.6	 Multicasting� 323
	 13.7	 Multicast Sockets� 323
	 13.7.1	 Multicast Addresses  324
	 13.7.2	 MulticastSocket Class  325
	 13.7.3	 Sending Data  326
	 13.7.4	 Receiving Data  326
	 13.7.5	 Complete Example  327
	 13.7.6	 �Another Multicasting

Example  328
	 13.7.7	 �A Text Conference

Example  330
	 13.8	� Appendix A (Useful Methods of

ServerSocket Class)� 332
	 13.8.1	 Constructors  332
	 13.8.2	 Methods  332
	 13.9	� Appendix B (Useful Methods of

Socket Class)� 334
	 13.9.1	 Constructors  334
	 13.9.2	 Methods  335
	 13.10	� Appendix C (Useful Methods of

DatagramSocket Class)� 338
	 13.10.1	 Constructors  338
	 13.10.2	 Methods  338

xvi  CONTENTS

	 13.11	� Appendix D (Useful Methods of
DatagramPacket Class)� 341

	 13.11.1	 Constructors  341
	 13.11.2	 Methods  342
	 13.12	� Appendix E (Useful Methods of

MulticastSocket Class)� 343
	 13.12.1	 Constructors  343
	 13.12.2	 Methods  343

14.	  Remote Method Invocation� 348
	 14.1	 Introduction� 348
	 14.2	 Remote Method Invocation� 348
	 14.2.1	 Application Components  349
	 14.2.2	 Basic Steps  350
	 14.3	 Java RMI Interfaces and Classes� 351
	 14.4	 An Application� 352
	 14.4.1	 Writing an Interface  352
	 14.4.2	 �Writing Implementation

class  354
		 �Implementing the remote

  interface  354
		 �Providing method

  implementation  355
		 �Writing Constructor    356
	 14.4.3	 Writing an RMI Server  356
		 �Creating a remote

  object  357
		 �Exporting the object  357
		 �Registering the stub  360
	 14.4.4	 Writing an RMI Client  361
	 14.5	 Compiling the Program� 363
	 14.5.1	 Compiling Server  363
	 14.5.2	 Compiling Client  363
	 14.6	 Generating Stub Classes� 364
	 14.7	 Running the Program� 364
	 14.7.1	 Start Server  364
	 14.7.2	 Start Client  365
	 14.7.3	 �Understanding Object

Registry  365
	 14.7.4	 Using RMI URL  367
	 14.8	 Callback� 369
	 14.8.1	 Creating Interfaces  370
	 14.8.2	 Implementing Interfaces  371
	 14.8.3	 Writing the Server  371
	 14.8.4	 Writing the Client  372
	 14.8.5	 Compiling the Application  372
	 14.8.6	 Running the Application  372
	 14.9	 Another Callback Application� 373

	 14.10	 Dynamic Object Activation� 375
	 14.10.1	 Basic Idea  375
	 14.10.2	 Implementation  375
	 14.10.3	 �The Activation

Protocol  375
	 14.10.4	 An Example  376
		 �Writing implementation

  class  376
		 �Writing server

  class  377
		 �Compiling and running the

  program  379
	 14.11	 Dynamic Class Downloading� 379
	 14.12	 An Example� 380
	 14.12.1	 Writing an RMI Server  381
		 �Write an interface  381
		 �Implement the interface 

  381
		 �Implement the server  382
	 14.12.2	 Writing a Client  384
	 14.12.3	 Compiling the Program  385
		 �Creating interface

  classes  386
		 �Compiling server  386
		 �Compiling client  387
	 14.12.4	 Running the Application  387
	 14.12.5	 Start Client  388

15.	  Java Mail API� 392
	 15.1	 E-mail � 392
	 15.2	 JavaMail API� 392
	 15.3	 Installing JavaMail API� 393
	 15.4	 Sending Emails� 393
	 15.4.1	 �Creating a Session

Object  394
	 15.4.2	 Compose a Message  395
	 15.4.3	 Sending the Mail  396
	 15.4.4	 �Compiling and Running the

Program  397
	 15.5	� Sending Emails Directly

Using Socket� 397
	 15.6	 Secured SMTP� 398
	 15.6.1	 Using SSL  399
	 15.6.2	 Using TLS  399
	 15.6.3	 �Providing Authentication

Information  400
	 15.7	 Email Message Revisited� 403
	 15.7.1	 MIME  403

CONTENTS  xvii

	 15.7.2	 Single-part Message  404
	 15.7.3	 �Multi-part MIME

Message  405
	 15.7.4	 �Composing a Mixed

Message  406
	 15.7.5	 �Compiling the Program  407
	 15.8	 Email with HTML Content� 408
	 15.9	 Accessing Email� 409
	 15.9.1	 POP  409
	 15.9.2	 IMAP  410
	 15.9.3	 Secured Mail Access  411
	 15.9.4	 JavaMail API Support  411
	 15.9.5	 Reading Email  411
	 15.9.6	 Using Authenticator  413
	 15.10	 Deleting Mails� 413
	 15.11	 Replying to Mails � 414
	 15.12	 Forwarding Mails � 414
	 15.13	 Copying Emails � 415
	 15.14	� List of SMTP, POP3 and

IMAP Servers� 416

16.	  Applets� 421
	 16.1	 Client Side Java� 421
	 16.2	 Life Cycle� 422
	 16.2.1	 init()  423
	 16.2.2	 start()  423
	 16.2.3	 paint()  424
	 16.2.4	 stop()  425
	 16.2.5	 destroy()  425
	 16.3	 Writing an Applet� 426
	 16.4	 Generating Class File� 426
	 16.5	 Running the Applet� 426
	 16.5.1	 The Applet Tag  426
	 16.6	 Security� 430
	 16.7	 Utility Methods� 431
	 16.8	 Using Status Bar� 432
	 16.9	 AppletContext Interface� 432
	 16.10	 Document Base and Code Base� 433
	 16.11	 Passing Parameter� 434
	 16.11.1	 Retrieving Parameter  434
	 16.12	 Event Handling� 435
	 16.13	� Communication Between Two

Applets� 436
	 16.13.1	 �Using getApplet()

Method  436
	 16.13.2	 �Using getApplets()

Method  437
	 16.13.3	 A Sample Application  438

	 16.14	 Loading Web Pages� 439
	 16.15	 Interacting with JavaScript Code� 440

17.	  Java XML-RPC� 445
	 17.1	 Introduction  445
	 17.2	� XML-RPC Operational Principle  446
	 17.3	 Data Types� 447
	 17.3.1	 Basic Data Types  447
	 17.3.2	 Compound Data Types  449
	 17.4	 XML-RPC Messages� 451
	 17.4.1	 Request Message  452
	 17.4.2	 Response Message  453
	 17.4.3	 Fault Message  454
	 17.5	 Java XML-RPC� 454
	 17.6	� Installing the Apache XML-RPC

Java Library� 455
	 17.7	� XML-RPC versus Java

Data Types� 455
	 17.8	 Example� 456
	 17.8.1	 Writing the Server  456
	 17.8.2	 Writing the Client  457
	 17.8.3	 Running the Application  459
	 17.9	 Dynamic Proxies� 460
	 17.10	 Using XmlRpcServlet� 462
	 17.11	 Using ServletWebServer� 464
	 17.12	 Introspection� 466
	 17.12.1	 Example  467
		 �Listing methods  468
		 �Finding method signature 

  469
		 Getting help  470
	 17.13	 Limitations of XML-RPC� 471

18.	 Java and Soap� 475
	 18.1	 Introduction� 475
	 18.2	 Differences with XML-RPC� 475
	 18.3	 Soap Architecture� 476
	 18.4	 SOAP Flavors� 477
	 18.5	 SOAP Messages� 477
	 18.6	 SOAP Binding� 479
	 18.7	 RPC Using SOAP� 479
	 18.8	 Web Service� 480
	 18.9	 JAX-WS� 480
	 18.9.1	 Developing Web Service  481
	 18.9.2	 Deploying Web Service  482
	 18.9.3	 Invoking Web Service  483
	 18.9.4	 �Tracking SOAP

messages  485

xviii  CONTENTS

	 18.9.5	 Using WSDL  486
	 18.9.6	 Document Style  489
	 18.9.7	 �Using Tomcat to Deploy Web

Service  490

	 18.9.8	 Using Ant to Build War File  492
	 18.9.9	 Asynchronous Client  493
		 Polling  494
		 Callback  495

PART III: ENTERPRISE JAVA� 501

19.	 Security� 503
	 19.1	 Introduction	 503
	 19.2	 Java Security Architecture� 504
	 19.2.1	 Language Security� 504
	 19.2.2	 Basic Security� 504
	 19.2.3	 �Java Cryptography

Architecture (JCA)  505
		 �Secret-key

  cryptography  505
		 �Public-key

  cryptography  506
	 19.2.4	 �Public Key Infrastructure

(PKI)  506
		 �Public key certificates  506
		 Certificate format  506
		 �Digital signature  507
		 �Key and certificate store  507
	 19.2.5	 PKI Tools  507
	 19.3	 Secure Communication� 508
	 19.4	 SSL� 508
	 19.4.1	 What does SSL do?  508
	 19.4.2	 How does it do?  508
	 19.4.3	 An Example  509
		 �Writing the server  509
		 �Writing the client  510
		 �Compiling and running the

  application  510
	 19.4.4	 Using Client Authentication  514
	 19.4.5	 Using KeyStore  515
	 19.4.6	 �Ignoring Server

Certificates  517
	 19.4.7	 Working with HTTPS  517
	 19.5	 keytool Revisited� 519
	 19.5.1	 KeyStore  519
	 19.5.2	 Keystore Entries  520
		 Truststore  520
	 19.5.3	 Keystore Aliases  520
	 19.5.4	 Public Key Generation  520
	 19.5.5	 Changing Password  521

	 19.5.6	 �Generating a Certificate
Chain  521

	 19.5.7	 �Generating a Certificate
Using Openssl  522

	 19.6	 Generating Keys � 524
	 19.6.1	 Public Key Generation  524
	 19.6.2	 �Private Key

Generation  524
	 19.7	 Working with Keystore � 525
	 19.7.1	 Reading Keystore  525
	 19.7.2	 �Extracting Private Keys from

Keystore  525
	 19.7.3	 �Storing Private Key and

Certificate in Keystore  526
	 19.8	 Working with Certificates � 526
	 19.8.1	 �Reading Certificate

Information  527
	 19.8.2	 Creating Certificate  527
	 19.8.3	 Converting Certificates  528
	 19.8.4	 SignedObject  529
	 19.8.5	 SealedObject  531
	 19.8.6	 GuardedObject  534
	 19.9	 Secure RMI  535
	 19.9.1	 �Writing Custom Socket

Factories  538
	 19.10	 Secure XML-RPC� 539
	 19.10.1	 Using XmlRpcServlet  539
	 19.10.2	 �Using Secure

XML-RPC  540
	 19.11	 Signing and Verifying JAR � 542
	 19.11.1	 Signing JAR  542
		 �Signature (.SF) file  543
		 �Signature block file  544
	 19.11.2	 Verifying JAR  544
	 19.12	 Multiple Signatures for a JAR File� 544
	 19.13	 Access Control� 545
	 19.13.1	 �Installing Built-in Security

Manager  546
	 19.13.2	 Policy Files  546

CONTENTS  xix

	 19.13.3	 Policy File Syntax  547
		 �Keystore entry  547
		 Grant entry  548
		 �Permission entry  549
	 19.13.4	 �Custom Permission

Class  549
	 19.14	 An application	 550

20.	  Servlet� 557
	 20.1	 Server-side Java� 557
	 20.2	 Advantages Over Applets� 558
	 20.3	 Servlet Alternatives� 558
	 20.3.1	 �Common Gateway Interface

(CGI)  558
	 20.3.2	 Proprietary APIs  558
	 20.3.3	 �Active Server Pages

(ASP)  559
	 20.3.4	 Server-side JavaScript  559
	 20.4	 Servlet Strengths� 559
	 20.4.1	 Efficient  559
	 20.4.2	 Persistent  559
	 20.4.3	 Portable  559
	 20.4.4	 Robust  559
	 20.4.5	 Extensible  559
	 20.4.6	 Secure  560
	 20.4.7	 Cost-effective  560
	 20.5	 Servlet Architecture� 560
	 20.6	 Servlet Life Cycle� 561
	 20.6.1	 init()  562
	 20.6.2	 service()  562
	 20.6.3	 destroy()  562
	 20.6.4	 Other Methods  563
	 20.7	 GenericServlet� 563
	 20.8	 HttpServlet� 563
	 20.9	 First Servlet� 564
	 20.9.1	 �Installing Apache Tomcat

Web Server  565
	 20.9.2	 �Building and Installing

Servlet  566
	 20.9.3	 Invoking Servlet  567
	 20.10	 Passing Parameters to Servlets� 568
	 20.10.1	 �Passing Parameters Directly

to a Servlet  568
	 20.10.2	 �Passing Parameters Directly

to a Servlet  568
	 20.11	 Retrieving Parameters� 569
	 20.12	 Server-Side Include� 571

	 20.13	 Cookies� 574
	 20.13.1	 Limitations of Cookies  575
	 20.14	 Filters� 575
	 20.14.1	 �Deploying Filter  577
	 20.15	 Problems with Servlet� 577
	 20.16	 Security Issues� 578
	 20.17	� Appendix A: List of SSI Servlet

Variables� 578

21.	 Java Server Pages� 583
	 21.1	 Introduction and Marketplace� 583
	 21.2	 JSP and HTTP� 584
	 21.3	 JSP Engines� 584
	 21.3.1	 Tomcat  584
	 21.3.2	 Java Web Server  586
	 21.3.3	 WebLogic  586
	 21.3.4	 WebSphere  586
	 21.4	 How JSP Works� 586
	 21.5	 JSP and Servlet� 587
	 21.5.1	 �Translation and

Compilation  587
	 21.6	 Anatomy of a JSP Page� 590
	 21.7	 JSP Syntax� 591
	 21.8	 JSP Components� 591
	 21.8.1	 Directives  591
		 Page directive  592
		 Include directive  594
	 21.8.2	 Comments  594
	 21.8.3	 Expressions  595
	 21.8.4	 Scriptlets  595
		 �Conditional processing  596
	 21.8.5	 Declarations  596
	 21.8.6	 Scope of JSP Objects  597
	 21.8.7	 Implicit Objects  598
	 21.8.8	 �Variables, Methods, and

Classes  600
		 Synchronization  601
	 21.8.9	 Standard Actions  602
	 21.8.10	 Tag Extensions  606
		 Tag type  606
		 Writing tags  606
	 21.8.11	 �Iterating a Tag Body  609
	 21.8.12	 �Sharing Data Between JSP

Pages  611
	 21.9	 Beans� 612
	 21.9.1	 useBean  612
	 21.9.2	 setProperty  613

xx  CONTENTS

	 21.9.3	 getProperty  613
	 21.9.4	 Complete Example  613
	 21.9.5	 Other Usage  614
	 21.10	 Session Tracking� 614
	 21.10.1	 Hidden fields  614
	 21.10.2	 URL Rewriting  616
	 21.10.3	 Cookies  616
	 21.10.4	 Session API  617
	 21.11	� Users Passing Control and Data

between Pages� 619
	 21.11.1	 Passing Control  619
	 21.11.2	 Passing Data  619
	 21.12	� Sharing Session and Application

Data� 620

22.	 � Java Database Connectivity
(JDBC)� 625

	 22.1	 Introduction� 625
	 22.2	 JDBC Drivers� 625
	 22.2.1	 �JDBC-ODBC Bridge

(Type 1)  626
	 22.2.2	 �Native-API, Partly Java

(Type 2)  626
	 22.2.3	 �Middleware, Pure Java

(Type 3)  626
	 22.2.4	 �Pure Java Driver

(Type 4)  626
	 22.3	 JDBC Architecture� 626
	 22.4	 JDBC Classes and Interfaces� 627
	 22.5	 Basic Steps� 627
	 22.6	 Loading a Driver� 628
	 22.7	 Making a Connection� 629
	 22.8	 Execute SQL Statement� 631
	 22.9	 SQL Statements� 631
	 22.9.1	 Simple Statement  632
	 22.9.2	 Atomic Transaction  635
	 22.9.3	 Pre-compiled Statement  637
	 22.9.4	 �SQL Statements to Call

Stored Procedures  638
	 22.10	 Retrieving Result� 640
	 22.11	 Getting Database Information� 641
	 22.12	 Scrollable and Updatable ResultSet� 642
	 22.12.1	 Scrollability Type  643
	 22.12.2	 Concurrency Type  643
	 22.12.3	 Examples  643
	 22.13	 Result Set Metadata� 647

23.	  Hibernate� 657
	 23.1	 Introduction � 657
	 23.2	 Installing Hibernate � 658
	 23.3	 Basic Steps � 658
	 23.4	 Writing POJO Class� 658
	 23.5	 Creating a Table � 659
	 23.6	 Writing a Hibernate Application� 659
	 23.7	� Compiling and Running

Application� 663
	 23.8	 Using Annotation � 664
	 23.9	� Environment Setup for Hibernate

Annotation � 664
	 23.10	� Book Application Using

Annotation� 664
	 23.11	� Function of Different

Annotations� 665
	 23.12	 Object Life Cycle � 666
	 23.13	 Hibernate Query Language � 667
	 23.13.1	 From  667
	 23.13.2	 Select  667
	 23.13.3	 Where  668
	 23.13.4	 Filtering  668
	 23.13.5	 Order by  668
	 23.13.6	 Group by  668
	 23.13.7	 Parameter Binding  668
	 23.13.8	 Update  669
	 23.13.9	 Delete  669
	 23.13.10	 Insert  669
	 23.13.11	 Aggregate Methods  70
	 23.14	 Using Native SQL Query � 670
	 23.15	 Named Queries � 670
	 23.15.1	 Defining Named Queries  671
	 23.15.2	 Calling Named Queries  672
	 23.16	 Generating DDL � 673
	 23.17	 Syntax of O/R Mapping File� 674
	 23.18	 Generator Class� 676
	 23.19	 Hibernate Tools � 677
	 23.19.1	 �Using Hibernate Tools

with Ant  677
	 23.19.2	 Ant Task  678
	 23.19.3	 Configuring Task  678
	 23.19.4	 Exporters  679
	 23.19.5	 �Controlling Reverse

Engineering  683
	 23.19.6	 �Controlling POJO Code

Generation  685

CONTENTS  xxi

24.	 � Java Naming and Directory
Interface� 692

	 24.1	 Naming Concepts� 692
	 24.1.1	 Naming Convention  693
	 24.1.2	 Naming Context  693
	 24.1.3	 Binding  693
	 24.2	 Directory Concepts� 694
	 24.2.1	 Directory Context  694
	 24.3	� Java Naming and Directory

Interface� 694
	 24.4	 An Example � 695
	 24.4.1	 Writing the Server  695
	 24.4.2	 Writing the Client  696
	 24.4.3	 Running Application  696
	 24.5	 Specifying JNDI Properties � 697
	 24.6	 Name Servers � 697
	 24.7	 Using ApacheDS � 698
	 24.7.1	 �Installing and Starting

ApacheDS  698
	 24.7.2	 �JNDI Properties for

ApacheDS  699
	 24.8	� Calculator RMI Application

Using LDAP � 699
	 24.9	� Calculator RMI-IIOP Application

Using JNDI � 699
	 24.9.1	 Server  699
	 24.9.2	 Client  700
	 24.9.3	 �Running the Application  700
	 24.10	 Naming Operations � 700
	 24.10.1	 �Adding, Replacing and

Removing Binding  701
	 24.10.2	 Looking Up  701
	 24.10.3	 Renaming  701
	 24.10.4	 Listing  702
		 �Using list()  702
		 �Using listBindings()  702
	 24.11	 Working with Subcontext � 703
	 24.12	 Working with Directory� 703
	 24.12.1	 Reading Attributes  703
	 24.12.2	 �Binding with

Attributes  704
	 24.12.3	 �Creating Subcontext with

Attributes  705
	 24.12.4	 Adding Attributes  705
	 24.12.5	 Modifying Attributes  706
	 24.12.6	 Removing Attributes  706

	 24.12.7	 �Batch Operation on
Attributes  707

	 24.12.8	 Search  707
		 Basic search  707
		 Filters  709

25.	  Java Message Service� 714
	 25.1	 Messaging � 714
	 25.2	 JMS API� 714
	 25.3	 JMS Components � 715
	 25.4	 Messaging Models � 715
	 25.4.1	 Point-to-Point  716
	 25.4.2	 Publish/Subscribe  716
	 25.5	 Message Consumption � 717
	 25.5.1	 Synchronous  717
	 25.5.2	 Asynchronous  717
	 25.6	 Programming Model� 717
	 25.7	 Installing Open MQ � 720
	 25.8	 Writing JMS Application � 722
	 25.9	 Writing a P2P Producer � 722
	 25.9.1	 Running Example  723
	 25.10	� Writing a P2P Synchronous

Consumer� 724
	 25.11	� Writing a P2P Asynchronous

Consumer� 725
	 25.12	 Writing a Pub/Sub Producer � 726
	 25.13	� Writing a Pub/Sub Synchronous

Consumer � 726
	 25.14	 Running this Example � 727
	 25.15	� Writing a Pub/Sub Asynchronous

Consumer � 727
	 25.16	 Browsing Queue� 728
	 25.17	 Using JNDI � 729
	 25.18	 Reliability Mechanisms� 731
	 25.18.1	 Acknowledgement  732
	 25.18.2	 Message Persistence  732
	 25.18.3	 Message Priority  732
	 25.18.4	 Message Expiration  732
	 25.18.5	 Temporary Destinations  733
	 25.19	 Transacted Session � 733

26.	  Introduction to J2EE� 739
	 26.1	 Overview of J2EE� 739
	 26.2	 Introduction to JavaBeans� 740
	 26.2.1	 Properties  741
	 26.2.2	 Accessor Methods  741

xxii  CONTENTS

	 26.3	 Bean Builder� 741
	 26.4	 Advantages of JavaBeans� 742
	 26.5	 BDK Introspection� 742
	 26.5.1	 Design Patterns  743
	 26.6	 Properties� 744
	 26.6.1	 Simple Properties  744
	 26.6.2	 Bound Properties  745
	 26.6.3	 Constrained Properties  748
		 �Implementing constrained

  property support  748
		 �Implementing constrained

  property Listener  749
		 Example  750
	 26.6.4	 Indexed Properties  751
	 26.7	 BeanInfo Interface� 752
	 26.8	 Persistence � 756
	 26.9	 Customizer� 758
	 26.10	 JavaBeans API� 759
	 26.11	 EJB� 761
	 26.11.1	 Benefits of EJB  761
	 26.11.2	 Usage Scenario  761
	 26.11.3	 EJB Architecture   761
	 26.11.4	 Session Beans  762
		 �Stateless session beans  762
	 	 �Stateful session beans  762
	 26.11.5	 Entity Beans  762
	 26.11.6	 Message Driven Beans  763
	 26.12	 Introduction to Struts Framework� 763
	 26.12.1	 Basic Idea  763

27.	 Java and CORBA� 770
	 27.1	 Introduction� 770
	 27.2	 CORBA Architecture� 770
	 27.2.1	 IDL  771
	 27.2.2	 ORB  771
	 27.2.3	 IIOP  771
	 27.2.4	 IOR  771
	 27.3	 Java IDL� 772
	 27.4	 Developing CORBA Applications� 772
	 27.4.1	 �Write an Interface Using

IDL  772
	 27.4.2	 �Mapping IDL Interface to

Java  773
	 27.4.3	 �Implementing the Interface  774
	 27.4.4	 Writing the Server  774
		 �Binding IOR to naming

  service  775

	 27.4.5	 Writing the Client  776
	 27.5	 Compiling Applications� 777
	 27.6	 Running the Application� 777
	 27.7	 Using Properties� 778
	 27.8	 Stringified Object Reference� 779
	 27.9	 Using URL� 780
	 27.9.1	 Using corbaloc  780
	 27.9.2	 Using corbaname  781
	 27.10	 Using Tie� 782
	 27.11	 Persistent Objects� 782
	 27.11.1	 �Running Persistent

Application  784
	 27.12	 Callback� 784
	 27.13	� Using Dynamic Invocation Interface

(DII)� 787
	 27.14	� Using Dynamic Skeleton Interface

(DSI)� 789
	 27.14.1	 Basic Steps  789
	 27.14.2	 An Example  789
	 27.15	 Using Out and Inout Parameter� 791
	 27.15.1	 �Invoking Operation

Using Holder Classes  792
	 27.15.2	 An Example  792
	 27.16	 RMI-IIOP� 793
	 27.16.1	 An Example  793
		 �Writing an interface  793
		 �Implementing the interface 

  794
		 �Writing the server  794
		 �Writing the client  794
		 �Compiling server files  794
		 �Compiling client files  795
		 �Running the application 

  795
	 27.17	 IDL to Java Language Mapping� 795

28.	  Java Server Faces� 801
	 28.1	 Introduction� 801
	 28.2	 First Application� 802
	 28.2.1	 Installing JSF  802
	 28.2.2	 Writing a JSF Page  803
	 28.2.3	 Deploying the Application  804
	 28.2.4	 Testing the Application  805
	 28.3	 Request Processing Life-cycle� 806
	 28.3.1	 Restore View  806
	 28.3.2	 Apply Request Values  807
	 28.3.3	 Process Validations  807

CONTENTS  xxiii

	 28.3.4	 Update Model Values  808
	 28.3.5	 Invoke Application  808
	 28.3.6	 Render Response  808
	 28.4	 Tracing Phases� 808
	 28.5	 Managed Bean� 809
	 28.5.1	 �Using faces-config.xml

File  810
	 28.5.2	 �Using @ManagedBean

Annotation  811
	 28.5.3	 Scope Annotations  811
	 28.5.4	 �@ManagedProperty

Annotation  812
	 28.6	� Accessing Managed Bean

Programmatically� 813
	 28.6.1	 �Using javax.faces.context.

ExternalContext  813
	 28.6.2	 Using javax.el.ELContext  813
	 28.6.3	 �Using evaluateExpressionGet()

Method  814
	 28.7	 Basic JSF Tags� 814
	 28.8	 Expression Language� 817
	 28.8.1	 Value Expression  818
	 28.8.2	 Method Expression  819
	 28.8.3	 Facelets  820
		 Templates  820

		 Custom tags  821
		 �Composite components  823
		 Remove  824
	 28.8.4	 Converter Tags  824
	 28.8.5	 Displaying Messages  827
	 28.8.6	 Validations  828
	 28.9	 AJAX� 830
	 28.10	 Event Handling� 831
	 28.10.1	 Value Change Listener  831
		 �Using value-ChangeListener

  attribute  831
	 28.10.2	 �Using

<f:valueChangeListener>
Tag  832

	 28.10.3	 Action Listener  832
		 �Using actioneListener

  attribute  832
	 28.10.4	 �Using <f:actionListener>

Tag  833
	 28.11	 An Event Handling Example� 833
	 28.12	 Page Navigation� 834
	 28.12.1	 Auto Navigation  834
	 28.12.2	 Using Managed Bean  835
	 28.12.3	 �Using Navigation Rule in

Faces-config.xml  835

Answers to Objective-type Questions  841

Index  849

About the Author  855

PART ONE
INSIDE JAVA

Chapter 1	 Java Tools

Chapter 2	 Exception Handling

Chapter 3	 Multi-threading

Chapter 4	 Garbage Collection

Chapter 5	 Collection Framework

Chapter 6	 Generic Programming

Chapter 7	 Reflection

Chapter 8	 Java Native Interface

Chapter 9	 AWT and Swing

Chapter 10	 Java and XML

Chapter 11	 Input/Output

CHAPTER – 1

Java Tools

Key Objectives

After completing this chapter readers will be able to—
•  write doc comments and use javadoc to generate HTML documentation files
•  understand how to use the Java debugger jdb
•  get an idea about packaging of a set of files into a single one and vice versa
•  understand how to fire diagnostic commands to JVM using jcmd
•  learn how to analyze JVM heap dump file used jhat tool
•  learn how to quickly find the method signatures of a class using javap

1.1	 INTRODUCTION
Java beginners often use javac and java to compile and run Java programs. However, JDK comes

with a lot of other powerful tools such as jar, jhat, jdb, javap, javadoc, jcmd, javah, keytool,
jconsole, jps, jstatd, jstat, jinfo, jmap, jstack and many more to enable Java developers to
program better. This chapter gives a quick reference of the first six (not in order) tools available
default with the Java JDK. Other tools have been discussed in various other chapters. For example,
jstat has been discussed in detail in Chapter 4 and javah has been discussed in Chapter 8.

1.2	 JAVADOC
Documentation is an important part of program code. It not only helps others to understand the

program, but helps the author to remind how his/her own older programs also work. Since external
documentation may easily become outdated as the program changes, Java encourages us to write
documentation directly in the source code. It requires less efforts to update documentation as and
when program code changes.

Java standardizes the syntax and semantics of writing documentation. It also provides a tool
javadoc to generate HTML files to view the documentation from a web browser in a convenient way.

4 ADVANCED JAVA PROGRAMMING

Note that Java also uses this tool to generate Java API specification from the source code. In fact, if
we have the source code, we ourselves can generate this. We can also generate HTML documentation
similar to the Java API reference pages using javadoc. This section discusses how to write
documentation and how to generate HTML files using javadoc command.

Since documentation comments (or simply doc comments) go directly in the source code, we
must hide it from Java compiler. So, documentation is written as special comments between the
character sequence /** and */ that begin and end the comment respectively. Note that the starting
delimiter must be /** (not /*), otherwise, javadoc tool will not process the comments. Here is an
example of single line comment:

/** This is a single line java doc comment. */

Comments can spread multiple lines:
/**
This is an example of comments
that spans multiple lines.

*/

The javadoc preserves all white spaces between /** and */. However, if leading asterisks on
each line are used, white spaces (blanks and tabs) preceding the initial asterisk (*) characters are
discarded. Here is an example:

/**
* This is also an example of comments
* that spans multiple lines.
*/

A doc comment may be attached with only class, interface, constructor, method, or field
declarations by writing the comment immediate before them. The following is a comment attached
with a class X.

/** Represents the class of two-dimensional geometrical points. */
public class Point {}

Similarly, the following attaches a comment with a method.
public class Point {

private int x, y;
/** Returns x coordinate of the point */
public int getX() { return x; }

}

The first sentence of each doc comment should be a summary sentence, containing a concise but
complete description of the declared entity. The javadoc tool ignores any doc comment placed in
the body of a method.

public class Point {
private int x, y;
public int getY() {

/** This comment will not be processed by javadoc */
return y;

}
}

So far, we have seen how to write a simple doc comment. Let us now generate the HTML files,
using javadoc command. It parses the declarations and documentation comments in the specified
file(s) and produces a set of HTML pages describing, by default, the public and protected classes,
interfaces, constructors, methods, and fields. We can pass either a series of Java package names or
source files to javadoc as argument(s). Here is an example:

javadoc Point.java

JAVA TOOLS 5

This generates a set of files. The output of this command is show below:
Creating destination directory: "point\"
Loading source file Point.java...
Constructing Javadoc information...
Standard Doclet version 1.7.0_07
Building tree for all the packages and classes...
Generating point\Point.html...
Generating point\package-frame.html...
Generating point\package-summary.html...
Generating point\package-tree.html...
Generating point\constant-values.html...
Building index for all the packages and classes...
Generating point\overview-tree.html...
Generating point\index-all.html...
Generating point\deprecated-list.html...
Building index for all classes...
Generating point\allclasses-frame.html...
Generating point\allclasses-noframe.html...
Generating point\index.html...
Generating point\help-doc.html...

As we can see, a set of files is generated in the current directory. The index.html file is the front
page with frames. If we open this file using a browser, it looks like this:

We can place HTML tags inside the description part as usual. For example, the below example
makes use of tag to impose more importance:

The javc is an import tool.

In addition to main description, doc comment may have an optional tag section. The main
description starts after the starting delimiter /** and must end before the tag section. The tag section
contains special tags, which are used to generate well-formatted API about the code being documented.

6 ADVANCED JAVA PROGRAMMING

The tags take the form @tagname. For example, in comments for methods we can use @param and
@return tags (if applicable) to describe the method’s parameters and return value, respectively. The
@param tag should be followed by the parameter’s name, and then a description of that parameter.
Here is an example:

/**
@param x the X coordinate of the point

*/
public void setX(int x) { this.x = x; }

Similarly, the @return tag is followed simply by a description of the return value.
/**

@return the X coordinate of the point
*/
public int getX() { return x; }

The argument to a tag includes any text following the tag up to, but not including, either the next
tag, or the end of the doc comment.

The summary of frequently used tags is shown in Table 1.1:

Table 1.1: Build doc comments tags

Tag with syntax Description

@author name-text Adds an “Author” entry with the specified name-text

{@code text} Displays text in code font

{@docRoot} Represents the relative path to the generated document’s (destination) root
directory from any generated page.

@deprecated deprecated-text Adds an “Deprecated” entry with the specified deprecated-text

@exception class-name description Adds a “Throws” subheading to the generated documentation, with the class-
name and description text

{@inheritDoc} Inherits a comment from the nearest inheritable class or implementable
interface

{@link package.class#member
label}

Inserts an in-line link with visible text label that points to the documentation for
the specified package, class or member name of a referenced class

{@linkplain package.class#member
label}

Similar to {@link}, except the link’s label is displayed in plain text than code
font

{@literal text} Displays text without interpreting the text as HTML markup or nested javadoc
tags

@param parameter-name
description

Adds a parameter with the specified parameter-name followed by the
specified description to the “Parameters” section

@return description Adds a “Returns” section with the description text

@see reference Adds a “See Also” heading with a link or text entry that points to reference

@serial field-description | include |
exclude

Used in the doc comment for a default serializable field

@serialData data-description Documents the data written by the writeObject() or writeExternal() methods

@serialField field-name field-type
field-description

Documents an ObjectStreamField component

@since since-text Adds a “Since” heading with the specified since-text to the generated
documentation

(Contd)

JAVA TOOLS  7

Table 1.1:  (Contd)

@throws class-name description Similar to @exception tag

{@value package.class#field} When {@value} is used in the doc comment of a static field, it displays the
value of that constant

@version version-text Adds a “Version” subheading with the specified version-text to the generated
docs when the -version option is used

Some types of tags can be repeated while others cannot. For example, @return tag should appear
only once whereas @see tag may appear any number of times. This implies that the tag section may
contain any number of tags. Tag names are case-sensitive.

There are two kinds of tags: block tags, and in-line tags. The block tags (also called standalone
tags) take the form @tagname and in-line tags appear within curly braces, as {@tagname}. A block tag
must start at the beginning of a line or after any leading spaces and an optional asterisk. Otherwise
javadoc will ignore them. An in-line tag can appear anywhere in the comment. Here is an example:

/**
See this infinite loop {@code while(true);}

*/

We can also use one argument custom tags in the form @tagname. Here is an example:
@task   Re-visit the documentation

To enable this tag, use -tag option to the javadoc int in the following form:
-tag tagname:Xaoptcmf:"caption"

Here tagname is the tag to be processed and caption is the heading to be used for this tag. The
Xaoptcmf part of the argument determines where in the source code the tag is allowed to be placed,
and whether the tag can be disabled (using X). Here is an example:

javadoc -tag task:a:"Remainder" Point.java

It tells that the tag @task is allowed to be placed in all places, and the heading for this tag will
be Remainder.

1.3	 JAVAP
This command line tool displays information in brief about the methods, constructors and fields

present in the specified class(es). The syntax of using javap is:
javap <options> <classes>

The name of the class(es) must be a fully qualified class name (i.e., including package name).
Here is an example:

javap java.lang.Object

This displays the information of the class Object (the root class of Java class hierarchy) in the
package java.lang. Here is the sample output:

Compiled from "Object.java"
public class java.lang.Object {
public java.lang.Object();
public final native java.lang.Class<?> getClass();
public native int hashCode();
public boolean equals(java.lang.Object);
protected native java.lang.Object clone()throws

java.lang.CloneNotSupportedException;
public java.lang.String toString();
public final native void notify();
public final native void notifyAll();
public final native void wait(long) throws java.lang.InterruptedException;
public final void wait(long, int) throws java.lang.InterruptedException;
public final void wait() throws java.lang.InterruptedException;
protected void finalize() throws java.lang.Throwable;
static {};

}

8 ADVANCED JAVA PROGRAMMING

Compiled from "Object.java"
public class java.lang.Object {

public java.lang.Object();
public final native java.lang.Class<?> getClass();
public native int hashCode();
public boolean equals(java.lang.Object);
protected native java.lang.Object clone()throws

java.lang.CloneNotSupportedException;
public java.lang.String toString();
public final native void notify();
public final native void notifyAll();
public final native void wait(long) throws java.lang.InterruptedException;
public final void wait(long, int) throws java.lang.InterruptedException;
public final void wait() throws java.lang.InterruptedException;
protected void finalize() throws java.lang.Throwable;
static {};

}

Note that javap does not show the code of the methods/constructors. It shows only the prototypes
of methods/constructors. It is useful especially to those who want to quickly find the method signatures
of a class. For example, if you do not have any IDE and want to quickly know the methods available
on java.lang.String class, use the following simple command:

javap java.lang.String

The javap command displays its output to stdout. If you want to store the output in a file, use the
following command instead:

javap java.lang.String > out.txt

If no option is specified, javap tool prints the package, protected, and public fields and methods of the
specified classes. In fact the output of the command can be customized using options. The set of options
themselves can be viewed using –help or --help or -? options or without using any options as follows:

javap

It displays the available options with a brief description as follows:
Usage: javap <options> <classes>
where possible options include:

-help --help -? Print this usage message
-version Version information
-v -verbose Print additional information
-l Print line number and local variable tables
-public Show only public classes and members
-protected Show protected/public classes and members
-package Show package/protected/public classes

and members (default)
-p -private Show all classes and members
-c Disassemble the code
-s Print internal type signatures
-sysinfo Show system info (path, size, date, MD5 hash)

of class being processed
-constants Show static final constants
-classpath <path> Specify where to find user class files
-bootclasspath <path> Override location of bootstrap class files

The options are self-explanatory. For example –p option is used to show all including the private
members of the class. This tool can also be used to disassemble the byte code in a readable format
using –c option. Note a Java class file contains the so called byte code, which is translatable to op-
codes/mnemonics. Consider the following simple Java class:

public class HelloWorld {
public static void main(String[] args) {

System.out.print("Hello World!");
}

}

Compile this program and use the following command to see the contents of the HelloWorld
class file in op-code format:

javap -c HelloWorld

JAVA TOOLS 9

A part of the output is shown here:
Compiled from "HelloWorld.java"

public class HelloWorld {

public HelloWorld();

Code:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return public static void main(java.lang.String[]);

Code:

0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;

3: ldc #3 // String Hello World!

5: invokevirtual #4 // Method java/io/PrintStream.print:(Ljava/lang/String;)V

8: return

}

It is easy to see the relation between the source code and the byte code To print more information,
use the following command:

javap -c -s -verbose HelloWorld

1.4	 JCMD
This tool is used to send diagnostic commands to a specified JVM. To demonstrate how to work

with jcmd, we shall first write a simple Java program as follows:
public class LoopForEver {

public static void main(String[] args) {
while(true);

}
}

The code is really simple having only an infinite loop. The loop is inserted deliberately so that it
makes a JVM up all the time and we can inspect the JVM properties in the meanwhile. Compile the
program and run it in a terminal using the following command:

java LoopForEver

This makes a JVM running indefinitely. The jcmd expects lvmid of the target JVM. A lvmid, is
typically, but not necessarily, the operating system’s process identifier for the JVM process. To find
lvmid of the JVM, we can use the command without any arguments:

jcmd

It displays all JVMs running on the local machine listed by lvmid followed by main class as follows:
432 LoopForEver
3724 sun.tools.jcmd.JCmd

To know the commands that we can give to a JVM, specify the lvmid along with help to the
command as follows:

jcmd 432 help

This displays a list of commands that we can give to the JVM identified by the lvmid 432. Here
is a sample output of the command:

10 ADVANCED JAVA PROGRAMMING

432:
The following commands are available:
VM.commercial_features
ManagementAgent.stop
ManagementAgent.start_local
ManagementAgent.start
Thread.print
GC.class_histogram
GC.heap_dump
GC.run_finalization
GC.run
VM.uptime
VM.flags
VM.system_properties
VM.command_line
VM.version
help

We can then apply any of the listed commands. To get help about a specific command specify
the command after help. For example, to see how to use GC.heap_dump command, use the following
command:

jcmd 4680 help GC.heap_dump

This generates a help content as follows:

GC.heap_dump
4680:

Generate a HPROF format dump of the Java heap.

Impact: High: Depends on Java heap size and content. Request a full GC unless
the '-all' option is specified.

Syntax : GC.heap_dump [options] <filename>

Arguments:
filename : Name of the dump file (STRING, no default value)

Options: (options must be specified using the <key> or <key>=<value> syntax)
-all : [optional] Dump all objects, including unreachable objects

(BOOLEAN, false)

So, to store the snapshot of the JVM heap in a file myHeap, we can use the following command:
jcmd 432 GC.heap_dump myHeap

This dump file can be analyzed using a tool like jhat (java heap analysis tool) discussed later in
this chapter. Here is another command that gives the JVM version:

jcmd 432 VM.version
432:
Java HotSpot(TM) Client VM version 23.3-b01
JDK 7.0_07

The following command shows the flags (including default flags) used to start the JVM:
jcmd 432 VM.flags
432:
-XX:InitialHeapSize=16777216 -XX:MaxHeapSize=268435456 -XX:-
UseLargePagesIndividualAllocation

There is also a command PerfCounters.print that displays all the performance-related counters
of the specified JVM.

jcmd 432 PerfCounter.print

JAVA TOOLS 11

A small portion of the output is shown here:
432:
java.ci.totalTime=1690
java.cls.loadedClasses=353
java.cls.sharedLoadedClasses=0
java.cls.sharedUnloadedClasses=0
java.cls.unloadedClasses=0
java.property.java.class.path="."
java.property.java.endorsed.dirs="D:\Java\jdk1.7.0_07\jre\lib\endorsed"
java.property.java.ext.dirs="D:\Java\jdk1.7.0_07\jre\lib\ext;C:\Windows\Sun\Jav
a\lib\ext"
java.property.java.home="D:\Java\jdk1.7.0_07\jre"
java.property.java.library.path="D:\Java\jdk1.7.0_07\bin;C:\Windows\Sun\Java\bi
n;C:\Windows\system32;C:\Windows;D:\Java\
jdk1.7.0_07\bin;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Wind
ows\System32\WindowsPowerShell\v1.0\;D:\M
ySQL\MySQL Server 5.0\bin;C:\Program Files (x86)\SSH Communications
Security\SSH Secure Shell;."
java.property.java.version="1.7.0_07"
java.property.java.vm.info="mixed mode"
java.property.java.vm.name="Java HotSpot(TM) Client VM"
java.property.java.vm.specification.name="Java Virtual Machine Specification"
java.property.java.vm.specification.vendor="Oracle Corporation"
java.property.java.vm.specification.version="1.7"
java.property.java.vm.vendor="Oracle Corporation"
java.property.java.vm.version="23.3-b01"
java.rt.vmArgs=""
...

Another powerful feature of jcmd is that it allows us to control Java Flight Recordings (JFR)
from command line. To do this JFR must be enabled by starting the application using the flags
-XX:+UnlockCommercialFeatures -XX:+FlightRecorder to JVM as follows:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder LoopForEver

We can see that JFR commands have been enabled by using jcmd. The commands relevant to
Java Flight Recorder are: JFR.start, JFR.stop, JFR.check and JFR.dump. The JFR.start command
is used to control how and when actual recording should happen. For example, to start a recording
after 2 seconds with duration 30 seconds on the JVM with the identifier 432 and save it to the file
“r30s.jfr” in the current directory, use the following:

jcmd 432 JFR.start name=test delay=2s duration=30s filename=r30s.jfr

This recording is identified by the name “test”, which is used by other JFR commands. A flight
recording can be fired by specifying options to the JVM directly. For example, the following does
the same thing as above:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -
XX:StartFlightRecording=delay=20s,duration=30s,name=test,filename=r30s.jfr
LoopForEver

The JFR.check displays the status of all recording command. For example:
jcmd 432 JFR.check

To stop a recording, use JFR.stop command specifying the name of the recording to be stopped
as follows:

jcmd 432 JFR.stop name=test

Finally, to dump the recordings to a file, we can use The JFR.dump command as follows:
jcmd 432 JFR.dump name=test file_name=r30s.jfr

Note that jcmd must be used on the same machine where the JVM is running, and have the same
effective user and group identifiers that were used to launch the JVM.

12 ADVANCED JAVA PROGRAMMING

1.5	 JHAT
The jhat (java heap analysis tool) is a useful tool to retrieve information from a heap dump file

created using a tool like jmap.
It is a valuable tool for debugging and understanding programs. It allows us to navigate object

structures to learn how objects are interconnected in a program at runtime. It also allows us to trace
the references to a given object from the root set, which is particularly useful for tracking down
unnecessary object retention known as “memory leaks”. It takes the following form:

jhat [options] <heap-dump-file>

It parses the specified dump file and starts a web server. A web browser may then be used to get
desired data. The web server supports a few pre-designed queries as well as custom queries written
in OQL (Object Query Language), which is a language similar to SQL to query heap dumps.

We shall use the same LoopForEver.java program to demonstrate this tool. To use jhat, we have
to dump heap information in a file. There are several ways to generate a java heap dump:

•	 Use jmap with -dump option to obtain a heap dump at runtime;
•	 Use jconsole option to obtain a heap dump via HotSpotDiagnosticMXBean at runtime;
•	 �Use java by specifying -XX:+HeapDumpOnOutOfMemoryError VM option; Heap dump will be generated when

OutOfMemoryError is thrown;
•	 Use jcmd;
•	 Use hprof.

The standard tool jmap may be used for this purpose. However, jmap expects a local VM identifier
(lvmid), which is typically, but not necessarily, the operating system’s process identifier for the JVM
process. We can use Java tools such as jcmd or jps to find such lvmid. We used jcmd as follows:

jcmd

A sample output of this command is shown below:
5000 LoopForEver
3468 sun.tools.jcmd.JCmd

We can easily see that the lvmid of the process is 5000. This ID can be used to create a dump file
using jmap command as follows:

jmap -dump:file=myHeap 5000

Here myHeap is the name of the file where we want to dump and 5000 is the lvmid of the JVM
running the application. If everything is fine, you will see the following message:

Dumping heap to E:\ajp\intro\myHeap ...
Heap dump file created

The file myHeap contains a snapshot of all the live objects and classes at the moment it was created.
Diagnosed process may be terminated after dumping heap with jmap. There is also a straightforward
way to generate the dump file using java command as follows:

java -Xrunhprof:file=myHeap,format=b LoopForEver

When this program terminates (terminate using Ctrl C as this program loops forever), a dump
file is generated. This is useful if your program does not take sufficient time to run to create the dump
file using jmap command. The jcmd command can also be used to create the dump file as follows:

jcmd 5000 GC.heap_dump myHeap

The dump file is now ready to be used by jhat. Use the following command to start jhat:
jhat myHeap

JAVA TOOLS 13

If everything goes right, the following message appears:
Reading from myHeap...
Dump file created Tue Jan 27 12:03:28 IST 2015
Snapshot read, resolving...
Resolving 5941 objects...
Chasing references, expect 1 dots.
Eliminating duplicate references.
Snapshot resolved.
Started HTTP server on port 7000
Server is ready.

The jhat can obviously be started on a separate computer having the dump file. Usually analyzers
choose to zip the dump and move it to machine more accessible to them and with enough resource.
The jhat parses the heap dump and make the data available on a web server that it runs by default
on port 7000. Use -port option to start the web server on a different port. To check the data provided
by jhat, use the following URL in a web browser while jhat is still running.

http://172.16.5.82:7000/

For local computers, instead of IP address, we can use localhost or any loopback address such
as 127.0.0.1. The page looks like this:

As we can see, this page contains some readymade queries.
They let us surf along all the classes and objects. We shall be able to check how many instances

of each class were alive in the moment the heap was created. By clicking on a query link, we can
reach other pages containing other queries. The last link is interesting as it allows us to write custom
queries using OQL. The jhat also provides a useful page to get help on OQL. The URL of this page
with the default port is:

http://172.16.5.82:7000/oqlhelp/

1.6	 JDB
A good programmer should have good skills to debug programs. This skill enables the programmer

to find any subtle bugs or defects which are not visible during code review or comes when a particular
situation occurs and removes them. The old method of debugging that uses print statements here
and there in the program makes the program simply ugly. Although, they can be removed before
delivering the program finally, they make a simple program almost unreadable.

This section introduces you to the command line, interactive, Java runtime debugger known as
jdb which is a very useful tool to debug Java code. The jdb tool allows us to query to a JVM and
displays information. The JVM may be started by the jdb itself or may be an existing one.

14 ADVANCED JAVA PROGRAMMING

We shall first use jdb to start a JVM and to debug an application. To demonstrate how jdb works,
we shall use the following Java program:

public class Test {
int v = 4;
public static void main(String[] args) {

int x = 2, y = 3;
int z = add(x, y);
Test t = new Test();
t.set(6);
System.out.println(x+"+"+y+"="+z);

}
public static int add(int a, int b) {

int c = a + b;
return c;

}
public void set(int x) { v = x; }

}

Although, it is a very simple and correct program that does not do any useful task, it keeps the
program logic simple and helps us concentrate on only debugging the program. Compile this program
with the -g option as follows:

javac –g Test.java

The -g option tells the compiler to place all debugging information in the generated class file
Test.class. The application is ready to be run and debugged using jdb. Like other commands, you
can use –help option to see the syntax of using jdb. We can start a debugging session for our Test.
class application as follows:

jdb Test

If everything goes fine, you see the following message:
Initializing jdb ...
>

This starts a new Java VM, stops it before executing the first statement of the class. We can now
apply various commands at this prompt. To see the available commands we can use help command.

We need to give run command at the prompt to start the application. However, if we run the
application, it will exit immediately as the main method does not have anything that will make the
application waiting. All we see is the output of the main method. But that is just not what we want to
see. To see program state at different time of its execution, we set a breakpoint before applying the
run command, so that when the program is run, the execution stops at that breakpoint. We can set
breakpoints in two ways: using stop in or stop at commands. The former sets a breakpoint in a
specified method and the latter sets a breakpoint at a given line number and their respective syntax are:

stop in <class id>.<method>[(argument_type,...)]
stop at <class id>:<line>

Let’s set a breakpoint at the beginning of the main() method as follows:
> stop in Test.main(java.lang.String[])
Deferring breakpoint Test.main(java.lang.String[]).
It will be set after the class is loaded.
>

We must specify class name. However, specifying the parameter is mandatory if there are
overloaded methods. So the following command will also work:

stop in Test.main

Since the application has not yet started, the class Test has not yet been loaded in the JVM, the
breakpoint is not immediately set. Instead it postpones setting the breakpoint till class is actually
loaded. We can now give the run command.

JAVA TOOLS 15

> run
run Test
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint Test.main

Breakpoint hit: "thread=main", Test.main(), line=3 bci=0
4 int x = 2, y = 3;

main[1]

The jdb loads the class Test (that was specified when we started jdb) and sets the breakpoint that
we configured earlier and tries to execute main method and allows JVM to proceed. The JVM reaches
the first breakpoint and stops. It is also possible to run any class by specifying it as an argument to
the run command. Anyway, we can see the line about to be executed using list command.

main[1] list
1 public class Test {
2 int v = 4;
3 public static void main(String[] args)
4 => int x = 2, y = 3;
5 int z = add(x, y);
6 Test t = new Test();
7 t.set(6);
8 System.out.println(x+"+"+y+"="+z);
9 }
10 public static int add(int a, int b) {

The line to be executed is shown by =>. To execute current line next command is used:

>
Step completed: "thread=main", Test.main(), line=4 bci=2
4 int y = 3;

main[1] next

It executes the current line and shows the next line to be executed. Let us apply another next
command:

main[1] next
>
Step completed: "thread=main", Test.main(), line=5 bci=4
5 int z = add(x, y);

If a line contains a method call, the next command completes that too. To step over the function
call, we use step command:

main[1] step
>
Step completed: "thread=main", Test.add(), line=11 bci=0
11 int c = a + b;

As we can see, the control has now gone inside the add() method. This way we can issue as many
next and step commands as we want to execute instructions. To finish the execution of the current
function add() and to go back to the caller main(), we can use step up command:

main[1] step up
>
Step completed: "thread=main", Test.main(), line=5 bci=9
5 int z = add(x, y);

Let us apply the next command twice. Then to see the values of all local variables including the
arguments passed in a method, we can use locals command:

main[1] locals
Method arguments:
args = instance of java.lang.String[0] (id=372)
Local variables:
x = 2
y = 3
z = 5
t = instance of Test(id=373)

16 ADVANCED JAVA PROGRAMMINGmain[1] locals
Method arguments:
args = instance of java.lang.String[0] (id=372)
Local variables:
x = 2
y = 3
z = 5
t = instance of Test(id=373)

To print the value of a specific variable, use print command:
main[1] print x
  x = 2

To change the value of a variable x, use set command:
main[1] set x=10
  x=10 = 10

We can verify the assignment using print command again:
main[1] print x
  x = 10

To print the field v of the object t use t.v.
main[1] print t.v
  t.v = 4

To see detailed information about the object, use dump command:
main[1] dump t
  t = {
  v: 4
}

We can see what all classes are currently loaded in the JVM by using the classes command.
main[1] classes

The following shows a small portion of the output:
** classes list **
Test
boolean[]
byte[]
char[]
double[]
float[]
int[]
java.io.BufferedInputStream
java.io.BufferedOutputStream
java.io.BufferedReader
java.io.BufferedWriter
java.io.Closeable
java.io.ExpiringCache
java.io.ExpiringCache$1
java.io.ExpiringCache$Entry
java.io.File
java.io.FileDescriptor
java.io.FileDescriptor$1
java.io.FileInputStream
java.io.FileOutputStream

To know the information about a class, we can use class command specifying the class as an
argument:

main[1] class Test
Class: Test
extends: java.lang.Object

The class command shows the name of super class, interfaces implemented, nested classes etc.
To see which methods are available on a class, use methods command:

JAVA TOOLS 17

main[1] methods Test
** methods list **
Test <init>()
Test main(java.lang.String[])
Test add(int, int)
Test set(int)
java.lang.Object <init>()
java.lang.Object registerNatives()
java.lang.Object getClass()
java.lang.Object hashCode()
java.lang.Object equals(java.lang.Object)
java.lang.Object clone()
java.lang.Object toString()
java.lang.Object notify()
java.lang.Object notifyAll()
java.lang.Object wait(long)
java.lang.Object wait(long, int)
java.lang.Object wait()
java.lang.Object finalize()
java.lang.Object <clinit>()

The methods command lists method signatures of the methods written in given class as well as
inherited from the super class. Similarly, to see which fields are available on a class, use fields command:

main[1] fields Test
** fields list **
int v

Note that Test has only one field v. Watching where in the code, a particular field is being accessed
or modified is an important part of debugging. This is done using the watch command. However, to
use this command effectively, we first set up another command which gets called when any such watch
point is hit. We can do this using the command monitor. It takes another command as an argument
and executes the latter command when the following scenarios are encountered:

•	 a field access/modification watch point is reached
•	 a breakpoint is reached
•	 next, step, step up, stepi commands are executed
•	 a method is entered/exited while tracing of methods is ON

Here is an example:
main[1] monitor list

This way we can set up as many monitors as we want. Each monitor is identified by an integer
number which can be used to remove the monitor later. The list of monitors together with their ids
can be listed using the same monitor command without any argument:

main[1] monitor
1: list

We can now set up a watch point as follows:
main[1] watch Test.v
Set watch modification of Test.v

Apply the next command to see the behaviour now:
main[1] next
>
Field (Test.v) is 0, will be 4: "thread=main", Test.<init>(), line=2 bci=6
2 int v = 4;

1 public class Test {
2 => int v = 4;
3 public static void main(String[] args) {
4 int x = 2, y = 3;
5 int z = add(x, y);
6 Test t = new Test();
7 t.set(6);
8 System.out.println(x+"+"+y+"="+z);
9 }
10 public static int add(int a, int b) {

18 ADVANCED JAVA PROGRAMMING

main[1] next
>
Field (Test.v) is 0, will be 4: "thread=main", Test.<init>(), line=2 bci=6
2 int v = 4;

1 public class Test {
2 => int v = 4;
3 public static void main(String[] args) {
4 int x = 2, y = 3;
5 int z = add(x, y);
6 Test t = new Test();
7 t.set(6);
8 System.out.println(x+"+"+y+"="+z);
9 }
10 public static int add(int a, int b) {

Use unwatch command if you do not watch a field any more
main[1] unwatch Test.v
Removed: watch modification of Test.v

Use unmonitor command to remove the monitor if it is no longer necessary.
main[1] unmonitor 1
Unmonitoring 1: list

To see all break points at a particular moment use clear command:
main[1] clear
Breakpoints set:
     breakpoint Test.main

To continue the execution continuously (i.e. until a break point is reached) use cont command:
main[1] cont
> 2+3=5

The application exited

And finally, to exit JDB, use exit or quit command.
Note that jdb may be used to connect to an already started JVM using Java Debug Interface (JDI).

The JDI is a high-level Java API that defines the mechanisms for communication between debuggers
and similar systems and running (usually remote) JVMs. The connection is established with so called
connectors. The JDK traditionally ships a set of connectors the jdb can use to connect to a JVM such as
SACoreAttachingConnector, SADebugServerAttachingConnector, and SAPIDAttachingConnector.
You can see the available connectors using the following command:

jdb -listconnectors

This lists all available connectors with a small description of the arguments they take. The following
command instructs jdb to use a connector named sun.jvm.hotspot.jdi.SAPIDAttachingConnector
to connect to a JVM having PID 1234:

jdb -connect sun.jvm.hotspot.jdi.SAPIDAttachingConnector:pid=1234

Once jdb is connected to the JVM, you can fire commands as usual.

1.7	 JAR
A Java ARchive (JAR) is a file that bundles multiple files into a single one. A JAR file usually

contains the class files and auxiliary resources. Specifically, JAR files bring the following benefits:

•	 Java programs (including core Java API) are distributed usually as JAR files.
•	 JAR files use ZIP file format. So, we can compress/decompress files.
•	 �Since, JAR file contains a bundle of files, a set of files can be transferred over the network using single request/

response pair that takes less time.
•	 �We can optionally seal packages stored in JAR files to enforce version consistency. Sealing a package within a

JAR file ensures the availability of all classes defined in that package.
•	 This also makes distributing a set of files as a single file easy.

JAVA TOOLS 19

•	 �It is possible to digitally sign a JAR file containing software that requires special privilege. This allows end users
to allow/disallow the privilege by checking the signature and the author’s digital certificate.

•	 We can extend the functionality to the Java core platform using JAR files with its packaging for extension features.
•	 �JAR files can contain special file to hold metadata about the actual files. This allows us to configure the application

on the fly.

1.7.1	 Syntax
Note that JAR files as similar to Unix’s/Linux’s tar (tape archive) files and the tool jar also has

similar command-line options. To check the available options, run the command without any option:
jar
Usage: jar {ctxui}[vfm0Me] [jar-file] [manifest-file] [entry-point] [-C dir]
files ...
Options:

-c create new archive
-t list table of contents for archive
-x extract named (or all) files from archive
-u update existing archive
-v generate verbose output on standard output
-f specify archive file name
-m include manifest information from specified manifest file
-e specify application entry point for stand-alone application

bundled into an executable jar file
-0 store only; use no ZIP compression
-M do not create a manifest file for the entries
-i generate index information for the specified jar files
-C change to the specified directory and include the following file

If any file is a directory then it is processed recursively.
The manifest file name, the archive file name and the entry point name are
specified in the same order as the 'm', 'f' and 'e' flags.

Example 1: to archive two class files into an archive called classes.jar:
jar cvf classes.jar Foo.class Bar.class

Example 2: use an existing manifest file 'mymanifest' and archive all the
files in the foo/ directory into 'classes.jar':

jar cvfm classes.jar mymanifest -C foo/ .

The output is self explanatory. It not only shows the options available, but some examples as well.

1.7.2	 Creating a JAR file
To create a JAR file use c option:
jar cf jarFile files(s) ...

Here f specifies the output JAR filename and files(s) argument is a space-separated list of one
or more files to be bundled in the JAR file. Note that use of - (hyphen) before options is optional for
jar tool. To see what files are being added, we can optionally use v option. The order of options is
not important. Here is an example:

jar cvf shapes.jar Point.class Circle.class

This packages two files Point.class and Circle.class in the current directory into a JAR file
shapes.jar and places it in the current directory. Make sure that the input files exist in the current
directory. If everything goes fine, you will see the following output:

added manifest
adding: Point.class(in = 255) (out= 192)(deflated 24%)
adding: Circle.class(in = 257) (out= 193)(deflated 24%)

20 ADVANCED JAVA PROGRAMMING

Although, files packaged in a JAR are usually Java classes, they can be virtually any kind of files.
We can also specify the name of directories whose contents are to be packaged:

jar -cvf all.jar shapes/ comp/

This packages all files under shapes and comp directory in a JAR file all.jar. If we extract the
content, the same directory structure will be created. We can instruct jar to change the directory
temporarily during execution using –C option.

For example, this command changes to the directory comp and adds the HDD.class from that
directory to test.jar:

jar cvf test.jar -C comp HDD.class

This command changes to the comp directory and adds all files to test.jar (without creating a
comp directory in the jar file), then changes back to the original directory and adds Point.class to
test.jar.

jar cvf test.jar -C comp . Point.class

This command changes to the comp directory and adds all files to test.jar (without creating
a comp directory in the jar file), then changes back to the original directory and changes to shapes
directory and adds all files to test.jar and finally returns to the original directory.

jar cvf test.jar -C comp . -C shapes .

JAR files use ZIP file format. So, in addition to bundle a set of files into a single one, we can use
it for compressing and decompressing files. The following command compresses the file Circle.
class and puts the resultant data in a file Circle.jar:

jar cvf Circle.jar Circle.class

Note that the size of JAR file need not necessarily be less than the original file. The compression
ratio depends on several factors including size of the input file, and the distribution of content and
so on. To avoid ZIP compression, we can use 0 option as follows:

jar cvf0 Circle.jar Circle.class

1.7.3	 Viewing Contents of a JAR file
The t option is used to list table of contents of a JAR file as follows:
jar tf jar-file

Here jar-file argument is the path and name of the JAR file whose contents we want to view.
For example the following command displays the content of the file shapes.jar:

jar tf shapes.jar

The output is displayed on the screen as follows:
META-INF/
META-INF/MANIFEST.MF
Point.class
Circle.class

Note that t option merely displays the content of a JAR file; it does not extract the content. The
procedure to extract the content of a JAR file is shown in the next section.

1.7.4	 Extracting the Content
The general syntax to extract the contents of a JAR file is:
jar xf jar-file [archived-file(s)]

JAVA TOOLS 21

Here, the jar-file argument is the name of the JAR file from which one extracts files and optional
archived-file(s) argument is the space-separated list of the files to be extracted from the archive.
If this archived-file(s) argument is not present, the jar tool extracts the entire contents. Here is
an example:

jar xvf shapes.jar

This extracts the content of shapes.jar and puts it in the current directory. We’ve used v option to
see the files being extracted. A sample output is shown here:

 created: META-INF/
inflated: META-INF/MANIFEST.MF
inflated: Point.class
inflated: Circle.class

The jar extracts contents of a JAR file and writes them to the current directory, reproducing the
directory structure that the files have in the archive. The original JAR file remains unchanged. The
following command extracts only Point.class form shapes.jar.

jar -xvf shapes.jar Point.class

This way we can extract as many number of files as we wish.

1.7.5	 Updating a JAR file
To add more files or to update the content of some files already in an existing archive, we use u

option. The following command updates the Point.class in shapes.jar.
jar uvf shapes.jar Point.class

This does not change the content of the JAR itself. So the content remains same as follows:
META-INF/
META-INF/MANIFEST.MF
Point.class
Circle.class

If no files in the archive have the same pathname as the specified file(s), specified file(s) are
added to the JAR file. So, the following command adds the file Rectangle.class to the shapes.jar:

jar uvf shapes.jar Rectangle.class

The content of the JAR now looks like this:
META-INF/
META-INF/MANIFEST.MF
Point.class
Circle.class
Rectangle.class

Unfortunately, there is no provision to remove a file from a JAR.

1.7.6	 Manifest File
In a JAR file, there exists a special file called manifest file that contains “meta” information about

the other files that are packaged in the archive and always has the pathname META-INF/MANIFEST.
MF. This metadata enables the JAR file to support a wide range of functionality, including electronic
signing, version control, package sealing, and others.

A manifest’s entries take the form of header: value pairs. Exactly what file information should
be recorded in the manifest depends on how you intend to use the JAR file. If none is specified, jar
creates a default manifest file with a content as follows:

22 ADVANCED JAVA PROGRAMMING

Manifest-Version: 1.0
Created-By: 1.7.0_07 (Oracle Corporation)

This tells that the manifest file conforms to version 1.0 of the manifest specification and was
created by the JDK version 1.7.0_07. Note that a manifest file typically contains digest information
which is not included in the default manifest. A detailed discussion about digests and signing is given
in Chapter 19. The generation of default manifest file can be prevented using M option.

To add more content to the manifest file, m option is used together with the filename containing
entries to be added. The general syntax is this:

jar cfm jar-file manifest-entry-file input-file(s)

Before adding some entries, let us understand the functionality of some entries. Note that the
execution of an application starts from a class file containing a special method with the following
signature:

public static void main(String[] args)

A class having this function can act as an entry point of an application. If a class Start.class is
an entry class (i.e. having a main() method), we can specify this using a manifest entry as:

Main-Class: Start

To add this entry to a JAR file’s manifest, create a text file (say myManifest.txt) containing the
above line and use the following command:

jar -cvfm shapes.jar myManifest.txt Point.class Circle.class Start.class

If you extract the JAR file, you will see the content of the manifest file as:
Manifest-Version: 1.0
Created-By: 1.7.0_07 (Oracle Corporation)
Main-Class: Start

The JAR file has now become runnable and can be run directly using Java command as follows:
java –jar shapes.jar

The jar tool also has an option e that allows us to specify the main class as follows:
jar -cvfe shapes.jar Start Point.class Circle.class Start.class

However, to add other entries to the manifest file, m option must be used. If a JAR file references
other JAR file(s), it can be specified in the manifest file. For example, if a JAR file shapes.jar
references class of another JAR start.jar, it can be specified in the manifest file of shapes.jar
as follows:

Class-Path: start.jar

In general any number of JAR files separated by space can be specified. This way, we can add
more and more functionality using the manifest file.

KEYWORDS
Block tags—Tags that take the form @tagname and
must start at the beginning of a line or after any leading
spaces and an optional asterisk

Doc comments—Java documentation comments to
be processed by javadoc tool

Heap dump—A file that contains data representing
the snapshot of a JVM heap

In-line tags—Tags that appear within curly braces,
as {@tagname} and can appear anywhere in the
comment

jar—A Java tool that can bundle multiple files into a
single one and vice versa.

javadoc—A Java toll used to generate HTML
documentation pages from doc comments

JAVA TOOLS 23

SUMMARY
Java beginners often use javac and java to compile
and run Java programs. However, JDK comes with
a lot of other powerful tools such as jar, jhat, jdb,
javap, javadoc, javah, jcmd, keytool, jconsole, jps,
jstatd, jstat, jinfo, jmap, jstack and many more
to enable Java developers to program better.

Java standardizes the syntax and semantics of writing
documentation. It also provides a tool javadoc to
generate HTML files to view the documentation from
a web browser in a convenient way.

The javap command line tool displays information
in brief about the methods, constructors and fields
present in the specified class(es). It is useful especially
to those who want to quickly find the method signatures
in a class.

The jcmd tool is used to send diagnostic commands
to a specified JVM. Another powerful feature of jcmd

is that it allows us to control Java Flight Recordings
(JFR) from command line.

The jhat (java heap analysis tool) is a useful tool to
retrieve information from a heap dump file. It parses the
specified dump file and starts a web server. A web browser
may then be used to get the desired data. The web server
supports a few pre-designed queries as well as custom
queries written in OQL (Object Query Language), which
is a language similar to SQL to query heap dumps.

Java comes with a command line, interactive, runtime
debugger known as jdb which is a very useful tool to
debug Java code. The jdb tool allows us to query to
a JVM and displays information.

The jar tool can bundle multiple files into a single one
and vice versa. It use ZIP file format. So, in addition to
bundling a set of files into a single one, we can use it
for compressing and decompressing files.

javap—A command line tool that displays information
in brief about the methods, constructors and fields
present in the specified class(es)

jcmd— A Java tool used to send diagnostic commands
to a specified JVM

jdb—A command line, interactive, Java tool used to
debug Java code

JDI—A high-level Java API that defines the mechanisms
for communication between debuggers and similar

systems and running (usually remote) JVMs

jhat—A Java toll used to retrieve information from a
heap dump

lvmid—An identifier which typically, but not necessarily,
is the operating system’s process identifier for the JVM
process

OQL—A query language similar to SQL and used to
query heap dumps

WEB RESOURCES
http://docs.oracle.com/javase/7/docs/

technotes/tools/solaris/javadoc.html
javadoc - The Java API Documentation Generator

http://docs.oracle.com/javase/tutorial/

deployment/jar/
Lesson: Packaging Programs in JAR Files

http://docs.oracle.com/javase/7/docs/

technotes/tools/solaris/jcmd.html
jcmd

http://docs.oracle.com/javase/7/docs/

technotes/tools/share/jhat.html
jhat - Java Heap Analysis Tool

http://docs.oracle.com/javase/7/docs/

technotes/tools/windows/jdb.html
jdb - The Java Debugger

http://docs.oracle.com/javase/7/docs/

technotes/tools/windows/javap.html
javap - The Java Class File Disassembler

EXERCISES
Objective-type Questions

	 1.	 Which of the following is used to compile Java
code?

	 (a)	 jar	 (c)	 javadoc
	 (b)	 javac 	 (d)	 java

	 2.	 Which of the following is used to execute Java
code?

	 (a)	 javap	 (c)	 javah
	 (b)	 javac 	 (d)	 java

24 ADVANCED JAVA PROGRAMMING

	 3.	 Which of the following is used to create HTML
documentation pages?

	 (a)	 javac	 (c)	 jdoc
	 (b)	 javadoc	 (d)	 jdb

	 4.	 Which of the following is used to debug Java
programs?

	 (a)	 javac	 (c)	 jdoc
	 (b)	 javadoc	 (d)	 jdb

	 5.	 With javadoc, which of the following denotes a
javadoc comment?

	 (a)	 /**	 (c)	 /*
	 (b)	 //#	 (d)	 //**

	 6.	 Which javadoc tag is used to denote a comment
for a method parameter?

	 (a)	 @param	 (c)	 @parameter
	 (b)	 @method	 (d)	 @argument

	 7.	 Name the tools that lie in the jdk
	 (a)	 javab, javadoc, javav
	 (b)	 javac, javatxt & javah
	 (c)	 javak, javadoc & javah
	 (d)	 javac, javadoc, javah

	 8.	 Java is a ______ programming language
	 (a)	 Second generation
	 (b)	 Third generation
	 (c)	 Fourth generation
	 (d)	 None of these

	 9.	 The javac converts program into
	 (a)	 Hexadecimal code
	 (b)	 Octal code
	 (c)	 Byte code
	 (d)	 Object code

	10.	 What is the full form of JDK
	 (a)	 Joint Development Kit
	 (b)	 Java Demonstrate Kit
	 (c)	 Java Development Keyword
	 (d)	 Java Development Kit

	11.	 What is the full form of JVM?
	 (a)	 Joint Virtual Machine
	 (b)	 Java Vital Machine
	 (c)	 Java Virtual Machanic
	 (d)	 Java Virtual Machine

	12.	 Which of the following is the correct form of a Java
file name?

	 (a)	 <filename>.java
	 (b)	 Java.<filename>
	 (c)	 <filename>_java
	 (d)	 Java_<filename>

	13.	 Which of the following features is not supported
by Java?

	 (a)	 Abstraction	 (c)	 Polymorphism
	 (b)	 Pointer	 (d)	 Inheritance

	14.	 The jdb is used to
	 (a)	 Create a jar archive
	 (b)	 Debug a Java program
	 (c)	 Create C header file
	 (d)	 Generate Java documentation

	15.	 The jar is used to
	 (a)	 Create a jar archive
	 (b)	 Debug a java program
	 (c)	 Create C header file
	 (d)	 Generate Java documentation

	16.	 What is the meaning of jar?
	 (a)	 Java ARchive
	 (b)	 Java ARray
	 (c)	 Java ARchitecture
	 (d)	 Java Advanced Routine

	17.	 Match the following.
	 (i)	 java 1) is a tool for debugging Java program
	 (ii)	 javah 2) is a tool for creating C-like header

files
	 (iii)	 javap 3) runs java bytecode
	 (iv)	 jdb 4) prints Java code representation
	 (a)	 i-3, ii-2,iii-1
	 (b)	 i-3, ii-2, iii-4, iv-1
	 (c)	 i-1, ii-2, iii-3, iv-4
	 (d)	 i-2, ii-1, iii-3, iv-4

	18.	 JVM is a
	 (a)	 Debugger	 (c)	 Compiler
	 (b)	 Assembler	 (d)	 Interpreter

	19.	 Bytecode is given as input to
	 (a)	 Linker	 (c)	 JVM
	 (b)	 Assembler	 (d)	 Compiler

	20.	 What is the purpose of debugging?
	 (a)	 Developing software
	 (b)	 Editing software
	 (c)	 Removing errors from code
	 (d)	 All of the above

JAVA TOOLS 25

Subjective-type Questions

	 1.	 What does javadoc command do?

	 2.	 Explain with examples the syntax of javadoc
command.

	 3.	 Which delimiters are used to write javadoc
comments?

	 4.	 Describe briefly the different files generated by
javadoc.

	 5.	 Describe the structure of javadoc comments.

	 6.	 What is difference between block tags and in-line
tag?

	 7.	 Write the name of a few tags for methods.

	 8.	 Write the examples of repeatable and non-
repeatable tags.

	 9.	 What is the function of javap command?

	10.	 Describe with examples the syntax of javap
command.

	11.	 What is the function of jcmd?

	12.	 Describe with examples the syntax of jcmd
command.

	13.	 Demonstrate how jcmd can be used as flight
recorder command.

	14.	 What is the full form of jhat?

	15.	 What is the function of jhat command?

	16.	 How do you obtain a JVM dump file?

	17.	 What is the function of jdb?

	18.	 Demonstrate how jdm can be used in step by step
program debugging.

Exception Handling

Key Objectives

After completing this chapter readers will be able to—
•  understand what exceptions are
•  get an idea about exception handling mechanism
•  learn Java exception class hierarchy
•  use keywords try, catch, throw, throws and finally
•  learn how to use try-with-resource statement
•  write new exception classes

2.1	 EXCEPTIONS
Exceptions are exceptional/unusual/abnormal events that occur during the execution of programs.

To understand, what exceptions really are, consider the following simple program:
class ExceptionTest {

public static void main(String[] args) {
int d = 0, result;
result = 100/d;
System.out.println(result);

}
}

Since, division by 0 is invalid, we say that an exception occurs during the division. Consider the
following array declaration.

int[] a = new int[4];
a[5] = 6;

Since, any index out of the range 0 to 3, is invalid, an exception occurs when the second statement
is executed. The following array declaration also results in an exception, since the size of any array
can never be negative.

int b = new int [-3];

CHAPTER – 2

EXCEPTION HANDLING 27

Consider the following class declarations:
class X {}
class Y extends X {}

With these declarations, the following type cast results in an exception:
X x = new X();
Y y = (Y)x;

In the following example, since the string is null, length() method will cause an exception.
String s = null;
int len = s.length();

Since the following string contains characters, parseInt() method results in an exception.
String s = "abc";
int i = Integer.parseInt(s);

With these examples, you might have an idea of what exceptions are now. In practice, there are
many exceptional situations that may occur during the execution of a program. A highlight of such
exceptions will be discussed in due course.

Anyway, what happens if an exception really occurs? The exception disrupts the normal flow of
execution and terminates the program abruptly. Yes, that’s the default behaviour of JVM. Consider
that a program has the following series of statements:

statement 1;
statement 2;
statement 3;
statement 4;

If an exception occurs at statement 2, rest of the code will not be executed. Indeed, if our first
program is executed, JVM terminates the program with the following message:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at ExceptionTest.main(ExceptionTest.java:6)

How will you feel if your program, which takes a very long time to run, terminates
abnormally just before its completion? Certainly, not good. Fortunately, Java provides a standard
and robust framework to cope up with exceptional scenarios, known as Java Exception
Handling.

2.2	 HANDLING EXCEPTIONS
Five keywords are used for exception handling. They are try, catch, throw, throws and finally.

In this mechanism, we place a piece of vulnerable code (i.e., which might cause some exception) in
a block called try block, which looks like this:

try {
//code to inspect...

}

When an exception occurs during the execution of the code in the try block, JVM creates an
exception object and declares that something wrong has happened. The exception object contains a
lot of useful debugging information such as name of thread, file name, line of code at which exception
occurred, name of exception and it’s description etc. The process of creating this object and disclosing
it is called throwing the exception. Throwing an exception disrupts the normal flow of execution. The
JVM then tries to find code (called handler) that wants to handle (resolve) the exceptional situation.
If found, it passes the newly created object to this handler, which is said to be catching the exception.
The handler is specified by catch block immediately after the try block as follows:

28 ADVANCED JAVA PROGRAMMING

try {
//code to inspect...

}
catch(…) {

//code to handle the exception
}

The catch block declares a parameter that specifies the type of exception it can handle.

2.3	 AN EXAMPLE
Let us now apply this mechanism to our division example. Since, the division operation may

throw an exception, we guard it using a try block as follows:
try {

result = 100/d;
}

If the value of d is zero, an exception occurs during the division operation. The JVM creates an
object representing the exception and throws the object which essentially disrupts the normal control
of execution and places it just after the try block. The JVM then looks for an appropriate catch block
that can hold the object thrown. Note that if JVM does not find any suitable catch block, it forwards
the exception to a default handler which prints exception description and stack trace and terminates
the program without executing any further instruction. Since, the division operation throws an
ArithmeticException object, we add a catch block that can receive the exception object as follows:

catch(ArithmeticException e) {
System.out.println("An arithmetic exception occurred.");
result = 100;

}

This causes to receive the thrown object which can be accessed through e. This handler handles
the exception by simply printing a message and setting the value of result to 100. The control of
execution then comes after the catch block and continues. Here is the complete source code:

class ExceptionTest {
public static void main(String[] args) {

int d = 0, result;
try {

result = 100/d;
}
catch(ArithmeticException e) {

System.out.println("An arithmetic exception occurred.");
result = 100;

}
System.out.println("After catch block");

}
}

If this program is executed, it no longer terminates abruptly. The result of the program is as follows:
An arithmetic exception occurred.
After catch block

2.4	 TYPES OF EXCEPTIONS
Java platform provides a hierarchy of exception classes [Figure 2.1:] that represent various

exceptional situations. Let us have a brief overview of these classes.

EXCEPTION HANDLING 29

The hierarchy is created by having one (or more) exception extend another exception. The root
of this exception class hierarchy is the Throwable class. Conventionally, two subclasses of this class,
namely Exception and Error are provided to indicate exceptional situations.

Throwable
(Checked)

Exception
(Checked)

Error
(Unchecked)

RuntimeException
(Unchecked)

VirtualMachineErrorIOErrorIOExceptionSQLException

SecurityException NullPointerException

… …

…

Figure 2.1: Java Exception class hierarchy

The class Error represents serious problematic scenarios (we shall call them errors) that
applications can neither anticipate nor recover from. Examples of such errors are out of memory
error, stack overflow error, class format error, no class definition found error etc.

The class Exception represents rest of the exceptional scenarios that applications can catch and
handle. Usually, exceptions are categorized into two groups: checked exceptions and unchecked
exceptions.

2.4.1	 Checked Exceptions
Checked exceptions are those that must be caught or declared to be thrown. Java considers

Throwable and any of its subclass that is not also a subclass of either RuntimeException or Error
as checked exceptions. Checked exceptions should be handled in the code to avoid compile
time errors.

2.4.2	 Unchecked/Runtime Exceptions
Unchecked exceptions (also called runtime exceptions) are those which need not be caught

or declared to be thrown explicitly. Note that checked and unchecked exceptions are functionally
equivalent. We can do everything with checked exceptions that can also be done with unchecked
exceptions, and vice versa.

2.5	 CATCHING EXCEPTION
Note that Java exceptions are organized into a hierarchy. The advantage of this hierarchy is

that if we write a catch block to catch a certain exception in the hierarchy, then it can also catch all
subclasses of that exception too. It means, we can catch all exceptions from that certain exception
and down the hierarchy. For example, since FileNotFoundException is a subclass of IOException,

30 ADVANCED JAVA PROGRAMMING

the following catch block can catch IOException as well as all other sub classes of IOException
including FileNotFoundException:

catch(IOException ioe) {}

2.6	 TRACING STACK
The Throwable class has several useful methods to collect detailed information about an exception.

For example, printStackTrace() method prints a stack trace of the current exception on the standard
error. Consider the following program:

class TracingStack {
static void g() {

int r = 2/0;
}
static void f() {

g();
}
public static void main(String args[]) {
f();

}
}

This results in the following output:
Exception in thread "main" java.lang.ArithmeticException: / by zero

at TracingStack.g(TracingStack.java:3)
at TracingStack.f(TracingStack.java:6)
at TracingStack.main(TracingStack.java:9)

The first line contains the name and description of the exception whereas rest of the lines locate
the source of exception.

2.6.1	 Multiple Catch Blocks
A single try block may have multiple catch blocks. This usually happens if try block throws more

than one type of exceptions and we want to handle them differently. It takes the following form:
try {

//code that throws exception
}
catch(Exception1 e) {

//handle this way
}
catch(Exception2 e) {

//handle that way
}
…

When an exception is thrown, the control of execution comes immediately after the enclosing
try block. The JVM then searches for a matched catch block and if one is found, it is executed and
control goes to the end of the try-catch. This implies that even if multiple catch blocks exist, only
matched one (if there is any) is executed. The following example uses two catch blocks:

class MultipleCatch {
public static void main(String args[]) {
try {

String a = args[0];
int b = 2/0;

}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println(e);
}
catch(ArithmeticException e) {

System.out.println(e);
}

}
}

EXCEPTION HANDLING 31

class MultipleCatch {
public static void main(String args[]) {
try {

String a = args[0];
int b = 2/0;

}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println(e);
}
catch(ArithmeticException e) {

System.out.println(e);
}

}
}

The two statements in the try block can throw two exceptions. The former one throws an
ArrayIndexOutOfBoundsException if no command line argument is passed to this program. If
the first statement is passed (i.e., a command line argument is passed), second one throws an
ArithmeticException. To catch these two exceptions, we have provided two catch blocks. The
former one is responsible to catch ArrayIndexOutOfBoundsException whereas the later one catches
ArithmeticException.

Multiple catch blocks may also be used in the case where all the exceptions thrown inside the
try-block are the same type or subclasses of that type. The following illustrates that:

try{
//code that throws IOException

}
catch (FileNotFoundException e){ }
catch (IOException e){}

Here, all IOExceptions are being handled by the second catch block except FileNotFoundException.
The first catch block handles FileNotFoundException differently. Note that only the first catch-block
that matches with a thrown exception will only handle an exception.

Catching many exceptions in a try block makes the code ugly. If multiple catch blocks have
similar code, in Java SE 7 and later, we can combine multiple catch blocks into a single one using
pipe (|) operator as follows:

catch(ArrayIndexOutOfBoundsException|ArithmeticException e) {
System.out.println(e);

}

This single catch block can handle ArrayIndexOutOfBoundsException as well as
ArithmeticException. It also reduces code duplication The parameter in a multi-catch block is
implicitly final and hence cannot be modified.

Order of catch blocks does matter. Consider the following catch blocks:
catch(Exception e) {}
catch(ArrayIndexOutOfBoundsException e) {}

Since, Exception is the superclass of all the exceptions, all the exceptions (including
ArrayIndexOutOfBoundsException) will be caught by the first catch block. So, second catch block
is unreachable and results in a compilation error. In general, catch blocks must be arranged from
most specific to most general. So, the following catch blocks are valid:

catch(ArrayIndexOutOfBoundsException e) {}
catch(Exception e) {}

Here, the first catch block only catches ArrayIndexOutOfBoundsException whereas second one
catches everything else.

2.6.2	 throw
Java programming language also allows us to explicitly throw an exception using throw keyword.

The following program unconditionally creates an Exception object and throws it:

32 ADVANCED JAVA PROGRAMMING

class ThrowTest {
public static void main(String[] args) {

try {
throw new Exception("test");

}
catch(Exception e) {
System.out.println(e);

}
}

}

Note that in practice, an exception is thrown only if an unusual situation occurs. The above
program unconditionally throws an exception only to demonstrate the throw clause.

Only objects that are instances of Throwable class (or one of its subclasses) may be thrown by
the throw statement. Similarly, only this class or one of its subclasses can be the argument type in
a catch clause.

A catch block can take necessary actions after catching an exception. However, if it thinks
that it has not been able to handle the exception completely, it can re-throw the exception
expecting that some code else will handle it completely. Re-throwing an exception is done
with the same throw keyword except that no new exception object is created. It takes the following
form:

try {
//code that throws exception

}
catch(Exception e) {

//do as much as possible with e
//then re-throw it
throw e;

}

The following is a concrete example to illustrate this:
class ReThrowTest {

void f() throws Exception {
try { throw new Exception(); }
catch(Exception e) {
System.out.println("Handled paritally in f()");
throw e;

}
}
void g() {

try { f(); }
catch(Exception e) {

System.out.println("Handled completely in g()");
}

}
public static void main(String[] args) {
new ReThrowTest().g();

}
}

Here, the catch block in method f() catches an exception and prints a message. It thinks that the
there is something else to do with this exception and re-throws the exception expecting that the caller
will do that. The catch block of caller method g() catches the exception and takes further steps. This
program results in the following output:

Handled partially in f()
Handled completely in g()

EXCEPTION HANDLING 33

2.6.3	 throws
A method must specify the list of checked exceptions that it might (directly/indirectly) raise but

does not handle them using throws clause as follows:
return-type method-name (parameter list) throws list-of-exceptions {
}

The throws clause goes after the parameter list and before method body. This specification
enables callers of the method either to guard themselves by using appropriate try-catch blocks or to
re-declare it. Here is an example:

void f() throws Exception {
throw new Exception("throws test");

}

This method unconditionally throws an Exception object. It specifies, using throws clause that it
might throw an Exception object during its execution. This specification helps the caller to identify
the list of exceptions it must deal with. A caller can:

•	 call the method f() within a try block and provide appropriate catch block to handle the exception.
•	 declare the exception to be re-thrown using a separate throws clause.
•	 use both the above together.

The following example uses a try-catch block:
void g() {

try {
f();

}
catch(Exception e) {
//...

}
}

It is useful if g() knows what exactly it should do if f() throws an exception. Otherwise, g()
may re-specify it using a separate throws clause as follows:

void g() throws Exception {
f();

}

It is also possible to handle the Exception using a try-catch block and still declare it to be thrown
as follows:

void g() throws Exception {
try {

f();
}
catch(Exception e) {
//take actions...
throw e;

}
}

In this case, g() takes necessary steps in the catch block as far as it can and re-throws the caught
exception expecting that some code else will handle it completely.

A method can only throw objects of the same class or subclass mentioned in the throws clause. In
other words, throws clause must include classes (or super classes) whose instances are actually thrown.

void f() throws java.io.IOException {
throw new Exception("throws test");

}

34 ADVANCED JAVA PROGRAMMING

The above function is invalid as it throws a super class Exception object but declares a
IOException to be thrown. However, the following is acceptable:

void f() throws Exception {
throw new java.io.IOException("throws test");

}

A method that declares a checked exception to be thrown may not actually throw it. For example,
the following method declares to throw a checked exception InterruptedException, but does not
actually throw it:

void h() throws InterruptedException { }

A throws clause may include a comma-separated list of exceptions:
void h() throws InterruptedException, IllegalAccessException,
ClassNotFoundException { }

Although, it is not mandatory, we may also specify unchecked exceptions in the throws
clause.

void h() throws NullPointerException { }

2.6.4	 finally
Sometimes it is very much necessary to execute a piece of statements before a block of code

is exited. For example, if a file or a database connection is opened, they should ideally be closed
regardless of any problems that may occur. Java exception handling mechanism provides a
try-finally clause for this purpose. This helps the program to guard (such as recover resources)
itself even if an unexpected exception occurs. It takes the following form:

try {
// code with multiple exit points...

}
//zero or more catch blocks
finally {

//this gets always executed no matter how try block exited
}

The finally block is similar to catch block except that it always gets executed when try block
exits no matter how it is exited. As long as finally block does not throw any exception, the control
returns to the point from where this finally block was called and try block returns in the appropriate
manner.

Let us now inspect when and in which cases a finally block gets executed. In the simplest case, the
try block runs to the end with no exception thrown. The finally block will be executed just after
the try block.

class FinallyTest {
public static void main(String args[]) {
try { }
finally { System.out.println("In finally"); }

}
}

It results in the following output:
In finally

The try block throws an exception and it is caught by a matching catch block. The finally block
will execute right after the catch block executes.

EXCEPTION HANDLING 35

class FinallyTest {
public static void main(String args[]) {
try { throw new Exception();}
catch(Exception e) { System.out.println("In catch"); }
finally { System.out.println("In finally"); }

}
}

It produces the following result:
In catch
In finally

If catch block throws an exception further, before passing it to the caller, finally block is
executed.

class FinallyTest {
public static void main(String args[]) throws Exception {
try { throw new Exception(); }
catch(Exception e) {

System.out.println("In catch");
throw new Exception();

}
finally { System.out.println("In finally"); }

}
}

It also produces the same result. What happens if an exception is thrown but there is no matching
catch block? The exception object is thrown to the caller. But, before throwing the exception, the
finally block is executed.

class FinallyTest {
public static void main(String args[]) throws Exception {
try { throw new Exception();}
finally { System.out.println("In finally "); }

}
}

A return statement is encountered before the try block completes. But, before it returns to caller,
the finally block is still executed.

class FinallyTest {
public static void main(String args[]) {
try { return; }
finally { System.out.println("In finally "); }

}
}

2.6.4.1	 An Example
Since, a finally block is always executed regardless of what happens in the try block, it is a

perfect place to write clean up code (such as closing a file or socket/database connection) that may
otherwise be bypassed by statements such as return, break, continue etc. Here is an example:

FileInputStream fis = new FileInputStream("aFile.txt");
try {

//file related operations...
}
catch(IOException e) {

System.out.println(e);
}
finally {

fis.close();
}

36 ADVANCED JAVA PROGRAMMING

If an exception is thrown during file opening, neither try nor finally blocks get executed. Since,
the file is not opened, there is no need to close it. Otherwise (i.e., the file is successfully opened), if
try block throws an IOException, it is caught by the catch block. The finally block will execute right
after the catch block executes. This ensures that if the file is opened, it is also closed.

Since, the finally block itself may throw an exception, it may be put in an enclosing try-catch
block as follows:

try {
FileInputStream fis = new FileInputStream("aFile.txt");
try {

//file related operations...
}
finally {

fis.close();
}

}
catch(Exception e) {

//..
}

This can handle all of the checked exceptions. Alternatively, the code of the finally block may
be put in another try-catch clause:

FileInputStream fis = new FileInputStream("aFile.txt");
try {

//file related operations...
}
finally {

try {
fis.close();

}
catch(Exception e} {
//...

}
}

2.6.4.2	 Some Properties
The finally block, if used, must be placed after all catch blocks. So, the following is illegal as

finally block does not follow all catch blocks:
try {

//...
}
finally { }
catch(Exception e) {}

However, probably you have already noticed that a finally block may exist without any catch
block as follows:

try {
//...

}
finally { }

Every try block may have at most one finally block. The following is illegal:
try {

//...
}
finally { }
finally { }

EXCEPTION HANDLING 37

2.6.5	 try-with-resources Statement

The finally block, no doubt, provides a cleaner way to clean up resources. However, if we forget
to close resources, we shall get runtime exceptions which are hard to debug. We might look into the
entire program to make sure that all resources will get closed for all possible scenarios. Fortunately,
Java 7 and later provides an even better mechanism known as try with resource statement. It enables
us to create resources in the try statement and use them in the try block. When the try block exits by
any means, the Java Runtime Environment automatically close these resources. The try with resource
statement look like this:

try(Aresource ar = new AResource()) {
//use it

}

The following is an example:
try (FileInputStream fis = new FileInputStream("a.txt")) {

//use this file
}

In the try statement, we open a file and use it in the try block. When this try block exits, no matter
how it exits, runtime environment will certainly close the file. So, we can freely create resources and
use them. The only requirement is that the resource class must directly or indirectly implement java.
lang.AutoCloseable interface. Hopefully, most of the resources implement this interface, and may
be used in try with resource statement.

We can also create our own resource implementing this interface which has a single method
close() as follows:

class MyResource implements AutoCloseable {
public void close() {

System.out.println("In MyResource’s close()");
}

}

We can then use it in the try statement:
class TryWithResourcesTest {

public static void main(String args[]) throws Exception {
try (MyResource mr = new MyResource()) {
//...

}
}

}

When executed, it prints the following message:
MyResource’s close()

Multiple resource may also be created in the try statement:
try (

FileInputStream fis = new FileInputStream("a.txt");
FileOutputStream fos = new FileOutputStream("b.txt");
Socket s = new Socket("localhost",6789);

) {
//...

}

It creates three resources in the try statement separated by semicolon (;). When try exits, the
close() methods on all these three resources are automatically called in the opposite order of their
creation.

38 ADVANCED JAVA PROGRAMMING

Like an ordinary try statement, a try-with-resources statement can have catch and finally blocks. If
present, they are executed after the resources created have been closed. Consider the following program:

class TryWithResourcesTest {
public static void main(String args[]) throws Exception {
try (MyResource mr = new MyResource()) {

//...
}
finally {

System.out.println("In finally");
}

}
}

This prints the following message:
In MyResource’s close()
In finally

Note that exceptions may occur when JRE calls close() method on resources created in try-with-
resource statement. Exception may also occur in the try block. If both occur, earlier exceptions are
suppressed and the exception that occurs in the try block is finally thrown. The suppressed exception
may be recovered for handling using getSuppressed() method of Throwable class. The following
program illustrates this:

class TryWithResourcesTest1 {
public static void main(String args[]) throws Exception {
try {

try (MyResource mr = new MyResource()) {
System.out.println("Throwing from try block");
throw new Exception("try block");

}
}
catch(Exception e) {
System.out.println(e);
Throwable[] t = e.getSuppressed();
System.out.println("Suppressed exception...");
for(int i=0;i<t.length;i++)
System.out.println(t[i]);

}
}

}
class MyResource implements AutoCloseable {

public void close() throws Exception {
System.out.println("Throwing from close()");
throw new Exception("close()");

}
}

In this program, we create resource in the try-with-resource statement and throw an Exception
from the try block. As expected, before forwarding this exception to the enclosing code, JRE tries to
invoke close() method on the resource. However, close() method itself throws a new Exception
which gets suppressed and the earlier Exception is finally forwarded to the outer catch block. We
have retrieved the suppressed exception using getSupressed() method. If we execute the program,
the following results:

Throwing from try block
Throwing from close()
java.lang.Exception: try block
Suppressed exception...
java.lang.Exception: close()

EXCEPTION HANDLING 39

2.6.6	 Nested try-catch
It is possible that exception handlers are nested within one another. This means a try, catch or a

finally block can in turn contain another set of try-catch-finally blocks. For example, in the following
code, a try block contains another try-catch sequence.

try {
statement 1;
try {

statement 2;
}
catch(Exception e) { }

}
catch(Exception e){ }

A catch block can also contain another try-catch sequence as follows:
try {

statement 1;
}
catch(Exception e){

try {
statement 2;

}
catch(Exception e1) { }

}

Or even finally can contain other try-catch blocks:
try {

statement 1;
}
finally {

try {
statement 2;

}
catch(Exception e) { }

}

Consider the following example:
FileInputStream fis = null;
try {

fis = new FileInputStream("aFile.txt");
}
catch(IOException e) {

fis.close();
}

Since, the code in the catch block itself can throw an exception, we can put this code in a separate
try-catch as follows:

FileInputStream fis = null;
try {

fis = new FileInputStream("aFile.txt");
}
catch(IOException e) {

try {
fis.close();

}
catch(Exception e1) { }

}

If anything goes wrong in fis.close() statement (e.g. fis is null), an exception is thrown, However,
inner catch block can catch that exception and handle it.

40 ADVANCED JAVA PROGRAMMING

2.7	 CUSTOM EXCEPTION CLASSES
Sometimes it is required to develop meaningful exceptions based on application requirements.

Fortunately, Java also allows us to create new exception classes.
Since, only instances of Throwable class (or one of its subclasses) may be thrown, user-defined

exception classes must inherit (directly or indirectly) this class. The following is a user-defined
exception class that extends Exception class:

class InsufficientAmountException extends Exception {
long amount;
InsufficientAmountException(long amount) {

this.amount = amount;
}

}

To increase readability, it is recommended to append the string “Exception” to the names of all
classes that inherit (directly or indirectly) from the Exception class. Here is another example:

class ExcessiveAmountException extends Exception {
long amount;
ExcessiveAmountException(long amount) {

this.amount = amount;
}

}

We can then use these two exception classes just like ordinary exception classes as follows:
class Bank {

static long MaximumAmount = 15000;
public void withdraw(long accNo, long amount)

throws InsufficientAmountException, ExcessiveAmountException {
long balance = getBalance(accNo);
if(balance < amount)

throw new InsufficientAmountException(amount);
if(amount > MaximumAmount)

throw new ExcessiveAmountException(amount);
//else withdraw...

}
private long getBalance(long accNo) {

return 0;
}

}

These exceptions classes can also be used in the catch blocks. The following example illustrates this:
class UserException {

public static void main(String args[]) {
Bank b = new Bank();
try {

b.withdraw(0, 20000);
}
catch(ExcessiveAmountException e) {
System.out.println(e);

}
catch(InsufficientAmountException e) {

System.out.println(e);
}

}
}

If executed, it results in the following output:
InsufficientAmountException

EXCEPTION HANDLING 41

KEYWORDS
catch block—Contains code to handle exceptions

Checked Exception—A set of exceptions that must
be caught or declared to be thrown

Custom Exception classes—User-defined exception
classes that represent meaningful exceptional situations

Error—A subclass of Throwable that represents serious
problematic scenarios (we shall call them errors) that
applications can neither anticipate nor recover from

Exception—A subclass of Throwable that represents
exceptional scenarios that applications can catch and
handle

Exception hierarchy—A hierarchy of Java
exception classes that represent various exceptional
situations

Exceptions—Exceptional or unusual or abnormal
events that occur during the execution of programs

finally block—Contains code that always gets
executed no matter how try block exited

Nested try-catch— A try, catch or a finally block
containing another set of try-catch-finally blocks

Runtime exception—A set of exceptions that need not
be caught or declared to be thrown explicitly

throw—A keyword used to throw an exception
explicitly

Throwable—The root class of Java exception class
hierarchy

throws—A keyword used to specify a set of exceptions
a method might throw during its execution

try block—Used to contain a piece of code to be
examined

Try-with-resource statement—A construct that
allows us to use resources that get closed automatically
by the Java Runtime Environment

Unchecked Exceptions—A set of exceptions that
need not be caught or declared to be thrown explicitly

SUMMARY
Exceptions are exceptional/unusual/abnormal events
that occur during the execution of programs. Five
keywords are used for exception handling—try,
catch, throw, throws and finally. A try block contains
code to be examined. A try block is followed by one or
more catch blocks and/or one finally block. Exceptions
are thrown and caught by the respective catch block (if
any). The finally block, if present, is always executed
irrespective of how try block exits.

In Java, exceptional scenarios are represented by
various classes which are organized in a hierarchy. The
class Throwable is the root of this class hierarchy. The
Throwable class has several useful methods to collect
detailed information about an exception. Two subclasses
of this class are Exception and Error. The class
Error represents serious problematic scenarios that
applications can neither anticipate nor recover from them.
The class Exception represents rest of the exceptional
scenarios that applications can catch and handle.

Usually, exceptions are categorized into two groups:
checked exceptions and unchecked exceptions.

Checked exceptions are those that must be caught or
declared to be thrown. Java considers Throwable and
any of its subclass that is not also a subclass of either
RuntimeException or Error as checked exceptions.
Unchecked exceptions (also called runtime exceptions)
are those which need not be caught or declared to be
thrown explicitly.

It is also possible to explicitly throw an exception
using throw keyword. A method must specify the list
of checked exceptions that it might (directly/indirectly)
raise but does not handle them using throws clause.
Java 7 and later provides mechanism known as try with
resource statement that enables us to create and use
resources that get closed automatically by the Java
Runtime Environment.

It is possible for exception handlers to be nested within
one another. This means a try, catch or a finally block
can in turn contain another set of try-catch-finally blocks.

It is also possible to define custom exception classes
which must inherit (directly or indirectly) the class
Throwable.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
essential/exceptions/
Lesson: Exceptions

http://www.tutorialspoint.com/java/java_
exceptions.htm
Java Exception Handling

42 ADVANCED JAVA PROGRAMMING

http://tutorials.jenkov.com/java-exception-
handling/index.html
Java Exception Handling

http://howtodoinjava.com/2013/04/04/java-
exception-handling-best-practices/
Java exception handling best practices

http://www.journaldev.com/1696/java-
exception-handling-tutorial-with-examples-
and-best-practices
Java Exception Handling Tutorial with Examples and Best

Practices

http://www.javaworld.com/article/2076700/
core-java/exceptions-in-java.html
Exceptions in Java

http://www.javatpoint.com/exception-
handling-and-checked-and-unchecked-
exception
Exception Handling in Java

http://www.urz.uni-heidelberg.de/
Unterstuetzung/Hinweise/Einzel/Java/
EckelJavaTutor/TIJ311.htm
Error Handling with Exceptions

EXERCISES
Objective-type Questions

	 1.	 The class at the top of exception class hierarchy
is

	 (a)	 ArithmeticException
	 (b)	 Throwable
	 (c)	 Class
	 (d)	 Exception

	 2.	 What will be the output of the program?
public class Test {

public static void main(String[] args) {
try {

return;
}
finally {
System.out.println("Finally");

}
}

}

	 (a)	 Finally
	 (b)	 Compilation error.
	 (c)	 The code runs with no output.
	 (d)	 An exception is thrown at runtime.

	 3.	 What will be the output of the program?
public class Test {

public static void main(String[] args) {
try {

int x = 0;
int y = 5 / x;
System.out.println("finished");

}catch (ArithmeticException ae) {
System.out.println("Exception");

}catch (Exception e) {
System.out.println("Arithmetic

Exception");
}

}
}

	 (a)	 Compilation error.
	 (b)	 finished
	 (c)	 Exception
	 (d)	 Arithmetic Exception

	 4.	 An exception thrown from outside try block will
	 (a)	 return the program normally
	 (b)	 be ignored
	 (c)	 terminate the program
	 (d)	 none of the above

	 5.	 Which of the following causes an exception
	 (a)	 A run-time error
	 (b)	 A hardware malfunction
	 (c)	 An operating system problem
	 (d)	 A syntax error

	 6.	 When does exception occur in Java?
	 (a)	 At compilation time
	 (b)	 At run time
	 (c)	 Any time
	 (d)	 None of the mentioned

	 7.	 Which of these keywords is not a part of exception
handling?

	 (a)	 try	 (c)	 finally
	 (b)	 catch	 (d)	 thrown

	 8.	 Which of the following keywords is used to
examine exceptions?

	 (a)	 try	 (c)	 finally
	 (b)	 catch	 (d)	 throw

	 9.	 Which of the following keywords is used to handle
exception?

	 (a)	 try	 (c)	 throw
	 (b)	 catch	 (d)	 throws

EXCEPTION HANDLING 43

	10.	 Which of the following keywords is used to throw
an exception explicitly?

	 (a)	 try	 (c)	 throw
	 (b)	 catch	 (d)	 throws

	11.	 The key words used with exception handling are:
	 (a)	 try, catch, handle
	 (b)	 try, hold, finally
	 (c)	 throw, catch, conclude
	 (d)	 try, catch, finally

	12.	 Arithmetic Exception is
	 (a)	 A checked exception
	 (b)	 An unchecked exception
	 (c)	 An error
	 (d)	 None of the above

	13.	 Which of following exception is thrown by the
int z=2/0;?

	 (a)	 ClassNotFoundException
	 (b)	 NullPointerException
	 (c)	 ArithmeticException
	 (d)	 SecurityException

	14.	 Checked exceptions are processed by
	 (a)	 Java compiler
	 (b)	 Java interpreter
	 (c)	 Both (a) and (b)
	 (d)	 None of the above

	15.	 Unchecked exceptions are processed by
	 (a)	 Java compiler
	 (b)	 Java interpreter
	 (c)	 Both (a) and (b)
	 (d)	 None of the above

	16.	 Which one of the following statements is
correct?

	 (a)	 The ‘try’ block must be followed by a ‘catch’
block.

	 (b)	 The ‘try’ block must be followed by a ‘finally’
block.

	 (c)	 The ‘try’ block must be followed by either
a ‘catch’ block or a ‘finally’ block.

	 (d)	 The ‘try’ block must be followed by at
least one ‘catch’ block and one ‘finally’
block.

	17.	 Creating an exception object and handling it to
the run time system is called

	 (a)	 exception handling
	 (b)	 catching exception
	 (c)	 passing exception
	 (d)	 throwing exception

	18.	 Which of the following is an example of runtime
exception?

	 (a)	 FileNotFoundException
	 (b)	 IOException
	 (c)	 IllegalClassFormatException
	 (d)	 ClassCastException

	19.	 Which of the following is the super class of all
exception classes?

	 (a)	 Exception	 (c)	 RuntimeException
	 (b)	 Throwable	 (d)	 IOException

	20.	 Which of the following blocks gets executed
compulsorily whether exception is caught or not?

	 (a)	 finally	 (c)	 throws
	 (b)	 throw	 (d)	 catch

	21.	 Which of the following is true of the object thrown
by a throw clause?

	 (a)	 It must be an Exception type
	 (b)	 It must be a Throwable type
	 (c)	 It must be an Error type
	 (d)	 It must be a String type

	22.	 Which of the following methods is used to print
the description of an exception?

	 (a)	 traceException()
	 (b)	 printStackTrace()
	 (c)	 printDescription()
	 (d)	 printStack()

	23.	 Which of the following exceptions is thrown if
an array element is accessed beyond the array
size?

	 (a)	 ArrayIndexOutOfBounds
	 (b)	 IndexOutOfBoundsException
	 (c)	 IndexOutOfBounds
	 (d)	 ArrayIndexOutOfBounds Exception

	24.	 Which of the following is true when we write
custom exception classes?

	 (a)	 Extend the class Exception
	 (b)	 Create our own try and catch block
	 (c)	 Use finally block
	 (d)	 Use throws keyword

	25.	 Which of the following is true about the Error and
Exception classes?

	 (a)	 The Error class is final and the Exception
class is not.

	 (b)	 The Exception class is final and the Error
is not.

	 (c)	 Both classes extend Throwable.
	 (d)	 Both classes implement Throwable.

44 ADVANCED JAVA PROGRAMMING

	26.	 Predict the output of the following Java program.
class Test {

public static void main(String args[]) {
try {

throw 2;
}
catch(int e) {

System.out.println
("Exception " + e);

}
}

}

	 (a)	 Exception 2		 (c)	 Compilation Error
	 (b)	 Exception 0		 (d)	 None of the above

	27.	 What will be the output of the program?
public class Test {

public static void main(String[] args) {
try {

int x = 0;
int y = x / 5;
System.out.println("finished");

}catch (ArithmeticException ae) {
System.out.println("Exception");

}catch (Exception e) {
System.out.println("Arithmetic

Exception");
}

}
}

	 (a) Compilation error	 (c) Exception
	 (b) finished	  (d) Arithmetic Exception

	28.	 Which of the following is thrown by the read()
method of InputStream class?

	 (a)	 Exception
	 (b)	 FileNotFoundException
	 (c)	 ReadException
	 (d)	 IOException

	29.	 What will be the output of the following program?
public class Test{

public static void main(String args[]){
System.out.print("Before ");
try {
}catch(Throwable t){

System.out.print("Inside ");
}
System.out.print("End ");

}
}

	 (a)	 Before End
	 (b)	 Before Inside
	 (c)	 Inside End
	 (d)	 Before Inside End

	30.	 What causes an IllegalMonitorStateException?
	 (a)	 Two threads call a static synchronized

method at the same time.
	 (b)	 A thread invokes wait() on an object that is

already waiting.
	 (c)	 A thread invokes notify() on an object that

is not waiting.
	 (d)	 A thread calls wait() or notify() before

acquiring an object’s monitor.

Subjective-type Questions

	 1.	 What is the difference between checked and
unchecked exceptions?

	 2.	 What is the difference between throw and throws
keyword?

	 3.	 What do you mean by exception propagation?

	 4.	 What are the two types of exceptions in
Java? What are the differences between
them?

	 5.	 Why do you use multiple catch blocks?

	 6.	 How will you write new exception classes?

	 7.	 What is the difference between ‘Exception’ and
‘error’ in Java?

	 8.	 Describe the principle of ‘finally’ block.

	 9.	 What happens if an exception is not caught?

	10.	 Describe the exception hierarchy in Java

	11.	 What is the difference between
ClassNotFoundException and
NoClassDefFoundError?

	12.	 What are the advantages of using exception handling?

	13.	 Why are Errors not checked?

	14.	 Why are Runtime Exceptions not checked?

	15.	 What is meant by ‘re-throwing’ an exception? How
do you re-throw an exception?

	16.	 Write some important methods of Exception Class?

	17.	 What is the usefulness of multiple catch blocks?

	18.	 What is the use of throws keyword?

	19.	 When do you use a catch block and when do you
use a finally block?

	20.	 Write some example scenarios when finally block
is not executed.

CHAPTER – 3

Multi-threading

Key Objectives

After completing this chapter readers will be able to—
•  understand what multi-threaded programs are
•  learn how to write multi-threaded programs
•  learn how to interrupt, suspend and resume threads
•  get an idea about inter-thread communication
•  understand what synchronized methods and blocks are
•  deal with deadlock

3.1	 INTRODUCTION
A thread is a control/flow/path of execution that exists within a process. A process may have one

or more threads in it and is referred to as single-threaded or multi-threaded process respectively.
In a single-threaded process, there is only one flow to execution of instructions, whereas a multi-
threaded process has multiple sets of instructions that are executed concurrently; it hence has multiple
concurrent flows/paths of execution.

So, a multi-threaded process has two or more parts that can run concurrently and each part can
do a designated task at the same time. Multi-threading enables us to write programs in a way where
multiple activities can proceed concurrently in the same program. However, note that a system having
only one execution core executes multiple threads in an interleaved way resulting in no extra benefit
in terms of effective execution time.

In this chapter, we shall discuss how to work with multi-threaded processes in Java.

3.2	 MAIN THREAD
When we supply a program to the JVM for execution, it creates one thread and associates the

program’s main() method. The thread then executes the statement contained in the main() method.

46 ADVANCED JAVA PROGRAMMING

Since, it is the first thread that starts running when a program begins, it is said to be main/primary
thread. Other threads, if required, may be spawned from this main thread.

Though we do not create the main thread explicitly, we can inspect and control its properties.
However, to work with main thread, we must have a reference to the Thread object corresponding
to the main thread. This can be accomplished using Thread’s static currentThread() method that
returns a reference to the currently executing thread object. So, a reference to the main Thread object
can be obtained using the following statement in the main() method:

Thread t = Thread.currentThread();

We can then access the main thread via this reference. The following program illustrates this:
class ThreadInfo {

public static void main(String args[]) {
Thread t = Thread.currentThread();

System.out.println("Current Thread: "+t);
System.out.println("Name: "+t.getName());
System.out.println("Id: "+t.getId());
System.out.println("Priority: "+t.getPriority());
System.out.println("State: "+t.getState());

System.out.println("Changing name and priority...");
t.setName("Primary");
t.setPriority(8);

System.out.println("After name and priority change...");
System.out.println("Current Thread: "+t);
System.out.println("Name: "+t.getName());
System.out.println("Priority: "+t.getPriority());

}
}

Every thread has a name for identification purposes. Note that it is just a string. So, multiple threads
may have the same name. When a thread is created, a new name is generated for it if none is specified.

The above program first prints some of the thread properties such as its name, id, priority, etc.
It then changes the name and priority and displays them again. It results in the following output:

Current Thread: Thread[main,5,main]
Name: main
Id: 1
Priority: 5
State: RUNNABLE
Changing name and priority...
After name and priority change...
Current Thread: Thread[Primary,8,main]
Name: Primary
Priority: 8

The information between ‘[‘ and ‘]’ includes the name of the thread, its priority and the name
of thread group where this thread belongs in order. We see indeed that the name of the thread was
“main”. Later it was changed to “primary”.

3.3	 USING sleep
A thread should ideally consume minimum CPU cycles. Think about a thread that prints current

system time up to second accuracy. Since the second part of time changes only after 1 second, it is
better to print the time and wait for one second. This makes processor time available to the other
threads of the application or other applications that might be running on a computer system.

MULTI-THREADING 47

A thread can be made suspended using sleep() method that has the following overloaded versions:
public static void sleep(long millis)
public static void sleep(long millis, int nanos)

They cause the currently executing thread to cease execution for the specified duration. The former
version takes the duration in milliseconds, whereas the latter one allows us to specify the duration
in milliseconds and nanoseconds. Consider the following program:

public class SleepDemo {
public static void main(String args[]) {
for(;;) {

System.out.println("Local date and time: "+new java.util.Date());
try {
Thread.sleep(1000);

}catch(InterruptedException ie){}
}

}
}

In this program, the main thread prints the current date and time and waits for 1 second and
repeats this all over again. When it waits, it releases the CPU which can be used by other threads or
applications. The following is sample output of this program.

Local date and time: Sat Apr 26 11:41:46 IST 2014
Local date and time: Sat Apr 26 11:41:47 IST 2014
Local date and time: Sat Apr 26 11:41:48 IST 2014
Local date and time: Sat Apr 26 11:41:49 IST 2014
Local date and time: Sat Apr 26 11:41:50 IST 2014
Local date and time: Sat Apr 26 11:41:51 IST 2014
Local date and time: Sat Apr 26 11:41:52 IST 2014
Local date and time: Sat Apr 26 11:41:53 IST 2014
...

Since this program runs for ever, use Crtl-C to terminate the program. Note that duration specified in
sleep() is not guaranteed to be precise, because it is limited by the facilities provided by the underlying
OS. Also, the sleep() may throw an InterruptedException if the current thread is interrupted.
Either case, don’t assume that sleep() will suspend the thread for precisely the duration specified.

3.4	 CREATING THREAD
There are two ways to create threads: by extending the java.lang.Thread class and implementing

the java.lang.Runnable interface.

3.4.1	 Extending Thread
One way to create threads is to write a class extending the Thread class and overriding its run()

method as follows:
public class SimpleThread extends Thread {

public void run() {
for(int i = 0; i < 4; i++)

System.out.println("In MyThread: "+i);
}

//...
}

The run() method provides the entry point for the thread. It contains codes to be executed
concurrently with other threads. Our run() method simply prints a message five times. The objects
of this class are called threads. The following creates one thread object:

SimpleThread st = new SimpleThread();

48 ADVANCED JAVA PROGRAMMING

When, this thread starts, the codes in the run() method get executed concurrently with other
codes. Note that in a uni-processor system, the codes run in interleaved way. Anyway, this thread
does not start automatically. It is started using its inherited start() method as follows:

st.start();

When this statement is encountered, JVM creates a new control of execution and associates the
run() method with it and returns to the caller immediately. The two threads, the current thread and
the newly created one are then run concurrently. The current thread executes statements after start()
method and new thread executes the statements in run() method. Here is the complete source code:

public class SimpleThread extends Thread {
public void run() {

for(int i = 0; i < 4; i++)
System.out.println("In MyThread: "+i);

}
public static void main(String args[]) {

SimpleThread st = new SimpleThread();
st.start();
for(int i = 0; i < 6; i++)

System.out.println("In main thread: "+i);
}

}

Here, the main thread creates a new thread and calls its start() method which spawns a new
control of execution and returns to the main thread immediately. The main thread then executes the
statements after the start() method whereas the new thread executes the run() method concurrently.
A sample output is shown below:

In main thread: 0
In MyThread: 0
In MyThread: 1
In main thread: 1
In main thread: 2
In MyThread: 2
In main thread: 3
In MyThread: 3
In main thread: 4
In main thread: 5

Note that the output may vary next time you run the program. This happens because the
operating system may use a different interleaving pattern depending on its scheduling policy and
other parameters.

3.4.2	 Implementing Runnable
Although, we can create threads extending the Thread class, it has an inherent problem. Since,

Java does not support multiple inheritance for classes, if a class has to extend another class, it cannot
extend Thread. Fortunately, Java provides an alternative way to create threads where we create a
class implementing the Runnable interface as follows:

public class MyClass implements Runnable {
public void run() {

for(int i = 0; i < 4; i++)
System.out.println("In MyThread: "+i);

}
//...

}

The class implements the run() method of Runnable interface. Note that an object of this
class is not a thread; it is merely runnable in the sense that its run(), method can be executed
concurrently with other codes. The thread object is created using any of the following constructors
of Thread class:

MULTI-THREADING 49

public Thread(Runnable target)
public Thread(Runnable target, String name)

Both take a runnable object as first argument and create a thread object. So, we use the former
one passing a runnable object as follows:

Thread t = new Thread(new MyClass());

This is an ordinary thread and can be started as usual:
t.start();

It eventually calls runnable object’s run() method. Here is the complete source code using
Runnable interface:

public class MyClass implements Runnable {
public void run() {

for(int i = 0; i < 4; i++)
System.out.println("In MyThread: "+i);

}
public static void main(String args[]) {
Thread t = new Thread(new MyClass());
t.start();
for(int i = 0; i < 6; i++)

System.out.println("In main thread: "+i);
}

}

This generates a similar output as shown below:
In main thread: 0
In MyThread: 0
In main thread: 1
In MyThread: 1
In main thread: 2
In MyThread: 2
In main thread: 3
In MyThread: 3
In main thread: 4
In main thread: 5

Again note that the output may vary every time you run the program.

3.5	 INTERRUPTING THREAD
Interrupting a thread means requesting it to stop what it is currently doing and do something else.

The request is sent to a thread using its interrupt() method that sets the thread’s interrupt flag.
However, how will the thread identify that it has been interrupted?

Note that methods such as sleep(), wait(), join() etc. throw an InterruptedException if
they find interrupt flag set. So, a thread can use any of these methods in a try block and provide an
appropriate catch block which gets executed when it is interrupted. In this way, a thread can determine
if it is interrupted or not. The following program demonstrates this:

class Timer extends Thread {
public void run() {

while(true) {
System.out.println("Timer running. Date & time: "+new java.util.Date());
try {
Thread.sleep(1000);

}catch(InterruptedException e) {
System.out.println("Timer was interrupted");
return;

}
}

}
}
public class InterruptDemo {

public static void main(String args[]) throws InterruptedException {
Timer t = new Timer();
t.start();
Thread.sleep(4000);
t.interrupt();

}
}

50 ADVANCED JAVA PROGRAMMING

class Timer extends Thread {
public void run() {

while(true) {
System.out.println("Timer running. Date & time: "+new java.util.Date());
try {
Thread.sleep(1000);

}catch(InterruptedException e) {
System.out.println("Timer was interrupted");
return;

}
}

}
}
public class InterruptDemo {

public static void main(String args[]) throws InterruptedException {
Timer t = new Timer();
t.start();
Thread.sleep(4000);
t.interrupt();

}
}

Here, main thread creates and starts a child thread that continuously prints current date and time
and sleeps for 1 second. The main thread, after 4 seconds, calls child thread’s interrupt() method
that sets child thread’s interrupt flag. If the child thread is sleeping at that time, sleep() throws an
InterruptedException when it returns. Otherwise, when sleep() method is encountered the next
time, it throws an InterruptedException. Either case, the catch block is executed and the child
thread can respond to this interruption.

It is up to the thread exactly how it will respond to an interrupt. However, it is very common that
the thread dies upon interruption. In our example, the child thread prints a message and returns. It
is also up to the thread how quickly it will respond. For example, if the thread receives an interrupt
in the middle of some heavyweight computation, it can only respond at the end of the computation.

The following is a sample output of the program:
Timer running. Date & time: Sun Apr 27 11:45:14 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:15 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:16 IST 2014
Timer running. Date & time: Sun Apr 27 11:45:17 IST 2014
Timer was interrupted

Alternatively, a thread may use static interrupted() method to check if it was interrupted. The
method returns a true if the interrupt flag is set; false otherwise. So, a thread, on its way to normal
work, may devote some time to inspect the method’s return value as follows:

while(true) {
//do normal work
//check it was interrupted
if(Thread.interrupted()) {

//it was interrupted, respond
}

}

At any time, if interrupted() method returns the value true, it understands that an interrupt
request was sent to it. The following program illustrates this:

class Timer extends Thread {
public void run() {

while(true) {
System.out.println("Timer running. Date & time: "+new java.util.Date());
if(Thread.interrupted()) {
System.out.println("Timer was interrupted");
return;

}
}

}
}
public class InterruptDemo1 {

public static void main(String args[]) throws InterruptedException {
Timer t = new Timer();
t.start();
Thread.sleep(20);
t.interrupt();

}
}

MULTI-THREADING 51

The child thread, upon interrupt, responds by printing a message and terminating itself. Here is
a sample output of this program:

Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer running. Date & time: Sun Apr 27 11:48:23 IST 2014
Timer was interrupted

Note that interrupted()method clears the interrupt flag of the thread. This means if the method is
called twice in succession, the second call would return false unless the current thread is interrupted
again in the meanwhile.

3.6	 SUSPENDING AND RESUMING
A thread may be suspended and resumed using the combination of wait() and notify() methods.

The following program illustrates this:
class MyThread extends Thread {

boolean active = true;
public void Suspend() { active=false; }
public synchronized void Resume() {

active = true;
notify();

}
public synchronized void run() {

try {
while(true) {
if(active) {

System.out.println("Running...");
Thread.sleep(500);

}
else {

System.out.println("Suspended...");
wait();

}
}

}catch(Exception e) {e.printStackTrace();}
}

}
public class SuspendResume {

public static void main(String args[]) throws Exception {
MyThread mt = new MyThread();
mt.start();
while(true) {

Thread.sleep(1000);
mt.Suspend();
Thread.sleep(1000);
mt.Resume();

}
}

}

The class MyThread has a boolean field active that represents the current status of the thread. The
methods Suspend() and Resume() change this flag to suspend and resume a thread respectively. The
main thread suspends and resumes after every 1 second. Here is a sample output:

Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Suspended...

52 ADVANCED JAVA PROGRAMMING
Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Running...
Suspended...
Running...
Running...
Suspended...

Since the program runs for ever, press ctrl-C to terminate the program.

3.7	 THREAD PRIORITY
In Java, every thread has a priority. Higher priority threads get more preference in terms of CPU,

I/O time, etc. than lower priority threads. However, how threads with different priorities should be
handled depends absolutely on the underlying platform specifically on its scheduling algorithm.
Conceptually, threads of equal priority should get equal chance. Similarly, higher priority threads
should ideally receive more importance than lower priority ones.

Priorities are represented by integer numbers from 1 (lowest) to 10 (highest) which are represented
by two static final fields MIN_PRIORITY and MAX_PRIORITY of Thread class respectively. A new thread
receives its initial priority equal to the priority of its creator thread. The JVM assigns a priority value
equal to the final field NORM_PRIORITY to the main thread. Java defines these fields as follows:

public final static int MIN_PRIORITY = 1;
public final static int NORM_PRIORITY = 5;
public final static int MAX_PRIORITY = 10;

The following program prints their values:
public class MinMaxPriority {

public static void main(String args[]) {
System.out.println("Lowest thread priority: "+Thread.MIN_PRIORITY);
System.out.println("Normal thread priority: "+Thread.NORM_PRIORITY);
System.out.println("Highest thread priority: "+Thread.MAX_PRIORITY);

}
}

It generates the following output:
Lowest thread priority: 1
Normal thread priority: 5
Highest thread priority: 10

The following methods are available to work with priority:
public final int getPriority()
public final void setPriority(int newPriority)

The former returns the current priority of the thread, whereas the latter assigns the priority specified
to the thread. The following program demonstrates their usage:

public class PriorityDemo extends Thread {
public void run() {

System.out.println("Child's initial priority: "+getPriority());
setPriority(3);
System.out.println("After change, child's priority: "+getPriority());

}
public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Main's initial priority: "+t.getPriority());
t.setPriority(7);
System.out.println("After change, main's priority: "+t.getPriority());
new PriorityDemo().start();

}
}

MULTI-THREADING 53

public class PriorityDemo extends Thread {
public void run() {

System.out.println("Child's initial priority: "+getPriority());
setPriority(3);
System.out.println("After change, child's priority: "+getPriority());

}
public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Main's initial priority: "+t.getPriority());
t.setPriority(7);
System.out.println("After change, main's priority: "+t.getPriority());
new PriorityDemo().start();

}
}

It results in the following output:
Main's initial priority: 5
After change, main's priority: 7
Child's initial priority: 7
After change, child's priority: 3

Note that a priority merely tells how important a thread should get with respect to others. Programs
with multiple threads, specifically with different priorities, may behave differently at different
platforms especially on preemptive and non-preemptive ones. The following program demonstrates
how two threads with different priorities are handled.

class MyThread extends Thread {
int count = 0;
public int getCount() { return count; }
public void run() {

while(true) count++;
}

}
public class PriorityTest {

public static void main(String args[]) throws InterruptedException {
MyThread t1 = new MyThread();
MyThread t2 = new MyThread();
t1.setPriority(Thread.MAX_PRIORITY);
t2.setPriority(Thread.MIN_PRIORITY);
t1.start();
t2.start();
Thread.sleep(100);
System.out.println("Thread 1 count: "+t1.getCount());
System.out.println("Thread 2 count: "+t2.getCount());

}
}

The main thread creates and starts two threads; one having highest priority and the other one
having lowest priority. The two threads continuously increment their respective local variable count.
The main thread waits for 100 milliseconds and prints the current values of the local count variable
of the two threads. A sample output of this program is shown when it was run under Windows 7.

Thread 1 count: 43802164
Thread 2 count: 40580567

Note that the actual values may vary in different platforms and of course at different times. Since,
the two children thread do not finish, terminate the program by pressing Ctrl-C.

3.8	 USING join()
Multiple threads run concurrently; one does not wait for the other. However, sometimes it is

necessary that a thread should not proceed further until another thread finishes its task. For example,
consider a simple program having two threads; one of which sorts an array and the other prints the
sorted array. Obviously, the print thread must not start printing until sort thread sorts the array. This
type of dependency can be achieved using join() method. It makes the caller blocked until the
called thread dies.

54 ADVANCED JAVA PROGRAMMING

So, if a thread t2 depends on t1, the code for t2 should look like this:
//do independent tasks
t1.join(); //wait for t1 to terminate
//do remaining task

The following program illustrates this:
class MyThread extends Thread {

int[] a;
MyThread(int[] ar) {

a = ar;
start();

}
public void run() {

java.util.Arrays.sort(a);
System.out.println("Child completed sorting.");

}
}
public class JoinDemo {

public static void main(String args[]) throws Exception {
int a[] = {2, 6, 4, 0, 1, 5, 3};
MyThread t = new MyThread(a);
t.join();
System.out.println("Main printing array elements are :");
for(int i = 0; i < a.length; i++)

System.out.print(a[i]+" ");
}

}

Here, child thread sorts the array and main thread prints it. The main thread creates a child thread
passing an array to be sorted. It then starts the child thread. Since, child thread may take some time
to sort the array, main thread must not proceed for printing immediately. That’s why it calls child
thread’s join() method that makes the main thread waiting. The join() returns when child terminates
after sorting the array. The main thread can then be sure that the array is sorted and can safely print
the array. This results in the following output:

Child completed sorting.
Main printing array elements are :
0 1 2 3 4 5 6

If you omit the join() method from the program, it is no longer guaranteed that the elements
will be printed in sorted order. Here is a sample incorrect output:

Main printing array elements are :
0 1 2 3 4 Child completed sorting.
5 6

Here is another example that demonstrates the importance of join() method in a multi-threaded
program:

class MyThread extends Thread {
int[] a;
MyThread(int[] ar) {

a = ar;
start();

}
public void run() {

java.util.Arrays.sort(a);
}

}
public class JoinTest {

public static void main(String args[]) throws Exception {
int a[] = {2,3,4,0,1}, b[] = {6,9,8,7,5};
MyThread t1 = new MyThread(a);
MyThread t2 = new MyThread(b);
t1.join();
t2.join();
int result[] = merge(a,b);
for(int i=0;i<result.length;i++)

System.out.print(result[i]+" ");
}
static int[] merge(int[] a, int[] b) {

int i=0, j=0, k=0;
int[] result = new int[a.length+b.length];
while(i < a.length && j < b.length) {

if(a[i] < b[j]) result[k++]=a[i++];
else result[k++] = b[j++];

}
while(i<a.length) result[k++] = a[i++];
while(j<b.length) result[k++] = b[j++];
return result;

}
}

MULTI-THREADING 55

class MyThread extends Thread {
int[] a;
MyThread(int[] ar) {

a = ar;
start();

}
public void run() {

java.util.Arrays.sort(a);
}

}
public class JoinTest {
public static void main(String args[]) throws Exception {
int a[] = {2,3,4,0,1}, b[] = {6,9,8,7,5};
MyThread t1 = new MyThread(a);
MyThread t2 = new MyThread(b);
t1.join();
t2.join();
int result[] = merge(a,b);
for(int i=0;i<result.length;i++)

System.out.print(result[i]+" ");
}
static int[] merge(int[] a, int[] b) {

int i=0, j=0, k=0;
int[] result = new int[a.length+b.length];
while(i < a.length && j < b.length) {

if(a[i] < b[j]) result[k++]=a[i++];
else result[k++] = b[j++];

}
while(i<a.length) result[k++] = a[i++];
while(j<b.length) result[k++] = b[j++];
return result;

}
}

The main thread has two unsorted arrays a and b. It wants to sort them and merge them to form
a third sorted array. However, main thread itself does not want to sort them; instead it gets them
sorted using two new threads. The main thread simply merges them after getting them sorted. So,
main thread creates two new threads passing on array to be sorted to each and starts them. The
two children threads then concurrently sort their respective array. The task of the main thread is to
merge these two sorted arrays to form a third sorted one. However, main thread can start merging
if two children threads sort them and terminates. So, it invokes their respective join() methods.
Here is a sample output:

0 1 2 3 4 5 6 7 8 9

Omit the two join() statements from the program and see the behaviour. You may get a wrong
output as follows:

0 1 2 3 4 6 9 8 7 5

3.9	 SYNCHRONIZATION
There are many situations where multiple threads access common objects. When two or more

threads access the same object, the state of the object is not guaranteed to be correct all the time
if special care is not taken. To understand how it can happen, consider the following simple class:

class Counter {
int val = 0;
void inc() { val++; }
void dcr() { val--; }

}

The class Counter has a single field val (initialized to 0) that gets incremented and decremented
by two methods inc() and dcr() respectively. What should be the value of val if these two methods
on a Counter object are invoked same number of times? Obviously, the value should remain 0.
However, that may not be the case in a multithreading environment. To illustrate this, see the
following program:

public class RaceConditionDemo extends Thread {
Counter c;
RaceConditionDemo(Counter c) { this.c = c; start(); }
public void run() {

for(int i=0;i<10000;i++) c.dcr();
}
public static void main(String args[]) throws Exception {

Counter c = new Counter();
RaceConditionDemo rc = new RaceConditionDemo(c);
for(int i=0;i<10000;i++) c.inc();
rc.join();
System.out.println("Final value of c.val: "+c.val);

}
}

56 ADVANCED JAVA PROGRAMMING

public class RaceConditionDemo extends Thread {
Counter c;
RaceConditionDemo(Counter c) { this.c = c; start(); }
public void run() {

for(int i=0;i<10000;i++) c.dcr();
}
public static void main(String args[]) throws Exception {
Counter c = new Counter();
RaceConditionDemo rc = new RaceConditionDemo(c);
for(int i=0;i<10000;i++) c.inc();
rc.join();
System.out.println("Final value of c.val: "+c.val);

}
}

 Here, the main thread creates a Counter object c and a child thread with this object. The main
thread and the child thread then concurrently invoke inc() and dcr() methods on c 1000 times
respectively. At end, main thread prints the final value of c.val. When we executed this program
5 times, we got these values: -502, -394, 240, 505 and -664. What is wrong in the above program?
Why it is not giving the correct result?

This happens since two non-atomic operations val++ and val-- are executed in overlapped way.
Note that these are high level instructions. Although, they look simple, JVM translates them into
multiple steps. For example, val++ will probably be translated into the following steps:

	A.	 Get value of val
	B.	 Increment this value by 1
	C.	 Put it back to val

Similarly, JVM will probably translate val-- into following:
	D.	 Get value of val
	E.	 Decrement this value by 1
	F.	 Put it back to val

If these two sets of instructions are executed concurrently, they may be interleaved as A B D E
C F. If this happens, val will have wrong final value -1. If last two instructions are interchanged, the
value will again have wrong value 1. Like these two, there are many other such interleaving patterns
for which val will have incorrect value. This situation is popularly known as race condition, and the
segment of code where resources are shared by multiple threads is known as critical section. For a class
like Counter, this incorrect result might not be too harmful. However, consider the following class:

class Account {
int balance = 0;
void inc() { val++; }
void dcr() { val--; }

}

Here, even a small deviation from the correct balance is not acceptable. So, we must have some
mechanism to avoid this inconsistency. In general, we can avoid problem, if we can ensure that critical
sections are not executed in interleaved fashion.

Fortunately, Java allows us to specify this using the keyword synchronized. Two versions
exist: synchronized methods and synchronized blocks. A method is made synchronized by adding
a synchronized keyword before its declaration:

class X{
synchronized void f() {
//...
}

}

Let us briefly understand what happens when a method is declared as synchronized. In Java,
every object has an internal entity called internal lock or intrinsic lock or monitor lock or simply
lock or monitor. It is like a privilege that only one thread can "own" at any one time. It can also be
thought of as a room that one thread can “occupy” at any one time. So, if a thread does own a lock
of an object, no other thread can own the lock of the same object until the thread that owns the lock

MULTI-THREADING 57

releases it. Addition of a synchronized keyword means just requesting to own a lock. When a thread
invokes a non-static synchronized method on an object, it makes a request to own the lock of the
associated object. If the lock is not yet owned by some thread else, the requesting thread is given the
lock. Otherwise, it must wait until the lock is available. However, it must contend with other waiting
threads to own the lock. The lock is released when the owner quits the method.

So, a synchronized keyword before a method essentially tells the JVM

•	 not to interleave multiple parallel invocations of the method on the same object.
•	 �to ensure that when one thread is executing a synchronized method on an object, all other threads wait before

invoking other synchronized methods on the same object.

With this understanding, we can rewrite our Counter class as follows:
class Counter {

int val = 0;
synchronized void inc() { val++; }
synchronized void dcr() { val--; }

}

Both the methods have been declared with synchronized keyword. Let us now understand how
two threads access a Counter object without interfering. When main thread executes, inc() on c,
it owns c’s lock. Before finishing this method, the child thread cannot own the lock of c; therefore
cannot execute dcr(). Similarly, when child thread executes dcr(), it owns the lock of c. During that
time main thread waits. So, these methods are executed without any form of interleaving. However,
we have no control whatsoever on the order these methods are executed. Needless to say that the
program will give the correct result this time.

What would you do if you wanted to synchronize a shorter block of code instead of an entire
method? Java has the other option called synchronized block that takes the following form:

synchronized(o) {
//code to be synchronized

}

Here, o is some object that provides the lock. Our Counter class may be written as:
class Counter {

int val = 0;
Object o = new Object();
void inc() {

//other codes
synchronized(o) {

val++;
}
//other codes

}
void dcr() {

//other codes
synchronized(o) {

val--;
}
//other codes

}
}

Note that a synchronized method is a specific case of synchronized block where the lock is
obtained from the concerned object.

synchronized void f() {
//some code

}

58 ADVANCED JAVA PROGRAMMING

The above declaration is equivalent to
void f() {

synchronized(this) {
//some code

}
}

It is also possible to make a static method synchronized as follows:
class X

synchronized static void g() { /*body*/ }
}

However, what happens if it is invoked since a static method is not associated with an object? In
this case, the Class object associated with the method’s class provides the lock. So, it is equivalent to

class X {
static void g() {

synchronized(X.class) { /*body*/ }
}

}

Since, access to static and non-static methods are handled by different locks and since a static
field may be accessed by both non-static and static methods, care should be taken when using both.
Consider a slightly modified version of our Counter class:

class Counter {
static int val = 0;
synchronized void inc() { val++; }
synchronized static void dcr() { val--; }

}

Here, the static field is incremented and decremented by a synchronized non-static and a
synchronized static method respectively. However, if they are invoked on a Counter object c, inc()
uses the c’s lock whereas dcr() uses lock of Counter’s Class object. This means that the methods
may get interleaved raising an incorrect result again. The following is a potential solution using
synchronized block:

class Counter {
static int val = 0;
void inc() {

synchronized(Counter.class) {
val++;

}
}
static void dcr() {

synchronized(Counter.class) {
val--;

}
}

}

Here, both val++ and val-- statements are synchronized using the same lock obtained from
Counter’s Class object.

Synchronized blocks sometimes may make programs more efficient than synchronized methods.
Consider the following class declaration:

class X {
int i1, i2;
void inc1() { i1++; }
void inc2() { i2++; }

}

Suppose that multiple threads access the method inc1() and also inc2(). So, fields may have
incorrect values. Here is a solution using synchronized methods:

MULTI-THREADING 59

class X {
int i1, i2;
synchronized void inc1() { i1++; }
synchronized void inc2() { i2++; }

}

However, since we have used synchronized methods, execution of inc1() unnecessarily
blocks inc2() and vice versa that reduces amount of concurrency. A more efficient solution using
synchronized block may be written as follows:

class X {
int i1, i2;
Object o1 = new Object(), o2 = new Object();
void inc1() {

synchronized(o1) {
i1++;

}
}
void inc2() {

synchronized(o2) {
i2++;

}
}

}

Here, multiple concurrent execution of inc1() and inc2() will work properly; at the same time
one will not block the other.

3.9.1	 Synchronization and Atomicity
Note that the synchronized keyword does not make a method/block atomic.
// this block is NOT atomic!
synchronized(o) {
s1;
s2;

}

It merely tells that if one thread gets a lock on o, no other thread can get the lock on the same
object o. Similarly, the synchronized keyword below merely ensures that if one thread gets a lock
on o1, no other thread can get the lock on the same object o1.

// this block is NOT atomic!
synchronized(o1) {
s3;
s4;

}

So, if two threads execute these two blocks, the execution sequence may be s1, s3, s2, s4. This
implies that neither of the blocks is atomic. Unfortunately, there is no built-in support for atomic
code blocks in Java.

3.10	 DEADLOCK
Deadlock is a situation where two or more threads wait for each other indefinitely.
We know that the synchronized keyword may cause the executing thread to block while trying

to acquire the lock on the specified object. Since, the thread might already hold locks associated with
other objects, two or more threads could each be waiting for one another to release a lock. As a result,
they will end up waiting forever. Specifically, a deadlock may occur when multiple threads need the
same locks but obtain them in different order. The following program illustrates this:

60 ADVANCED JAVA PROGRAMMING

class MyThread extends Thread {
String r1, r2;
int id;
MyThread(int i, String s1, String s2) {

id = i;
r1 = s1;
r2 = s2;
start();

}
public void run() {

synchronized(r1) {
System.out.println("Thread "+id+" obtained a lock on "+r1);
try {

Thread.sleep(1000);
}catch(Exception e) {}
System.out.println("Thread "+id+" is waiting to obtain a lock on "+r2);
synchronized(r2) {

System.out.println("Thread "+id+" obtained a lock on "+r2);
}

}
}

}
public class DeadlockDemo {

public static void main(String args[]) throws Exception {
int a[] = {2, 6, 4, 0, 1, 5, 3};
String r1 = new String("R1"), r2 = new String("R2");
MyThread t1 = new MyThread(1, r1, r2);
MyThread t2 = new MyThread(2, r2, r1);

}
}

Here, main thread creates two string objects r1 and r2 and are passed to the MyThread’s constructor
in opposite order to create two threads t1 and t2. The thread t1 tries to acquire locks on r1 and r2
in this order whereas t2 wants to acquire locks on the same object but in opposite order. This results
in a circular wait and hence deadlock. Here is a sample output:

Thread 1 obtained a lock on R1
Thread 2 obtained a lock on R2
Thread 1 is waiting to obtain a lock on R2
Thread 2 is waiting to obtain a lock on R1

Note that a deadlock always occurs if the above program is run. In practice, deadlocks may not
occur all the time, and instead occur for certain data sets which are often difficult to predict. So, testing
for deadlocks is difficult, as deadlocks depend on timing, load, and environment, and thus might
happen infrequently or only under certain circumstances. This warns us that extreme care should be
taken when writing synchronized multi-threaded programs.

One way to prevent deadlock is to make sure that all locks are always taken in the same order by
any thread. For the following two threads, deadlocks cannot occur.

MyThread t1 = new MyThread(1, r1, r2);
MyThread t2 = new MyThread(2, r1, r2);

Here, both threads obtain locks on r1 and r2 in the same order; hence deadlock can never occur.
Lock ordering is a simple but effective way of preventing deadlock. However, it may only be useful
if we have complete knowledge of all the locks at compile time. Moreover there may be situations,
where lock ordering is not possible.

Another way to prevent deadlock requires threads to acquire all the locks that are needed during
execution before proceeding.

synchronized(MyThread.class) {
synchronized(r1) {

System.out.println("Thread "+id+" obtained a lock on "+r1);
try {

Thread.sleep(1000);
}catch(Exception e) {}
System.out.println("Thread "+id+" is waiting to obtain a lock on "+r2);
synchronized(r2) {

System.out.println("Thread "+id+" obtained a lock on "+r2);
}

}
}

MULTI-THREADING 61synchronized(r1) {
System.out.println("Thread "+id+" obtained a lock on "+r1);
try {

Thread.sleep(1000);
}catch(Exception e) {}
System.out.println("Thread "+id+" is waiting to obtain a lock on "+r2);
synchronized(r2) {

System.out.println("Thread "+id+" obtained a lock on "+r2);
}

}
}

This makes use of an additional lock which controls acquisition of two locks in a non-overlapped
way. Since, a thread will either acquire all locks or none, there is no circular wait which implies
no deadlock. However, since a thread may hold locks, required for short time, during the thread’s
entire execution period (possibly very long), the effective utilization of the locks may be low. In
practice, deadlock prevention or avoidance or detection requires special algorithms, many of which
can be found in a standard book on operating system. Unfortunately, there is no best and foolproof
algorithm for these purposes. So, a little care of the program design may help us getting out of the
deadlock situation. So how will you know that there are chances of deadlock. The following are some
conditions where there may be a chance of deadlock:

•	 The code contains any nested synchronized block
•	 A synchronized method calls another synchronized method
•	 The code obtains locks on different objects

3.11	 INTER-THREAD COMMUNICATION
We rarely write multi-threaded programs where threads run independently. If threads are really

independent, it is probably a good idea to write multiple programs, one for each thread. A useful
multithreaded-program is one where multiple threads run concurrently in a cooperating manner to
perform a designated task. Consider a simple program having two threads as follows:

The child thread finds (produces) prime numbers and stores them in a variable and main thread
prints them. This is a specific example of class producer-consumer problem. Although, this example
is not much useful, it helps us in understanding how to write multi-threaded programs where threads
communicate with one another.

One simple but elegant solution is to use a variable shared by these two threads. The child thread
stores a new prime number here and main thread prints it. The solution must satisfy the following
basic requirements:

•	 �Main thread must not print the same prime number more than once i.e. after printing a number, main thread must
wait for the child thread to generate a new one.

•	 Similarly, the child thread must not generate a new prime number before the main thread prints the previous one.

This tells us that a high degree of cooperation is needed between these two threads. A potential
solution is shown below:

public class ThreadCommSpin extends Thread {
static int turn = 0;
int buf[], n = 2;
public int nextPrime() {

while(true) {
boolean prime=true;
for(int i=2;i<=n/2;i++) if(n%i == 0) {prime = false;break;}
if(prime) return n++;
else n++;

}
}
public ThreadCommSpin(int[] a) {buf = a;start();}
public void run() {

while(true) {
while(turn != 0);
buf[0]=nextPrime();
turn = 1;

}
}
public static void main(String args[]) throws Exception {
int[] a = new int[1];
ThreadCommSpin st = new ThreadCommSpin(a);
while(true) {

while(turn != 1);
System.out.print(a[0]+" ");
turn = 0;

}
}

}

62 ADVANCED JAVA PROGRAMMING

public class ThreadCommSpin extends Thread {
static int turn = 0;
int buf[], n = 2;
public int nextPrime() {

while(true) {
boolean prime=true;
for(int i=2;i<=n/2;i++) if(n%i == 0) {prime = false;break;}
if(prime) return n++;
else n++;

}
}
public ThreadCommSpin(int[] a) {buf = a;start();}
public void run() {

while(true) {
while(turn != 0);
buf[0]=nextPrime();
turn = 1;

}
}
public static void main(String args[]) throws Exception {
int[] a = new int[1];
ThreadCommSpin st = new ThreadCommSpin(a);
while(true) {

while(turn != 1);
System.out.print(a[0]+" ");
turn = 0;

}
}

}

Both main and child thread use a shared one element array to read and write prime numbers.
The coordination is achieved using another shared variable turn which determines a thread’s turn.
It is child’s turn if the value of turn is 0, else it is main thread’s turn. A thread waits by spinning
in a while loop until it gets its own turn. This means a thread consumes CPU cycles even if it is not
its turn. However, ideally, if a thread finds that it is the other thread’s turn, it should wait without
consuming any CPU cycles further. So the above solution is inefficient.

Fortunately, to avoid unnecessary polling, Java provides a framework that uses wait(), notify()
and notifyAll() methods. These methods are implemented in java.lang.Object, hence is available
in all Java objects. To write an inter-thread communication solution, let us understand the functionality
of these methods:
wait()

This method places the invoking thread in the wait set associated with this object. While the thread
waits, it relinquishes lock on this object. Since, it relinquishes the lock, it must first acquire the lock.
That is why, wait() method must be used within a synchronized method/block. The thread becomes
disabled until either another thread invokes the notify() method or the notifyAll() method on the
same object, or interrupts the waiting thread.
notify()

It wakes up a single thread that is waiting (called wait() method) on this object's lock. In case
of multiple threads waiting, one of them is arbitrary chosen. The calling thread then relinquishes
the lock on the object. The awakened thread then competes in the usual manner with other threads
(if any) to get the lock back and proceeds further.

This method must also be called within a synchronized method/block.
notifyAll()

This is similar to notify() method except that it awakens all waiting threads on the current object.
With this knowledge, we can rewrite our previous program as follows:
public class ThreadComm extends Thread {

static int turn = 0;
int buf[], n = 2;
public int nextPrime() {

while(true) {
boolean prime=true;
for(int i=2;i<=n/2;i++) if(n%i == 0) {prime = false;break;}
if(prime) return n++;
else n++;

}
}
public ThreadComm(int[] a) {buf = a;start();}
public void run() {

while(true) {
synchronized(buf) {

while(turn != 0)
try {
buf.wait();

}catch(Exception e) {e.printStackTrace();}
buf[0] = nextPrime();
turn = 1;
buf.notify();

}
}

}
public static void main(String args[]) throws Exception {
int[] a = new int[1];
ThreadComm st = new ThreadComm(a);
while(true) {

synchronized(a) {
while(turn != 1) a.wait();
System.out.print(a[0]+" ");
turn = 0;
a.notify();

}
}

}
}

MULTI-THREADING 63

public class ThreadComm extends Thread {
static int turn = 0;
int buf[], n = 2;
public int nextPrime() {

while(true) {
boolean prime=true;
for(int i=2;i<=n/2;i++) if(n%i == 0) {prime = false;break;}
if(prime) return n++;
else n++;

}
}
public ThreadComm(int[] a) {buf = a;start();}
public void run() {

while(true) {
synchronized(buf) {

while(turn != 0)
try {
buf.wait();

}catch(Exception e) {e.printStackTrace();}
buf[0] = nextPrime();
turn = 1;
buf.notify();

}
}

}
public static void main(String args[]) throws Exception {
int[] a = new int[1];
ThreadComm st = new ThreadComm(a);
while(true) {

synchronized(a) {
while(turn != 1) a.wait();
System.out.print(a[0]+" ");
turn = 0;
a.notify();

}
}

}
}

Here, since the initial value of turn is 0, the main thread waits until child thread generates a prime
number and notifies the main thread. Similarly, after generating a prime number, the child thread waits
until main threads print it and notifies the child thread. A partial output of this program is shown below:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103
107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587
593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
...

KEYWORDS
Atomic—An indivisible piece of code

Critical section—A segment of code where resources
are shared by multiple threads

Deadlock—A situation where two or more threads wait
for each other indefinitely

Interrupt—Requesting a thread to stop what it is
currently doing and do something else

InterruptedException— An exception which is thrown
when a thread is waiting, sleeping, or otherwise
occupied, and the thread is interrupted, either before
or during the activity

join()—Makes the caller waiting for the called thread
to die

Lock—An internal entity used to synchronize code

Main Thread—The first thread that starts running
when a program begins

Priority—An integer number from 1 to 10 that
represents the importance of a thread

Race condition—A situation where outcome of a
program depends on the order of interleaving of threads

Runnable—The interface a thread class implements

64 ADVANCED JAVA PROGRAMMING

sleep()—Causes the currently executing thread to
sleep (temporarily cease execution) for the specified
number of milliseconds, subject to the precision and
accuracy of system timers and schedulers

start()—Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this
thread.

Synchronized blocks—Blocks of codes created with
synchronized keyword

Synchronized methods—Methods declared with the
synchronized keyword

Thread—A control or flow or path of execution that
exists within a process

SUMMARY
A thread is a control/flow/path of execution that exists
within a process. A process may have one or more
threads in it and is referred to as single-threaded or
multi-threaded process respectively.

When we supply a program to the JVM for execution,
it creates one thread and associates the program’s
main() method. Since, it is the first thread that starts
running when a program begins, it is said to be main/
primary thread. Other threads, if required, may be
spawned from this main thread.

There are two ways to create threads; by extending
the java.lang.Thread class and implementing the
java.lang.Runnable interface. If a class has to extend
another class, it implements the Runnable interface to
be a thread class. In both the cases, the run() method
provides the entry point for the thread.

 A thread may be suspended temporarily to avoid
consuming CPU cycles unnecessarily using sleep()
method. A thread may be suspended and resumed
using the combination of wait() and notify()
methods.

Interrupting a thread means requesting it to stop what
it is currently doing and do something else. The request
is sent to a thread using its interrupt() method.

In Java, every thread has a priority. Higher priority
threads get more preference in terms of CPU, I/O
time, etc. than lower priority threads. Priorities are

represented by integer numbers from 1 (lowest) to
10 (highest) which are represented by two static final
fields MIN_PRIORITY and MAX_PRIORITY of Thread
class respectively.

However, sometimes it is necessary that a thread
should not proceed further until another thread finishes
its task. This type of dependency can be achieved
using join() method.

Java provides synchronized keyword to deal with race
condition. Two versions exist: synchronized methods
and synchronized blocks. A method or a block is made
synchronized by adding a synchronized keyword
before its declaration. The synchronized keyword does
not make a method/block atomic. Unfortunately, there
is no built-in support for atomic code blocks in Java.

Deadlock is a situation where two or more threads
wait for each other indefinitely. Some of the situations
where there may be a chance of deadlock are i)
The code contains any nested synchronized block
ii) A synchronized method calls another synchronized
method iii) The code obtains locks on different
objects.

A useful multithreaded-program is one where multiple
threads run concurrently in a cooperating manner to
perform a designated task. Threads communicate
using the methods wait(), notify() and notifyAll()
methods.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
essential/concurrency/
Lesson: Concurrency

https://www.ibm.com/developerworks/library/
j-thread/
Writing multithreaded Java applications

http://www.tutorialspoint.com/java/java_
multithreading.htm
Java - Multithreading

http://tutorials.jenkov.com/java-
concurrency/index.html

Java Concurrency / Multithreading Tutorial

http://www.javatpoint.com/multithreading
Multithreading in Java

http://www3.ntu.edu.sg/home/ehchua/
programming/java/J5e_multithreading.html
Java Programming Tutorial: Multithreading & Concurrent

Programming

http://www.nakov.com/inetjava/lectures/
part-1-sockets/InetJava-1.3-Multithreading.
html
Multithreading and Thread Synchronization

MULTI-THREADING 65

EXERCISES
Objective-type Questions

	 1.	 In Java, a thread can be created by
	 (a)	 Extending the Thread class
	 (b)	 Implementing Runnable interface
	 (c)	 Both (a) and (b)
	 (d)	 None of these

	 2.	 Which one of the following methods is used to
start a thread execution?

	 (a)	 run()      (c)		 resume()
	 (b)	 init()	 (d)	 start()	

	 3.	 When a class extends the Thread class, it should
override __________ method

	 (a)	 start()     (c)		 execute()
	 (b)	 init()	 (d)	 run()		

	 4.	 Which two are valid constructors for Thread?
	 (i)	 Thread()
	 (ii)	 Thread(Runnable r, String s)
	 (iii)	 Thread(Runnable r, ThreadGroup g)
	 (iv)	 Thread(String s, ThreadGroup g)
	 (v)	 Thread(int priority)
	 (a)	 (i) and (iii)    (c)		 (i) and (ii)
	 (b)	 (ii) and (iv) 	 (d)	 (ii) and (v)

	 5.	 Which three are methods of the Object class?
	 (i)	 sleep(long ms);	 (v)	 interrupt();
	 (ii)	 notify();	 (vi)	 wait(long ms);
	 (iii)	 isInterrupted();	 (vii)	 notifyAll();
	 (iv)	 synchronized();
	 (a)	 (i), (vi), (vii)   (c)		 (i), (ii), (vi)
	 (b)	 (i), (iv), (vi)	 (d)	 (ii), (vi), (vii)

	 6.	 Consider the following class declaration:
class X implements Runnable {/*...*/}

Which of the following code segments is used to
start a new thread?

	 (a)	 new Thread(new X()).start();
	 (b)	 new X().start();
	 (c)	 Thread t = new Thread(X); t.start();
	 (d)	 X x = new X(); x.start();

	 7.	 Which of the following methods cannot directly
cause a thread to stop executing?

	 (a)	 setPriority()   (c)		 notify()
	 (b)	 wait()	 (d)	 interrupt()

	 8.	 Which of the following methods causes a thread
to stop executing?

	 (a)	 wait()       (c)		 terminate()
	 (b)	 stop()	 (d)	 pause()

	 9.	 Which of the following methods is used to release
the CPU voluntarily?

	 (a)	 release()    (c)		 giveUp()
	 (b)	 suspend()	 (d)	 yield()

	10.	 Which of the following methods must be
implemented in a class that implements Runnable
interface?

	 (a)	 start()      (c)		 execute()
	 (b)	 run()	 (d)	 call()

	11.	 Which of the following types is used to represent
thread priority in Java ?

	 (a)	 float      (c)		 int
	 (b)	 double	 (d)	 long

	12.	 What is the output of this program?
	 class Test {
		 public static void main(String args[]) {
			 Thread t = Thread.currentThread();
			 System.out.println(t);
		 }
	 }

	 (a)	 Thread[main,5,main]
	 (b)	 Thread[5,main]
	 (c)	 Thread[main,0]
	 (d)	 Thread[main,5]

	13.	 What is the default thread priority used in Java?
	 (a)	 0       (c)		 5
	 (b)	 1	 (d)	 10

	14.	 Which of the following constants is used to
represent the default priority of a thread?

	 (a)	 DEF_PRIORITY
	 (b)	 DEFAULAT_PRIORITY
	 (c)	 NORM_PRIORITY
	 (d)	 NORMAL_PRIORITY

	15.	 The isAlive() method is used to
	 (a)	 know whether a thread is running or not
	 (b)	 know whether a thread was created or not
	 (c)	 restart a thread after stopping it
	 (d)	 resume a thread after blocking it

	16.	 Which of the following keywords are used to make
a method synchronized?

	 (a)	 atomic	 (c)	 synchronized
	 (b)	 block	 (d)	 unit

66 ADVANCED JAVA PROGRAMMING

	17.	 Which of the following is the priority range in Java?
	 (a)	 1–10	 (c)	 5–10
	 (b)	 0–9	 (d)	 1–5

	18.	 Which of the following statements is false?
	 (a)	 The sleep() method should be enclosed in

try-catch block
	 (b)	 The yield() method should be enclosed in

try-catch block.
	 (c)	 A thread can be temporarily suspended

from running by using the wait() method.
	 (d)	 A join() causes the caller to wait till the

called thread terminates

	19.	 What happens if two threads having same priority
are started?

	 (a)	 The thread whose name lexicographically
precedes the other is executed first.

	 (b)	 Both of them will be executed simultaneously.
	 (c)	 None of them will be executed.
	 (d)	 It is dependent on the operating system.

	20.	 Deadlock is a situation when ___________.
	 (a)	 two or more threads have circular

dependency on an object
	 (b)	 two or more threads are trying to access

the same object
	 (c)	 two or more threads are waiting for a

resource
	 (d)	 None of these

	21.	 Which of these statements is incorrect?
	 (a)	 Two threads in Java can have same priority.
	 (b)	 By multithreading CPU’s idle time is minimized,

and we can take maximum use of it.
	 (c)	 By multitasking CPU’s idle time is minimized,

and we can take maximum use of it.
	 (d)	 A thread can exist only in two states,

running and blocked.

	22.	 Which of the following interfaces is used to create
a thread

	 (a)	 Startable	 (c)	 Executable
	 (b)	 Runnable	 (d)	 Thread

	23.	 Which of the following methods contains the body
of the thread?

	 (a)	 run()	 (c)	 stop()
	 (b)	 start()	 (d)	 main()

24.	 Which of the following classes or interfaces
defines the wait(), notify(),and notifyAll() methods?

	 (a)	 Thread	 (c)	 Object
	 (b)	 Runnable	 (d)	 Class

	25.	 Which of the following methods is used to change
the priority of a thread?

	 (a)	 setPriority()	 (c)	 newPriority()
	 (b)	 changePriority()	 (d)	 updatePriority()

	26.	 How many locks does an object have?
	 (a)	 1	 (c)	 3
	 (b)	 2	 (d)	 4

	27.	 A dead thread

	 (a)	 is discarded
	 (b)	 must wait until all other threads execute

before it is restarted
	 (c)	 cannot be restarted
	 (d)	 is synchronized

	28.	 What is the output of the following program ?
	 public class Test {
		� public static void main (String[]

args) throws Exception {
			 Thread.sleep(1000);
			 System.out.println("Sleeping");
		 }
	 }

	 (a)	 Compilation error.
	 (b)	 An exception is thrown at runtime.
	 (c)	 The code executes normally, but nothing

is printed.
	 (d)	 The code executes normally and prints

"sleeping".

	29.	 Consider the following class
	 public class MyClass implements Runnable 	
	 {
		 public void run() {
			 // some code here
		 }

	 }

Which of the following will create and start this
thread?

	 (a)	 new Runnable(MyClass).start();
	 (b)	 new Thread(MyClass).run();
	 (c)	 new Thread(new MyClass()).start();
	 (d)	 new MyClass().start();

	30.	 What happens if an unchecked exception is
thrown from a try block and there is no matching
catch block?

	 (a)	 The program ignores the exception.
	 (b)	 The program terminates immediately.
	 (c)	 The method throws the exception to its caller.
	 (d)	 Compilation error.

MULTI-THREADING 67

Subjective-type Questions

	 1.	 What are the differences between a process and
a thread?

	 2.	 What are the benefits of mult i-threaded
programming?

	 3.	 Show the different ways we can create threads in
Java with their relative merits and demerits.

	 4.	 Explain the life cycle of a thread in Java.

	 5.	 Explain with example inter-thread communication
techniques.

	 6.	 How do you make a method synchronized? How
does it differ from a non-synchronized method?

	 7.	 Discuss the relative advantages and disadvantages
of synchronized methods and synchronized blocks.

	 8.	 What is a deadlock? How does it differ from
starvation?

	 9.	 How will you say that a program may suffer from
a deadlock?

	10.	 What is the difference between yield and sleeping?

	11.	 What is race condition? How will you find and
solve race condition?

	12.	 How does thread synchronization occur inside a
monitor?

	13.	 How can we pause the execution of a Thread for
a specific time?

	14.	 What do you understand about Thread
Priority?

	15.	 What happens when we make a static method
synchronized?

	16.	 What is the function of join() method? Write a real
world program that uses join() method.

	17.	 Write a Java program to solve the producer-
consumer problem in Java?

	18.	 Write a program which will result in deadlock.
Now fix the deadlock in your program.

	19.	 Is it possible to create new thread by calling its
run() method directly? If not, why?

	20.	 Write some common problems that may arise in
multi-threading environment?

	21.	 What is the difference when the synchronized
keyword is applied to a static method or to a non-
static method?

	22.	 What is difference between notify() and
notifyAll()?

	23.	 What happens when start() is called?

	24.	 What is main thread? When is it created?

	25.	 Briefly describe how Java implements
synchronization.

Garbage Collection

Key Objectives

After completing this chapter readers will be able to—
•  understand the importance of garbage collector
•  understand how garbage collector works
•  get an idea about different garbage collectors
•  select and tune parameters of garbage collector
•  monitor the performance of garbage collector
•  learn a set of useful commands

4.1	 INTRODUCTION
Currently Java runs on more than 850 million personal computers worldwide, and on billions

of devices worldwide, including mobile and TV devices. One of the key reasons for such legendary
success is the ability to tune its performance to realize high performance and massive scalability. This
is achieved through the maturing evolution and continuous engineering of its runtime environment
and multithreaded garbage collector. Knowing even a little about JVM’s garbage collector can greatly
help in improving the performance of your Java applications.

HotSpot, originally released as the “Java HotSpot Performance Engine” is JVM maintained and
distributed by Oracle. Since, in this book, only Oracle’s implementation of Java has been considered,
the “JVM” always refers to “HotSpot”.

This chapter first describes the basics of how Garbage Collection works inside HotSpot. Then,
it gives an overview of available garbage collectors with their functions and performance metrics.
It also demonstrates how to select and configure a collector and set sizes for the memory areas on
which the collector operates. Finally, it lists some of the most commonly used options that affect
garbage collector behaviour.

CHAPTER – 4

GARBAGE COLLECTION 69

4.2	 EXPLORING JVM
In this section, an overview of the JVM is provided along with an introduction to Garbage

Collection and performance.
JVM may be thought of as an abstract computing machine that executes Java programs (in byte

codes) in it. A JVM for a specific operating system, along with other tasks, translates the Java byte
codes into instructions on the local operating system. The specific part that performs this translation
is called Just-In-Time (JIT) compiler. This way, platform independence is achieved. The architecture
is shown in Figure 4.1:

Class loader Subsystem

Native Method
Interface

Method
Area

Heap Threads Registers
Native Internal

Threads

Execution Engine

JIT
Compiler

Garbage
Collector

Runtime Data Area

Native
Libraries

Figure 4.1: JVM architecture

The primary components of JVM architecture are the class loader, the runtime data areas, and
the execution engine. The key components related to performance are highlighted in the picture.
The section of memory where all objects (local or member) are stored is called heap. It is worth
noting that class static members are created in method area. The heap is managed by the garbage
collector.

4.2.1	 Performance
Performance tuning is usually done by choosing the heap size and the most appropriate

garbage collector for an application. Performance tuning usually refers to optimizing the following
criteria:

•	 �Responsiveness—It refers to how quickly an application or system responds to a request. Tuning responsiveness
means minimizing response time.

•	 �Throughput—The percentage of time not utilized in garbage collection.
•	 �Garbage collection overhead—The percentage of total time spent in garbage collection, that is, the inverse of

throughput
•	 Pause time—The duration when application execution is stopped while garbage collection occurs.
•	 Frequency of collection—How often collection occurs, relative to application execution.
•	 �Promptness—The time between when an object becomes garbage and when the memory becomes 	

available.

70 ADVANCED JAVA PROGRAMMING

4.3	 JVM OPTIONS
Several options and environment variables are available that can affect the performance

characteristics of the HotSpot JVM. These options start with –X or –XX. The available –X options
may be listed using the following command:

java –X

The partial output of this command is shown below:
...
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size
…

The options related to garbage collector start with –XX. Note that –X options are not standard
options. So, they may not work on all VM implementations. The –X and –XX options are subject to
change without notice in subsequent releases of the JDK.

Options that do not require any value (Boolean options) are turned on and off with -XX:+<option>
and -XX:-<option> respectively (i.e., + for adding and – for removing option). Options that require
numeric value are set with -XX:<option>=<number>. Numbers can include ‘m’ or ‘M’ for megabytes,
‘k’ or ‘K’ for kilobytes, and ‘g’ or ‘G’ for gigabytes. For example, 2k is the same as 2048. String
options are set with -XX:<option>=<string>.

The options below are loosely categorized into groups as follows:
•	 Debugging options—Usually used to enable tracing, printing, or output of VM information.
•	 Behavioural options—Used to change the basic behaviour of the VM.
•	 Garbage First (G1) Garbage Collection Options
•	 Performance tuning options—Behaves like knobs which can be used to tune VM performance.

A detailed list of available options may be found in Appendix.

4.4	 GARBAGE COLLECTION
A garbage object (or simply garbage) is one that can no longer be reached through any pointer/

reference in the running program. Since, such objects can never be accessed/used, it is worth reclaiming
memory occupied by them and allocating to others (if any).

Garbage collection refers to the process of indentifying garbage objects and freeing (called
reclaiming) heap memory occupied by them. Note that, in a programming language like C/C++, it
is solely the programmer’s task to track and collect garbage. However, in Java, garbage is collected
automatically by a special component (a separate thread), called garbage collector. This way, it
relieves programmers from memory management and helps them to devote more time on actual logic.

Although Java shields the programmer from garbage collection, it is worth understanding some
aspects of this hidden implementation. By knowing some assumptions (represented by parameters)
made by garbage collectors, it is possible to tune those parameters to achieve improved performance
without knowing actual implementation.

4.5	 GENERATIONAL GARBAGE COLLECTOR
The basic function of any garbage collector is to identify garbage objects. One of the possibilities

is to start with reachable objects and find other objects reachable from them and so on. The objects left
over are garbage objects. The time taken by this approach is proportional to the number of reachable

GARBAGE COLLECTION 71

objects. For applications that maintain huge live data, this time (overhead) becomes significant and
is not acceptable. Although, there exists other native algorithms, they also essentially examine all
reachable objects, thereby not suitable for large applications.

Java intelligently found an efficient algorithm that minimizes the time required to reclaim garbage
objects. The algorithm is solely based on some observed facts, most importantly weak generational
hypothesis, which states that most objects survive for only a short period of time. The property is
best described in Figure 4.2:

Lifetime

N
um

be
r

of
 o

bj
ec

ts

Figure 4.2: Weak generational hypothesis

The x indicates the survival duration of objects and y axis corresponds to the number of objects
having that duration. The shaded area shows typical distribution of objects having different lifetimes.
The sharp peak at the left indicates that large number of objects have very short lifetime i.e., die
immediately after creation and hence candidate for reclaim. However, some objects (for example
Iterator objects) survives even after a long time so the distribution stretches out to the right. The
lump to the right of the initial peak indicates that some objects live for the intermediate duration

Although, not all applications have the same distribution, a surprisingly large number has this
behaviour. Java makes use of this property (most objects die young) to devise an efficient garbage
collection algorithm.

Keeping the above property in mind, Java divides its heap into two sections that hold objects of
different ages. Objects are created in the first section and move to the other section as they become
aged. The first section holds short aged objects and is called young generation. When it fills up, a
garbage collection occurs. Since, according to weak generational hypothesis, most objects in the
young generation die soon, very few objects live. So, the collection takes place very quickly as its time
is proportional to the number of live objects. That’s why this collection is called minor collection.
During minor collection, no other heap sections are checked for garbage. This generation is typically
smaller and its occupancy grows more rapidly.

During any minor collection (for all collectors), all application threads are stopped until the
operation completes. This is why minor collections are said to be stop-the-world events.

When a young generation object becomes sufficiently aged (i.e., survives a predefined number
of minor collections), it is eventually promoted or tenured to the second section. This section has
relatively higher aged objects hence is called tenured generation (or old generation) [Figure 4.3:].

72 ADVANCED JAVA PROGRAMMING

Young generation Old generation Permanent generation

Heap

Figure 4.3: JVM memory representation

When tenured generation fills up, a garbage collection occurs where all generations are collected.
Since, it takes longer time than minor collections because a significantly larger number of objects is
involved, it is called major collection. Since, it collects all generations, it is sometimes called full
collection. The old generation is typically larger than the young generation and its occupancy grows
more slowly.

Major collections in some collectors are also stop-the-world events. Since, a major collection
is usually much slower as it involves all live objects, for applications that require quick guaranteed
response, major collections should be minimized. The length of stop-the-world event for a major
garbage collection also depends on the garbage collector selected.

The minor collection algorithm typically puts a premium on speed, since it is frequent. On the
other hand, the major collection algorithm is more space efficient, as the old generation takes up
most of the heap and works well with low garbage densities.

In addition, beyond heap, JVM stores some objects that are closely related for its own operation.
For example objects describing classes and methods and other reflective data are stored here. The
permanent generation is populated by the JVM at runtime based on classes in use by the application.
In addition, Java SE library classes and methods may be stored here. JVM occasionally loads and
unloads objects here and hence these objects are called permanent generation.

4.6	 HOTSPOT’S GARBAGE COLLECTION
In the previous section, we have described the basic philosophy of generational garbage collection.

In this section, let us know how it is implemented in HotSpot.
The organization of generations for all collectors in HotSpot JVM except parallel collector is

shown in Figure 4.4:

S
ur

vi
vo

r
0

S
ur

vi
vo

r
1

V
irt

ua
l

V
irt

ua
l

T
en

ur
ed

V
irt

ua
l

P
er

m
an

en
t

E
de

n

Young generation Old generation Permanent generation

Heap

Figure 4.4: JVM memory for non-parallel GC

GARBAGE COLLECTION 73

The same for parallel collector is shown in Figure 4.5: The size of the allocated space to
JVM may be specified with the -Xmx option. However, it does not use all unless it is needed. The
space to be used may be specified using -Xms option. If the value of the -Xms option is smaller than
the value of the -Xmx option, some space remains uncommitted and is shown as virtual in the figure.

The heap and the permanent generation comprises the entire memory allocated to a JVM. The
entire allocated space is divided into the young, tenured and permanent generations.

S
ur

vi
vo

r
0

S
ur

vi
vo

r
1

V
irt

ua
l

V
irt

ua
l

T
en

ur
ed

V
irt

ua
l

P
er

m
an

en
t

E
de

n

Young generationOld generation Permanent generation

Heap

Figure 4.5: JVM memory for parallel GC

The young generation consists of a space called Eden and two smaller survivor spaces (often referred
to as from and to). We shall refer to these survivor spaces as S0 and S1. When a JVM starts, all these
areas are empty [Figure 4.6: (i)]. Most of the objects are initially allocated in Eden [Figure 4.6: (ii)].

(i) (ii)

Eden

S0 S1

Eden

S0 S1

Figure 4.6: Initial young generation (i) Empty Eden (ii) Allocated some objects

When the Eden is full [Figure 4.7: (i)], a minor collection occurs. During this phase, the live objects
in Eden are identified. This has been shown in Figure 4.7: (i). The shaded objects are unreachable
objects and others are live objects. Live objects are moved to the survivor space S0 and unreferenced
objects are deleted [Figure 4.7: (ii)]. Live objects that are too large to fit in S0 are directly copied to
the old generation (not shown in figure). The objects in the survivor space are marked with numbers
that indicate the number of times the objects survived (1 in our case) during minor collection.

garbage

(i) (ii)

live

1 1

Eden

S0 S1

Figure 4.7: 1st Minor collection (i) Before (ii) After

74 ADVANCED JAVA PROGRAMMING

The Eden becomes eventually full again [Figure 4.8: (i)] and as a result second minor collection
occurs. During this time not only Eden is checked for garbage, but the survivor space S0 is checked
also. The live objects from Eden are moved to the other survivor space i.e., S1. The live objects
(if any) from the first survivor space (S0) are also moved to S1 with their age incremented. Now,
both Eden and S0 are cleared. If the target survivor space becomes full, the live objects from Eden
or other survivor space are tenured, irrespective of their age.

(i) (ii)

2 1 1 11 1

Eden

S0 S1

Eden

S0 S1

Figure 4.8: 2nd Minor collection (i) Before (ii) After

Note that one survivor space is empty at any time, and serves as the destination of any live
objects in Eden and the other survivor space during the next minor collection. Also note that there
are differently aged objects in the survivor space. The survivor spaces essentially keep objects that
have survived at least one minor collection and have thus been given more chances to die before
being considered “aged enough” to be tenured to the old generation.

In this way, objects move between survivor spaces until their age reaches a certain threshold
(say 3). These “too old” objects are moved to the tenured generation [Figure 4.9: (ii)] during the
next minor collection.

(i) (ii)

2 1 1 1

Eden

S0 S1

1 1 2

Eden

S0 S1

Tenured

3

Figure 4.9: Object promotion (i) Before (ii) After

So, the tenured generation contains objects that have survived some number of minor collections
as well as some large objects that may be allocated directly in the old generation. Objects continue
to move to the tenured generation space as minor GCs continue to occur. Eventually, the tenured
generation fills up and a major GC occurs where all generations are collected. Typically, the young
generation is collected first and the old generation collection algorithm is run on both the old and
permanent generations. If compaction option is selected, each generation is compacted separately.

GARBAGE COLLECTION 75

If the young generation is collected first and the old generation does not have sufficient space to accept
objects likely to be promoted, the young generation collection algorithm is not run (except for Concurrent
Mark-Sweep collector). Instead, the old generation collection algorithm is run on all generations.

4.7	 AVAILABLE COLLECTORS
HotSpot provides multiple garbage collectors to satisfy different requirements for both large and

small applications. People who need high performance may select the appropriate garbage collector
and configure it to meet their needs best. However, it is not an easy task at all. Java 5.0 and later is
intelligent enough to select a garbage collector based on the class of the host where the application
runs. Although, this default garbage collector, no doubt, improves the performance to some extent,
it is, by no means, always the best choice for every application. To achieve the desired level of
performance, it is recommended to select a garbage collector explicitly and tune its parameters.

The HotSpot JVM provides different collectors, each with different performance characteristics:
serial collector, parallel collector, parallel compact collector and concurrent collector.

4.7.1	 Serial Collector
For serial garbage collector, single thread is used to perform all garbage collection responsibilities.

That is both young and old generations are collected serially, in a stop-the-world fashion
[Figure 4.10:]. The application execution is suspended during the collection.

(i) (ii)

Application threads

GC thread

Minor collection Mark-sweep-compact

Figure 4.10: Serial collector (i) Young generation collection (ii) Old generation collection

For collecting young generation, the algorithm described in the previous section is used. For
old generation, serial collector uses a 3-phase mark-sweep-compact collection algorithm, a brief
description of which is given below:

This collection algorithm has three phases: mark, sweep and compact. In mark phase, live
objects are identified. In the next phase, the collector sweeps the garbage over the generations. In the
compact phase, live objects are slid towards the beginning of the old generation. This leaves free space
(if any) as a single contiguous block at the other end.

Since, serial collector always uses single thread, it cannot leverage multi-processor system. That’s
why, it is recommended to use this collector in a uni-processor system. However, it may be useful
on multiprocessors for applications that need heap of up to100 MB.

The strength of this collector however, lies in its single thread as there is no communication
overhead between threads. Try avoiding other collectors that cost additional overhead if your
application does not need special behaviour.

76 ADVANCED JAVA PROGRAMMING

Use the option -XX:+UseSerialGC to select serial collector. The following command selects a
serial collector and prints its details:

java -XX:+UseSerialGC -XX:+PrintGCDetails –version
A sample output is shown below:
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode, sharing)
Heap
def new generation total 4928K, used 369K [0x23f10000, 0x24460000, 0x29460000)
eden space 4416K, 8% used [0x23f10000, 0x23f6c5f8, 0x24360000)
from space 512K, 0% used [0x24360000, 0x24360000, 0x243e0000)
to space 512K, 0% used [0x243e0000, 0x243e0000, 0x24460000)

tenured generation total 10944K, used 0K [0x29460000, 0x29f10000, 0x33f10000)
the space 10944K, 0% used [0x29460000, 0x29460000, 0x29460200, 0x29f10000)

compacting perm gen total 12288K, used 69K [0x33f10000, 0x34b10000, 0x37f10000)
the space 12288K, 0% used [0x33f10000, 0x33f21408, 0x33f21600, 0x34b10000)
ro space 10240K, 45% used [0x37f10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38f98000, 0x39510000)

4.7.2	 Parallel Collector
The serial garbage collector may not be the best choice for all applications. For example, heavily

threaded large applications that run on a multi-processor machine having large memory, expect
special behaviour from garbage collector. In such a case, usually parallel collector (also known as
the throughput collector) exhibits better performance than the serial one.

(i) (ii)

Application threads

Mark-sweep-compact

GC thread

Minor collection

Figure 4.11: Parallel collector (i) Young generation collection (ii) Old generation collection

For parallel garbage collector, as its name implies, multiple threads are used to perform minor
collections [Figure 4.11: (i)]. Since, it uses multiple threads leveraging multi-processor system, it
can decrease garbage collection overhead significantly and hence increases application throughput.
However, it is still a stop-the-world collector. Moreover, it uses the same single-threaded mark-sweep-
compact algorithm [Figure 4.11: (ii)] for collecting old generation.

This collector is best suited for applications (having medium to large-sized data sets) that are run
on multiprocessor or multi-threaded hardware. Applications having pause time constraints should not
use this collector, since infrequent, but potentially long, old generation collections will still occur.

Use the option -XX:+UseParallelGC to select parallel collector. The following command selects
a parallel collector and prints its details:

java -XX:+UseParallelGC -XX:+PrintGCDetails –version

GARBAGE COLLECTION 77

A sample output is shown below:
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode)
Heap
PSYoungGen total 4800K, used 416K [0x12e40000, 0x13390000, 0x18390000)
eden space 4160K, 10% used [0x12e40000,0x12ea8208,0x13250000)
from space 640K, 0% used [0x132f0000,0x132f0000,0x13390000)
to space 640K, 0% used [0x13250000,0x13250000,0x132f0000)

ParOldGen total 10944K, used 0K [0x08390000, 0x08e40000, 0x12e40000)
object space 10944K, 0% used [0x08390000,0x08390000,0x08e40000)

PSPermGen total 12288K, used 1363K [0x04390000, 0x04f90000, 0x08390000)
object space 12288K, 11% used [0x04390000,0x044e4d20,0x04f90000)

4.7.3	 Parallel Compacting Collector
Note that the parallel collector uses multiple threads for minor collections only. For major

collection, still single thread is used which may degrade performance significantly. In Java 5 and
later, a concept called parallel compaction has been introduced that allows parallel collector to
perform even major collections in parallel. The algorithm consists of three phases: mark, summary
and compact.

The algorithm divides each generation into fixed-sized regions. In the mark phase, an initial set
of live objects directly reachable from the application code is identified first and is distributed among
garbage collection threads. These threads then mark other live objects in parallel [Figure 4.12: (ii)].

The summary phase inspects the density of the live objects in each region. Due to previous
compactions, it is expected that regions towards left are denser than regions towards right.
The denser regions yield very little space and are not worth the cost of compacting them. So, summary
phase starts from the leftmost region and finds a point beyond which compacting is cost-effective.
The regions to the left of that point are referred to as the dense prefix. Note that the summary
phase is currently implemented as a serial phase [Figure 4.12: (ii)]. Parallel summary phase may be
implemented but not as important as parallelization of the mark and compact phases.

In the compaction phase, only non-dense regions are compacted.
Use -XX:+UseParallelOldGC to enable parallel compaction.

Application threads

GC thread

Minor collection
Mark phase

Compact phase

Summary phase

Figure 4.12: Parallel Compact collector (i) Young generation collection
(ii) Old generation collection

Applications having pause time constraints may use this collector as it reduces old generation
collection time.

78 ADVANCED JAVA PROGRAMMING

4.7.4	 Concurrent Collector
Note that all of the serial, parallel and parallel compact collectors are stop-the-world collectors.

This means they suspend the application during the garbage collection. This may not be acceptable
for application for which response time is much more important.

Fortunately, Java provides a fourth collector called concurrent collector (also called low-latency
collector) that performs most of its work while the application is still running. This makes garbage
collection pauses short. Since, old generation collections, though infrequent, result in relatively long
pauses, a concurrent mark-sweep algorithm has been introduced for it.

The algorithms have primarily four phases: initial mark, concurrent mark, remark and concurrent
sweep. In the initial mark phase, only the live objects directly reachable from the application code
are identified. This phase is short stop-the-world event and uses a single thread [Figure 4.13:]. In
the next phase, the collector concurrently marks all live objects that are transitively reachable from
this set. This phase is not the stop-the-world event. So it does not pause the application. However,
since the application runs and probably updates reference fields concurrently with this phase, all live
objects may not be marked at the end of this phase.

Application threads

Initial mark

Concurrent mark

Remark

Concurrent sweep

GC threads

Figure 4.13: Old generation collection in concurrent collector

To cope up with this problem, the collector suspends the application in the remark phase and
finalizes marking by revisiting any objects that were modified during the concurrent marking.
Since, remark pause is more substantial than the initial mark, multiple threads are run in parallel
to increase its efficiency. This is a stop-the-world event. However, since this phase uses multiple
threads [Figure 4.13:], the pause time is expected to be short.

The remark phase gives the guarantee that all live objects in the heap have been marked. So, the
last phase reclaims all the garbage that has been left.

Note that many phases run concurrently with the application and can decrease application
performance. This is a typical trade-off for most collectors that attempt to reduce pause times. Also
note that this collector is the only non-compacting collector. It certainly runs a compaction algorithm
after reclaiming garbage.

The concurrent collector is selected with the option -XX:+UseConcMarkSweepGC. The following
command selects a parallel collector and prints its details:

java -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails –version

A sample output is shown below:
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode)
Heap
par new generation total 4928K, used 369K [0x04390000, 0x048e0000, 0x098e0000)
eden space 4416K, 8% used [0x04390000, 0x043ec668, 0x047e0000)
from space 512K, 0% used [0x047e0000, 0x047e0000, 0x04860000)
to space 512K, 0% used [0x04860000, 0x04860000, 0x048e0000)

concurrent mark-sweep generation total 10944K, used 0K [0x098e0000, 0x0a390000,
0x14390000)
concurrent-mark-sweep perm gen total 12288K, used 1363K [0x14390000, 0x14f90000,
0x18390000)

GARBAGE COLLECTION 79
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode)
Heap
par new generation total 4928K, used 369K [0x04390000, 0x048e0000, 0x098e0000)
eden space 4416K, 8% used [0x04390000, 0x043ec668, 0x047e0000)
from space 512K, 0% used [0x047e0000, 0x047e0000, 0x04860000)
to space 512K, 0% used [0x04860000, 0x04860000, 0x048e0000)

concurrent mark-sweep generation total 10944K, used 0K [0x098e0000, 0x0a390000,
0x14390000)
concurrent-mark-sweep perm gen total 12288K, used 1363K [0x14390000, 0x14f90000,
0x18390000)

4.8	 SOME COMMANDS
Printing information about current GC used
java -XX:+PrintGCDetails –version

A sample result for serial collector is shown below:
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode, sharing)
Heap
def new generation total 4928K, used 369K [0x23f10000, 0x24460000, 0x29460000)
eden space 4416K, 8% used [0x23f10000, 0x23f6c668, 0x24360000)
from space 512K, 0% used [0x24360000, 0x24360000, 0x243e0000)
to space 512K, 0% used [0x243e0000, 0x243e0000, 0x24460000)

tenured generation total 10944K, used 0K [0x29460000, 0x29f10000, 0x33f10000)
the space 10944K, 0% used [0x29460000, 0x29460000, 0x29460200, 0x29f10000)

compacting perm gen total 12288K, used 69K [0x33f10000, 0x34b10000, 0x37f10000)
the space 12288K, 0% used [0x33f10000, 0x33f21408, 0x33f21600, 0x34b10000)
ro space 10240K, 45% used [0x37f10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38f98000, 0x39510000)

Storing GC information in a file gc.txt
java -XX:+PrintGCDetails -Xloggc:gc.txt -version

Show all VM related settings:
java -XshowSettings:vm –version

A sample result is shown below:
VM settings:

Max. Heap Size (Estimated): 247.50M
Ergonomics Machine Class: client
Using VM: Java HotSpot(TM) Client VM

Set maximum Java heap size 120 MB and show VM settings:
java -Xmx120m -XshowSettings:vm –version

The result is now given below:
VM settings:

Max. Heap Size: 120.00M
Ergonomics Machine Class: client
Using VM: Java HotSpot(TM) Client VM

Set maximum Java heap size 2 MB and print VM details:
java -Xmx2m -XX:+PrintGCDetails –version

The result is now given below:
Heap
def new generation total 960K, used 330K [0x33910000, 0x33a10000, 0x33b10000)
eden space 896K, 36% used [0x33910000, 0x339629f0, 0x339f0000)
from space 64K, 0% used [0x339f0000, 0x339f0000, 0x33a00000)
to space 64K, 0% used [0x33a00000, 0x33a00000, 0x33a10000)

tenured generation total 1024K, used 0K [0x33b10000, 0x33c10000, 0x33f10000)
the space 1024K, 0% used [0x33b10000, 0x33b10000, 0x33b10200, 0x33c10000)

compacting perm gen total 12288K, used 96K [0x33f10000, 0x34b10000, 0x37f10000)
the space 12288K, 0% used [0x33f10000, 0x33f28018, 0x33f28200, 0x34b10000)
ro space 10240K, 45% used [0x37f10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38f98000, 0x39510000)

80 ADVANCED JAVA PROGRAMMING

Heap
def new generation total 960K, used 330K [0x33910000, 0x33a10000, 0x33b10000)
eden space 896K, 36% used [0x33910000, 0x339629f0, 0x339f0000)
from space 64K, 0% used [0x339f0000, 0x339f0000, 0x33a00000)
to space 64K, 0% used [0x33a00000, 0x33a00000, 0x33a10000)
tenured generation total 1024K, used 0K [0x33b10000, 0x33c10000, 0x33f10000)

the space 1024K, 0% used [0x33b10000, 0x33b10000, 0x33b10200, 0x33c10000)
compacting perm gen total 12288K, used 96K [0x33f10000, 0x34b10000, 0x37f10000)
the space 12288K, 0% used [0x33f10000, 0x33f28018, 0x33f28200, 0x34b10000)
ro space 10240K, 45% used [0x37f10000, 0x38394650, 0x38394800, 0x38910000)
rw space 12288K, 54% used [0x38910000, 0x38f97e58, 0x38f98000, 0x39510000)

4.9	 TOOLS
There are tools to monitor GC. The primary monitoring tools in HotSpot JVM are jstat and

jmap. Sometimes, we need other helping tools such as jps and jstatd to monitor a Java application.

4.9.1	 jstatd
It is an RMI server application that monitors for the creation and termination JVMs and allows

tools such as jps, jstat to monitor these JVMs remotely through it. This requires an RMI registry
running on the local host. The jstatd tries to find an RMI registry on the default port (1099), or on
the port indicated by the -p port option. If no RMI registry is found, it creates one bound to the port
indicated by the -p port option or to the default port if -p option is absent.

The jstatd can only monitor JVMs for which it has the appropriate access permissions. The
following policy file will allow the jstatd server to run without any security exceptions.

grant codebase "file:D:/Java/jdk1.7.0_07/lib/tools.jar" {
permission java.security.AllPermission;

};

Here, D:/Java/jdk1.7.0_07 is the Java installation home directory. To use this policy, save it in
a file jstatd.all.policy and run the jstatd server as follows:

jstatd -J-Djava.security.policy=jstatd.all.policy

The RMI server consults an RMI registry running locally on default port 1099 (starts a new one
if no such registry is found). We can now start a JVM and can be monitored remotely by tools such
as jps and jstat.

4.9.2	 jps
The jps command lists the local VM identifier, or lvmid, for each instrumented JVM found on the

target system. This lvmid is typically, but not necessarily, the operating system’s process identifier
for the JVM process. This lvmid is required for other tools such as jmap, jstat. A typical output of
jps command is shown below:

E:\ajp\gc>jps
3928 Loop
3380 Jps

Here, Loop is Java program running under the supervision of a JVM having lvmid 3928. If you
want to find the lvmid of JVMs running on a different machine (say 172.16.5.81), start jstatd first
as described in the previous section and then use the following command:

jps 172.16.5.81

4.9.3	 jmap
This command prints shared object memory maps or heap memory details of a specified process

or executable core file or a remote debug server. The following command prints the heap information
for the process having lvmid 3928

GARBAGE COLLECTION 81

E:\ajp\gc>jmap -heap 3928
Attaching to process ID 3928, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 23.3-b01

using thread-local object allocation.
Mark Sweep Compact GC

Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 268435456 (256.0MB)
NewSize = 1048576 (1.0MB)
MaxNewSize = 4294901760 (4095.9375MB)
OldSize = 4194304 (4.0MB)
NewRatio = 2
SurvivorRatio = 8
PermSize = 12582912 (12.0MB)
MaxPermSize = 67108864 (64.0MB)
G1HeapRegionSize = 0 (0.0MB)

Heap Usage:
New Generation (Eden + 1 Survivor Space):

capacity = 5046272 (4.8125MB)
used = 1690792 (1.6124649047851562MB)
free = 3355480 (3.2000350952148438MB)
33.50576425527598% used

Eden Space:
capacity = 4521984 (4.3125MB)
used = 1549200 (1.4774322509765625MB)
free = 2972784 (2.8350677490234375MB)
34.25929857336956% used

From Space:
capacity = 524288 (0.5MB)
used = 141592 (0.13503265380859375MB)
free = 382696 (0.36496734619140625MB)
27.00653076171875% used

To Space:
capacity = 524288 (0.5MB)
used = 0 (0.0MB)
free = 524288 (0.5MB)
0.0% used

tenured generation:
capacity = 11206656 (10.6875MB)
used = 0 (0.0MB)
free = 11206656 (10.6875MB)
0.0% used

Perm Generation:
capacity = 12582912 (12.0MB)
used = 109832 (0.10474395751953125MB)
free = 12473080 (11.895256042480469MB)
0.8728663126627604% used

10737 interned Strings occupying 806464 bytes.

4.9.4	 jstat
The jstat tool displays performance statistics for an instrumented HotSpot Java virtual machine

(JVM). The target JVM is identified by its virtual machine identifier, or lvmid. The jstat command
takes options and displays useful information. The following command shows all the options available:

jstat –options

82 ADVANCED JAVA PROGRAMMING

The function of each option is explained in Table 4.1:

Table 4.1: jstat options

Options Explanation

class Statistics on the behaviour of the class loader.

compiler Statistics of the behaviour of the HotSpot Just-in-Time compiler.

gc Statistics of the behaviour of the garbage collected heap.

gccause Summary of garbage collection statistics (same as -gcutil), with the cause of the last
and current (if applicable) garbage collection events.

gccapacity Statistics of the capacities of the generations and their corresponding spaces.

gcnew Statistics of the behaviour of the new generation.

gcnewcapacity Statistics of the sizes of the new generations and its corresponding spaces.

gcold Statistics of the behaviour of the old and permanent generations.

gcoldcapacity Statistics of the sizes of the old generation.

gcpermcapacity Statistics of the sizes of the permanent generation.

gcutil Summary of garbage collection statistics.

printcompilation HotSpot compilation method statistics.

The following command summarizes the garbage collection statistics for the JVM having lvmid
3928:

jstat -gcutil 3928

A sample output of the above command is shown below:
S0 S1 E O P YGC YGCT FGC FGCT GCT
0.00 27.01 64.69 0.00 0.87 7 0.011 0 0.000 0.011

If you monitor a JVM running on a different host having IP address 172.16.5.81, start jstatd in
that machine first. Then use the following jstat command:

jstat -gcutil 3928@172.16.5.81

4.10	 TUNING MEMORY SIZE
The performance of a collector depends on the size of heap and generations. In this section, we

shall discuss which parameters have been defined to control total size of the heap and the sizes of
the generations and their impact on the performance.

4.11	 TUNING HEAP SIZE
Note that the size of the total allocated space and the space to be used initially may be specified

with the -Xmx and -Xms options respectively. If the value of the -Xms option is smaller than the
value of the -Xmx option, some space remains uncommitted. The uncommitted space is sometimes
called virtual. The different generations can grow to the limit of the virtual space as needed.

Note that throughput depends on free space in a generation. Since collections occur when
generations fill up, less the free space in a generation, more frequently the generation fills up and
collection occurs. This implies throughput proportional to the space available in a generation. To
improve throughput, JVM tries to maintain a significant amount of space free in generations. The
allowable range of percentage of free space is specified by two boundary values and are set as
-XX:MinHeapFreeRatio=<minimum> and -XX:MaxHeapFreeRatio=<maximum>.

GARBAGE COLLECTION 83

The default values of these two parameters are 40 and 70 respectively. If the percent of free space
in a generation falls below this minimum, the generation is grown subject to the maximum size of the
generation. Similarly, if the percentage of free space exceeds the maximum the generation is shrunk
subject to the minimum size of the generation.

How do these parameters affect the performance? Small MinHeapFreeRatio indicates slow startup
as generation size is small and is properly sized after many collections. This may slow down the
performance of large server applications. Some rules for server applications are:

•	 Allocate as much memory as possible to the JVM if large pauses are not any problem
•	 �Take –Xms and –Xmx same. This helps us to make sizing decisions. However, if the choice is poor, JVM will fail

to make up.
•	 Since allocation can be parallelized, for more processors, allocate more memory

4.12	 TUNING YOUNG GENERATION
The size of the young generation also does matter. The larger the young generation, the

less frequently minor collections occur and throughput increases. However, for a given heap
size, tenured generation decreases if young generation increases, which increases the frequency
of major collections. Since, major collection takes relatively long time, throughput decreases
significantly. The size of these two generations is controlled by a parameter called NewRatio
which is the ratio between young generation size to tenured generation size. This parameter is set
as –XX:NewRatio=<ratio>. A value 2 of NewRatio indicates that the size of tenured generation
is double the size of young generation. In addition, the size of young generation is bounded by
two parameters NewSize and MaxNewSize.

4.12.1	 Tuning Survivor Space
Although, the size of the survivor space is not an important metric for performance, it may be

tuned using the parameter SurvivorRatio which is ration between survivor space size to Eden space
size and is set as -XX:SurvivorRatio=<ratio>. A value 8 of SurvivorRatio indicates that the size
of Eden space should be 8 times the size of one survivor space.

Smaller survivor space overflows frequently resulting in live objects to be copied directly to the
tenured generation. If survivor spaces are too large, most space will remain unused most of the time.

4.13	 ACCESSING GC FROM JAVA PROGRAM
Although, not so powerful, we can interact with the garbage collector from within Java programs

such as inspecting some parameters, invoking garbage collector. However, parameters can only be
set when a JVM starts using command line options.

4.13.1	 Inspecting GC Parameters
When a program runs in a JVM, we can also inspect some of its parameters from the program.

This is done using the class java.lang.Runtime that corresponds to a JVM. This class provides
methods to interface with the environment. The following are some methods:

public long maxMemory()
public long totalMemory()
public long freeMemory()

84 ADVANCED JAVA PROGRAMMING

The maxMemory() returns the maximum amount of memory, in bytes, that the virtual machine
will attempt to use.

4.13.2	 Explicit Garbage Collection
An application can invoke the garbage collector explicitly using static gc() method of

System class.
public static void gc()

A call to this method causes a major collection.
System.gc() is equivalent to the following call:
Runtime.getRuntime().gc()

Since, gc() always causes a major collection to be done even if a minor collection is sufficient, it
may greatly impact the performance. Usually, JVM’s determination of when it is appropriate is better.
So, invoking garbage collector explicitly should be avoided. If there are still problems related to pause
time or others, the parameters of the collector may be carefully selected instead. The JVM may be
instructed to ignore the explicit call to a collector using gc() using -XX:+DisableExplicitGC option.

4.13.3	 finalize()
Every Java object inherits a method finalize() from Object class and is called by the garbage

collector before it reclaims the object. The intent is for finalize() to release system resources such
as open files or open sockets before getting collected. So, it gives us the last chance for any object
to perform cleanup activity. The following program illustrates this:

class FinalizeDemo {
public void finalize() {

System.out.println("object is garbage collected");
}
public static void main(String args[]) throws Exception {

new FinalizeDemo();
System.gc();

}
}

This program creates an unnamed object and calls the garbage collector explicitly using System.
gc(). Since the object has no reference pointing to it, it is a garbage object and is collected by the
garbage collector. The collector calls the finalize() method before collecting it. Here is a sample
output:

object is garbage collected

4.14	 APPENDIX

Table 4.2: -X options

Option Purpose

-Xms Sets the initial heap size for when the JVM starts

-Xmx Sets the maximum heap size

-Xmn Sets the size of the Young Generation

-XX:PermSize Sets the starting size of the Permanent Generation

-XX:MaxPermSize Sets the maximum size of the Permanent Generation

-XX options

GARBAGE COLLECTION 85

Table 4.3: Debugging Options

Option and Default Value Description

-XX:-CITime Displays time spent in JIT Compiler

-XX:ErrorFile=./hs_err_pid<pid>.log Saves the error data to the specified file if an error occurs

-XX:-ExtendedDTraceProbes
Enables performance-impacting dtrace probes. (Solaris
only.)

-XX:HeapDumpPath=./java_pid<pid>.
hprof

Path to directory or filename for heap dump

-XX:-HeapDumpOnOutOfMemoryError
Dumps heap to file when java.lang.OutOfMemoryError is
thrown.

-XX:OnError=”<cmd args>;<cmd args>” Executes user-defined commands on fatal error

-XX:OnOutOfMemoryError=”<cmd args>;

<cmd args>”
Executes user-defined commands when an
OutOfMemoryError is first thrown.

-XX:-PrintClassHistogram
Displays a histogram of class instances on Ctrl-Break.
Equivalent to jmap -histo command

-XX:-PrintConcurrentLocks
Displays java.util.concurrent locks in Ctrl-Break thread
dump. Equivalent to jstack -l command

-XX:-PrintCommandLineFlags Displays flags that appeared on the command line

-XX:-PrintCompilation Displays message when a method is compiled

-XX:-PrintGC Displays messages at garbage collection

-XX:-PrintGCDetails Prints more details at garbage collection

-XX:-PrintGCTimeStamps Prints timestamps at garbage collection

-XX:-PrintTenuringDistribution Displays tenuring age information

-XX:-PrintAdaptiveSizePolicy
Enables printing of information about adaptive generation
sizing.

-XX:-TraceClassLoading Traces loading of classes

-XX:-TraceClassLoadingPreorder Traces all classes loaded in order referenced

-XX:-TraceClassResolution Traces constant pool resolutions

-XX:-TraceClassUnloading Traces unloading of classes

-XX:-TraceLoaderConstraints Traces recording of loader constraints

-XX:+PerfSaveDataToFile Saves jvmstat binary data on exit

-XX:ParallelGCThreads=n
Sets the number of garbage collection threads in the young
and old parallel garbage collectors

-XX:+UseCompressedOops Enables the use of compressed pointers

-XX:+AlwaysPreTouch Pre-touch the Java heap during JVM initialization

-XX:AllocatePrefetchDistance=n Sets the prefetch distance for object allocation

-XX:InlineSmallCode=n
Inline a previously compiled method only if its generated
native code size is less than this

-XX:MaxInlineSize=35 Maximum bytecode size of a method to be inlined

-XX:FreqInlineSize=n
Maximum bytecode size of a frequently executed method to
be inlined

-XX:LoopUnrollLimit=n
Unroll loop bodies with server compiler intermediate
representation node count less than this value

(Contd)

86 ADVANCED JAVA PROGRAMMING

Table 4.3: (Contd)

-XX:InitialTenuringThreshold=7
Sets the initial tenuring threshold for use in adaptive GC
sizing in the parallel young collector

-XX:MaxTenuringThreshold=n
Sets the maximum tenuring threshold for use in adaptive GC
sizing

-Xloggc:<filename>
Logs GC verbose output to specified file. The verbose
output is controlled by the normal verbose GC flags

-XX:-UseGCLogFileRotation Enables GC log rotation, requires -Xloggc

-XX:NumberOfGClogFiles=1
Sets the number of files to use when rotating logs, must
be >= 1. The rotated log files will use the following naming
scheme, <filename>.0, <filename>.1, ..., <filename>.n-1.

-XX:GCLogFileSize=8K
The size of the log file at which point the log will be rotated,
must be >= 8K.

Table 4.4: Behavioural Options

Option and Default Value Description

-XX:-AllowUserSignalHandlers
Does not complain if the application installs signal handlers.
(Solaris and Linux only.).

-XX:-DisableExplicitGC
Enables calls to System.gc(). Use -XX:+DisableExplicitGC to
disable it.

-XX:+FailOverToOldVerifier Fails over to old verifier when the new type checker fails.

-XX:+HandlePromotionFailure
The youngest generation collection does not require a
guarantee of full promotion of all live objects.

-XX:+MaxFDLimit Bumps the number of file descriptors to max. (Solaris only.)

-XX:PreBlockSpin=10
Spins count variable for use with -XX:+UseSpinning. Controls
the maximum spin iterations allowed before entering operating
system thread synchronization code.

-XX:-RelaxAccessControlCheck Relaxes the access control checks in the verifier.

-XX:+ScavengeBeforeFullGC Does young generation GC prior to a full GC.

-XX:+UseAltSigs
Uses alternate signals instead of SIGUSR1 and SIGUSR2 for
VM internal signals.

-XX:+UseBoundThreads Binds user level threads to kernel threads. (Solaris only.)

-XX:-UseConcMarkSweepGC Uses concurrent mark-sweep collection for the old generation.

-XX:+UseGCOverheadLimit
Uses a policy that limits the proportion of the VM’s time that is
spent in GC before an OutOfMemory error is thrown.

-XX:+UseLWPSynchronization Uses LWP-based instead of thread-based synchronization.

-XX:-UseParallelGC Uses parallel garbage collection for scavenges.

-XX:-UseParallelOldGC
Uses parallel garbage collection for the full collections. Enabling
this option automatically sets -XX:+UseParallelGC.

-XX:-UseSerialGC Uses serial garbage collection.

-XX:+UseTLAB Uses thread-local object allocation

-XX:+UseSplitVerifier Uses the new type checker with StackMapTable attributes.

-XX:+UseThreadPriorities Uses native thread priorities.

-XX:+UseVMInterruptibleIO
Thread interrupt before or with EINTR for I/O operations results
in OS_INTRPT.

GARBAGE COLLECTION 87

Table 4.5: Garbage First (G1) Garbage Collection Options

Option and Default Value Description

-XX:+UseG1GC Uses the Garbage First (G1) Collector.

-XX:MaxGCPauseMillis=n Sets a target for the maximum GC pause time.

-XX:InitiatingHeapOccupancyPercent=n
Percentage of the (entire) heap occupancy to start a
concurrent GC cycle.

-XX:NewRatio=n Ratio of old/new generation sizes. The default value is 2.

-XX:SurvivorRatio=n Ratio of eden/survivor space size. The default value is 8.

-XX:MaxTenuringThreshold=n Maximum value for tenuring threshold. The default value is 15.

-XX:ParallelGCThreads=n
Sets the number of threads used during parallel phases of
the garbage collectors.

-XX:ConcGCThreads=n Number of threads concurrent garbage collectors will use.

-XX:G1ReservePercent=n
Sets the amount of heap that is reserved as a false ceiling to
reduce the possibility of promotion failure. The default value is 10.

-XX:G1HeapRegionSize=n
With G1 the Java heap is subdivided into uniformly sized
regions. This sets the size of the individual sub-divisions.

Table 4.6: Performance Options

Option and Default Value Description

-XX:+AggressiveOpts
Turns on point performance compiler optimizations that are
expected to be default in upcoming releases.

-XX:CompileThreshold=10000
No. of method invocations/branches before compiling
[-client: 1,500].

-XX:LargePageSizeInBytes=4m Sets the large page size used for the Java heap. [amd64: 2m.].

-XX:MaxHeapFreeRatio=70
Maximum percentage of heap free after GC to avoid
shrinking.

-XX:MaxNewSize=size Maximum size of new generation (in bytes).

-XX:MaxPermSize=size Size of the Permanent Generation.

-XX:MinHeapFreeRatio=ratio Minimum percentage of heap free after GC to avoid expansion.

-XX:NewRatio=ratio Ratio of old/new generation sizes.

-XX:NewSize=size Default size of new generation (in bytes).

-XX:ReservedCodeCacheSize=size Reserved code cache size (in bytes).

-XX:SurvivorRatio=size Ratio of eden/survivor space size.

-XX:TargetSurvivorRatio=ratio Desired percentage of survivor space used after scavenge.

-XX:ThreadStackSize=size Thread Stack Size (in Kbytes).

-XX:+UseBiasedLocking
Enable biased locking. For more details, see this tuning
example.

-XX:+UseFastAccessorMethods Uses optimized versions of Get<Primitive>Field.

-XX:-UseISM Uses Intimate Shared Memory.

-XX:+UseLargePages Uses large page memory.

-XX:+UseMPSS Uses Multiple Page Size Support w/4mb pages for the heap.

-XX:+UseStringCache Enables caching of commonly allocated strings.

(Contd )

88 ADVANCED JAVA PROGRAMMING

Table 4.6: (Contd )

-XX:AllocatePrefetchLines=lines
Number of cache lines to load after the last object allocation
using prefetch instructions generated in JIT compiled code.

-XX:AllocatePrefetchStyle=value Generates code style for prefetch instructions.

-XX:+UseCompressedStrings
Uses a byte[] for Strings which can be represented as pure
ASCII.

-XX:+OptimizeStringConcat Optimizes String concatenation operations where possible.

KEYWORDS
Atop-the-world event—An event when occurs stops
all other activities

Concurrent Collector—A type of collector that performs
most of its work while the application is still running

finalize()—A method which is called by the garbage
collector on an object before it reclaims the object

Garbage Collector—A component of Java that is
responsible for indentifying garbage objects and
freeing heap memory occupied by them

Generational hypothesis—A hypothesis that states
that most objects survive for only a short period of time

Major collection— Process of garbage collection
done on all generations

Minor collection—Process of garbage collection done
on young generation

Parallel Collector—A type of garbage collector
that uses mul t ip le threads per form minor
collections

Parallel Concurrent Collector—An extension to
parallel collector where major collections are also
done in parallel

Permanent generation—The portion of the heap
from where objects are occasionally loaded and
unloaded

Serial Collector—A type of garbage collector that
uses single thread

Tenured generation—The portion of the heap where
relatively higher aged objects are kept

Yung generation—The portion of the heap which
contains short aged objects

SUMMARY
One of the key reasons of Java’s legendary success
is its garbage collector which can greatly help in
improving performance of your Java applications.
Garbage collection refers to the process of indentifying
garbage objects and freeing heap memory occupied by
them. In Java, garbage is collected automatically by a
special component, called garbage collector.

The garbage collector uses a hypothesis called
weak generational hypothesis, which states that most
objects survive for only a short period of time. Java
divides heap into different segments such as young,
old and permanent generations where different aged
objects are kept. From time to time garbage collector
identifies garbage objects and claims their memory
using techniques such as minor and major collections.

JVM provides different collectors, each with different
performance characteristics: serial collector, parallel
collector, parallel compact collector and concurrent
collector.

Since, serial collector always uses single thread,
it cannot leverage multi-processor system. This

collection algorithm has three phases: mark, sweep
and compact. The strength of this collector however,
lies in its single thread as there is no communication
overhead between threads.

For parallel garbage collector, as its name implies,
multiple threads are used to perform minor collections.
Parallel collector uses multiple threads for minor
collections only. For major collection, still single
thread is used which may degrade performance
significantly. In Java 5 and later, a concept called
parallel compaction has been introduced that allows
parallel collector to perform even major collections
in parallel.

Java provides a fourth collector called concurrent
collector (also called low-latency collector) that
performs most of its work while the application is still
running

There are tools to monitor GC. The primary monitoring
tools in HotSpot JVM are jstat and jmap. Sometimes,
we need other helping tools such are jps and jstatd
to monitor a Java application.

GARBAGE COLLECTION 89

WEB RESOURCES
http://www.oracle.com/webfolder/

technetwork/tutorials/obe/java/gc01/index.

html
Java Garbage Collection Basics

http://www.oracle.com/technetwork/java/

javase/memorymanagement-whitepaper-150215.

pdf
Memory Management in the Java HotSpot™ Virtual Machine

http://www.azulsystems.com/sites/default/

files/images/Understanding%20Java%20

Garbage%20Collection%20v2%20(1).pdf
Understanding Java Garbage Collection

http://buytaert.net/files/hipeac05-paper.pdf
Garbage Collection Hints

http://mfinocchiaro.files.wordpress.

com/2008/07/java-virtual-machine-neutral.

pdf
Java Performance Tuning

http://www.academia.edu/1260340/CMS_and_

G1_Collector_in_Java_7_Hotspot_Overview_

Comparisons_and_Performance_Metrics

Comparisons and Performance Metrics

EXERCISES
Objective-type Questions

	 1.	 When is the object B in the following code eligible
for garbage collection?
void start() {
A a = new A();
B b = new B();
a.s(b);
b = null; /* Line 5 */
a = null; /* Line 6 */
System.out.println(“start completed”);
/* Line 7 */
}

	 (a)	 After line 5
	 (b)	 After line 6
	 (c)	 After line 7
	 (d)	 There is no way to be absolutely certain.

	 2.	 Where will be the most chance of the garbage
collector being invoked?
class HappyGarbage01 {
	 public static void main(String args[]) {
		 HappyGarbage01 h = new HappyGarbage01();
		 h.methodA();
	 }
 Object methodA() {/* Line 6 */
 Object obj1 = new Object();
 Object [] obj2 = new Object[1];
 obj2[0] = obj1;
 obj1 = null;
 return obj2[0];

 }
}

	 (a)	 After line 9
	 (b)	 After line 10
	 (c)	 After line 11
	 (d)	 Garbage collector never invoked in

methodA()

	 3.	 At what point is the Bar object, created on line 6,
eligible for garbage collection?
class Test {
 String f() {
 String s = new String(); /* Line 3 */
 return s;

 }
 public static void main (String args[]) {
 Test t = new Test(); /* Line 7 */
 String s1 = t.f(); /* Line 8 */
 s1 = new String(); /* Line 9 */
 System.out.println(s1);

 }
}

	 (a)	 After line 8
	 (b)	 After line 9
	 (c)	 After line 4, when f() completes
	 (d)	 After line 10

	 4.	 Which operator is used by Java run time
implementations to free the memory of an object
when it is no longer needed?

	 (a)	 delete	 (c)	 new
	 (b)	 free	 (d)	 None of the mentioned

	 5.	 Which function is used to perform some action
when the object is to be destroyed?

	 (a)	 finalize()	 (c)	 main()
	 (b)	 delete()	 (d)	 None of the mentioned

	 6.	 Which of the following statements are incorrect?
	 (a)	 Default constructor is called at the time of

declaration of the object if a constructor
has not been defined.

	 (b)	 Constructor can be parameterized.

90 ADVANCED JAVA PROGRAMMING

	 (c)	 finalize() method is called when an object
goes out of scope and is no longer needed.

	 (d)	 finalize() method must be declared
protected.

	 7.	 How can you force garbage collection of an
object?

	 (a)	 Garbage collection cannot be forced.
	 (b)	 Call System.gc().
	 (c)	 Call Runtime.gc().
	 (d)	 Set all references to the object to new

values(null, for example).

	 8.	 When is the Demo object eligible for garbage
collection?

	 class Test {
	 private Demo d;
	 void start() {

	 d = new Demo();
	 this.takeDemo(d); /* Line 5 */

	 } /* Line 6 */
	 void takeDemo(Demo demo) {

	 demo = null;
	 demo = new Demo();

	 }
	 }

	 (a)	 After line 5
	 (b)	 After line 6
	 (c)	 After the start() method completes
	 (d)	 When the instance running this code is

made eligible for garbage collection.

	 9.	 After line 8 runs, how many objects are eligible
for garbage collection?

	 public class X {
	 public static void main(String [] args) {
	 X x = new X();
	 X x2 = m1(x); /* Line 4 */
	 X x4 = new X();
	 x2 = x4; /* Line 6 */
	 doComplexStuff();
	 }
	 static X m1(X mx) {
	 mx = new X();
	 return mx;
	 }

}
	 (a)	 0	 (c)	 2
	 (b)	 1	 (d)	 3

	10.	 Which of the following options is used to set initial
heap size?

	 (a)	 -Xmx<size>	 (c)	 -Xms<size>
	 (b)	 -Xss<size>	 (d)	 None of the above

	11.	 JVM options start with
	 (a)	 -X	 (c)	 -JVM
	 (b)	 -XX	 (d)	 Both a) and b)

	12.	 If garbage collection occurs on young generation,
it is called

	 (a)	 Major collection
	 (b)	 Minor collection
	 (c)	 Small collection
	 (d)	 Young collection

	13.	 If garbage collection occurs on all generations, it
is called

	 (a)	 Major collection
	 (b)	 Minor collection
	 (c)	 Large collection
	 (d)	 Young collection

	14.	 The portion of heap where short aged objects are
kept is called

	 (a)	 New generation
	 (b)	 Young generation
	 (c)	 Fresh generation
	 (d)	 First generation

	15.	 The portion of heap where relatively long aged
objects are kept is called

	 (a)	 Old generation
	 (b)	 Permanent generation
	 (c)	 Previous generation
	 (d)	 Second generation

	16.	 The garbage collector that uses a single thread is
called

	 (a)	 Simple collector
	 (b)	 One-thread collector
	 (c)	 Single collector
	 (d)	 Serial collector

	17.	 Which one is not a HotSpot’s garbage collector?
	 (a)	 Serial collector
	 (b)	 Parallel collector
	 (c)	 Concurrent collector
	 (d)	 Roubust collector

	18.	 Which one of the following is not a HotSpot’s
monitoring tool?

	 (a)	 jstat	 (c)	 jps
	 (b)	 jmap	 (d)	 jvm

	19.	 Which one of the following is not a step in serial
collector?

	 (a)	 Mark	 (c)	 Sweep
	 (b)	 Identify	 (d)	 Compact

	20.	 Which of the following options is used to select
serial collector?

	 (a)	 -XX:+UseSerialGC
	 (b)	 -XX:+UseParallelOldGC
	 (c)	 -XX:+UseConcMarkSweepGC
	 (d)	 None of the above

GARBAGE COLLECTION 91

Subjective-type Questions

	 1.	 Why are two survior spaces maintained in young
generation by HotSpot?

	 2.	 How do you identify minor and major garbage
collection in Java?

	 3.	 What is the structure of Java Heap? What is Perm
Gen space in Heap?

	 4.	 How do you find GC resulted due to calling
System.gc()?

	 5.	 What is the difference between Parallel and
Paralle compact Garbage collector?

	 6.	 When does an Object becomes eligible for
Garbage collection in Java?

	 7.	 What is finalize method in Java? When does
Garbage collector call finalize method in Java?

	 8.	 Can we force Garbage collector to run at any
time?

	 9.	 Does Garbage collection occur in permanent
generation space in JVM?

	10.	 How do you monitor garbage collection activities?

	11.	 Which part of the memory is involved in Garbage
Collection? Stack or Heap?

	12.	 What is the responsiblity of Garbage Collector?

	13.	 What are the different ways to make an object
eligible for Garbage Collection when it is no longer
needed?

	14.	 How can the Garbage Collection be requested?

	15.	 What is the purpose of overriding finalize()
method?

	16.	 How many times does the garbage collector call
the finalize() method for an object?

	17.	 What happens if an uncaught exception is thrown
from during the execution of the finalize() method
of an object?

	18.	 How do you enable/disable call of finalize()
method of exit of the application?

CHAPTER – 5

Collection Framework

Key Objectives

After completing this chapter readers will be able to—
•  understand architecture of collection framework
•  familiarize core collection classes and interfaces
•  use commonly used collections classes and interfaces
•  use commonly used collection algorithms
•  evaluate the performance of implementations of interfaces and algorithms

5.1	 INTRODUCTION
It is often necessary to store and manipulate a group of objects. Earlier versions (1.2) of Java

provided unrelated classes such as Vector, Hashtable, Stack, Properties, Dictionary etc. to
work with aggregate data. Although, they provided sufficient functionalities, they lacked a common
framework. As a result, the way of using these classes varies quite a bit.

In version 1.2, Java provided a unified architecture, known as collection framework for
representing and manipulating aggregate objects. A collection is basically a container that encapsulates
multiple objects into a single unit. Examples include a list of employees, a set of numbers, a set of
processes, a queue of requests etc.

All collections frameworks primarily contains three parts: interfaces, implementation and
algorithms.

Interfaces
These abstract data types define the functionality of collections. These enable collections to be

manipulated in a unified way irrespective of their internal implementation. For example, all collection
interfaces define a method add() that may be used to add an element to the collection. However, the
element itself may be added at the end (for queue) or at an arbitrary location (for set) of the collection.
Collection interfaces are provided in the package java.util.

COLLECTION FRAMEWORK 93

Implementation
These are classes implementing those interfaces. Although, they use reusable data structures,

their behaviour differs for different collection types. We use them to create different types of
collections in our program. Implementation classes are provided in java.util and java.util.
concurrent package.

Algorithms
In addition, collection framework defines a set of methods (usually static) for important operations

such as searching, sorting, shuffling of objects which implement collection interfaces. These methods
behave polymorphically; i.e. work differently on different implementations.

5.2	 BENEFITS
Java collection frameworks provide the following benefits:

Less Programming Effort
The framework itself provides interfaces and implementation of commonly used concepts such

as sets, lists, queues, maps etc. So, programmers can devote more time on the program logic instead
of their implementation.

High Quality and Performance
Java provides high-quality implementation of collection interfaces resulting in unquestionable

performance and quality of our programs. Java not only provides different implementations of an
interface, but also allows us to interchange these implementations seamlessly. So, a program may
suddenly switch a different implementation without minimal effort still maintaining the quality and
performance.

Interoperability
Collection framework also facilitates the interoperability among unrelated classes eliminating

the need of writing adapter and/or conversion classes. Since, most methods take a Collection (top
level interface) parameter, different implementations may be passed back and forth.

Quick Learning
Although, Java provided a set of classes for representing group of object prior to version 1.2,

these ad hoc classes had a little consistency among them. So programmers had to learn each of them
from scratch resulting in high unintentional error. Since, collection interfaces form a hierarchy,
understanding relation among them is not difficult. As a result one can become a master in this area
in a substantially less time.

Flexible Redesign
Writing a new implementation as a part of this framework is simply a matter of fun. It has

become an extremely easy task to write a new implementation and use it in our program without
major modification.

94 ADVANCED JAVA PROGRAMMING

5.3	 COLLECTION INTERFACES
As mentioned earlier, collection interfaces define behaviour of commonly used concepts and

establishes relations among them. The core collection interfaces and their hierarchy is shown in
Figure 5.1: For simplicity, the major interfaces are shown here. These interfaces are the foundation
of Java collection framework. They create abstract types and enable us to manipulate collections
independently of their implementations. All core collection interfaces are generic. However, they
may also be used as ordinary interfaces. The detail information about generics may be found in the
next chapter.

Note that Map doesn’t inherit Collection. However, it is considered as a part of collections
framework.

«interface»
Collection

«interface»
Set

«interface»
List

«interface»
Queue

«interface»
Map

«interface»
SortedMap

«interface»
SortedSet

«interface»
NavigableSet

«interface»
Deque

«interface»
BlockingQueue

«interface»
BlockingDeque

«interface»
TransferQueue

Figure 5.1: Core collection interface hierarchy

The following is a brief description of top level interfaces.

Collection
The root interface in the hierarchy is Collection interface. It represents a general group of objects,

called elements. It defines primitive operations on collections such as adding[add()], removing
[remove()] elements, checking existence of an element [contains()], size [size()] of collection
etc. It also provides methods for bulk operations such as addAll(), removeAll(), retainAll(),
containsAll(), clear() etc. The toArray() method acts as bridge between collections and older
APIs that expect arrays on input.

Java does not provide a direct implementation of this interface. However, implementations are
provided for more specific collection types such as Set, List, Queue etc.

Set
This interface models the mathematical set that contains an unordered collection of objects

without any duplicates. It contains only methods inherited from Collection. However, since a set
cannot contain duplicate elements, it does add restrictions on those methods. Set also changes the
contract of equals() and hashCode() operations so that Set objects can be compared meaningfully
irrespective of their implementation. Note that two sets are equal if they contain the same elements.

COLLECTION FRAMEWORK 95

List
A List is an ordered collection and can contain duplicate elements. It is like a dynamic array.

It allows us to have precise control over the elements inserted and deleted. We can access elements
by their position (integer index). In addition to the operations inherited from Collection, List
interface provides useful methods to add, remove, replace elements based on specified position and
arbitrary range operations on the list.

Queue

This interface models queue where elements are added and removed in a specific order, typically in
a first-in-first-out (FIFO) manner. It defines additional operations for insertion, removal and inspection.
Although queues typically arrange elements in a FIFO order, other arrangements (such as LIFO) are
also possible. Every Queue implementation must specify its ordering properties.

Map

It represents key-value pairs. The keys will be unique and each key can map to at most one value.
Although, it does not ensure element ordering, some implementations guarantee it. To interoperate with
other collection classes/interfaces, it provides three collection views, which allow a map's contents
to be viewed as a set of keys, collection of values, or set of key-value mappings.

5.4	 COLLECTION IMPLEMENTATION
As noted earlier, Java does not provide any implementation for root interface Collection. Instead

it provides implementation of more specific interfaces such as Set, List, Queue etc. All collection
implementations provide two constructors: one that takes no argument and one that takes a Collection
argument. The following sections discuss how to work with these collections.

5.4.1	 Set
Java provides three general-purpose implementations for Set interface: HashSet, LinkedHashSet

and TreeSet [Figure 5.2:].

«interface»
Set

HashSet LinkedHashSet «interface»
SortedSet

TreeSet

Figure 5.2: Set implementations

Neither of the implementations allows random-access to an element in a set. To retrieve elements
from the Set, we can either use Iterator or for-each loop.

96 ADVANCED JAVA PROGRAMMING

5.4.1.1	 HashSet
Since, HashSet implements Set interface, it does not guarantee any insertion and iteration orders.

However, it may contain null element. This class is a hash-based implementation and internally it
uses HashMap which is one of the Map implementations. It offers constant time performance for certain
operations such as add(), remove(), contains() and size() assuming that the hash function has
distributed the elements equitably among the buckets. However, iteration time is proportional to the
sum of number of elements and number of buckets. So, number of buckets should not be very high
(load factor should not be very small) if iteration time is important.

HashSet has multiple constructors that give us the flexibility to create instances in different ways.
Set empty = new HashSet(); //{}
Set even = new HashSet(Arrays.asList(0,2,4)); //{0, 2, 4}
Set copy = new HashSet(even); //create from existing Set
Set blank = new HashSet(8); //initial capacity 8
Set nullSet = new HashSet(8, 1); //initial capacity 8, load factor 1

Elements in a HashSet are added using add() method.
even.add(6); //{0, 2, 4, 6}
even.add(8); //{0, 2, 4, 6, 8}

The method add() returns false if the element already exists else it returns true. Elements may
be retrieved using the for-each construct as follows:

for (Object o:even) System.out.print(o+" ");

It prints all the elements of the Set even:
0 2 4 6 8

Alternatively, the iterator may be used to traverse the set. An iterator object iterates over the
elements in a collection. Its functionalities are specified by java.util.Iterator interface having
the following methods:

hasNext() – Returns true if there are more elements in the collection; false otherwise
next() – Returns the next element
remove() – Deletes the last element returned from the collection

Here is an example of how to use iterator:
Iterator i = even.iterator();
while(i.hasNext()) System.out.print(i.next()+" ");

The iterator() method on a collection returns an Iterator object which knows how to step
through the elements in the underlying collection.

A for loop may also be used:
for(Iterator i = even.iterator();i.hasNext();)

System.out.print(i.next()+" ");

The method size() returns the cardinality of the set:
int sz = even.size();	 //sz = 5

This method may also be used to check if the set is empty:
if(blank.size() == 0) System.out.println("empty set");

Alternatively, isEmpty() method may be used:
boolean e1 = even.isEmpty(); //e1 = false
boolean e2 = blank.isEmpty(); //e2 = true
if(blank.isEmpty()) System.out.println("empty set");

COLLECTION FRAMEWORK 97

The existence of an element may be checked using contains() method:
boolean c1 = even.contains(6); //c1 = true
boolean c2 = even.contains(10); //c2 = false

To obtain an array containing all of the elements of a set, we use toArray() method:
Object[] a = even.toArray();

The method remove() is used to remove the specified element.
even.remove(4);	//{0, 2, 6, 8}

It returns true if set contains element or false otherwise. To remove all elements, we use the
bulk operation clear().

even.clear();		 //{}

Let us now use some of the bulk operations to perform mathematical set operations such as union,
intersection, set difference etc. For this purpose, we create two sets as follows:

Set s1 = new HashSet(Arrays.asList(1, 2, 3));
Set s2 = new HashSet(Arrays.asList(2, 3, 4, 5));

The union of these two sets may then be obtained as follows:
Set s3 = new HashSet(s1); //s3 = {1, 2, 3}
s3.addAll(s2); //s3 = {1, 2, 3, 4, 5}

In the first statement, s3 contains all the elements of s1. In the second statement,
all elements of s2 are added to s3 using addAll() method.The intersection of s1 and s2 is
obtained as follows:

s3 = new HashSet(s1); //s3 = {1, 2, 3}
s3.retainAll(s2); //s3 = {2, 3}

The retainAll() method keeps only the elements that are contained in the specified collection. In
other words, it removes from this collection all of its elements that are not contained in the specified
collection. Similarly, the set difference is obtained as follows:

s3 = new HashSet(s1); //s3 = {1, 2, 3}
s3.removeAll(s2); //s3 = {1}

This implementation is not thread-safe. So, explicit synchronization is needed if multiple
threads access a HashSet concurrently. Alternatively a synchronized version may be obtained using
Collections.synchronizedSet() method as follows:

Set syncSet = Collections.synchronizedSet(new HashSet());

5.4.1.2	 LinkedHashSet
Although Set interface does not mandate any iteration order, the chaotic ordering provided by

HashSet may be avoided using LinkedHashSet implementation. It is an extension to HashSet and
uses linked list and hash table internally. It provides the predictable iteration order without incurring
the increased cost associated with TreeSet. An ordered copy of a specified set may be created using
this class as follows:

Set aSet = …;
Set orderedSet = new LinkedHashSet(s);

This class provides all operations of Set interface and has an effect similar to HashSet implementation.
As it maintains a linked list, it exhibits slightly slower performance than HashSet. However, iteration
time for a LinkedHashSet is proportional to the size of the set, not to its capacity. Note that iteration
time for a HashSet is proportional to the capacity and is likely to be longer than LinkedHashSet.

This implementation is not also thread-safe. Fortunately, Java provides a synchronized version
which may be obtained as follows:

Set syncSet = Collections.synchronizedSet(new LinkedHashSet());

98 ADVANCED JAVA PROGRAMMING

are arranged according to natural ordering. A Comparator may also be supplied if custom ordering
is required. It provides several other methods related to elements ordering.

5.4.2.1	 TreeSet
As its name implies, it is a tree-based implementation of SortedSet and provides guaranteed log(n)

time cost for the basic operations such as add(), remove() and contains(). Like other collection
interfaces, it also defines a constructor that takes a Collection object.

SortedSet ss = new TreeSet(Arrays.asList(2,3,5));	 //{2,3,5}

This creates an ordered set of three elements with 2 as the first and 5 as the last. These elements
can be checked using the following:

Object fe = ss.first(); //fe = 2
Object le = ss.last(); //le = 5

The add() method adds the specified element in tree such that the resultant set remains
sorted.

ss.add(1); //ss = {1, 2, 3, 5}
ss.add(4); //ss = {1, 2, 3, 4, 5}

A sorted subset may be obtained using any one of the methods headSet(), tailSet() and
subSet(). The headSet() returns a view of the portion of this set whose elements are strictly
less than the specified element. The tailSet() does similar except that it considers the relation
‘greater’.

SortedSet s1 = ss.headSet(3); //s1 = {1, 2}
SortedSet s2 = ss.tailSet(3); //s2 = {3, 4, 5}

The subSet() returns a view of the portion of this set whose elements range from the first argument
(inclusive), to the second argument (exclusive).

SortedSet s3 = ss.subSet(2, 5);	//s3 = {2, 3, 4}

Note that they do not create any copy. So changes in the original set are reflected in this set, and
vice versa.

Note that this implementation is not synchronized. If multiple threads access a tree set
concurrently, and at least one of the threads modifies the set, it must be synchronized externally.
The easiest way is to use static synchronizedSortedSet() method of Collection class during
creation time:

 SortedSet s = Collections.synchronizedSortedSet(new
TreeSet(Arrays.asList(2,3,5)));

5.4.3	 List
One of the commonly used collection type is List. Unlike sets, lists are ordered collection and

allow duplicate elements. It defines additional methods for positional (indexed) access to list elements,
beyond those specified in the Collection interface. List indices start from zero. In addition to normal
Iterator, List interface provides a special iterator, called a ListIterator, that allows element
insertion and replacement, and bidirectional access. It also provides a method to obtain an iterator
that starts at a specified index in the list.

List

5.4.2	 SortedSet
This is an extended interface of Set and provides a total ordering on its elements. The elements

SortedSet

COLLECTION FRAMEWORK 99

Java provides two implementations of this interface: ArrayList and LinkedList [Figure 5.3:].

«interface»
List

ArrayList LinkedList Vector

Figure 5.3: List implementations

5.4.3.1	 ArrayList
It is a resizable array implementation of List interface and is roughly equivalent to Vector. Each

ArrayList instance has a capacity which is always at least as large as the number of elements present.
As elements are added and removed, its capacity grows or shrinks automatically. To reduce incremental
reallocation, a high capacity may be specified using ensureCapacity() adding large number of elements.

Like other collection implementations, ArrayList also has multiple constructors that give us the
flexibility to create instances in different ways.

List el = new ArrayList(); //empty list
List l = new ArrayList(Arrays.asList(2,3)); //l = 2->3
List l1 = new ArrayList(10); //empty, initial capacity 10

Since, a List is an ordered collection, in addition to the inherited method add() that appends
the specified element to the end of a list, it provides an overloaded version that inserts the specified
element at the specified position.

l.add(2); //append, l = 2->3->2
l.add(2, 4); //insert 4 at index 2, l = 2->3->4->2

List also allows us to retrieve an element from the specified position. The following retrieves the
element from index 1.

Object o1 = l.get(1);			  //o1 = 3

A normal iterator may be used to traverse the entire list. In addition, the listIterator() method
returns a ListIterator that allows bidirectional traversal of the list, inserting/deleting elements
during traversal etc. A ListIterator has a cursor which is positioned between elements. The elements
before and after the cursor are returned by the call of previous() and next() methods respectively.

ListIterator li = l.listIterator(); //sets cursor at the begining
while(li.hasNext()) System.out.print(li.next()+" ");

It prints
2->3->4->2

This time the cursor is set at the end of the list. The following traverses the list in the backward
direction:

while(li.hasPrevious()) System.out.print(li.previous()+" ");

It prints
2->4->3->2

Like SortedSet, List also provides a method to view the portion of this list between start index
(inclusive) and end index (exclusive).

List sl = l.subList(1, 3);		 //sl = 3->4

100 ADVANCED JAVA PROGRAMMING

Note that any non-structural changes in the returned list are reflected in this list, and vice versa.
The method size() returns the number of elements in the list:

int sz = l.size();		 //sz = 4

This method may also be used to check if the list is empty:
if(el.size() == 0) System.out.println("empty list");

Alternatively, isEmpty() method may be used:
boolean e1 = l.isEmpty(); //e1 = false
boolean e2 = el.isEmpty(); //e2 = true
if(l1.isEmpty()) System.out.println("empty list");

Two versions exist to remove elements; one that removes an element from the specified index
and one that removes specified element.

l.remove(2); //remove element from index 2, l = 2->3->2
l.remove(new Integer(3)); //remove the element 2, l = 2->2

Also two versions exist to find the position of a given element in the list. They return the index
of the first occurrence and last occurrence of the specified element.

int first = l.indexOf(2); //first = 0;
int last = l.lastIndexOf(2); //last = 1;

An element at the specified position in this list may be replaced with the specified element using
set() method:

l.set(0, 4);							 //l = 4->2

To remove all elements, we use the bulk operation clear().
l.clear();								 //remove all, l =

This implementation is not also thread-safe. The synchronized version may be obtained as
follows:

List syncList = Collections.synchronizedList(new ArrayList());

5.4.3.2	 LinkedList
This class implements two collection interfaces, List and Deque and provides all operations of these

two interfaces. Internally uses doubly linked list. So, some operations execute in time proportional
to the index value. The usage of LinkedList is similar to ArrayList. The Deque specific operations
are described in the following section.

This implementation is not also thread-safe. To get the synchronized version, the following code
may be used:

List syncList = Collections.synchronizedList(new LinkedList());

5.4.4	 Queue
It is a collection to hold elements prior to processing. Like List, it also represents an ordered

collection of elements. Queues implementations can order elements in FIFO (queue), LIFO (stack)
and priority basis. These implementations generally do not accept null elements.

Queue provides two forms of methods for inserting, deleting and inspecting elements. One form
throws an exception if the operation fails. The other form returns a special value such as null or false,
depending on the operation. A summary of basic queue operations is shown in Table 5.1:

LinkedList

Queue

COLLECTION FRAMEWORK 101

Java provides two implementations of this interface: LinkedList and PriorityQueue [Figure 5.4:].

«interface»
Queue

LinkedList PriorityQueue

Figure 5.4: Queue implementations

5.4.4.1	 LinkedList
Note that LinkedList implements two collection interfaces List and Queue. This section only

describes the functionality of LinkedList with respect to Queue. LinkedList has two constructors:
zero argument constructor that constructs an empty queue and other constructs a queue containing
the elements of the specified collection.

Queue empty = new LinkedList(); //empty queue
Queue q = new LinkedList(Arrays.asList(1,3)); //q = 1->3

The queue q has only two elements with 1 at the front and 3 at the rear end. Other elements may
be added using either of the two methods, add() or offer(). The following code adds two elements.

q.add(5); //q = 1->3->5
q.offer(7); //q = 1->3->5->7

Note that elements are added at the rear end of the queue. The add() method returns true on success
and throws an exception otherwise. The offer() method returns true on success and false otherwise.
The latter is generally preferable as add() behaves differently for success and failure situations. Since,
LinkedList is a collection, its elements may be inspected using iterator or for-each loop:

for(Object o:q) System.out.print(o+" ");

or
Iterator i = q.iterator();
while(i.hasNext()) System.out.print(i.next()+" ");

Both print all the elements in the queue as follows:
1 3 5 7

Like adding elements, there are two forms of methods for deleting elements:
q.remove(); //q = 3->5->7
q.poll(); //q = 5->7

Note that elements are deleted from a queue from the front end. It also provides two methods that
return the element at the head of the queue without removing it from the queue.

Object e = q.element(); //e = 5
Object e1 = q.peek(); //e1 = 5

Table 5.1: Queue methods

Methods throwing exception Methods return special value

Insert add(e) offer(e)

Delete remove() poll()

Inspect element() peek()

102 ADVANCED JAVA PROGRAMMING

Although a queue orders elements in FIFO order, a LIFO ordered queue (i.e. stack) may be
created as follows:

Queue lifo = Collections.asLifoQueue(new LinkedList());

Elements are removed in the opposite order they were added in.
lifo.add(1);
lifo.add(2);
lifo.add(3);
lifo.add(4);

int m1 = (int)lifo.remove(); //m1 = 4
int m2 = (int)lifo.remove(); //m2 = 3

5.4.4.2	 PriorityQueue
The LinkedList implementation of Queue interface arranges elements in FIFO order. This

means that the head element is always the oldest among the elements present. In PriorityQueue
implementation a priority heap is maintained where the least element always sits at the top (head).
Element’s class must implement Comparable interface which has comparison method compareTo().
The elements are compared using comparedTo() method and least element sits at the top (head) of
the heap. So, head element is always the least among all the elements.

Note that PriorityQueue does not specify how other elements are exactly stored in heap. It only
ensures that head element is always the least element.

Like other collection implementations, it also provides various constructors:
Queue empty = new PriorityQueue(); //empty queue
Queue q = new PriorityQueue(Arrays.asList(7,4,5)); //4 is at head

Elements are added using add() or offer() methods. However, it always ensures that least element
sits at the head.

q.add(3); //3 is at head
q.add(6); //3 is still at head
q.offer(2); //2 is at head

Note that the iterator returned by the iterator() method does not ensure that elements are traversed
in any particular order. So, resultant sequence may not be sorted in natural order.

Iterator i = q.iterator();
while(i.hasNext()) System.out.print(i.next()+" ");

The above code prints a sample sequence as 2 4 3 7 6 5. The heap is rearranged after every
delete operation:

Object o1 = q.remove(); //o1 = 2, 3 is at head now
Object o2 = q.poll(); //o2 = 3, 4 is at head now

The head element may be inspected using element() or peek() methods:
Object e = q.element(); //e = 4
Object e1 = q.peek(); //e1 = 4

5.4.5	 Map
This interface models a set of key-value pairs. The keys are unique and each key corresponds

to one value. For example, we may have a collection of login-password pair. The password may
be stored/retrieved for a given login. Map defines necessary methods such as put(), get() for this
purpose. It also defines other methods such as remove(), containsKey(), containsValue(), size(),
isEmpty() etc.

COLLECTION FRAMEWORK 103

«interface»
Map

HashMap Hashtable LinkedHashMap«interface»
SortedMap

TreeMap

Figure 5.5: Map implementations

The Java provides three general-purpose implementations: HashMap, LinkedHashMap, and TreeMap
[Figure 5.5:].

5.4.5.1	 HashMap
It implements Map interface and provides all map operations. Internally uses hash table and allows

null key and value.
The advantage of HashMap is that it offers constant time [i.e. O(1)] performance for operations

such as add(), remove(), contains() and size(). However, iteration time is proportional to the
sum of number of key-value pairs present and number of buckets. So, if iteration time is important,
number of buckets should not be very high (load factor should not be very small).

Each HashMap object is characterized by two parameters: capacity and load factor. The capacity
is the number of buckets in the hash table. The load factor controls when to rebuild the internal data
structures.

It provides a number of constructors to create maps:
Map m = new HashMap(); //empty map
Map m1 = new HashMap(8); //initial capacity 8
Map m2 = new HashMap(6, 1); //initial capacity 6, load factor 1
Map m3 = new HashMap(m); //m3 = m

Key-value pairs are inserted using put() method as follows:
m.put("uttam","uttam1"); //key="uttam", value="uttam1"
m.put("bibhas","bibhas1"); //key="bibhas", value="bibhas1"
m.put("parama","parama1"); //key="parama", value="parama"

Once the key-value pairs are stored, the value corresponding to a key may be retrieved using the
get() method specifying the key.

String p1 = (String)m.get("uttam"); //p1 = "uttam1"
String p2 = (String)m.get("parama");//p2 = "parama1"

There are convenient methods like containsKey() and containsValue() which may be used to
check the existence of any key or value.

boolean b1 = m.containsKey("uttam"); //b1 = true
boolean b2 = m.containsKey("banhi"); //b2 = false
boolean b3 = m.containsValue("bibhas1"); //b3 = true
boolean b4 = m.containsValue("samiran"); //b4 = false

There are three ways to view the key-value collection in the map: as a set of keys, collection of
values and set of key-value entries. The method keySet() returns a set of all keys which may be
used to retrieve corresponding values.

104 ADVANCED JAVA PROGRAMMING

Set keys = m.keySet();
for(Object k:keys) System.out.println(k+"->"+m.get(k));

All the values in the map, in turn, may be obtained using values() method.
Collection values = m.values();
for(Object v:values) System.out.print(v+" ");

The method entrySet(), on the other hand, returns a set of Map.Entry objects each of which
consists of a key and a value.

Set entries = m.entrySet();
for(Object o:entries) {

Map.Entry e = (Map.Entry)o;
System.out.println(e.getKey()+"->"+e.getValue());

}

Another common operation is to remove mappings which is done using remove() method that
removes the entry corresponding to the specified key. Here is an example:

m.remove("uttam");	//removes entry for the key "uttam"

The method clear() removes all the entries from the map.
m.clear();

The following is an application of HashMap that generates a frequency table of the characters
found in the specified file pass as a command line argument.

import java.io.*;
import java.util.*;
public class CharacterCount {

public static void main(String[] args) throws Exception {
Map m = new HashMap();
FileInputStream fis = new FileInputStream(new File(args[0]));
while (fis.available() > 0) {

char a = (char) fis.read();
Integer freq = (Integer)m.get(a);
m.put(a, (freq == null) ? 1 : freq + 1);

}
Set keys = m.keySet();
for(Object k:keys) System.out.println(k+"->"+m.get(k));

}
}

Java also provides another hash based Map implementation: Hashtable. Although Hashtable and
HashMap are functionally similar, there are subtle differences. For example, HashMap is not thread-
safe while Hashtable is a thread-safe collection. However, HashMap exhibits better performance in a
single-threaded environment than Hashtable. In mult-threaded environment, a synchronized version
of map may be obtained as follows:

Map syncMap = Collections.synchronizedMap(new HashMap());

Alternatively, we may use java.concurrent.ConcurrentHashMap which is thread-safe version
of HashMap. It is more scalable and performs better than synchronized HashMap in multi-threaded
environment. However, in single-threaded environment HashMap is slightly better.

5.4.5.2	 LinkedHashMap
Note that Map interface does not mandate any iteration order. The HashMap implementation does

not also ensure any ordering. This chaotic ordering is not sometimes desirable and may be avoided
using LinkedHashMap implementation. It extends HashMap and uses a doubly linked list and hash
table internally. It provides the predictable iteration order. An ordered copy of a specified map may
be created using this class as follows:

Map aMap = ...
Map orderedMap = new LinkedHashMap(aMap);

COLLECTION FRAMEWORK 105

This class provides all operations of Map interface and has an effect similar to HashMap
implementation. As it maintains a linked list, it exhibits slightly slower performance than HashMap.
However, iteration time for a LinkedHashMap is proportional to the size of the map, not to its
capacity. Note that iteration time for a HashMap is proportional to the capacity and is likely to be
longer than LinkedHashMap.

This implementation is not also thread-safe. Fortunately, Java provides a synchronized version
which may be obtained as follows:

Map syncSet = Collections.synchronizedMap(new LinkedHashMap());

5.4.6 	 SortedMap
This is a sub-interface of Map and models sorted maps where entries are ordered with respect to

key in natural ordering or using a Comparator specified during map creation. It defines some operation
meaningful for sorted maps such as firstKey(), lastKey(), headMap(), tailMap() etc.

5.4.6.1	 TreeMap
It is a red-black tree implementation of SortedMap which is a sub interface of Map. It takes log2(n)

time for get(), put(), remove() and containsKey() methods. It provides several constructors:
SortedMap sm = new TreeMap(); //empty map
SortedMap sm1 = new TreeMap(sm); //create from existig sorted map

A sorted map may also be created from an ordinary unsorted map as follows:
Map m = new HashMap(); //unsorted map
m.put("uttam","uttam1"); //add some entries
m.put("bibhas","bibhas1");
m.put("parama","parama1");
m.put("samiran","samiran1");

sm = new TreeMap(m);	//get sorted from unsorted one

The methods entrySet(), keyset() and values() give the sorted view when iterating over the map.
Set keys = sm.keySet();
for(Object k:keys) System.out.println(k+"->"+sm.get(k));

This results in the following result:
bibhas->bibhas1
parama->parama1
samiran->samiran1
uttam->uttam1

The two special keys—the lowest (first) and the highest (last) keys are obtained as follows:
String k1 = (String)sm.firstKey(); //k1 = "bibhas"
String k2 = (String)sm.lastKey(); //k2 = "uttam"

Analogous to HashSet, the head and tail views may be retrieved as:
SortedMap hm = sm.headMap("samiran"); //hm = {bibhas=bibhas1, parama=parama1}
SortedMap tm = sm.tailMap("samiran"); //tm = {samiran=samiran1, uttam=uttam1}

5.5	 ALGORITHMS
Like Arrays class which has various methods for manipulating arrays, Collections class provides

several static methods to perform common collection operations such as sorting, searching etc. Most
of these methods operate on List objects, except a few which operate on arbitrary Collection objects.
The following sections briefly describe how to use these methods.

106 ADVANCED JAVA PROGRAMMING

5.5.1	 Sorting
Java provides two classes TreeSet and TreeMap for sorted sets and maps. However, there is no

implementation for sorted list. Sorting of a List is done with the sort() method.
The sort() method arranges the elements of a List instance according to an ordering relationship.

This method uses a slightly optimized stable merge sort algorithm. Its one form takes a List instance
and arranges its elements according to natural ordering. The following sorts a list of integers and
prints its elements:

List l = new ArrayList(Arrays.asList(3, 5, 4, 2, 3, 2, 1, 3));
Collections.sort(l); //increasing order
System.out.println("Increasing order\n"+l);

This program segment merely demonstrates how to use collection algorithms. The element’s class
must implement Comparable interface. This is mandatory since this version of sort() uses element’s
compareTo() method to compare them. Otherwise a ClassCastException will be thrown. A sample
output of the above code segment looks like this:

Increasing order
[1, 2, 2, 3, 3, 3, 4, 5]

5.5.1.1	 Custom Sort
The other form takes a Comparator in addition to a List and sorts the elements with the

Comparator. This version is useful if an ordering (e.g. decreasing order) other than natural ordering
is required or the element’s class does not implement Comparable interface. For custom ordering,
we first create a class that implements the Comparator interface which has single method compare().

class IntegerComparator implements Comparator {
public int compare(Object o1, Object o2) {

return (Integer)o2 - (Integer)o1;
}

}

The compare() method is implemented according to the desired ordering. The above class is
capable of comparing two integers in such a way that they may be arranged in decreasing order. We
can then sort a given list in decreasing order as:

Collections.sort(l, new IntegerComparator());//decreasing order
System.out.println("Decreasing order\n"+l);

Alternatively, we can define an unnamed Comparator class and use it as follows:
Collections.sort(l, new Comparator() {

public int compare(Object o1, Object o2) {
return (Integer)o2 - (Integer)o1;

}}); //decreasing order

System.out.println("Decreasing order\n"+l);

A sample output of the above code segment look like this:
Decreasing order
[5, 4, 3, 3, 3, 2, 2, 1]

5.5.2	 Shuffling
The opposite of sort is shuffle which arranges list elements arbitrarily. Shuffling is sometimes

necessary such as generating test cases, data for games etc. using a default or a specified source of
randomness. Two versions of shuffle() method exist. One operates on a List using a default source
of randomness.

COLLECTION FRAMEWORK 107

Collections.shuffle(l);
System.out.println("After Shuffling\n"+l);

This traverses the list backwards and swaps the current element with a randomly selected element
whose position is selected from first to the current position, inclusive. When executed, it produced
the following list:

After Shuffling
[5, 3, 1, 4, 2, 2, 3, 3]

The other form of shuffle() requires a Random object to be specified explicitly.
Collections.shuffle(l, new Random());

5.5.3	 Manipulation
In addition to sorting and shuffling, Collections class also provides a set of methods for

manipulating lists in different ways.

5.5.3.1	 Reversing
The method reverse() reverses the order of the elements in the specified list. The following pair

of statements sorts an array in decreasing order:
Collections.sort(l);
Collections.reverse(l);

The final list will look like this:
[5, 4, 3, 3, 3, 2, 2, 1]

5.5.3.2	 Swapping
The swap() method swaps elements of two specified positions of a specified list. The following

is equivalent to reversing a list.
int sz = l.size();
for(int i=0;i<sz/2;i++)

Collections.swap(l, i, sz-1-i);

5.5.3.3	 Copying
The copy() method copies all elements of a specified source list to another specified destination

list.
Collections.copy(l1, l);

It copies all elements of l to l1. Note that the size of l1 must be at least equal to the size of l. Other
elements, if any, of l1 are not affected.

5.5.3.4	 Filling
For re-initialization, fill() method may be used. It replaces all of the elements of the specified

list with the specified element.
Collections.fill(l1,0);

This puts a 0 in every position of the list l1.

5.5.3.5	 Adding
The addAll() method operates on Collection. It adds all of the specified elements to the specified

collection. The following adds three integers to the list l1.
Collections.addAll(l1, -1, -2, -3);

108 ADVANCED JAVA PROGRAMMING

5.5.4	 Searching
Searching an element in a collection of elements is common in many programs. The

binarySearch() method searches the specified list for the specified object. As its name implies,
it uses binary search algorithm which requires the list to be sorted prior to use in this algorithm. The
behaviour of this algorithm is not defined if it is applied on an unsorted list. It is common to use
sort() method to sort the List before a call to binarySearch().

It also has two versions: one takes a List and an element to look for and assumes that the
List is sorted in ascending order according to the natural ordering. The following are some
examples:

Collections.sort(l); //l=[1, 2, 2, 3, 3, 3, 4, 5]
int in = Collections.binarySearch(l, 4); //in = 6
in = Collections.binarySearch(l, 2); //in = 1
in = Collections.binarySearch(l, 3); //in = 3

For unsuccessful search, it returns a value (-(insertion point) - 1), where the insertion point is the
point at which the value would be inserted into the list.

in = Collections.binarySearch(l, 0);		 //in = -1

So, if the element is not present, it may be inserted using the following:
if(in < 0) l.add(-in-1, 0); //l=[0, 1, 2, 2, 3, 3, 3, 4, 5]

in = Collections.binarySearch(l, 6); //in = -10
if(in < 0) l.add(-in-1, 6); //l=[1, 2, 2, 3, 3, 3, 4, 5, 6]

5.5.5	 Finding Extreme values
The max() and min() return the maximum and minimum element of the specified list

respectively.
int min = (int)Collections.min(l); //min = 0
int max = (int)Collections.max(l); //max = 6

5.5.6	 Counting frequency
The frequency() method operates on general Collection. It returns the number of occurrences

of a specified element in the specified collection.
int fre = Collections.frequency(l,2); //fre = 2
fre = Collections.frequency(l,3); //fre = 3

The following program prints the frequency table of characters of the specified file.
import java.util.*;
import java.io.*;
public class FrequencyCount {

public static void main(String args[]) throws Exception {
List l = new ArrayList();
FileInputStream fis = new FileInputStream(new File(args[0]));
while (fis.available() > 0)

l.add((char) fis.read());

for(char c = 'A';c<='z';c++)
System.out.println(c+" "+Collections.frequency(l,c));

}
}

COLLECTION FRAMEWORK 109

KEYWORDS
Algorithms—A set of static methods to perform
common collection operations such as sor ting,
searching etc.

ArrayList—A resizable array implementation of List
interface

Collection—A container that encapsulates multiple
objects into a single unit

HashMap—It implements Map interface and provides
all map operations. Internally uses hash table and
allows null key and value

HashSet—This class is a hash-based implementation
of Set interface and offers constant time performance
for certain operations

LinkedHashMap—It extends HashMap and uses a
doubly linked list and hash table internally, providing
the predictable iteration order

LinkedHashSet—It is an extension to HashSet and
uses linked list and hash table internally and provides
the predictable iteration order without incurring the
increased cost associated with TreeSet.

LinkedList—A class that implements two collection
interfaces, List and Deque and provides all
operations of these two interfaces.

List—An interface that models an ordered collection
and can contain duplicate elements.

Map—It represents key-value pairs where keys are
unique and each key can map to at most one value

PriorityQueue—The LinkedList implementation
of Queue interface arranges elements in FIFO order.

Queue—This interface models queue where elements
are added and removed in a specific order, typically in
a first-in-first-out (FIFO) manner.

Set—An interface that models the mathematical set
that contains an unordered collection of objects without
any duplicates

SortedMap—This is a sub-interface of Map and
models sorted maps where entries are ordered with
respect to key

SortedSet—An extended interface of Set and
provides a total ordering on its elements

TreeSet—A tree based implementation of SortedSet
and provides guaranteed log(n) time cost for the basic
operations

TreeMap—It is a red-black tree implementation of
SortedMap.

SUMMARY
In version 1.2, Java provided a unified architecture,
known as collection framework for representing
and manipulating aggregate objects. All collections
frameworks primarily contains three parts: interfaces,
implementation and algorithms. The root interface
in the hierarchy is Collection that defines primitive
operations on collections interface. Other commonly
used interfaces are, Set, List, Queue, Map etc.

Java provides three general-purpose implementations
for Set interface: HashSet, LinkedHashSet and
TreeSet. The HashSet is a hash-based implementation
and offers constant time performance for certain
operations. LinkedHashSet is an extension to HashSet
and uses linked list and hash table internally and
avoids the chaotic ordering. The TreeSet is tree based
implementation and provides guaranteed log(n) time
cost for the basic operations.

One of the commonly used collection type is List. Unlike
sets, lists are ordered collection and allow duplicate
elements. Java provides two implementations of this
interface: ArrayList and LinkedList. It is a resizable array

implementation of List interface and is roughly equivalent
to Vector. The LinkedList class implements two collection
interfaces, List and Deque and provides all operations of
these two interfaces. Internally uses doubly linked list.

It is a collection to hold elements prior to processing.
Like List, it also represents an ordered collection of
elements. Java provides two implementations of this
interface: LinkedList and PriorityQueue. The LinkedList
implementation of Queue interface arranges elements
in FIFO order. This means that the head element is
always the oldest among the elements present.

The Map interface models a set of key-value pairs.
The keys are unique and each key corresponds to
one value. The Java provides three general-purpose
implementations: HashMap, LinkedHashMap, and
TreeMap.

The HashMap internally uses hash table and allows
null key and value. The LinkedHashMap extends
HashMap and uses a doubly linked list and hash table
internally and avoids chaotic ordering. The TreeMap
is a red-black tree implementation of SortedMap

110 ADVANCED JAVA PROGRAMMING

which is a sub interface of Map. It takes log2(n) time
for get(), put(), remove() and containsKey() methods.

Collections class provides several static methods to
perform common collection operations such as sorting,

searching etc. Most of these methods operate on
List objects, except a few which operate on arbitrary
Collection objects.

EXERCISES
Objective-type Questions

WEB RESOURCES
http://docs.oracle.com/javase/7/docs/
technotes/guides/collections/
The Collections Framework

http://www.digilife.be/quickreferences/PT/
Java%20Collections%20Framework.pdf
Java Collections Framework

http://homepage.cs.uiowa.edu/~slonnegr/
oosd/22Collections.pdf
Collection Framework

http://www.eecs.yorku.ca/course_
archive/2011-12/W/2011/lectures/04%20The%20

Java%20Collections%20Framework.pdf
Lecture 4. The Java Collections Framework

http://softeng.polito.it/slides/07-
JavaCollections.pdf
Java Collection Framework

http://people.cs.aau.dk/~torp/Teaching/E01/
Oop/handouts/collections.pdf
Collections in Java

http://www.tutorialspoint.com/java/java_
collections.htm
Java Collections Framework

	 6.	 What is the output of this program?
import java.util.*;
class Array {

public static void main(String args[]) {
 int array[] = new int [5];
 for (int i = 5; i > 0; i--)

array[5-i] = i;
 Arrays.fill(array, 1, 4, 8);
 for (int i = 0; i < 5 ; i++)

System.out.print(array[i]);
}

}

	 (a)	 12885		 (c)	 58881
	 (b)	 12845		 (d)	 54881

	 7.	 What is the output of this program?
import java.util.*;
class vector {

public static void main(String args[]) {
 Vector obj = new Vector(4,2);
 obj.addElement(new Integer(3));
 obj.addElement(new Integer(2));
 obj.addElement(new Integer(5));
 obj.removeAll(obj);
 System.out.println(obj

.isEmpty());
}

}

	 (a)	 0				 (c)	 True
	 (b)	 1				 (d)	 False

	 1.	 Which of these packages contains all the
collection classes?

	 (a)	 java.lang		 (c)	 java.net
	 (b)	 java.util		 (d)	 java.awt

	 2.	 Which of these classes is not part of Java’s
collection framework?

	 (a)	 Map		 (c)	 Stack
	 (b)	 Array		 (d)	 Queue

	 3.	 Which of these interfaces is not a part of Java’s
collection framework?

	 (a)	 List		 (c)	 SortedMap
	 (b)	 Set		 (d)	 SortedList

	 4.	 Which of these methods deletes all the elements
from invoking collection?

	 (a)	 clear()		 (c)	 delete()
	 (b)	 reset()		 (d)	 refresh()

	 5.	 What is Collection in Java?
	 (a)	 A group of objects

	 (b)	 A group of classes

	 (c)	 A group of interfaces

	 (d)	 None of the mentioned

COLLECTION FRAMEWORK 111

	 8.	 What is the output of this program?
import java.util.*;
class stack {

public static void main(String args[]) {
 Stack obj = new Stack();
 obj.push(new Integer(3));
 obj.push(new Integer(2));
 obj.pop();
 obj.push(new Integer(5));

 System.out.println(obj);
}

}

	 (a)	 [3, 5]		 (c)	 [3, 2, 5]
	 (b)	 [3, 2]		 (d)	 [3, 5, 2]

	 9.	 What is the output of this program?
import java.util.*;
class hashtable {

public static void main(String args[]) {
 Hashtable obj = new Hashtable()
 obj.put("A", new Integer(3));
 obj.put("B", new Integer(2));
 obj.put("C", new Integer(8));
 obj.remove(new String("A"));
 System.out.print(obj);

}
}

	 (a)	 {C=8, B=2}		 (b)	 [C=8, B=2]
	 (c)	 {A=3, C=8, B=2}		 (d)	 [A=3, C=8, B=2]

	10.	 What is the output of this program?
import java.util.*;
class Bitset {

public static void main(String args[]) {
 BitSet obj = new BitSet(5);
 for (int i = 0; i < 5; ++i)

obj.set(i);
 obj.clear(2);
 System.out.print(obj);

}
}

	 (a)	 {0, 1, 3, 4}		 (c)	 {0, 1, 2, 3, 4}
	 (b)	 {0, 1, 2, 4}		 (d)	 {0, 0, 0, 3, 4}

	11.	 Which of these interfaces declares core method
that all collections will have?

	 (a)	 set		 (c)	 Comparator
	 (b)	 EventListner		 (d)	 Collection

	12.	 Which of these interfaces handles sequences?
	 (a)	 Set		 (c)	 Comparator
	 (b)	 List		 (d)	 Collection

	13.	 Which of these interfaces must contain a unique
element?

	 (a)	 Set		 (c)	 Array
	 (b)	 List		 (d)	 Collection

	14.	 Which of these is Basic interface that all other
interfaces inherit?

	 (a)	 Set		 (c)	 List
	 (b)	 Array		 (d)	 Collection

	15.	 What is the output of this program?
import java.util.*;
class Maps {

public static void main(String args[]) {
 TreeMap obj = new TreeMap();
 obj.put("A", new Integer(1));
 obj.put("B", new Integer(2));
 obj.put("C", new Integer(3));
 System.out.println(obj

.entrySet());
}

}

	 (a)	 [A, B, C]		 (c)	 {A=1, B=2, C=3}
	 (b)	 [1, 2, 3]		 (d)	 [A=1, B=2, C=3]

	16.	 What is the output of this program?
import java.util.*;
class Array {

public static void main(String args[]) {
 int array[] = new int [5];
 for (int i = 5; i > 0; i--)

array[5 - i] = i;
 Arrays.sort(array);
 for (int i = 0; i < 5; ++i)

System.out.print(array[i]);;
}

}

	 (a)	 12345		 (c)	 1234
	 (b)	 54321		 (d)	 5432

	17.	 Suppose you would like to create an instance of
a new Map that has an iteration order that is the
same as the iteration order of an existing instance
of a Map. Which concrete implementation of
the Map interface should be used for the new
instance?

	 (a)	 TreeMap
	 (b)	 HashMap
	 (c)	 LinkedHashMap
	 (d)	 The answer depends on the implementation

of the existing instance.

	18.	 Which class does not override the equals() and
hashCode() methods, inheriting them directly from
class Object?

	 (a)	 String		 (c)	 StringBuffer
	 (b)	 Double		 (d)	 Character

	19.	 Which collection class allows you to grow or shrink its
size and provides indexed access to its elements,
but whose methods are not synchronized?

112 ADVANCED JAVA PROGRAMMING

	 (a)	 HashSet		 (c)	 List
	 (b)	 LinkedHashSet		 (d)	 ArrayList

	20.	 You need to store elements in a collection that
guarantees that no duplicates are stored and all
elements can be accessed in natural order. Which
interface provides that capability?

	 (a)	 Map		 (c)	 List
	 (b)	 Set		 (d)	 Collection

	21.	 Which interface does java.uti l.Hashtable
implement?

	 (a)	 Map		 (c)	 HashTable
	 (b)	 List		 (d)	 Collection

	22.	 Which interface provides the capability to store
objects using a key-value pair?

	 (a)	 Map		 (c)	 List
	 (b)	 Set		 (d)	 Collection

	23.	 Which collection class allows you to associate
its elements with key values, and allows you
to retrieve objects in FIFO (first-in, first-out)
sequence?

	 (a)	 ArrayList		 (c)	 HashMap
	 (b)	 LinkedHashMap		 (d)	 TreeMap

	24.	 Which collection class allows you to access its
elements by associating a key with an element's
value, and provides synchronization?

	 (a)	 SortedMap		 (c)	 TreeSet
	 (b)	 TreeMap		 (d)	 Hashtable

	 1.	 What is Java Collections Framework? List out
some benefits of Collections framework.

	 2.	 What are the basic interfaces of Java Collections
Framework?

	 3.	 What is an Iterator?

	 4.	 What is the difference between Enumeration and
Iterator interface?

	 5.	 What are the different ways to iterate over a list?

	 6.	 How does HashMap work in Java?

	 7.	 What are the different Collection views provided
by Map interface?

	 8.	 What is the difference between HashMap and
Hashtable?

	 9.	 How do you decide between HashMap and
TreeMap?

	10.	 What are the similarities and dif ferences
between ArrayList and Vector?

	11.	 What is the difference between Array and
ArrayList? When will you use Array over
ArrayList?

	12.	 What is the difference between ArrayList and
LinkedList?

	13.	 Which collection classes provide random access
of its elements?

	14.	 Which collection classes are thread-safe?

	15.	 What are concurrent Collection Classes?

	16.	 What is BlockingQueue?

	17.	 What is Queue and Stack? List their differences.

	18.	 What is Comparable and Comparator interface?

	19.	 What is the difference between Comparable and
Comparator interface?

	20.	 How can we sort a list of Objects?

	21.	 How can we create a synchronized collection
from the given collection?

	22.	 What are the common algorithms implemented
in Collections Framework?

Subjective-type Questions

Generic Programming

Key Objectives

After completing this chapter readers will be able to—
•  understand the purpose of Java generics
•  write generic classes, interfaces and methods
•  get an idea about type inference and type erasure
•  use generic collections classes and interfaces
•  understand bounded type parameter and different wildcards
•  know the limitations of Java generics

6.1	 INTRODUCTION
Bugs are inevitable in any software. However, careful programming can reduce them. Several

extensions were added to JDK 1.5. One of these was Java generics, which helps us to detect more
bugs at compile time and fix them then and there. This allows us simply to avoid some runtime errors
and handling them prior to coming into play.

Generics allows us to write parameterized classes, interfaces and methods where parameters
are type names. If you are already familiar with C++ templates, you’ll soon realize that there
are both similarities and important differences. If you are not familiar with lookalike constructs
from elsewhere, don’t worry, all the better; you can start afresh, without unlearning any
misconceptions.

Although, the primary usage of generics is to abstract over types when working with collections,
it is possible to write custom generic classes, interfaces and methods. The following section describes
the basic problems the Java generics solve and how it solves the problem with the help of custom
classes.

CHAPTER – 6

114 ADVANCED JAVA PROGRAMMING

6.2	 MOTIVATION
Since, java.lang.Object is top-level class in Java class hierarchy, it is possible to write general-

purpose classes and methods that operate on Object. To understand this statement, consider the
following class:

class Wrapper {
Object o;
void set(Object o) { this.o = o; }
Object get() { return o; }

}

This class represents a general-purpose wrapper class. Since, internally it maintains a reference
of type Object, which is the super class of all other types, it can hold arbitrary Java object. So, the
following statement is valid:

Wrapper w = new Wrapper();
w.set(new String("abc"));

It creates a wrapper instance and stores a String object in it using its add() method. Since,
any object may be added, and get() method returns it as an Object instance, it is necessary to
type cast:

String s = (String)w.get();

Since, the wrapper indeed holds a String object, Object to String casting is correct. Compiler
also remains silent as it observes that the statement is syntactically correct. However, the situation may
not be as simple as above. A careless programmer (or by mistake), may write a statement as follows:

Integer x = (Integer)w.get();

Note that type of the object held is String. So, casting it to an Integer type is illegal. Although,
Java can determine this anomaly at runtime and informs us by throwing a ClassCastException, there
is no provision to determine it at compile time as there is no syntax error in the statement. Since,
compiler only cares about syntax, it cannot restrict programmers from such incorrect type casting.
Since, the above code still compiles, we wouldn’t know anything is wrong until runtime.

It is also possible to keep different type of object at different time.
w.set(new String("xyz"));
w.set(new Integer(2));

The wrapper object, does not, anyway indicate that it is capable of holding specific type of objects.
So, if we want to restrict the contained type to something specific (like String), our only option would
be to specify the requirement in documentation. If the class had been a generic one, these mistakes
could have been caught by the compiler and rectified then and there.

6.3	 SOLUTION
Using Java’s generics, lets rewrite our Wrapper class as follows.
class Wrapper <T> {

T o;
void set(T o) { this.o = o; }
T get() { return o; }

}

Although, it introduces some new syntax, there is nothing to worry about. It is very much
similar to our previous version except that it uses a formal type parameter T. All occurrences of
Object have been substituted by T. The <T> after class name indicates that the class is a generic one.
The type parameters can be used throughout the generic declaration in a way almost similar to that
of ordinary types.

GENERIC PROGRAMMING 115

To refer to this generic type, we supply a concrete type name as argument.
Wrapper<String> w;

We specify the type argument (String in this case) within angular brackets. We might imagine that
Wrapper<String> stands for a version of Wrapper where T has been uniformly replaced by String.
However, it is misleading, because the declaration of a generic is never actually expanded in this
way. In fact, during compilation, all generic information will be removed entirely using a process
called type erasure which we shall discuss in detail later in this chapter.

Like any other variable declaration, the above line does not actually create a new object. It simply
declares a reference to a Wrapper<String> (pronounced as “Wrapper of String”). To instantiate this
class, the new keyword is used, as usual, along with the type name (may be omitted in some cases)
within angular brackets between the class name and the parenthesis:

w = new Wrapper<String>();

We can also do these things in one line, such as:
Wrapper<String> w = new Wrapper<String>();

To understand the syntax of generic class declaration, you can compare it with method declaration.
Remember that during a method declaration, we use formal parameters to hold actual arguments
passed during method call. For example,

public static int add(int a, int b) { // int a, int b are formal parameters
return a + b ;

}

During the invocation, the formal parameters are substituted by the actual arguments. For example,
// method call: formal parameters substituted by actual arguments
int result = add(2, 3); // 2 and 3 are actual arguments

Type parameters used in the class declaration have the same purpose as the formal parameters
used in the method declaration. A class can use formal type parameters to receive type arguments.
The type names used during instantiation are called actual type arguments. During instance creation,
such as Wrapper<String>, all occurrences of the formal type parameter T are replaced by the actual
type argument String.

Anyway, with this additional type information, compiler can perform type check during compile-
time and ensure that there will be no runtime class cast error. Since, w is a kind of ‘Wrapper of String’
now, only String objects can be stored in it.

w.set(new String(“abc”));

Note that even if w is a generic instance, this syntax is exactly same as the previous one. However,
any attempt to store an object other than String will result in a compilation error:

w.set(new Integer()); //compilation error

This wrapper is now targeted at only String, meaning only String instances can be stored into
this wrapper. Accordingly, if we try to keep something else in it, the compiler will complain. The
stored element may also be retrieved directly without a type cast as follows:

String s = w.get();

The compiler knows that this wrapper can only contain String instances, so casts are not necessary.
An attempt to cast to a different type will also result in a compilation error alerting you to what
previously would have been a runtime bug.

Integer i = (Integer)w.get();	 //compilation error

Instead of relying on the programmer to keep track of object types and performing casts, which
could lead to failures at runtime difficult to debug and solve, the compiler can help the programmer
enforce a greater number of type checks and detect more failures at compile time.

116 ADVANCED JAVA PROGRAMMING

Needless to say wrappers for other types (reference types only) may be created and used using
the usual way as and when needed:

Wrapper<Integer> wi = new Wrapper<Integer>(); //wrapper of Integer
wi.set(new Integer(4));
Integer i = wi.get();

It is possible to make both classes and interfaces generic. A class or an interface is generic if it
accepts one or more type parameters. In general, any number of type parameters may be specified.
They are specified in angular brackets separated by comma (,) and follow the class (or the interface)
name as follows:

class Pair <K, V> {/*...*/}

These parameters typically appear in the type’s methods, either as the type method’s parameter
list or as the type of its return value.

class Pair <K, V> {
void put(K k, V v);
V get(K k) {/*...*/}

}

Here two type parameters K and V are introduced after the class name. Then K appears as
the argument type of the get() and put() method and V appears as the return type of get()
method.

This section simply demonstrates the fundamental concepts of Java generics. We shall discuss
several other issues in subsequent sections. However, since Java generics is extensively used in
collection framework, let us be quickly familiar with how to use generic collection classes and
interfaces.

6.4	 COLLECTION FRAMEWORK AND GENERICS
The primary usage of generics is to abstract over types when working with collections. In practice,

we hardly write new generic types. However, we should recognize the syntax and learn how to use
generics. Before generics, an example usage of collection class looks like this:

List l = new ArrayList();
l.add(new Integer(4));
Integer i = (Integer)l.get(0);

Look at the cast in the last line. Since, the get() method returns an Object instance, to assign it
to a variable of type Integer, the cast is required.

However, the cast is annoying. It not only introduces clutter, but there is also a possibility of
ClassCastException at run time due to wrong cast being used by mistake. Moreover, if we want to
mark a list as being restricted to contain a particular data type, there is no provision before generics.

Most of the collection classes and interfaces including List have been upgraded using generics
in Java 1.5 version. So, we can rewrite the above program fragment using generics:

List<Integer> intList = new ArrayList<Integer>();
intList.add(new Integer(4));
Integer i = intList.get(0);

Now, look at the way the variable intList has been declared. It is no longer a general list, but a
‘List of Integer’, written as List<Integer>. Indeed the List is a generic interface whose declaration
looks like:

public interface List<E> extends Collection<E> { /*…*/}

The type correctness of the program can be checked at compile-time now. When we declare
intList as List<Integer> (i.e ‘List of Integer’), this holds true wherever and whenever it is used

GENERIC PROGRAMMING 117

hereafter, and the compiler guarantees it. Since, intList can now contain only Integer objects,
adding anything else will be a compilation error:

intList.add(new String(“abc”));   //compilation error

Another interesting point is that the cast is no longer necessary. Java also introduces a new for
loop to iterate generic lists:

for(Integer item : intList)
System.out.println(item);

Similar to generic collection classes, most of the collection classes are also generic. One example
of such a generic interface is Comparable which is written as:

package java.lang;
import java.util.*;
public interface Comparable<T> {

public int compareTo(T o);
}

6.5	 TYPE NAMING
Unlike ordinary variables, type variables are named by single uppercase letters. It helps us to

differentiate type variables and ordinary class or interface name. The most commonly used type
parameter names are:

T - Type
S,U,V etc. - 2nd, 3rd, 4th types
V - Value
E - Element (used extensively by the Java Collections Framework)
K - Key
N - Number

Table 6.1: summarizes some of the frequently used terms in generics:
Table 6.1: Terminologies in Java generics

Generic Term Meaning

List<E> Generic Type, E is called formal parameter

List<Integer> Parameterized type, Integer is actual argument here

<T extends Comparable> Upper-bounded type parameter

List<?> Unbounded wildcard

<? extends T> Bounded wildcard

<? super T> Bounded wildcard

List Raw type

<T extends Comparable<T>> Recursive bounded type parameter

6.6	 GENERIC METHODS AND CONSTRUCTORS
Like classes and interfaces, methods (including constructors) may use type parameters and are

called generic methods. They are useful if we don’t want to make the whole class generic. Generic
methods may be a member of generic as well as non-generic classes. The following shows a generic
method as part of non-generic class.

class X {
static <T> void print(T t) {
System.out.println(t.getClass().getName());

}
}

118 ADVANCED JAVA PROGRAMMING

This takes a single type parameter which appears before the return type. It prints the type
information of the object passed to it. The type parameter’s scope is limited to the method in which
it’s declared. We call this method like a normal method except that we specify the type parameter
before the method name:

X.<Integer>print(new Integer(2));
X.<String>print(new String("aa"));

The type of object must be same or a subtype of type argument. The value of type parameter may
be inferred from method parameter and may be omitted:

X.print(new Integer(2));
X.print(new String("aa"));

Like generic type, a generic method may take any number of type parameters. Both static
and non-static generic methods are allowed. A non-static method may use class’s type parameter
(if any).

class Y <S> {
<T> void print(S s, T t) {
System.out.println(s.getClass().getName());
System.out.println(t.getClass().getName());

}
}

The complete syntax for invoking this method would be:
Y<Integer> y = new Y<Integer>();
y.<Integer, String>print(new Integer(2), new String("aa"));

However, since the type parameters may be inferred from method parameter, we may omit
them:

y.print(new Integer(2), new String(“aa”));

The following section describes more about type inference.

6.7	 TYPE INFERENCE
Sometimes it is possible to find some type information automatically from the arguments passed

to methods or constructors. This ability is known as type inference and may

•	 Determine the types of the arguments.
•	 Determine the type that the result is being assigned, or returned (if available).
•	 Find the most specific type that works with all of the arguments.

The following sections illustrate these.

6.7.1	 Generic methods
Type inference sometimes allows us to invoke a generic method like an ordinary method. Consider

the following example:
class A {
static <T> void f(T t){};

}

The generic method f() defines one type parameter named T. Java compiler can infer the type
argument even if it is not explicitly specified during method call.

A.f(2);				 //T is Integer

However, we can also specify the type argument explicitly:
A.<Integer>f(2);	 //Explicit type argument, T is Integer

GENERIC PROGRAMMING 119

The method argument must be convertible to the explicit type argument. So, the following is
correct:

A.<Number>f(2);	 //OK, T is Number and Integer can be converted to Number

However, the following is not correct as 2 cannot be cast to String.
A.<String>f(2);	 //Error, T is String, however Integer can’t be cast to String

6.7.2	 Constructors
Type inference is also possible for constructors. Consider the following class:
class X <T> {

T t;
<S>X(T t, S s) {}

}

The class X takes a single type parameter T. The constructor for X itself takes another type
parameter and uses class’s type parameter as well. Compiler can infer these type parameters from
the constructor call:

new X<>("", 3); 				 //T is String and S is Integer

We can also specify type argument for the class explicitly:
new X<String>("", 3); //T is String and S is Integer
new X<Object>("", 3); //T is Object and S is Integer

Both arguments may also be specified explicitly.
new <Integer>X<String>("", 3); //T is String and S is Integer
new <Number>X<String>("", 3); //T is String and S is Number
new <Integer>X<Object>("", 3); //T is Object and S is Integer
new <Number>X<Object>("", 3); //T is Object and S is Number	

new <Integer>X<String>("", 3); //T is String and S is Integer
new <Number>X<String>("", 3); //T is String and S is Number
new <Integer>X<Object>("", 3); //T is Object and S is Integer
new <Number>X<Object>("", 3); //T is Object and S is Number

6.7.3	 Classes
It is also possible to infer class’s type argument even if constructor does not use it. Consider the

following class:
class X <T> {

<S>X(S s) {}
}

To help compiler to infer class’s type argument, we use <> (called diamond) as follows:
X<Integer> x = new X<>("");		 //T is Integer, S is String	

Note that to take advantage of type inference during generic class instantiation, we must use the
diamond. Otherwise, the compiler generates an unchecked conversion warning:

X<Integer> x1 = new X("");		 //warning

This happens because the constructor X() refers to the X raw type.

6.8	 BOUNDED TYPE PARAMETERS
The generic classes or methods we have written may take any reference type arguments.

For example, the Wrapper class can take arbitrary arguments:
Wrapper<Integer> wi;
Wrapper<Double> wd;
Wrapper<String> ws;
Wrapper<Exception> we;
Wrapper<Object> wo;
//...

120 ADVANCED JAVA PROGRAMMING

However, if we want to restrict that Wrapper to only accept certain arguments, we specify it as
bounded type parameter:

class Wrapper <T extends Number> {/*...*/}

This tells that the type argument to Wrapper can only be either Number or anything that extends
Number. Note that, the keyword extends is used in a general sense to mean either extends for classes
or implements for interfaces.

The generic type name is similar to unbounded generic type except that if we try to use any type
that is not Number, it results in a compilation error.

Wrapper<String> ws;
Wrapper<Exception> we;
Wrapper<Object> wo;

The above types are now wrong as neither String nor Exception nor Object is a sub-type of
Number. However, the following remains still valid:

Wrapper<Integer> wi;
Wrapper<Double> wd;

Bounded type parameters can be used with interfaces as well as methods.
interface MyIntf <T extends Number> {}
static <T extends Number> void printNumber(T t) {}
static <T extends Comparable<T>> int max(T a, T b) {/*...*/}

The interface MyIntf and the method printNumber() only take argument of type Number or its
sub-type whereas max() takes argument of type Comparable<T> or its sub-type.

6.8.1	 Multiple bounds
A type parameter may have more than one bound and is written as:
<T extends C & I1 & I2>

It means T must be a subtype of C, I1 and I2. In general if multiple bounds are specified, the
type variable must be a subtype of all listed bound types. If one of the bounds is a class, it must be
specified first. Given the following types:

class C { /* ... */ }
interface I { /* ... */ }

The following bound specification is wrong as the class name is not specified first in the bound list.
<T extends I & C>

The correct one is:
<T extends C & I>

We can’t have more than one class in multiple bounds. The following are some other examples:
<T extends C> //T has bound C
<T extends I> //T has bound I
<T extends C & I> //T has bound C and I
<T, S extends C> //T is unbounded, S has bound C
<T, S extends I> //T is unbounded, S has bound I
<T, S extends C & I> //T is unbounded, S has bound C and I
<T extends C, S> //T has bound C, S is unbounded
<T extends I, S> //T has bound I, S is unbounded
<T extends C & I, S> //T has bound C and I, S is unbounded
<T extends C, S extends C> //Both T and S have bound C
<T extends C, S extends I> //T has bound C, S has bound I
<T extends I, S extends C> //T has bound I, S has bound C
<T extends C & I, S extends C & I> //Both T and S have bound C & I

GENERIC PROGRAMMING 121

Note that Java does not allow us to use super keyword when declaring a bounded type parameter.
So, the following is wrong:

class X <T super Number> {}

6.9	 GENERICS AND SUB-TYPE
The sub-type and super-type relationships with respect to generics appear to be confusing to

beginners. However, understanding them is important and clearly makes you better equipped to
work with generics.

In Java, we know that a reference of type T may refer to an object of type S if S is either T or S
is a sub-type of T. For example, an Object type reference can hold an Object or any of its sub-type
object such as Integer.

Object oRef = new Object(); //oRef refers to an Object
String sRef = new String("Java"); //sRef refers to a String
oRef = sRef; //oRef now refers to a String

Similarly, the following is also valid as Integer and Double are sub-type of Number:
Number nRef = new Integer(2); //nRef refers to an Integer
nRef = new Double(3.2); //nRef now refers to a Double

The same is also true for generics.
List<Number> ln = new ArrayList<>();
ln.add(new Integer(2));
ln.add(new Double(3.2));

Since, Integer and Double are sub-type of Number, a list of Number may hold Integer as well as
Double objects. However, List<Integer> is not a subtype of List<Number>. Consider the following
example:

List<Integer> li = new ArrayList<Integer>();
ln = li;

Here we have created a List of Integer and assigned it to a List of Number. It seems to be
obvious as – “a List of Integer is indeed a List of Number”. But this is not correct in the generics
world! [Figure 6.1:]

(i) (ii) (iii)

Number

Integer

List<Number>

List<Integer>
X

List<Number> List<Integer>

Object

Figure 6.1: Generics and sub-typing (i) Integer is a sub-type of Number (ii) However,
List<Integer> is not a sub-type of List<Number> (iii) Their common parent is Object

This piece of code does not compile because if it could have compiled we could add a Double
object as follows:

ln.add(new Double(3.2));

This could have resulted in ClassCastException at runtime and type safety could not be achieved.
In general, given two concrete types A and B, AClass<A> has no relationship to AClass,

regardless of whether or not A and B are related. The common parent of AClass<A> and AClass

122 ADVANCED JAVA PROGRAMMING

is Object. To illustrate this, a beautiful example was given in Java’s tutorial. We are also using that
example to demonstrate this.

Consider the following type hierarchy:
class Animal {/*...*/}
class Lion extends Animal {/*...*/}
class Butterfly extends Animal {/*...*/}

Since, Lion and Butterfly are kind (sub-type) of Animal, either may be supplied when an Animal
is required:

Animal a = new Lion(); //a refers to a lion
a = new Butterfly(); //a now refers to a butterfly

We know that lions are kept in lion cages (with bars strong enough to prevent the lions from
going out):

List<Lion> lionCage = new ArrayList<Lion>();
lionCage.add(new Lion());

Similarly, butterflies are kept in cages whose bars need not be so strong but should be spaced
closely enough to hold in the butterflies:

List<Butterfly> butterflyCage = new ArrayList<Butterfly>();
butterflyCage.add(new Butterfly());

Now, think about a cage of an animal.
List<Animal> animalCage = new ArrayList<Animal>();

Since, it is an animal cage, it should ideally be capable of keeping all animals including a lion
and a butterfly. So, its bars should not only be strong, but also spaced closely. If such a cage really
exists, it is possible to keep a lion as well as a butterfly together there.

animalCage.add(new Lion());
animalCage.add(new Butterfly());

Now, let us think about this question: “Is a lion cage a kind of animal cage? i.e. is List<Lion> a
kind of List<Animal> or is List<Butterfly> a kind of List<Animal>”. If we think critically, we shall
find the answer as “no” in both cases. This is because ideally, if a lion cage could have been a kind
of animal cage, we could keep butterflies there since a butterfly is also a kind of animal. However,
bars of a lion cage are not close enough to prevent butterflies from escape. Therefore, the following
assignment is wrong:

animalCage = lionCage;	 //compile time error

Similarly, a butterfly cage is not a kind of general animal cage as it is too weak to keep lions.
Therefore, the following assignment is also wrong:

animalCage = butterflyCage;	//compile time error

Java generics tutorial developer ironically added the following:
Before generics, the animals could be kept in improper kinds of cages. As a result, it would be

possible for them to escape.

6.10	 WILDCARDS
So, how do you specify a “List of some kind of animal” syntactically? This is represented as:
List<? extends Animal> someAnimalCage;

and is read as “List of unknown type which is either Animal or a sub-type of it”. So, for this
type of cage, either a lion cage or a butterfly cage may be provided [Figure 6.2:].

someAnimalCage = lionCage;
someAnimalCage = butterflyCage;

GENERIC PROGRAMMING 123

(i) (ii)

List<Animal>

List<Lion> List<Butterfly>
X

List<Lion> List<Butterfly>

List<? extends Animal>

X

Figure 6.2: Wildcards (i) Without wildcard (ii) With wildcard

In generics, an unknown type is represented by the wildcard character “?”. It may be used as
the type of a parameter, field, or local variable. Although, it may be used as a return type, being
more specific is better. However, the wildcard is never used as a type argument for a generic method
invocation, a generic class instance creation, or a super type.

6.10.1	 Upper-bound wildcard
Since, <? extends Animal> represents any type bounded by the type Animal, it is said to be

bounded wildcard with the upper bound Animal.
Note that, the keyword extends is used in a general sense to mean either extends for classes or

implements for interfaces.
However, we cannot add any lions or butterflies to this kind of cage. This is because, if

someAnimalCage refers to a lion cage (bars are not so close) and if we put some butterflies there,
they will fly away. Similarly, if someAnimalCage refers to a butterfly cage (bars are not so strong)
and if we put some lions there, they will break the cage and escape. So the following are incorrect:

someAnimalCage.add(new Lion());
someAnimalCage.add(new Butterfly());

What will the usage of this kind of cage be then? Don’t worry. Although, we cannot put anything
(except null) there, we can still view its contents.

for(Animal an: someAnimalCage)
an.free(); //assume that the Animal class has a method free()

Since, someAnimalCage contains Animal or any sub-type of Animal, it is safe to assign its elements
to an Animal type variable.

A method may also use such upper-bounded wildcards.
static void f(List<? extends Animal> l) {/*...*/}

With this declaration, the method f() may be invoked supplying both lionCage as well as
butterflyCage:

f(lionCage); //OK
f(butterflyCage); //OK

The method f() can access the list elements as type Animal:
static void f(List<? extends Animal> l) {

for (Animal elem : l) {
// ...

}
}

Similarly, if we want to write the method that works on List<Number>, List<Integer>,
List<Double>, List<Float> etc., we specify it as:

static void g(List<? extends Number> l) {/*...*/}

In general, for an “in” parameter that serves up data to the function, an upper-bounded wildcard
is used.

124 ADVANCED JAVA PROGRAMMING

6.10.2	 Lower-bound wildcard
Like an upper bounded wildcard that restricts the unknown type to be a specific type or a subtype

of that type, a lower bounded wildcard restricts the unknown type to be a specific type or a super
type of that type. A lower bounded wildcard is written in the same way except the keyword super
is used instead of extends.

List<? super Integer> list;

This represents a ‘List of unknown type that is either Integer or any super type of it’.
The list type that this list can hold is Integer types. Consider the following lists:

List<Number> ln = new ArrayList<Number>();
List<Object> lo = new ArrayList<Object>();
List<Integer> li = new ArrayList<Integer>();

With this, the following are correct:
list = li;
list = ln;
list = lo;

Since, the list can hold an Integer type or any of it’s super type object, it is always safe to add
Integer objects to this list.

list.add(new Integer(2));

However, since we do know what type of list it actually is, list elements can be type cast to
Object only:

for(Object o : list)
System.out.println(o);

It is not possible to specify both upper bound and lower bound for a wildcard simultaneously.

6.10.3	 Unbounded wildcard
Java generics also provides another kind of wildcard called unbounded wildcard and is represented

as ‘?’. For example, List<?> represents a list of unknown types and can hold arbitrary types of lists.
To appreciate its concept, let us try to write a method that prints the list of any type:

It could look like this:
static void printList(List<Object> list) {

for (Object o : list)
System.out.print(o + " ");

}

Note that even if String, Integer and Double etc. are sub-types of Object, List<String>,
List<Integer>, List<Double> etc. are not sub-types of List<Object>. So, we can only pass
List<Object> to this method. This means, this method can only print list of Object and no other.

To write a generic printList() method, we can use List<?>:
static void printList(List<?> list) {

for (Object o : list)
System.out.print(o + " ");

}

We can now pass different kinds of lists to this method for printing:
List<Integer> li = ...
List<String> ls = ...
List<Double> ld = ...
printList(li);
printList(ls);
printList(ld);

GENERIC PROGRAMMING 125

Like upper-bounded list, adding elements is not allowed.
List<?> list = new ArrayList<String>();
list.add(new Object()); // compile time error

When the actual type parameter is ?, it stands for some unknown type. The add() method takes
arguments of type T, the element type of the list. An argument to add() must be a subtype of this
unknown type. Since we don’t know what type that is, we cannot pass anything in. The sole exception
is null, which is a member of every type.

C++ templates do not provide any facility like bounded or unbounded type. This is another point
where Java generics differs from C++ templates.

6.10.4	 Wildcard and sub-typing
We know that although Integer is a subtype of Number, there is no relationship between

List<Integer> and List<Number>. Figure 6.3: shows the relationships between several List classes
declared with both upper and lower bounded and unbounded wildcards.

List<? extends Number> List<? super Integer>

List<?>

List<? extends Integer>

List<Integer>

List<? super Number>

List<Number>

Figure 6.3: A hierarchy of several generic List class declarations

6.11	 TYPE ERASURE
Note that generics was introduced for compile time type-checking and has no implication at

run time. Accordingly, compiler uses a technique called type erasure where it takes the following
steps:

•	 Replace all type parameters with their bounds or Object (for unbounded type parameters). Therefore, the resultant
bytecode contains only ordinary classes, interfaces, and methods.

•	 Insert type casts if necessary to preserve type safety.
•	 Generate bridge methods to preserve polymorphism in extended generic types.

For example, if we have a generic class like below:
class Wrapper <T> {

T o;
void set(T o) { this.o = o; }
T get() { return o; }

}

The Java compiler replaces it with Object, since T is unbounded:
class Wrapper {

Object o;
void set(Object o) { this.o = o; }
Object get() { return o; }

}

126 ADVANCED JAVA PROGRAMMING

This class looks like an ordinary class. The compiler also inserts the required downcast operator
in the user codes. For example, consider the following user code:

Wrapper<String> w = new Wrapper<String>();
w.set(new String("abc"));
String s = w.get();

It will be replaced by
Wrapper w = new Wrapper();
w.set(new String("abc")); //upcast is type-safe
String s = (String)w.get(); // compiler inserts downcast operation

Similarly, consider the following class that uses a bounded type parameter:
class Wrapper <T extends Integer> {

T o;
void set(T o) { this.o = o; }
T get() { return o; }

}

The Java compiler replaces the bounded type parameter T with the bound Integer:
class Wrapper <T extends Integer> {

Integer o;
void set(Integer o) { this.o = o; }
Integer get() { return o; }

}

The Java compiler also erases type parameters in generic methods. Consider the following generic
method:

class X {
static <T> void print(T t) {/*…*/}

}

Since, T is unbounded, the Java compiler replaces it with Object:
class X {

static void print(Object t) {/*…*/}
}

The implication of type erasure is that the type argument is not available at runtime for use in
casts or as the argument to the instanceof method.

Generics are often compared with templates in C++. However, unlike C++ templates, which
creates a new type for each type argument, in Java generics there is just one class file which is used
to create instances for all the type arguments.

The full details of erasure are beyond the scope of this book. However, the simple description we
just gave isn’t far from the truth. It is good to know a bit about this.

6.12	 BACKWARD COMPATIBILITY
Note that lots of API classes (such as the Collections classes) were not generic prior to JDK 5.0.

So, to get pre-generics behaviour, Java provides raw types. A raw type is the name of a generic class
or interface without any type arguments. For example, given the generic Wrapper class:

class Wrapper <T> {
T o;
void set(T o) { this.o = o; }
T get() { return o; }

}

To create a parameterized type, we specify an actual type argument for the formal type
parameter T:

Wrapper<String> ws = new Wrapper<String>();

GENERIC PROGRAMMING 127

It is possible to omit the actual type argument which gives rise to a raw type:
Wrapper w = new Wrapper();

Therefore, Wrapper is the raw type of the generic type Wrapper<T>. However, a non-generic class
or interface type is not a raw type. For backward compatibility, assigning a parameterized type to
its raw type is allowed:

Wrapper<String> ws = new Wrapper<String>();
Wrapper w = ws; // OK

However, for reverse assignment, a warning is given:
Wrapper w = new Wrapper(); // w is a raw type of Wrapper<T>
Wrapper<String> ws = w; // warning: unchecked conversion

The warning indicates that the compiler is not responsible for type checks which is postponed
till runtime. Since, for raw types, no compilation time type checking is done, we should not use
it unless it is unavoidable.

6.13	 RESTRICTIONS ON GENERICS
Although, Java generics is an extremely powerful tool, it is not free from drawbacks. The following

sections highlight some of its limitations.

6.13.1	 Cannot Specify Primitive Type Arguments
Consider the following parameterized type:
class X <T> {/*...*/}

When instantiating X type objects, it is possible to specify only non-primitive type arguments.
So all the following statements give rise to compilation error:

X<int> xi; //compilation error, int is used
X<double> xd = new X<>(); //compilation error, double is used
X<char> xc = new X<char>(); //compilation error, char is used

6.13.2	 Cannot Declare Static Fields of Type Parameters
Since, a class’s static field is a class-level variable, which is shared by all of the instances of

the class, declaring static fields of type parameters are prohibited. So, the following results in a
compilation error:

class X <T> {
static T a; //compilation error

}

Consider the following variable declarations:
X<Integer> xi = new X<Integer>();
X<Double> xd = new X<Double>();
X<String> xs = new X<String>();

If static fields of type parameter would have been allowed, what would be the actual type of a?
It cannot be Integer, Double, and String simultaneously. This is why declaring static fields of type
parameters is prohibited.

6.13.3	 Cannot Create Instances of Type Parameters
It is not possible to create an instance of a type parameter. So, the following class declaration

results in a compilation error:
class X <T> {

T t = new T(); //compilation error
}

128 ADVANCED JAVA PROGRAMMING

However, using reflection we have a way out:
class X <T> {

T t;
X(Class<T> c) throws Exception {
t = c.newInstance();

}
}

6.13.4	 Cannot Use instanceof
Since, type erasure removes all type parameters from generic code, it is not possible to ascertain

what arguments were passed. Accordingly, verifying which parameterized type for a generic type
is being used at runtime is not possible. In fact Java does not allow us to use instanceof operator
for generic types:

List<Integer> l = new ArrayList<Integer>();
if(l instanceof ArrayList<Integer>) { //compilation error

/*...*/
}

6.13.5	 Cannot create Generic arrays
It is not also possible to create arrays of parameterized types. So, the following code results in

a compilation error:
List<Integer>[] al = new List<Integer>[4]; // compile-time error

However, we may cast from Object[] to T[] with a risk of unchecked cast and warning. That
is why it is better to use Collection classes such as ArrayList and HashMap instead of arrays. Those
classes are also implemented on top of array in Java but JDK handles the type-safety using generics
carefully.

6.13.6	 Limitations on exception
A generic class cannot extend the Throwable class directly or indirectly. So, the following classes

will result in compile error:
//X extends Throwable directly, compilation error
class X<T> extends Throwable { /*... */ }
//Y extends Throwable indirectly, compilation error
class Y<T> extends Exception { /*... */ }

A generic type cannot also be used in throw clause:
try {
throw new ArrayList<Integer>();	 //compilation error
}

The catch clause cannot also use type parameter:
static <T> void f() {

try { /*... */ }
catch(T t) {} //compilation error

}

However, we can use a type parameter in a throws clause:
class X<T extends Exception> {

public void f() throws T { /*... */} // OK
}

GENERIC PROGRAMMING 129

6.13.7	 Cannot use .class
We cannot use .class for parameterized types. So the following are wrong:
Class c = List<String>.class; //illegal
c = List<Integer>.class; //illegal
c = List<Double>.class; //illegal

This is because unlike C++ templates, in Java generics, a separate class is not generated for each
type argument. So, we must use raw type instead of parameterized type:

Class c = List.class;

KEYWORDS
Bounded type parameter—A type parameter that
accepts a restricted set of arguments

Generics—A construct to write parameterized classes,
interfaces and methods

Lower-bounded wildcard—The wildcard that
represents a set of unknown types restricted by a
lower bound

Type argument—An argument passed to generic type
or method/constructor call

Type erasure—A technique by which Java compiler
translates generic classes/interfaces/methods to their
no-generic counterparts

Type inference—Ability to find some type information
automatically from the arguments passed to methods
or constructors.

Type parameter—A parameter accepted by generic
class, interface or method

Upper-bounded wildcard—The wildcard that
represents a set of unknown types restricted by an
upper bound

Wildcard—The ‘?’ character used to represent an
unknown type in generics

Unbounded wildcard—The wildcard that represents
any unknown type

SUMMARY
Java generics allows us to write parameterized
classes, interfaces and methods where parameters are
type names. Although, the primary usage of generics is
to abstract over types when working with collections, it
is possible to write custom generic classes, interfaces
and methods. Instead of relying on the programmer to
keep track of object types and performing casts, which
could lead to failures at runtime difficult to debug and
solve, the compiler can help the programmer enforce
a greater number of type checks and detect more
failures at compile time.

It is possible to make both classes and interfaces
generic. A class or an interface is generic if it accepts
one or more type parameters. In general, any number
of type parameters may be specified. They are
specified in angular brackets separated by comma (,)
and follow the class (or the interface) name

Like classes and interfaces, methods (including
constructors) may use type parameters and are called
generic methods. Sometimes it is possible to find some
type information automatically from the arguments

passed to methods or constructors. This ability is
known as type inference.

It is also possible to restrict the argument that a generic
type/method will use using bounded type parameter. It
is written as the type parameter followed by the extends
keyword followed by the bound. A type parameter may
have more than one bound. If one of the bounds is a
class, it must be specified first.

The sub-typing differs in generics from traditional sub-
typing. In general, given two concrete types A and B,
AClass<A> has no relationship to AClass, regardless
of whether or not A and B are related. The common
parent of AClass<A> and AClass is Object.

To establish sub-typing relationship, wildcard was
introduced and is represented by the character ‘?’.
Three versions of wildcard exist. Upper-bounded
wildcard represents unknown types which is either a
given type or its sub-type. Lower-bounded wildcard
represents unknown types which is either a given type
or its super-type. Unbounded wildcard represents any
unknown types.

130 ADVANCED JAVA PROGRAMMING

Compiler uses a technique called type erasure to
convert generic types/methods to their non-generic
counterpart. It generates just one class file which is
used to create instances for all the type arguments.
Although, Java generics is an extremely powerful tool,

it is not free from drawbacks. For example, we cannot
specify primitive type arguments, cannot declare static
fields of type parameters, cannot create instances of
type parameters, cannot use instanceof, cannot create
generic arrays etc.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
java/generics/
Lesson: Generics

http://www.eecs.qmul.ac.uk/~mmh/APD/bloch/
generics.pdf
Generics

http://cs.nyu.edu/courses/spring12/CSCI-
GA.3033-014/generics-tutorial.pdf
Generics in the Java Programming Language

http://www.agiledeveloper.com/articles/
GenericsInJavaPartI.pdf
Generics in Java – Part I

http://userpages.umbc.edu/~edelman/341/
JavaGenerics.pdf
Java generics and Collections

EXERCISES
Objective-type Questions

	 1.	 Why are generics used?
	 (a)	 Generics make code more fast.
	 (b)	 Generics make code more optimized and

readable.
	 (c)	 Generics add stability to your code by

making more of your bugs detectable at
compile time.

	 (d)	 Generics add stability to your code by
making more of your bugs detectable at
run time.

	 2.	 Which of these type parameters is used for a
generic class to return and accept any type of
object?

	 (a)	 K	 (c)	 T
	 (b)	 N	 (d)	 V

	 3.	 Which of these type parameters is used for a
generic class to return and accept a number?

	 (a)	 K	 (c)	 T
	 (b)	 N	 (d)	 V

	 4.	 Which of these is a correct way of defining generic
class?

	 (a)	 class name(T1, T2, …, Tn) { /* … */ }
	 (b)	 class name <T1, T2, …, Tn>{ /* … */ }
	 (c)	 class name[T1, T2, ..., Tn] { /* … */ }
	 (d)	 class name{T1, T2, …, Tn} { /* … */ }

	 5.	 Which of the following is an incorrect statement
regarding the use of generics and parameterized
types in Java?

	 (a)	 Generics provide type safety by shifting
more type checking responsibilities to the
compiler.

	 (b)	 Generics and parameterized types
eliminate the need for down casts when
using Java Collections.

	 (c)	 When designing your own collections
class (say, a linked list), generics and
parameterized types allow you to achieve
type safety with just a single class
definition as opposed to defining multiple
classes.

	 (d)	 All of the mentioned

	 6.	 Which of the following characters is used to
represent wildcard?

	 (a)	 ?	 (c)	 #
	 (b)	 *	 (d)	 @

	 7.	 Which of the following is incorrect for class C and
interface I1 and I2?

	 (a)	 <T extends I1 & C & I2>
	 (b)	 <T extends I2 & I1 & C>
	 (c)	 <T super C & I1 & I2
	 (d)	 <T extends C & I1 & I2>

GENERIC PROGRAMMING 131

	 8.	 Which of the following variable declarations is
incorrect?

	 (a)	 List<Integer> li = new ArrayList<Integer>();
	 (b)	 List<? extends Number> ld = new

LinkedList<Double>();
	 (c)	 List<Number> ln = new ArrayList<>();
	 (d)	 List<Integer>[] a = new ArrayList

<Integer>[10];

	 9.	 Which of the following is incorrect?
	 (a)	 <T extends Number>
	 (b)	 <Tsuper Number>
	 (c)	 <? extends Number>
	 (d)	 <? super Number>

	10.	 Which of the following reference types cannot be
generic?

	 (a)	 Anonymous inner class
	 (b)	 Interface
	 (c)	 Inner class
	 (d)	 All of the mentioned

	11.	 Which of the following is incorrect?
	 (a)	 List<Interger> is a sub-type of List<Number>
	 (b)	 List<? extends Integer> is a sub-type of

List<? extends Number>
	 (c)	 List<Integer> is a sub-type of List<?>
	 (d)	 List<Number> is a sub-type of List

<? extends Number>

	12.	 Which of the following represents an unbounded
wildcard?

	 (a)	 <? extends String>
	 (b)	 <? super String>
	 (c)	 ?
	 (d)	 <? extends Number>

	13.	 What is the output of this program?
import java.util.*;

public class genericstack <E> {
Stack <E> stk = new Stack <E>();

public void push(E obj) {
stk.push(obj);

}
public E pop() {

E obj = stk.pop();
return obj;

}
}
class Output {

public static void main(String args[]) {
genericstack <String> gs = new
 genericstack<String>();
gs.push("Hello");
System.out.println(gs.pop());

}
}

	 (a)	 H
	 (b)	 Hello
	 (c)	 Runtime Error
	 (d)	 Compilation Error

	14.	 What is the output of this program?
import java.util.*;
public class genericstack <E> {

Stack <E> stk = new Stack <E>();
public void push(E obj) {

stk.push(obj);
}
public E pop() {

E obj = stk.pop();
return obj;

}
}
class Output {
public static void main(String args[]) {

genericstack <Integer> gs = new
 genericstack<Integer>();
gs.push(36);
System.out.println(gs.pop());

}
}

	 (a)	 0
	 (b)	 36
	 (c)	 Runtime Error
	 (d)	 Compilation Error

	15.	 What is the output of this program?
import java.util.*;

public class genericstack <E> {
Stack <E> stk = new Stack <E>();
public void push(E obj) {

stk.push(obj);
}
public E pop() {

E obj = stk.pop();
return obj;

}
}
class Output {
public static void main(String args[]) {

genericstack <String> gs = new
 genericstack<String>();
gs.push("Hello");
System.out.print(gs.pop() + " ");
genericstack <Integer> gs = new
 genericstack<Integer>();
gs.push(36);
System.out.println(gs.pop());

}
}

	 (a)	 Error
	 (b)	 Hello
	 (c)	 36
	 (d)	 Hello 36

132 ADVANCED JAVA PROGRAMMING

	16.	 What is the output of this program?
import java.util.*;

public class genericstack <E> {
Stack <E> stk = new Stack <E>();
public void push(E obj) {

stk.push(obj);
}
public E pop() {

E obj = stk.pop();
return obj;

}
}
class Output {
public static void main(String args[]) {

genericstack <Integer> gs = new
 genericstack<Integer>();
gs.push(36);
System.out.println(gs.pop());

}
}

	 (a)	 H
	 (b)	 Hello
	 (c)	 Runtime Error
	 (d)	 Compilation Error

	17.	 Which syntax would you use to express a wildcard
with a lower-bound of some type?

	 (a)	 ?
	 (b)	 ? extends type
	 (c)	 ? super type
	 (d)	 None of the above

	18.	 Which syntax would you use to express a wildcard
with an upper-bound of some type?

	 (a)	 ?
	 (b)	 ? extends type
	 (c)	 ? super type
	 (d)	 None of the above

	19.	 When was generics first introduced in Java?
	 (a)	 JDK 1.4	 (c)	 JDK 1.6
	 (b)	 JDK 1.5	 (d)	 JDK 1.7

	20.	 Which of the following character pairs are used to
write type parameters?

	 (a)	 <>	 (c)	 []
	 (b)	 {}	 (d)	 ()

Subjective-type Questions

	 1.	 Briefly explain the concept of Java generics.

	 2.	 Write the primary purpose of Java generics.

	 3.	 Explain briefly the benefits of using Java
generics.

	 4.	 What is the benefit of Generics in Collections
Framework?

	 5.	 Why can’t we write code as List<Number>
numbers = new ArrayList<Integer>();?

	 6.	 Why can’ t we create gener ic array, or
write code as List<Integer>[] array = new
ArrayList<Integer>[10];?

	 7.	 Write a generic method to exchange the positions
of two different elements in an array.

	 8.	 How is a generic type instantiated (to form a
parameterized type)?

	 9.	 What is the raw type and what are its
usefulness?

	10.	 Explain the concept of bounded type parameter.

	11.	 Which specific problem does wildcard solve?

	12.	 Explain with examples the different kinds of
wildcards.

	13.	 Identify those types that cannot be used as type
arguments.

	14.	 Briefly explain the concept of ‘type erasure’?

	15.	 Will the following method compile? If not, why?
	� public static void print(List<?

extends Number> list) {
			 for (Number n : list)
					 System.out.print(n + " ");
			 System.out.println();
	 }

	16.	 Given the following classes:
class Shape { /* ... */ }
class Circle extends Shape { /* ... */ }
class Rectangle extends Shape { /* ... */ }
class Node<T> { /* ... */ }

Will the following code compile? If not, why?
Node<Circle> nc = new Node<>();
Node<Shape> ns = nc;

	17.	 Write the tasks performed by type erasure.

	18.	 What is an “unchecked” warning message?

Reflection

Key Objectives

After completing this chapter readers will be able to—
•  understand the importance of reflection API
•  examine and/or modify the properties or behaviour at run-time
•  familiarize with reflection classes and interfaces
•  know how to write dynamic proxy
•  use annotations to analyze code
•  identify some drawbacks of reflection

7.1	 INTRODUCTION
One of the reasons why Java language has been so powerful and widely used is due to some of

its APIs such as reflection using which one can do a whole lot of unimaginable tasks. The reflection
API in Java enables us to examine and/or modify the properties or behaviour or other elements of an
object at run-time. For example, given a class name, we can extract all kinds of information about
the class such as if it is public or abstract or final, fields and methods contained in that class, their
modifiers, its super-class or even interface the class implements. This is possible even if the source
code of the class is not available.

Understanding reflection a bit will help us understanding the tools (such as NetBeans, Eclipse,
Spring) that use this API.

Most classes and interfaces to implement reflection are provided as a separate package java.
lang.reflect except one java.lang.Class which is considered to be the primary reflection class.

7.1.1	 Pros and Cons of Reflection
Reflection is one of the advanced topics in Java. It is a powerful technique and can enable

applications to perform operations which would otherwise be impossible. Although, it is hardly

CHAPTER – 7

134 ADVANCED JAVA PROGRAMMING

used in normal programming, it is the backbone for most of the Java, J2EE frameworks. Some of
the examples that use reflection are:

•	 Reflection is extensively used in hibernate when objects are mapped to database tables.
•	 IDEs such as NetBeans, Eclipse provide the helpful auto-completion facility using reflection.
•	 Tomcat also finds servlets from a class name in a web.xml by exercising reflection.
•	 Spring provides a powerful dependency injection using reflection
•	 JUnit uses reflection to parse @Test annotation to get the test methods.

So, an understanding on reflection will not only help us to use those frameworks, but will help
us to develop such frames on our own.

Although, the power of reflection is unquestionable, it is too dangerous if not used carefully.
In addition, it has the following disadvantages:

•	 Using reflection we can access even private fields and change the value of final fields. This can be a serious pitfall
that may cause applications to behave abnormally.

•	 Since reflection resolves the types dynamically, it is slower than the non-reflective counterpart.
•	 Since, reflection requires runtime permissions that might not be available in systems running under security

manager, it can cause applications to fail at runtime.
•	 Reflection code is relatively difficult to understand and debug making it less flexible and hard to maintain.

7.2	 CLASSES
The foundation of Java reflection API is the class java.lang.Class. However, for historical reason,

it is placed in java.lang package instead of reflection package java.lang.reflect. A Class object
represents a class or an interface in a Java application. These objects are created automatically by the
Java Virtual Machine (JVM) as and when classes are loaded. This class provides methods to examine
both class level and object level runtime information such as modifiers, fields, methods, constructors etc.

7.2.1	 Class
Before doing any inspection on a class, we first obtain a reference to the Class object associated

with a class/interface. It is the entry point for all of the reflection APIs. There is no public constructor
in this class. However, there are several ways to get such an object depending on available information
such as an object, name of a class, name of a type etc.

Note that JVM loads certain classes automatically even if they are not used in a Java application.
Consequently, a Class object for each such loaded class is created by the JVM itself. The methods
described below return a reference to that object if it is already created, else loads the class and a
new Class object is created and returned.

7.2.1.1	 Using getClass()
If an object is available, an instance of Class representing the object’s class may be created using

getClass() method as follows:
String s = new String("Java");
Class c = s.getClass();

Here the object c represents the class String. Note that the method getClass() is defined in the
Object class. Since all classes directly or indirectly extend Object class, this method is available
on all Java objects.

Note that the class String is a built-in Java library class whose source code is even available.
So, inspecting such a class at runtime does not make much sense. This means, reflection APIs are
not usually used for class whose structure is known in advance. It is useful in a situation where we
have little information about a class such as only byte code of a class.

REFLECTION 135

Since, in Java, an enum declaration defines a class (called enum type), its instance may be used
in the same way as ordinary Java objects as follows:

enum E { yes, no }
E e = E.yes;
Class c = e.getClass();

It returns the class for enum type E. Since, Java arrays are objects, getClass() method may be
used on an array instance as follows:

int arr[] = new int[10];
Class c = arr.getClass();

The returned Class object c represents the array of int. The non-static getClass() method always
returns the name of a class, not an interface.

interface I {};
class IImpl implements I {}
I i = new IImpl();
Class c = i.getClass()

The return Class object corresponds to the class IImpl, not interface I.

7.2.1.2	 Using .class
Since, instances of primitive types are not objects, it is not possible to invoke getClass() method

on those instances. Moreover, since the method getClass() is non-static, an object should be available
to invoke this method.

Java provides an alternative way to get a Class object if only type name is known. This type
name may be a class name, an interface name, an enum name or even a name of primitive types. So,
for built-in primitive type int, a Class object representing that type is obtained as follows:

Class c = int.class;

Similarly, the following returns a Class object representing the type int[].
Class c1 = int[].class;

This syntax is valid for class, interface and enum types as well:
Class c2 = String.class;
Class c3 = I.class;
Class c4 = E.class;

Here, I and E are interface and enum defined earlier. Since, this .class syntax is valid for all types,
it is the most flexible one.

7.2.1.3	 Using forName()
There is still another way to get a Class object using static Class.forName() method. This method

takes a fully qualified class/interface name.
Class c = Class.forName("java.lang.String");
Class c1 = Class.forName("java.io.Serializable");

The forName() method also takes mangled array types. Here is an example:
Class c = Class.forName(“[I”);

Here, c represents an array of primitive type int. Here are some other examples:
Class c2 = Class.forName("[[I"); //2-D array of int

Class c3 = Class.forName("[D"); //array of double

Class c4 = Class.forName("[[D"); //2-D array of double

Class c5 = Class.forName("[Ljava.lang.String;"); //array of String

Note that forName() method cannot be used for primitive types.

136 ADVANCED JAVA PROGRAMMING

7.2.1.4	 Using TYPE Field
For primitive types, there is another way to obtain Class object. We know that for every primitive

type and void, there exists a wrapper class. For example, for primitive type int, the name of the
wrapper class is java.lang.Integer. Each wrapper class contains a field named TYPE which holds
the Class for the primitive type being wrapped. This TYPE field may also be used to get Class for
primitive type as follows:

Class c = Integer.TYPE;

This is essentially equivalent to:
Class c = int.class;

The following is an example for primitive type double:
Class c = Double.TYPE;

And for void type:
Class c = Void.TYPE;

Note that Class objects corresponding to primitive types and array types merely represent an
empty public final abstract class. Consequently, inspecting such classes hardly occurs in practice.

7.2.2	 Modifier
This class contains 12 static constants; each one represents one of 12 modifiers (public, private,

protected etc.) that can be applied on class and its members such as fields, methods and constructors.
Each modifier is represented by an integer with a distinct bit position. The values of these constants
are summarized in Table 7.1:

Table 7.1: Field summary of Modifier class

Name of fields of
Modifier class

Modifier name Least significant
12 bits of 32-bit int

Value

PUBLIC public 000000000001 1

PRIVATE private 000000000010 2

PROTECTED protected 000000000100 4

STATIC static 000000001000 8

FINAL final 000000010000 16

SYNCHRONIZED synchronized 000000100000 32

VOLATILE volatile 000001000000 64

TRANSIENT transient 000010000000 128

NATIVE native 000100000000 256

INTERFACE interface 001000000000 512

ABSTRACT abstract 010000000000 1024

STRICT strict 100000000000 2048

Since, there is no explicit constant which corresponds to “package” access, it is necessary to check
for the absence of all three access modifiers to identify a package modifier. The Modifier class also
provides static methods to identify set of modifiers that can be applied on class, field, method and
constructor. The methods and their return values are summarized in Table 7.2:

REFLECTION 137

Table 7.2: Method summary of Modifier class

Method Return
value

Least significant
12 bits

Set of modifiers

classModifiers() 3103 110000011111 public private protected static final abstract strict

fieldModifiers() 223 000011011111 public private protected static final volatile transient

methodModifiers() 3391 110100111111 public private protected static final synchronized
native abstract strict

constructorModifiers() 7 000000000111 public private protected

The following example program illustrates this:
import java.lang.reflect.*;
public class FindModifiers {
 public static void main(String args[]) throws Exception {
 System.out.println("Class modifiers:
"+Modifier.toString(Modifier.classModifiers()));
 System.out.println("Field modifiers:
"+Modifier.toString(Modifier.fieldModifiers()));
 System.out.println("Method modifiers:
"+Modifier.toString(Modifier.methodModifiers()));
 System.out.println("Constructor modifiers:
"+Modifier.toString(Modifier.constructorModifiers()));
 }
}

Here, classModifiers() method returns an int value OR-ing together the modifiers that can be
applied to a class. The methods fieldModifiers(), methodModifiers() and constructorModifiers()
return similar values corresponding to field, method and constructor respectively. The toString()
method of Modifier class returns a string representation of a given int modifier. Here is a sample
output of this program:

Class modifiers: public private protected static final abstract strict
Field modifiers: public private protected static final volatile transient
Method modifiers: public private protected static final synchronized native
abstract strict
Constructor modifiers: public private protected

7.3	 INSPECTING CLASS
The class Class provides several methods to get the information about the class, its fields, methods

and constructors etc. The following sections describe how one gets information about a class and
its members.

7.3.1	 Getting Class Information
Before digging into the class, let us gather some information about the class itself such as its

simple name, package the class is contained in, if the class is a synthetic class etc. A class is said to
be a synthetic class if it is created at runtime. The following program prints some useful information
about a specified class:

public class GetClassInfo {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 System.out.println("Cannonical name: "+c.getCanonicalName());
 System.out.println("Simple name: "+c.getSimpleName());
 Package p = c.getPackage();
 System.out.println("Package name: "+p.getName());
 System.out.println("Is synthetic class: "+c.isSynthetic());
 System.out.println("Protection domain: "+c.getProtectionDomain());
 }
}

138 ADVANCED JAVA PROGRAMMING

public class GetClassInfo {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 System.out.println("Cannonical name: "+c.getCanonicalName());
 System.out.println("Simple name: "+c.getSimpleName());
 Package p = c.getPackage();
 System.out.println("Package name: "+p.getName());
 System.out.println("Is synthetic class: "+c.isSynthetic());
 System.out.println("Protection domain: "+c.getProtectionDomain());
 }
}

This program generated the following result when java.lang.String was supplied as an argument.
E:\ajp\ref\>java GetClassInfo java.lang.String
Cannonical name: java.lang.String
Simple name: String
Package name: java.lang
Is synthetic class: false
Protection domain: ProtectionDomain null
 null
 \<no principals\>
 java.security.Permissions@1f1fba0 (
 ("java.security.AllPermission" "\<all permissions\>" "\<all actions\>")
)

7.3.2	 Getting Class Modifiers
A class/interface/enum may be declared with zero or more of the 7 modifiers public, protected,

private, static, final, abstract and strictfp. However, not all modifiers are allowed all the
time. For example, final cannot be applied on interface and an enum cannot be abstract. Certain
combinations of modifiers are not also possible. For example, final and abstract cannot be used
at the same time.

Anyway, how do you know what modifiers are used for a given class if the source code of the
class is not available? For example, what modifiers are used for the Java library class java.lang.
String? Although, this information is available in Java documentation, documentation for all classes
may not always be available.

Fortunately, the getModifiers() method returns a set of modifiers for a class/interface encoded as an
int. They may be decoded using the methods of class Modifier. The following program illustrates this:

import java.lang.reflect.*;
public class GetClassModifiers {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 System.out.print("Modifiers for "+args[0]+": ");
 System.out.print(Modifier.toString(c.getModifiers()));
 }
}

This program accepts a fully qualified name of a class (or interface/enum) and prints set of modifiers
used for the class. To find the modifiers for String, use the following command:

java GetClassModifiers java.lang.String

It generates an output as follows:
Modifiers for java.lang.String: public final

Similarly, for interface java.lang.Runnable, it generates the following result:
Modifiers for java.lang.Runnable: public abstract interface

This program may be supplied a user-defined class as well.

7.3.3	 Finding Implemented Interfaces
To get interfaces implemented by a class/interface, we use getGenericInterfaces() method

of Class.
public Type[] getGenericInterfaces()

REFLECTION 139

It returns an array of Type. The Type is the common super interface for all types in Java including
raw types, parameterized types, array types, type variables and primitive types. The following program
accepts a fully qualified class name and prints set of interfaces implemented by the class.

import java.lang.reflect.*;
public class GetImplementedInterfaces {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Type[] intfs = c.getGenericInterfaces();
 System.out.println(args[0]+" implements: ");
 for(Type intf : intfs)
 System.out.println(intf);
 }
}

To find the list of interfaces implemented by String, use the following command:
java GetImplementedInterfaces java.lang.String

It generates an output as follows:
java.lang.String implements:
interface java.io.Serializable
java.lang.Comparable\<java.lang.String\>
interface java.lang.CharSequence

7.3.4	 Finding Inheritance Hierarchy
To get the super class, we use getSuperclass() method.
public Class<? super T> getSuperclass()

It returns the Class representing the superclass of the class. The following program accepts a
fully qualified class name and prints the inheritance hierarchy:

import java.lang.reflect.*;
public class GetInheritanceHierarchy {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 print(c.getSuperclass());
 System.out.print(c);
 }
 static void print(Class<?> c) {
 if(c != null) {
 print(c.getSuperclass());
 System.out.print(c+"<--");
 }
 }
}

To find the list of interfaces implemented by Applet, use the following command:
java GetInheritanceHierarchy java.applet.Applet

It generates an output as follows:
class java.lang.Object<--class java.awt.Component<--class
 java.awt.Container<--class
java.awt.Panel<--class java.applet.Applet

7.3.5	 Finding Annotations
An annotation is represented by java.lang.annotation.Annotation interface. For annotations

for class, method, constructor and field, reflection provides the following method in the respective
class:

public Annotation[] getDeclaredAnnotations()

140 ADVANCED JAVA PROGRAMMING

This returns an array of annotations declared for the element type. The following program finds
all deprecated constructors and methods of a specified class:

import java.lang.reflect.*;
import java.lang.annotation.*;
public class GetAnnotations {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Method[] methods = c.getDeclaredMethods();
 for(Method method : methods) {
 Annotation[] anos = method.getDeclaredAnnotations();
 for(Annotation a : anos)
 if(a.toString().contains("Deprecated")) System.out.println(method);
 }
 Constructor[] cons = c.getConstructors();
 for(Constructor con : cons) {
 Annotation[] anos = con.getDeclaredAnnotations();
 for(Annotation a : anos)
 if(a.toString().contains("Deprecated")) System.out.println(con);
 }
 }
}

A sample result for String is shown below:
public void java.lang.String.getBytes(int,int,byte[],int)
public java.lang.String(byte[],int)
public java.lang.String(byte[],int,int,int)

7.4	 FINDING CLASS MEMBERS
There are three types of member a class may have: fields, methods and constructors. Java defines

an interface Member that represents a single member. Each type of member is also represented as
a separate class: Field, Method and Constructor. The class Class provides numerous methods to
obtain those members. These methods may be grouped into two categories: i) methods that return
a specific member such as field, method or constructor and ii) methods that return all members.
Under each category there are again two sub-categories: i) methods that search only the current
class and ii) methods that search for the super-classes and super-interfaces. Methods that only
search the current class, return even private members, whereas methods that search super-classes
and super-interfaces return only public members. The following sections describe how to use them
to get class members.

7.4.1	 Getting Fields
A field of a class is represented by the Field class that provides information about, and dynamic

access to, a single field. The following methods are available to retrieve fields of a class:
public Field getDeclaredField(String name)
public Field[] getDeclaredFields()

public Field getField(String name)
public Field[] getFields()

The first one returns a single Field object corresponding to the specified field name, whereas
the second one returns an array of Field corresponding to all fields. These two methods search
only the fields declared (hence this word appears in the method name) in the class explicitly.
The last two are the counterparts of the first two except that they search for super-class and

REFLECTION 141

super-interface. The following program accepts a fully qualified class name and prints a description
of all declared fields in the class:

import java.lang.reflect.*;
public class GetClassFields {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Field[] fields = c.getDeclaredFields();
 System.out.println("No of fields in "+args[0]+": "+fields.length);
 for(Field f : fields)
 System.out.println(f);
 }
}

To find all declared fields of Integer wrapper class, use the following command:
java GetClassFields java.lang.Integer

It generates an output as follows:
No of fields in java.lang.Integer: 11
public static final int java.lang.Integer.MIN_VALUE
public static final int java.lang.Integer.MAX_VALUE
public static final java.lang.Class java.lang.Integer.TYPE
static final char[] java.lang.Integer.digits
static final char[] java.lang.Integer.DigitTens
static final char[] java.lang.Integer.DigitOnes
static final int[] java.lang.Integer.sizeTable
private final int java.lang.Integer.value
public static final int java.lang.Integer.SIZE
private static final long java.lang.Integer.serialVersionUID
static final boolean java.lang.Integer.$assertionsDisabled

If you want to get fields including inherited ones, use getFields() method instead. Note that
getFields() methods only return public inherited methods. Note that there’s no built-in method
that returns all the fields including the inherited ones. Using reflection, let us now write a program
that retrieves all the fields:

import java.lang.reflect.*;
public class GetAllClassFields {
 public static void main(String args[]) throws Exception {
 print(Class.forName(args[0]));
 }
 static int v = 0;
 static void print(Class c) {
 if(c != null) {
 print(c.getSuperclass());
 Field[] fields = c.getDeclaredFields();
 indent(v);
 System.out.println("Class: "+c);
 for(Field f : fields) {
 indent(v);
 System.out.println(f);
 }
 v++;
 }
 }
 static void indent(int n) {
 for(int i=0;i<n;i++) System.out.print(" ");
 }
}

The method print() starts searching from the given class and works its way up the hierarchy
recursively until either a field is found, or no super class is available. The print() method, on its way,
displays all the fields including the private ones. The method indent() has been used to indent the output.

142 ADVANCED JAVA PROGRAMMING

7.4.2	 Getting Methods
A method of a class is represented by the Method class that provides information about, and access

to, a single method. The following methods are available to retrieve methods of a class:
public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
public Method[] getDeclaredMethods()

public Method getMethod(String name, Class<?>... parameterTypes)
public Method[] getMethods()

The functionality of these methods is similar to the methods available for fields except that these
return method instead of field. The following program illustrates how to get all declared methods
of a specified class:

import java.lang.reflect.*;
public class GetClassMethods {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Method[] methods = c.getDeclaredMethods();
 System.out.println("No. of methods in "+args[0]+": "+methods.length);
 for(Method m : methods)
 System.out.println(m);
 }
}

Use the following command to find all methods of Member interface:
java GetClassMethods java.lang.reflect.Member

It results in the following output:
No. of methods in java.lang.reflect.Member: 4
public abstract java.lang.String java.lang.reflect.Member.getName()
public abstract java.lang.Class java.lang.reflect.Member.getDeclaringClass()
public abstract int java.lang.reflect.Member.getModifiers()
public abstract boolean java.lang.reflect.Member.isSynthetic()

Note that this program, retrieves even the private methods of the class. Use the following command
to find all methods of java.lang.Class class:

java GetClassMethods java.lang.Class

If you want to get methods including inherited ones, use getMethods() method instead. The
following finds all methods of a class including inherited and private methods:

import java.lang.reflect.*;
public class GetAllClassMethods {
 public static void main(String args[]) throws Exception {
 print(Class.forName(args[0]));
 }
 static int v = 0;
 static void print(Class c) {
 if(c != null) {
 print(c.getSuperclass());
 Method[] methods = c.getDeclaredMethods();
 indent(v);
 System.out.println("Class: "+c);
 for(Method m : methods) {
 indent(v);
 System.out.println(m);
 }
 v++;
 }
 }
 static void indent(int n) {
 for(int i=0;i<n;i++) System.out.print(" ");
 }
}

REFLECTION 143

7.4.3	 Getting Constructors
Since, constructors are special methods, reflection API provides a separate class Constructor that

provides information about, and access to, a single constructor. The following methods are available
to retrieve constructors of a class:

public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
public Constructor<?>[] getDeclaredConstructors()

public Constructor<T> getConstructor(Class<?>... parameterTypes)
public Constructor<?>[] getConstructors()

Since, constructors are not inherited, the last two methods return only public constructor(s).
The following program retrieves all constructors of a specified class:

import java.lang.reflect.*;
public class GetClassConstructors {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Constructor[] cons = c.getDeclaredConstructors();
 System.out.println("No of constructors in "+args[0]+": "+cons.length);
 for(Constructor con : cons)
 System.out.println(con);
 }
}

Use the following command to find all methods of java.lang.Boolean class:
java GetClassConstructors java.lang.Boolean

The sample result is shown below:
No of constructors in java.lang.Boolean: 2
public java.lang.Boolean(boolean)
public java.lang.Boolean(java.lang.String)

7.5	 WORKING WITH CLASS MEMBERS
In the previous section, we have retrieved different class members such as fields, methods

and constructors. In this section, let us get/set field, call methods, create objects by calling
constructors etc.

7.5.1	 Field Type
A field may be either any of the eight primitive types (boolean, char, byte, short, int, long,

float, and double) or a reference type (anything which is a direct or indirect subclass of java.lang.
Object). The class Field has two methods to know its type:

public Class<?> getType()
public Type getGenericType()

They return a Class and a Type object representing the field respectively. The following simple
program shows all field names and their types of given class:

import java.lang.reflect.*;
public class GetFieldType {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Field[] fields = c.getDeclaredFields();
 for(Field f : fields)
 System.out.println(f.getType()+" "+f.getName());
 }
}

144 ADVANCED JAVA PROGRAMMING

A sample output for java.lang.String is shown below:
class [C value
int hash
long serialVersionUID
class [Ljava.io.ObjectStreamField; serialPersistentFields
interface java.util.Comparator CASE_INSENSITIVE_ORDER
int HASHING_SEED
int hash32

7.5.2	 Field Modifiers
We can apply several modifiers (public, private, protected, transient, volatile, static

and final) to a field. The getModifiers() method of Field class returns an encoded integer
representing the set of modifiers used to declare the field. The Modifier class has a set of methods
to identify what modifiers the returned integer represent. The following program lists all static
fields of a given class:

import java.lang.reflect.*;
public class GetFieldModifier {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Field[] fields = c.getDeclaredFields();
 System.out.println("Static fields of "+args[0]+":");
 for(Field f : fields)
 if(Modifier.isStatic(f.getModifiers()))
 System.out.println(f.getName());
 }
}

A sample output for java.lang.String is shown below:
Static fields of java.lang.String:
serialVersionUID
serialPersistentFields
CASE_INSENSITIVE_ORDER
HASHING_SEED

7.5.3	 Accessing Fields
The class Field has several methods to get and/or set field value. The following program

illustrates this:
import java.lang.reflect.*;
class X {
 public double pd1 = 1;
 public double pd2 = 2;
}
public class AccessFields {
 public static void main(String args[]) throws Exception {
 X x = new X();
 Class c = x.getClass();
 String fname = args[0];
 Field f = c.getDeclaredField(fname);
 System.out.println("Before, "+fname+": "+f.getDouble(x));
 f.setDouble(x, 4);
 System.out.println("After, "+fname+": "+f.getDouble(x));
 }
}

This program, given a field name, first prints the value of the field of an X object and changes its
value to 4 and finally prints this modified value. The interesting part of this program is that the name

REFLECTION 145

of the field is not known at compile time. This shows that reflection API enables us to access any
field of a class without knowing the name of the field in advance. The following is a sample output:

E:\ajp\ref\>java AccessFields pd2
Before, pd2: 2.0
After, pd2: 4.0

The Field class also provides a generic get() method that returns an Object representing the
value of the field on the specified Object. The value is automatically wrapped in an object if it has
a primitive type

7.5.3.1	 Accessing Forbidden Fields
Note that get methods throw an exception if the field is inaccessible. Similarly, set methods also

throw an exception if the field is inaccessible or final. However, reflection API allows us to make
even an inaccessible field accessible or modifying a final field. The Field class inherits two methods
from java.lang.reflect.AccessibleObject which may be used for this purpose:

public void setAccessible(boolean flag)
public static void setAccessible(AccessibleObject[] array, boolean flag)

The former one sets the accessible flag for field to the specified boolean value. The value true
and false suppresses and enables Java language access checks respectively. The following program
illustrates how to make a private field accessible:

import java.lang.reflect.*;
class X {
 private final int pf = 0;
}
public class AccessForbiddenFields {
 public static void main(String args[]) throws Exception {
 X x = new X();
 Class c = x.getClass();
 Field f = c.getDeclaredField("pf");

f.setAccessible(true);
 System.out.println("pf = "+f.getInt(x));
 }
}

The following program prints the value of a private field. Here is a sample output of this program:
pf = 0

7.5.3.2	 Modifying Final Fields
A final field may be made mutable using the same method used in the previous section. Here is

an example program that modifies the private final field
import java.lang.reflect.*;
class X {
 private final int pf = 0;
}
public class ModifyFinalFields {
 public static void main(String args[]) throws Exception {
 X x = new X();
 Class c = x.getClass();
 Field f = c.getDeclaredField("pf");

f.setAccessible(true);
 System.out.println("Before: pf = "+f.getInt(x));

f.setInt(x, 4);
 System.out.println("After : pf = "+f.getInt(x));
 }
}

146 ADVANCED JAVA PROGRAMMING

Here is a sample output of this program:
Before : pf = 0
After : pf = 4

Note that reflection allows us to access even a private field or modify even a final field. This
implies a direct violation of some fundamental concepts such as abstraction etc. So, reflection should
only be used if it is unavoidable and if used, utmost discretion must be taken.

7.5.4	 Method Modifiers
Like fields, we can apply several modifiers (public, private, protected, static, abstract

synchronized, final, native and strictfp) to a method. The getModifiers() method of Method
class returns an encoded integer representing the set of modifiers used to declare the method. The
Modifier class has a set of methods to identify what modifiers the returned integer represent.
The following program lists all public methods of a given class:

import java.lang.reflect.*;
public class GetMethodModifier {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Method[] methods = c.getDeclaredMethods();
 System.out.println("Public methods of "+args[0]+":");
 for(Method m : methods)
 if(Modifier.isPublic(m.getModifiers()))
 System.out.println(m.getName());
 }
}

Use the following command to get the list of public methods available on Method class:
java GetMethodModifier java.lang.reflect.Method

7.5.5	 Method Information
In addition to method modifiers

•	 a method has a return type,
•	 may accept some parameters and
•	 may throw some exceptions.

The return type of a method may be obtained using either of the following methods:
public Class\<?\> getReturnType()
public Type getGenericReturnType()

The former returns a Class and the latter returns a Type representing the return type. There are
two methods that return a list of parameter a method takes.

public Class\<?\>[] getParameterTypes()
public Type[] getGenericParameterTypes()

The former returns an array of Class whereas the latter returns an array of Type. Similarly, the

list of exceptions a method throws is obtained using the following methods:
public Class\<?\>[] getExceptionTypes()
public Type[] getGenericExceptionTypes()

The following program lists information about methods of a specified class:
import java.lang.reflect.*;
public class GetMethodInfo {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Method[] methods = c.getDeclaredMethods();
 System.out.print("Class :"+args[0]);
 for(Method m : methods) {
 System.out.println("\n\nMethod: "+m.getName());
 System.out.println("Return type: "+m.getGenericReturnType());
 System.out.print("Parameters taken:");
 Type[] params = m.getGenericParameterTypes();
 for(Type p : params) System.out.print(" "+p);
 System.out.print("\nExceptions thrown: ");
 Type[] exceptions = m.getExceptionTypes();
 for(Type e : exceptions) System.out.print(" "+e);
 }
 }
}

REFLECTION 147

import java.lang.reflect.*;
public class GetMethodInfo {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Method[] methods = c.getDeclaredMethods();
 System.out.print("Class :"+args[0]);
 for(Method m : methods) {
 System.out.println("\n\nMethod: "+m.getName());
 System.out.println("Return type: "+m.getGenericReturnType());
 System.out.print("Parameters taken:");
 Type[] params = m.getGenericParameterTypes();
 for(Type p : params) System.out.print(" "+p);
 System.out.print("\nExceptions thrown: ");
 Type[] exceptions = m.getExceptionTypes();
 for(Type e : exceptions) System.out.print(" "+e);
 }
 }
}

The output of this program for the input class java.lang.Object is shown below:
…
Method: wait
Return type: void
Parameters taken: long
Exceptions thrown: class java.lang.InterruptedException

Method: wait
Return type: void
Parameters taken: long int
Exceptions thrown: class java.lang.InterruptedException
…

7.5.6	 Invoking Methods
The reflection API also allows us to invoke a method (both static and non-static) indirectly. This

is done using Method.invoke() method which looks like this:
public Object invoke(Object obj, Object... args)

The first argument is the object instance (or null for static method) on which the method is to
be invoked and second argument (an array of objects) is the method’s parameters (if any). This
argument array may be of length 0 or null or absent if the number of formal parameters required by
the underlying method is 0.

The following program invokes the method length() on a String object.
import java.lang.reflect.*;
public class InvokingMethods {
 public static void main(String args[]) throws Exception {
 String s = new String("Java");
 Class c = s.getClass();
 Method m = c.getDeclaredMethod("length");
 System.out.println("The length of "+s+" is "+m.invoke(s));
 }
}

The output of this program is:
The length of Java is 4

7.5.6.1	 Accessing Forbidden Methods
Like private fields, a private method may be made accessible using setAccessible() method.

The following simple program demonstrates this:
import java.lang.reflect.*;
class X {
 private void f() {
 System.out.println("f() called");
 }
}
public class AccessForbiddenMethods {
 public static void main(String args[]) throws Exception {
 Method method = X.class.getDeclaredMethod("f");

method.setAccessible(true);
 method.invoke(new X());
 }
}

148 ADVANCED JAVA PROGRAMMING

import java.lang.reflect.*;
class X {
 private void f() {
 System.out.println("f() called");
 }
}
public class AccessForbiddenMethods {
 public static void main(String args[]) throws Exception {
 Method method = X.class.getDeclaredMethod("f");

method.setAccessible(true);
 method.invoke(new X());
 }
}

This program invokes the private method f() on a X object. Since, the method f() is private,
before calling it, it has been made accessible using setAccesssible() method passing argument
true.

7.5.7	 Debugging with Reflection
This section describes how to use annotations in Java reflection to analyze our code. Suppose,

we want to write a program (we shall call it debugger) to test or analyze or debug a given class. The
program calls one or more methods (not all) of the given class. Since, the program should work on
any arbitrary class which may contain arbitrary methods, it is probably impossible to write such a
program traditionally.

One simple but elegant idea is to mark the methods to be called with an annotation. Since
annotations provide data about a class that are not part of the programming logic itself, they have
no direct impact on the code they annotate. Once this is done, the task of the program will then be
finding only marked methods and call them. So, let us first write a maker annotation.

Annotations are just like interfaces except that they are defined using @interface before the
annotation name. We know that an annotation can be retained till compile time or runtime which is
indicated using two constants RetentionPolicy.SOURCE and RetentionPolicy.RUNTIME respectively.
Another built-in annotation @Target lets us indicate the kinds of program element to which an
annotation type is applicable. With this information, our marker annotation looks like this:

import java.lang.annotation.*;
@Target(value = ElementType.METHOD)
@Retention(value = RetentionPolicy.RUNTIME)
public @interface Call {}

This is an empty annotation as its purpose is only mark a method. Since, our debugger program
inspects this annotation at runtime, the retention policy is indicated as RetentionPolicy.RUNTIME.
using a separate built-in Java annotation @Retention. Moreover, since the marker annotation is written
for methods, it is indicated as ElementType.METHOD in the @Target annotation.

Let us now write a sample class to be tested by our debugger.
public class X {
 public void f() { System.out.println("f() called"); }
 @Call
 public void g() { System.out.println("g() called"); }
 @Call
 public void h() { System.out.println("h() called"); }
}

Note that two methods g() and h() have been marked with our annotation @Call. This means we
want the debugger to call only these two methods. To process this annotation, we write a annotation
processor which typically uses Java reflection API for this and looks like this:

import java.lang.reflect.*;
public class Debugger {
 public static void main(String args[]) throws Exception {
 X x = new X();
 Method[] methods = x.getClass().getDeclaredMethods();
 for(Method method : methods) {
 Call c = method.getAnnotation(Call.class);
 if(c != null) {
 try {
 method.invoke(x);
 } catch (Exception e) { e.printStackTrace(); }
 }
 }
 }
}

REFLECTION 149

import java.lang.reflect.*;
public class Debugger {
 public static void main(String args[]) throws Exception {
 X x = new X();
 Method[] methods = x.getClass().getDeclaredMethods();
 for(Method method : methods) {
 Call c = method.getAnnotation(Call.class);
 if(c != null) {
 try {
 method.invoke(x);
 } catch (Exception e) { e.printStackTrace(); }
 }
 }
 }
}

The main() method iterates through h all the methods of the class X and calls those
methods which have been marked with @Call annotation. A sample output of the program is shown
below:

h() called
g() called

If the debugger wants to call a different set of methods, simply annotate them with the @Call and
recompile the class X and start the debugger again.

7.5.8	 Getting Constructor Modifiers
Like methods, reflection also provides APIs to find constructors of a class and obtain

information such as the its modifiers, parameters, annotations and thrown exceptions etc. Since,
the role of constructors is only to instantiate objects, fewer modifiers (only private, protected
and public) are meaningful. The following program prints the list of public constructors of the
specified class:

import java.lang.reflect.*;
public class GetConstrutorModifier {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Constructor[] constructors = c.getDeclaredConstructors();
 System.out.println("Public Construtors of "+args[0]+":");
 for(Constructor con : constructors)
 if(Modifier.isPublic(con.getModifiers()))
 System.out.println(con);
 }
}

A sample output for java.lang.Object class is shown below:
public java.lang.Object()

7.5.9	 Instantiating Objects
Reflection can do more than just simply list fields, methods and constructors. Through reflection,

we can even create instances. The simplest way to instantiate objects is to use newInstance() method
of Class.

public T newInstance()

This essentially uses zero argument constructor (default constructor) to instantiate objects. The
following creates an instance of String:

String s = String.class.newInstance();

What happens if we call newInstance() on a class that has no default constructor? Nothing
pleasant: an InstantiationException will be thrown. Fortunately, Java reflection also allows
us to create new instances of a class that require constructor arguments. However, we just have
to work a bit more. First we find the required constructor from the class and then call it with the
right arguments. The way to find the constructor is to call the getConstructor() method with

150 ADVANCED JAVA PROGRAMMING

a description of the constructor that we are looking for. We then use newInstance() method of
Constructor that looks like:

public T newInstance(Object... initargs)

Creating an instance using newInstance() is useful when the name of a class is not known
in advance. For example, JDBC programmers usually write programs intended to connect to
different databases at different times. Since, the name of the driver class is different for different
databases, it not possible to create an instance of the driver using “new” syntax which always
expects a class name. Using reflection it is simply a matter of trick. The instance creation code
will look like this:

Class.forName(args[0]).newInstance();

Note that the name of the class is passed as a command line argument and the code creates an
instance using the default constructor. This code passes the compilation phase successfully and is
capable of creating an instance of any class whose name is supplied at runtime. Needless to say that
the class with a default constructor must exist.

The following program illustrates how to use newInstance() method.
import java.lang.reflect.*;
public class InstantiateObjects {
 public static void main(String args[]) throws Exception {
 String s1 = (String)String.class.newInstance();
 Class c = String.class;
 Constructor con = c.getDeclaredConstructor(char[].class);
 char[] chars = {'J', 'a', 'v', 'a'};
 Object[] param = {chars};
 String s2 = (String)con.newInstance(param);
 System.out.println(s2);
 }
}

This creates two instances of String. The first string s1 is constructed using newInstance() of
Class. The second string s2 is constructed with the help of the following constructor:

public String(char[] value)

Note that the newInstance() will throw exceptions if proper arguments are not supplied.

7.5.10	 Arrays
In Java, an array is a special object that contains a fixed number of components of the same type.

In reflection API, an array is represented by the Array class that provides several static methods to
dynamically create and access Java arrays.

7.5.10.1	 Checking Array types
It is possible to identify if a class corresponds to an array using static isArray() method of Class.

The following program retrieves all array fields of a specified class:
import java.lang.reflect.*;
public class GetClassArrayFields {
 public static void main(String args[]) throws Exception {
 Class c = Class.forName(args[0]);
 Field[] fields = c.getDeclaredFields();
 for(Field f : fields)
 if(f.getType().isArray()) System.out.println(f);
 }
}

REFLECTION 151

A sample output for Integer class is shown below:
static final char[] java.lang.Integer.digits
static final char[] java.lang.Integer.DigitTens
static final char[] java.lang.Integer.DigitOnes
static final int[] java.lang.Integer.sizeTable

7.5.10.2	 Creating New Arrays
The class Array provides a static method newInstance() to create an array in a reflective way.

The following example creates an array of 5 integers and prints its elements:
import java.lang.reflect.*;
public class CreateArray {
 public static void main(String args[]) throws Exception {
 int len = 5;
 Object o = Array.newInstance(Integer.class, len);
 for(int i=0;i<len;i++) {
 Array.set(o, i, new Integer(i));
 }
 System.out.println(java.util.Arrays.toString((Object[])o));
 }
}

A sample output of this program is shown below:
[0, 1, 2, 3, 4]

7.6	 DYNAMIC PROXY
One of the important facilities of reflection API is the ability to create proxies dynamically. In

general, a proxy is a module that sits in the middle of two or more communicating parties and can
intercept, inspect or even modify the messages being exchanged. The proxy is a fundamental design
pattern that is used quite often in programming. A proxy may be used for various functionalities
some of which are mentioned below:

•	 An access proxy is used to enforce security policies on access to a service or data.
•	 A remote proxy is used to mask or shield the client from the fact that the underlying object is remote.
•	 A load balancer proxy is used to distribute incoming requests to set of backend servers.
•	 A virtual proxy is used to perform lazy or just-in-time instantiation of the real object.
•	 Accountability
•	 Logging mechanism

In this section, we shall discuss how to create and install such proxies to intercept method invocation.

7.6.1	 Designing Dynamic Proxy
In Java, a proxy is an object that acts as a pass through or a placeholder for object level access.

Since, it sits between the caller and the object and can intercept the method call, it can change the
real behaviour [Figure 7.1:].

(i) (ii)

f()

g()

h()

TargetCaller

f()

g()

h()

TargetCaller
Proxy

Figure 7.1: Method call (i) Without proxy, (ii) With proxy

152 ADVANCED JAVA PROGRAMMING

One of the fundamental requirements of proxy design is to provide maximum transparency to
the client and least coupling between the proxy and the underlying object. This means the method
invocation syntax used by the client in a system with a proxy installed should remain same (or slightly
different) as it was before the introduction of the proxy [Figure 7.1:]. This usually requires a proxy
to either implement an interface or inherit from a known super class [Figure 7.2:].

«interface»
Subject

+aMethod():void

Target

+aMethod():void

Proxy
+target:Subject

+aMethod():void

Caller aMethod()

Figure 7.2: Proxy design pattern

Interestingly this implementation class (called proxy class) of an interface may be created at
runtime. Since this proxy class is created on the fly, it is known as dynamic proxy. Java reflection
API provides a class java.lang.reflect.Proxy which is used to create such dynamic proxy classes
and their instances (called proxy objects).

Before describing how to create and install dynamic proxies, let us first develop a simple application
that does not use any proxy. Once we understand this, we shall install a proxy between the caller
and the target object.

Since, proxy requires an interface, we shall develop our application using an interface as follows:
public interface Subject {
 int add(int a, int b);
}

It has a single method add() that takes two integers and returns their sum. A sample implementation
class will look like this:

public class Target implements Subject {
 public int add(int a, int b) {
 System.out.println("In add(): received: " + a + " and " + b);
 int result = a + b;
 System.out.println("In add(): Sent: " + result);
 return result;
 }
}

The method add() displays several information to track what happens behind the scene. We can
now write a client to use this class as follows:

import java.lang.reflect.*;
public class Caller {
 public static void main(String args[]) throws Exception {
 Subject s = new Target();
 int x = 4, y = 3;
 int result = s.add(x,y);
 System.out.println("In caller: sent: " + x +" and "+y);
 System.out.print("In caller: received("+x+"+"+y+"=): " + result);
 }
}

REFLECTION 153

This program creates a Target object and invokes add() method on it. It also prints useful
information to track method call and response. The pictorial description and a sample result of this
program is shown below:

In add(): received: 4 and 3
In add(): Sent: 7
In caller: sent: 4 and 3
In caller: received(4+3=): 7

	

add() TargetCaller

Let us now install a proxy between the Caller and the Target. To install a proxy object, we
have to create a proxy class first. This proxy class structurally should look like the Target which
already implements Subject interface. So, the proxy class must also implement this interface. The
java.lang.reflect.Proxy class provides a static method getProxyClass() which can be used for
this purpose and looks like this:

public static Class<?> getProxyClass(ClassLoader loader,
Class<?>... interfaces)

Indeed this method takes an array of interfaces and a class loader and returns the Class object for
a proxy class. The byte code of this proxy class will be generated by the specified class loader and will
implement all the supplied interfaces. For our Subject interface, we get the proxy class as follows:

Class proxyClass = Proxy.getProxyClass(Subject.class.getClassLoader(),new
Class[] { Subject.class });

A proxy class created in this fashion will have the following properties:

•	 Proxy classes are public, final, non-abstract subclasses of java.lang.reflect.Proxy
•	 The proxy class name begins with the string “$Proxy”.
•	 A proxy class implements exactly the interfaces specified at its creation.
•	 Each proxy instance has an associated invocation handler object, whose class implements the interface

InvocationHandler.
•	 Each proxy class has one public constructor that takes one argument, an implementation of the interface

InvocationHandler, to set the invocation handler for a proxy instance

7.6.2	 Invocation Handlers

Proxy itself is not as important as its behaviour which is provided by an implementation of
java.lang.reflect.InvocationHandler. A method invocation on a proxy instance through one of
its proxy interfaces will be dispatched to the invoke() method of the instance’s invocation handler.
The prototype of this method looks like this:

Object invoke(Object proxy, Method method, Object[] args)

It takes three parameters, processes a method invocation on a proxy instance and returns the
result. The first parameter is a reference for the proxy instance that the method was invoked on. The
second parameter is the Method instance corresponding to the interface method invoked on the proxy
instance and the last parameter is an array of objects containing the values of the arguments passed
in the method invocation on the proxy instance, or null if interface method takes no arguments. This
essentially is the place where we implement the functionality of the proxy.

Before creating a proxy instance, let us write such a handler. Our handler simply keeps track of
method invocation time. So, it looks like this:

import java.lang.reflect.*;
public class MyLogger implements InvocationHandler {
 Object target;
 public MyLogger(Object t) {target = t;}
 public Object invoke(Object proxy,Method m,Object[] args)throws Throwable
{
 double start = System.nanoTime();
 Object o = m.invoke(target, args);
 double ellapseTime = System.nanoTime() - start;
 System.out.println(m.getName() + "() took "+ellapseTime+" ns");
 return o;
 }
}

154 ADVANCED JAVA PROGRAMMING

import java.lang.reflect.*;
public class MyLogger implements InvocationHandler {
 Object target;
 public MyLogger(Object t) {target = t;}
 public Object invoke(Object proxy,Method m,Object[] args)throws Throwable
{
 double start = System.nanoTime();
 Object o = m.invoke(target, args);
 double ellapseTime = System.nanoTime() - start;
 System.out.println(m.getName() + "() took "+ellapseTime+" ns");
 return o;
 }
}

The invoke() intercepts a method call and notes the current system time. It then wants the method
call to pass through. For this, it needs a reference to the real object. Since, invoke() method does
not provide any such reference, it is passed to the constructor which saves the reference in target.

Note that the method is called on the target object using reflection. That’s why it works generically
for all objects and for all methods. We can now call the one argument constructor that takes an
invocation handler to create a proxy instance:

Target o = new Target();
Subject s = (Subject)proxyClass.getConstructor(new Class[]
{ InvocationHandler.class }).newInstance(new Object[] { new MyLogger(o) });

Instead of using the reflection API to access the public constructor, a proxy instance can also be
created directly by calling the newProxyInstance() method of Proxy as follows :

Target o = new Target();
Subject s = (Subject)Proxy.newProxyInstance(o.getClass().getClassLoader(),
o.getClass().getInterfaces(), new MyLogger(o));

The newProxyInstance() method essentially combines the actions of calling getProxyClass()
and invoking the constructor with an invocation handler [Figure 7.3:].

add() TargetCaller

Invocation
Handler

Proxy

invoke() invoke()

Figure 7.3: Method invocation with proxy installed

The source code of the caller will finally look like this:
import java.lang.reflect.*;
public class Caller {
 public static void main(String args[]) throws Exception {
 Target o = new Target();
 Subject s = (Subject)Proxy.newProxyInstance(o.getClass().getClassLoader(),
 o.getClass().getInterfaces(), new MyLogger(o));
 int x = 4, y = 3;
 int result = s.add(x,y);
 System.out.println("In caller: sent: " + x +" and "+y);
 System.out.print("In caller: received("+x+"+"+y+"=): " + result);
 }
}

A sample output of this program looks like this:
In add(): received: 4 and 3
In add(): Sent: 7
add() took 605067.0 ns
In caller: sent: 4 and 3
In caller: received(4+3=): 7

REFLECTION 155

7.7	 DISADVANTAGE OF REFLECTION
One of the primary drawbacks of reflection is that reflective code gets executed more slowly than their

non-reflective counterpart. This happens since reflection involves types that are resolved at run-time, but
not at compile time. Moreover, since JVM performs a lot of optimization at compile time, codes that use
reflection will remain un-optimized and run slower than those codes which did not use reflection API.

Another drawback of reflection is that it allows us to access information that is usually not allowed
in non-reflexive code. For example, reflection allows us to access even class’s private fields and
methods that would otherwise remain inaccessible in non-reflective code. This violates the rule of
abstraction and could potentially ruin the code or may make it non-portable.

So, it is suggested that reflective codes not be used unless it is unavoidable.

KEYWORDS
Array—A class that provides several static methods to
dynamically create and access Java arrays

Class—A Class object represents a class or an
interface in a Java application

Constructor—A class that provides information about,
and access to, a single constructor

Field—A class that provides information about, and
dynamic access to, a single field

Method—A class that provides information about, and
access to, a single method

Modifier—A class contains 12 static constants one
each modifiers that can be applied on class and its
members such as fields, methods and constructors

Proxy—A module that sits in the middle of two or more
communicating parties and can intercept, inspect or
even modify the messages being exchanged

Reflection—An API in Java that enables us to
examine and/or modify the properties or behaviour or
other elements of an object at run-time

Type—A class that represents the type of field

SUMMARY
The reflection API in Java enables us to examine and/
or modify the properties or behaviour or other elements
of an object at run-time.

The foundation of Java reflection API is the class
java.lang.Class. A Class object represents a
class or an interface in a Java application. This class
provides methods to examine both class level and
object level runtime information such as modifiers,
fields, methods, constructors etc.

There are numerous ways to create such an
object. There are certain other important classes for
introspection. One such class is Modifier that contains
12 static constants one for each modifier. A field of a
class is represented by the Field class that provides
information about, and dynamic access to, a single
field. A method of a class is represented by the Method
class that provides information about, and access
to, a single method. Since, constructors are special
methods, reflection API provides a separate class
Constructor that provides information about, and
access to, a single constructor.

The reflection API also allows us to invoke a method
(both static and non-static) indirectly. This is done
using Method.invoke() method. Reflection also
provides facility to analyze code using annotations.

Like methods, reflection also provides APIs to find
constructors of a class and obtain information such
as its modifiers, parameters, annotations and thrown
exceptions etc. Reflection can do more than just
simply list fields, methods and constructors. Through
reflection, we can even create instances.

In reflection API, an array is represented by the
Array class that provides several static methods to
dynamically create and access Java arrays.

One of the important facilities of reflection API is the
ability to create proxies dynamically.

One of the primary drawbacks of reflection is that
reflective code gets executed more slowly than their
non-reflective counterpart. Another drawback of
reflection is that it allows us to access information that
is usually not allowed in non-reflexive code.

156 ADVANCED JAVA PROGRAMMING

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
reflect/
Trail: The Reflection API

http://ftp.gwdg.de/pub/languages/java/java.
sun.com/jdk1.1/java-reflection.pdf
Java™ Core Reflection API and Specification

http://wwwusers.di.uniroma1.it/~parisi/
Risorse/java-reflection-explained-simply-
manual-8up.pdf
Java Reflection

http://www.csd.uoc.gr/~hy252/references/
JavaReflection.pdf
Java Reflection in Action

http://www.kencooney.com/programming/java/
reflection.pdf
Java Reflection

http://www.java2s.com/Tutorial/Java/0125__
Reflection/Catalog0125__Reflection.htm
Java Reflection

EXERCISES
Objective-type Questions

	 1.	 Which of these packages contains reflection
classes and interfaces?

	 (a)	 java.reflection
	 (b)	 java.reflect
	 (c)	 java.lang.reflection
	 (d)	 java.lang.reflect

	 2.	 Which of the following is used to get the type of
object represented by “obj”?

	 (a)	 Classloader.getInstance(obj);
	 (b)	 obj.getClass().getName();
	 (c)	 obj.toString();
	 (d)	 new Class.getName(obj);

	 3.	 What does the following program segment do?
import java.lang.reflect.Field;
MyClass myClass = new MyClass();
try {
	 Class cl=Class.forName(“MyClass”);
	 Field res=cl.getDeclaredField(“count”);
	 res.set(myClass,”5”);
}
catch(Exception e) {}

	 (a)	 The first 5 member variables of myClass
are copied to “res”.

	 (b)	 The value of myClass.count is set to 5.
	 (c)	 5 copies of the myClass object are created.
	 (d)	 The number of MyClass fields described

in “cl” is set to 5.

	 4.	 What is primary class in reflection?
	 (a)	 Reflection		 (c)	 Class
	 (b)	 Reflect		 (d)	 Primary

	 5.	 Which of the following methods on an object is used
to get a Class object representing the object’s type?

	 (a)	 getClass()		 (c)	 type()
	 (b)	 getType()		 (d)	 class()

	 6.	 How do you get a Class object for primitive
types?

	 (a)	 [I]		 (c)	 2[I
	 (b)	 I]]		 (d)	 [[I

	 7.	 Which of the following returns a Class for an array
of String?

	 (a)	 Class.forName(“[LString;”);
	 (b)	 Class.forName(“java.lang.String;”);
	 (c)	 Class.forName(“[Ljava.lang.String;”);
	 (d)	 Class.forName(“[Ljava.lang.String”);

	 8.	 The total number of modifiers used for class/
interface, fields, methods and constructors is

	 (a)	 10		 (c)	 12
	 (b)	 11		 (d)	 13

	 9.	 What value does classModifiers() return?
	 (a)	 3103		 (c)	 3391
	 (b)	 7		 (d)	 223

	10.	 What value does fieldModifiers() return?
	 (a)	 3103		 (c)	 3391
	 (b)	 7		 (d)	 223

	11.	 What value does methodModifiers() return?
	 (a)	 3103		 (c)	 3391
	 (b)	 7		 (d)	 223

	12.	 What value does constructorModifiers() return?
	 (a)	 3103		 (c)	 3391
	 (b)	 7		 (d)	 223

REFLECTION 157

	13.	 Which of the following methods is used to call a
method using reflection?

	 (a)	 call()		 (c)	 invoke()
	 (b)	 callMethod()		 (d)	 invokeMethod()

	14.	 Which of the following methods is used to create
an instance of a class?

	 (a)	 newObject()		 (c)	 createObject()
	 (b)	 createInstance()		 (d)	 newInstance()

	15.	 Which of the following modifiers cannot be used
for a class?

	 (a)	 public		 (c)	 abstract
	 (b)	 final		 (d)	 volatile

	16.	 Which of the following methods is used when
modifying final fields?

	 (a)	 setField()		 (c)	 makeAccessible()
	 (b)	 setAccessible()		 (d)	 makeModifiable()

	17.	 Which of the following methods is used to find the
list of interfaces a class implements?

	 (a)	 getGenericInterfaces()
	 (b)	 getInterfaces()
	 (c)	 findGenericInterfaces()
	 (d)	 interfaces()

	18.	 Which of the following classes represents an
invocation handler?

	 (a)	 java.reflect.InvocationHandler
	 (b)	 java.InvocationHandler
	 (c)	 java.lang.reflect.InvocationHandler
	 (d)	 java.lang.reflect.Handler

	19.	 Which of the following methods is used to create
a dynamic proxy?

	 (a)	 getProxyInstance()
	 (b)	 getProxy()
	 (c)	 createProxyClass()
	 (d)	 getProxyClass()

	20.	 A dynamic proxy is an instance of
	 (a)	 java.lang.reflect.DynamicProxy
	 (b)	 java.reflect.Proxy
	 (c)	 java.lang.reflect.Proxy
	 (d)	 java.Proxy

	21.	 Which of the following is used to create an
instance of an array using reflection?

	 (a)	 Array.newInstance()
	 (b)	 Array.instance()
	 (c)	 Array.createArray()
	 (d)	 Array.createInstance()

Subjective-type Questions

	 1.	 Write the mangled names that represent a two-
dimensional array.

	 2.	 Write the names of some popular software where
Java reflection is used.

	 3.	 How can you construct an object of a given class
using reflection?

	 4.	 Write the different ways with their relative merits
and demerits to get the Class object?

	 5.	 What is the primary purpose of Modifier class?

	 6.	 Using reflection, how can you tell if a member is
public or private?

	 7.	 How will you to retrieve modifier’s information of
a class

	 8.	 There is no explicit constant which corresponds
to “package” access. So, how will you identify it?

	 9.	 Write some of the methods that are used to get
information about a class.

	10.	 Write a program that finds and displays inheritance
hierarchy of a specified class.

	11.	 What is the difference between getDeclaraedFields()
and getFields()?

	12.	 Write a program that shows all public fields of a
specified class.

	13.	 Explain how you will modify final fields.

	14.	 Provide a simple example of object reflection in
Java.

	15.	 Is Java reflection slow and/or expensive?
What are some of the drawbacks of reflection in
Java?

	16.	 Write some practical uses of Java reflection?

Java Native Interface

Key Objectives

After completing this chapter readers will be able to—
•  understand the importance of JNI
•  know the basic steps required to develop JNI applications
•  get an idea about how Java types are mapped to native types
•  understand how native code can talk to Java code
•  learn how to pass parameters to native methods and how to access them
•  learn how native code can handle exceptions

8.1	 INTRODUCTION
Although Java is an extremely powerful language, there are situations where Java alone may

not fulfil our requirements. The following are some examples:

•	 If we want very fast response from a code, C,C++ or assembly code are better options than Java.
•	 If we want to use an existing library written using a language other than Java
•	 If our application requires some platform-dependent features

The Java Native Interface (JNI) is an API that allows Java code to interoperate with applications
and libraries written in other programming languages such as C, C++. It is a two-way interface that
allows Java applications to invoke native method and native methods to interact with Java code.
A native method specifically can do the following:

•	 Access fields and methods of Java objects passed into it
•	 Access non-static fields and methods of the Java object on which it is invoked
•	 Access static fields and methods of the class containing it
•	 Create, delete, modify Java objects
•	 Catch and throw exceptions
•	 Load classes, get class information

CHAPTER – 8

JAVA NATIVE INTERFACE  159

•	 Inspect type at runtime
•	 Create new JVM and run programs in it

Note that your Java program will no longer remain platform-independent if it contains any
JNI code. That is why, it is suggested not to use JNI unless it is unavoidable.

8.2	 JAVA PROGRAM WITH C/C++
Although it is said that JNI allows Java code to interact with other language codes, JNI currently

provides facilities to access C/C++ or assembly code. We shall first use C and then C++ as native
language. Let us first write a simple JNI application that calls a C function print() that prints a
message. The following are basic steps to do this:

•	 Write a Java class having a native method declaration.
•	 Compile this class using javac.
•	 Generate C header file using javah
•	 Implement the native method in a C program
•	 Compile C program and create a shared library
•	 Run the Java program

8.2.1	 Writing Java Program
If a Java program wants to invoke a method which is implemented in a different programming

language, the method is said to be native method. Before invoking such a method, it must be
declared first. Declaring a native method looks very similar to that of abstract methods except
that the keyword native is used instead of abstract keyword. So, the declaration of our print()
method looks like this:

public native void print();

The native keyword signals that print() will be implemented in a native language. Hence,
the method body is not provided. Java compiler understands it and does not look for its body.
However, before calling this method, JVM must load the library containing the method’s native
implementation. We use loadLibrary() method of System class to load a library. Suppose the
method is implemented in GCC and the name of the library is libtest.so, then the following line
is used to load the library:

System.loadLibrary("test");

Note that the JVM uses standard, but platform-specific, rule to translate the native library name
to the actual library name. For example, for JVM in Unix-like system, the native library name test
is translated in actual library name libtest.so while in windows the same is translated in test.dll.

Alternatively, we can use the load() method that takes the pathname of the library file as follows:
System.load("/root/ajp/jni/c/libtest.so");

Note that the load() method always expects absolute pathname. Since, it is mandatory to
load this library before calling the method, it is a good and safe idea to load it in the static block,
which gets executed before all other statements. The complete source code (JNITest.java) is
given below:

class JNITest {
 public native void print();
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 new JNITest().print();
 }
}

160  ADVANCED JAVA PROGRAMMING

class JNITest {
 public native void print();
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 new JNITest().print();
 }
}

In the main method, we have created an instance of JNITest class and invoked the native
method print(). Note that the syntax to call a native method is exactly same as a regular method
call. We shall consistently use the same class name (JNITest) throughout the chapter to demonstrate
various concepts of JNI. Needless to say that class’s content will be different.

8.2.2	 Compiling Java Program
Compiling a Java program having native method is not different at all. We use the same syntax

used for ordinary Java programs as follows:
javac JNITest.java

As usual, this generates a class JNITest.class.

8.2.3	 Create Header File
The Java part of the JNI application is complete. It is time to implement the method print()

in C. However, since Java and C are two different programming languages, the prototype of this
print() function in C is not supposed to be same as in Java. So, how do you determine the prototype
of print() in C? Fortunately, Java comes with a tool javah to solve this problem. The tool javah,
given a Java class containing native method(s) declaration, essentially generates C/C++ header file
containing function prototype(s). So, we use it as follows:

javah JNITest

The name of the header file is the mangled fully-qualified class name with extension h. The above
command generates a file JNITest.h whose content is shown below:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class JNITest */

#ifndef _Included_JNITest
#define _Included_JNITest
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: JNITest
 * Method: print
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_JNITest_print(JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

The generated header file includes a file jni.h (<JAVA_HOME>/include/jni.h). This header file
provides all information the native function needs to interact with Java code. It defines all of the
necessary data types and contains macros and typedefs that hide the complexity of mapping Java
types to native types. It also includes other platform-specific header files. Since javah automatically
includes this header file, we usually do not have to explicitly include this file.

JAVA NATIVE INTERFACE  161

As you can see, javah generated the prototype of the following C function corresponding to the
Java native method print().

JNIEXPORT void JNICALL Java_JNITest_print(JNIEnv *, jobject);

The name of the function is determined from the following components:

•	 the prefix Java_
•	 a mangled fully-qualified class name
•	 an underscore (“_”) separator
•	 a mangled method name
•	 for overloaded native methods, two underscores (“__”) followed by the mangled argument signature

This set of rules makes a method name unique even if different Java classes have native methods
with same name.

The generated C/C++ function will always contain two parameters in addition to the regular
parameters originally declared in the native Java method. The first parameter is a pointer to a structure
that contains the interface to the JVM. (Note that this JNIEnv is not the actual name of the structure.
The name of the structure is JNIEnv_ and const struct JNINativeInterface_ for C++ and C
respectively. We shall discuss more on this later in this chapter). This structure contains all of the
functions necessary to interact with the JVM and to work with Java objects. For example, it includes
functions for instantiating objects, throwing exceptions, converting native arrays to/from Java arrays,
native strings to/from Java strings etc. With this pointer, although it is not that easy, we can virtually
do everything that Java code can do.

The second argument differs depending on whether the native method is non-static or static.
It is a reference to the object (jobject) for a non-static native method and is a reference to its Java
class (jclass) for static method.

When a native method is called, JVM passes these two arguments to the corresponding C/C++
function from where we can see the JVM back using these two parameters.

The JNIEXPORT and JNICALL are macros used to specify the calling and linkage convention of both
Java native methods and their implementations. In Linux like OS, they are blank macros (defined in
<JAVA_HOME>/include/linux/jni_md.h) as follows:

#define JNIEXPORT
#define JNICALL

So, the function prototype essentially looks like an ordinary one as follows:
void Java_JNITest_print(JNIEnv *, jobject);

Since windows use different calling conventions, their definitions (<JAVA_HOME>\include\win32\
jni_md.h) are as follows(<JAVA_HOME>\include\win32\jni_md.h) are as follows

#define JNIEXPORT __declspec(dllexport)
#define JNICALL __stdcall

In windows, the function prototype finally looks like this:
__declspec(dllexport) void __stdcall Java_JNITest_print(JNIEnv *, jobject);

8.2.4	 Implement Native Method
In the C implementation file, we include the above generated header file JNITest.h.
#include "JNITest.h"

162  ADVANCED JAVA PROGRAMMING

We then implement the native method as follows:
JNIEXPORT void JNICALL Java_JNITest_print(JNIEnv *env, jobject obj){
 printf("In a C function\n");
}

The function Java_JNITest_print() prints a simple message "In a C function\n" so that we can
trace the method calls. Here is the complete source code of C implementation file (JNITestImpl.c):

//JNITestImpl.c
#include "JNITest.h"
#include <stdio.h>
JNIEXPORT void JNICALL Java_JNITest_print(JNIEnv *env, jobject obj){
 printf("In a C function\n");
}

8.2.5	 Create Shared Library
The implementation of native method is now ready. We shall use GNU C compiler to

compile this file and create a shared library. We use the following command to create a library
libtest.so:

cc -shared -I/usr/java/jdk1.7.0_45/include -
I/usr/java/jdk1.7.0_45/include/linux JNITestImpl.c -o libtest.so

Note that to compile, we need the system header file <JAVA_HOME>/include/jni.h, which in turn
includes <JAVA_HOME>/include/linux/jni_md.h. So, include these two directories <JAVA_HOME>/
include and <JAVA_HOME>/include/linux during compilation. The symbolic name <JAVA_HOME>
represents the directory where Java was installed. For our system, Java home directory was /usr/
java/jdk1.7.0_45/. So, we included two directories /usr/java/jdk1.7.0_45/include and /usr/
java/jdk1.7.0_45/include/linux so that the compiler cc can recognize header files jni.h and
jni_md.h.

8.2.6	 Running the Program
Now, we are about to call a native function from a Java program. Use the following command

specifying the location of the native library:
java -Djava.library.path=. JNITest

If everything goes fine, the following message should appear:
In a C function

The location of the library may also be specified using LD_LIBRARY_PATH environment variable as
follows:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.

We can then run the Java program directly as follows:
java JNITest

For convenience, we write a shell script as follows:
#make.sh
javac JNITest.java
javah JNITest
cc -shared -I/usr/java/jdk1.7.0_45/include -
I/usr/java/jdk1.7.0_45/include/linux JNITestImpl.c -o libtest.so
java -Djava.library.path=. JNITest

JAVA NATIVE INTERFACE  163

Give the execution permission as follows:
chmod +x make.sh

We can now perform all JNI tasks by executing this shell script:
./make.sh

8.3	 USING C++
So far we have implemented a native method in C language. JNI also supports methods to be

implemented in C++. Implementing the native method in C++ is not very different. Here is a sample
implementation (JNITestImpl.cpp):

//JNITestImpl.cpp
#include "JNITest.h"
#include <iostream>
JNIEXPORT void JNICALL Java_JNITest_print(JNIEnv *env, jobject obj){
 std::cout << "In a C++ function\n";
}

Since, we have not used any C++ specific feature, it looks exactly like C implementation
except that we used cout instead of printf and included iostream in place of stdio.h. Use GNU
C++ compiler g++ to create the library:

g++ -shared -I/usr/java/jdk1.7.0_45/include -
I/usr/java/jdk1.7.0_45/include/linux JNITestImpl.cpp -o libtest.so

Run the Java program as before. The following message should appear.
In a C++ function

The shell script will look like this:
#make.sh
javac JNITest.java
javah JNITest
g++ -shared -I/usr/java/jdk1.7.0_45/include -
I/usr/java/jdk1.7.0_45/include/linux JNITestImpl.cpp -o libtest.so
java -Djava.library.path=. JNITest

8.4	 SYNTAX DIFFERENCE IN C/C++
Every native function receives a pointer JNIEnv to JNI interface. Accessing functions through

JNIEnv parameter has different syntax in C and C++. Let us inspect its reason first. See the following
typedefs in jni.h file:

//jni.h
struct JNINativeInterface_;
struct JNIEnv_;

#ifdef __cplusplus
typedef JNIEnv_ JNIEnv;
#else
typedef const struct JNINativeInterface_ *JNIEnv;
#endif

So, JNIEnv essentially represents JNIEnv_ and const struct JNINativeInterface_ * in C++
and C respectively [see Figure 8.1:]. The declarations of these two structures are shown below:

struct JNINativeInterface_ {
…
 jint (JNICALL *GetVersion)(JNIEnv *env);
…
}

struct JNIEnv_ {
 const struct JNINativeInterface_ *functions;
#ifdef __cplusplus

 jint GetVersion() {
 return functions->GetVersion(this);
 }
…
}

164  ADVANCED JAVA PROGRAMMING

struct JNINativeInterface_ {
…
 jint (JNICALL *GetVersion)(JNIEnv *env);
…
}

struct JNIEnv_ {
 const struct JNINativeInterface_ *functions;
#ifdef __cplusplus

 jint GetVersion() {
 return functions->GetVersion(this);
 }
…
}

(i) In C (ii) In C++

struct JNINativeInterface_

GetVersion

DefineClass
...

GetObjectRefTypeF
un

ct
io

n
po

in
te

rs Interface function

Interface function

Interface function

struct JNIEnv_

...

In
te

rf
ac

e
fu

nc
tio

ns GetVersion

JNIEnv
DefineClass

GetObjectRefType

JNIEnv

Figure 8.1:  JNI interface pointer representation (i) In C (ii) In C++

With this declaration, a function parameter declaration JNIEnv *env is translated to JNIEnv_ *env
and const struct JNINativeInterface_ **env in C++ and C respectively. So to invoke a function
GetVersion(), in C++, we can use either (*env).GetVersion() or in short env->GetVersion().
The C equivalent syntax is (*((**env).GetVersion))(env) or (*((*env)->GetVersion))(env)
or in short (*env)->GetVersion().

In summary, in C++, we can use env->, instead of (*env)->. Also, there is no need for the JNIEnv*
argument in the C++ functions. These imply that invoking a JNI native function in C++ is more convenient
than invoking the same in C. Hereafter, we shall use C++ functions unless it is not mentioned explicitly.

8.5	 USING JAVA PACKAGE
In this section, we shall discuss how to work with JNI if Java programs belong to a package.

We write JNITest.java as a part of package apkg as follows:
package apkg;
class JNITest {
 public native void print();
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 new JNITest().print();
 }
}

Create a directory apkg under your application root directory and place it in apkg directory. So,
the directory content will look like this:

root
apkg

JNITest.java

Now, go to the directory root and give the following command to compile the Java program:
javac apkg/JNITest.java

JAVA NATIVE INTERFACE  165

Since, the Java class is kept in a package, we specify fully qualified class name during generation
of header file:

javah -d include apkg.JNITest

You may also put the generated header file in a different directory. We decided to place it in a sub-
directory include. So, we specified –d include option to the javah tool. This generates the header
file apkg_JNITest.h in the include sub-directory. So the directory structure looks like this now:

root
apkg

JNITest.java
JNITest.class

include
apkg_JNITest.h

Write the implementation file in the root directory as follows:
//JNITestImpl.cpp
#include "include/apkg_JNITest.h"
#include <iostream>
JNIEXPORT void JNICALL Java_apkg_JNITest_print(JNIEnv *env, jobject obj){
 std::cout << "In a C++ function\n";
}

See how the header file is included here. Now compile the C++ program and create library as follows:
g++ -shared -I/usr/java/jdk1.7.0_45/include -
I/usr/java/jdk1.7.0_45/include/linux JNITestImpl.cpp -o libtest.so

The final directory structure looks like this:
root

JNITestImpl.cpp
libtest.so
apkg

JNITest.java
JNITest.class

include
apkg_JNITest.h

Finally, execute the Java program as follows:
java -Djava.library.path=. apkg.JNITest

8.5.1	 JNI Types and Data Structures
This section discusses how the JNI maps Java types to native C/C++ types. Since, a native

language may not support all Java types, a mapping between a Java type to a native type is needed.
For example, since C language does not support any boolean type, Java boolean type is mapped
(typedef) to C unsigned char which is named as a JNI type jboolean. A list of such typedefs can
be found in <JAVA_HOME>/include/jni.h and <JAVA_HOME>/include/linux/jni_md.h (in linux).
Some of the declarations are shown below:

//jni.h
typedef unsigned char jboolean;
typedef unsigned short jchar;
typedef short jshort;
typedef float jfloat;
typedef double jdouble;

typedef jint jsize;

//jni_md.h
typedef int jint;
#ifdef _LP64 /* 64-bit Solaris */
typedef long jlong;
#else
typedef long long jlong;
#endif

typedef signed char jbyte;

166  ADVANCED JAVA PROGRAMMING

//jni.h
typedef unsigned char jboolean;
typedef unsigned short jchar;
typedef short jshort;
typedef float jfloat;
typedef double jdouble;

typedef jint jsize;

//jni_md.h
typedef int jint;
#ifdef _LP64 /* 64-bit Solaris */
typedef long jlong;
#else
typedef long long jlong;
#endif

typedef signed char jbyte;

Table 8.1: describes Java primitive types and their machine-dependent native equivalents.

Table 8.1:  Type mapping between Java and Linux native code

Java Type C/C++ type Native name Description

boolean unsigned char jboolean unsigned 8 bits

byte signed char jbyte signed 8 bits

char unsigned short jchar unsigned 16 bits

short short jshort signed 16 bits

int int jint signed 32 bits

long long (for 64-bit)
long long (else)

jlong signed 64 bits

float float jfloat 32 bits

double double jdouble 64 bits

void void void

The JNI also defines a number of reference types corresponding to different kinds of Java objects.
The hierarchy of such JNI reference types is shown in Figure 8.2:

jobject (all Java object)
jclass (java.lang.Class objects)
jstring (java.lang.String objects)
jarray (arrays)

jobjectarray (array of object)
jbooleanarray (array of boolean)
jbytearray (array of byte)
jchararray (array of char)
jshortarray (array of short)
jintarray (array of int)
jlongarray (array of long)
jfloatarray (array of float)
jdoublearray (array of double)

throwable (java.lang.Throwable object)

Figure 8.2:  JNI Reference Types

The JNI uses the Java VM’s representation of type signatures. These signatures are used in various
JNI functions. Table 8.2: summarizes these type signatures.

Table 8.2:  JVM’s type signatures

Java Type Signature Java Type Signature Java Type Signature

boolean Z int I void V

byte B long J fully-qualified-class L fully-qualified-class ;

char C float F type[] [type

short S double D method type (arg-types) ret-type

JAVA NATIVE INTERFACE  167

For clarity and better understanding, some of the declarations and their signatures are shown in
Table 8.3:

Table 8.3:  JVM’s type signatures example

Declaration Signature Declaration Signature

void f() ()V void f(String) (Ljava/lang/String;)V

void f(int) (I)V void f(int, String) (ILjava/lang/String;)V

void f(int, int) (II)V void f(String, int) (Ljava/lang/String;I)V

void f(int, double) (ID)V void f(int, String[]) (I[Ljava/lang/String;)V

void f(int[]) ([I)V void f(int[], String[]) ([I[Ljava/lang/String;)V

void f(int, int[]) (I[I)V void f(String[],String[]) ([Ljava/lang/String;[Ljava/lang/String;)V

void f(int[], double[]) ([I[D)V void f(String[], int[]) ([Ljava/lang/String;[I)V

int g() ()I String g(String) (Ljava/lang/String;)Ljava/lang/String;

int g(int) (I)I String[] g(int, String) (ILjava/lang/String;)[Ljava/lang/String;

int[] g(int[]) ([I)[I String[] g(String[]) ([Ljava/lang/String;)[Ljava/lang/String

8.6	 PASSING ARGUMENTS
The native method that we have used so far neither took any argument nor returned any value.

Let us now understand how to pass arguments to and use them in native methods.

8.6.1	 Passing Primitives
Consider the following Java class having a native method:
class JNITest {
 public native byte sqr(byte x);
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 byte a = 3;
 System.out.println(a+" * "+a+" = "+new JNITest().sqr(a));
 }
}

It declares a native method sqr() that receives one byte and returns a byte which is the square of
the value passed. Since, C/C++ does not have a type byte, let us see what happens here. The main()
method invokes sqr() with a value 3. Compile this Java program and generate header file as before.
The following native function prototype is generated:

JNIEXPORT jdouble JNICALL Java_JNITest_sqr(JNIEnv *, jobject, jbyte);

Notice that the Java type byte is converted to jbyte which is actually the typedef of C/C++
signed char. The JNI finds that most suitable type in C/C++ corresponding to Java type byte is
signed char. You can find this typedef in jni_md.h as follows:

typedef signed char jbyte;

The implementation of such native method is simple:
//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT jbyte JNICALL Java_JNITest_sqr(JNIEnv *env, jobject obj, jbyte x) {
 return x * x;
}

168  ADVANCED JAVA PROGRAMMING

Compile and generate a library from the above program and run Java programs as before. The
following output appears:

3 * 3 = 9

8.6.2	 Passing Strings
To demonstrate how to pass and return Java String objects, we have taken the following

program:
class JNITest {
 public native String greeting(String msg);
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 String s = new String("John");
 System.out.println("In Java: Sent-->"+s);
 System.out.println("In Java: received<--"+new JNITest().greeting(s));
 }
}

This JNI program declares a native method greeting() that receives a Java String and also
returns a Java String. Compile this Java program and generate header file as before. The following
native function prototype is generated:

JNIEXPORT jstring JNICALL Java_JNITest_greeting(JNIEnv *, jobject, jstring);

Here JNI type jstring corresponds to Java type String. Its declaration looks like this:
#ifdef __cplusplus
class _jobject {};
class _jstring : public _jobject {};
typedef _jstring *jstring;
#else
struct _jobject;
typedef struct _jobject *jobject;
typedef jobject jstring;
#endif

So, jstring is essentially a pointer to an empty struct (in C) or class (in C++) type. Since, a
Java String is an object, JNI used struct/class to represent them in C/C++. However, JNI couldn’t
implement the struct/class since a C/C++ string is not an object; it is NULL terminated char array (it
is char *). The important question is how to obtain C/C++ char* from Java String then? Fortunately,
JNI provides a number of string-related functions that can be accessed through JNIEnv*. For example,
to get a C++ char* from JNI string (jstring) js, we use the following GetStringUTFChars()
method as follows:

const char *in = env->GetStringUTFChars(js, NULL);

We then create a new string from this string preceding a string “Hi ”:
char out[128];
strcpy(out, "Hi ");
strcat(out, in);

The initial string in and js are destroyed as they are no longer needed.
env->ReleaseStringUTFChars(js, in);

A list of useful JNI string functions is given in appendix A. Finally, the function returns a JNI
string from this out as follows:

return env->NewStringUTF(out);

JAVA NATIVE INTERFACE  169

The complete source code is given below:
//JNITestImpl.cpp
#include "JNITest.h"
#include <string.h>
#include <iostream>
using namespace std;
JNIEXPORT jstring JNICALL Java_JNITest_greeting(JNIEnv *env, jobject obj,
jstring js) {
 // Convert the JNI String (jstring) into C-String (char*)
 const char *in = env->GetStringUTFChars(js, NULL);
 cout << "In C: received<--" << in << '\n';
 // Create a new C-String out
 char out[128];
 strcpy(out, "Hi ");
 strcat(out, in);
 //Release js and in
 env->ReleaseStringUTFChars(js, in);
 cout << "In C: sent->" << out << '\n';
 //Send out
 return env->NewStringUTF(out);
}

Compile and generate a library from the above program and run Java programs as before. The
following output results:

In Java: Sent-->John
In C: received<--John
In C: sent->Hi John
In Java: received<--Hi John

8.6.3	 Passing Primitive Array
In Java, arrays are reference types. There are 9 types of arrays; one for each of the eight primitive

types (boolean, char, int, byte, short, long, float and double) and one for Java Object. For each
of these arrays, JNI defines a type, namely jbooleanArray, jcharArray, jintArray, jbyteArray,
jshortArray, jlongArray, jfloatArray, jdoubleArray and jobjectArray. In this section, we shall
show how to work with JNI primitive arrays. Consider the following Java program:

class JNITest {
 public native int[] sort(int[] a);
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 int[] a = {5, 4, 6, 3};
 System.out.print("In Java: Sent-->");
 for(int i=0;i<a.length;i++)
 System.out.print(a[i]+" ");
 int[] result = new JNITest().sort(a);
 System.out.print("In Java: Received<--");
 for(int i=0;i<result.length;i++)
 System.out.print(result[i]+" ");
 }
}

This JNI program declares a native method sort() that receives an int array and returns sorted
int array. The main method passes an unsorted integer array to this native method, which sorts and
sends it back to the application. Compile this Java program and generate header file as before. The
following native function prototype is generated:

JNIEXPORT jintArray JNICALL Java_JNITest_sort(JNIEnv *, jobject, jintArray);

170  ADVANCED JAVA PROGRAMMING

In JNI, Java int array is represented by the type jintArray. Primitive arrays in a native method
are also accessed using JNI functions similar to those used for accessing strings. For example, to get
C-style array from JNI array in, we use GetIntArrayElements() function as follows:

jint *cArray = env->GetIntArrayElements(in, NULL);

The length of the array may be obtained as follows:
jsize len = env->GetArrayLength(in);

We can now sort the array elements using bubble sort algorithm as follows:
for(int i=0;i<len;i++)
 for(int j=0;j<len-i-1;j++)
 if(cArray[j]> cArray[j+1]) {
 int temp = cArray[j];
 cArray[j] = cArray[j+1];
 cArray[j+1] = temp;
 }

To demonstrate other array methods, we create a new array, copy elements to this array and
destroy the old C-style array as follows:

jintArray out = env->NewIntArray(len);
env->SetIntArrayRegion(out, 0 , len, cArray);
env->ReleaseIntArrayElements(in, cArray, NULL);

Needless to say, for successful copy, the size of the new array should be same as that of the old
array. The complete source code of the C++ implementation is shown below:

//JNITestImpl.cpp
#include "JNITest.h"
#include <iostream>
using namespace std;
JNIEXPORT jintArray JNICALL Java_JNITest_sort(JNIEnv *env, jobject obj,
jintArray in) {
 jint *cArray = env->GetIntArrayElements(in, NULL);
 jsize len = env->GetArrayLength(in);
 cout << "\nIn C++: Received<--";
 for(int i=0;i<len;i++)
 cout << cArray[i] << ' ';

 for(int i=0;i<len;i++)
 for(int j=0;j<len-i-1;j++)
 if(cArray[j]> cArray[j+1]) {
 int temp = cArray[j];
 cArray[j] = cArray[j+1];
 cArray[j+1] = temp;
 }
 cout << "\nIn C++: Sent-->";
 for(int i=0;i<len;i++)
 cout << cArray[i] << ' ';
 cout << '\n';
 jintArray out = env->NewIntArray(len);
 env->SetIntArrayRegion(out, 0 , len, cArray);
 env->ReleaseIntArrayElements(in, cArray, NULL);
 return out;
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

In Java: Sent-->5 4 6 3
In C++: Received<--5 4 6 3
In C++: Sent-->3 4 5 6
In Java: Received<--3 4 5 6

A list of useful JNI array functions is given in Appendix A

JAVA NATIVE INTERFACE  171

8.7	 ACCESSING JAVA CODE FROM NATIVE PROGRAM
JNI also allows us to access Java code from native code. Suppose, we have invoked a native

method access() on a Java object o as follows:
o.access();

Then, access() can access all members of o. In this section, we shall demonstrate how to do this.
Consider the following Java program:

class JNITest {
 int x = 4;
 void f(){System.out.println("In non-static f()"); }
 static int y = 5;
 static void g() { System.out.println("In static g()"); }
 native void access();
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 JNITest o = new JNITest();
 System.out.println("Before: o.x = "+o.x+", o.y = "+o.y);
 o.access();
 System.out.println("After: o.x = "+o.x+", o.y = "+o.y);
 }
}

The JNITest class has a non-static field x, a non-static method f(), a static field y and a static
method g() and a native method access(). The main method creates a JNITest object o and calls
access() method on it. Compile this Java program and generate header file as before. The following
native function prototype is generated:

JNIEXPORT void JNICALL Java_JNITest_access(JNIEnv *, jobject);

The last parameter refers to the Java object on which this method is called. To access a member
of o, we first get a reference to this object’s class via GetObjectClass() as follows:

jclass cls = env->GetObjectClass(o);

To access a field, we must have an ID of the field. There are two JNI functions, one for non-static
and one for static, to obtain such field ID:

jfieldID fid = env->GetFieldID(cls, "x", "I");
jfieldID fids = env->GetStaticFieldID(cls, "y", "I");

These functions take the name of the field and its mangled description of the signature and returns
a pointer to an opaque structure. The complete list of signatures may be obtained using javap tool
with –s option as follows:

javap -s JNITest

See Table 8.3: to understand how to determine the mangled signature description. Once we get
the Field ID, we can extract field using appropriate JNI functions as follows:

jint x = env->GetIntField(o, fid);
jint y = env->GetStaticIntField(cls, fids);

Note that GetStaticIntField() function takes a jclass argument instead of a jobject.
These values can also be modified using appropriate Set functions as follows:

env->SetIntField(o, fid, 6);
env->SetStaticIntField(cls, fids, 7);

To access a method, we obtain a method ID instead of field ID as follows:
jmethodID mid = env->GetMethodID(cls, "f", "()V");
jmethodID mids = env->GetStaticMethodID(cls,"g", "()V");

172  ADVANCED JAVA PROGRAMMING

The method is then invoked as follows:
env->CallVoidMethod(o, mid);
env->CallStaticObjectMethod(cls, mids);

The complete source code of C++ implementation of the native function is given below:
//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT void JNICALL Java_JNITest_access(JNIEnv *env, jobject o) {
 jclass cls = env->GetObjectClass(o);
 jfieldID fid = env->GetFieldID(cls, "x", "I");
 jfieldID fids = env->GetStaticFieldID(cls, "y", "I");
 jint x = env->GetIntField(o, fid);
 jint y = env->GetStaticIntField(cls, fids);
 env->SetIntField(o, fid, 6);
 env->SetStaticIntField(cls, fids, 7);
 jmethodID mid = env->GetMethodID(cls, "f", "()V");
 jmethodID mids = env->GetStaticMethodID(cls,"g", "()V");
 env->CallVoidMethod(o, mid);
 env->CallStaticObjectMethod(cls, mids);
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

Before: o.x = 4, o.y = 5
In non-static f()
In static g()
After: o.x = 6, o.y = 7

A list of useful JNI field and method access functions is given in Appendix A.

8.7.1	 Passing Object Array
Note that JNI represents an object array by jobjectArray and is handled differently from primitive

array. In this section, let us understand how to work with object arrays. Consider the following Java
program:

class X {
 int id;
 public X(int i) {id = i;}
 public void func() {
 System.out.println("In func, id="+id);
 }
}
class JNITest {
 public native void f(X[] objs);
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 X[] objs= {new X(1), new X(2)};
 new JNITest().f(objs);
 }
}

This JNI program declares a native method f() that receives an array of X objects. The main method
creates an array of two such X objects and calls the native method f() passing this array. Compile this
Java program and generate header file as before. The following native function prototype is generated:

JNIEXPORT void JNICALL Java_JNITest_f(JNIEnv *, jobject, jobjectArray);

As you can see, the last argument represents an object array. In the native method, we get a method
ID corresponding to func() method of X class as follows:

JAVA NATIVE INTERFACE  173

jclass cls = env->FindClass("X");
jmethodID mid = env->GetMethodID(cls, "func", "()V");

The number of elements of this array is obtained as:
jsize length = env->GetArrayLength(in);

We can then call the method func() on each object in this array:
for (int i = 0; i < length; i++) {
 jobject jo = env->GetObjectArrayElement(in, i);
 env->CallObjectMethod(jo, mid);
}

The complete source of the C++ implementation of the native function is shown below:
//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT void JNICALL Java_JNITest_f(JNIEnv *env, jobject o, jobjectArray in)
{
 jclass cls = env->FindClass("X");
 jmethodID mid = env->GetMethodID(cls, "func", "()V");
 jsize length = env->GetArrayLength(in);
 for (int i = 0; i < length; i++) {
 jobject jo = env->GetObjectArrayElement(in, i);
 env->CallObjectMethod(jo, mid);
 }
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

In func, id=1
In func, id=2

Passing a string array is similar to passing an object array. Consider the following Java program:
class JNITest {
 public native void f(String[] strs);
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 String[] strs = {"abc", "xyz"};
 new JNITest().f(strs);
 }
}

This JNI program declares a native method f() that receives an array of String objects. The main
method creates an array of two String objects and calls the native method f() with this array. Here
is a sample C++ implementation of the native method:

//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT void JNICALL Java_JNITest_f(JNIEnv *env, jobject o, jobjectArray in)
{
 jsize length = env->GetArrayLength(in);
 for (int i = 0; i < length; i++) {
 jstring str = (jstring)env->GetObjectArrayElement(in, i);
 const char *inCStr = env->GetStringUTFChars(str, NULL);
 cout << inCStr1 << '\n';
 }
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

abc
xyz

174  ADVANCED JAVA PROGRAMMING

8.8	 CREATING OBJECTS
JNI also allows native code to create new Java objects. Consider the following Java

program:
class JNITest {
 int a;
 JNITest(int aa) { a = aa; }
 void print() {
 System.out.println("In print(), a = "+a);
 }
 public static native JNITest create();
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 JNITest t = create();
 t.print();
 }
}

It declares a static native method create() that creates and returns a JNITest object. The main()
method creates an instance of JNITest using this native method. The main() method then calls the
object’s print() method. Compile this Java program and generate header file as before. The following
native function prototype is generated:

JNIEXPORT jobject JNICALL Java_JNITest_create(JNIEnv *, jclass);

In the native method, we first obtain a reference to JNITest class:
jclass cls = env->FindClass("JNITest");

Since, a constructor creates an object, we then get the method ID of the one argument constructor
of JNITest class:

jmethodID midInit = env->GetMethodID(cls, "<init>", "(I)V");

Note that for constructors, we pass <init> as the method. Since constructors do not return any
value explicitly, we specify the return type as V. We can then use methods like NewObject() to call
the constructor to create a new Java object:

jobject newObj = env->NewObject(cls, midInit, 3);

The complete source code of the C++ implementation of this native method is given below:
//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT jobject JNICALL Java_JNITest_create(JNIEnv *env, jclass o) {
 jclass cls = env->FindClass("JNITest");
 jmethodID midInit = env->GetMethodID(cls, "<init>", "(I)V");
 jobject newObj = env->NewObject(cls, midInit, 3);
 return newObj;
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

In print(), a = 3

8.9	 EXCEPTION HANDLING IN JNI
This section explains exception handling in JNI. Since JNI handles more than one programming

language, exception handling is a little tricky. Although C++ supports a notion of exception handling,
it does not completely match with the Java’s exception handling mechanism. Actually there is no
uniform and general way to throw and catch exceptions in native languages.

JAVA NATIVE INTERFACE  175

The JNI allows native methods to handle outstanding Java exceptions. The unhandled exceptions
are propagated back to the VM. The native method may also raise arbitrary Java exceptions. A set
of JNI functions is provided for this purpose.

JNI functions use a mechanism to report errors that occur during their execution. They either
return an error code or throw a Java exception. JNI functions having a non-void return type (such as
CallIntMethod()) return error code if an error occurs. This error code is a special value, which does
not belong to the set of normal values. Some other functions such as CallVoidMethod() or array
access functions do not return an error code, but throw an exception.

As mentioned before, since there is no uniform and general way to throw and catch exceptions in
native languages, JNI therefore requires to check for possible exceptions after calling JNI functions.
There are two ways to determine if an error has occurred or not:

•	 check the return value (if any) of the last JNI function call or
•	 call JNI functions, ExceptionOccurred() or ExceptionCheck()

The last mechanism provides a way out even if the JNI function does not even return
value. It also provides a more detailed description of the error condition and is usually used to handle
errors. Using the last method, a native exception handling code looks like:

//a JNI function call
jthrowable ex = env->ExceptionOccurred();
if (ex) {
 //exception occurred handle it
}

The method ExceptionOccurred() returns an jthrowable object that represents the exception
occurred. Alternatively, we can use ExceptionCheck() method.

//a JNI function call
jboolean exceptionOccured = env->ExceptionCheck();
if (exceptionOccured) {
 //exception occurred handle it
}

The function of this method is same except that it returns a jboolean instead of jthrowable.
Since, ExceptionOccured() returns an object that contains more information about the exception,
we usually use it. The description of this exception may be printed using ExceptionDescribe()
method as follows:

env->ExceptionDescribe();

This prints the stack trace of this exception and stops the exception propagation. If the propagation
of the exception is not stopped, it returns to the Java code that called this native method. To stop
this propagation explicitly, we use ExceptionClear() method. The native code may also throw an
exception using Throw() or ThrowNew() methods.

//throw the caught one
env->Throw(ex)

or
//throw a new one
jclass newExCls = env->FindClass("java/lang/IllegalArgumentException");
env->ThrowNew(newExCls, "thrown from C++ code");

Let us illustrate this using the following Java program:
class JNITest {
 private native void catchThrow();
 private void callback(){
 throw new NullPointerException("Thrown by callback");
 }
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 try {
 new JNITest().catchThrow();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

176  ADVANCED JAVA PROGRAMMING

class JNITest {
 private native void catchThrow();
 private void callback(){
 throw new NullPointerException("Thrown by callback");
 }
 static {
 System.loadLibrary("test");
 }
 public static void main(String[] args) {
 try {
 new JNITest().catchThrow();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

This program declares one native method catchThrow() which calls the Java method callback().
So, here is a sample C++ code to do this:

JNIEXPORT void JNICALL Java_JNITest_catchThrow(JNIEnv *env, jobject obj) {
 jclass cls = env->GetObjectClass(obj);
 jmethodID mid = env->GetMethodID(cls, "callback", "()V");
 env->CallVoidMethod(obj, mid);
 …
}

Since the method callback() unconditionally throws a NullPointerException, the native method
fetches an exception. We check this exception as follows:

jthrowable ex = env->ExceptionOccurred();
if (ex) {
 …
}

We then print this exception, clear it and throw a fresh exception as follows:
env->ExceptionDescribe();
//already cleared by above, we use the following for illustration
env->ExceptionClear();
jclass newExCls = env->FindClass("java/lang/IllegalArgumentException");
env->ThrowNew(newExCls, "Thrown by C++ code");

The complete C++ implementation is given below:
//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT void JNICALL Java_JNITest_catchThrow(JNIEnv *env, jobject obj) {
 jclass cls = env->GetObjectClass(obj);
 jmethodID mid = env->GetMethodID(cls, "callback", "()V");
 env->CallVoidMethod(obj, mid);
 jthrowable ex = env->ExceptionOccurred();
 if (ex) {
 env->ExceptionDescribe();
 env->ExceptionClear();
 jclass newExCls = env->FindClass("java/lang/IllegalArgumentException");
 env->ThrowNew(newExCls, "Thrown by C++ code");
 }
}

//JNITestImpl.cpp
#include "JNITest.h"
JNIEXPORT void JNICALL Java_JNITest_catchThrow(JNIEnv *env, jobject obj) {
 jclass cls = env->GetObjectClass(obj);
 jmethodID mid = env->GetMethodID(cls, "callback", "()V");
 env->CallVoidMethod(obj, mid);
 jthrowable ex = env->ExceptionOccurred();
 if (ex) {
 env->ExceptionDescribe();
 env->ExceptionClear();
 jclass newExCls = env->FindClass("java/lang/IllegalArgumentException");
 env->ThrowNew(newExCls, "Thrown by C++ code");
 }
}

Compile and generate a library from the above program and run Java programs as before.
The following output results:

Exception in thread "main" java.lang.NullPointerException: Thrown by callback
 at JNITest.callback(JNITest.java:4)
 at JNITest.catchThrow(Native Method)
 at JNITest.main(JNITest.java:11)
java.lang.IllegalArgumentException: Thrown by C++ code
 at JNITest.catchThrow(Native Method)
 at JNITest.main(JNITest.java:11)

Exception in thread "main" java.lang.NullPointerException: Thrown by callback
 at JNITest.callback(JNITest.java:4)
 at JNITest.catchThrow(Native Method)
 at JNITest.main(JNITest.java:11)
java.lang.IllegalArgumentException: Thrown by C++ code
 at JNITest.catchThrow(Native Method)
 at JNITest.main(JNITest.java:11)

Note that Java’s type system enforces that a checked exception thrown by a method must be
declared in the throws clause of the method. However, it cannot enforce the same exception-checking

JAVA NATIVE INTERFACE  177

rules for native methods. This mismatch makes JNI software potentially buggy and often difficult to
debug, if an exception is thrown by the native method.

8.10	 APPENDIX
JNI Native String Functions
jstring NewString(const jchar *unicode, jsize len)
jsize GetStringLength(jstring str)
const jchar *GetStringChars(jstring str, jboolean *isCopy)
void ReleaseStringChars(jstring str, const jchar *chars)
jstring NewStringUTF(const char *utf)
jsize GetStringUTFLength(jstring str)
const char* GetStringUTFChars(jstring str, jboolean *isCopy)
void ReleaseStringUTFChars(jstring str, const char* chars)
void GetStringRegion(jstring str, jsize start, jsize len, jchar *buf)
void GetStringUTFRegion(jstring str, jsize start, jsize len, char *buf)
const jchar * GetStringCritical(jstring string, jboolean *isCopy)
void ReleaseStringCritical(jstring string, const jchar *cstring)

JNI Native primitive array Functions
jsize GetArrayLength(jarray array)
jobjectArray NewObjectArray(jsize len, jclass clazz, jobject init)
jobject GetObjectArrayElement(jobjectArray array, jsize index)
void SetObjectArrayElement(jobjectArray array, jsize index, jobject val)

j<PrimitiveType>Array New<primitiveType>Array(jsize len)
j<PrimitiveType> * Get<PrimitiveType>ArrayElements(j<primitiveType>Array array,
jboolean *isCopy)
void Release<PrimitiveType>ArrayElements(j<primitiveType>Array array,
j<primitiveType> *elems, jint mode)
void Get<PrimitiveType>ArrayRegion(j<primitiveType>Array array, jsize start,
jsize len, jboolean *buf)
void Set<PrimitiveType>ArrayRegion(j<primitiveType>Array array,
jsize start, jsize len, const jboolean *buf)
void * GetPrimitiveArrayCritical(jarray array, jboolean *isCopy)
void ReleasePrimitiveArrayCritical(jarray array, void *carray, jint mode)

JNI Native non-static Field access functions:
jfieldID GetFieldID(jclass clazz, const char *name, const char *sig)

jobject GetObjectField(jobject obj, jfieldID fieldID)
jobject SetObjectField(jobject obj, jfieldID fieldID)

jboolean Get<PrimitiveType>Field(jobject obj, jfieldID fieldID)
jboolean Set<PrimitiveType>Field(jobject obj, jfieldID fieldID)

JNI Native non-static Method call functions:
jmethodID GetMethodID(jclass clazz, const char *name, const char *sig)

jobject CallObjectMethod(jobject obj, jmethodID methodID, ...)
jobject CallObjectMethodV(jobject obj, jmethodID methodID, va_list args)
jobject CallObjectMethodA(jobject obj, jmethodID methodID, const jvalue * args)

jobject Call<PrimitiveType>Method(jobject obj, jmethodID methodID, ...)
jobject Call<PrimitiveType>MethodV(jobject obj, jmethodID methodID, va_list
args)
jobject Call<PrimitiveType>MethodA(jobject obj, jmethodID methodID, const
jvalue * args)

jobject CallNonvirtualObjectMethod(jobject obj, jclass clazz, jmethodID
methodID, ...)
jobject CallNonvirtualObjectMethodV(jobject obj, jclass clazz, jmethodID
methodID, va_list args)
jobject CallNonvirtualObjectMethodA(jobject obj, jclass clazz, jmethodID
methodID, const jvalue * args)

jobject CallNonvirtual<PrimitiveType>Method(jobject obj, jclass clazz,
jmethodID methodID, ...)
jobject CallNonvirtual<PrimitiveType>MethodV(jobject obj, jclass clazz,
jmethodID methodID, va_list args)
jobject CallNonvirtual<PrimitiveType>MethodA(jobject obj, jclass clazz,
jmethodID methodID, const jvalue * args)

178  ADVANCED JAVA PROGRAMMING

jmethodID GetMethodID(jclass clazz, const char *name, const char *sig)

jobject CallObjectMethod(jobject obj, jmethodID methodID, ...)
jobject CallObjectMethodV(jobject obj, jmethodID methodID, va_list args)
jobject CallObjectMethodA(jobject obj, jmethodID methodID, const jvalue * args)

jobject Call<PrimitiveType>Method(jobject obj, jmethodID methodID, ...)
jobject Call<PrimitiveType>MethodV(jobject obj, jmethodID methodID, va_list
args)
jobject Call<PrimitiveType>MethodA(jobject obj, jmethodID methodID, const
jvalue * args)

jobject CallNonvirtualObjectMethod(jobject obj, jclass clazz, jmethodID
methodID, ...)
jobject CallNonvirtualObjectMethodV(jobject obj, jclass clazz, jmethodID
methodID, va_list args)
jobject CallNonvirtualObjectMethodA(jobject obj, jclass clazz, jmethodID
methodID, const jvalue * args)

jobject CallNonvirtual<PrimitiveType>Method(jobject obj, jclass clazz,
jmethodID methodID, ...)
jobject CallNonvirtual<PrimitiveType>MethodV(jobject obj, jclass clazz,
jmethodID methodID, va_list args)
jobject CallNonvirtual<PrimitiveType>MethodA(jobject obj, jclass clazz,
jmethodID methodID, const jvalue * args)

JNI Native static Field access functions:
jfieldID GetStaticFieldID(jclass clazz, const char *name, const char *sig)

jobject GetStaticObjectField(jclass clazz, jfieldID fieldID)
jobject SetStaticObjectField(jclass clazz, jfieldID fieldID)

jboolean GetStatic<PrimitiveType>Field(jclass clazz, jfieldID fieldID)
jboolean SetStatic<PrimitiveType>Field(jclass clazz, jfieldID fieldID)

JNI Native static Method call functions:
jmethodID GetStaticMethodID(jclass clazz, const char *name, const char *sig)

jobject CallStaticObjectMethod(jclass clazz, jmethodID methodID, ...)
jobject CallStaticObjectMethodV(jclass clazz, jmethodID methodID, va_list args)

jobject CallStaticObjectMethodA(jclass clazz, jmethodID methodID, const jvalue
* args)

jobject CallStatic<PrimitiveType>Method(jclass clazz, jmethodID methodID, ...)

jobject CallStatic<PrimitiveType>MethodV(jclass clazz, jmethodID methodID,
va_list args)
jobject CallStatic<PrimitiveType>MethodA(jclass clazz, jmethodID methodID,
const jvalue * args)

KEYWORDS
javah—A Java tool used to generate artifacts such as
function prototype in native languages

JNI—A Java API that allows Java code to interoperate
with applications and libraries written in other
programming languages such as C, C++

JNICALL—A macro used to specify the calling and
linkage convention of both Java native methods and
their implementations

JNIEnv—Primary interface to JVM

JNIEXPORT—A macro used to specify the calling and
linkage convention of both Java native methods and
their implementations

load—Similar to loadLibrary except that it takes
absolute pathname of the library

loadLibrary—A method on Java System class to load
a native library

JAVA NATIVE INTERFACE  179

WEB RESOURCES
http://docs.oracle.com/javase/1.5.0/docs/
guide/jni/spec/jniTOC.html
Java Native Interface Specification—Contents

http://www.soi.city.ac.uk/~kloukin/IN2P3/
material/jni.pdf
The Java Native Interface Programmer’s Guide and

Specification

http://www3.ntu.edu.sg/home/ehchua/
programming/java/JavaNativeInterface.html
Java Programming Tutorial Java Native Interface (JNI)

http://homepage.cs.uiowa.edu/~slonnegr/wpj/
JNI.pdf
Java Native Interface

http://journals.ecs.soton.ac.uk/java/
tutorial/native1.1/implementing/
Java Native Interface Programming

http://www.javamex.com/tutorials/jni/
The Java Native Interface (JNI)

http://www.pacifier.com/~mmead/cs510jip/jni/
Using the Java Native Interface with C++

Mangled name—A name following some rules
to describe something such as method name, its
signature etc

native—The keyword used to declare a method as
native method

Native method—A method which is implemented in
a non-Java programming language, and the method
invoked from Java

Native language—Any programming languages other
than Java

SUMMARY
The Java Native Interface (JNI) is an API that allows
Java code to interoperate with applications and
libraries written in other programming languages
such as C, C++. It is a two-way interface that allows
Java applications to invoke native method and native
methods to interact with Java code. The following
are basic steps required to develop a JNI-based
application:

•	 Write a Java class having a native method declaration.
•	 Compile this class using javac.
•	 Generate C header file using javah
•	 Implement the native method in a C program
•	 Compile C program and create a shared library
•	 Run the Java program

A method is declared as native using the keyword
native. The header required to implement a native
method in a native language is generated using the tool

javah. The file jni.h contains all information the native
function needs to interact with Java code.

The shared library is loaded in JVM using either
loadLibrary() or load() method. Alternatively, the
location of the shared library may be specified using
LD_LIBRARY_PATH environment variable.

Each Java type is represented by a corresponding
type in native language. JNI also allows us to pass
parameters to the native method including primitive
arrays, object arrays, strings, objects etc. JNI also
allows us to access Java code from native code, such
as accessing both static and non-static fields and
methods, creating objects etc. Java provides numerous
functions for this purpose.

The JNI allows native methods to handle outstanding
Java exceptions. The unhandled exceptions are
propagated back to the VM. The native method may
also raise arbitrary Java exceptions. A set of JNI
functions are provided for this purpose.

EXERCISES
Objective-type Questions

	 1.	 Which one of the following methods is called first
on a servlet?

	 (a)	 Java Native Implementation
	 (b)	 Java Normalized Interface
	 (c)	 Joint Native Interface
	 (d)	 Java Native Interface

	 2.	 Which of the following keywords is used to declare
a method as native method?

	 (a)	 primitive
	 (c)	 native
	 (b)	 nativeMethod
	 (d)	 oldMethod

180  ADVANCED JAVA PROGRAMMING

	 3.	 Which of the following names will you use in
loadLibray method in Linux if the name of a shared
library is libtest.so?

	 (a)	 test	 (c)	 lib
	 (b)	 libtest	 (d)	 libtest.so

	 4.	 Which of the following names will you use in
loadLibray method in Windows if the name of a
shared library is libtest.so?

	 (a)	 lib.dll	 (c)	 test.dll
	 (b)	 libtest.dll	 (d)	 libtest.so

	 5.	 Which of the following languages is used as native
language?

	 (a)	 C
	 (b)	 C++
	 (c)	 Both C and C++
	 (d)	 None of the above

	 6.	 Which of the following methods is used to load a
shared library?

	 (a)	 getLibrary()	 (c)	 installLibrary()
	 (b)	 libraryLoad()	 (d)	 loadLibrary()

	 7.	 Which of the following is a method to load shared
library?

	 (a)	 loadLibrary()	 (c)	 Both a) and b)
	 (b)	 load()	 (d)	 None of the above

	 8.	 Which of the following Java tools is used to create
native function signature?

	 (a)	 javah	 (c)	 javas
	 (b)	 javac	 (d)	 javap

	 9.	 If the name of the class files is test, what will be
the name of the header file generated?

	 (a)	 test.h	 (c)	 native_test.h
	 (b)	 java_test.h	 (d)	 native.h

	10.	 Which of the following files contains native
functions needed to interact with Java code?

	 (a)	 lib.h	 (c)	 native.h
	 (b)	 jni.h	 (d)	 functions.h

	11.	 A Java Object is represented in native code as
	 (a)	 nativeObject	 (c)	 jniObject
	 (b)	 object	 (d)	 jobject

	12.	 Which of the following macros is used to
specify the calling and linkage convention of
both Java native methods and their implemen
tations.

	 (a)	 JNIEXPORT	 (c)	 Both a) and b)
	 (b)	 JNICALL	 (d)	 None of the above

	13.	 The primary interface to Java language is
	 (a)	 Env	 (c)	 JNIEnv
	 (b)	 PrimaryEnv	 (d)	 PInterface

	14.	 Which of the following options is used to create a
shared library?

	 (a)	 -common	 (c)	 -shared
	 (b)	 -s	 (d)	 -shareAll

	15.	 What will the mangled signature be if the signature
of a function is “void f()”?

	 (a)	 ()V	 (c)	 V()
	 (b)	 (I)V	 (d)	 ()I

	16.	 Which of the following environment variables
specify the location of the library?

	 (a)	 LD_LIBRARY_PATH
	 (b)	 LIBRARY_PATH
	 (c)	 LD_JNI_PATH
	 (d)	 JNI_LIBRARY_PATH

	17.	 How many array types are there in JNI?
	 (a)	 7	 (c)	 9
	 (b)	 8	 (d)	 10

	18.	 A boolean in Java is converted to C/C++ as
	 (a)	 int	 (c)	 signed char
	 (b)	 short	 (d)	 unsigned char

	19.	 A char in Java is converted to C/C++ as
	 (a)	 int	 (c)	 unsigned short
	 (b)	 short	 (d)	 signed char

	20.	 A byte in Java is converted to C/C++ as
	 (a)	 int	 (c)	 unsigned short
	 (b)	 short	 (d)	 signed char

	21.	 What will the mangled signature be if the signature
of a function is “void f(int, int[])”?

	 (a)	 V(I[I)	 (c)	 ([II)V
	 (b)	 (II)V	 (d)	 (I[I)V

	22.	 A Java type boolean is mangled in JNI as
	 (a)	 Z	 (c)	 C
	 (b)	 B	 (d)	 S

	23.	 A Java type byte is mangled in JNI as
	 (a)	 Z	 (c)	 C
	 (b)	 B	 (d)	 S

	24.	 Which of the following is equivalent to delete in
C++?

	 (a)	 ReleaseStringUTFChars()
	 (b)	 DeleteStringUTFChars()
	 (c)	 Release()
	 (d)	 FreeStringUTFChars()

JAVA NATIVE INTERFACE  181

	25.	 Which of the following JNI functions is used to
create a new string?

	 (a)	 New()
	 (b)	 NewUTF()
	 (c)	 NewStringUTF()
	 (d)	 NewStr()

	26.	 What will the mangled signature be if the signature
of a function is “void f(int, double)”?

	 (a)	 (DI)V	 (c)	 (ID)V
	 (b)	 V(ID)	 (d)	 (IV)D

	27.	 Which of the following JNI methods is used to get
array elements?

	 (a)	 GetElements()
	 (b)	 GetIntArrayElements()
	 (c)	 IntArrayElements()
	 (d)	 Elements()

	28.	 Which of the following JNI methods is used to get
a reference to an object’s class?

	 (a)	 GetObjectClass()
	 (b)	 GetClass()
	 (c)	 Class()
	 (d)	 ObjectClass()

	29.	 Which of the following JNI methods is used to
create new Java objects?

	 (a)	 New()	 (c)	 NewObject()
	 (b)	 Object()	 (d)	 NewJavaObject()

	30.	 Which of the following functions is used to
determine if an error has occurred or not?

	 (a)	 ExceptionOccurred()
	 (b)	 ExceptionCheck()
	 (c)	 Both a) and b)
	 (d)	 None of the above

	31.	 Which of the following methods is used to describe
an exception?

	 (a)	 ExceptionDescribe()
	 (b)	 Describe()
	 (c)	 Exception()
	 (d)	 JNIExceptionDescribe()

	32.	 Which of the following throws an exception if an
error occurs?

	 (a)	 CallIntMethod()
	 (b)	 CallVoidMethod()
	 (c)	 Both a) and b)
	 (d)	 Neither a) nor b)

Subjective-type Questions

	 1.	 Explain the advantages and disadvantages of
using JNI.

	 2.	 Mention some situations when we should use
JNI.

	 3.	 Write the basic steps required to write a JNI
application.

	 4.	 How do you load a native shared library in JVM?

	 5.	 What is the difference between loadLibrary() and
load() method?

	 6.	 What is the function of javah tool?

	 7.	 Describe the procedure to generate header files
using javah.

	 8.	 Explain why function call syntax is different in C
and C++.

	 9.	 How do you determine the name of a JNI function
given a native method name?

	10.	 Describe the parameters of a mapped JNI
function?

	11.	 Describe the procedure to create a shared library
in C/C++.

	12.	 Distinguish between C and C++ pointer
representation.

	13.	 Describe the steps required to develop a JNI
application that uses package.

	14.	 How are Java types represented in JNI and where
are they defined?

	15.	 Show how you pass primitive arrays to a native
method.

	16.	 How is a Java string passed to a native method?

	17.	 How do you access Java code from primitive
code?

	18.	 What happens when we pass an object array to
a native method?

	19.	 Describe the steps required to create Java object
from native code.

	20.	 Describe how exceptions are handled in JNI.

AWT and Swing

Key Objectives
After completing this chapter readers will be able to—
•  understand AWT class and interface hierarchy
•  identify basic steps needed to write GUI-based programs
•  use various AWT components to create GUI
•  know about various events and how to handle them
•  get an overview of swing API
•  use advanced swing components to create GUI

9.1	 INTRODUCTION
Working with Graphical User Interface (GUI) is always a fascinating task to the end users as

well as interface designers. GUI-based applications provide click and execute environment that make
applications more entertaining and interesting. Java provides a rich API, called Abstract Window
Toolkit (AWT), to create various GUI components.

One of the AWT’s strongest points is that it has been implemented using each platform’s native
GUI toolkit, thereby preserving the look and feel of each platform. However, a GUI designed on one
platform may look different when displayed on another platform.

It is inherently challenging to design and implement effective GUIs. Moreover, complicated
interactions between classes in the AWT sometimes make this task more complex. However, with
proper guidance, the creation of GUIs is not only possible, but relatively straightforward. This chapter
will give you a detailed understanding of Java AWT concepts, background philosophy and practical
concerns with an introduction to Swing which is an extension to AWT.

CHAPTER – 9

AWT AND SWING 183

9.2	 AWT CLASS HIERARCHY
Java allows programmers to create various graphical components such as window, frame, panel,

button, text field, text area, radio button, check box, drop down list, etc. Using these components,
we can create an interactive user interface for an application.

There are many (in fact huge) GUI classes in AWT and Swing. In fact, AWT and Swing consists
of 12 and 18 packages respectively. Let us start with the AWT classes first to have some basic
understanding before moving into Swing. Note that Java programmers usually use swing counterparts
of AWT components for their better look and feel.

Fortunately, in AWT, only 2 packages - java.awt and java.awt.event - are commonly used.
Before writing GUI-based applications, let us understand the functionality of some basic components
with their relationship [Figure 9.1:].

9.2.1	 Component
Components [Figure 9.1:] are graphic elements that can be displayed on the screen and that can

interact with the user. For example, buttons, text boxes, checkboxes, radio buttons are all examples
of components which are represented by classes Button, TextField, Checkbox, CheckboxGroup
respectively. All component classes are direct or indirect sub classes of the abstract class java.awt.
Component. It provides component’s basic behaviour, such as adding/removing listeners, getting/
setting current coordinates, showing/hiding them etc.

C
on

ta
in

er
ss

Label

Text Field

Button

Frame

Panel

C
om

po
ne

nt
s

Figure 9.1: Basic GUI elements

9.2.2	 Container
Some components (such as buttons, text boxes) cannot stand alone and require some other

special components to contain them. These special components are called containers. Examples of
such containers are, window, panel, scroll pane, etc, which are represented by Window, Panel, and
ScrollPane classes respectively. The super-class of all these container classes is Container class,
which defines container’s common behaviour such as adding/removing/getting components, choosing
a layout, etc. Container keeps track of components added to it using a list.

Note that containers are themselves components, and can thus be placed inside other containers.
This nesting of components (including containers) into containers results in a tree of nodes. The root

184 ADVANCED JAVA PROGRAMMING

and intermediate nodes are containers and leaves are non-container components such as buttons, text
boxes etc. So, each GUI-based application has a top-level container which will hold other components.
The commonly used top-level containers are Window, Frame, and Dialog. Figure 9.2: shows the
inheritance relationship among AWT component classes.

Object

Component

Container

Window

Label

Panel

Frame

Button List…

DialogApplet

Figure 9.2: AWT components hierarchy

The primary container classes are Window and its two subclasses, Frame and Dialog as well as
Panel. In addition, a separate container class Applet, which is a subclass of Panel, is provided
specifically to embed Java code in web pages. The detailed description of this Applet class can be
found in Chapter 16. Here is a brief description of other container classes.

Window
A Window container is a top-level display-surface without any borders and menu bar. However,

a window itself cannot directly contain non-container components such as buttons, text boxes
etc. It must contain either a frame, dialog, (or another window), which can directly contain other
components. A Window object cannot be attached to nor be embedded within a different kind of
container.

Frame
The Frame class is a sub-class of Window. A Frame object is a special Window with border, title,

the content display area and an optional menu bar. A Frame often provides the primary window for
a GUI-based application. A GUI-based application typically creates an instance of Frame or any of
its sub-class created extending it.

Dialog
A Dialog is a top-level window typically used as a pop-up window and to take some form of

input from the user. It comes with a border, a title-bar (containing an icon, a title and a close button)
and a content display area.

Panel
A panel (represented by Panel class) is a higher-level container, which is a borderless transparent

rectangular box used to organize a set of related components in pattern such as grid or flow. A panel
itself is not a visible component. It merely provides some space where we can attach any other
components, including other panels.

AWT AND SWING 185

9.2.3	 Controls
The basic AWT non-container component classes (also called controls) are Label, TextField,

TextArea, Button, Checkbox, CheckboxGroup, Choice, and List. New custom component classes
may also be created by deriving them from class Component. Their visual appearance is shown in
Figure 9.3:

CheckboxButtonTextField
Label

TextAreaChoice
List

CheckboxGroup

Figure 9.3: Primary GUI components

The following sections describe how to use different AWT components.

9.3	 CREATING CONTAINER
Before creating and placing any component, we must create a container. Typically, we create an

instance of Frame class.

9.3.1	 Empty Frame
The following program creates an empty frame.
import java.awt.*;
public class FrameDemo {
 public static void main(String args[]) {
 Frame f = new Frame();
 f.setSize(200,100);
 f.setVisible(true);
 }
}   

The setSize() method resizes the frame with specified width and height in pixels. A frame is
initially invisible and must be made visible by invoking its setVisible() method with the argument
true. Running this program is as easy as running any other Java application program. Compile and
run it using the following pair of commands:      

javac FrameDemo.java
java FrameDemo

A sample GUI is shown here.

9.3.2	 Frame with a Title
The frame created in the previous section is too simple and had no title. The title of the frame

(say “My frame”) may be specified in the constructor.

186 ADVANCED JAVA PROGRAMMING

import java.awt.*;
public class TitleDemo {
 public static void main(String args[]) {

Frame f = new Frame("My frame");
 f.setSize(200,100);
 f.setVisible(true);
 }
}  

A title may also be given/changed using setTitle() method
of Frame class as follows:

f.setTitle("My frame");
This sets the new title as “My frame”. Here is a sample GUI

generated by the above program.

9.4	 ADDING COMPONENTS
A frame without any component is not an appealing one. The components may be added to a

container using any one of its several overloaded add() methods. The following sections describe
how to create different components and add them to a container.

9.4.1	 Adding a Label
Note that System.out.println() cannot display a message on GUI. To place some text on GUI,

we create a Label object. As its name implies, it is usually used to label other components or to
display some textual message. The following program illustrates this:

import java.awt.*;
public class LabelDemo {
 public static void main(String args[]) {
 Frame f = new Frame("Label Demo");
 f.setSize(200,100);
 Label l = new Label("Hello World!");
 f.add(l);
 f.setVisible(true);
 }
}   

This displays a simple message “Hello World!” Here is a sample output of this program:

9.4.2	 Adding a Button
One of the common components found in a GUI is a push button which is represented by Button

class. When a button is pushed/clicked typically an action is taken. The Button class has two constructors.
public Button(String label); // Captioned with specified string
public Button(); // No caption

The first one creates a Button object with the given label painted over the button. The second
constructor creates a Button object with no label. The following program creates a button labelled
with “Exit”.

import java.awt.*;
public class ButtonDemo {
 public static void main(String args[]) {
 Frame f = new Frame("Button Demo");
 f.setSize(200,80);
 f.setLayout(new FlowLayout());
 Button b = new Button("Exit");
 f.add(b);
 f.setVisible(true);
 }
}  

AWT AND SWING 187

Here is a sample output of this program. One additional thing that we can find in this program is
setLayout() method whose function is described in the next section.

9.5	 LAYOUT
Note that a container may contain multiple components. How are these components arranged?

This is controlled by a layout manager (represented by LayoutManager class) associated with a
container. A layout manager is an object that controls the position (layout) and size of components
inside a container.

Note that a container can contain another container. For example, a frame can contain
panels, which themselves are containers. The layout manager for the frame determines
how components (including containers) are sized and positioned inside the frame, and the
layout manager for each nested container determines how components are sized and positioned
inside that nested container and so on. This simple idea gives us the ability to create complex but
beautiful GUI.

The most important layout managers are FlowLayout, GridLayout, and BorderLayout. Each
container class has a default layout manager. For example, the default layout manager for the Frame
and Dialog class is the BorderLayout whereas Panel’s default layout manager is FlowLayout. The
method setLayout() of a container is used to set a layout manager.

9.5.1	 FlowLayout
The FlowLayout manager arranges the components from left-to-right much like the lines of text

in a paragraph. When the space in one row is exhausted, another row is started. The row alignment
is determined by the align property. The FlowLayout class has the following constructors:

public FlowLayout();
public FlowLayout(int align);
public FlowLayout(int align, int hgap, int vgap);
// align: FlowLayout.LEFT or FlowLayout.RIGHT or FlowLayout.CENTER
// Default: hgap=5, vgap=5, align=CENTER

The following program illustrates how to use flow layout.
import java.awt.*;
public class FlowLayoutDemo {
 public static void main(String args[]) {
 Frame f = new Frame("FlowLayout Demo");
 f.setSize(200,80);

f.setLayout(new FlowLayout());
 f.add(new Button("OK"));
 f.add(new Button("Cancel"));
 f.setVisible(true);
 }
}  

This creates two buttons and places them on a frame in a sequential manner. The actual appearance
depends on the width of the display window. The output of this program is shown here.

9.5.2	 GridLayout
The GridLayout manager arranges a container’s components as a grid of rows and columns. The

container’s display area is divided into equal-sized rectangles, and one component is placed in each
rectangle. The orientation of components is governed by the container’s ComponentOrientation

188 ADVANCED JAVA PROGRAMMING

property. If the property is LEFT_TO_RIGHT, components run left to right and lines flow top to bottom.
It the property is RIGHT_TO_LEFT, components run right to left and lines flow top to bottom. The
GridLayout class has the following constructors:

GridLayout() //Grid layout with 1 row 1 column
GridLayout(int rows, int cols) //Grid of specified rows and columns.
GridLayout(int rows, int cols, int hgap, int vgap)
//Grid of specified rows, columns, horizontal gap and vertical gap.

The following program lays out two buttons into 1 row and two columns:
import java.awt.*;
public class GridLayoutDemo {
 public static void main(String args[]) {
 Frame f = new Frame("GridLayout Demo");
 f.setSize(200,100);

f.setLayout(new GridLayout(1,2));
 f.add(new Button("OK"));
 f.add(new Button("Cancel"));
 f.setVisible(true);
 }
}  

The output of this program is shown here. A more appealing program that uses grid layout
manager is shown below:

import java.awt.*;
public class GridLayoutDemo1 {
 public static void main(String args[]) {
 Frame f = new Frame("GridLayout Demo");
 Panel p = new Panel();
 f.setLayout(new FlowLayout());
 p.setLayout(new GridLayout(3,2));
 f.setSize(200,120);
 p.add(new Label("Login"));
 p.add(new TextField());
 p.add(new Label("Password"));
 TextField pass = new TextField();
 pass.setEchoChar('*');
 p.add(pass);

 p.add(new Button("OK"));
 p.add(new Button("Cancel"));
 f.add(p);
 f.setVisible(true);
 }
}  

This creates a panel having a GridLayout manager with three rows and two columns. The six
components (two labels, two text fields and two buttons) are then added to this panel. The panel is
finally added to the frame. It produces output as shown above. This program also creates text fields.
If you don’t understand how to do it, don’t worry; it is discussed in a separate section.

9.5.3	 BorderLayout
A BorderLayout manager arranges and resizes a container’s components to fit in five regions:

north, south, east, west, and center, which are identified by static strings: NORTH, SOUTH, EAST, WEST,
and CENTER defined in BorderLayout class. These region names are used in overloaded add() method
of Container having a BorderLayout manager.

add(Component comp, Object constraints)

AWT AND SWING 189

The second argument is one of these five constants. The method add(), without specifying the
zone, adds the component to the CENTER. Here is an example program that lays five buttons in a frame
using the BorderLayout layout manager:

import java.awt.*;
public class BorderLayoutDemo {
 public static void main(String args[]) {
 Frame f = new Frame("BorderLayout Demo");
 f.setSize(200,120);
 f.setLayout(new BorderLayout());
 f.add(new Button("North"), BorderLayout.NORTH);
 f.add(new Button("South"), BorderLayout.SOUTH);
 f.add(new Button("East"), BorderLayout.EAST);
 f.add(new Button("West"), BorderLayout.WEST);
 f.add(new Button("Center"), BorderLayout.CENTRE);
 f.setVisible(true);
 }
}  

The sample output is shown here.

9.6	 USING PANEL
Panels are often used to organize a set of related components in a pattern such as grid or flow.

A panel itself is not a visible component. It merely provides some space where we can attach other
components including other panels.

For example, the following program creates a frame with BoderLayout manager. It contains a text
field at north and a panel at center. The panel, in turn has a GridLayout manager and contains 15 buttons.

import javax.swing.*;
import java.awt.*;
public class PanelDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("Calculator");
 f.setSize(150,200);

 // Set up button panel
 Panel p = new Panel();
 p.setLayout(new GridLayout(5,3));
 String[] s = {"0", "+", "-", "*", "/", "="};
 for(int i=1;i<=9;i++)
 p.add(new Button(i+""));
 for(int i=0;i<s.length;i++)
 p.add(new Button(s[i]));

 f.add(new TextField(15), BorderLayout.NORTH);
 f.add(p, BorderLayout.CENTER);
 f.setVisible(true);
 }
}  

It creates GUI for a simple calculator. A sample output of this program is shown here.

9.7	 TEXT FIELD
A text field (represented by TextField class) is a basic component where user can type/edit a

single line of text. The following program creates a text field with 10 columns:

190 ADVANCED JAVA PROGRAMMING

import java.awt.*;
public class TextFieldDemo {
 public static void main(String args[]) {
 Frame f = new Frame("TextField Demo");
 f.setSize(200,80);
 f.setLayout(new FlowLayout());
 f.add(new Label("Name"));
 f.add(new TextField(10));
 f.setVisible(true);
 }
}  

For multi-line text, we use a text area which is discussed next.

9.8	 TEXTAREA
A TextArea component has a display area that can show multi-line text. Another advantage of

text area over text field is that when the text in the text area becomes larger than the viewable area,
scroll bars are enabled automatically, which help users to scroll the text up-down and left-right. Here
is a sample program that illustrates how to create text area.

import java.awt.*;
public class TextAreaDemo {
 public static void main(String args[]) {
 Frame f = new Frame("Choice Demo");
 f.setSize(200,120);
 f.setLayout(new FlowLayout());
 f.add(new TextArea("Some text", 3, 20));
 f.setVisible(true);
 }
}  

The above program creates a text area with display area 4 lines and 30 characters per line and
having initial text “Your text here”. A sample output is shown here.

A text area can be made editable or to be read-only using setEditable() method.

9.9	 LIST
A List component, as its name indicates, contains a list of text items that can scroll. The list can

be configured so that users can choose either one or multiple items. The following program creates
a list with four (4) visible lines.

public class ListDemo {
import java.awt.*;

 public static void main(String args[]) {
 String[] colors = {"Red", "Green", "Blue", "Cyan", "Magenta", "Yellow"};
 Frame f = new Frame("List Demo");
 f.setSize(250,120);
 f.setLayout(new FlowLayout());

List lst = new List(4, false);
 for(int i=0;i<colors.length;i++)
 lst.add(colors[i]);
 f.add(new Label("Colors"));
 f.add(lst);
 f.setVisible(true);
 }
}

AWT AND SWING 191

A sample output is shown here.

9.10	 CHECKBOX
A Checkbox object can be in either of the two states: “on” (true) or “off” (false). It has a small

rectangular area which remains empty for “off” state and shows a small tick mark (√) for “on” state.
Clicking on a check box toggles its state. The following program creates three check boxes in a grid
layout:

import java.awt.*;
public class CheckBoxDemo {
 public static void main(String args[]) {
 Frame f = new Frame();
 f.setSize(150,100);
 f.setLayout(new GridLayout(3,1));

f.add(new Checkbox("WiFi", null, true));
 f.add(new Checkbox("3G"));
 f.add(new Checkbox("Camera"));
 f.setVisible(true);
 }
}  

The screen shot depicts the check boxes and grid layout created by this code example. The check
box labelled “WiFi” is in the “on” state, and the other two are in the “off” state.

9.11	 CHECK BOX GROUP
Several check boxes can be put in a group using the CheckboxGroup class. In a group of check

boxes, atmost one can be in the “on” state at any time. Clicking on a check box turns it on and turns
all other in the group off. The following program crates a group of three check boxes:

import java.awt.*;
public class CheckBoxGroupDemo {
 public static void main(String args[]) {
 Frame f = new Frame();
 f.setSize(150,100);
 f.setLayout(new GridLayout(3,1));

CheckboxGroup cbg = new CheckboxGroup();
 f.add(new Checkbox("one", cbg, false));
 f.add(new Checkbox("two", cbg, true));
 f.add(new Checkbox("three", cbg, false));
 f.setVisible(true);
 }
}  

The screen shot depicts the group of check boxes created by this code example. The check box
labelled “two” is in the “on” state, and the other two are in the “off” state.

192 ADVANCED JAVA PROGRAMMING

9.12	 CHOICE
A Choice object represents a pop-up menu of items, one of which may be chosen at any

time. The current choice is displayed as the title of the menu. Clicking on the choice causes a
menu to appear with the current choice highlighted. The following program creates pop-menu
of three items.

import java.awt.*;
public class ChoiceDemo {
 public static void main(String args[]) {
 Frame f = new Frame("Choice Demo");
 f.setSize(300,120);
 f.setLayout(new FlowLayout());

Choice colors = new Choice();
 colors.add("Green");
 colors.add("Red");
 colors.add("Blue");
 f.add(new Label("Choose a color"));
 f.add(colors);
 f.setVisible(true);
 }
}  

Here is a sample output of this program.

9.13	 EVENT HANDLING
The GUI created in the previous sections do nothing except display some components. A useful

GUI should respond to user actions. For example, if a user clicks a button captioned “Login”, then
we should execute a piece of code that takes necessary actions required for login. Similarly, if a user
presses a button captioned “Close”, codes that close the program should be executed.

However, before taking any action, we must know that the user has taken some actions. The
process of determining that an action has been taken is known as listening and the action done by
the user is called an event. Writing the corresponding code for a user action is called event handling.
This section describes the Java event handling architecture and how to write event handling codes.
Three primary concepts are involved when working with event handling.

•	 Events: Objects representing different user actions
•	 Event sources: The components associated with the user actions
•	 Listeners: Objects interested to listen and handle user actions

9.13.1	 Event Sources
AWT components can also respond to different user actions, called events, such as clicking

a button, typing some text in a text box/ text area, opening/closing a window, etc. Sources of
events are various AWT components such as Button, TextField etc. Events are generated
when users interact with the components such as by clicking on a button or writing something
in a text field.

9.13.2	 Event Classes
When an event is generated, an object (called event object) is actually created. There are many

event classes corresponding to various kind of events. They have the name of the form xxxEvent

AWT AND SWING 193

such as KeyEvent, MouseEvent, ActionEvent, TextEvent etc. Table 9.1: shows a summary of primary
event classes. The hierarchy of these classes is also shown here.

EventObject
 AWTEvent

 ActionEvent
 ItemEvent
 TextEvent
 AdjustmentEvent
 HierarchyEvent
 InputMethodEvent
 InvocationEvent

ComponentEvent
ContainerEvent
WindowEvent
FocusEvent
InputEvent

KeyEvent
MouseEvent

 MouseWheelEvent

The generated event object is then passed to all the registered listener’s appropriate event-handler
method(s). So, triggering event eventually invokes method(s) of the listener(s).

Note that a component typically can generate a small set of events, not all. In other words, a specific
event is generated by some specific components. For example, TextEvent and AdjustmentEvent are
only generated by text field and scroll bar respectively.

Although, Java AWT defines a wide variety of event classes, not all events are represented by
some Java class. This means that not every user action becomes an event. Users can see only those
events that Java AWT lets them see.

Table 9.1: Primary event classes

Event Classes Generated when Listener Interface

ActionEvent Button is pressed, menu-item is selected,
list-item is double clicked etc.

ActionListener

KeyEvent Keys are pressed/released, typed etc. KeyListener

MouseEvent Mouse is pressed, released, clicked,
moved, dragged, entered and exited a
component

MouseListener

MouseWheelEvent Mouse wheel is moved MouseWheelListener

ItemEvent Check-box or list item is clicked ItemListener

TextEvent Value of textarea or textfield is changed TextListener

WindowEvent Window is activated, deactivated,
de-iconified, iconified, opened or closed

WindowListener

ComponentEvent Component is hidden, moved, resized or
set visible

ComponentListener

ContainerEvent Component is added or removed from
container

ContainerListener

AdjustmentEvent Scroll bar is adjusted AdjustmentListener

FocusEvent Component gains or loses keyboard focus FocusListener

194 ADVANCED JAVA PROGRAMMING

9.13.3	 Event Listeners
Java follows the well-known subscribe-publish or observer-observable design pattern for its event

handling mechanism [Figure 9.4:].

XxxEvent
«interface»
XxxListener

Listener(s)

method(s)

Source

Registered listeners

1. source.addXxxListener(listener)
Source registers listener(s)

4. Invoke listener’s event
handler with XxxEvent object

2. Take an action

3. Create an
XxxEvent object

Figure 9.4: Event handling basic steps

The generated events are handled by special objects called listeners. The functionality of a listener
class is defined by the listener interface. Each event has its own listener interface [see Table 9.1:].
For example, ActionEvent has ActionListener interface. A listener class interested in processing
an action event, must implement the corresponding listener interface ActionListener.

To express interest for handling certain component’s event, the listener(s) must be registered with
the component using its addXXXListener() method. When that event occurs, the registered listener’s
appropriate method is called passing the event object. It means, the listener(s) first subscribes to a source’s
event. The source, upon occurrence of an event, publishes the event to all its registered subscribers.

Every method of an event-listener has a single argument of some kind that directly or indirectly
inherits EventObject class. For example, the argument for methods that handle action events is a
type of ActionEvent, which is an indirect subclass of EventObject. The EventObject class defines
one very useful method:

Object getSource()

If a listener is registered with multiple components, it can identify the source object of the event
using this method. Note that the getSource() method returns an Object. So, a listener, before working
with this further, should type caste to desired type. An event class also defines methods to retrieve
information about the event. For example, we can query a KeyEvent object for information about
which key was used, if Alt key was held down etc.

The detailed functionality of each listener is given in Appendix A at the end of this chapter.

9.13.4	 Example
Let us first implement the easiest and most common listener, the action listener. An action listener

defines what to do when a user performs certain actions such as clicking a button, choosing a menu
item, and pressing enter key in a text field.

We first write a handler class that implements ActionListener interface as follows:
class MyListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 //code to be executed for the action...
 }
}

AWT AND SWING 195

The MyListener class implements the single method actionPerformed() defined in ActionLister
interface. The handler is ready. However, it is not automatically consulted unless it expresses its
interest in receiving action events. The is done by registering an instance of the MyListener class
on a component as follows:

Button b = new Button("Copy->");
MyListener h = new MyListener();
b.addActionListener(h);

Now every time a user performs some action on the button b, the method actionPerformed()
of h will be invoked. But what should be written in the actionPerformed() method? For
simplicity, let us write a code that simply makes a beep sound. Here is the complete source code
of the program:

import java.awt.*;
import java.awt.event.*;
public class ActionEventDemo extends Frame {
 ActionEventDemo() {
 setSize(150,80);
 Button b = new Button("ClickMe");
 b.addActionListener(new MyListener());
 add(b);
 setVisible(true);
 }
 public static void main(String args[]) {
 new ActionEventDemo();
 }
}
class MyListener implements ActionListener {

public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
}

In the above example, the handler class is written as a separate class. It could be an
existing class, or an inner class, or even an anonymous inner class. The class ActionEventDemo
itself could have implemented the ActionListener interface. The resultant code would then look
like:

public class ActionEventDemo extends Frame implements ActionListener {
 //...
 b.addActionListener(this);
 //...
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 //...
}

The event handler may be written as an inner class as follows:
public class ActionEventDemo extends Frame {
 //...
 b.addActionListener(new MyListener());
 //...
 class MyListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 }
 //...
}

196 ADVANCED JAVA PROGRAMMING

An event handler class is often written as an anonymous inner class as follows:
public class ActionEventDemo extends Frame {
 //...
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 });
//...
}

The above handler merely makes a beep sound. Let us develop a more realistic program.
import java.awt.*;
import java.awt.event.*;
public class CopyDemo extends Frame {
 TextField t1 = new TextField(), t2 = new TextField();
 CopyDemo() {
 setSize(150,80);
 setLayout(new FlowLayout());
 Button b = new Button("Copy->");
 add(t1);add(b);add(t2);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t2.setText(t1.getText());
 }
 });
 setVisible(true);
 }
 public static void main(String args[]) {
 new CopyDemo();
 }
}  

This program creates two text fields and a button with caption “Copy->” in between. When the
button is clicked, the content of left text field is copied to the right one. Sample screenshots before and
after the button click is shown above. Here is another program that illustrates the usage of event handler.

import java.awt.*;
import java.awt.event.*;
public class TextEventDemo extends Frame {
 TextField t = new TextField(15);
 TextEventDemo() {
 setSize(180,80);
 setLayout(new FlowLayout());
 add(t);
 t.addKeyListener(new KeyListener() {
 public void keyPressed(KeyEvent e) {}
 public void keyReleased(KeyEvent e) {
 int cp = t.getCaretPosition();
 t.setText(t.getText().toUpperCase());
 t.setCaretPosition(cp);
 }
 public void keyTyped(KeyEvent e) {}
 });
 setVisible(true);
 }
 public static void main(String args[]) {
 new TextEventDemo();
 }
}  

This program creates a single text field. The content of this text field will always be upper-case
characters.

AWT AND SWING 197

9.13.5	 Adapter Classes
A listener class sometimes wants to provide limited functionality. For example, a key listener

class may want to provide only keyReleased() method, but not all. However, a listener class must
implement all the methods of its listener interface.

It should still not be a problem if the interface has few methods. For example, we may
quickly write an empty body for the methods we are not interested in. However, interfaces like
MouseListener and WindowListener have respectively 5 and 7 methods. So, a class implementing
these interfaces must at least write the signatures of large number of methods (with an empty
body). The resulting collection of empty method bodies can make code harder to read and
maintain.

Fortunately, Java provides some ready-made classes called adapter classes for each listener
interface with more than one method. For example, the MouseAdapter class implements the
MouseListener interface. An adapter class implements empty versions of all its interface’s methods.

So, a listener class may be created quickly by extending an adapter class and overriding only
the methods of interest, rather than directly implementing all methods of the listener interface. The
previous case change program has been written using adapter class.

import java.awt.*;
import java.awt.event.*;
public class AdapterDemo extends Frame {
 TextField t = new TextField(15);
 AdapterDemo() {
 setSize(180,80);
 setLayout(new FlowLayout());
 add(t);
 t.addKeyListener(new CaseChanger());
 setVisible(true);
 }
 class CaseChanger extends KeyAdapter {
 public void keyReleased(KeyEvent e) {
 if(e.getSource() instanceof TextField) {
 TextField t = (TextField)e.getSource();
 int cp = t.getCaretPosition();
 t.setText(t.getText().toUpperCase());
 t.setCaretPosition(cp);
 }
 }
 }
 public static void main(String args[]) {
 new AdapterDemo();
 }
}

Note that event object contains information about the event such as source of the event.
The program above extracts the source of the event using getSource() method. The following
is another program that uses MouseMotionAdapter and displays the x and y coordinates of the
mouse pointer.

import java.awt.*;
import java.awt.event.*;
public class MouseEventDemo extends Frame {
 Label l = new Label();
 MouseEventDemo() {
 setSize(200,100);
 setLayout(new FlowLayout());
 add(l);
 this.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e) {
 l.setText(e.getX()+", "+e.getY());
 }
 });
 setVisible(true);
 }
 public static void main(String args[]) {
 new MouseEventDemo();
 }
}

198 ADVANCED JAVA PROGRAMMING

import java.awt.*;
import java.awt.event.*;
public class MouseEventDemo extends Frame {
 Label l = new Label();
 MouseEventDemo() {
 setSize(200,100);
 setLayout(new FlowLayout());
 add(l);
 this.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e) {
 l.setText(e.getX()+", "+e.getY());
 }
 });
 setVisible(true);
 }
 public static void main(String args[]) {
 new MouseEventDemo();
 }
}

A sample output of the above program is shown here. Note that adapters are classes, not interfaces.
So, a class can extend an adapter, provided that it has not already extended another class. Moreover, a class
can implement multiple listener interfaces, but cannot extend more than one adapter class as Java does not
permit multiple inheritance for classes. However, anonymous inner class may be used to extend an adapter.

t.addKeyListener(new KeyAdapter() {
 public void keyReleased(KeyEvent e) {

 //...
 }
 });

9.14	 DIALOG BOXES
Dialog boxes are pop-up sub-windows that appear for a small time, meant to show a message

or to take input from the user. Dialog boxes are often used to present error or warning messages.
However, they can also present images, directory trees, or just about anything appropriate to the
application. The java.awt.Dialog control, which represents a top-level window with a title and a
border, is used to create dialog boxes.

A dialog box is a child window and must have a parent window. For example, a yes-no dialog box
always appears from an existing window. So, all constructors of Dialog class take a window as its parent.

A dialog box may be modal and modeless. A modal dialog box does not allow the user to do
any activity without dismissing (closing) it. For example a save as dialog box must be closed before
taking any actions on its parent window. Modeless dialog box, on the other hand, allows users to
perform activities in parallel without closing it. Example includes a help dialog box. Java supports
both styles of dialog boxes.

9.14.1	 Simple Dialog
This program creates a simple dialog box having a message and two buttons captioned “Yes”

and “No”. It appears when the user tries to close the main window. This can be used to verify if the
user really wants to close the window.

import java.awt.*;
import java.awt.event.*;
public class DialogDemo extends Frame {
 YesNo fd;
 DialogDemo() {
 setSize(200,150);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 fd.setVisible(true);
 if(fd.s == 1) System.exit(0);
 }
 });
 fd = new YesNo(this);
 setVisible(true);
 }
 public static void main(String args[]) {
 new DialogDemo();
 }
}
class YesNo extends Dialog implements ActionListener {
 int s = -1;
 Button y = new Button("Yes"), n = new Button("No");
 YesNo(Frame f) {
 super(f, true);
 setSize(150,100);
 setLayout(new FlowLayout());
 add(new Label("Confirm to close?"));
 add(y);add(n);
 y.addActionListener(this);
 n.addActionListener(this);
 }
 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 s = ((Button)e.getSource()).equals(y)?1:0;
 }
}

AWT AND SWING 199

import java.awt.*;
import java.awt.event.*;
public class DialogDemo extends Frame {
 YesNo fd;
 DialogDemo() {
 setSize(200,150);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 fd.setVisible(true);
 if(fd.s == 1) System.exit(0);
 }
 });
 fd = new YesNo(this);
 setVisible(true);
 }
 public static void main(String args[]) {
 new DialogDemo();
 }
}
class YesNo extends Dialog implements ActionListener {
 int s = -1;
 Button y = new Button("Yes"), n = new Button("No");
 YesNo(Frame f) {
 super(f, true);
 setSize(150,100);
 setLayout(new FlowLayout());
 add(new Label("Confirm to close?"));
 add(y);add(n);
 y.addActionListener(this);
 n.addActionListener(this);
 }
 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 s = ((Button)e.getSource()).equals(y)?1:0;
 }
}

The dialog box is made visible when the user tries to close the main window. This is a modal
dialog, which is indicated by passing a value true in super(). If user presses the button captioned
“No”, the dialog box disappears and the main window remains open. On the other hand, if user
clicks the “Yes” button, the main window as well as the dialog box are closed. A sample output of
this program is shown here.

9.14.2	 File Dialog
The FileDialog class displays a dialog window from which the user can select a file. The following

program creates a window containing a button and a text field. When the button is pressed, a file
dialog appears where a user can navigate the file system and select file. The selected file is finally
shown in the text box.

import java.awt.*;
import java.awt.event.*;
public class FileDialogDemo extends Frame {
 FileDialog fd;
 TextField t = new TextField(20);
 FileDialogDemo() {
 setSize(300,150);
 setLayout(new FlowLayout());
 Button b = new Button("Select a file");
 add(b);add(t);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fd.setVisible(true);
 t.setText(fd.getFile());
 }
 });
 setVisible(true);
 fd = new FileDialog(this);
 }
 public static void main(String args[]) {
 new FileDialogDemo();
 }
}

200 ADVANCED JAVA PROGRAMMING

9.15	 SCROLLBAR
The ScrollBar class represents a very convenient component used to select a value from a range.

The component has a movable bar that can go back and forth between a maximum and minimum
value. A scrollbar may have either vertical or horizontal orientation, which is represented by two
static constants in ScrollBar class: HORIZONTAL and VERTICAL respectively. A commonly used
constructor looks as follows:

Scrollbar(int orientation, int value, int visible, int minimum, int maximum)

where orientation indicates the orientation of the scroll bar, value represents the initial value
of the scroll bar, visible is the size of the bubble, minimum and maximum represent lower and upper
limit of the range respectively.

This component generates AdjustmentEvent and the corresponding listener interface is
AdjustmentListener, which has only one method adjustmentValueChanged(). The following
example illustrates use of ScrollBar with AdjustmentEvent.

import java.awt.*;
import java.awt.event.*;
public class ScrollBarDemo extends Frame implements AdjustmentListener {
 Label msg = new Label();
 Scrollbar hs = new Scrollbar(Scrollbar.HORIZONTAL, 0, 60, 0, 300),
 vs = new Scrollbar(Scrollbar.VERTICAL,0, 30, 0, 300);
 public ScrollBarDemo() {
 setSize(200,120);
 hs.addAdjustmentListener(this);
 vs.addAdjustmentListener(this);
 setLayout(new BorderLayout());
 add(hs, BorderLayout.SOUTH);
 add(vs, BorderLayout.EAST);
 add(msg, BorderLayout.CENTER);
 setVisible(true);
 }
 public void adjustmentValueChanged(AdjustmentEvent e) {
 msg.setText("Horozontal: "+hs.getValue() +" ,Vertical: "+ vs.getValue());
 }
 public static void main(String args[]) {
 new ScrollBarDemo();
 }
}

It creates two scroll bars, one horizontal and one vertical. Their values are displayed in a label.
A sample output is shown here.

9.16	 MENU
Menus are popular GUI components. A menu is a drop-down component displayed from

the menu bar attached to a frame. The component hierarchy for menu is shown here. The
MenuBar class represents a menu bar which may have one or more menu items represented by
MenuComponent class.

AWT AND SWING 201

Object

MenuComponent

MenuItem

Menu

MenuBar

CheckboxMenuItem

There are two kinds of menu items: simple menu and check box menu. A menu may have sub-
menu, which in turn may also have sub-menu and so on. In AWT, creating a sub-menu is easy; we
just add one menu to another menu. The following program illustrates this:

import java.awt.*;
public class MenuDemo {
 public static void main(String args[]) {
 Frame f = new Frame("Choice Demo");
 f.setSize(200,150);
 f.setLayout(new FlowLayout());
 Menu colors = new Menu("Colors");
 colors.add("Red");
 colors.add("Green");
 Menu shapes = new Menu("Shapes");
 Menu twoD = new Menu("2D shapes");
 Menu threeD = new Menu("3D Shapes");
 twoD.add("Triange");
 twoD.add("Circle");

 threeD.add("Sphere");
 threeD.add("Cube");

 MenuBar lst = new MenuBar();

 shapes.add(twoD);
 shapes.add(threeD);
 lst.add(shapes);
 lst.add(colors);

 f.setMenuBar(lst);
 f.setVisible(true);
 }
}  

A sample output of this program is shown here.

9.16.1	 Popup Menu
A PopupMenu component is a small rectangular area, dynamically popped up at a specified position.

A popup menu is not tightly bound to a single component. It can appear anywhere across containment
hierarchies. It is made visible using the following method:

public void show(Component reference, int x, int y)

This method will invoke the popup at the x, y coordinate position relative to the component
parameter. The following example illustrates this:

import java.awt.*;
import java.awt.event.*;
public class PopupMenuDemo {
 public static void main(String args[]) {
 Frame f = new Frame("PopupMenu Demo");
 f.setSize(200,100);

final PopupMenu popup = new PopupMenu();
 popup.add(new MenuItem("A popup menu item"));
 popup.add(new MenuItem("Another popup menu item"));
 f.addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 if(e.isPopupTrigger())

popup.show(e.getComponent(), e.getX(), e.getY());
 }
 });
 f.add(popup);
 f.setVisible(true);
 }
}

202 ADVANCED JAVA PROGRAMMING

import java.awt.*;
import java.awt.event.*;
public class PopupMenuDemo {
 public static void main(String args[]) {
 Frame f = new Frame("PopupMenu Demo");
 f.setSize(200,100);

final PopupMenu popup = new PopupMenu();
 popup.add(new MenuItem("A popup menu item"));
 popup.add(new MenuItem("Another popup menu item"));
 f.addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 if(e.isPopupTrigger())

popup.show(e.getComponent(), e.getX(), e.getY());
 }
 });
 f.add(popup);
 f.setVisible(true);
 }
}

A sample output is shown here.

9.17	 SWING
AWT API, introduced in JDK 1.0, does not support any GUI component for table, tree, pop-

up menu, progress bar, color chooser etc. A much more comprehensive set of graphics libraries
that enhances the AWT was introduced in JDK 1.1 and was known as Swing API. In fact, Swing
API includes all AWT components with better look and feel. Specifically, swing has the following
features:

More Components—Swing provides a rich set of advanced controls for table, tree, tabbed pane,
slider, color chooser etc.

Light Weight—Swing is a lightweight toolkit which does use underlying operating system calls.
Instead, swing components are rendered using pure JAVA code.

Pluggable look and feel—The look and feel properties of swing components can be changed
at run time.

Highly Customizable—The appearance of swing components is independent of internal
representation, and thereby highly customizable.

Object

Component

Container

JComponent

JButtonJLabel JList…

AWT AND SWING 203

In swing, classes that represent GUI components have names beginning with the letter J. Some
examples are JTextField, JButton, JLabel etc. Although, swing includes all AWT components,
we shall primarily concentrate on the components that are not available in AWT. Examples of such
classes are JTable, JProgressBar, JColorChooser etc. The relationship between AWT and swing
components has been shown.

9.17.1	 Containment Hierarchy
Each top-level container has a content pane where components are added. In addition, the top-

level container may have a menu bar by convention positioned outside the content pane. Here is a
typical containment hierarchy:

Top-level Container
(JFrame/JApplet/JDialog)

Content pane Menu bar

Jlabel JTextField JTree…

Figure 9.5: Swing containment hierarchy

9.17.2	 Adding Components
Swing components are added in a slightly different way from AWT components. Instead of adding

them to the container, they are added to the container’s content pane. Typically, the content pane of
a JFrame is obtained using its getContentPane() method as follows:

Container c = f.getContentPane();

Once the content pane of a container is obtained, components are added in the usual way. The
following sections describe how to add different swing components starting from simple JTextField.

9.17.3	 JTextField
A text field in swing is represented by JTextField and is created in the same way as AWT.

However, its look and feel is better than an ordinary AWT text field. The following program displays
a basic text field where a user can edit characters.

import java.awt.*;
import javax.swing.*;
public class JTextFieldDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("JTextField Demo");
 Container c = f.getContentPane();
 f.setSize(200,80);
 c.setLayout(new FlowLayout());
 c.add(new JLabel("Name"));
 c.add(new JTextField(10));
 f.setVisible(true);
 }
}  

204 ADVANCED JAVA PROGRAMMING

A sample output of this program is shown here. The method setEchoChar() and getEchoChar()
are suppressed in JTextField to avoid exposing password characters. Instead, a separate class
JPasswordField that extends JTextField is provided for this purpose.

9.17.4	 JPasswordField
The JPasswordField (a direct subclass of JTextField) class represents special text fields (usually

used to get passwords) where input characters are suppressed for security reason. Each character
entered can be replaced by an echo character. The default echo character is the asterisk (*). The
following program displays a password field where a user can enter passwords.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class JPasswordFieldDemo {
 public static void main(String args[]) {
 final JFrame f = new JFrame("JPasswordField Demo");
 Container c = f.getContentPane();
 f.setSize(200,80);
 c.setLayout(new FlowLayout());
 c.add(new JLabel("Password"));

final JPasswordField pf = new JPasswordField(10);
 c.add(pf);
 pf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String pw = new String(pf.getPassword());
 JOptionPane.showMessageDialog(f,"Password is: " + pw);
 }
 });
 f.setVisible(true);
 }
}

A sample output of this program is shown here.

9.17.5	 JTable
The JTable class lets us create a tabular grid of data. It has many constructors and methods

to customize its rendering and editing. Fortunately, it provides defaults for these features so that
simple tables can be set up easily. For example, the following program creates a table of 4 rows
and 2 columns.

import java.awt.*;
import javax.swing.*;
public class JTableDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("JTable Demo");
 Container c = f.getContentPane();
 f.setSize(200,120);
 f.setLayout(new FlowLayout());
 int row = 4, col = 2;

JTable table = new JTable(row, col);
 for(int i=0;i<row;i++) {
 table.setValueAt(i,i,0);
 table.setValueAt(i*i, i,1);
 }
 c.add(table);
 f.setVisible(true);
 }
}

AWT AND SWING 205

import java.awt.*;
import javax.swing.*;
public class JTableDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("JTable Demo");
 Container c = f.getContentPane();
 f.setSize(200,120);
 f.setLayout(new FlowLayout());
 int row = 4, col = 2;

JTable table = new JTable(row, col);
 for(int i=0;i<row;i++) {
 table.setValueAt(i,i,0);
 table.setValueAt(i*i, i,1);
 }
 c.add(table);
 f.setVisible(true);
 }
}  

Here is the sample output of the program. The second column holds the square of the number in
the first column.

9.17.6	 JComboBox
A JComboBox object represents a pop-up menu of items, one of which may be chosen at any

time. The current choice is displayed as the title of the menu. Clicking on the choice causes a
menu to appear with the current choice highlighted. The following program creates pop-menu
of three items.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
public class JComboBoxDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("JComboBox Demo");
 Container c = f.getContentPane();
 f.setSize(100,150);
 f.setLayout(new FlowLayout());
 final JLabel l = new JLabel();
 String[] colors = { "Red", "Green", "Blue" };

final JComboBox cl = new JComboBox(colors);
 cl.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 l.setText("Selected:"+cl.getSelectedItem());
 }
 });
 c.add(l);c.add(cl);
 f.setVisible(true);
 }
}  

Here is a sample output.

9.17.7	 JProgressBar
The JProgressBar component is used to visually display the progress of some task. It helps users

to have an estimation of how long the task might take to complete or how much work has already
been done. A progress bar may be either in determinate or indeterminate mode.

If it is possible to calculate percentage of work done so far, we use a determinate progress which
looks like this:

The percentage is shown by a rectangle which starts out empty and gradually becomes filled
in as the task progresses. The textual representation of the percentage, in addition, may be enabled

206 ADVANCED JAVA PROGRAMMING

using setStringPainted() method. The following program illustrates how to create this kind of
progress bar.

import java.awt.*;
import javax.swing.*;
public class JProgressBarDemo {
 public static void main(String args[]) throws Exception {
 JFrame f = new JFrame("Choice Demo");
 Container c = f.getContentPane();
 f.setSize(200,80);
 f.setLayout(new FlowLayout());

JProgressBar pb= new JProgressBar(0, 100);
 pb.setStringPainted(true);
 c.add(pb);
 f.setVisible(true);
 for(int i=0;i<=100;i++) {
 pb.setValue(i);
 Thread.sleep(100);
 }
 }
}

A sample output is shown here. However, if we can’t immediately determine the length of
a long-running task, or a task stuck for a long time, we can show progress bar in indeterminate
mode. A progress bar in indeterminate mode, instead of showing any measurable progress,
displays an animated bar moving back and forth continuously to indicate that an operation of
unknown duration is occurring. In the Java look and feel, indeterminate progress bars look
like this:

The modality is set using the method setIndeterminate() passing a value true (indeterminate
mode) or false (determinate mode). Note that as soon as it is possible to calculate the remaining
time, the progress bar should switch back to its default, determinate mode.

9.17.8	 JList
A JList component shows a set of items from which one or more may be selected. It provides

a very easy way to get user input, especially when you want to give the user a number of specific
options. Items can be added easily from an array or vector. This program creates a static list of three
items from an array of String objects.

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
public class JListDemo {
 public static void main(String args[]) {
 final JFrame f = new JFrame("JList Demo");
 Container c = f.getContentPane();
 c.setLayout(new FlowLayout());
 String[] languages = {"Java", "C++", "C"};

JList list = new JList(languages);
 list.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 JList l = (JList) e.getSource();
 Object values[] = l.getSelectedValues();
 for (int i = 0; i< values.length; i++)
 System.out.println(values[i] + " ");
 }
 });
 c.add(list);
 f.pack();
 f.setVisible(true);
 }
}

AWT AND SWING 207

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
public class JListDemo {
 public static void main(String args[]) {
 final JFrame f = new JFrame("JList Demo");
 Container c = f.getContentPane();
 c.setLayout(new FlowLayout());
 String[] languages = {"Java", "C++", "C"};

JList list = new JList(languages);
 list.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 JList l = (JList) e.getSource();
 Object values[] = l.getSelectedValues();
 for (int i = 0; i< values.length; i++)
 System.out.println(values[i] + " ");
 }
 });
 c.add(list);
 f.pack();
 f.setVisible(true);
 }
}  

Here is the sample output of the program. To get the selections made, we use getSelectedValues()
method.

The elements of a JList are not editable. A JList does not also support scrolling directly.
A JScrollPane may be associated to have a scrolling list. The event generated by this component is
ListSelectionEvent and the corresponding listener is ListSelectionListener.

9.17.9	 JTree
A JTree is a sophisticated component that can display data hierarchy using tree. A JTree consists

of nodes. The top-most node is called ‘root’. A node may have children nodes which, in turn, may
have further children nodes and so on. Nodes are added using the obvious add() method.

The leaf nodes and intermediate nodes are displayed with different icons. Nodes having children
may be expanded or collapsed. Expanding a node displays its children and collapsing hides them.

A node in JTree is represented by the TreeNode interface, which provides methods corresponding
to common operations on a node. Fortunately, swing provides an implementation of this interface,
the DefaultMutableTreeNode class. The following program displays a simple list of components of
a computer with their hierarchy using this default node implementation.

import java.awt.*;
import javax.swing.*;
import javax.swing.tree.DefaultMutableTreeNode;
public class JTreeDemo {
 public static void main(String args[]) {
 final JFrame f = new JFrame("JTree Demo");
 Container c = f.getContentPane();
 c.setLayout(new FlowLayout());
 DefaultMutableTreeNode root = new DefaultMutableTreeNode("Computer"),

 c1 = new DefaultMutableTreeNode("HDD"),
 c2 = new DefaultMutableTreeNode("CPU"),
 c3 = new DefaultMutableTreeNode("Mouse");

 root.add(c1);root.add(c2);root.add(c3);
 c1.add(new DefaultMutableTreeNode("Seagate"));
 c1.add(new DefaultMutableTreeNode("Samsung"));

 c2.add(new DefaultMutableTreeNode("Intel"));
 c2.add(new DefaultMutableTreeNode("IBM"));

 c3.add(new DefaultMutableTreeNode("Dell"));
 c3.add(new DefaultMutableTreeNode("HP"));

 JTree t = new JTree(root);
 c.add(t);
 f.pack();
 f.setVisible(true);
 }
}

A sample expanded output is shown here. Like many other swing components, JTree also relies
on a model that describes the structure of data. For JTree, the model class must implement javax.

208 ADVANCED JAVA PROGRAMMING

swing.tree.TreeModel interface. The following program creates a model for file system and displays
a specified directory tree.

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;
import java.io.File;
public class FSTreeDemo {
 public static void main(String[] args) {
 JFrame f = new JFrame("FSTreeDemo");
 f.setSize(300,300);
 FSTreeModel model = new FSTreeModel(args[0]);
 JTree tree = new JTree();
 tree.setModel(model);
 JScrollPane jsp = new JScrollPane(tree);
 f.getContentPane().add(jsp);
 f.setVisible(true);
 }
}
class FSTreeModel implements TreeModel {
 File root;
 public FSTreeModel(String path) { this.root = new File(path); }
 public Object getRoot() { return root; }
 public Object getChild(Object p, int in) {
 String[] c = ((File)p).list();
 return (c == null) || (in >= c.length)?null:new File((File) p, c[in]);
 }
 public int getIndexOfChild(Object p, Object c) {
 String[] l = ((File)p).list();
 if (l == null) return -1;
 String name = ((File)c).getName();
 for(int i = 0; i < l.length; i++)
 if (name.equals(l[i])) return i;
 return -1;
 }
 public int getChildCount(Object p) {
 String[] c = ((File)p).list();
 return c != null? c.length:0;
 }
 public boolean isLeaf(Object node) { return ((File)node).isFile(); }
 public void addTreeModelListener(TreeModelListener l) {}
 public void removeTreeModelListener(TreeModelListener l) {}
 public void valueForPathChanged(TreePath path, Object newvalue) {}
}

A sample output for the drive e:\ (in windows) is shown here. Note that JTree is quite a complex
component. Its detailed description is out of the scope of this book.

AWT AND SWING 209

9.17.10	 JColorChooser
Another sophisticated but convenient and useful component introduced in swing is JColorChooser.

It allows users to choose a color from a palette of colors. This component can be placed anywhere
within a GUI, including dialog boxes. A JColorChooser component has two sections: the tabbed
pane of color selection and a preview box. The tabbed pane has three tabs which allows us to select
a color from colors models HSV, HSL, RGB and CMYK. The commonly used constructors of
JColorChooser class are:

JColorChooser()

JColorChooser(Color initialColor)

The former creates a color chooser with white color initially while the latter creates a color chooser
with the specified color initially. The getColor() method is used to obtain the color selected. Here
is a sample program that uses a color chooser to set the color of some text.

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
public class JColorChooserDemo {
 public static void main(String args[]) {
 JFrame f = new JFrame("JColorChooser Demo");
 Container c = f.getContentPane();
 f.setSize(650,400);
 f.setLayout(new FlowLayout());
 final JLabel banner = new JLabel("Sample Text",JLabel.CENTER);
 final JColorChooser cc = new JColorChooser(Color.black);
 cc.getSelectionModel().addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 Color newColor = cc.getColor();
 banner.setForeground(newColor);
 }
 });
 c.add(banner);
 c.add(cc, BorderLayout.PAGE_END);
 f.setVisible(true);
 }
}

The event generated by this component is ChangeEvent and the corresponding listener is
ChangeListener. A sample output of this program is shown below:

210 ADVANCED JAVA PROGRAMMING

9.17.11	 Dialogs
Creating various dialog boxes has become simple in swing. To create simple, standard dialogs,

we use the JOptionPane class. However, custom dialogs may also be created using the JDialog
class. We can quickly create and customize several different kinds of dialogs using JOptionPane. For
example, we can customize layouts, icons to be displayed, title and text, buttons and their captions etc.

ERROR_MESSAGE

INFORMATION_MESSAGE

QUESTION_MESSAGE

WARNING_MESSAGE

PLAIN_MESSAGE

Message Dialog
A message dialog is a modal dialog with one button, labelled “OK”. However, the message, icon,

and title can be customized. It is created using the following method:
void showMessageDialog(Component parent, Object msg, String title, int msgType)

Here, parent is the parent frame where this dialog is shown, msg is the message to be displayed
and title is the title of the dialog box. The msgType represents the icon to be displayed and can
have values ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE, or
PLAIN_MESSAGE defined in JOptionPane class. The icons corresponding to these constants are shown
here. The following instantly shows a simple message dialog:

JOptionPane.showMessageDialog(f, "How easy to create dialogs!");

Input Dialog
These kinds of dialog boxes are used to take input from the users and are created using

showInputDialog() method. It is designed to display a modal dialog that gets a string from the user,
using either a text field, an un-editable combo box or a list.

AWT AND SWING 211

It returns an Object, which is generally a String reflecting the user’s choice. It has several
overloaded versions. The simplest one creates a dialog with one text field where users can provide
data. Here is an example:

String s = (String)JOptionPane.showInputDialog(f, “Your name please”);
The showInputDialog() method can also create a dialog that lets the user to choose one of many

options.

Confirm Dialog
These kinds of dialogs are used to ask the user to confirm something and are created using

showConfirmDialog() method. The type of buttons to be displayed may be customized using static
constants defined in JOptionPane class. For example, YES_NO_OPTION dialogs have two buttons, and
YES_NO_CANCEL_OPTION dialogs have three buttons. The following creates a dialog with two buttons.

int n = JOptionPane.showConfirmDialog(f,"Confirm to exit?",
"Confirmaton",JOptionPane.YES_NO_OPTION);

This method returns an integer indicating the user’s action. The possible values are YES_OPTION,
NO_OPTION, CANCEL_OPTION, OK_OPTION, and CLOSED_OPTION. Each option, except for CLOSED_OPTION,
correspond to the button pressed. The CLOSED_OPTION is returned, if dialog window is closed explicitly,
rather than pressing a button inside the option pane.

Option Dialog
The option dialog boxes display a variety of buttons with customized button text, and can contain

a standard text message or a collection of components. These are created using showOptionDialog().
When using showOptionDialog() and showConfirmDialog() we can either use the standard button
text or specify different text. For example, the following creates a dialog with two buttons captioned
“Pay now” and “Pay later”.

String[] options = {"Pay now","Pay later"};
int n = JOptionPane.showOptionDialog(f,"Pay option","Pay
dialog",JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESSAGE, null, options,
options[0]);

This method returns an integer similar to showConfirmDialog() method.

212 ADVANCED JAVA PROGRAMMING

9.17.12	 Appendix A: Methods of Important Event Listener Interfaces
ActionListener

void actionPerformed(ActionEvent e)
//Called when an action occurs

MouseListener
void mouseClicked(MouseEvent e)
//Called when the mouse button has been clicked (pressed and released) on a
component.

void mouseEntered(MouseEvent e)
//Invoked when the mouse enters a component.

void mouseExited(MouseEvent e)
//Called when the mouse exits a component.

void mousePressed(MouseEvent e)
//Invoked when a mouse button has been pressed on a component.

void mouseReleased(MouseEvent e)
//Called when a mouse button has been released on a component.

Key// Invoked Listener
void keyPressed(KeyEvent e)
//Called when a key has been pressed.

void keyReleased(KeyEvent e)
//Called when a key has been released.

void keyTyped(KeyEvent e)
//Invoked when a key has been typed.

ItemListener
void itemStateChanged(ItemEvent e)
//Invoked when an item has been selected or deselected by the user.

TextListener
void textValueChanged(TextEvent e)
//Called when the value of the text has changed.

MouseWheelListener
void mouseWheelMoved(MouseWheelEvent e)
//Invoked when the mouse wheel is rotated.

WindowListener
void windowActivated(WindowEvent e)
//Invoked when the Window is set to be the active Window.

void windowClosed(WindowEvent e)
//Called when a window has been closed as the result of calling dispose on the
window.

void windowClosing(WindowEvent e)

//Called when the user attempts to close the window from the window's system
menu.

void windowDeactivated(WindowEvent e)
//Invoked when a Window is no longer the active Window.

void windowDeiconified(WindowEvent e)
//Invoked when a window is changed from a minimized to a normal state.

void windowIconified(WindowEvent e)
//Invoked when a window is changed from a normal to a minimized state.

void windowOpened(WindowEvent e)
//Called the first time a window is made visible.

AWT AND SWING 213

void windowActivated(WindowEvent e)
//Invoked when the Window is set to be the active Window.

void windowClosed(WindowEvent e)
//Called when a window has been closed as the result of calling dispose on the
window.

void windowClosing(WindowEvent e)

//Called when the user attempts to close the window from the window's system
menu.

void windowDeactivated(WindowEvent e)
//Invoked when a Window is no longer the active Window.

void windowDeiconified(WindowEvent e)
//Invoked when a window is changed from a minimized to a normal state.

void windowIconified(WindowEvent e)
//Invoked when a window is changed from a normal to a minimized state.

void windowOpened(WindowEvent e)
//Called the first time a window is made visible.

ComponentListener
void componentHidden(ComponentEvent e)
//Invoked when the component has been made invisible.

void componentMoved(ComponentEvent e)
//Called when the component's position changes.

void componentResized(ComponentEvent e)
//Invoked when the component's size changes.

void componentShown(ComponentEvent e)
//Invoked when the component has been made visible.

ContainerListener
void componentAdded(ContainerEvent e)
//Invoked when a component has been added to the container.

void componentRemoved(ContainerEvent e)
//Called when a component has been removed from the container.

AdjustmentListener
void adjustmentValueChanged(AdjustmentEvent e)
//Invoked when the value of the adjustable has changed.

FocusListener
void focusGained(FocusEvent e)
//Invoked when a component gains the keyboard focus.

void focusLost(FocusEvent e)
//Invoked when a component loses the keyboard focus.

KEYWORDS
Abstract Window Toolkit—Java API for building
GUI-based applications

Adapter—Class that implements empty versions of
all methods of a listener interface

BorderLayout—A layout manager that arranges and
resizes a container’s components to fit in five regions:
north, south, east, west, and center

Components—Graphic elements that can be displayed
on the screen and that can interact with the user

Container—Special components that can contain
other components

Dialog—A top-level window typically used as a pop-
up window and to take some form of input from the
user

214 ADVANCED JAVA PROGRAMMING

Event—User actions such as clicking a button, typing
some text in a text box/text area, opening/closing a
window, etc.

Event Listeners—Special objects used to handle
generated events

Event sources—Various AWT components that
generate events

FlowLayout—A layout manager that arranges the
components from left-to-right much like lines of text
in a paragraph

Frame—A special Window with border, title, the content
display area and an optional menu bar

Graphical User Interface—An interface to the users
based on graphic components

GridLayout—A layout manager that arranges
a container’s components as a grid of rows and
columns

Layout Manager—An object that controls the position
(layout) and size of components inside a container

Panel—A higher-level container, which is a borderless
transparent rectangular box, used to organize a
set of related components in pattern such as grid or
flow

Swing—An extension to AWT providing better look
and feel and more GUI components

Window—A top-level display-surface without any
borders and menu bar

SUMMARY
GUI-based applications provide click and execute
environment that make applications more entertaining
and interesting. Java provides a rich API, called
Abstract Window Toolkit (AWT), to create various
GUI components.

Java allows programmers to create various graphical
components such as window, frame, panel, button,
text field, text area, radio button, check box, drop
down list, etc. Using these components, we can
create an interactive user interface for an application.
Components are graphic elements that can be
displayed on the screen and that can interact with
the user. Some components (such as buttons, text
boxes) cannot stand alone and require some other
special components to contain them. These special
components are called containers.

Each container is associated with a layout manager that
controls the position (layout) and size of components
inside a container. The most important layout managers
are: FlowLayout, GridLayout, BorderLayout. The
FlowLayout manager arranges the components from
left-to-right much like lines of text in a paragraph. The
GridLayout manager arranges a container’s components
as a grid of rows and columns. A BorderLayout manager
arranges and resizes a container’s components to fit in
five regions: north, south, east, west, and center.

The basic AWT non-container component classes
(also called controls) are Label, TextField, TextArea,
Button, Checkbox, CheckboxGroup, Choice, List.
New custom component classes may also be created
by deriving them from class Component.

Panels are often used to organize a set of related
components in a pattern such as grid or flow. A panel
itself is not a visible component. It merely provides
some space where we can attach other components
including other panels.

A useful GUI should respond to user actions such as
clicking a button, typing some text in a text box/text
area, opening/closing a window etc. The process of
determining that an action has been taken is known
as listening and the action done by the user is called
an event. Writing the corresponding code for a user
action is called Event handling.

When an event is generated, an object (called event
object) is actually created. The generated event
object is then passed to all the registered listener’s
appropriate event-handler method(s).

AWT API, introduced in JDK 1.0, does not support any
GUI components for table, tree, pop-up menu, progress
bar, color chooser etc. A much more comprehensive
set of graphics libraries that enhances the AWT, was
introduced in JDK 1.1 and is known as Swing API.

WEB RESOURCES
https://docs.oracle.com/javase/tutorial/
uiswing/layout/visual.html
A Visual Guide to Layout Managers

http://www.java2s.com/Tutorial/Java/0240__
Swing/Catalog0240__Swing.htm
Swing

https://docs.oracle.com/javase/tutorial/
uiswing/
Trail: Creating a GUI With JFC/Swing

http://www.tutorialspoint.com/awt/
AWT Tutorial

AWT AND SWING 215

http://www.ntu.edu.sg/home/ehchua/
programming/java/j4a_gui.html
Programming Graphical User Interface (GUI)

http://www.javaworld.com/article/2077188/
core-java/introduction-to-the-awt.html
Introduction to the AWT

EXERCISES
Objective-type Questions

	 1.	 What is the full form of AWT?
	 (a)	 All Windows Tools
	 (b)	 Abstract Window Toolkit
	 (c)	 All Writing Tools
	 (d)	 Absolute Window Toolkit

	 2.	 Which of the following methods is used to
determine the key pressed?

	 (a)	 getKey()		 (c)	 getModifier()
	 (b)	 getActionKey()		 (d)	 getSource()

	 3.	 Which of these events is generated when a button
is pressed?

	 (a)	 MouseEvent		 (c)	 PressEvent
	 (b)	 KeyEvent		 (d)	 ActionEvent

	 4.	 When two or more objects are added as listeners
for the same event, which listener is first invoked
to handle the event?

	 (a)	 The first object that was added as listener.
	 (b)	 The last object that was added as listener.
	 (c)	 There is no way to determine which listener

will be invoked first.
	 (d)	 It is impossible to have more than one

listener for a given event.

	 5.	 Which of the following components generates
action events?

	 (a)	 Buttons		 (c)	 Check boxes
	 (b)	 Labels		 (d)	 Windows

	 6.	 Suppose you want to have an object eh handle
the TextEvent of a TextArea object t. How should
you add eh as the event handler for t?

	 (a)	 t.addTextListener(eh);
	 (b)	 eh.addTextListener(t);
	 (c)	 addTextListener(eh.t);
	 (d)	 addTextListener(t,eh);

	 7.	 What is the preferred way to handle an object’s
events in Java 2?

	 (a)	 Override the object’s handleEvent()
method.

	 (b)	 Add one or more event listeners to handle
the events.

	 (c)	 Have the object override its processEvent()
methods.

	 (d)	 Have the object override its dispatchEvent()
methods.

	 8.	 Which of these packages contains all the classes
and methods required for event handling in Java?

	 (a)	 java.applet		 (c)	 java.event	
	 (b)	 java.awt		 (d)	 java.awt.event

	 9.	 What is an event in delegation event model used
by Java programming language?

	 (a)	 An event is an object that describes a state
change in a source.

	 (b)	 An event is an object that describes a state
change in processing.

	 (c)	 An event is an object that describes any
change by the user and system.

	 (d)	 An event is a class used for defining object,
to create events.

	10.	 Which of these methods are used to register a
keyboard event listener?

	 (a)	 KeyListener()
	 (b)	 addKistener()
	 (c)	 addKeyListener()
	 (d)	 eventKeyboardListener()

	11.	 Which of these methods are used to register a
mouse motion listener?

	 (a)	 addMouse()
	 (b)	 addMouseListener()
	 (c)	 addMouseMotionListner()
	 (d)	 eventMouseMotionListener()

	12.	 Which of the following classes are derived from
the Panel class.

	 (a)	 Applet		 (c)	 Frame
	 (b)	 Dialog		 (d)	 Button

	13.	 What is a listener in context to event handling?
	 (a)	 A listener is a variable that is notified when

an event occurs.
	 (b)	 A listener is an object that is notified when

an event occurs.

216 ADVANCED JAVA PROGRAMMING

	 (c)	 A listener is a method that is notified when
an event occurs.

	 (d)	 None of the mentioned

	14.	 Which of these libraries contains top-most Event
class?

	 (a)	 java.awt.event		 (c)	 java.awt
	 (b)	 java.lang		 (d)	 java.util

	15.	 Which of these methods can be used to determine
the type of event?

	 (a)	 getID()		 (c)	 getEvent()	
	 (b)	 getSource()		 (d)	 getEventObject()

	16.	 Which of these classes is super-class of all the
events?

	 (a)	 EventObject		 (c)	 ActionEvent	
	 (b)	 EventClass		 (d)	 ItemEvent

	17.	 Which of these events will be notified if scroll bar
is manipulated?

	 (a)	 ActionEvent	
	 (b)	 ComponentEvent		
	 (c)	 AdjustmentEvent
	 (d)	 WindowEvent

	18.	 What does the following line of code do? Textfield
text = new Textfield(10);

	 (a)	 Creates text object that can hold 10 rows
of text.

	 (b)	 Creates the object text and initializes it with
the value 10.

	 (c)	 Creates text object that can hold 10
columns of text.

	 (d)	 The code is illegal.

	19.	 Which of the following methods can be used to
change the size of a java.awt.Component object?

	 (i)	 dimension()
	 (ii)	 setSize()
	 (iii)	 area()
	 (iv)	 size()
	 (v)	 resize()
	 (a)	 (ii) & (v)		 (c)	 (i), (ii) & (v)	
	 (b)	 (i), (ii), (iii) & (v) 		 (d)	 (ii), (iv) & (v)

	20.	 The setBackground() method is part of the
following class in java.awt package:

	 (a)	 Graphics		 (d)	 Container
	 (b)	 Applet		 (e)	 Object
	 (c)	 Component

Subjective-type Questions

	 1.	 What is a layout manager and what are the
different types of layout managers available?

	 2.	 How are the elements of a borderLayout
organized?

	 3.	 Which containers may have a menu bar?

	 4.	 What is the difference between choice and the
List?

	 5.	 What advantage do Java’s layout managers
provide over traditional windowing systems?

	 6.	 What is the difference between a Window and a
Frame?

	 7.	 Which is the super-class of all event classes?

	 8.	 What method is used to specify a container’s
layout?

	 9.	 What are the advantages of swing over AWT?

	10.	 What interface is extended by AWT event
listeners?

	11.	 What is the relationship between an event-listener
interface and an event-adapter class?

	12.	 What are events, event sources and event
listeners?

CHAPTER – 10

Java and XML

Key Objectives

After completing this chapter readers will be able to—
•  get an idea about Document Object Model (DOM)
•  understand how DOM represents an XML document as a tree structure
•  get an idea about DOM objects and interfaces defined by the W3C
•  create and navigate a DOM tree for an XML document using Java
•  manipulate a DOM tree using Java
•  validate an XML document against DTD and schema using Java

10.1	 INTRODUCTION
XML (eXtensible Markup Language), is a key technology for structured data representation

and transfer. It is used virtually everywhere from small- to large-scale legacy applications. Java also
promotes portability and an obvious choice to work with XML documents. Java APIs for XML makes
it easier and easier to use XML from the Java programming language.

This chapter gives a detailed description of how to use the Java APIs for XML. It also provides
sample applications that you can run.

10.2	 XML AND DOM
Document Object Model (DOM) is a language-neutral and platform-independent object model

used to represent XML documents. DOM helps scripts and programs to access, add, delete, and edit
content, structure, and style of XML documents dynamically.

DOM is standardized by the World Wide Web Consortium (W3C). The primary objective of this
standard was to model an HTML document in an object-oriented way so that it could be exposed
to scripts, and scripts could access and manipulate HTML documents through this object model
dynamically. In this regard, the World Wide Web Consortium (W3C) received several proposals from
its member companies. Consequently, the W3C tried to develop an interoperable and language-neutral

218 ADVANCED JAVA PROGRAMMING

object model to represent HTML as well as XML documents and the result was DOM. In order to
provide a precise specification of the DOM interfaces independent of languages, the W3C chose
to use Interface Definition Language (IDL), defined by Object Management Group (OMG) in the
CORBA 2.2 specification. OMG IDL is widely used to specify interfaces in a language-independent
and implementation-neutral way.

The W3C DOM specification is divided into three major parts:
•	 DOM Core—This portion defines the basic set of interfaces and objects for any structured document.
•	 XML DOM—This part specifies the standard set of objects and interfaces for XML documents only.
•	 HTML DOM—This part defines the interfaces and objects for HTML documents only.

In this chapter, we shall highlight only XML DOM. The W3C added some more features to the
HTML DOM for better handling.

DOM models a document as a hierarchical structure consisting of different kinds of nodes. Each
of these nodes represent a specific portion of the document. This simple idea has made the entire
framework elegant. Some kind of nodes may have children of different types. Some nodes cannot
have anything below it in the hierarchical structure and are leaf nodes. It also provides standard and
specialized set of interfaces and objects to navigate and manipulate (add, modify, delete) DOM tree.
DOM is an object-oriented model that encompasses not only the document structure, but the behaviour
of the document also. It means, each node of the document tree is not a data structure, but an object
which has identity (properties) and activity (methods). The primary objective of DOM is to identify

•	 interfaces and objects to be used to represent, access, and manipulate documents;
•	 semantics of these objects and interfaces including both attributes and behaviour;
•	 collaboration and relationship among these objects and interfaces.

DOM was standardized to be used with any programming language. In this chapter, we shall
use Java as the programming language to discuss how to navigate and manipulate the DOM tree.
In Chapter 14, we shall show how to do the same using JavaScript.

Let us explain the XML DOM tree with an example. Consider the following simple XML document
that contains the specification of a hard disk.

<?xml version='1.0'?>
<store>
 <HDD type='SATA'>
 <make>Samsung</make>
 <capacity unit='GB'>80</capacity>
 <speed unit='rpm'>7200</speed>
 <price currency='INR'>1600</price>
 </HDD>

</store>

The corresponding XML DOM tree is shown in Figure 10.1:

“Samsung” “7200”

<HDD>

<make>

<store>

unit='GB'

Element node

Text node

Attribute node

<capacity> <speed> <price>

“80” “1600”

unit='rpm' currency='INR'

Figure 10.1: XML DOM tree

JAVA AND XML 219

As mentioned earlier, the DOM tree consists of many types of nodes. Each of these nodes
represents a particular component of the XML document. In fact, the hierarchical structure is not
a single tree, but a forest that consists of many trees. The Attr, Comment, CDATASection, etc. type
nodes are not considered as children of any other node. The exact representation of these nodes
is implementation-dependent.

Nodes in a DOM tree have structural relationships among them. The topmost node is the root node.
In Figure 10.2: , <store> is the root node. Every DOM tree has exactly one root node. Except the root
node, all other nodes have exactly one parent node. Nodes except leaf nodes, may have any number
of children. Nodes having common parent are called siblings. For example, the elements <make> and
<capacity>, and <speed> and <price> are siblings of one another as they have the common parent
element <HDD>. The elements <price> and <capacity> are nextSibling and previousSibling,
respectively, of <speed>.

“Samsung” “7200”

<HDD>

<make>

<store>

unit='GB'

Element node

Text node

Attribute node

<capacity> <speed> <price>

“80” “1600”

unit='rpm' currency='INR'

nextSibling

previousSibling

parent

parent

firstChild lastChild

parent

Figure 10.2: Structural relationships among nodes in DOM tree

The fundamental data type in the entire Document Object Model (DOM) is the Node interface.
All other kinds of nodes implement this interface and hence inherit all the properties and methods
of the Node interface. However, not all the methods and properties are available on each node type.
A specific set of methods and properties are available on each node type. For example, Text and Attr
nodes inherit methods dealing with children from Node, but these methods are not valid on Text and
Attr type nodes.

10.3	 DOM NODES
All components of an XML document are represented by different kinds of nodes. W3C specified

12 (twelve) types of nodes: Document, DocumentFragment, DocumentType, EntityReference, Element,
Attr, ProcessingInstruction, Comment, Text, CDATASection, Entity, and Notation. In this section
we shall describe each of these nodes one by one.
Document

The W3C Document type node represents an entire XML document. Only one Document type node
exists for each XML document. It is essentially a container of all components of an XML document
such as XML declaration (processing instruction), elements, attributes, comments, entities, and so
on. Each of these components is represented by a specific type of node.
Element

This interface represents an element in the XML document. Elements may have attributes. Those
attributes may be obtained from the property attributes inherited from the Node interface. It also
has several useful methods to get an Attr node or the value of an attribute by its name.

220 ADVANCED JAVA PROGRAMMING

Attr
An Attr type node represents an attribute of an Element node. An Attr node is associated with

an element but is not considered as a child of the element. Therefore, though Attr objects inherit all
the properties and methods of the Node interface, some are not valid (i.e., have the value null). For
example, the properties parentNode, previousSibling, nextSibling, firstChild, and lastChild
are not valid on an Attr object. However, Attr objects have methods to access the name and value
of the attributes.
Text

It represents the textual content of an Element type node. The text content of an Element node is
represented as a separate Text type node, which is a child node of the element.
DocumentFragment

The implementation of the Document object can be heavyweight as a large number of methods
and properties have been defined for it. So, to cut and/or move a document fragment around
the entire document using this object can be potentially costly. For this reason, we need to have
a lightweight object similar to the Document object. DocumentFragment is a “lightweight” or
“minimal” Document object that represents a portion of a document and is really useful for the
purpose mentioned.

DocumentFragment represents the root of any sub-tree in the document structure. It essentially
behaves like a context-free container of zero or more DOM nodes. So, if a DocumentFragment node
is inserted or appended to a DOM tree, the DocumentFragment object itself disappears and its content
is inserted or appended to the context position. The DocumentFragment node is not necessary, if the
content is rooted at an element node. It is only necessary if one or both ends of the content is a text
node. In this case, the DocumentFragment node holds the nodes temporarily until they are dropped
in the document.

The W3C provides the createDocumentFragment() method on the Document object to create
an empty DocumentFragment container. The DocumentFragment object inherits all the methods and
properties of the Node object that may be used to append or insert other nodes to this container.
DocumentType

It provides interfaces to get information about the document, including the list of entities defined
for this document. All the properties on this node are read-only.
EntityReference

A node of this type represents an entity reference in the document. However, an XML processor
may completely expand references to entities while building the document tree, instead of providing
EntityReference nodes. The sub-tree rooted at the node of type EntityReference is an exact copy
of the sub-tree rooted at a node of type Entity.
ProcessingInstruction

The ProcessingInstruction interface represents a “processing instruction”, which is used in
XML to provide specific information about the document to the processor.
Comment

It represents a comment in an XML document. Note that all the characters between the starting
‘!--’ and ending ‘-->’ delimiters are not processed and are called comment.
CDATASection

This type of node represents a CDATA section in the XML document. Note that no lexical check is
done on the content of the CDATA section. It is, therefore, useful to include arbitrary text containing
characters, which will otherwise be interpreted as XML.

JAVA AND XML 221

Entity
It represents a known, either unparsed or parsed entity. An XML processor may completely expand

entities while building the document tree and in such a case there will be no EntityReference nodes
in the document tree. An Entity node, if present, does not have any parent. W3C DOM Level 3
does not allow the editing of Entity nodes. If users want to change the contents of an Entity node,
the desired changes have to be made to the related EntityReference node.

10.4	 THE NODE INTERFACE
As mentioned earlier, it is the primary data type for the entire DOM. Every other kind of node

inherits all the properties and methods of the Node interface. In the next two sections, we shall discuss
the frequently used properties and methods available on the Node interface.

10.4.1	 Node Properties
Some properties of the Node interface are read-only. This means that the values of those

properties can only be read but they can never be changed. The other properties are read–write.
The values of these properties can be read as well as modified. Java provides a read method for
each of these properties. For example, the property name is xxx on some object o, Java provides a
method getXxx() on o. The following important properties are available on the Node interface. We
shall first discuss the properties, without referring to any language. We shall then discuss how to
work with them using Java.

nodeType

This read-only property holds a positive integer that indicates the type of the context node.
Table 10.1: shows the value of nodeType for different kind of nodes as well as constants defined in
the W3C DOM specification.

Table 10.1: The values of nodeType property of the Node interface

Node Value of nodeType Constant defined

Element 1 ELEMENT_NODE

Attr 2 ATTRIBUTE_NODE

Text 3 TEXT_NODE

CDATASection 4 CDATA_SECTION_NODE

EntityReference 5 ENTITY_REFERENCE_NODE

Entity 6 ENTITY_NODE

ProcessingInstruction 7 PROCESSING_INSTRUCTION_
NODE

Comment 8 COMMENT_NODE

Document 9 DOCUMENT_NODE

DocumentType 10 DOCUMENT_TYPE_NODE

DocumentFragment 11 DOCUMENT_FRAGMENT_NODE

Notation 12 NOTATION_NODE

Java provides the getNodeType() method on the Node object to inspect this property.

222 ADVANCED JAVA PROGRAMMING

This property is typically inspected before obtaining other properties. Note that the only Element
type node can have children. So, if nodeType has the value 1, childNodes property (discussed later
in this section) on this node is valid. However, if the node is a Text node (nodeType has the value 3),
childNodes property is not valid. So, it is always safe to inspect this property before using other
node specific properties.

The Java interface Node defines the following properties, which help us to determine the type of
node we are dealing with.

Table 10.2: lists properties of the Node interface.

Table 10.2: The Node interface properties

Property Meaning

ATTRIBUTE_NODE It is an Attr type node.

CDATA_SECTION_NODE It is a CDATASection type node.

COMMENT_NODE It is a Comment type node.

DOCUMENT_FRAGMENT_NODE It is a DocumentFragment type node.

DOCUMENT_NODE It is a Document type node.

DOCUMENT_TYPE_NODE It is a DocumentType type node.

ELEMENT_NODE It is an Element type node.

ENTITY_NODE It is an Entity type node.

ENTITY_REFERENCE_NODE It is an EntityReference type node.

NOTATION_NODE It is a Notation type node.

PROCESSING_INSTRUCTION_NODE It is a ProcessingInstruction type node.

TEXT_NODE It is a Text node type node.

nodeName

This read-only property holds the name of a node. The interpretation of this node is different
for different types of nodes. Table 10.3: shows the value of this property for different kinds of nodes.

Table 10.3: The values of nodeName property of Node interface

Node Value of nodeName Node Value of nodeName

Element Name of the element ProcessingInstruction Target of the PI

Attr Name of the attribute Comment “#comment”

Text “#text” Document “#document”

CDATASection “#cdata-section” DocumentType Name of DTD

EntityReference Name of the entity
referenced

DocumentFragment “#document-fragment”

Entity Name of the entity Notation Name of the notation

The Java Node interface provides the getNodeName() method to inspect this property.

nodeValue

This read–write property holds the value of the node. Again, the interpretation of this node is different
for different types of nodes. Table 10.4: shows the value of this property for different types of nodes.

JAVA AND XML 223

Table 10.4: The values of nodeValue property of the Node interface

Node Value of nodeValue Node Value of nodeValue

Element null ProcessingInstruction Content of the PI

Attr Value of the attribute Comment Content of the comment

Text Content of the text node Document Null

CDATASection Content of the CDATA
section

DocumentType Null

EntityReference null DocumentFragment Null

Entity null Notation Null

The Java Node interface provides the getNodeValue() method to inspect this property.
Consider the following XML document:

<?xml version='1.0'?>
<store>
 <HDD type='SATA'>
 <make>Samsung</make>
 <capacity unit='GB'>80</capacity>
 <speed unit='rpm'>7200</speed>
 <price currency='INR'>1600</price>
 </HDD>

</store>

For this code segment, suppose hdd refers to the <HDD> element. This can be done as follows:
var hdd = doc.documentElement.firstChild;

Then, hdd.attributes[“type”].nodeValue has the value “SATA” and para.firstChild.
nodeValue has the value “This is a paragraph”.

childNodes

This property of a node contains all child nodes of the context node. It is valid only on element
type nodes. It has a property length that indicates number of child nodes. Individual child nodes
may be referenced as childNodes[0], childNodes[1], etc. Consider the following code segment:

<html>
 <head>
 <title></title>
 </head>
 <body>
 <p>This is a paragraph</p>
 </body>

<html>

The <html> element is referenced as document.documentElement and document.
documentElement.childNodes is an array of child nodes of the <html> element. The <html>
element has two children: <head> and <body>. So, document.documentElement.childNodes[0] and
document.documentElement.childNodes[1] refer to <head> and <body> elements, respectively.
Since <head> has only one child, the <title> element document.documentElement.childNodes[0].
childNodes[0] refers to the <title> element. Similarly, document.body.childNodes[0] refers to
the <p>element.

Accessing elements using childNodes may not work correctly in some browsers as they treat
blank space between tags as a child text node. This means, for a particular document, childNodes
property may have different lengths in different browsers. Moreover, if an element changes its location
(for example, another element is inserted before it), its index in the childNodes property will also
change, which may affect some existing JavaScript code that uses childNodes and index to access

224 ADVANCED JAVA PROGRAMMING

this element. For example, if the <div> element is inserted before the <p> element, the index of <p>
in the childNodes will be 1, which was 0 before inserting the <div> element. The only reliable way
to access an element is to use the id of an element. This is described later in this chapter.

firstChild

This property refers to the first child of the context node. Its value is null if there is no such node.
Note that document.documentElement refers to the <html> element. So, document.documentElement.
firstChild refers to the <head> element. Similarly, document.documentElement.firstChild.
firstChild refers to the <title> element.

lastChild

This property refers to the last child of the context node. Its value is null if no such node exists.
The node document.documentElement.lastChild refers to the <body> element.

nextSibling

It returns the node immediately following this node. If no such node exists, it returns null.
For example, document.documentElement.firstChild.nextSibling refers to the <body> element.

previousSibling

It returns the node immediately preceding this node. If no such node exists, it returns null.
For example, document.body.previousSibling refers to the <head> element.

attributes

This is an unordered collection containing all attributes specified for the context node or null
otherwise. Individual attributes may be accessed by name. Consider the following HTML document:

<html>
 <head>
 <title>attributes demo</title>
 </head>
 <body bgColor="purple">
 </body>
</html>

The following object refers to a list of all the attributes of the <body> element.
document.body.attributes

In JavaScript, it is just an array. JavaScript arrays are associative arrays. So, a specific attribute
can be obtained by specifying the name of the attribute as the array index. So, the following object
refers to the attribute of the <body> element having the name bgColor.

document.body.attributes["bgColor"]

The value of the bgColor attribute of the <body> element can then be obtained using the following
code:

ocument.body.attributes["bgColor"].nodeValue

They may also be accessed using a usual ordinal number but DOM does not maintain any specific
order for these attribute nodes.

parentNode

Returns the parent node of the context node. Note that Document, DocumentFragment, Attr,
Notation, and Entity nodes do not have a parent and value of this property is null. Nodes that
have just been created but not added to the tree or nodes that have been deleted, have the value null
for this property.

JAVA AND XML 225

10.5	 DOCUMENT NODE
It provides several useful properties that can be used to get the information about the XML

document.

10.5.1	 Document Node Properties

documentElement

This property of the Document node refers to the root node (document element) of the document
tree. To navigate the document tree, we generally start from this documentElement node.

docType

It represents the Document Type Declaration for this document. Its value is null if there is no
Document Type Declaration.

documentURI

It represents the location of the document. Its value is null if it is undefined or the document is
created dynamically.

domConfig

It represents document configuration and maintains a table of recognized parameters. With the help
of this property, one can create a new document with the specified configuration. The configuration
includes removing the Comment and CDATASection nodes, normalizing the schema, canonicalizing
the document, etc.

inputEncoding

It returns a string indicating the encoding scheme that was used during the parsing of this
document.

staticErrorChecking

It indicates whether error checking was enabled or not.

xmlEncoding

It is the encoding (specified in the XML declaration) used in the XML document.

xmlStandalone

It indicates whether the document can exist independently or requires other resources.

xmlVersion

It is the version (specified in the XML declaration) used to write this XML document.

10.5.2	 Document Node Methods
Since all kinds of nodes can only exist in the context of a document, the Document interface

provides useful factory methods to create those objects. Each node has the attribute ownerDocument,
which refers to the context document within which it was created.

createAttribute

This method creates and returns the Attr type node with the name specified. This attribute can
then be set to an element using the setAttribute method available on the Element type node.

226 ADVANCED JAVA PROGRAMMING

createAttributeNS

This method creates and returns the Attr type node with the name and namespace URI specified.
This attribute can then be set to an element using the setAttributeNS method available on the
Element type node.

createCDATASection

It creates and returns a CDATASection type node with the specified contained string.

createComment

It creates and returns a Comment type node with the specified comment string.

createDocumentFragment

It creates and returns an empty DocumentFragment node.

createElement

It creates and returns an Element type node with the specified element name.

createElementNS

It creates and returns an Element type node with the specified element name and name
space URI.

createEntityReference

It creates an EntityReference node with the specified node.

createProcessingInstruction

It creates a ProcessingInstruction node with the specified name and data string.

createTextNode

It creates and returns a Text type node with the specified text content.

getElementById

It returns the Element node having the specified id attribute.

getElementsByTagName

It returns a list of Element nodes with the specified element name.

getElementsByTagNameNS

It returns a list of Element nodes with the specified element name and namespace URI.

importNode

It imports a node from another document to this document. The node of the original document
remains unchanged; instead a new copy is created and returned. Some nodes such as Document, and
DocumentType, cannot be imported. It takes a Boolean argument that specifies whether to perform
deep copy or shallow copy.

renameNode

It renames an existing Element or Attr node. It takes three arguments: original name,
new namespace URI, and a new qualified name.

JAVA AND XML 227

10.6	 ELEMENT NODE
It provides several useful properties and methods that can be used to get the information about

the elements of the XML document.

10.6.1	 Element Node Properties

tagName

It is a read-only property and is valid only for element type nodes. Its value is the tag name of
the element. For example, for the <p> tag, its value is P and for <body>, its value is BODY

10.6.2	Element Node Methods

getAttribute

It returns the value of the attribute with the specified attribute name.

getAttributeNS

It returns the value of the attribute with the specified attribute name and namespace URI.

getAttributeNode

It returns the attribute node with the specified attribute name.

getAttributeNodeNS

It returns the attribute node with the specified attribute name and namespace URI.

getElementsByTagName

It returns a list of all descendant elements with a specified tag name.

getElementsByTagNameNS

It returns a list of all descendant elements with a specified tag name and namespace URI.

hasAttribute

It returns a Boolean value that specifies whether the context element has any attribute with
the given attribute name.

hasAttributeNS

It returns a Boolean value that specifies whether the context element has any attribute with the
given attribute name and namespace URI.

removeAttribute

It removes the attribute with the specified name.

removeAttributeNS

It removes the attribute with the specified name and namespace URI.

removeAttributeNode

It removes the specified attribute node.

228 ADVANCED JAVA PROGRAMMING

setAttribute

It adds an attribute with the specified name and value. If the attribute is already present, its value
is set by the new value.

setAttributeNS

It adds an attribute with the specified name and value and namespace URI. If the attribute is
already present, its value is set by the new value and its prefix is changed to the new prefix.

setAttributeNode

It adds the specified attribute node to the content element. If an attribute with that name is already
present, it is replaced by the new one.

setAttributeNodeNS

It adds the specified attribute node to the content element. If an attribute with that name and
namespace URI is already present, it is replaced by the new one.

setIdAttribute

It takes two arguments, the name of an attribute and a Boolean value. If the value of the Boolean
argument is true, this method declares the specified attribute as a user-determined ID attribute.
Otherwise, it makes the specified attribute a non-ID attribute.

setIdAttributeNS

It is same as setIdAttribute, except that it takes the namespace URI of the attribute as an
argument.

setIdAttributeNode

It is same as setIdAttribute, except that it takes an attribute node instead of its name.

10.7	 TEXT NODE
It provides several useful properties and methods that can be used to get information about the

Text type nodes in an XML document.

10.7.1	 Text Node Properties

isElementContentWhiteSpace

It returns a Boolean value indicating whether the text contains a character that is white space
appearing within element content.

wholeText

It returns the text of this node and the text of all other logically-adjacent text nodes concatenated
to it in document order.

10.7.2	 Text Node Methods

replaceWholeText

It replaces the text of this node and text of all logically-adjacent text nodes with the specified text.
Before replacement, it first removes current text node as well as all logically-adjacent text nodes,
unless they are recipients of the specified text.

JAVA AND XML 229

splitText

It splits the node into two nodes. The original node contains text up to a specified offset. The new
node contains the rest and is inserted as a next sibling of the original node. The new node is returned.

10.8	 ATTR NODE
It provides several useful properties that can be used to get the information about the attributes

of an element.

10.8.1	 Attr Node Properties

isId

It indicates whether the attribute is an ID attribute.

name

It returns the name of the attribute.

ownerElement

It is the element node to which this attribute is attached.

schemaTypeInfo

It is the type information for this attribute.

specified

It indicates whether a value for this attribute was specified explicitly.

value

It returns the value of the attribute. If value contains any entity references, they are first substituted
with their values.

10.9	 PARSING XML
In this section, we shall discuss how to access and manipulate an XML DOM tree using Java.
Java implements the W3C DOM specification as a separate package org.w3c.dom. Java provides

interfaces and objects together with methods and properties according to the DOM specification that
can be used to navigate and manipulate the DOM tree. Since Java supports data hiding, properties of
an object, as specified by the W3C are not exposed directly. Instead a get method for each property
is provided. For the property abc, the name of the method is getAbc(). For example, for the property
firstChild, it provides the method getFirstChild().

Consider the following XML document "greeting.xml".
<?xml version="1.0"?>
<greeting>Hello World!</greeting>

The corresponding DOM tree is shown in Figure 10.3:

“Hello World!”

Element node

Text node

<greeting>

Figure 10.3: DOM tree for “greeting.xml”

230 ADVANCED JAVA PROGRAMMING

10.9.1	 Creating Document
To access the DOM tree for this XML document, you have to first create a Document object to

put your XML into. To do this you have to first create an instance of the parser. The parser parses an
XML document, checks well-formedness and creates and returns the Document object that represents
the entire XML document. The following Java code creates an instance of the parser.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder parser = factory.newDocumentBuilder();

The following packages must be imported.
import javax.xml.parsers.*;
import org.w3c.dom.*;

The parser is now ready to parse an XML document. The following overloaded methods are
available that can be used to parse an XML document and to create a Document object.

Document parse(InputStream in)
Document parse(InputStream in, String base)
Document parse(String uri)
Document parse(File xmlFile)

The method that is commonly used takes the filename of an XML document. The following line
of code parses and creates a Document object for the XML file “greeting.xml”.

Document doc = parser.parse("greeting.xml");

10.9.2	 Navigating DOM Tree
A node in the DOM may be referenced in several ways. Broadly, we can categorize them as

follows:

•	 Start from the root node and use structural relationships to reach other nodes.

•	 Use the getElementById()method of the Document object to access a particular node directly.

•	 Use the getElementsByTagName()method on the Document object to access all element nodes with a
common tag name specified.

10.9.2.1   Using Root Node
Remember that W3C defined the property documentElement on the Document object that

refers to the root element of the XML document. Java provides a method getDocumentElement()
for the same.

Element root = doc.getDocumentElement();

“Hello World!”

root<greeting>

Figure 10.4: Document root

For this XML document, root refers [Figure 10.4:] to the <greeting> element. You can also
verify it by writing the following piece of code:

String name = root.getNodeName();
System.out.println(name); //prints "greeting"

Now, suppose we want to get the text content of this element <greeting>. The text content of
an element is stored in a separate node, which is a child node of this element node. Since, the root

JAVA AND XML 231

node has exactly one child, which is the first child of root, the getFirstChild() method may be
used to get a reference to the text node as follows:

Node node = root.getFirstChild();

Since this node is a Text type node, this line of code could have been written like this:
Text node = (Text)root.getFirstChild();

The actual text content may be obtained as follows:
String txt = node.getNodeValue();
System.out.println(txt); //prints "Hello World!"

10.9.2.2   Getting all Child Nodes
So far we have considered a very simple XML document. Let us now take a more complex XML

document "questions.xml" as follows:
<?xml version="1.0"?>
<question-paper>
 <question id="q1">What is DOM?</question>
 <question id="q2">What are leaves?</question>
</question-paper>

This XML document contains some questions. Suppose, we want to extract all questions from
this XML file. To do this, get a reference to the root element <question-paper> using the procedure
described in the previous section.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder parser = factory.newDocumentBuilder();
Document doc = parser.parse("questions.xml");
Element root = doc.getDocumentElement();
//root refers to the <question-paper> element

The DOM tree corresponding to the XML document is shown in Figure 10.5: .

“What is DOM?”

<question-paper>

<question>

id='q2'

Element node

Text node

Attribute node

<question>

“What are leaves?”

id='q1'

Figure 10.5: DOM tree for “questions.xml”

Let us have a list of all child nodes of this <question-paper> element as follows:
NodeList children = root.getChildNodes();	 //get all child nodes of root

The object children now contains a list of child nodes of the root element, i.e., the <question-
paper> element. Note that Java represents new line character as a Text type node also. So, the object
children contains 3 (three) Element nodes one for each <question> as well as 4 (four) Text nodes,
one for each new line character in the <question-paper> element. You can verify by printing the
length of the children list.

System.out.println(children.getLength());	 //prints 7

Individual children can be obtained using the item() method on children and an index.
for(int i = 0; i < children.getLength(); i++) {
 Node node = children.item(i);
 if(node.getNodeType() == Node.ELEMENT_NODE) //if node is an Element node
 System.out.println(node.getFirstChild().getNodeValue());
}

232 ADVANCED JAVA PROGRAMMING

Before applying the getFirstChild() method on a node, make sure that the node is an Element
node and not a Text node.

if(node.getNodeType() == Node.ELEMENT_NODE) //if node is an Element node
 System.out.println(node.getFirstChild().getNodeValue());

Here is the complete example.
import javax.xml.parsers.*;
import org.w3c.dom.*;
class GetQuestions {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();
 NodeList children = root.getChildNodes(); //get all children of root
 for(int i = 0; i < children.getLength(); i++) {
 Node node = children.item(i);
 if(node.getNodeType() == Node.ELEMENT_NODE)
 System.out.println(node.getFirstChild().getNodeValue());
 }
 }catch(Exception e) { e.printStackTrace(); }
 }
}

Compile the program using the usual procedure, i.e., using javac compiler as follows:
javac GetQuestions.java

If everything goes fine, this command generates a class file named GetQuestions.class. If you
run this program on “questions.xml”, the output will look as shown in Figure 10.6: .

Figure 10.6: Displaying XML document using Java

10.9.2.3   Using getElementsByTagName
A list of elements having a tag name may be obtained using the getElementsByTagName()

method on the Document object. So, a list of <question> elements may be obtained in a similar
way as follows:

NodeList children = doc.getElementsByTagName("question");

Since the <question> elements are children of the <question-paper> element, the
getElementsByTagName() method may also be invoked on the root element as follows:

NodeList children = root.getElementsByTagName("question");

Questions can now be obtained using a similar procedure.
for(int i = 0; i < children.getLength(); i++) {
 Node node = children.item(i);
 System.out.println(node.getFirstChild().getNodeValue());
}

JAVA AND XML 233

However, since the nodes that we have obtained are all element (<question>) nodes, there is no
need to check whether a node is an Element type node or not.

10.9.2.4   Using getElementById
To get a particular element using its unique id attribute, you need to declare a DTD or schema

for it. Here is an example.
<?xml version="1.0"?>
<!DOCTYPE question-paper [
 <!ELEMENT question-paper (question+)>
 <!ELEMENT question (#PCDATA)>
 <!ATTLIST question id ID #REQUIRED>
]>
<question-paper>
 <question id="q1">What is DOM?</question>
 <question id="q2">What are leaves?</question>
</question-paper>

The method getElementsById() on the Document object is used to get an element with the
specified id. So, a particular <question> element may be obtained as follows:

Element e = doc.getElementById("q1");

This line of code retrieves the element having the id attribute value “q1”. Here is a complete
example.
import javax.xml.parsers.*;
import org.w3c.dom.*;
class GetElementById {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element e = doc.getElementById("q1");
 String value = e.getAttribute("id");
 System.out.print(value + ". "); //print question number
 System.out.println(e.getFirstChild().getNodeValue()); //print question
 }catch(Exception e) { e.printStackTrace(); }
 }
}

If you run this program on "questions.xml", the output will look as shown in Figure 10.7: .

Figure 10.7: Finding an element using the getElementById() method

10.9.2.5   Getting Attributes of an Element
Attributes of an element are obtained using the following method:
NamedNodeMap getAttributes()

The object returned by the getAttributes() method contains all attributes for the context element.
Individual attributes may be obtained using the item() method and an index. The name and value of

234 ADVANCED JAVA PROGRAMMING

an attribute may be obtained using the getNodeName() and getNodeValue() methods, respectively.
The following example prints all attributes (and their values) of an element node.

NamedNodeMap attributes = node.getAttributes(); //get all attributes of node
for(int j = 0; j < attributes.getLength(); j++) { //for each attribute
 Node attribute = attributes.item(j); //get attribute node
 String attName = attribute.getNodeName(); //get attribute name
 String attValue = attribute.getNodeValue(); //get attribute value
 System.out.println(attName + " = " + attValue);//print them
 }

Getting a particular attribute using this procedure is not useful as Java does not maintain any
specific order of attributes in the list. Moreover, it is not efficient as you need to iterate through the
entire list to get the value of a particular attribute. For example, if you want to get the value of the
attribute “no”, the corresponding code will look like this:
 NamedNodeMap attributes = node.getAttributes(); //get all attributes of node
 String attValue = "";
 for(int j = 0; j < attributes.getLength(); j++) { //for each attribute
 Node attribute = attributes.item(j); //get attribute node
 String attName = attribute.getNodeName(); //get attribute name
 if(attName.equals("no"))
 attValue = attribute.getNodeValue(); //get attribute value
 }
 System.out.println(attName + " = " + attValue); //print it

Java provides a straightforward solution to achieve this. The value of a specific attribute may be
obtained using the following method on the element node.

String getAttribute(String attributeName);

The following line of code returns the value of the attribute no on the element node. Note that the
getAttribute() method is defined on the Element object. So, you need to typecast the Node object
to the Element object first and then apply the getAttribute() method. Make sure that the node is
really an Element type node. Otherwise, a ClassCastException will be thrown.

String value = ((Element)node).getAttribute("no");

If the node is really an Element type node, this method can be invoked directly without
typecasting.

String value = e.getAttribute(“no”);

Here is the complete example.
import javax.xml.parsers.*;
import org.w3c.dom.*;
class GetAttributes {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();
 NodeList children = root.getElementsByTagName("question");
 for (int i = 0; i < children.getLength(); i++) {
 Node node = children.item(i);

String value = ((Element)node).getAttribute("no");
 System.out.print(value + ". "); //print question number
 System.out.println(node.getFirstChild().getNodeValue());
 }
 }catch(Exception e) { e.printStackTrace(); }
 }
}

JAVA AND XML 235

If you run this program on "questions.xml", the output will look as shown in Figure 10.8:

Figure 10.8: Getting attributes of an element

10.9.2.6   Viewing DOM
A DOM tree may be transformed back to an XML document which can then be displayed on the

screen or stored in a file. This helps us to visualize and verify the DOM tree after adding or deleting
nodes.

TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();
DOMSource source = new DOMSource(root);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, we first create a Transformer object and a DOMSource object. The task of the Transformer
object, as the name implies, is to transform the specified XML document to the specified stream.
We want to display the result after transformation to the standard output. So, System.out is used to
create the result object.

The following packages must be imported.
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

Here is a program that displays the content of the questions.xml file on the terminal
window.

import javax.xml.parsers.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
class View {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 DOMSource source = new DOMSource(root);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

It generates the output as shown in Figure 10.9:

236 ADVANCED JAVA PROGRAMMING

Figure 10.9: Viewing DOM

To write the DOM tree to a file, simply create the result object from a file as follows:
FileOutputStream out = new FileOutputStream(new File("out.xml"));
StreamResult result = new StreamResult(out);

Figure 10.10 shows the transformation from a DOM tree to an XML document.

“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

<?xml version="1.0"?>
<question-paper>

<question id="q1">
What is DOM?

</question>
<question id="q2">

What are leaves?
</question>

</question-paper>

transformation

Figure 10.10: DOM tree to XML document transformation

To create a string from a DOM tree, use the following code.
StringWriter sw = new StringWriter();
StreamResult result = new StreamResult(sw);
DOMSource source = new DOMSource(root);
transformer.transform(source, result);
String xmlString = sw.toString();

The variable xmlString now contains the XML document as a string which can be processed
further.

10.9.3	 Manipulating DOM Tree
So far we have navigated the DOM tree. Let us now discuss how to add, delete, or modify nodes

in the DOM tree. We shall use the notation shown in Figure 10.11: to describe the result of different
codes that will be used in this section.

Element node Text node Attribute node Association Parent-child relation

Figure 10.11: Notations used

10.9.3.1   Creating a node
A Text type node is created using the createTextNode() method on the Document node.
Text createTextNode(String text)

JAVA AND XML 237

It takes the content of the Text node as a string argument. The following line of code creates a
Text type node with the text “What is DTD?”. Pictorially, the result of this code is shown on the
right-hand side.

Text txt = doc.createTextNode("What is DTD?");	 “What is DTD?”

The node txt just created does not have any meaning unless it is attached to an Element node.
Before attaching this Text node to an Element node, let us create an Element node first. An Element
node is created using the createElement() method.

Element createElement(String elementName)

It takes the name of the element to be created as an argument. The following line of code creates
a <question> element. The result is shown on the right-hand side pictorially.

Element e = doc.createElement("question");	 <question>

10.9.3.2   Setting an Attribute
An attribute of an element is set using the setAttribute() method of the element node.
setAttribute(String attributeName, String attributeValue)

The following line of code adds the attribute id with the value “q3” to the newly created element e.

e.setAttribute("id", "q3");	
<question>

id='q3'

The result, after attaching an attribute to the nodes, now becomes as shown on the right-
hand side.

10.9.3.3   Adding a Node
The Text node txt can now be attached to the Element node e using the appendChild() method.

e.appendChild(txt);	

<question>

“What is DTD?”

id='q3'

Finally, the Element node e (together with txt) is attached to the root element at the end.
root.appendChild(e);

The appendChild() method adds a node to the context node at the end of the child list. The element
e does not have any child so far. So, the node txt will become the first child of e. The resultant DOM
tree is shown in Figure 10.12: .

“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

“What is DOM?”

<question-paper>

<question>

id='q2'

<question> <question>

“What are leaves?” “What is DTD?”

id='q1'

Before addition After addition

id='q3'

Figure 10.12: DOM tree after adding a <question> element at the end

238 ADVANCED JAVA PROGRAMMING

The complete program is as follows:
import javax.xml.parsers.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
class AppendQuestion {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 DOMSource source = new DOMSource(root);
 StreamResult result = new StreamResult(System.out);
 System.out.println("Before addition");
 transformer.transform(source, result);
 Text txt = doc.createTextNode("What is DTD?");
 Element e = doc.createElement("question");
 e.appendChild(txt);
 e.setAttribute("id", "q3");
 root.appendChild(e);
 System.out.println("\nAfter addition");
 transformer.transform(source, result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

The program first displays the XML document before adding a <question> element. It then adds
a <question> element at the end and displays the modified XML document. If you run this program
on “questions.xml”, the output will look as shown in Figure 10.13:

Figure 10.13: Adding a node to the XML DOM

10.9.3.4   Inserting a Node
The method appendChild() appends a node at the end of the list of child nodes. If you want to

insert a node at any other position, use the following method.
insertBefore(Node newNode, Node referenceNode)

This method inserts a node before a reference node. So, with the help of appendChild() and
insertBefore(), we can effectively place a node at any position in the child node list. The following

JAVA AND XML 239

code inserts the new <question> node after the first <question>. The resultant DOM tree is shown
in Figure 10.14:.

NodeList questions = doc.getElementsByTagName("question"); //get all questions
Node firstQuestion = questions.item(0); //get first question
root.insertBefore(e, firstQuestion); //insert before first question

“What is DTD?”

<question-paper>

<question>

id='q1'

<question> <question>

“What is DOM?” “What are leaves?”

id='q2'

“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

Before insertion After insertion

id='q3'

Figure 10.14: DOM tree after inserting a <question> element at the beginning

Let us now insert a <question> element after the first <question> element. Note that inserting
after the first <question> element also implies inserting it before the second <question>
element. The following piece of code inserts a <question> element after the first question using
this concept.

NodeList questions = doc.getElementsByTagName("question"); //get all questions
Node firstQuestion = questions.item(0).getNextSibling(); //get first question
Node secondQuestion = firstQuestion.getNextSibling(); //get second question
root.insertBefore(e, secondQuestion); //insert before second question

The resultant DOM tree is shown in Figure 10.15: .

“What is DOM?”

<question-paper>

<question>

id='q3'

<question> <question>

“What is DTD?” “What are leaves?”

id='q2'

“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

Before insertion After insertion

id='q1'

Figure 10.15: DOM tree after inserting a <question> element after first question

10.9.3.5   Deleting a Node
To delete a node from the DOM tree, we use the following method on its parent node.
Node removeChild(Node node)

If a node is deleted, the entire sub-tree rooted at this node is also deleted. It returns the root of
the deleted sub-tree. The following line of code removes the first <question> element from the
DOM tree. The effect of deleting the node is shown in Figure 10.16: .

NodeList questions = doc.getElementsByTagName("question"); //get all questions
Node firstQuestion = questions.item(0); //get first question
root.removeChild(firstQuestion); //remove it

240 ADVANCED JAVA PROGRAMMING

<question-paper>

id='q2'

<question>

“What are leaves?”“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

Before deletion After deletion

Figure 10.16: Deleting the first <question> element from DOM tree

To verify whether deletion of a node works or not, the modified DOM tree can be viewed using
the method described in Section 10.8.2.6.

10.9.3.6   Cloning a Node
An exact copy of a node is created using the cloneNode() method on the Node interface.
cloneNode(boolean deepCopy)

It takes a single argument, which indicates whether to perform deep copy or shallow copy. If true
is specified, the entire sub-tree rooted at the context node is copied recursively. Let us first obtain a
reference of the first question.

NodeList questions = doc.getElementsByTagName("question");

We now clone the node.
Node aCopy = questions.item(0).cloneNode(true);

The node aCopy is now an exact copy of the first question. Since the id attribute must be unique,
let us change the id attribute value to “q3” as follows:

((Element)aCopy).setAttribute("id", "q3");

Let us also change the question.
((Text)aCopy.getFirstChild()).replaceWholeText("What is XML?");

Finally, let us append the questions at the end.
root.appendChild(aCopy);

Here is the complete example.
import javax.xml.parsers.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
class CopyQuestion {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 DOMSource source = new DOMSource(root);
 StreamResult result = new StreamResult(System.out);

 System.out.println("Before addition");
 transformer.transform(source, result);

 NodeList questions = doc.getElementsByTagName("question");
 Node aCopy = questions.item(0).cloneNode(true);
 ((Element)aCopy).setAttribute("id", "q3");
 ((Text)aCopy.getFirstChild()).replaceWholeText("What is XML?");
 root.appendChild(aCopy);

 System.out.println("\nAfter addition");
 transformer.transform(source, result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

JAVA AND XML 241

import javax.xml.parsers.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
class CopyQuestion {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse("questions.xml");
 Element root = doc.getDocumentElement();

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 DOMSource source = new DOMSource(root);
 StreamResult result = new StreamResult(System.out);

 System.out.println("Before addition");
 transformer.transform(source, result);

 NodeList questions = doc.getElementsByTagName("question");
 Node aCopy = questions.item(0).cloneNode(true);
 ((Element)aCopy).setAttribute("id", "q3");
 ((Text)aCopy.getFirstChild()).replaceWholeText("What is XML?");
 root.appendChild(aCopy);

 System.out.println("\nAfter addition");
 transformer.transform(source, result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

The resultant DOM tree is shown in Figure 10.17: .

“What is DOM?”

<question-paper>

<question>

id='q2'

<question>

“What are leaves?”

id='q1'

“What is DOM?”

<question-paper>

<question>

id='q2'

<question> <question>

“What are leaves?” “What is XML?”

id='q1'

Before After

id='q3'

Figure 10.17: Cloning and appending a question

If you run this program on "questions.xml", the output will look as shown in Figure 10.18:

Figure 10.18: Cloning a node in the DOM tree

10.9.4	 Java DTD Validation
Java also provides interfaces to validate an internal DTD. The following program takes an XML

file containing DTD as the command line argument and checks whether the document has been written
according to the DTD specification. It displays a diagnostic message if an error occurs.

import org.w3c.dom.*;
import javax.xml.parsers.*;
public class DTDValidator {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setValidating(true);
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse(args[0]);
 }catch(Exception e) {System.out.println(e);}
 }
}

242 ADVANCED JAVA PROGRAMMING

import org.w3c.dom.*;
import javax.xml.parsers.*;
public class DTDValidator {
 public static void main(String args[]) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setValidating(true);
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document doc = parser.parse(args[0]);
 }catch(Exception e) {System.out.println(e);}
 }
}

Consider the following xml file “ques.xml”:
<?xml version="1.0"?>
<!DOCTYPE question-paper [
 <!ELEMENT question-paper (question+)>
 <!ELEMENT question (#PCDATA)>
 <!ATTLIST question id ID #REQUIRED>

]>
<question-paper>
 <question id="q1">What is DOM?</question>
 <question id="q2">What are leaves?</question>

<question>What is DTD?</question>
</question-paper>

This XML document does not satisfy the DTD specification. DTD tells that every <question>
element must have an attribute “id”, but no “id” attribute is specified for the last question.

If this XML document is fed to our DTD validator, it will display error messages as shown in
Figure 10.19:

Figure 10.19: XML document validation against DTD

Java also provides interfaces to validate an XML document against an XML schema. The
following program takes two arguments: an XML document and an XML schema and performs
validation.

import java.io.File;
import javax.xml.parsers.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.validation.Schema;
import javax.xml.validation.SchemaFactory;
import javax.xml.validation.Validator;
import javax.xml.XMLConstants;
import org.w3c.dom.Document;
public class SchemaValidator {
 public static void main(String args[]) {
 try {
 String xmlFile = args[0], schemaFile = args[1];
 // build an XSD-aware SchemaFactory
 SchemaFactory schemaFactory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // get the xsd schema specifying the required format for the XML files.
 Schema schemaXSD = schemaFactory.newSchema(new File (schemaFile));

 // Get a Validator that can validate XML files according to the schema.
 Validator validator = schemaXSD.newValidator();

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 // Get a parser capable of parsing XML into a DOM tree
 DocumentBuilder parser = factory.newDocumentBuilder();

 // parse the XML purely as XML and get a DOM tree represenation.
 Document document = parser.parse(new File(xmlFile));

 // parse the XML DOM tree againts the XSD schema
 validator.validate(new DOMSource(document));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

JAVA AND XML 243

import java.io.File;
import javax.xml.parsers.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.validation.Schema;
import javax.xml.validation.SchemaFactory;
import javax.xml.validation.Validator;
import javax.xml.XMLConstants;
import org.w3c.dom.Document;
public class SchemaValidator {
 public static void main(String args[]) {
 try {
 String xmlFile = args[0], schemaFile = args[1];
 // build an XSD-aware SchemaFactory
 SchemaFactory schemaFactory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // get the xsd schema specifying the required format for the XML files.
 Schema schemaXSD = schemaFactory.newSchema(new File (schemaFile));

 // Get a Validator that can validate XML files according to the schema.
 Validator validator = schemaXSD.newValidator();

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 // Get a parser capable of parsing XML into a DOM tree
 DocumentBuilder parser = factory.newDocumentBuilder();

 // parse the XML purely as XML and get a DOM tree represenation.
 Document document = parser.parse(new File(xmlFile));

 // parse the XML DOM tree againts the XSD schema
 validator.validate(new DOMSource(document));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

KEYWORDS
Attr—Represents an attribute of an Element node

CDATASection—Represents a CDATA section in the
XML document

Cloning—Creation of an exact copy of an existing
node in the DOM tree

Comment—Represents a comment in an XML
document

Document—The W3C Document type node represents
an entire XML document. Only one Document type
node exists for each XML document

DocumentFragment—A "lightweight" or "minimal"
Document object that represents a portion of a document

DocumentType—Provides interfaces to get the
information about the document including the list of
entities defined for the document

DOM—A language-neutral and platform-independent
object model used to represent XML documents

DOM Core—Defines the basic set of interfaces and
objects for any structured documents

DOM tree—DOM models a document as a hierarchical
structure consisting of different kinds of nodes, which
constitute the DOM tree

Element—Represents an element in the XML
document

Entity—Represents a known, either unparsed or
parsed entity

HTML DOM—Defines interfaces and objects for HTML
documents only

Node—Represents a component of an XML document

Parsing—A procedure for creating a DOM tree from
an XML document

Text—Represents the textual content of an Element
type node

XML DOM—Specifies the standard set of objects and
interfaces for XML documents only

XML Validation—A procedure to verify whether an
XML document is written according to the constraints
specified in a DTD or a schema

SUMMARY
Document Object Model (DOM) is a language-neutral
and platform-independent object model used to
represent XML documents. DOM is standardized by

the World Wide Web Consortium (W3C). The W3C
DOM specification is divided into three major parts:
DOM Core, XML DOM, and HTML DOM.

244 ADVANCED JAVA PROGRAMMING

DOM models a document as a hierarchical structure
consisting of different kinds of nodes. Each of
these nodes represents a specific portion of the
document.

The primary objective of DOM is to identify

•	 �interfaces and objects to be used to represent, access,
and manipulate documents.

•	 �semantics of those objects and interfaces including both
attributes and behaviour.

•	 �collaboration and relationship among these objects
and interfaces.

Nodes in a DOM tree have structural relationships
among them. The topmost node is the root node. DOM
tree consists of many types of nodes. The primary
node types are Node, Element, Document, Text,
Attr, and Entity.

The primary data type for the entire DOM is the Node
interface. Every other kind of node inherits all the
properties and methods of the Node interface. Some
properties of the Node interface are read-only. Others
are read–write. Notable properties are childNodes,
nodeType, nodeName, nodeValue, firstChild,
lastChild, nextSibling, previousSibling,
etc. Java provides a read method for each of these
properties.

The Document node is another important type node,
which represents an entire XML document. It provides

several useful properties and methods that can be
used to navigate the DOM tree.

The Element type represents an element of an XML
document. DOM provides a set of useful properties
and methods on this type of nodes.

Java implements the W3C DOM specification as
a separate package, org.w3c.dom. Java provides
interfaces and objects together with methods and
properties, according to the DOM specification that
can be used to navigate and manipulate the DOM tree.

A node in the DOM may be referenced in several ways.
Broadly, we can categorize them as follows:

•	 �Start from the root node and use structural relationships
to reach other nodes.

•	 �Use the getElementById() method of the Document
object to access a particular node directly.

•	 �Use the getElementsByTagName() method on the
Document object to access all element nodes with the
common tag name specified.

A DOM tree may be transformed back to an XML
document, which can then be displayed on the
screen or can be stored in a file. This helps us to
visualize and verify the DOM tree after adding or
deleting nodes.

Java also provides interfaces to validate an
XML document against an internal DTD or an XML
schema.

WEB RESOURCES
http://java.sun.com/j2se/1.4.2/docs/api/
org/w3c/dom/package-summary.html
Package org.w3c.dom

http://java.sun.com/j2ee/1.4/docs/tutorial/
doc/JAXPDOM.html
Document Object Model

http://java.sun.com/j2se/1.4.2/docs/guide/
plugin/dom/index.html
Common DOM API

http://developers.sun.com/sw/building/
codesamples/dom/index.html

Java API for XML Processing API (JAXP) Using DOM

http://www.ibm.com/developerworks/xml/
library/x-domjava/
Effective XML processing with DOM and XPath in Java

http://www.java2s.com/Code/Java/XML/DOM-
Edit.htm
Java and DOM

EXERCISES
Objective-type Questions

	 1.	 What is the full form of DOM?
	 (a)	 Dynamic Object Model
	 (b)	 Distributed Object Model
	 (c)	 Document Object Model
	 (d)	 Dense Object Model

	 2.	 How many parts are there in the W3C DOM
specification?

	 (a)	 2	 (c)	 4
	 (b)	 3	 (d)	 5

JAVA AND XML 245

	 3.	 What is the number of parent nodes that a node
in the DOM tree can have?

	 (a)	 1	 (c)	 3
	 (b)	 2	 (d)	 4

	 4.	 How many Document nodes does a DOM tree
have?

	 (a)	 1	 (c)	 3
	 (b)	 2	 (d)	 4

	 5.	 Which of the following is used to inspect the type
of a node?

	 (a)	 type
	 (b)	 typeOfNode
	 (c)	 nodeType
	 (d)	 getNodeType

	 6.	 What is the value of the nodeName attribute for a
Text node?

	 (a)	 $text	 (c)	 #text#
	 (b)	 text#	 (d)	 #text

	 7.	 What is the value of nodeType attribute for a Text
node?

	 (a)	 1	 (c)	 3
	 (b)	 2	 (d)	 4

	 8.	 Which of the following has a valid nodeValue
attribute?

	 (a)	 Element	 (c)	 Entity
	 (b)	 Attr	 (d)	 Document

	 9.	 Which of the following has childNodes attributes?
	 (a)	 Attr	 (c)	 Entity
	 (b)	 Text	 (d)	 Element

	10.	 Nodes having a common parent are called
	 (a)	 Child	 (c)	 Sibling
	 (b)	 Parent	 (d)	 Descendant

	11.	 Which of the following refers to the root element
of an XML document?

	 (a)	 Document
	 (b)	 documentElement	
	 (c)	 Root
	 (d)	 rootElement

	12.	 Which of the following methods is used to create
an Element type node?

	 (a)	 newElement()
	 (b)	 getElement()
	 (c)	 createElement()
	 (d)	 element()

	13.	 Which of the following methods is used to create
a Text type node?

	 (a)	 createText()
	 (b)	newTextNode()
	 (c)	 newText()
	 (d)	 createTextNode()

	14.	 Which of the following methods is used to create
an Attr type node?

	 (a)	 createAttribute()
	 (b)	 createAttr()
	 (c)	 newAttribute()
	 (d)	 newAttr()

	15.	 Which of the following is used to add an attribute
to an Element node?

	 (a)	 setAttr()
	 (b)	 setAttribute()
	 (c)	 addAttribute()
	 (d)	 addAttr()

	16.	 Which of the following methods is used to get a
particular element?

	 (a)	 getElementsByTagName()
	 (b)	 returnElementById()
	 (c)	 getElementById()
	 (d)	 getElement()

	17.	 Which of the following attributes returns the name
of an element?

	 (a)	 elementName
	 (b)	 name
	 (c)	 tagName
	 (d)	 getName

	18.	 Which of the following methods is used to instruct
the parser to validate an XML document against
a DTD?

	 (a)	 setValidating()	
	 (b)	 validate()
	 (c)	 doValidate()
	 (d)	 getValidating()

	19.	 Which of the following methods is used to parse
an XML document?

	 (a)	 doParse()	 (c)	 parseXML()
	 (b)	 parse()	 (d)	 parseXMLDoc()

	20.	 Which of the following methods is used to clone
a node?

	 (a)	 doClone()
	 (b)	 cloneNode()
	 (c)	 clone()
	 (d)	 doCloneNode()

246 ADVANCED JAVA PROGRAMMING

Subjective-type Questions

	 1.	 How do you add a node at the beginning of a list
of child nodes?

	 2.	 Discuss how all the attributes of an element node
are obtained.

	 3.	 How do you add a node at the end of a list of child
nodes?

	 4.	 Describe how a DOM tree is saved in a file.

	 5.	 Write a program to display the content of a DOM
tree.

	 6.	 What is the difference between shallow clone and
deep clone?

	 7.	 Describe the procedure for validating XML
documents against a DTD.

	 8.	 Describe the procedure for validating XML
documents against a schema.

	 9.	 Discuss the difference between the nextSibling
and previousSibling properties with examples.

	10.	 Discuss the difference between the firstChild
and lastChild properties with examples.

CHAPTER – 11

Input/Output

Key Objectives
After completing this chapter readers will be able to—
•  understand what multi-threaded programs are
•  learn how to write multi-threaded programs
•  learn how to interrupt, suspend and resume threads
•  get an idea about inter-thread communication
•  understand what synchronized methods and blocks are

11.1	 INTRODUCTION
Often, applications process some input and generate some output. For example, applications may

read data from or write to a file, network etc. Java provides a rich set (probably too many) of classes
and interfaces as a separate package java.io for such Input and Output (I/O). Java also provides
another package java.nio containing Non-blocking I/O (NIO) API which, in some situations, can
give a big performance boost over blocking IO.

The huge number of options may be rather confusing to even expert programmers. In this chapter,
we shall give an overview of how all these classes are grouped with their purposes. This grouping
helps you in determining the purpose of an I/O class and finding a suitable one for a specific task.

11.2	 STREAMS
The I/O operation may pictorially be described as in Figure 11.1: It shows that a program reads

data from some resource called source and writes data to some resource called destination. The source

Figure 11.1: Principal of input and output

…….

Program
…….

Source Destinationdata in data out

248 ADVANCED JAVA PROGRAMMING

and destination can be anything that generates, or consumes data. Typical examples of such resources
include disk files, peripheral devices, network connections, buffers, pipes etc.

Since properties and behaviours of such resources vary, Java provides a unified way to read from
and write to such resources. It introduced the concept of stream that flows from one direction to the
other and may be used as a carrier of data. Data may be put to or got from the stream. If we put data to
the stream, it carries the data along its way. Similarly, we can retrieve data being carried by a stream.
Specifically, Java introduced stream classes to simulate this idea and is illustrated in Figure 11.2:

…….

Program
…….

Source DestinationInputStream/
Reader

OutputStream/
Writer

Figure 11.2: Concept of Streams

A program, which wants to read data from some source, uses an InputStream or a Reader to
connect to the source. To get the data from the source, the program simply reads them from the
stream. Similarly, if a programs wants to write data to some destination, it uses an OutputStream or
a Writer to connect to the destination. The program simply writes data to the stream and the stream
carries them to the destination.

The abstract classes InputStream and OutputStream represent streams that can carry only
sequence of bytes. On the other hand, Reader and Writer abstract classes can carry sequence of
characters. Java IO API also contains a large number of higher level sub-classes that can handle
all kinds of data, from primitive values to advanced objects. These classes may be grouped with
respect to their purposes such as File Access, Network Access, Array Access, Communication
(Pipes), Buffering, Filtering, Parsing, Formatting, String Access. A summary of these classes is
shown in Table 11.1:

Table 11.1: Important I/O classes

Byte stream Character stream

Input Output Input Output

Basic InputStream OutputStream Reader
InputStreamReader

Writer
OutputStreamWriter

Files FileInputStream
RandomAccessFile

FileOutputStream
RandomAccessFile

FileReader FileWriter

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter

Parsing PushbackInputStream
StreamTokenizer

 PushbackReader
LineNumberReader

Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter

Objects ObjectInputStream ObjectOutputStream

Strings StringReader StringWriter

Data DataInputStream DataOutputStream

Data -
Formatted

 PrintStream PrintWriter

Utilities SequenceInputStream

INPUT/OUTPUT 249

11.2.1	 Byte Stream
In this section, we shall demonstrate the operation of the most basic kind of streams, byte streams.

These are used to input or output 8-bit octets. All byte stream classes are sub-classes of InputStream
and OutputStream. There are many byte stream classes to work with different kinds of resources.
Some of the byte input/output stream classes and their hierarchy is shown in Figure 11.3:

OutputStream

FileOutputStream ByteArrayOutputStream ObjectOutputStream

PipedOutputStream

BufferedOutputStream

FilterOutputStream

DataOutputStreamPrintStream

InputStream

FileInputStream ByteArrayInputStream ObjectInputStream

StringBufferInputStream FilterInputStream

BufferedInputStream

PipedInputStream

PushbackInputStreamDataInputStream

Figure 11.3: Byte-based input/output stream class hierarchy

Files are a common source or destination of data. So let us consider files to illustrate the operation
of streams. The byte stream classes for other kind of resources are used in much the same way, except
that they are constructed in a different way.

For disk files, the byte stream classes are FileInputStream and FileOutputStream. These
classes act as connectors between a program and a disk file. For data input, we first create an instance
of FileInputStream using any one of many constructors. The most obvious one takes the name of
a file and is used as:

InputStream in = new FileInputStream("aFile.txt")

Since FileInputStream is a sub-class of InputStream, it is possible to use an InputStream type
reference. Pictorially, the situation may be described as follows:

…….

Program
…….

aFile.txt in

The program can now read data from the file by reading data from fis using one of its overloaded
read() methods.

int c = in.read();

250 ADVANCED JAVA PROGRAMMING

The read() method returns the first 8-bit of the file aFile.txt. Consider aFile.txt is a simple
text file whose content is

Test file

The read() method returns the first byte 01010100 (binary value of character ‘T’) as an integer.
So the least significant byte of a 4-byte integer will contain this value. The remaining bits will be set
to zero. So the resultant 32-bit (space is used only for clarity) will look like this:

00000000 00000000 00000000 01010100

However, note that read() returns an int value. If the input is a sequence of bytes, why doesn’t
read() return a byte value? Let us illustrates this.

The read() method returns a special value to indicate that the end of a file is reached. This
special value MUST be a value other than all possible values that can occur in a file. However, if
read() returns a byte, there will be no way to find such a special value to indicate the end of file.
This problem may be easily solved if read() returns an int. The special value is chosen as -1. Now,
if the file contains a -1, read() method returns it as:

00000000 00000000 00000000 11111111

However, if the read() method encounters the end of file, it returns a -1 as an integer, i.e. it
returns:

11111111 11111111 11111111 11111111

So, if the condition fis.read() != -1 evaluates to false, it indicates the end of file. The following
program prints the content of a file, whose name is taken as a command line argument:

// ByteStreamDemo.java
import java.io.*;
public class ByteStreamDemo {
 public static void main(String args[]) throws IOException {
 InputStream in = new FileInputStream(args[0]);
 int b;
 while((b = in.read()) != -1)
 System.out.print((char)b);
 in.close();
 }
}

Since, read() indeed returns a byte, it is always safe to cast the return value to a char (or even a
byte). It is always a good idea to close a file when it is no longer needed using close() method that
releases any system resources associated with the stream.

The following command prints the source code of the above program:
java ByteStreamDemo ByteStreamDemo.java

To write byte data to a file, FileOutputStream is used in the same way except that write()
method is used. The following program copies the content of one file to another:

import java.io.*;
public class FileCopy {
 public static void main(String args[]) throws IOException {
 InputStream in = new FileInputStream(args[0]);
 OutputStream out = new FileOutputStream(args[1]);
 int b;
 while ((b = in.read()) != -1) out.write(b);
 in.close();
 out.close();
 }
}

File names are supplied as command line arguments. The program uses a simple loop that reads
the input stream and writes the output stream, one byte at a time as shown:

INPUT/OUTPUT 251

…….

Program
…….

Source
file

target
file···00010011 00100010··· ···00010011 00100010···

Use the following command to copy the content of a file src.txt to dst.txt:
FileCopy src.txt dst.txt

11.2.2	 Character Stream
If files contain character data, it is better to use character-oriented streams. These streams

automatically translate sequence of bits to 16-bit Unicode characters and vice versa.
All character stream classes are sub-classes of Reader and Writer. There are also many character

stream classes to work with different kind of resources. Like byte streams, there are character stream
classes for disk files: FileReader and FileWriter. The following file copy program uses theses classes:

import java.io.*;
public class FileCopy1 {
 public static void main(String args[]) throws IOException {
 Reader in = new FileReader(args[0]);
 Writer out = new FileWriter(args[1]);
 int c;
 while ((c = in.read()) != -1) out.write(c);
 in.close();
 out.close();
 }
}

This program is very much similar except that it uses FileReader and FileWriter for input and
output in place of FileInputStream and FileOutputStream.

Note that character streams internally use byte streams to perform the physical I/O. For example,
FileReader uses FileInputStream, while FileWriter uses FileOutputStream. However, the
translation between characters and bytes is transparent to the users.

11.2.3	 Bridging Stream
Sometimes, you may not find a suitable character class for some resource. However, if you have

a byte class for that resource, you can convert it to the corresponding character class. Java provides
two classes for this purpose: InputStreamReader and OutputStreamWriter, which act as converters
from byte-to-character streams. The constructors of these classes take a byte stream and creates
instances of character stream. The following file copy program illustrates the use of these classes:

import java.io.*;
public class FileCopy2 {
 public static void main(String args[]) throws IOException {
 Reader in = new InputStreamReader(new FileInputStream(args[0]));
 Writer out = new OutputStreamWriter(new FileOutputStream(args[1]));
 int c;
 while ((c = in.read()) != -1) out.write(c);
 in.close();
 out.close();
 }
}

Note that there exists character classes for disk file. This program merely illustrates how to use
byte-to-character bridge classes.

252 ADVANCED JAVA PROGRAMMING

11.2.4	 Buffered Stream
For all streams discussed so far, each read/write is handled by the underlying OS. Since, each

read/write often triggers costly disk access, network activity, or other expensive activities, programs
using those streams may become inefficient.

Java provides some special buffered streams that can be used to reduce this overhead. Each read/
write request on these buffered streams does not always fire a native API. Instead, they use some
memory area called buffer. A read request on this buffered stream returns data from this buffer as
long as data is there. If the buffer is empty before reading, a larger chunk of data is pre-fetched using
a single native API call first and placed in the buffer. Similarly, a write request to this buffered stream
simply writes data to the buffer. If there is chance that the buffer will overflow, the entire data is written
using a single API call first. This way, buffered streams try to reduce the number of native API calls.

Java provides many buffered classes for byte and character-oriented streams. Their constructors
typically take an un-buffered stream. So we can create a buffered stream by simply passing an un-
buffered stream to the constructor.

11.2.4.1   Buffered Byte Stream
The names of buffered byte stream classes are BufferedInputStream and BufferedOutputStream.

The following is a file copy program that demonstrates the usage of these classes.
import java.io.*;
public class FileCopy3 {
 public static void main(String args[]) throws IOException {
 BufferedInputStream in = new BufferedInputStream(new
FileInputStream(args[0]));
 BufferedOutputStream out = new BufferedOutputStream(new
FileOutputStream(args[1]));
 int c;
 while ((c = in.read()) != -1) out.write(c);
 in.close();
 out.close();
 }
}

This program is similar to the program FileCopy.java. However, it takes significantly less
time to copy a large file. For example, when we copied a 1582778 (1.5 MB approx.) byte file using
FileCopy.java (in Linux), it showed the following output:

[root@radix ~]# time java FileCopy audit-1.8-1.src.rpm out.rpm

real 0m7.046s
user 0m1.565s
sys 0m5.442s

However, for our FileCopy3.java, it took significantly less time and showed the following output:
[root@radix ~]# javac FileCopy3.java
[root@radix ~]# time java FileCopy3 audit-1.8-1.src.rpm out.rpm

real 0m0.235s
user 0m0.214s
sys 0m0.017s

This suggests us to use buffered streams whenever possible.

11.2.4.2   Buffered Character Stream
The names of buffered byte stream classes are BufferedReader and BufferedWriter. The

following is a file copy program that demonstrates the usage of these classes.

INPUT/OUTPUT 253

import java.io.*;
public class FileCopy4 {
 public static void main(String args[]) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(args[0]));
 BufferedWriter out = new BufferedWriter(new FileWriter(args[1]));
 String line;
 while ((line = in.readLine()) != null) {
 out.write(line, 0, line.length());
 out.newLine();
 }
 in.close();
 out.close();
 }
}

Since a BufferedReader is a buffered stream of characters (i.e. string), for convenience,
it provides a readLine() method to read a line of characters (i.e. string).

11.2.5	 Reading From Keyboard
Programs often expect data from command line. We can do this in two ways: using standard

streams or using the class Console. Let us first use standard streams to read data from keyboard.

11.2.5.1   Reading Character
To read characters, we can use standard character stream Reader. The static System.in field

corresponds to keyboard input. Unfortunately, it is a byte stream. However, we can easily convert
it to a character stream using our bridge class InputStreamReader. The following program loops to
accept characters from the keyboard until the character ‘q’ is entered.

import java.io.*;
public class ReadFromKeyboard {
 public static void main(String args[]) throws IOException {
 Reader cin = new InputStreamReader(System.in);
 System.out.println("Enter characters, 'q' to quit.");
 char c;
 do {
 c = (char) cin.read();
 System.out.print(c);
 } while(c != 'q');
 cin.close();
 }
}

11.2.5.2   Reading String
This is a very common requirement in several types of applications where you have to read

strings from a keyboard. There are a few ways to do this. The following program uses the buffered
character stream BufferedReader.

import java.io.*;
public class ReadFromKeyboard1 {
 public static void main(String args[]) throws Exception {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Enter a line of text");
 String line = br.readLine();
 System.out.println("You entered: "+line);
 }
}

This reads an entire line of text and prints the same.

254 ADVANCED JAVA PROGRAMMING

11.2.6	 Console
To have more features, especially to read password (the characters should not echo) from command

line, the Console class may be used. To use this class, we first create an instance of it by invoking
static console() method of System class as follows:

Console c = System.console();

The password can be read using readPassword() method. The following program reads the login
name and password from the keyboard and displays them.

import java.io.*;
public class ConsoleDemo {
 public static void main (String args[]) throws IOException {
 Console c = System.console();
 String login = c.readLine("Login: ");
 char[] password = c.readPassword("Password: ");
 System.out.println(login+" "+(new String(password)));
 }
}

Note that a password is sensitive information and should not be displayed. The program merely
shows how to use the Console class. Note that the method readPassword() does not return a String.
Since Java String is immutable, it returns a character array, so that password can be overwritten, or
removed from the memory as soon as it is no longer needed.

11.3	 FORMATTING
Often it is convenient to work with neatly formatted data. Java formatting API assists us to

translate data into nicely formatted, human-readable form. These classes are byte stream PrintStream
and character stream PrintWriter. They add functionality to another output stream, specifically the
ability to print various data values conveniently. They basically provide three overloaded functions:
print(), printf(), and format(). If automatic flushing is enabled, unlike the PrintStream, which
flushes only when a newline character happens to be output, PrintWriter flushes when one of the
println(), printf(), or format() methods is invoked.

The print() and println() methods essentially output a single value after converting the value
using the appropriate toString() method. The following program illustrates the use of PrintStream
instance System.out.

public class PrintStreamDemo {
 public static void main(String args[]) {
 int i = 2, n = i*i;
 System.out.print("The square of ");
 System.out.print(i);
 System.out.println(" is " + n);
 }
}

It outputs the following result:
The square of 2 is 4

The printf() and format() methods are similar to printf() function in C language. They take
format string that consists of static text embedded with format specifiers. The following program
demonstrates it:

public class PrintStreamDemo1 {
 public static void main(String args[]) {
 int i = 2, n = i*i;
 System.out.printf("The square of %d is %d%n", i, n);
 System.out.format("%d * %d = %d", 2, 3, 2*3);
 }
}

INPUT/OUTPUT 255

Note that the methods in formatting classes do not throw any exceptions. So, we do not need to
include a try/catch block around such method call.

11.4	 DATA STREAMS
In addition to byte and character streams, Java provides classes, called data streams to handle

primitive type values as well as Strings. The following program demonstrates how to write different
types of values and read them back.

import java.io.*;
public class DataStreamDemo {
 public static void main(String args[]) throws Exception {
 DataOutputStream out = new DataOutputStream(new FileOutputStream("d.dat"));
 out.write(23); //byte data
 out.writeInt(32); //int data
 out.writeDouble(123.45); //double data
 out.close();
 DataInputStream in = new DataInputStream(new FileInputStream("d.dat"));
 int aByte = in.read();
 int anInt = in.readInt();
 double aDouble = in.readDouble();
 System.out.println(aByte+" "+anInt+" "+aDouble);
 in.close();
 }
}

Also notice that each specialized write is exactly matched by the corresponding specialized read.
It is up to the programmer to make sure that output types and input types are matched in this way.

11.5	 OBJECT STREAM
Java provides two powerful classes ObjectOutputStream and ObjectInputStream, which can

be used for object serialization and de-serialization respectively. Object serialization flattens objects
into an ordered, or serialized stream of bytes. These bytes can be stored persistently in a file or a
database or can even be sent through a network. The ordered stream of bytes can then be read at a
later time, or in another environment, to reconstruct the original objects. The last step is known as
de-serialization.

Specifically, writeObject() method of ObjectOutputStream performs the serialization.
The serialized data can be stored in a file, in an array, or can be sent through the network.
An instance of ObjectOutputStream is created accordingly. Similarly, the readObject() method
of ObjectInputStream performs the de-serialization. The data needed for de-serialization may
come from a file, an array or a network. An instance of ObjectInputStream is created accordingly.

The following program first serializes a String object and stores the resultant byte stream in a
file “d.dat”. It then reconstructs the object from the data stored in file “d.dat”.

import java.io.*;
public class ObjectStreamDemo {
 public static void main(String args[]) throws Exception {
 ObjectOutputStream out = new ObjectOutputStream(new
FileOutputStream("d.dat"));
 out.writeObject(new String("abc")); //String object
 out.close();
 ObjectInputStream in = new ObjectInputStream(new FileInputStream("d.dat"));
 String s = (String)in.readObject();
 System.out.println(s);
 in.close();
 }
}

256 ADVANCED JAVA PROGRAMMING

Note that a Java object is serializable if its class or any of its super-classes implements either the
java.io.Serializable interface or its sub-interface, java.io.Externalizable. These interfaces do
not contain any methods. They merely indicate that instances of classes implanting these interfaces
are serializable.

11.6	 READING/WRITING ARRAYS VIA STREAMS
Arrays are often used to temporarily store data, as well as source of data. For example, we may

load a file into an array, if file data is to be accessed many times. However, if a component expects a
stream instead of an array, how do you pass an array there? Don’t worry. As mentioned earlier, Java
provides I/O classes for virtually every scenario. In this case, it provides ByteArrayInputStream or
CharArrayReader for input and ByteArrayOutputStream or CharArrayWriter for output.

The following code snippet demonstrates how to use stream-based array classes:
byte[] bytes = new byte[1024];
//write data into byte array...
InputStream in = new ByteArrayInputStream(bytes);
//read data from InputStream.

OutputStream out = new ByteArrayOutputStream();
//write data to OutputStream...
byte[] bytes = out.toByteArray();
//read data from byte array...

11.7	 PIPES
Note that an input stream flows from a source to a program [Figure 11.4: (i)]. Similarly, an output

stream flows from a program to a destination [Figure 11.4: (ii)]. If we can join these two streams
[Figure 11.4: (iii)], then two programs can communicate.

…….

Sender
…….

PipedInputStream…….

Receiver
…….

PipedOutputStream

InputStream…….

Receiver
…….

…….

Sender
…….

OutputStream

Source Destination

(i) (ii)

(iii)

······00010011 10001101 10101010 00100010

Figure 11.4: Java streams (i) Input stream (ii) Output stream (iii) Pipes

Fortunately, Java provides two classes PipedInputStream and PipedOutputStream for this
purpose. A piped input stream is connected to a piped output stream. The piped input stream then
provides whatever data bytes are written to the piped output stream.

Typically, a sender thread first creates a PipedOutputStream as follows:
PipedOutputStream out = new PipedOutputStream();

INPUT/OUTPUT 257

Pictorially it looks like this:

…….

Sender
…….

PipedOutputStream

Another receiver thread then creates a PipedInputStream and connects to the previously created
PipedOutputStream as follows:

PipedInputStream in = new PipedInputStream(out);

The final arrangement is shown in the following:

···00010011 10001101 10101010 00100010···00010011 10001101 10101010 00100010··· ···

…….

Sender
…….

PipedInputStream…….

Receiver
…….

PipedOuputStream

This looks as if two programs are now connected using a single pipe. However, how will the
receiver access the PipedOutputStream? Typically a third thread (main thread) creates these two
streams, joins them and creates two new threads, passing one of these two streams. The following
program illustrates this:

import java.io.*;
class Sender extends Thread {
 PipedOutputStream output;
 Sender(PipedOutputStream o) {this.output = o;}
 public void run() {
 try {
 while(true) {
 int v = (int)(Math.random()*100);
 System.out.println("Sent: "+v);
 output.write(v);
 Thread.sleep(1000);
 }
 }catch(Exception e) {}
 }
}
class Receiver extends Thread {
 PipedInputStream input;
 Receiver(PipedInputStream i) {this.input = i;}
 public void run() {
 try {
 while(true) System.out.println("Received: "+input.read());
 }catch(Exception e) {}
 }
}
public class PipeDemo {
 public static void main(String args[]) throws IOException {

 PipedOutputStream out = new PipedOutputStream();
 PipedInputStream in = new PipedInputStream(out);

 new Receiver(in).start();
 new Sender(out).start();
 }
}

258 ADVANCED JAVA PROGRAMMING

The sender thread in the program indefinitely generates a random number and sends its output
stream. The received thread, in turn, reads and prints this value. A typical output of this program
looks like this:

Sent: 38
Received: 38
Sent: 28
Received: 28
Sent: 47
Received: 47
Sent: 49
Received: 49
Sent: 51
Received: 51
…

11.8	 FILE I/O
In addition to basic operations (open, read, write, close) on files, Java provides a set of classes

to work (create, delete, copying files and directories etc.) with file system in java.nio.file package
and its related package java.nio.file.attribute. If you are familiar with a file system, you
will find that this API is very intuitive and easy to use.

11.9	 PATH
You probably know that a file or a directory in a file system is identified by a sequence of names

called path. The Path interface, as its name implies, is a Java representation of a path in the file
system. This is one of the primary interfaces of java.nio.file package. This interface provides many
methods to perform different operations on paths such as accessing elements of the path, converting
the path to other forms, or extracting portions of a path.

11.9.1	 Creating a Path
A Path instance may easily be created using one of the overloaded get() methods of Paths helper

class. The get() method takes a path string, or a sequence of strings that when joined form a path
string. The following are some examples in Windows OS:

Path p = Paths.get("E:\\ajp\\io\\sample.txt");
Path p1 = Paths.get("E:/ajp/io/sample.txt");
Path p2 = Paths.get("sample.txt");
Path p3 = Paths.get("E:", "ajp","io", "sample.txt");
Path p4 = Paths.get("E:/ajp/io", "sample.txt");
Path p5 = Paths.get("E:", "ajp/io/sample.txt");

Note that the file or directory corresponding to a Path might not physically exist. However, we
can check the existence of the file/directory, create if it does not exist, open it, delete it, change its
permissions, and many more, using methods in the Files class.

11.9.2	 Retrieving Path Information
A path is a sequence of elements indentified by indices with highest element assigned index 0.

The Path interface defines numerous methods for retrieving individual elements or a subsequence
using these indices.

Path p = Paths.get("E:/ajp/io/sample.txt");
System.out.println("toString: "+ p);
System.out.println("getFileName: "+p.getFileName());
System.out.println("getNameCount: "+p.getNameCount());
System.out.println("getParent: "+p.getParent());
System.out.println("getRoot: "+ p.getRoot());
System.out.println("getName(0): "+p.getName(0));
System.out.println("subpath(0,3): "+p.subpath(0,3));

INPUT/OUTPUT 259Path p = Paths.get("E:/ajp/io/sample.txt");
System.out.println("toString: "+ p);
System.out.println("getFileName: "+p.getFileName());
System.out.println("getNameCount: "+p.getNameCount());
System.out.println("getParent: "+p.getParent());
System.out.println("getRoot: "+ p.getRoot());
System.out.println("getName(0): "+p.getName(0));
System.out.println("subpath(0,3): "+p.subpath(0,3));

A sample result of this code is:
toString: E:\ajp\io\sample.txt
getFileName: sample.txt
getNameCount: 3
getParent: E:\ajp\io
getRoot: E:\
getName(0): ajp
subpath(0,3): ajp\io\sample.txt

11.9.3	 Path Operations
There are also methods that manipulate a given path. The following sections illustrate some of them.

11.9.3.1   Removing Redundancy
A path may have redundant information. Consider the following paths:
E:/ajp/./io/sample.txt
E:/ajp/../ajp/io/sample.txt
E:/Net/../ajp/io/sample.txt

For example, the followings paths essentially represent the path E:/ajp/io/sample.txt. The
normalize() method returns a path with redundant name elements eliminated.

Path p = Paths.get("E:/Net/../ajp/io/sample.txt");
Path p1 = p.normalize();

The path p1 represents the same path as p with name string E:\ajp\io\sample.txt.

11.9.3.2   Converting to URI
If it is required to convert the path to a string that can be opened from a browser, we can use

toUri() method. For example:
Path p = Paths.get("E:/ajp/io/sample.txt");
java.net.URI u = p.toUri();; //u is file:///E:/ajp/io/sample.txt

The URI u has the name string file:///E:/ajp/io/sample.txt.

11.9.3.3   Joining Paths
Two paths can be joined using resolve() method as follows:
Path p = Paths.get("E:/ajp");
Path p1 = p.resolve("io/sample.txt"); //p1 is E:\ajp\io\sample.txt

The path p1 refers to the resultant path E:\ajp\io\sample.txt. If the path to resolve() method
itself is an absolute path, the method returns the supplied path itself.

11.9.4	 Comparing Paths
The Path interface provides a method equals() that allows us to check two paths for equality.

The startsWith() and endsWith() methods, on the other hand, may be used to check whether a
path begins or ends with a particular string.

Path p = Paths.get("E:/ajp/io/sample.txt");
Path p1 = Paths.get("E:/ajp/./io/sample.txt");

if(p.equals(p1.normalize()))
 System.out.println(p +" and "+p1+" are equal");

if(p.startsWith("e:/"))
 System.out.println("It belongs to drive E");

if(p.endsWith("sample.txt"))
 System.out.println("File name is sample.txt");

260 ADVANCED JAVA PROGRAMMING

Path p = Paths.get("E:/ajp/io/sample.txt");
Path p1 = Paths.get("E:/ajp/./io/sample.txt");

if(p.equals(p1.normalize()))
 System.out.println(p +" and "+p1+" are equal");

if(p.startsWith("e:/"))
 System.out.println("It belongs to drive E");

if(p.endsWith("sample.txt"))
 System.out.println("File name is sample.txt");

A sample result of this code snippet is
E:\ajp\io\sample.txt and E:\ajp\.\io\sample.txt are equal
It belongs to drive E
File name is sample.txt

11.10	 FILE
The final class Files is another important class in the java.nio.file package. It has a rich

set of static methods for reading, writing, and manipulating files and directories. These methods
typically operate on Path objects. The following sections illustrate how to perform different file
operations.

11.10.1	 Checking Existence
Note that the file or directory corresponding to a Path might not physically exist. However,

we can check the existence of the file/directory using exists() or notExists() methods of
Files class. They respectively return false and true if the file does not exist. Consider that the
file E:/ajp/io/sample.txt really exists. The following code shows the usage of these two
methods:

Path p = Paths.get("E:/ajp/io/sample.txt");
boolean b1 = Files.exists(p); //b1 is true
boolean b2 = Files.notExists(p); //b2 is false

11.10.2	 Creating File
The createFile() method of Files class creates a non-existent file. The following code

demonstrates this:
Path p = Paths.get("E:/ajp/io/blank.txt");
Files.createFile(p);

Similarly, the following code creates 9 files with name f1.jpg, f2.jpg,…, f9.jpg.
for(int i=1;i<10;i++)
Files.createFile(Paths.get("E:/ajp/io/f"+i+".jpg"));

Note that createFile() throws an IOException if the file already exists.

11.10.3	 Deleting File
Deleting a file is very easy and may be done using delete() method. The following code deletes

the 9 .jpg files created in the previous section.
for(int i=1;i<10;i++)
Files.delete(Paths.get("E:/ajp/io/f"+i+".jpg"));

Note that delete() method can even delete directories or links. For directories, the directory
must be empty, or the deletion fails. Also, if the file does not exist, a NoSuchFileException is thrown.

11.10.4	 Copying a File
We can programmatically copy files using overloaded copy() methods. The most obvious one

takes source and target file paths respectively.

INPUT/OUTPUT 261

Path src = Paths.get("E:/ajp/io/a.txt");
Path dst = Paths.get("E:/ajp/io/copyOfa.txt");
Files.copy(src, dst);

However, copy() fails if the target file already exists. Java defines some options in enum types
java.nio.file.StandardCopyOption and java.nio.file.LinkOption. The following shows how to
replace an existing file if it exists:

Files.copy(src, dst, REPLACE_EXISTING);

Don’t forget to use the following import statement:
import static java.nio.file.StandardCopyOption.*;

The copy() method can also copy directories. However, files inside the directory are not copied.
So, the target directory will be empty, even when the original directory contains files. To move files,
use move() method, which takes similar arguments.

11.10.5	 File Attribute
Note that different file systems have different notions of file attributes. So, Java groups related

attributes into views. A view specifies file system specific attributes (such as POSIX or DOS),
or some common attributes such as file ownership. The basic attributes that are required to be
supported by all file system implementations are specified by the view BasicFileAttributeView.
In addition, Java defines other views such as DosFileAttributeView, PosixFileAttributeView,
FileOwnerAttributeView, AclFileAttributeView, UserDefinedFileAttributeView etc. In this
book, we shall discuss only BasicFileAttributeView.

The following code illustrates how to obtain basic file attributes:
Path p = Paths.get("E:/ajp/io/sample.txt");
BasicFileAttributes attr = Files.readAttributes(p, BasicFileAttributes.class);

System.out.println("isDirectory: " + attr.isDirectory());
System.out.println("isOther: " + attr.isOther());
System.out.println("isRegularFile: " + attr.isRegularFile());
System.out.println("isSymbolicLink: " + attr.isSymbolicLink());
System.out.println("size: " + attr.size());
System.out.println("creationTime: " + attr.creationTime());
System.out.println("lastAccessTime: " + attr.lastAccessTime());
System.out.println("lastModifiedTime: " + attr.lastModifiedTime());

Don’t forget to use the following import statement:
import java.nio.file.attribute.*;

A sample output of this code is shown below:
isDirectory: false
isOther: false
isRegularFile: true
isSymbolicLink: false
size: 3110
creationTime: 2014-10-28T06:31:50.740781Z
lastAccessTime: 2014-10-28T06:31:50.740781Z
lastModifiedTime: 2014-10-28T13:04:30.644331Z

11.10.6	 Reading, Writing, Creating Files
Reading from and writing to files may be done using a pair of methods readAllBytes() and

write(). The following example illustrates this:
Path src = Paths.get("E:/ajp/io/sample.txt");
Path dst = Paths.get("E:/ajp/io/sample1.txt");
byte[] bytes = Files.readAllBytes(src);
Files.write(dst, bytes);

262 ADVANCED JAVA PROGRAMMING

Path src = Paths.get("E:/ajp/io/sample.txt");
Path dst = Paths.get("E:/ajp/io/sample1.txt");
byte[] bytes = Files.readAllBytes(src);
Files.write(dst, bytes);

This code reads all bytes of the file sample.txt and places them in a byte array. It then writes
the entire content of the array to the file sample1.txt. So, it is basically a file copy program. Java
provides a set of open options for different purposes such as truncating, appending, creating a new
(if one does not exist) etc. They have been defined in the java.nio.file.StandardOpenOption
enum type.

If you like to work with streams, Files class also provides provisions for them. The following
code snippet illustrates this:

Path src = Paths.get("E:/ajp/io/sample.txt");
Path dst = Paths.get("E:/ajp/io/sample1.txt");
InputStream in = Files.newInputStream(src);
OutputStream out = Files.newOutputStream(dst);
int b;
while((b = in.read()) != -1) out.write(b);

The Files class also provides methods to read/write file data using buffered character streams.
The following program illustrates this:

Charset charset = Charset.forName("US-ASCII");
BufferedReader reader = Files.newBufferedReader(src, charset);
BufferedWriter writer = Files.newBufferedWriter(dst, charset);
String line;
while ((line = reader.readLine()) != null)
 writer.write(line+"\n");

Don’t forget to use the following import statement:
import java.nio.charset.*;

11.10.7	 Random Access Files
Random access files allows us non-sequential (i.e. random), access to a file’s contents and are

represented by the java.nio.channels.FileChannel class. The only thing that we have to do is
to set the cursor at the designated place before reading/writing using its position() method. The
following program prints the first and last 10 characters of the file sample.text.

Path src = Paths.get("E:/ajp/io/sample.txt");
FileChannel fc = FileChannel.open(src, READ, WRITE);
ByteBuffer copy = ByteBuffer.allocate(10);
fc.read(copy);
copy.flip();

while (copy.hasRemaining()) System.out.print((char)copy.get());
copy.flip();
fc.position(fc.size()-10);
System.out.println();
fc.read(copy);
copy.flip();
while (copy.hasRemaining()) System.out.print((char)copy.get());

Consider the content of this file is:
First line.
Second line.
Last line.

Then the above code results in the following output:
First line
Last line.

INPUT/OUTPUT 263

11.10.8	 Working with Directories
Some methods in Files class do not work properly for directories. For example, although copy()

method can copy a directory, it cannot copy its contents. Moreover, there is no method to perform
some directory specific operations such as listing directory contents, creating a directory etc. The
following sections describe how to work with directories.

11.10.8.1   Listing Directory Contents
To find the contents of a directory, we first get DirectoryStream<Path> object using

newDirectoryStream(Path) method. The object basically contains a list of file/directory paths which
can be obtained by iterating the object. The following program shows how to print the contents
of a directory:

import java.nio.file.*;
import java.io.*;
public class ListingDirectory {
 public static void main(String args[]) throws Exception {
 Path dir = Paths.get(args[0]);
 DirectoryStream<Path> stream = Files.newDirectoryStream(dir);
 for (Path file: stream)
 System.out.println(file.getFileName());
 }
}

This method takes a directory name as a command line argument and displays the entire contents
of a directory: files, links, subdirectories, and hidden files.

11.10.9	 Walking Directory Tree
The program in the previous section only prints the content of a given directory. However, it does

not look in the sub-directories recursively. The following program recursively traverses a directory
tree and prints all the file/directory names on its way:

import java.nio.file.*;
import java.io.*;
public class ListingDirectory1 {
 public static void main(String args[]) throws Exception {
 printDir(args[0]);
 }
 public static void printDir(String path) throws Exception {
 Path dir = Paths.get(path);
 DirectoryStream<Path> stream = Files.newDirectoryStream(dir);
 for (Path p: stream) {
 System.out.println(p.toAbsolutePath());
 if(Files.isDirectory(p))
 printDir(path+"/"+p.getFileName());
 }
 }
}

The directory to be traversed is specified as a command line argument. To visit all the files in a file
tree recursively, we can also use FileVisitor interface, which specifies the required behaviour at key
points in the traversal process: when a file is visited, before a directory is accessed, after a directory is
accessed, or when a failure occurs. The interface has four methods, visitFile(), preVisitDirectory(),
postVisitDirectory(), visitFileFailed(), which correspond to these situations respectively.

To visit the directory tree, we write a class implementing this interface. However, don’t worry.
You don’t have to implement all methods in all the situations. For example, the following programs
visit a given directory tree and prints and deletes .class files in its way.

264 ADVANCED JAVA PROGRAMMING

import java.nio.file.*;
import java.io.*;
import static java.nio.file.FileVisitResult.*;
import java.nio.file.attribute.*;
class ClassFileRemover extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path file, BasicFileAttributes attr) throws IOException{
 if(file.toString().endsWith(".class")) {
 Files.delete(file);
 }
 return CONTINUE;
 }
}
public class DirectoryWalkDemo {
 public static void main(String args[]) throws IOException {
 Files.walkFileTree(Paths.get(args[0]), new ClassFileRemover());
 }
}

Note that this program deletes files in the given directory. So, choose a directory that does not
contain any important file or take a backup before running this program on that directory.

11.10.10   Watching Directory
Java 7 added an extremely powerful feature in NIO package called Watch Service, which allows

applications to monitor Watchable objects (such as directories and files) for various events such as
creation, modification and deletion. For example, to recover accidentally deleted files, we may use
a watch service to monitor a directory for creating/updating files/directories under it so that we can
save a backup copy somewhere else.

The watch service is represented by the WatchService class. To get the service, we first create a
WatchService instance as follows:

WatchService watcher = FileSystems.getDefault().newWatchService();

A watch service watches objects registered for certain events and notifies the service user if any
such events occur on those objects. Any object whose class implements Watchable interface may
be watched. The Path class is perfect for this job. A Watchable object is registered with a watch
service by invoking its register() method. It takes a WatchService to register with and one or
more events to be monitored on the object. The valid events have been defined in java.nio.file.
StandardWatchEventKinds class. The following is an example:

Path dir = Paths.get("E:/ajp/io/temp");
WatchKey key = dir.register(watcher, StandardWatchEventKinds.ENTRY_MODIFY);

The register() method returns a WatchKey which represents a registration of a Watchable
object with a WatchService. A watch key goes through different states in its lifetime. It is in the
ready state when created first. On detecting an event (represented by WatchEvent), the key goes in
the signaled state, is queued and can be retrieved by consumers using poll() or take() methods
to retrieve keys.

WatchKey key = watcher.take();

If a key is in signaled state and events are detected further, they are added to the key. However, a
signaled key is not re-queued for retrieval from the watch service. Events are retrieved (and removed)
from key by invoking its pollEvents() method and are processed further.

for (WatchEvent<?> e : key.pollEvents()) {
 //process event...
}

INPUT/OUTPUT 265

The WatchEvent interface defines a set of functions to find necessary information about the event
such as its kind, context it occurred on etc. A key goes in the signaled state, remains in that state until
its reset() method is invoked to return the key to the ready state. So, to get the key from the watch
service, don’t forget to reset the key as follows:

k.reset();

The processing code usually goes in a loop so that processing goes on continuously. The following
program installs a watch service for a specified directory, for all kinds of events and prints the kind
of event and context.

import java.nio.file.*;
import static java.nio.file.StandardCopyOption.*;
public class WatchServiceDemo {
 public static void main(String args[]) throws Exception {
 WatchService watcher = FileSystems.getDefault().newWatchService();
 Path dir = Paths.get(args[0]);
 WatchKey key = dir.register(watcher, StandardWatchEventKinds.ENTRY_MODIFY,
StandardWatchEventKinds.ENTRY_CREATE, StandardWatchEventKinds.ENTRY_DELETE);
 while(true) {
 WatchKey k = watcher.take();
 for (WatchEvent<?> e: key.pollEvents()) {
 System.out.println(e.kind()+" "+e.context());
 }
 k.reset();
 }
 }
}

However, the above program does not consider the sub-directories recursively. Let us write a
powerful program that installs a watch service for a specified directory and all of its sub-directories
and saves a copy as backup to another specified directory whenever events such as file/directory
creation of modification occur. This ensures to recover the file from backup directory, even if a file
is deleted from the source directory.

import java.nio.file.*;
import static java.nio.file.LinkOption.*;
import java.nio.file.attribute.*;
import java.io.*;
import java.util.*;
import static java.nio.file.StandardCopyOption.*;

public class WatchD implements Runnable {
 private final WatchService watcher =
FileSystems.getDefault().newWatchService();
 private final Map<WatchKey,Path> keys = new HashMap<WatchKey,Path>();
 Path src, dst;

 WatchD(Path dir, Path dir1) throws IOException {
 src = dir; dst = dir1;
 register(dir);
 }

 private void register(Path dir) throws IOException {
 Files.walkFileTree(dir, new SimpleFileVisitor<Path>() {
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes
attrs) throws IOException {
 WatchKey key = dir.register(watcher,
StandardWatchEventKinds.ENTRY_CREATE, StandardWatchEventKinds.ENTRY_MODIFY);
 keys.put(key, dir);
 return FileVisitResult.CONTINUE;
 }
 });
 new Thread(this).start();
 System.out.println("Ready");
 }

 public void run() {
 while(true) {
 WatchKey key;
 try {
 key = watcher.take();
 System.out.println(key);
 } catch (InterruptedException x) { return; }

 Path dir = keys.get(key);
 if (dir == null) {
 System.err.println("WatchKey not recognized!!");
 continue;
 }

 for (WatchEvent<?> event: key.pollEvents()) {
 WatchEvent.Kind kind = event.kind();
 if (kind == StandardWatchEventKinds.OVERFLOW) continue;

 WatchEvent<Path> ev = (WatchEvent<Path>)event;
 Path name = ev.context();
 Path child = dir.resolve(name);
 System.out.format("%s: %s\n", event.kind().name(), child);
 Path r = src.relativize(child);
 Path to = Paths.get(dst+"/"+r);//, from = Paths.get(src+"/"+r);
 try {
 Files.copy(child, to, REPLACE_EXISTING);
 }catch(Exception e) {
 Path p1 = Paths.get(src.toString());
 Path p2 = Paths.get(dst.toString());
 for(int i=0;i<r.getNameCount();i++) {
 p1 = p1.resolve(r.getName(i));
 p2 = p2.resolve(r.getName(i));
 try {
 Files.copy(p1, p2, REPLACE_EXISTING);
 }catch(Exception e1) {System.out.println("again"+e);}
 }
 }

 if ((kind == StandardWatchEventKinds.ENTRY_CREATE) &&
Files.isDirectory(child, NOFOLLOW_LINKS)) {

266 ADVANCED JAVA PROGRAMMING

import java.nio.file.*;
import static java.nio.file.LinkOption.*;
import java.nio.file.attribute.*;
import java.io.*;
import java.util.*;
import static java.nio.file.StandardCopyOption.*;

public class WatchD implements Runnable {
 private final WatchService watcher =
FileSystems.getDefault().newWatchService();
 private final Map<WatchKey,Path> keys = new HashMap<WatchKey,Path>();
 Path src, dst;

 WatchD(Path dir, Path dir1) throws IOException {
 src = dir; dst = dir1;
 register(dir);
 }

 private void register(Path dir) throws IOException {
 Files.walkFileTree(dir, new SimpleFileVisitor<Path>() {
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes
attrs) throws IOException {
 WatchKey key = dir.register(watcher,
StandardWatchEventKinds.ENTRY_CREATE, StandardWatchEventKinds.ENTRY_MODIFY);
 keys.put(key, dir);
 return FileVisitResult.CONTINUE;
 }
 });
 new Thread(this).start();
 System.out.println("Ready");
 }

 public void run() {
 while(true) {
 WatchKey key;
 try {
 key = watcher.take();
 System.out.println(key);
 } catch (InterruptedException x) { return; }

 Path dir = keys.get(key);
 if (dir == null) {
 System.err.println("WatchKey not recognized!!");
 continue;
 }

 for (WatchEvent<?> event: key.pollEvents()) {
 WatchEvent.Kind kind = event.kind();
 if (kind == StandardWatchEventKinds.OVERFLOW) continue;

 WatchEvent<Path> ev = (WatchEvent<Path>)event;
 Path name = ev.context();
 Path child = dir.resolve(name);
 System.out.format("%s: %s\n", event.kind().name(), child);
 Path r = src.relativize(child);
 Path to = Paths.get(dst+"/"+r);//, from = Paths.get(src+"/"+r);
 try {
 Files.copy(child, to, REPLACE_EXISTING);
 }catch(Exception e) {
 Path p1 = Paths.get(src.toString());
 Path p2 = Paths.get(dst.toString());
 for(int i=0;i<r.getNameCount();i++) {
 p1 = p1.resolve(r.getName(i));
 p2 = p2.resolve(r.getName(i));
 try {
 Files.copy(p1, p2, REPLACE_EXISTING);
 }catch(Exception e1) {System.out.println("again"+e);}
 }
 }

 if ((kind == StandardWatchEventKinds.ENTRY_CREATE) &&
Files.isDirectory(child, NOFOLLOW_LINKS)) {

 try {
 register(child);
 } catch (IOException x) {}
 }
 }
 boolean valid = key.reset();
 }
 }
 public static void main(String[] args) throws Exception {
 new WatchD(Paths.get(args[0]), Paths.get(args[1]));
 }
}

To use this program, pass source and back directory as follows:
java WatchD e:/ajp e:/bkp/ajp

Start this program and work on a directory peacefully without worrying about files/directories
getting deleted accidentally.

INPUT/OUTPUT 267

KEYWORDS
Buffered stream—Special streams that internally use
buffers and exhibit better performance

BufferedReader—A character-oriented buffered
stream used to read data

Console—A Java class used to read data from
keyboard

Data Streams—Java stream classes used to handle
primitive type values as well as Strings

Files—A Java class that has a rich set of static
methods for reading, writing, and manipulating files
and directories

InputStream—A byte-oriented stream from which
data can be read

ObjectOutputStream—A Java class used for object
serialization

ObjectInputStream— A Java class used for object
de-serialization

Object Streams—Java stream classes used for object
serialization and de-serialization

OutputStream—A byte-oriented stream to which data

can be written

Path—A sequence of names used to identify a file or
a directory in a file system

PrintStream—A byte stream assists us to translate
data into nicely formatted, human-readable form

PrintWriter—A character stream assists us to translate
data into nicely formatted, human-readable form

PrintWriter—A character-oriented buffered stream
used to write data

Reader—A character-oriented stream from which data
can be read

Streams—A logical entity that flows from one direction
to the other and may be used as a carrier of data

Watch Service—An I/O service which allows
applications to monitor Watchable objects

Watchable objects—The kind of objects a watch
service can monitor

Writes—A character-oriented stream to which data
can be written

SUMMARY
Java provides a rich set (probably too many) of
classes and interfaces as a separate package java.
io for I/O. It introduced the concept of stream that
flows from one direction to the other and may be used
as a carrier of data. A stream can be byte-oriented or
character-oriented. The abstract classes InputStream
and OutputStream represent streams that can carry
only sequence of bytes. On the other hand, Reader
and Writer abstract classes can carry sequence of
characters. Java IO API also contains a large number
of higher level sub-classes that can handle all kinds
of data, from primitive values to advanced objects.

All byte stream classes are sub-classes of InputStream
and OutputStream. Similarly, all character stream
classes are sub-classes of Reader and Writer. Java
also provides two classes InputStreamReader and
OutputStreamWriter, which act as converters from
byte-to-character streams.

Java provides some special buffered streams that
can be used to reduce overhead. For each read/write
request on these buffered streams does not always
fire a native API. Instead they use some memory area
called buffer.

Java formatting API assists us to translate data
into nicely formatted, human-readable form. These
classes are byte stream PrintStream and character
stream PrintWriter. Java also provides classes,
called data streams to handle primitive type values as
well as Strings. Java provides two powerful classes
ObjectOutputStream and ObjectInputStream and
that can be used for object serialization and de-
serialization respectively.

The classes PipedInputStream and Piped
OutputStream are used to connect two programs so
that they can exchange data.

In addition to basic operations (open, read, write,
close) on files, Java provides a set of classes to work
(create, delete, copying files and directories etc.)
with file system in java.nio.file package and its
related package java.nio.file.attribute. A file or
a directory in a file system is identified by a sequence
of names called path. The Path interface, as its name
implies, is a Java representation of a path in the file
system. The final class Files is another important
class which has a rich set of static methods for reading,
writing, and manipulating files and directories.

268 ADVANCED JAVA PROGRAMMING

EXERCISES
Objective-type Questions

	 1.	 Which of these packages contain classes and
interfaces used for input and output operations
of a program?

	 (a)	 java.util.io	 (c)	 java.io
	 (b)	 java.lang.io	 (d)	 java.lang

	 2.	 Which of these methods of InputStream is used to
read integer representation of the next available
byte input?

	 (a)	 getInt()	 (c)	 readInt()
	 (b)	 read()	 (d)	 getInteger()

	 3.	 Which of these classes is used for input and output
operation when working with bytes?

	 (a)	 Bytes	 (c)	 Writer
	 (b)	 Reader	 (d)	 InputStream

	 4.	 Which of these classes is not a member class of
java.io package?

	 (a)	 Integer	 (c)	 Writer
	 (b)	 Reader	 (d)	 StringReader

	 5.	 Which of these classes is used to read bytes from
a file?

	 (a)	 FileReader
	 (b)	 FileWriter
	 (c)	 FileInputStream
	 (d)	 InputStreamReader

	 6.	 Which of the following data types is returned by
every method of OutputStream?

	 (a)	 int
	 (b)	 float
	 (c)	 byte
	 (d)	 None of the mentioned

	 7.	 Which of these interfaces is not a member of Java.
io package?

	 (a)	 DataInput	 (c)	 ObjectFilter
	 (b)	 ObjectInput	 (d)	 FileFilter

	 8.	 Which of the following is a method of ObjectOutput
interface used to finalize the output state so that
any buffer is cleared?

	 (a)	 clear()	 (c)	 fflush()
	 (b)	 flush()	 (d)	 close()

	 9.	 Which of these is a method of ObjectOutput
interface used to write the object to input or output
stream as required?

	 (a)	 write()	 (c)	 StreamWrite()
	 (b)	 print()	 (d)	 writeObject()

	10.	 Which of the following is a method to clear all the
data present in output buffers?

	 (a)	 clear()	 (c)	 fflush()
	 (b)	 flush()	 (d)	 close()

	11.	 Which of the following classes is used to read
characters in a file?

	 (a)	 FileReader	 (c)	 FileInputStream
	 (b)	 FileWriter	 (d)	 InputStreamReader

	12.	 Which of these methods is used for writing bytes
to an outputstream?

	 (a)	 put()	 (c)	 printf()
	 (b)	 print()	 (d)	 write()

	13.	 Which of the following classes is not related to
input and output stream in terms of functioning?

	 (a)	 File	 (c)	 InputStream
	 (b)	 Writer	 (d)	 Reader

Java 7 added an extremely powerful feature in
NIO package called Watch Service, which allows
applications to monitor Watchable objects (such

as directories and files) for various events such as
creation, modification and deletion.

WEB RESOURCES
http://www.tutorialspoint.com/java/java_

files_io.htm
Java - Streams, Files and I/O

https://docs.oracle.com/javase/tutorial/

essential/io/
Lesson: Basic I/O

http://tutorials.jenkov.com/java-io/index.

html
Java IO Tutorial

http://www.mkyong.com/tutorials/java-io-

tutorials/
Java I/O Tutorial

INPUT/OUTPUT 269

	14.	 Which of the following is specified by a File
object?

	 (a)	 a file in disk	 (c)	 directory in disk
	 (b)	 directory path	 (d)	 None of the mentioned

	15.	 Which of these methods of FileReader class is
used to read characters from a file?

	 (a)	 read()	 (c)	 get()
	 (b)	 scanf()	 (d)	 getInteger()

	16.	 Which of these is an interface for control over
serialization and deserialization?

	 (a)	 Serializable	 (c)	 FileFilter
	 (b)	 Externalization	 (d)	 ObjectInput

	17.	 Which of these classes can be used to implement
input stream that uses a character array as the
source?

	 (a)	 BufferedReader
	 (b)	 FileReader
	 (c)	 CharArrayReader
	 (d)	 FileArrayReader

	18.	 Which of these interfaces extends DataOutput
interface?

	 (a)	 Serializable	 (c)	 ObjectOutput
	 (b)	 Externalization	 (d)	 ObjectInput

	19.	 Which of these is the method for testing whether
the specified element is a file or a directory?

	 (a)	 IsFile()	 (c)	 Isfile()
	 (b)	 isFile()	 (d)	 isfile()

	20.	 Which of the following is a process of writing the
state of an object to a byte stream?

	 (a)	 Serialization	 (c)	 File Filtering
	 (b)	 Externalization	 (d)	 All of the mentioned

	21.	 Which of these is a method to clear all the data
present in output buffers?

	 (a)	 clear()	 (c)	 fflush()
	 (b)	 flush()	 (d)	 close()

	22.	 Which of the following processes occur
automatically by java run time system?

	 (a)	 Serialization
	 (b)	 Garbage collection
	 (c)	 File Filtering
	 (d)	 All of the mentioned

	23.	 Which of these classes can return more than one
character to be returned to input stream?

	 (a)	 BufferedReader
	 (b)	 Bufferedwriter

	 (c)	 PushbachReader
	 (d)	 CharArrayReader

	24.	 DataInput is
	 (a)	 an interface that defines methods to read

primitive data types.
	 (b)	 an abstract class defined in java.io.
	 (c)	 a class we can use to read primitive data types.
	 (d)	 an interface that defines methods to open

files.

	25.	 Which are the valid ways to create DataInputStream
streams?

	 (a)	 new DataInputStream(new
FileInputStream(“in.dat”);

	 (b)	 new DataInputStream(“in.dat”, “r”);
	 (c)	 new DataInputStream(“in.dat”)
	 (d)	 new DataInputStream(new File(“in.dat”));

	26.	 Given that the file is a File object, which of the
following are legal statements to create a new file?

	 (i)	 file.create();
	 (ii)	 FileOutputStream fos = new FileOutput

Stream(file);
	 (iii)	 FileWrter out = new FileWriter(file);
	 (iv)	 FileInputStream fis = new FileInput

Stream(file);
	 (v)	 RandomAccessFile raf = new Random

AccessFile(file);
	 (a)	 (ii), (iii) and (iv)
	 (b)	 (ii), (iv) and (v)
	 (c)	 (ii) and (iii)
	 (d)	 (ii), (iii) and (v)

	27.	 Which exception is thrown by the read() method
of InputStream class?

	 (a)	 Exception
	 (b)	 IOException
	 (c)	 FileNotFoundException
	 (d)	 ReadException

	28.	 Which of the following statements are true?
	 (i)	 Unicode characters are all 16 bits.
	 (ii)	 UTF characters are all 24 bits.
	 (iii)	 Reader class has methods that can read

integers and floats.
	 (iv)	 File class may be used to rename a file.
	 (v)	 DataOutputStream objects are used to

write primitive data to a file.
	 (a)	 (i), (iii), (iv) and (v)
	 (b)	 (i), (iv) and (v)
	 (c)	 (i), (ii) and (iv)
	 (d)	 (ii), (iv) and (v)

270 ADVANCED JAVA PROGRAMMING

Subjective-type Questions

	 1.	 How would you determine the MIME type of a file?

	 2.	 Show the list of all file names from a folder.

	 3.	 Write a program to get the list of all files from a folder.

	 4.	 How do you read file content using byte array?

	 5.	 Write the steps needed to read file content line by
line in Java?

	 6.	 Write an example that counts the number of times
a particular character, such as e, appears in a file.
The character can be specified at the command
line. You can use xanadu.txt as the input file.

	 7.	 Explain the steps required to read property file in
static context.

	 8.	 How do you read input from console in Java?

	 9.	 Write a program to get file list from a folder filtered
by extension .java?

	10.	 How do you get file URI reference?

	11.	 When invoking format, what is the best way to
indicate a new line?

	12.	 How do you store and read objects from a file?

	13.	 Write a program to create and store property file
dynamically?

	14.	 How do you store property file as xml file?

	15.	 How do you get file last modified time?

	16.	 Filter the files by file extensions and show the file
names.

	17.	 How do you convert byte array to inputstream?

	18.	 How do you convert inputstream to reader or
BufferedReader?

	19.	 The file datafile begins with a single long value
that tells you the offset of a single int piece of data
within the same file. Write a program that gets the
int piece of data. What is the int data?

	20.	 What class and method would you use to read
a few pieces of data that are at known positions
near the end of a large file? How do you convert
byte array to reader or BufferedReader?

	21.	 How do you set file permissions in Java?

	22.	 How do you read a file using BufferedInputStream?

	23.	 What method(s) would you use to determine
whether a file is a symbolic link?

	24.	 How do you create temporary file in Java?

	25.	 Write a program to write or store data into
temporary file in Java?

	26.	 How do you delete temporary files in Java?

	27.	 How do you write string content to a file in Java?

	28.	 Write a program to write byte content to a file in Java?

Chapter 12	 Basic Networking

Chapter 13	 Socket Programming

Chapter 14	 Remote Method Invocation

Chapter 15	 Java Mail API

Chapter 16	 Applets

Chapter 17	 Java XML-RPC

Chapter 18	 Java and SOAP

PART TWO
NETWORK

PROGRAMMING

CHAPTER – 12

Basic Networking

Key Objectives

After completing this chapter readers will be able to—
•  get an overview about the Java network classes and interfaces
•  Retrieve information about network interfaces
•  know how to use URL and URLConnection classes
•  access web pages using HTTP and Java network APIs
•  know how to encode/decode URL
•  use proxies and proxy selectors in Java networking applications

12.1	 JAVA AND THE NET
Java has some distinct advantages over other programming languages as far as network

applications are concerned. One of the important features of Java is that it supports 16-bit Unicode
for International character sets, which is still difficult to implement in other languages. In addition,
Java can excellently handle network security issues. These features together with other features such
as platform independence and garbage collection allow us to develop efficient and elegant network
applications without worrying about the system crashes, spread of viruses, or stealing of sensitive data.

This chapter demonstrates how to use Java network APIs to write basic network programs easily
and quickly.

12.2	 JAVA NETWORKING CLASSES AND INTERFACES
Java, like other programming languages, provides well-designed classes and interfaces (APIs) to

most network features. Table 12.1 shows some of the commonly used network classes and interfaces.
The network classes and interfaces are provided basically as three packages java.net, java.rmi,
and javax.mail. The first two are parts of the JVM (Java Virtual Machine) and the last one can be
downloaded from Oracle’s website. With this rich set of interfaces, writing network programs is quite
simple. Programmers having experience in network programming in other languages can readily

274 ADVANCED JAVA PROGRAMMING

discover how easy it is to develop the same programs in Java. This chapter guides you through some of
the basic networking classes and interfaces and provides examples. Advanced network programming
concepts may be found in many chapters later.

Table 12.1: Java networking classes and interfaces

NetworkInterface InetAddress ServerSocket Socket

DatagramSocket DatagramPacket URL URLConnection

HttpURLConnection InetSocketAddress SocketAddress Authenticator

PasswordAuthentication MulticastSocket URLEncoder URLDecoder

Remote Naming Registry LocateRegistry

UnicastRemoteObject RMISecurityManager RMISocketFactory RMIClassLoader

RemoteServer RemoteObject Session MimeMessage

Transport Store Folder Message

URLName Header ContentType InternetAddress

MimeBodyPart MimeMultipart InternetHeaders MimeUtility

12.3	 GETTING NETWORK INTERFACES
Before developing actual network applications, let us first work with the network interfaces

available on a host. A network interface is usually a Network Interface Card (NIC), that acts as a
point of interconnection between a computer and other devices. Each network interface is represented
by the Java class NetworkInterface.

Systems often run with multiple network interfaces such as wired Ethernet (802.3), WiFi (802.11
a/b/g), Bluetooth (802.15.4) etc. An application can use NetworkInterface to specify which NIC to
use for a particular network activity.

This class has no public constructor. However, it has many static methods such as
getNetworkInterfaces(), getByInetAddress(), getByName(), which can retrieve the interface
details from the system. The first one returns the complete list of interfaces on the machine. The
last two are used when the IP address or the name of the particular interface is already known. The
following example program lists all the network interfaces and their sub-interfaces (if any).

//GetNetworkInterfaces.java
import java.net.*;
import java.util.*;
class GetNetworkInterfaces {
 public static void main(String args[]) throws Exception {
 Enumeration<NetworkInterface> intfs =
NetworkInterface.getNetworkInterfaces();
 while(intfs.hasMoreElements()) {
 NetworkInterface intf = intfs.nextElement();
 System.out.println("\nInterface: "+intf.getName());
 System.out.println("Display name: "+intf.getDisplayName());

 Enumeration<NetworkInterface> subIfs = intf.getSubInterfaces();
 for (NetworkInterface subIf : Collections.list(subIfs)) {
 System.out.printf("\tSub Interface : "+subIf.getName());
 System.out.printf("\tSub Interface Display
name :"+subIf.getDisplayName());
 }
 }
 }
}

BASIC NETWORKING 275

Network interfaces may have children interfaces, called sub-interfaces, which may be obtained
using its getSubInterfaces() method. Similarly, if a network interface is a sub-interface, getParent()
returns parent interface. Compile the program using the following command:

javac GetNetworkInterfaces.java

Now, run the program as follows:
java GetNetworkInterfaces

A sample output of this program is shown below:
Interface: lo
Display name: Software Loopback Interface 1

Interface: eth3
Display name: Realtek PCIe GBE Family Controller

Interface: net4
Display name: Atheros AR9285 802.11b/g/n WiFi Adapter

...

We may sometimes like to use a specific interface for data communication. We can query the
system for the desired interface by its name as follows:

NetworkInterface intf = NetworkInterface.getByName("net4");

This interface can then be used subsequently for sending and receiving data (using socket, for
example).

Note that network interfaces may not always be physical devices. It may be a logical device
implemented by a software. The example includes the loopback interface, which is commonly
used in test environments. It is not a physical device but a piece of software simulating a network
interface.

12.3.1	 Getting Interface Addresses
Each network interface is assigned one or more IP addresses. An IP address is represented by

InetAddress class. It is sometimes necessary to know the IP address of an interface. This can be
done using getInetAddresses() method that returns an Enumeration of InetAddress. The following
program shows IP addresses of those interfaces that have at least one IPv4 address assigned.

import java.net.*;
import java.util.*;
class GetInterfaceAddresses {
 public static void main(String args[]) throws Exception {
 System.setProperty("java.net.preferIPv4Stack","true");
 Enumeration<NetworkInterface> intfs =
NetworkInterface.getNetworkInterfaces();
 while(intfs.hasMoreElements()) {
 NetworkInterface intf = intfs.nextElement();
 Enumeration<InetAddress> addresses = intf.getInetAddresses();
 if(addresses.hasMoreElements()) {
 System.out.println("\nName: "+intf.getName());
 System.out.println("Display name: "+intf.getDisplayName());
 while(addresses.hasMoreElements()) {
 InetAddress addr = addresses.nextElement();
 System.out.println("Address: "+addr);
 }
 }
 }
 }
}

276 ADVANCED JAVA PROGRAMMING

A sample output of this program is shown below:
Name: lo
Display name: Software Loopback Interface 1
Address: /127.0.0.1

Name: net4
Display name: Atheros AR9285 802.11b/g/n WiFi Adapter
Address: /192.168.43.77

Name: eth4
Display name: VMware Virtual Ethernet Adapter for VMnet1
Address: /192.168.226.1

Name: eth5
Display name: VMware Virtual Ethernet Adapter for VMnet8
Address: /192.168.40.1

To get IPv6 addresses, comment the line
System.setProperty("java.net.preferIPv4Stack","true");

The following program prints the hostname and address of the local computer
import java.net.*;
class LocalHost {
 public static void main (String args[]) throws UnknownHostException {
 InetAddress ia = InetAddress.getLocalHost();
 System.out.println("Name : "+ia.getHostName());
 System.out.println("Address : "+ia.getHostAddress());
 }
}

Here is a sample output:
Name : UROY

Address : 192.168.226.1

12.3.2	 Getting Interface Properties
The NetworkInterface has several other useful methods to gather information about a network

interface. The following program (GetInterfaceParameters.java) displays information about
network interfaces whose name is specified as a command line argument.

//GetInterfaceParameters.java
import java.net.*;
import java.util.*;
class GetInterfaceParameters {
 public static void main(String args[]) throws Exception {
 NetworkInterface intf = NetworkInterface.getByName(args[0]);
 System.out.println("\nName : "+intf.getName());
 System.out.println("Display name : "+intf.getDisplayName());
 System.out.println("Up : "+ intf.isUp());
 System.out.println("Loopback : "+ intf.isLoopback());
 System.out.println("PointToPoint : "+intf.isPointToPoint());
 System.out.println("Supports multicast :"+intf.supportsMulticast());
 System.out.println("Virtual : "+intf.isVirtual());

 byte[] mac1 = intf.getHardwareAddress();
 if(mac1 != null) {
 System.out.print("Hardware Address : ");
 for (int k = 0; k < mac1.length; k++)
 System.out.format("%02X%s", mac1[k], (k < mac1.length - 1) ? "-" : "");
 System.out.println();
 }
 System.out.println("MTU :"+intf.getMTU());
 }
}

BASIC NETWORKING 277

When the program was executed with the argument eth4, it generated the following output:
Name : net4
Display name : Atheros AR9285 802.11b/g/n WiFi Adapter
Up : true
Loopback : false
PointToPoint : false
Supports multicast :true
Virtual : false
Hardware Address : D0-DF-9A-01-55-E6
MTU :1500

12.4	 URL
The primary classes to access the Internet are the java.net.URL class and the java.net.

HttpURLConnection class. The class URL encapsulates the Uniform Resource Locator (URL), which
identifies a resource in the WWW uniquely. A resource can be anything such as a file or a directory,
or it can be a reference to a more complicated object, such as a query to a database or to a search
engine. The URL class provides mechanisms to download web resources to the client computer. It also
has methods to retrieve different parts, such as method, hostname, port etc. of a URL.

12.4.1	 Creating URL
The class URL has several overloaded constructors some of which are mentioned as follows:
URL(String url)
URL(String protocol, String host, String file)
URL(String protocol, String host, int port, String file)

Any constructor can be used depending upon one’s convenience. The most commonly used
constructor takes a URL as a string argument and creates a URL object. For example, the following
code creates a URL object for the URL http://www.yahoo.com.

URL url = new URL("http://www.google.com");

The String used in the above example itself represents an absolute URL. We can also create absolute
URL objects from a relative URL object and a specification. The general form of this constructor is:

URL(URL baseURL, String relativeURL)

The following examples show how to use this constructor:
URL url = new URL(new URL("https://plus.google.com"), "u/0/?tab=wX");
//Creates the URL https://plus.google.com/u/0/?tab=wX

URL url = new URL(new URL("https://login.yahoo.com/"),
"?.src=ym&.intl=in&.lang=en-IN&.done=http://mail.yahoo.com");
//Creates the URL https://login.yahoo.com/?.src=ym&.intl=in&.lang=en-
IN&.done=http://mail.yahoo.com

Each of the URL constructors throws a MalformedURLException if the arguments to the constructor
refer to a syntactically incorrect URL

12.4.2	 Parsing URL
A URL consists of several parts, as follows:
protocol://host:[port]/[path[?params][#anchor]]

The optional parts are shown in []. Examples of protocols include HTTP, HTTPS, FTP, and
File. The path is also called filename, and the host is also referred to as the authority. If a URL
does not specify a port, a default port for the protocol is used. For example, for HTTP, the default
port is 80.

278 ADVANCED JAVA PROGRAMMING

The URL class provides numerous methods to retrieve these parts. For example, we can get
the protocol, authority, host name, port number, path, query, filename, and reference from a URL
using these methods. The following program (ParsingURL.java) prints the different parts of a URL
specified as a command line argument.

import java.net.*;
public class ParsingURL {
 public static void main(String[] args) throws Exception {
 URL aURL = new URL(args[0]);
 System.out.println("Protocol = " + aURL.getProtocol());
 System.out.println("Authority = " + aURL.getAuthority());
 System.out.println("Host = " + aURL.getHost());
 System.out.println("Port = " + aURL.getPort());
 System.out.println("Default port = " + aURL.getDefaultPort());
 System.out.println("Path = " + aURL.getPath());
 System.out.println("Query = " + aURL.getQuery());
 System.out.println("File = " + aURL.getFile());
 System.out.println("Ref = " + aURL.getRef());
 }
}

The program generated the following output when it was supplied the argument
http://www.uroy.biz:8080/ajp/BasicNetworking/index.html?topic=URL#ParsingURL

Protocol = http
Authority = www.uroy.biz:8080
Host = www.uroy.biz
Port = 8080
Default port = 80
Path = /ajp/BasicNetworking/index.html
Query = topic=URL
File = /ajp/BasicNetworking/index.html?topic=URL
Ref = ParsingURL

12.4.3	 Web Page Retrieval
Making a connection to a web server in the Internet using socket is sometimes problematic,

especially when the client computer is connected to the Internet through a proxy computer that does
not support this socket. The Java classes URL and URLConnection allow client applications to connect
to an HTTP server very easily. This mechanism will work even if the clients are behind the firewall
and use HTTP proxy. A detailed description of how to specify proxy in a Java program can be found
later in this chapter. These classes are special-purpose classes, used for accessing HTTP servers only.

For example, the following code creates a URL object for the URL http://www.google.com.
URL url = new URL("http://www.google.com");

You can then call its openStream() method to establish an HTTP socket connection with the
web server specified by the URL. The method openStream() returns an InputStream object which
can be used to read data from this HTTP socket. The following example displays the content of the
URL specified as a command line argument.

//URLReadDemo.java
import java.net.*;
public class URLReadDemo {
 public static void main(String args[]) throws Exception {
 int c;
 URL url = new URL(args[0]);
 java.io.InputStream in = url.openStream();
 while (((c = in.read()) != -1))
 System.out.print((char) c);
 in.close();
 }
}

BASIC NETWORKING 279

Run the program with the argument http://www.google.com.
java URLReadDemo http://www.google.com

A sample output is shown in Figure 12.1:

Figure 12.1: Web page retrieval using URL

The class URL allows us to only read the content of the URL. It does not allow us to apply other
parts of the HTTP protocol, e.g. accessing the header. The class URLConnection provides mechanisms
to access content as well as to inspect properties of the resource. These properties are HTTP specific
and do not make any sense for protocols other than HTTP.

12.5	 URLCONNECTION
The class URLConnection represents an HTTP connection. The openConnection() method on a

URL object establishes an HTTP socket connection to the web server and returns a URLConnection
object that represents the connection. The method getInputStream() on this URLConnection object
returns an InputStream object which can be used to read data from this HTTP socket. The following
example does the same as the previous example.

//URLConnectionDemo.java
import java.net.*;
public class URLConnectionDemo {
 public static void main(String args[]) throws Exception {
 int c;
 URL url = new URL(args[0]);

URLConnection con = url.openConnection();
 java.io.InputStream in = con.getInputStream();
 while (((c = in.read()) != -1))
 System.out.print((char) c);
 in.close();
 }
}

As mentioned in the previous section, URLConnection class also provides methods to retrieve
information about the resource. Once a connection to a remote server is established, we can inspect
the properties of the resource before actually transporting it locally. These attributes are exposed by
the HTTP protocol specification and, as such, only make sense for HTTP URLs.

In the following example, we create a URLConnection to examine the document’s properties
and content:

//URLPropertiesDemo.java
import java.util.*;
import java.net.*;
public class URLPropertiesDemo {
 public static void main(String args[]) throws Exception {
 int c;
 URL url = new URL(args[0]);
 URLConnection con = url.openConnection();
 System.out.println("Content-type: " + con.getContentType());
 System.out.println("Content Encoding: " + con.getContentEncoding());
 System.out.println("Content-length: " + con.getContentLength());
 System.out.println("Last-Modified: " + new Date(con.getLastModified()));
 System.out.println("Date: " + new Date(con.getDate()));
 System.out.println("Expires: " + con.getExpiration());
 System.out.println("Connection Timeout: " + con.getConnectTimeout());
 }
}

280 ADVANCED JAVA PROGRAMMING

//URLPropertiesDemo.java
import java.util.*;
import java.net.*;
public class URLPropertiesDemo {
 public static void main(String args[]) throws Exception {
 int c;
 URL url = new URL(args[0]);
 URLConnection con = url.openConnection();
 System.out.println("Content-type: " + con.getContentType());
 System.out.println("Content Encoding: " + con.getContentEncoding());
 System.out.println("Content-length: " + con.getContentLength());
 System.out.println("Last-Modified: " + new Date(con.getLastModified()));
 System.out.println("Date: " + new Date(con.getDate()));
 System.out.println("Expires: " + con.getExpiration());
 System.out.println("Connection Timeout: " + con.getConnectTimeout());
 }
}

Figure 12.2: shows a sample output for this program for the URL http://www.google.com.

Figure 12.2: www.google.com properties

12.6	 HTTPURLCONNECTION
Java also provides HTTP specific sub-class java.net.HttpURLConnection, which can be used

to set up HTTP parameters and general request properties before making the connection. One of the
useful tasks that we can do with this class is automatic redirection.

If the response code of an HTTP response message is 301: Moved Permanently or 302: Temporary
Redirect, then a new URL should be contacted. The new redirected URL can be obtained by reading
the “Location” header of the HTTP response header. The following example illustrates this:

import java.io.*;
import java.net.*;
import static java.net.HttpURLConnection.*;
public class HttpRedirectDemo {
 public static void main(String[] args) throws Exception {
 URL url = new URL(args[0]);
 HttpURLConnection con = (HttpURLConnection) url.openConnection();
 System.out.println("Request URL ... " + url);

 int code = con.getResponseCode();
 if((code != HTTP_OK) && (code == HTTP_MOVED_TEMP || code == HTTP_MOVED_PERM

|| code == HTTP_SEE_OTHER)) {
 System.out.println("Response Code ... " + code);

 // get redirect url from "location" header field
 URL newUrl = new URL(con.getHeaderField("Location"));

 // open the connection again
 con = (HttpURLConnection) newUrl.openConnection();
 System.out.println("Redirect to URL : " + newUrl);
 }

 BufferedReader in = new BufferedReader(new
InputStreamReader(con.getInputStream()));
 String line;
 StringBuffer htmlStr = new StringBuffer();
 while ((line = in.readLine()) != null) htmlStr.append(line);
 in.close();
 System.out.println("Content... \n" + htmlStr);
 }
}

BASIC NETWORKING 281

import java.io.*;
import java.net.*;
import static java.net.HttpURLConnection.*;
public class HttpRedirectDemo {
 public static void main(String[] args) throws Exception {
 URL url = new URL(args[0]);
 HttpURLConnection con = (HttpURLConnection) url.openConnection();
 System.out.println("Request URL ... " + url);

 int code = con.getResponseCode();
 if((code != HTTP_OK) && (code == HTTP_MOVED_TEMP || code == HTTP_MOVED_PERM

|| code == HTTP_SEE_OTHER)) {
 System.out.println("Response Code ... " + code);

 // get redirect url from "location" header field
 URL newUrl = new URL(con.getHeaderField("Location"));

 // open the connection again
 con = (HttpURLConnection) newUrl.openConnection();
 System.out.println("Redirect to URL : " + newUrl);
 }

 BufferedReader in = new BufferedReader(new
InputStreamReader(con.getInputStream()));
 String line;
 StringBuffer htmlStr = new StringBuffer();
 while ((line = in.readLine()) != null) htmlStr.append(line);
 in.close();
 System.out.println("Content... \n" + htmlStr);
 }
}

A sample output for the URL http://www.yahoo.com is shown below:
E:\ajp\bn>java HttpRedirectDemo http://www.yahoo.com
Trying : http://www.yahoo.com
Response code : 301
Redirecting to : https://www.yahoo.com/
Content...
<!DOCTYPE html> <html lang="en-IN" class="dev-desktop uni-purple-border ua-wk
ua-win ua-6.1 ua-wk537
...

12.6.1	 URLEncoder/URLDecoder
What happens if the URL string has spaces or special characters such as “/”, “.”, “#” or some

other non-ASCII characters such as Bengali, Hindi, Chinese or Japanese characters?
For example, the “#” character has a special meaning when used in an html anchor tag. The

space is not allowed on a valid URL format. Also, some characters, such as “~” might not transport
properly across the Internet. Such characters must be encoded before using it in a URL. As a rule of
thumb, any non-alphanumeric character should be URL encoded. As a result, there will be no harm
even if the characters do not have special meanings.

Fortunately, Java has a class URLEncoder that can encode these characters so that they can be
used in URLs safely. Its encode() method takes two parameters, the string to be encoded and the
encoding scheme, which is usually supposed to be “UTF-8”. Similarly, the class URLDecoder is used
to get the original string from encoded string. Its decode() method takes a string in encoded form
and returns a non-encoded version of the string.

Table 12.2: shows some of the often used characters and their URL encodings.

Table 12.2: Some special characters and their URL encodings

; %3B # %23 $ %24 < %3C

? %3F & %26 , %2C > %3E

/ %2F = %3D <space> %20 or + ~ %7E

: %3A + %2B % %25 % %25

The number following the % sign is the hexadecimal ASCII code of the character being encoded.
Since, the space character is very commonly used, a special code (the “+” sign) has been reserved
as its URL encoding. Thus the string “A B” can be URL encoded as either “A%20B” or “A+B”. In
general, a String is encoded as follows:

•	 The letters (‘a’..‘z’, ‘A’..‘Z’) and numbers (‘0’..‘9’) remain the same.
•	 The special characters ‘.’, ‘-’, ‘*’, ‘_’ remain the same.

282 ADVANCED JAVA PROGRAMMING

•	 Spaces are substituted by ‘+’
•	 All other characters are first converted into one or more bytes using the specified encoding scheme. Each byte is

then represented by the 3-character string “%xy”, where xy is the two-digit hexadecimal representation of the byte.

The following program demonstrates how to encode and decode a string “Hello World!”
import java.net.*;
public class URLEncoderDecoder {
 public static void main(String[] args) throws Exception {
 String str = "Hello World!";
 String encodedStr = URLEncoder.encode(str, "UTF-8");
 System.out.println("String : "+str);
 System.out.println("Encoded string : " + encodedStr);
 String decodedStr = URLDecoder.decode(encodedStr, "UTF-8");
 System.out.println("Decoded string : " + decodedStr);
 }
}

A sample output of this program is shown here:
String : Hello World!
Encoded string : Hello+World%21
Decoded string : Hello World!

Similarly, the following string of Bengali characters (The title of a Rabindrasangeet) must be
encoded first before using it in a URL.

The encoded string looks like
%E0%A6%85%E0%A6%95%E0%A6%BE%E0%A6%B0%E0%A6%A3%E0%A7%87+%E0%A6%85%E0%A6%95%E0%A6
%BE%E0%A6%B2%E0%A7%87+%E0%A6%AE%E0%A7%8B%E0%A6%B0+%E0%A6%AA%E0%A7%9C%E0%A6%B2+%
E0%A6%AF%E0%A6%96%E0%A6%A8+%E0%A6%A1%E0%A6%BE%E0%A6%95

The following encoded URL can then be used to download the notes of the song from the site
http://rabindra-rachanabali.nltr.org.

http://rabindra-
rachanabali.nltr.org/node/16053?gaan=%E0%A6%85%E0%A6%95%E0%A6%BE%E0%A6%B0%E0%A6
%A3%E0%A7%87+%E0%A6%85%E0%A6%95%E0%A6%BE%E0%A6%B2%E0%A7%87+%E0%A6%AE%E0%A7%8B%E
0%A6%B0+%E0%A6%AA%E0%A7%9C%E0%A6%B2+%E0%A6%AF%E0%A6%96%E0%A6%A8+%E0%A6%A1%E0%A6
%BE%E0%A6%95.xml

The following program downloads the file and puts the content in a file
.html.

import java.io.*;
import java.net.*;
public class URLEncoderDemo {
 public static void main(String args[]) throws Exception {
 int c;
 BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream("in.txt"), "UTF-16"));
 String song = br.readLine();
 String encodedSong = URLEncoder.encode(song, "UTF-8");
 String encodedUrl = "http://rabindra-
rachanabali.nltr.org/node/16053?gaan="+encodedSong+".xml";
 FileOutputStream fos = new FileOutputStream(song+".html");
 URL url = new java.net.URL(encodedUrl);
 InputStream in = url.openStream();
 while (((c = in.read()) != -1)) fos.write((char)c);
 in.close();
 fos.close();
 }
}

The name of the song is stored in a file in.txt.

BASIC NETWORKING 283

12.7	 PROXY
To address security issue, network administrators often install a special component called “proxy

server.” It is essentially a service that sits between the Internet and the internal network and manages
connections between the two worlds. This way, proxies reduce outside security threats while still
allowing internal users to access Internet services.

However, Java applications, to be useful, must pass though these proxies. Fortunately, Java provides
provisions to work with proxies. The solution lies in activating certain system properties in the Java
runtime. Java application needs to specify information about the proxy itself as well as specify user
information for authentication purposes. There are many ways we can do it.

12.7.1	 Using Command Line Arguments
We can set the required information when starting the JVM for a JAVA application from the

command line. For example, if the proxy process runs at port 8080 in the machine having IP address
172.16.15.8, use the following command to start the application AnApp:

java -DproxyHost=172.16.15.8 -DproxyPort=8080 AnApp

If proxy requires authentication, use two additional arguments
java -DproxyHost=172.16.15.8 -DproxyPort=8080 -DproxyUser=user -
DproxyPassword=password AnApp

where user and password are the login and password required by the proxy respectively.

12.7.2	 Using System Properties
Alternatively, the same information can be specified in the client programs as follows:
System.setProperty("http.proxyHost", "172.16.15.8");
System.setProperty("http.proxyPort", "8080");

If proxy requires authentication, use the following two properties.
System.setProperty("http.proxyUser", "user");
System.setProperty("http.proxyPassword", "password");

12.7.3	 Using Proxy Class
In Java 1.5 and later, we can also pass a java.net.Proxy instance to the openConnection()

method of URL class. Add this code snippet in your Java network application that wants to use a
proxy.

URL url = ...
Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress("172.16.15.8",
8080));
URLConnection con = url.openConnection(proxy);

12.8	 PROXYSELECTOR
This class is used if the information about the proxy is not known or there are many proxies and

we are unable to determine a suitable proxy to be used. Specifically, it gives us the flexibility to:

•	 Decide if a proxy should be used or not for a URL being used.
•	 Select one (or more) to be used.
•	 Manage failures when connecting to proxy servers.

284 ADVANCED JAVA PROGRAMMING

Although, ProxySelector class is an abstract class, we can use one provided by its getDefault()
method that returns system-wide proxy selector. However, to use system proxy selector, we must set
a system property as follows:

System.setProperty(“java.net.useSystemProxies”, “true”);

The list of available proxies for a given URL may be obtained as follows:
String urlStr = "http://www.google.com";
URL url = new URL(urlStr);

ProxySelector ps = ProxySelector.getDefault();
java.util.List<Proxy> proxies = ps.select(new URI(urlStr));

Any one from this list may be used. To use the first one, we write the code
Proxy proxy = proxies.get(0);
URLConnection con = url.openConnection(proxy);

The entire steps can be summarized by a single statement as follows:
�Proxy proxy = (Proxy) ProxySelector.getDefault().select(new URI(urlStr)).
iterator().next();

KEYWORDS
HttpURLConnection— A Java class that represents
an HTTP connection

InetAddress—A Java class that represents an
IP address

Interface addresses—The IP address(es) assigned
to a network interface

NetworkInterface —A Java class that represents a
network interface

Network Interface—Usually a Network Interface Card
(NIC), that acts as a point of interconnection between
a computer and other devices.

Proxy—A class that represents a proxy

ProxySelector—A class used to select a proxy from
a list of available proxies

Sub-interface—A child interface of an existing
interface

URLConnection—A Java class that represents a
connection

URLDecoder—A Java class used to decode a URL

URLEncoder—A Java class used to encode a URL

URL—A class that encapsulates the Uniform
Resource Locator (URL), which identifies a resource
in the WWW uniquely

SUMMARY
Java, like other programming languages, provides
well-designed classes and interfaces (APIs) to most
network features. The primary network classes and
interfaces are provided in the package java.net.

Each network interface is represented by the Java
class NetworkInterface. It has many static methods
such as getNetworkInterfaces(), getByInetAddress(),
getByName(), which can retrieve the interface details
from the system. Each network interface is assigned
one or more IP addresses which can be obtained
using getInetAddresses() method that returns an
Enumeration of InetAddress. The NetworkInterface
has several other useful methods to gather information

about a network interface.

The primary classes to access the Internet are
the URL class and the HttpURLConnection class.
The class URL encapsulates the Uniform Resource
Locator (URL), which identifies a resource in the WWW
uniquely. The HttpURLConnection class can be used to
inspect the properties of the resource before actually
transporting it locally.

Java has classes URLEncoder and URLDecoder that
can be used to encode/decode URLs.

Java also provides provisions to work with proxies.
A proxy can be specified using command line argument
or using system properties or using Proxy instance.

BASIC NETWORKING 285

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/

networking/
Trail: Custom Networking

https://docs.oracle.com/javase/tutorial/

networking/urls/
Lesson: Working with URLs

https://docs.oracle.com/javase/tutorial/

networking/nifs/index.html
Lesson: Programmatic Access to Network Parameters

http://computing.dcu.ie/~humphrys/Notes/

Networks/java.html
Network programming in Java

http://tutorials.jenkov.com/java-

networking/index.html
Java Networking

EXERCISES
Objective-type Questions

	 1.	 Which of these packages contains classes and
interfaces for networking?

	 (a)	 java.util.net	 (c)	 java.net
	 (b)	 java.util	 (d)	 java.network

	 2.	 How many bits are present in a single IP address?
	 (a)	 8	 (c)	 32
	 (b)	 16	 (d)	 64

	 3.	 Which of these classes is used to encapsulate IP
address and DNS?

	 (a)	 ContentHandler
	 (b)	 URL
	 (c)	 InetAddress
	 (d)	 DatagramPacket

	 4.	 What is the full form of URL?
	 (a)	 Uniform Reverse Location
	 (b)	 Uniform Resource Locator
	 (c)	 Universal Resource Locator
	 (d)	 Universal Resource Latch

	 5.	 Which of these exceptions is thrown by URL
class’s constructors?

	 (a)	 URLNotFoundException
	 (b)	 URLSourceNotFound
	 (c)	 MalformedURLException
	 (d)	 URLNotFound

	 6.	 Which of these transfer protocols must be used so
that a URL can be accessed by URLConnection
class object?

	 (a)	 http
	 (b)	 https
	 (c)	 Any Protocol can be used
	 (d)	 None of the mentioned

	 7.	 Which of these data members of HttpResponse
class is used to store the response from an http
server?

	 (a)	 status	 (c)	 statusResponse
	 (b)	 address	 (d)	 statusCode

	 8.	 Which of these methods is used to know when
the last URL was modified?

	 (a)	 LastModified()
	 (b)	 getLastModified()
	 (c)	 GetLastModified()
	 (d)	 getlastModified()()

	 9.	 Which of these methods is used to know the type
of content used in the URL?

	 (a)	 ContentType()
	 (b)	 contentType()
	 (c)	 getContentType()
	 (d)	 GetContentType()

	10.	 Which of these classes is used to access actual
bits or content information of a URL?

	 (a)	 URL	 (c)	 URLConnection
	 (b)	 URLDecoder	 (d)	 All of the mentioned

	11.	 Which of these classes is used to encapsulate
IP address and DNS?

	 (a)	 DatagramPacket
	 (b)	 URL
	 (c)	 InetAddress
	 (d)	 ContentHandler

	12.	 Which of these methods is used to know the host
of a URL?

	 (a)	 host()	 (c)	 GetHost()
	 (b)	 getHost()	 (d)	 gethost()

286 ADVANCED JAVA PROGRAMMING

	13.	 Which of these methods is used to know the full
URL of a URL object?

	 (a)	 fullHost()
	 (b)	 getHost()
	 (c)	 ExternalForm()
	 (d)	 toExternalForm()

	14.	 Which of the following classes is used to represent
IPv4 addresses?

	 (a)	 InetV4Address
	 (b)	 InetAddress4
	 (c)	 Inet4Address
	 (d)	 IPv4Address

	15.	 Which of the following classes is used to represent
IPv6 addresses?

	 (a)	 Inet6Address
	 (b)	 InetV6Address
	 (c)	 InetAddress6
	 (d)	 IPv6Address

	16.	 A network interface card is represented by
	 (a)	 NetworkHardware
	 (b)	 NetworkCard
	 (c)	 InterfaceCard
	 (d)	 NetworkInterface

	17.	 Which of the following methods is used to get the
port of a URL?

	 (a)	 port()
	 (b)	 getPort()
	 (c)	 urlPort()
	 (d)	 returnPort()

	18.	 Which of the following methods is used to establish
a connection to the server?

	 (a)	 connection()
	 (b)	 open()
	 (c)	 makeConnection()
	 (d)	 openConnection()

	19.	 Which of the following classes is used for HTTP?
	 (a)	 HttpURLConnection
	 (b)	 HttpURL
	 (c)	 HttpConnection
	 (d)	 HTTP

	20.	 A proxy in Java is represented by
	 (a)	 Proxy
	 (b)	 JavaProxy
	 (c)	 HTTPProxy
	 (d)	 GenericProxy

Subjective-type Questions

	 1.	 Java API doesn’t provide any constructors for
InetAddress. How do you create an InetAddress
instance?

	 2.	 How do you make a connection using URL?

	 3.	 When are MalformedURLException and
UnknownHostException thrown?

	 4.	 How do you get the IP address of a machine from
its hostname?

	 5.	 What is the difference between URL instance and
URLConnection instance?

	 6.	 How do you find the hostname corresponding to
an IP address?

	 7.	 What is the Proxy Server?

	 8.	 How do you find the IP address of local machine?

	 9.	 How do you specify the timeouts in networking
applications? What is a servlet?

Socket Programming

Key Objectives

After completing this chapter readers will be able to—
•  understand the basic idea of Inter-Process Communication
•  get an overview of peer-to-peer and client–server network architecture
•  know about the different types of sockets and their functionality
•  know what socket address, port and reserved ports are
•  use socket-related Java classes
•  develop networking applications using TCP and UDP sockets
•  understand how to develop iterative and concurrent server applications
•  write multicasting application using sockets

13.1	 INTRODUCTION
In the previous chapter, we have discussed some of the high level Java mechanisms for Inter-

Process Communication (IPC). In fact, these mechanisms use sockets as part of their underlying
implementation. In this chapter, we shall discuss sockets as a lower-layer IPC mechanism.

In distributed computing, Inter-Process Communication (IPC) is the fundamental idea for
the exchange of data among multiple processes and/or threads [Figure 13.1:]. It allows processes
(probably running on different computers) to communicate by exchanging information to perform
a designated task.

One process Another process

5! = ?

5! = 120

Figure 13.1:  Inter-process Communications

CHAPTER – 13

288  ADVANCED JAVA PROGRAMMING

For example, consider two processes p1 and p2 running on two different computers connected by
a network. The process p1 has the ability to provide the synonym (i.e. words having similar meaning)
of a given word. On the other hand, the process p2, who somehow knows the existence of such a
useful process p1, at a particular instant of its execution, has obtained a word “buy” whose meaning
is not known to p2. In this circumstance, the process p2 may request p1 to provide a synonym of
the word “buy”. Upon receiving the request, the process p2 responds that the meaning of the word
“buy” is basically “purchase”. This way, two processes may communicate to get out of the problem.

Most of the operating systems (specially Unix and/or Linux) support tools for IPC such as pipe,
FIFO, message queue, shared memory, semaphore etc. All these system-level facilities assume
processes can share memory in the user space or system space. Consequently they can only be
used if processes reside on the same computer. However, processes running on different computers
cannot share memory and therefore memory (and hence those primitive IPC tools) cannot be used
as a means for communication.

Socket, on the other hand, can be used as a lower-level tool for IPC for local processes as well
as processes running on different computers. Originally, the socket was a low-level programming
interface for IPC introduced in Barkley Unix. Accordingly, the concept of socket was made very
much similar to Unix I/O that follows Open-Read-Write-Close paradigm. The socket follows a
similar Open-Send-Receive-Close paradigm.

Many programming languages now provide high-level Application Programming Interface (API)
based on this primitive socket interface. The high-level socket (API) hides the complexities and
intricacies of system-level specification and makes programmers devote more time on the application
logic. In this chapter, we shall discuss Java implementation of socket API. Sockets are particularly useful
when we want to write client–server applications. So, let us have an overview of this mode quickly.

13.2	 CLIENT/SERVER PROGRAMS
One of the central ideas of network computing is client–server model. Many networking

applications including the Internet’s primary protocols such as HTTP, SMTP, DNS, etc. use this
model. It has some distinct advantages over its counterpart, the peer-to-peer model (P2P) where
peers are equally privileged, equipotent participants [Figure 13.2:]. Note that sockets may also be
used to develop applications for P2P network model.

®®

®®

Client Client

Client Client

Server

Peer

(i) (ii)

Peer

PeerPeer

Figure 13.2:  Network architecture (i) Peer-to-peer (ii) Client–Server

SOCKET PROGRAMMING  289

In client–server programming paradigm, there are two primary components (programs): service
providers, known as server programs (or simply servers) and service requesters, known as client
programs (or simply clients). Since, client–server model uses two types of applications, it is
sometimes referred to as two-tier model. Server programs (which are usually written to provide
powerful services) are usually run on high-performance computers and share resources with its
clients. Client programs, which usually run on different computers, make use of these resources to
perform its designated task.

Each client sends one or more service requests to one or more servers. The servers, in turn, accept
these requests, process them and provide the requested service (e.g. sending requested information).
This simple but powerful idea can be used in a variety of network applications, though the fundamental
concept remains the same.

A server may provide a variety of services such as web service, remote login service, mail service,
database service, file service, name service, print service, and many more. One server may provide
multiple services. Similarly, one client may get many services from the same or different servers.
A program may act as a server or as a client or both (logically). Popular clients include web browsers,
chat clients, email clients, etc.

The client process becomes sender of data (if any) at some point of communication and the
server process becomes the receiver of that data. At some other instant of communication, the server
process becomes the sender of data (if any) and the client process becomes the receiver of that data.
Depending on the number of receivers, data communication may be categorized as uni-cast, multi-
cast and broadcast [Figure 13.3:].

Sender

(i) (ii) (iii)

Receiver

Figure 13.3:  Types of communication (i) Uni-cast (ii) Multi-cast (iii) Broadcast communications

When data is sent by one process to another single process, it is known as uni-cast communication.
In this case, there is exactly one sender and one receiver. On the other hand, when there exists multiple
(but not all) receivers of the data, it is said to be multi-cast. If all are intended receivers, it is said to
be broadcast. Note that broadcast is a special case of multicast, when all entities become receivers.

13.3	 SOCKETS
A socket, in network terminology, is an end-point for communication between two processes on

the network. In Java, sockets are represented by objects for exchanging data. The java.net package
provides useful classes and interfaces for communication using sockets. Note that a socket is not a
connection, it is an endpoint of communication. Sockets objects are also necessary for communication

290  ADVANCED JAVA PROGRAMMING

even if there is no connection (e.g. UDP). A connection (usually used for TCP), however, may
be represented by the two end points.

13.3.1	 Types of Socket
The Java Socket API is built on the top of the underlying transport layer protocol of TCP/IP

protocol suit. In TCP/IP there are two transport layer protocols: Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). Accordingly, Socket API is categorized into two types.
The Socket API that uses TCP as its underlying transport layer protocol is known as TCP Socket
(or stream socket) and that which uses UDP is called UDP Socket (or datagram socket). The TCP
delivers the data reliably in the same order as they were sent and is known as ‘connection-oriented’
protocol. On the other hand, UDP does not give any such guarantee on ordering and hence is known
as ‘connectionless’ protocol. Java provides a rich set of classes and interfaces in java.net package
to support both TCP and UDP sockets. The classes ServerSocket and Socket (together with
other classes) are used to support Transmission Control Protocol (TCP) and provide connection-
oriented uni-cast communication. To support User Datagram Protocol (UDP), DatagramSocket and
MulticastSocket classes are used that provide connectionless uni-cast, multi-cast and broadcast
communication respectively. So, depending on the application requirement, any one/both of these
two types of sockets may be used.

In this chapter, we shall discuss both types of sockets with several programming examples.
A side-by-side comparison between these two types of sockets will be done later in this chapter.

13.3.2	 Ports
Both TCP and UDP sockets use a fundamental concept called communication ports (or simply

ports). We know that an IP address, which is assigned to a network interface card, indentifies the
card hence the computer uniquely within a network. What happens if we want to refer to a particular
process among many processes running in a computer? Specifying only the IP address of the computer
is not enough. The concept of port number is introduced to resolve this problem. Ports are essentially
16-bit positive integers assigned to processes to distinguish one from another within the computer.

13.3.3	 Socket Address
The TCP/IP protocol suite allows us to identify a machine uniquely all over the world using

a 32-bit IP address. Many processes may run on a single computer. As mentioned in the previous
section, each of these processes is assigned a locally unique positive integer called the port number.
Any process can now be identified uniquely all over the world by using this port number together
with the IP address of the machine it is running on. This IP address and port number combination
can be thought of as an address called the socket address. A process willing to send data to another
process needs to know only the socket address of the receiver process.

The socket address (i.e. IP address and port number) completes destination address. This means,
data first reaches a specific destination IP address (i.e. a computer) and is further routed to the specific
process having the destination port number. This way socket address makes the communication
between two processes possible. The exact way of communications is illustrated with the help of
numerous examples in the following sections.

The same port number may be used for different IP addresses for communication. Since, IP
addresses are different, socket addresses are also different and hence processes having those socket
addresses are uniquely identifiable.

SOCKET PROGRAMMING  291

13.3.4	 Socket Address and Java
Usually the notion of socket address is explained with the context of a process. It is said that a

process is assigned a locally unique port number. Actually in Java socket programming, port numbers
are not assigned to processes; they are assigned to socket objects instead. These socket objects
are created in the processes. Three types of socket objects (ServerSocket, DatagramSocket and
MulticastSocket) may be created. A process may logically create many socket objects [Figure 13.4:].
Each of these socket objects will have a port number bound to it. Consequently, each socket object
has a socket address. This implies that a process does not basically have any socket address; rather
socket addresses are assigned to socket objects. Usually, one process creates one socket object. That
is why it is sometimes said that a process has a socket address.

Anyway, whatever be the case, it does not disturb Inter-Process Communication (IPC). Actually
communication takes place between socket objects and since processes create them, processes can
still communicate through these socket objects [Figure 13.4:].

Socket object

Communication
using UDP sockets

Communication
using TCP sockets

Process

P
rocess

P
rocess

P
rocess

Figure 13.4:  Relation between socket objects and processes in Java

13.3.5	 Reserved Ports
It was mentioned earlier that each process is assigned a locally unique integer. Ideally, any

available (not assigned yet) integer may be used. However, remember that the client must know
this port number to make communication possible. If port numbers are assigned arbitrarily, the
client processes will not have any idea about them. That is why standard server processes are
assigned some fixed port numbers agreed upon at design time. These port numbers are said to
be reserved for those well-known processes. According to Internet Assigned Numbers Authority
(IANA), port numbers from 0 to 1023 are reserved. You should not use these port numbers in your
own network programs. However, if you want to implement standard processes (such as HTTP,
FTP etc), you should ideally use these reserved ports (80 for HTTP, 20 for FTP) so that others can
use them easily. Some reserved port numbers and their corresponding processes are mentioned in
Table 13.1:

292  ADVANCED JAVA PROGRAMMING

Table 13.1:  Reserved ports

Port Server Port Server Port Server Port Server

7 Echo 37 Time 110 POP3 434 MobileIP-Agent

18 MSP 43 WhoIs 111 Sun RPC 443 HTTPS

20 FTP Data 80 HTTP 115 SFTP 458 Apple QuickTime

21 FTP Control 53 DNS 118 SQL Services 531 Chat

22 SSH 66 Oracle SQL*NET 161 SNMP 541 rlogin

23 Telnet 69 TFTP 179 BGP 547 DHCP Server

25 SMTP 70 Gopher 197 DLS 563 SNEWS

13.4	 TCP SOCKETS
As mentioned earlier, Java TCP socket API supports Transmission Control Protocol (TCP).

The java.net package provides ServerSocket and Socket classes to support TCP. To understand
the functionality of these classes, let us first recapitulate TCP style of communication quickly.
In this style of communication, a logical channel is created (using a three-way handshaking
procedure) prior to the exchange of data between two communicating parties. Once a channel
is created, data may be transferred as a continuous stream of bytes in both ways simultaneously
(full-duplex communication). Since all data go through the channel, data is received in the
same order as they were sent. This in-order delivery of data is known as connection-oriented
communication. For guaranteed delivery of data, TCP also uses complex acknowledgement and
retransmission strategy. At the end of the communication, the connection is destroyed (using a
4-way handshaking procedure).

To make use of this style of communications using Java stream socket, a program (usually called
server) first creates a ServerSocket object (call it server socket) and binds it to an unused port
number [Figure 13.5:]. This server socket then obtains a socket address which is used by the clients
to establish connection later. The server socket then starts listening for connection requests from
clients. This implies that the server program must be started first. Note that when the server socket
listens (waits) for incoming connection requests, the server program gets blocked. To accept many
connections simultaneously, the server program is usually implemented in a multi-threaded manner
and is discussed in Section 13.4.6.

Channel ServerSocket object

Socket object

Network

Socket object

Two-way communication

C
lient

P
rocess

S
erver

P
rocess

Figure 13.5:  Communication using TCP socket

SOCKET PROGRAMMING  293

A client is another program started usually on a different computer after the server. The client
must somehow know the socket address (IP address/name of the computer where the server program
runs and port number of the server socket given by the server program) of the server socket to
communicate. It first sends a request for connection establishment to the server socket by creating
a Socket object and specifying the socket address of the server socket. During the connection
establishment, the client should provide its own socket address to the server, so that the server can
communicate back (if desired) to the client. The client’s port number is usually assigned by the
system.

On receiving a request from a client, if everything goes fine, the server establishes a (bidirectional)
channel to the client. Once this channel is established, both processes can now communicate in both
ways simultaneously [Figure 13.5:].

The heart of the TCP socket API consists of basically two classes: ServerSocket and Socket.
Communication using TCP sockets consists of the following basic steps:

•	 The server creates a ServerSocket object, specifying the port number it listens on.
•	 The server invokes the accept() method on this object. This method makes the server waiting until a request

comes from a client.
•	 The client creates a Socket object, specifying the server’s name/IP address and port number to connect to.
•	 The constructor of the Socket class attempts to establish a connection to the server socket having specified

socket address (i.e. IP address and port number). If the connection is established, it returns a Socket object that
represents the client end of the logical connection created. The client uses this Socket object to communicate
with the server.

•	 The accept() method on the ServerSocket object also returns a Socket object that represents server
end of the channel that is connected to the client’s socket. The server uses this Socket object to communicate
with the client.

The temporal flow of control in server and client program is given in Figure 13.6:

Server

1. Creates a ServerSocket object,
specifying a port number.

2. Invokes the accept() method on this
object. This method makes the server waiting for
incoming connection request

5. The accept() method on the
ServerSocket object also returns a Socket
that represents the server side end of the logical
connection.

6. Get InputStream and an
OutputStream type objects.

8. Read data using InputStream.

9. Write data using OutputStream.

Client

3. Creates a Socket object, specifying the
name/IP address and port number of the server.

4. The constructor of the Socket class
attempts to establish a connection to the
specified server and port number.

5. If the connection is established, it returns a
Socket object that represents the client side
end of the logical connection.

6. Get InputStream and an
OutputStream type object.

7. Write data using OutputStream.

10. Read data using InputStream.

time

Figure 13.6:  Temporal flow of control in server and client programs using TCP sockets

294  ADVANCED JAVA PROGRAMMING

Each Socket object has an InputStream and an OutputStream associated with it. The client’s
InputStream is connected to the server’s OutputStream, and the client’s OutputStream is connected
to the server’s InputStream. Now, both the client and the server can communicate using I/O streams.
Let us now understand, how these socket classes are used to develop applications.

13.4.1	 The ServerSocket Class
A TCP server socket object is first created using ServerSocket class to accept incoming connection

requests from clients. The class has four overloaded constructors [See appendix A for details].
The most frequently used one creates a server socket at the specified port.

ServerSocket(int port)

The port must be an unused one otherwise it throws an exception BindException. The port must
belong to the range from 0 to 65535. The following statement creates a server socket at port 6789.

ServerSocket serverSocket = new ServerSocket(6789);

Suppose the machine running this server process has one network interface card having IP address
192.168.1.2. Then the socket address of the process (actually ServerSocket object) is [192.168.1.2,
6789]. The meaning of this statement is shown in Figure 13.7:

serverSocket

Socket address = [192.168.1.2, 6789]

S
erver

P
rocess

Figure 13.7:  Creating a ServerSocket Object

If the machine has multiple network interface cards (hence multiple IP addresses), then the
socket created using the above constructor is capable of listening through all these interfaces. So,
any one of the IP addresses may be specified in the socket address to connect to this socket object.
However, a specific IP address may also be bound to the server socket using a different constructor
[See appendix A for details].

Each ServerSocket object created has a finite FIFO queue associated with it. This queue stores
outstanding connection requests made by the clients. These connection requests are handled by the
subsequent call of accept() method of the ServerSocket object (discussed later in this section).
When the queue is full, further connection requests are rejected. The length of this queue may be
specified explicitly in the constructor. If nothing is specified (as we have done in our constructor),
a queue length of 50 is used.

As mentioned earlier, a process may essentially create many ServerSocket objects associated
with locally unique port numbers. So, a socket addresses is actually assigned to those ServerSocket
objects not to the process. Usually, a process creates a single ServerSocket object and hence the
socket address refers to the ServerSocket object as well as the process.

The procedure of assigning a port number to a ServerSocket object is sometimes known as binding
(or association). This binding between a socket and a port may be done by a separate function call
bind(). Actually, a socket is assigned a port number so that other processes can refer to this socket
by this port for further usage.

SOCKET PROGRAMMING  295

We have stated that socket address of the ServerSocket object can be used by clients to establish
connections. However, to accept incoming connections, the server must start listening. This is done
by calling the accept() method on the server socket as follows [Figure 13.8:]:

Socket serverEnd = serverSocket.accept();

serverSocket

Socket address = [192.168.1.2, 6789]

S
erver

P
rocess

Figure 13.8:  Listening for incoming connection requests

This results in the server capable of accepting incoming connections. Note that, connection requests
are initially stored in the FIFO queue associated with the server socket object. So, it is possible to
send connection requests by clients even if the server has not yet invoked the accept() method.
If there is already a request (that means it came before a call of accept() method), the accept()
method processes the request. If there is no outstanding connection requests in this queue, the method
accept() blocks the caller (i.e. server process). The process wakes up as soon as a connection request
is received. If everything goes well, a logical channel between the server process and the client process
is created and a Socket object is returned which represents the server end of this channel and is used
subsequently to communicate with the client.

serverSocket

serverEnd

NetworkS
erver

P
rocess

Channel

Figure 13.9:  Creating a channel

Note that Figure 13.9: merely shows a pictorial view of connection establishment. It appears that
server socket becomes used and no channel cannot be attached to it further. However, these sockets are
not physical sockets. The pictorial view has been used only for demonstration purpose. Consequently,
concepts that exist for physical socket are not applicable here. This implies, programmatically, many
logical channels may be attached to our server socket object simultaneously.

Anyway, if further client requests come when the server program is busy serving the current client
and no call of accept() method is encountered, client requests are initially stored in the FIFO queue
associated with this ServerSocket object. To establish connections with these clients, the server must
process those requests. This is done by calling the accept() method on the ServerSocket object
subsequently. A call of accept() method results in processing the request which is at the head of
the queue at that instant. Further calls of accept() method process client requests (if any) from the
queue in First-Come-First-Served (FCFS) basis.

296  ADVANCED JAVA PROGRAMMING

To send data to or receive data from the client, stream objects are created. The Socket object
provides two useful methods, getInputStream() and getOutputStream(), which can be used to
obtain InputStream and OutputStream objects, respectively. The InputStream object is used to
receive data from the socket, whereas the OutputStream object is used to send data to the socket.
They are usually wrapped by other suitable stream classes to send and receive data conveniently.
The following example creates a BufferedReader object and a PrintWriter object to read from
and write to the socket:

BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(), true);

The BufferedReader object fromClient may now be used to extract data from the channel
using available methods such as readLine() whereas PrintWriter object toClient may be used to
push the data to the channel using method such as println(). Note that the readLine() method of
BufferedReader object also blocks the caller until an entire line of characters is received.

A summary of constructors and methods of ServerSocket class is provided in Appendix A.

13.4.2	 The Socket Class
In this section, we shall discuss how to develop a client application. It was mentioned several

times that a client process, prior to exchange of data, makes a request to establish a logical connection
to the server socket object. This is done using Socket class. It has several overloaded constructors
which can be used depending upon the requirement. The commonly used one makes a request to
establish a socket connection with the specified host and the port.

Socket(String host, int port)

The host can be an IP address or a Fully Qualified Domain Name (FQDN). It can be any loop-back
address (e.g. 127.0.0.1) or the name “localhost” if the server process runs on the computer where the
client program also runs. The following statement makes a request to establish a socket connection
to the process running at localhost (local computer) on port 6789:

Socket clientEnd = new Socket("localhost", 6789);

The above constructor does not block the caller. It simply sends a request and returns a Socket
object. If the request is processed by an accept() method call at the server side, a logical channel
[Figure 13.10: (ii)] between the client process and the server process is created. The object clientEnd
represents the client end of this channel and is used to communicate with the server process
subsequently. In case the server process does not process the request immediately as it is busy in
doing some other job, no channel is created at that time [Figure 13.10: (i)]. However, the Socket
object may be used to get streams for subsequent communications. But, for successful exchange of
data, server must process the request and create a channel.

The constructor that we have used basically performs the following tasks:

•	 Creates a raw socket
•	 Binds it to an ephemeral port number
•	 Makes a connection request

If needed, these steps may be done separately. For example, to create a raw (not yet bound) socket,
the following code may be used.

Socket clientEnd = new Socket();

This socket may be bound to some specified port or a port suggested by the system. The following
code binds our socket to an ephemeral port.

clientEnd.bind(null);

SOCKET PROGRAMMING  297

serverSocket

serverEnd

Connection request

(i)

Network

clientEnd

C
lient

P
rocess

S
erver

P
rocess

serverSocket

serverEnd

Channel

Network

clientEnd

Two-way communication

C
lient

P
rocess

S
erver

P
rocess

(ii)

Figure 13.10:  Function of socket constructor (i) Connection request sent by client but not
processed by the server (ii) Connection request sent by the client and is processed by the server

The argument null indicates that the port should be chosen by the system. Finally, a connection
request is made as follows:

clientEnd.connect(new InetSocketAddress("localhost",6789));

The Socket has other overloaded constructors also. A summary of constructors and methods of
Socket class is provided in Appendix B:

Once a Socket object is created, the client process, like the server process, obtains InputStream
and OutputStream objects to send data to or receive data from the socket.

BufferedReader fromServer = new BufferedReader(new
 InputStreamReader(clientEnd.getInputStream()));
PrintWriter toServer = new PrintWriter(clientEnd.getOutputStream(), true);

The above code creates a BufferedReader object and a PrintWriter object to read from and write
to the socket. At this point both the client and the server are ready to communicate with each other.

13.4.3	 An Application
In this section, we shall develop a simple but elegant application using the TCP socket. We shall

first write a client program (namely TCPFactClient.java) that wants to find the factorial of an integer.
We shall also develop a server program (namely TCPFactServer.java) that can calculate the factorial
of a given integer. We assume that the client has somehow obtained this news that there exists a server
program which is capable of calculating the factorial of a specified integer. Consequently, client
has decided to make use of this server to have the result. However, to communicate with the server,
client needs to know the address and port number of server socket created by the server program.
We assume that, client has also collected this information somehow. Let us now see how this client
calculates the factorial of a number with the help of server.

298  ADVANCED JAVA PROGRAMMING

The summary of the application is as follows:
The client establishes a connection to the server using TCP sockets and sends an integer obtained

from the user. The server, in turn, calculates the factorial of the integer and sends the result back.
The client finally displays the result.

Note that the server and client programs for the above application are straightforward and simple
as they implement a simple protocol. They are written only to demonstrate how two parties can
communicate using TCP sockets. In practice, clients and servers perform complicated tasks. However,
they use the same basic steps as follows:

•	 Server creates a server socket and waits for incoming connection request.
•	 Client makes a request to this socket to establish a connection.
•	 On success, a logical connection is established.
•	 Both obtain input and output streams on the socket.
•	 They send and receive data using these streams.
•	 Close streams.
•	 Close socket.

To accept an integer from the user, the client program uses the following piece of code:
 BufferedReader fromUser = new BufferedReader(new InputStreamReader(System.in));

String n = fromUser.readLine();

Client then sends it to the server.
toServer.println(n);

The server program retrieves the data using the following piece of code.
int n = Integer.parseInt(fromClient.readLine());

Since the readLine() method of BufferedReader class returns a string value, it is necessary to
convert the string value to the corresponding integer value. This is accomplished using the parseInt()
method on the wrapper class Integer. Once the number is obtained, the server then calculates the
factorial of that number and stores it in a variable fact using the following piece of code.

int fact = 1;
for(int i=2;i<=n;i++)
 fact*=i;

The calculated factorial is then sent back to the client.
toClient.println(fact);

Finally, the client reads the result from the socket and prints it using the following code:
fact = fromServer.readLine();
System.out.println("Received from server: " + fact);

13.4.4	 Complete Example
Here is the complete source code of the server stored in the file TCPFactServer.java.
//TCPFactServer.java
import java.io.*;
import java.net.*;
public class TCPFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket serverEnd = serverSocket.accept();
 System.out.println("Request accepted");
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(), true);
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received from client: " + n);
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent to client: " + fact);
 }
}

SOCKET PROGRAMMING  299

//TCPFactServer.java
import java.io.*;
import java.net.*;
public class TCPFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket serverEnd = serverSocket.accept();
 System.out.println("Request accepted");
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(), true);
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received from client: " + n);
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent to client: " + fact);
 }
}

Here is the complete source code of the client stored in the file TCPFactClient.java.
//TCPFactClient.java
import java.io.*;
import java.net.*;
public class TCPFactClient {
 public static void main(String argv[]) throws Exception {
 String fact;
 //create a socket to the server
 Socket clientEnd = new Socket("localhost", 6789);
 System.out.println("Connected to localhost at port 6789");
 //get streams
 PrintWriter toServer = new PrintWriter(clientEnd.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader(new
InputStreamReader(clientEnd.getInputStream()));
 BufferedReader fromUser = new BufferedReader
 (new InputStreamReader(System.in));
 //get an integer from user
 System.out.print("Enter an integer: ");
 String n = fromUser.readLine();
 //send it to server
 toServer.println(n);
 System.out.println("Sent to server: " + n);
 //retrieve result
 fact = fromServer.readLine();
 System.out.println("Received from server: " + fact);
 //close the socket
 clientEnd.close();
 }
}

13.4.5	 Running Example Program
We have assumed that both the client and the server programs run on the same computer. If they

run on different computers, the client program must specify the address of the computer where the
server process is running. For example, if the server program runs on the port 8765 on a computer
having IP address 192.168.1.2, the following line of code should be used by the client to establish
a socket connection with the server.

Socket clientEnd = new Socket("192.168.1.2", 8765);

Now, open a terminal and go to the directory containing the source file TCPFactServer.java.
To compile the server program use the following command:

javac TCPFactServer.java

Start the server as follows:
java TCPFactServer

300  ADVANCED JAVA PROGRAMMING

Now, open another terminal and go to the directory containing the source file TCPFactClient.java.
Compile the client program using the following command:
javac TCPFactClient.java

Now, start the client as follows:
java TCPFactClient

A sample output is shown in Figure 13.11:

(i) (ii)

Figure 13.11:  Communication using TCP socket (i) TCPFactServer (ii) TCPFactClient

The execution timeline is also shown in Figure 13.12:

(i) (ii)

E:\Net>java TCPFactServer
Server is listening on port 6789

Request accepted

Received from client: 6
Sent to client: 720

E:\Net>java TCPFactClient
Connected to localhost at port 6789
Enter an integer: 6
Sent to server: 6

Received from server: 720

Time

Figure 13.12:  Execution timeline of TCP-based application (i) Server (ii) Client program

13.4.6	 Handling Multiple Client Requests
Remember that in the server program (TCPFactServer.java), call of accept() method occurs

only once. This means, our server can handle only one request. It quits after serving one client
request. Ideally, a server process should be designed in such a way so that it can handle multiple
requests (probably coming from many clients). In the following sections, we shall discuss possible
implementations of the server to handle multiple requests using i) iterative way and ii) concurrent way.

13.4.6.1    Iterative Solution
One of the possible solutions to handle multiple clients is to implement the server that serves

clients one after another. The idea is as follows:
The server program creates a ServerSocket object and invokes accept() method on it that

results in the server program waiting for incoming connections. When a connection request from
a client comes, accept method creates a logical connection between the server and the client and
returns a Socket object that represents the server end of the logical channel. This Socket object is
then used to handle all the communication with the client. If any more connection requests come

SOCKET PROGRAMMING  301

during the communication, they initially wait in the First Come First Served (FIFO) queue associated
with the server socket object. When the communication with the current client is over, the server
again invokes the accept() method that takes a request from the head of the queue and repeats the
procedure all over again [Figure 13.13:].

Create a ServerSocket object

Invoke accept()method on this object

Serve the client

accept() method takes a connection
request from the head of the queue

Creates a logical channel between
the server and the current client and returns

accept() method makes the caller suspended

If connection request queue is non-empty,
accept()method is interrupted

F
un

ct
io

n
of

a
c
c
e
p
t
(
)

m

et
ho

d

Figure 13.13:  Architecture of an iterative server

The following is the source code for our modified server stored in the file TCPSerialFactServer.
java:TCPSerialFactServer.java:

//TCPSerialFactServer.java
import java.io.*;
import java.net.*;
public class TCPSerialFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 while(true) {
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket serverEnd = serverSocket.accept();

 System.out.println("Request accepted");
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(),
true);
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received from client: " + n);
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent to client: " + fact);
 }
 }
}

302  ADVANCED JAVA PROGRAMMING

TCPSerialFactServer.java:
//TCPSerialFactServer.java
import java.io.*;
import java.net.*;
public class TCPSerialFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 while(true) {
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket serverEnd = serverSocket.accept();

 System.out.println("Request accepted");
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(),
true);
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received from client: " + n);
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent to client: " + fact);
 }
 }
}

Compile and start the server program as described before. We can now start as many clients as
you wish. The server can serve all of them one after another. Note that the same client program may
be used to communicate with the iterative server. A sample output using two clients is shown in
Figure 13.14:

Figure 13.14:  TCP Iterative Server and Clients

13.4.7	 Concurrently Solution
The iterative server we have designed in the previous section can handle many clients but one at

a time. In this design, during communication between the server and a client if a further connection
request comes, they wait until the server completes the current communication. These requests
are also handled on a First-Come-First-Served basis later. However, this design has some inherent
problem. Firstly, a client having longer processing time blocks another client that has relatively smaller
processing time and has made a connection request just after the former client. This is because the
client that makes a request later has to wait until the server serves the client that made the connection
request earlier. Secondly, during a communication session, the server does not usually always use all
of its available resources to serve the client. Hence, overall resource utilization at the server end is not
optimal. To have a better server-resource utilization and better response time for all the clients, the
server may be designed in such a way that it can serve multiple requests concurrently. The following
arrangements can be made in the server to implement this:

•	 Listen for incoming connection.
•	 Accept a new connection request and create a channel.
•	 Create a new thread; hand over the channel to this thread
•	 Go to the listening mode again to accept further connections immediately.
•	 The thread handles the client request independently using the channel and finally terminates.

SOCKET PROGRAMMING  303

Create a ServerSocket object

Listening

Serve the client

accept() method takes a connection
request from the head of the queue

Creates a logical channel between
the server and the current client and returns

accept() method makes the caller suspended

If connection request queue is non-empty,
accept()method is interrupted

F
un

ct
io

n
of

 a
c
c
e
p
t
(
)

m

et
ho

d

The idea behind the concurrent server is very simple. In this design, the server (main thread)
initially listens for incoming client requests. When a request comes, it establishes a socket connection.
However, instead of handling the request by itself, it spawns a new thread and handovers this
connection to the thread which can handle the client request. The server then immediately goes to
the listening mode again so that it can take actions (creating another thread and so on.). The thread
runs in parallel and serves the client through the socket connection assigned. So, main thread is
solely responsible to accept incoming requests, whereas client requests are explicitly handled by
the respective threads. Since, threads run concurrently (OS schedules them), clients are served
concurrently. Even if a thread takes a long time to serve a client, other threads (hence other clients)
need not wait.

To implement the above idea, we first write a class Handler extending java.lang.Thread class.
So, a Handler object represents a thread. The Handler objects will be created exclusively to handle
client requests. So, a Handler object needs something using which it can continue to communicate
with a client. Note that, a Socket object (that represents one end of the communication channel)
may be used to exchange data through the channel. So, we write a constructor in the Handler class
that takes a Socket object as an argument. For our factorial application, this Socket object is used to
receive an integer from the client and send the factorial of that integer. Since, Handler class extends,
java.lang.Thread, it is necessary to implement the run() method. When the thread is started, this
method is executed concurrently with other threads. So, we need to write the necessary code in this
method to handle a client. The thread is started by the constructor itself so that as soon as the thread
object is created, is starts handling the client assigned to it.

The following is the source code for our modified server stored in the file TCPMTFactServer.
java:

//TCPMTFactServer.java
import java.io.*;
import java.net.*;
class TCPMTFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket welcomeSocket = new ServerSocket(6789);
 System.out.println("Server ready");
 while (true) {
 //wait for incoming connection
 Socket serverEnd = welcomeSocket.accept();
 System.out.println("Request accepted");
 //hand over this connection request to Handler
 new Handler(serverEnd);
 }
 }
}
class Handler implements Runnable {
 Socket serverEnd;
 Handler(Socket s) {
 this.serverEnd = s;
 new Thread(this).start();
 System.out.println("A thread created");
 }
 public void run() {
 try {
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(),
 true);
 while (true) {
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received " + n);
 if (n == -1) {
 serverEnd.close();
 break;
 }
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent: " + fact);
 }
 } catch (IOException e) { }
 }
}

304  ADVANCED JAVA PROGRAMMING

//TCPMTFactServer.java
import java.io.*;
import java.net.*;
class TCPMTFactServer {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket welcomeSocket = new ServerSocket(6789);
 System.out.println("Server ready");
 while (true) {
 //wait for incoming connection
 Socket serverEnd = welcomeSocket.accept();
 System.out.println("Request accepted");
 //hand over this connection request to Handler
 new Handler(serverEnd);
 }
 }
}
class Handler implements Runnable {
 Socket serverEnd;
 Handler(Socket s) {
 this.serverEnd = s;
 new Thread(this).start();
 System.out.println("A thread created");
 }
 public void run() {
 try {
 //get streams
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 PrintWriter toClient = new PrintWriter(serverEnd.getOutputStream(),
 true);
 while (true) {
 //receive data from client
 int n = Integer.parseInt(fromClient.readLine());
 System.out.println("Received " + n);
 if (n == -1) {
 serverEnd.close();
 break;
 }
 int fact = 1;
 for (int i = 2; i <= n; i++)
 fact *= i;
 //send result to the client
 toClient.println(fact);
 System.out.println("Sent: " + fact);
 }
 } catch (IOException e) { }
 }
}

Originally, our server program calculates factorial of one integer given by the client and terminates
closing the socket connection. So, each time a client wants to calculate factorial of an integer, it
needs to establish a new connection. Note that, establishing a (TCP) connection is done through a
3-way handshaking procedure. Moreover, terminating a connection is even costlier. It uses a 4-way
handshaking procedure. Needless to say that this complex procedures of connection establishment
and termination impose a significant overhead. To improve the performance in terms of response
time, the following idea may be adopted:

After calculating factorial of a given integer, the connection is not closed immediately; rather it is
kept open. If the client wants, it may use the same connection to find factorial of more integers. The
connection is finally disconnected if both of the communicating parties decide that the connection
is no longer needed. This way, the overall response time may be reduced significantly. Keeping this
idea in our mind, the run() (which actually serves a client) method is modified so that a client can get
multiple results though the same connection. Accordingly, we also need to modify out client program

SOCKET PROGRAMMING  305

slightly so that it can send many integers one by one. To terminate, it sends a −1. The source code
for the client stored in TCPMTFactClient.java is as follows:

//TCPMTFactClient.java
import java.io.*;
import java.net.*;
public class TCPMTFactClient {
 public static void main(String argv[]) throws Exception {
 String fact;
 //create a socket to the server
 Socket clientEnd = new Socket("localhost", 6789);
 System.out.println("connected to localhost at port 6789");
 //get streams
 PrintWriter toServer = new PrintWriter(clientEnd.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader(new
InputStreamReader(clientEnd.getInputStream()));
 BufferedReader fromUser = new BufferedReader(new
InputStreamReader(System.in));
 while (true) {
 //get an integer from user
 System.out.print("Enter an integer: ");
 String n = fromUser.readLine();
 //send it to server
 toServer.println(n);
 System.out.println("Sent to server: " + n);
 if (n.equals("-1"))
 break;
 //retrieve result
 fact = fromServer.readLine();
 System.out.println("Received from server: " + fact);
 }
 //close the socket
 clientEnd.close();
 }
}

Compile and start the server program as described previously. You can now start as many clients as you
wish. The server can serve them simultaneously. A sample output using two clients is shown in Figure 13.15:

Figure 13.15:  TCP Multi-threaded Server and Clients

306  ADVANCED JAVA PROGRAMMING

If the computer where the server program runs is situated in a different network, the client’s
network must be configured properly. In particular, the IP address of the gateway must be specified.
If the client’s network is connected to the server’s network through a proxy that supports sockets,
use the following lines of code:

System.setProperty("socksProxyHost", "192.168.1.1");
System.setProperty("socksProxyPort", "1080");

Here, 1080 is the port number of the proxy process and 192.168.1.1 is the IP address of the host
where the proxy runs. Alternatively, you can pass this information to the Java Runtime Environment
during execution as follows:

java -DsocksProxyHost=192.168.1.1 -DsocksProxyPort=1080 TCPMTFactClient

13.4.8	 Sending and Receiving Objects Using TCP
The applications that we have developed so far exchange data as a stream of bytes. It will be more

convenient if applications can send and receive objects instead of raw byte stream. Java provides
a powerful concept known as serialization that can be used to send an object through a socket.
The idea behind the object serialization is very simple. The object to be sent is first converted to
an equivalent linear stream of bytes. This byte stream is then sent through the socket in the usual
way. The object can be restored at the receiving side using deserialization process. The serialized
data may also be manipulated or even be stored in a persistent storage such as file for further use.

Note that an object to be serialized may have references to other objects, which, in turn, may
have references to still more objects. There may be circular references. Objects may also refer
to themselves. So, a set of related objects essentially form probably a complex directed graph.
Serializing an object, in this case, means serializing all other referenced objects on the graph
rooted by the context object also. This is sometimes called deep serialization. Similarly, during the
deserialization process, all these objects must be restored (deep deserialization) correctly. However,
there is nothing to worry. Java provides the serialization and deserialization facilities implementing
all those issues correctly. Programmers need not even know the underlying serialization and
deserialization algorithms. These algorithms have been implemented in two high-level stream classes
ObjectOutputStream and ObjectInputStream. To serialize an object, writeObject() method is
called on an ObjectOutputStream object. Similarly, during deserialization, readObject() method
is called on an ObjectInputStream object.

13.4.8.1    Serializing an Object
As mentioned in the previous section, serialization is a process of converting an object (or a graph

of objects) to linear stream of bytes. However, an object is said to be serializable provided that its
underlying class implements java.io.Serializable interface. This interface has no methods or fields.
It only indicates that objects of the class implementing this interface are semantically serializable.

During the serialization process, JVM traverses the entire object graph. If it encounters an object
whose class does not implement Serializable interface, a NotSerializableException is thrown
identifying the class of the non-serializable object.

Note that transient and static variables are not stored in the serialized data. Also note that some
classes (whether implemented Serializable interface or not) are inherently non-serializable. For
example thread, stream and database connection-related classes are not serializable. Let us now write
a simple class whose object will be sent through the socket.

class Message implements java.io.Serializable {
 String subject, text;
 Message(String s, String t) {
 this.subject = s;
 this.text = t;
 }
 String getSubject() {
 return subject;
 }
 String getText() {
 return text;
 }
}

SOCKET PROGRAMMING  307class Message implements java.io.Serializable {
 String subject, text;
 Message(String s, String t) {
 this.subject = s;
 this.text = t;
 }
 String getSubject() {
 return subject;
 }
 String getText() {
 return text;
 }
}

This simple class represents a message having a subject and body text. A Message object contains
only two String member variables subject and text that will contain the subject and body of the
message. The class implements Serializable interface. The java.lang.String class also implements
Serializable interface. So, Message objects are indeed serializable.

Let us now understand the procedure of serializing an object. To serialize an object, we have
to create an ObjectOutputStream object first. This is a stream that implements serialization part.
The actual conversion of our object to the byte array is then done using writeObject() method on
ObjectOutputStream object. This class also defines a set of other useful methods for serializing
variables of built-in type. As we have mentioned earlier, the resultant byte array may be used in
primarily three ways:

•	 Store the serialized data in a persistent storage such as file using class FileOutputStream
•	 Store the serialized data in simple byte array using class ByteArrayOutputStream
•	 Send the serialized data through the socket directly without storing them for further usage

The last mechanism is useful to send the data over a TCP socket, whereas the second one may
be used to send data as a datagram packet. In this section we shall use the last mechanism. So, an
ObjectOutputStream object is created using the following way:

ObjectOutputStream oos = new ObjectOutputStream(socket.getOutputStream());

Since we want to send serialized data over the socket, the ObjectOutputStream object is created
from socket’s OutputStream. This oos object has now a reference to the socket’s OutputStream. Let
us now create an object to be serialized:

Message msg = new Message("Remainder","Return my book on Monday");

This is a simple Message object that represents a remainder. The ObjectOutputStream class
contains many methods for serializing various data types. But we are interested in the following
method.

public final void writeObject(Object x) throws IOException

This method serializes the specified object. So, to serialize our Message object, the following
code may be used.

oos.writeObject(msg);

Since, oos has a reference to the socket’s OutputStream, writeObject() method serializes msg
and directly sends the serialized byte array through the socket. At the receiving end, the Message
object is restored back from the serialized data using a procedure called deserialization. Here is the
complete source code of a program (namely TCPObjectSender.java) that sends an object over TCP
connection.

//TCPObjectSender.java
import java.io.*;
import java.net.*;
public class TCPObjectSender {
 public static void main(String argv[]) throws Exception {
 String fact;
 //create a socket to the server
 Socket socket = new Socket("172.16.5.81", 6789);
 System.out.println("Connected to localhost at port 6789");
 //Create a Message object to be sent
 Message msg = new Message("Remainder","Return my book on Monday");
 //Create an ObjectOutputStream object
 ObjectOutputStream oos = new
ObjectOutputStream(socket.getOutputStream());
 //Serialize and send over TCP
 oos.writeObject(msg);
 System.out.println("Sent an object");
 socket.close();
 }
}

308  ADVANCED JAVA PROGRAMMING

//TCPObjectSender.java
import java.io.*;
import java.net.*;
public class TCPObjectSender {
 public static void main(String argv[]) throws Exception {
 String fact;
 //create a socket to the server
 Socket socket = new Socket("172.16.5.81", 6789);
 System.out.println("Connected to localhost at port 6789");
 //Create a Message object to be sent
 Message msg = new Message("Remainder","Return my book on Monday");
 //Create an ObjectOutputStream object
 ObjectOutputStream oos = new
ObjectOutputStream(socket.getOutputStream());
 //Serialize and send over TCP
 oos.writeObject(msg);
 System.out.println("Sent an object");
 socket.close();
 }
}

13.4.8.2	 Reconstructing Objects
The counterpart of ObjectOutputStream is the java.io.ObjectInputStream class that implements

deserialization part. Like ObjectOutputStream, it also defines a set of useful methods to read the
serialized data.

To restore the object back, we first create an ObjectInputStream object from an InputStream
that contains the serialized data. Since serialized data comes through the socket, InputStream of the
socket is used to create ObjectInputStream object as follows:

ObjectInputStream in = new ObjectInputStream(socket.getInputStream());

Like, ObjectOutputStream, the ObjectInputStream class also contains the following method
for deserializing an object:

public final Object readObject() throws IOException, ClassNotFoundException

This method retrieves data for the next Object from the input stream. It then deserializes the
data to form the object. Since, the return value is Object (the top level Java class) we should cast
it to the appropriate data type. So, the following code may be used to get out Message object back:

Message msg = (Message) in.readObject();

Here is the complete source code of the program (namely TCPObjectReceiver.java) that receives
an object over TCP connection.

//TCPObjectReceiver.java
import java.io.*;
import java.net.*;
public class TCPObjectReceiver {
 public static void main(String argv[]) throws Exception {
 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket socket = serverSocket.accept();
 System.out.println("Request accepted");
 //Create an ObjectInputStream Object
 ObjectInputStream in = new ObjectInputStream(socket.getInputStream());
 //Restore the object
 Message msg = (Message) in.readObject();
 //Print the mesaage
 System.out.println("Received a message:");
 System.out.println("subject : " + msg.getSubject()+"\nbody :
"+msg.getText());
 }
}

SOCKET PROGRAMMING  309

Compile the sender program TCPObjectSender.java, the receiver program TCPObjectReceiver.
java and Message.java. Note that to reconstruct a Message object, its class definition is required.
So, before starting the receiver program, make sure that the directory contains Message.class file.
Start the application now. A sample output is shown in Figure 13.16:

Figure 13.16:  Sending and receiving objects through TCP

13.4.9	 An Example
In this section, we shall develop a simple but elegant distributed application using TCP socket. In

this application [Figure 13.17:], the server accepts jobs from the clients, executes these jobs locally,
calculates the execution time, and finally returns the output as well as completion time. This way,
clients can execute their jobs remotely on a powerful computer, or a computer having specialized
hardware or one that has special permission.

Client Server
Get result

Execute job

Figure 13.17:  Remote job execution scenario

The interesting part of the application is that the server does not have to define the jobs that it
executes. Clients can create their custom jobs as and when required and submit them to the server
for execution. The only restriction imposed on a job is that its class must implement an interface
defined by the server. The class definition of a job is also sent by the client that submits the job

310  ADVANCED JAVA PROGRAMMING

through socket. Once the class file is available, the server can execute the job locally using its own
resource.

How can a server return the result to the client? If the result’s class is a built-in class, the client
already has the class definition and can use it easily. However, if the result’s class is a server-defined
custom class, how can the client get it? Again there is no problem, since the client can download the
class definition from the server side and get the result. The only requirement of a result object is that
its class implements an interface known to the client.

This way, the server can execute arbitrary jobs without any prior knowledge of the job’s class
definition. Clients can also get the result without any prior knowledge of result’s class definition.
The socket may be used to send and receive necessary class definitions. This way, we may change
the behaviour of an object and install it in a remote machine dynamically.

13.4.10  Writing the Server
The server application consists of three parts: Result interface, an implementation of that interface,

Executable interface and main file that accepts and executes the jobs submitted by the client.

13.4.10.1    Writing Interfaces
In this section, we shall describe the interface Executable that defines the client’s view of job. It

provides a description of what methods a job should implement. Client creates a job implementing
this interface and submits (using object serialization) for execution. The server restores the job object
and invokes a method defined in the Executable interface.

Here is the source code (Executable.java) for Executable interface.
//Executable.java
public interface Executable {
 public String execute();
}

The interface has a single method execute(). The server will invoke this method on jobs submitted
by the clients. This method should return all the output as a single string. The server also calculates
the execution time and creates a Result object and sends back to the client.

The Result interface describes the structure of the result returned after executing the job. Here
is the source code (Result.java) for Result interface.

public interface Result {
 String output();
 double completionTime();
}

It defines two methods, output() and completionTime(). The methods output() and
completionTime() return string output and execution time of the job, respectively. The Result
object’s class must implement this interface. The client must download this Result object’s class
definition to get the result.

Since, Executable and Result objects are exchanged using Java’s object serialization procedure,
classes that implement Executable and Result must implement the java.io.Serializable interface.

13.4.10.2     Implementing Interfaces
The server only defines one class ResultImpl which implements Result interface. Here is the

source code (ResultImpl.java.) for ResultImpl class.

SOCKET PROGRAMMING  311

import java.io.Serializable;
public class ResultImpl implements Result, Serializable {
 String output;
 double completionTime;
 public ResultImpl(String o, double c) {
 output = o;
 completionTime = c;
 }
 public String output() { return output; }
 public double completionTime() { return completionTime; }
}

An object of this class represents the result of a job in terms of its output and completion time.
This result object, generated by a job at the server end, will be transferred to the client side and hence
must be serializable. This object is indeed serializable as its class implements the Serializable
interface. The definition of ResultImpl must be downloaded to the client side to reconstruct the
result object.

The client only defines one class Job which implements Executable interface. Here is the source
code (Job.java.) for Job class.

//Job.java
import java.io.Serializable;
public class Job implements Executable, Serializable {
 public String execute() {
 int n = 5, prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 return (new Integer(prod)).toString();
 }
}

A Job object submitted by the client is transferred to the server side and hence must be serializable.
This object is indeed serializable as its class implements the Serializable interface. The definition
of Job must be downloaded to the server side to reconstruct the job object.

13.4.10.3     Implementing Server
//TCPServer.java
import java.io.*;
import java.net.*;

public class TCPServer {
 public static void main(String argv[]) throws Exception {

 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket socket = serverSocket.accept();
 System.out.println("Request accepted");

 ObjectInputStream in = new ObjectInputStream(socket.getInputStream());

 String classFile = (String)in.readObject();

 byte[] b = (byte[])in.readObject();
 FileOutputStream fos = new FileOutputStream(classFile);
 fos.write(b);

 Executable ex = (Executable)in.readObject();
 System.out.print("Starting execution...");
 double startTime = System.nanoTime();
 String output = ex.execute();
 double endTime = System.nanoTime();
 double completionTime = endTime-startTime;
 System.out.println("[DONE]");
 ResultImpl r = new ResultImpl(output, completionTime);

 ObjectOutputStream out = new ObjectOutputStream(socket.
getOutputStream());
 classFile = "ResultImpl.class";
 out.writeObject(classFile);

 FileInputStream fis = new FileInputStream(classFile);
 byte[] bo = new byte[fis.available()];
 fis.read(bo);
 out.writeObject(bo);

 out.writeObject(r);
 System.out.print("Result sent");
 socket.close();
 }
}

312  ADVANCED JAVA PROGRAMMING

//TCPServer.java
import java.io.*;
import java.net.*;

public class TCPServer {
 public static void main(String argv[]) throws Exception {

 //create a server socket at port 6789
 ServerSocket serverSocket = new ServerSocket(6789);
 //wait for incoming connection
 System.out.println("Server is listening on port 6789");
 Socket socket = serverSocket.accept();
 System.out.println("Request accepted");

 ObjectInputStream in = new ObjectInputStream(socket.getInputStream());

 String classFile = (String)in.readObject();

 byte[] b = (byte[])in.readObject();
 FileOutputStream fos = new FileOutputStream(classFile);
 fos.write(b);

 Executable ex = (Executable)in.readObject();
 System.out.print("Starting execution...");
 double startTime = System.nanoTime();
 String output = ex.execute();
 double endTime = System.nanoTime();
 double completionTime = endTime-startTime;
 System.out.println("[DONE]");
 ResultImpl r = new ResultImpl(output, completionTime);

 ObjectOutputStream out = new ObjectOutputStream(socket.
getOutputStream());
 classFile = "ResultImpl.class";
 out.writeObject(classFile);

 FileInputStream fis = new FileInputStream(classFile);
 byte[] bo = new byte[fis.available()];
 fis.read(bo);
 out.writeObject(bo);

 out.writeObject(r);
 System.out.print("Result sent");
 socket.close();
 }
}

13.4.10.4     Implementing Client
//TCPClient.java
import java.io.*;
import java.net.*;
public class TCPClient {
 public static void main(String args[]) throws Exception {
 //create a socket to the server
 Socket socket = new Socket(args[0], 6789);
 System.out.println("Connected to localhost at port 6789");

 ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());

 String classFile = "Job.class";
 out.writeObject(classFile);

 FileInputStream fis = new FileInputStream(classFile);
 byte[] b = new byte[fis.available()];
 fis.read(b);
 out.writeObject(b);

 Job aJob = new Job();
 out.writeObject(aJob);

 System.out.println("Submitted a job for execution");
 ObjectInputStream in = new ObjectInputStream(socket.getInputStream());
 classFile = (String)in.readObject();

 b = (byte[])in.readObject();
 FileOutputStream fos = new FileOutputStream(classFile);
 fos.write(b);

 Result r = (Result)in.readObject();
 System.out.println("result = "+r.output()+", time taken =
"+r.completionTime()+" ns");
 socket.close();
 }
}

SOCKET PROGRAMMING  313

13.4.10.5     Running the Example

13.5	 UDP SOCKETS
In the previous sections, we have discussed how to develop network applications using stream

sockets. Communication with a server using stream socket basically consists of two steps. First,
create a channel with the server at the desired port. Then, send and receive data through this channel.
The stream socket provides reliable communication of ordered stream of bytes, since it uses TCP as
the underlying transport layer protocol.

However, TCP provides this reliability and data ordering using complicated algorithms using
retransmission (probably many times). Consequently, the performance (in terms of delay) of TCP in
case of data loss or network congestion is not satisfactory. Moreover, there exists certain applications
(that transmit/receive real time data such as audio, video etc), that expects quick delivery of data instead
of ordered and correct delivery. For example, in the case of video transmission, the frames should
come continuously, failing of which results in an unpleasant experience to the viewers. However, loss
of a few frames in the continuous flow of frames does not degrade the quality of the video so much.
For such applications, quick delivery of data is more important than correct and ordered delivery of
data. Since, TCP always try to recover an erroneous or lost data frame, it fails to deliver data quickly,
in the presence of error and hence is not suitable for real-time applications.

An alternative way to develop such real-time applications is to use datagram sockets that use UDP
as the underlying transport layer protocol. In the following sections, we shall discuss how programs
exchange data using UDP sockets.

DatagramSocket object DatagramSocket objectDatagramPacket

Network
10100010

1100010
1110101

010100

C
lient

P
rocess

S
erver

P
rocess

Figure 13.18:  Communication using UDP sockets where no explicit
communication channel is created

UDP socket allows data communication using a mechanism different from one used in TCP.
In the UDP style of communication, no connection with the server socket is established prior to
exchange of data [Figure 13.8:]. Instead, two DatagramSocket objects are created and data is sent and
received using containers called datagrams. The receiver program first creates a datagram socket and
waits for the incoming datagrams. A sender program, on the other hand, creates a datagram packet,
specifies the IP address and the port number of the server, and puts it on the network. The datagram
packet is then forwarded by possibly many intermediate hosts and eventually reaches the server.

314  ADVANCED JAVA PROGRAMMING

DatagramPacket

C
lient

P
rocess

S
erver

P
rocess

Figure 13.19:  Different datagrams may traverse different paths

Note that the packet may be lost on its way or some error may occur in the packet data (payload).
Since, recovering the packet may take significant time, UDP does not even try to recover the packet.
Instead it concentrates on delivering other packets. It means, UDP does not guarantee that a datagram
will arrive at the receiver. It does not also assure that a process will really be there to accept the
datagram. Since, datagrams may traverse different paths [Figure 13.19:], there is no guarantee
they will reach in the order in which they were sent. Even then, as explained earlier, this style of
communication is desired in some situations such as real-time applications.

Let us now understand, how to develop network applications using UDP socket. Java provides
two primary classes to develop UDP-based network applications: i) DatagramSocket and ii)
DatagramPacket. A DatagramPacket object is a container (called packet) of data to be sent and/
or received, whereas DatagramSocket is used to send and/or receive those packets. The basic idea
[Figure 13.20:] of data communication using UDP socket is as follows:

Both of the communicating parties first create a DatagramSocket object. Like TCP socket, this
socket is also bound to a port number. Usually, in the receiver program, an unused port number is
assigned to the socket by the programmer. In the sender program, the responsibility is usually imposed

Sender

1. Creates a DatagramS ocket object,

 and binds it to a port and address.

2. Creates a buffer (byte array) to hold

the data to be sent.

3. Creates a DatagramPacket object
specifying the buffer containing data and

socket address of the DatagramSocket

object created by the receiver.

4. Calls send() method on

DatagramSocket object passing

Receiver

1. Creates a DatagramSocket object,

specifying a port number.

2. Creates a buffer (byte array) to hold

 the received data.

3. Creates a DatagramPacket object

from this buffer.

4. Calls receive() method on
DatagramSocket object passing

DatagramPacket object as an argument.

DatagramPacket object as an argument.

time

Figure 13.20:  Temporal flow of control in receiver and sender programs using UDP sockets

SOCKET PROGRAMMING  315

on the system. A process (call it sender) willing to send data to another process (call it receiver)
creates a DatagramPacket object specifying the following information:

•	 A byte array containing the data (payload) to be sent and
•	 the socket address (IP address and port number) of the DatagramSocket object created by the receiver.

The packet is actually sent using send() method of DatagramSocket object.
On the other hand, the receiver of the packet also creates a DatagramPacket object specifying an

array where the received data is stored. The packet is received by calling the receive() method of
DatagramSocket object and passing the packet object as an argument. A summary of basic steps to
be followed by the sender and receiver is shown in Figure 13.20:

13.5.1	 Datagram Packets
Note that data is sent and/or received in terms of packets (also called datagrams). A datagram

is represented in Java by a DatagramPacket object and can be created using one of the following
constructors:

DatagramPacket(byte[] data, int size);
DatagramPacket(byte[] data, int size, InetAddress address, int port);
DatagramPacket(byte[] data, int size, int offset);
DatagramPacket(byte[] data, int size, int offset, InetAddress address,
int port);
DatagramPacket(byte[] data, int size, SocketAddress socket);
DatagramPacket(byte[] data, int size, int offset, SocketAddress socket)

In our application, to receive data, we shall use the first constructor. It takes two arguments:

•	 data—an array of bytes where the data bytes received are stored and
•	 size—number of bytes to be taken from the packet.

To send data, we shall use the second constructor. It takes four arguments.

•	 Data—an array of bytes containing data to be sent
•	 Size—number of bytes to be sent
•	 Address—IP address assigned to the DatagramSocket created by the receiver and
•	 Port—port number assigned to the DatagramSocket created by the receiver

There are many other useful methods available on DatagramPacket object to get and set the internal
properties of the packet. A detailed description of constructors and methods of DatagramPacket can
be found in Appendix D.

13.5.2	 Datagram Server
Let us now develop our factorial application using UDP socket. Note that our server first receives

an integer. So, the server first creates a DatagramSocket at a port (say 5000) as follows:
DatagramSocket socket = new DatagramSocket(5000);

The port must be an unused one otherwise it throws a BindException. The port must belong to
the range from 0 to 65535. This port 5000 should be specified by our client in the packet to be sent.

Suppose the machine running this server process has one network interface card having IP address
192.168.1.2. Then the socket address of the DatagramSocket object is [192.168.1.2, 5000].
A pictorial description is shown in Figure 13.21:

316  ADVANCED JAVA PROGRAMMING

socket

Socket address = [192.168.1.2, 5000]

S
erver

P
rocess

Figure 13.21:  Creating a DatagramSocket Object

If the host has multiple network interface cards (hence multiple IP addresses), then this
DatagramSocket is identifiable by all these interfaces, So, any one of the IP addresses may be
specified in the DatagramPacket by a sender for delivery of packet. However, if required, a specific
IP address may also be bound to the datagram socket using a different constructor [See appendix C
for details].

To hold the data sent to this socket, the server program then creates a DatagramPacket object
where incoming data will be stored.

byte[] rbuf = new byte[10];
DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);

To receive a DatagramPacket, it uses the receive() method on the DatagramSocket object
created.

socket.receive(rpkt);

The method receive() is a blocking one. It means, the DatagramSocket waits for a packet to be
received. The server comes up when a DatagramPacket destined to this socket arrives [Figure 13.22:].

socket

DatagramPacket

Socket address = [192.168.1.2, 6789]

S
erver

P
rocess

Figure 13.22:  DatagramSocket is listening for incoming packets

After receiving a packet destined to it, the server program extracts the data from this packet and
puts them on the array specified during creation of the packet. As mentioned earlier, DatagramPacket
object has many useful methods to explore the packet. The following code creates a string from the
data received.

String data = new String(rpkt.getData(), 0, rpkt.getLength());

Since, in our application, this string is actually an integer, it is converted to an integer using the
following piece of code:

int n = Integer.parseInt(data);

SOCKET PROGRAMMING  317

The factorial of this integer is then calculated. To send the result back to the client, the server
needs to extract socket information (IP address and port) of DatagramSocket object created by the
client. This is done using the following piece of code:

InetAddress addr = rpkt.getAddress();
int port = rpkt.getPort();

The server then creates another DatagramPacket object specifying the factorial of the number
and the socket information just extracted.

String sbuf = String.valueOf(fact).getBytes();
DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length, addr, port);

Finally the packet is forwarded towards the client as follows:
socket.send(spkt);

Here is the complete source code for our UDP server UDPFactServer.java.
//UDPFactServer.java
import java.net.*;
import java.io.*;
public class UDPFactServer {
 public static void main(String args[]) throws Exception {
 byte[] rbuf = new byte[10], sbuf = new byte[10];
 //create a server socket at port 5000
 DatagramSocket socket = new DatagramSocket(5000);
 System.out.println("Server ready");

DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);
 //receive a packet from client
 socket.receive(rpkt);
 //extract data and client information from this packet
 String data = new String(rpkt.getData(), 0, rpkt.getLength());
 InetAddress addr = rpkt.getAddress();
 int port = rpkt.getPort();
 int fact = 1, n = Integer.parseInt(data);
 System.out.println("Received: " + n + " from " + addr + ":" + port);
 for (int i = 2; i <= n; i++)
 fact *= i;
 sbuf = String.valueOf(fact).getBytes();
 DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length, addr, port);
 //send result to the client
 socket.send(spkt);
 System.out.println("Sent: " + fact);

 }
}

13.5.3	 Datagram Client
Remember that our client first sends an integer to the server to get the factorial of the integer. So,

it creates a DatagramSocket object.
DatagramSocket socket = new DatagramSocket();

Note that no port number or IP address of the server is specified here. The above line of code
does not create a channel to the server, it simply creates a socket that will be used to send and
receive packets. The DatagramSocket object is also assigned a locally unique port number by the
system. This port number together with the IP address of the client will be encapsulated in the
packet sent to the server. The server extracts this information to send the result (if any) back to
the client [Figure 13.23:].

318  ADVANCED JAVA PROGRAMMING

Socket address = [192.168.1.2, 6789]

socket

DatagramPacket

Network

socket

Two-way communication

C
lient

P
rocess

S
erver

P
rocess

Figure 13.23:  Client creates a DatagramSocket

It then accepts an integer from the user and creates a DatagramPacket with this data. It also
specifies the address and port number of the server in the packet.

String data = fromUser.readLine();
sbuf = data.getBytes();
DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length, addr, 5000);

The client then sends the packet using the send() method on the DatagramSocket object. Whenever
a reply comes back, it extracts the data and prints it. Here is the complete source code for UDP client
UDPFactClient.java.

//UDPFactClient.java
import java.net.*;
import java.io.*;
public class UDPFactClient {
 public static void main(String args[]) throws Exception {
 byte[] rbuf = new byte[1024], sbuf = new byte[1024];
 BufferedReader fromUser =
 new BufferedReader(new InputStreamReader(System.in));
 DatagramSocket socket = new DatagramSocket();
 InetAddress addr = InetAddress.getByName(args[0]);
 //get an integer from user
 System.out.print("Enter an integer: ");
 String data = fromUser.readLine();
 sbuf = data.getBytes();

DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length, addr, 5000);
 //send it to server
 socket.send(spkt);
 System.out.println("Sent to server: " + data);
 DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);
 //retrieve result
 socket.receive(rpkt);
 data = new String(rpkt.getData(), 0, rpkt.getLength());
 System.out.println("Received from server: " + data);
 //close the socket
 socket.close();
 }
}

Compile and run the programs as before. A sample output is shown in Figure 13.24: Note that we
started sender and receiver in the same computer to test the correctness of the code. However, if they
run on two different computers connected by a network, the sender should specify the socket address
(IP and port) of the DatagramSocket object created by the receiver program, in the DatagramPacket.
Also note that the receiver of a datagram should be started first.

SOCKET PROGRAMMING  319

(i) (ii)

Figure 13.24:  Communication using UDP socket (i) UDPFactServer (ii) UDPFactClient

13.5.4	 Receiving Multiple Datagrams
We can extend our UDP server so that it can handle multiple requests simultaneously.

Here is the complete source code for our multithread UDP server stored in the file UDPMTFactServer.
java.

import java.net.*;
import java.io.*;
public class UDPMTFactServer {
 public static void main(String args[]) throws Exception {
 //create a server socket at port 5000
 DatagramSocket socket = new DatagramSocket(5000);
 System.out.println("Server ready");
 while (true) {
 byte[] rbuf = new byte[10];
 DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);
 //receive a packet from client
 socket.receive(rpkt);
 System.out.println("Receiver a packet");
 //hand over this packet to Handler
 new Handler(rpkt, socket);
 }
 }
}

class Handler implements Runnable {
 DatagramSocket socket;
 DatagramPacket pkt;
 Handler(DatagramPacket pkt, DatagramSocket socket) {
 this.pkt = pkt;
 this.socket = socket;
 new Thread(this).start();
 System.out.println("A thread created");
 }
 public void run() {
 try {
 byte[] sbuf = new byte[10];
 //extract data and client information from this packet
 String data = new String(pkt.getData(), 0, pkt.getLength());
 InetAddress addr = pkt.getAddress();
 int port = pkt.getPort();

 int fact = 1, n = Integer.parseInt(data);
 System.out.println("Received: " + n + " from " + addr + ":" + port);

 for (int i = 2; i <= n; i++)
 fact *= i;
 sbuf = String.valueOf(fact).getBytes();

 DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length,
addr, port);
 //send result to the client
 socket.send(spkt);
 System.out.println("Sent: " + fact);
 } catch (IOException e) { }
 }
}

320  ADVANCED JAVA PROGRAMMING

import java.net.*;
import java.io.*;
public class UDPMTFactServer {
 public static void main(String args[]) throws Exception {
 //create a server socket at port 5000
 DatagramSocket socket = new DatagramSocket(5000);
 System.out.println("Server ready");
 while (true) {
 byte[] rbuf = new byte[10];
 DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);
 //receive a packet from client
 socket.receive(rpkt);
 System.out.println("Receiver a packet");
 //hand over this packet to Handler
 new Handler(rpkt, socket);
 }
 }
}

class Handler implements Runnable {
 DatagramSocket socket;
 DatagramPacket pkt;
 Handler(DatagramPacket pkt, DatagramSocket socket) {
 this.pkt = pkt;
 this.socket = socket;
 new Thread(this).start();
 System.out.println("A thread created");
 }
 public void run() {
 try {
 byte[] sbuf = new byte[10];
 //extract data and client information from this packet
 String data = new String(pkt.getData(), 0, pkt.getLength());
 InetAddress addr = pkt.getAddress();
 int port = pkt.getPort();

 int fact = 1, n = Integer.parseInt(data);
 System.out.println("Received: " + n + " from " + addr + ":" + port);

 for (int i = 2; i <= n; i++)
 fact *= i;
 sbuf = String.valueOf(fact).getBytes();

 DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length,
addr, port);
 //send result to the client
 socket.send(spkt);
 System.out.println("Sent: " + fact);
 } catch (IOException e) { }
 }
}

To test our multithreaded server, we can write a UDP client as follows:
import java.net.*;
import java.io.*;
public class UDPMTFactClient {
 public static void main(String args[]) throws Exception {
 byte[] rbuf = new byte[1024], sbuf = new byte[1024];
 BufferedReader fromUser =
 new BufferedReader(new InputStreamReader(System.in));
 DatagramSocket socket = new DatagramSocket();
 InetAddress addr = InetAddress.getByName(args[0]);
 while(true) {
 //get an integer from user
 System.out.print("Enter an integer: ");
 String data = fromUser.readLine();
 sbuf = data.getBytes();
 DatagramPacket spkt = new DatagramPacket(sbuf, sbuf.length,
addr, 5000);
 //send it to server
 socket.send(spkt);
 System.out.println("Sent to server: " + data);
 if(data.equals("-1")) break;
 DatagramPacket rpkt = new DatagramPacket(rbuf, rbuf.length);
 //retrieve result
 socket.receive(rpkt);
 data = new String(rpkt.getData(), 0, rpkt.getLength());
 System.out.println("Received from server: " + data);
 }
 //close the socket
 socket.close();
 }
}

A sample output with two clients is shown in Figure 13.25:

Figure 13.25:  UDP Multi-threaded Server and Clients

SOCKET PROGRAMMING  321

13.5.5	 Sending and Receiving Objects Using UDP
We explained earlier that sending and/or receiving data as objects is more convenient than sending

them as a raw stream of bytes. We also developed a simple application where a Message object is
sent by one program and received by another program using the TCP socket. In this section, we shall
discuss how to develop similar applications using UDP sockets.

Note that UDP uses datagram as the container of data to be exchanged. So, whatever data we
want to send, is first stored in a byte array which is then encapsulated in a datagram which is finally
sent through the network. At the receiver end, the data bytes are extracted from the datagram and
converted to the desired format. To send and receive an object, similar steps may be followed.

The object to be sent is first serialized and the resultant data bytes are placed in a byte array. This
byte array is used to create a datagram. Finally, this datagram is sent over the network. Upon receiving
the datagram, the receiver extracts the byte array from the datagram. These arrays of bytes (which
is a linear representation of an object), is used to reconstruct the object using the deserialization
procedure. Since we have already discussed how to exchange datagrams using DatagramSocket
and DatagramPacket class, the only remaining task that we should know in this case is to create a
datagram from a given object and to get the object back from the datagram.

13.5.6	 Sending an Object
Let us first discuss the procedure of constructing a datagram containing serialized bytes of an object.
Let us create a Message object to be sent.
Message msg = new Message("Remainder","Return my book on Monday");

This is the object to be serialized to get the equivalent array of bytes. To serialize this object,
we need an ObjectOutputStream object. Since, we want to store the serialized data in a byte array,
ObjectOutputStream object is created using a ByteArrayOutputStream object.

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);

When the ObjectOutputStream serializes an object, it sends the resultant data to the
ByteArrayOutputStream object from which the raw byte array may be extracted using toByteArray()
method. Our Message object is serialized as shown in the following:

oos.writeObject(msg);

Finally, we obtain the array containing serialized data bytes of the msg object as follows:
byte[] out = baos.toByteArray();

So, at last we have an array of bytes. This is used to create a DatagramPacket which is sent over the
network using the usual way. Here is the complete source code (stored in the file UDPObjectSender.
java) of the program that sends a message object:

//UDPObjectSender.java
import java.net.*;
import java.io.*;
public class UDPObjectSender {
 public static void main(String[] args) {
 try {
 //Create a DatagramSocket
 DatagramSocket socket = new DatagramSocket();
 //Create a Message object to be sent
 Message msg = new Message("Remainder","Return my book on Monday");
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(msg);
 byte[] out = baos.toByteArray();
 //Muticast group where packet has to sent
 InetAddress group = InetAddress.getByName(args[0]);
 //Port the receiver listens on
 int port = 8379;
 //Create a DatagramPacket with buffer, address and port
 DatagramPacket packet = new DatagramPacket(out, out.length,group, port);
 //Send the packet now
 socket.send(packet);
 System.out.println("Sent an object");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

322  ADVANCED JAVA PROGRAMMING

//UDPObjectSender.java
import java.net.*;
import java.io.*;
public class UDPObjectSender {
 public static void main(String[] args) {
 try {
 //Create a DatagramSocket
 DatagramSocket socket = new DatagramSocket();
 //Create a Message object to be sent
 Message msg = new Message("Remainder","Return my book on Monday");
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(msg);
 byte[] out = baos.toByteArray();
 //Muticast group where packet has to sent
 InetAddress group = InetAddress.getByName(args[0]);
 //Port the receiver listens on
 int port = 8379;
 //Create a DatagramPacket with buffer, address and port
 DatagramPacket packet = new DatagramPacket(out, out.length,group, port);
 //Send the packet now
 socket.send(packet);
 System.out.println("Sent an object");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

13.5.7	 Reconstructing the Object
At the receiver end, the object is reconstructed from the data contained in the datagram. We already

know that to receive a datagram, the following piece of code may be used.
DatagramSocket socket = new DatagramSocket(8379);
byte[] in = new byte[256];
DatagramPacket packet = new DatagramPacket(in, in.length);
socket.receive(packet);

So, the packet contains the serialized data (stored in the byte array in) of the object. Let us now
reconstruct the object using a reverse procedure as follows:

ByteArrayInputStream bais = new ByteArrayInputStream(in);
ObjectInputStream ois = new ObjectInputStream(bais);
Message msg = (Message)ois.readObject();

So, finally, we have object msg which is an exact copy of the object that was sent. Here is the
complete source code (stored in the file UDPObjectReceiver.java) of the program that reconstructs
the message object.

//UDPObjectReceiver.java
import java.net.*;
import java.io.*;
public class UDPObjectReceiver {
 public static void main(String[] args) {
 try {
 //Create a MulticastSocket and bind it to port 8379
 DatagramSocket socket = new DatagramSocket(8379);
 //Construct a DatagramPacket to receive packet
 byte[] in = new byte[256];
 DatagramPacket packet = new DatagramPacket(in, in.length);
 System.out.println("Waiting to receive a Message object...");
 //Receive the packet now and display
 socket.receive(packet);
 ByteArrayInputStream bais = new ByteArrayInputStream(in);
 ObjectInputStream ois = new ObjectInputStream(bais);
 Message msg = (Message)ois.readObject();
 System.out.println("Received a message:");
 System.out.println("subject : " + msg.getSubject()+"\nbody :
"+msg.getText());
 } catch (Exception ioe) {
 System.out.println(ioe);
 }
 }
}

SOCKET PROGRAMMING  323

13.5.8	 Running the Application
Compile and run the programs as before. A sample output is shown in Figure 13.26:

Figure 13.26:  Sending and receiving an object using UDP

13.6	 MULTICASTING
In all the programs that we have developed so far, the data is destined to only one target. In other

words, the number of receivers in all those cases was only one. This type of communication is known
as uni-cast. Though many applications use this style of communication, there are instances, where
a sender application wants to send data to multiple receivers. Multicasting allows sending packets
from one host to many other hosts. Packets are sent to a group having an address called multicast
address. The hosts who are interested to receive the packet must join the group.

Note that one of the possible alternatives of multicasting is to send a packet to each of the intended
receivers using UDP or TCP. However, this solution has some inherent problems. For example, the
sender should have enough processing power as it sends packets to every receiver. The solution also
consumes a significant network bandwidth as packets are duplicated needlessly.

Multicasting handles this problem intelligently. In this method, only one packet is created
specifying an address. This address does not represent a specific address. Rather, it essentially
represents a group of recipients. To send the packet to multiple intended receivers, the packet is
placed on to the network. This packet reaches every host in the network, but only interested hosts
accept the packet. Other hosts get the packet but reject it.

13.7	 MULTICAST SOCKETS
Java provides MulticastSocket class that implements the idea of multicasting and allows an

application to send a single datagram to a group of recipients in a network (see figure below). The hosts
in the group may reside in the same subnet or different subnets connected by multicast-capable routers.

Multicast usually refers to IP Multicast, which is a method for efficiently sending packets to
multiple receivers at the same time on TCP/IP networks, using multicast addresses.

324  ADVANCED JAVA PROGRAMMING

13.7.1	 Multicast Addresses
A multicast address is a single IP address that represents multiple network devices forming a

group. In other words, many network devices may use a single multicast address. The meaning of
using a multicast address is to express its willingness to belong to a group. The multicast address
can then be used to identify the group (hence all the devices of that group).

We know that IPv4 addresses are categorized into 5 (five) classes [Figure 13.27:] depending on
the higher order bits. The addresses that start with 1110 are said to belong to class D and are known
as multicast addresses. Class D IP addresses are in the range 224.0.0.0 to 239.255.255.255

 0 31 Address Range:

+-+----------------------------+

|0| Class A Address | 0.0.0.0 - 127.255.255.255

+-+----------------------------+

+-+-+--------------------------+

|1|0| Class B Address | 128.0.0.0 - 191.255.255.255

+-+-+--------------------------+

+-+-+-+------------------------+

|1|1|0| Class C Address | 192.0.0.0 - 223.255.255.255

+-+-+-+------------------------+

+-+-+-+-+----------------------+

|1|1|1|0| MULTICAST Address | 224.0.0.0 - 239.255.255.255

+-+-+-+-+----------------------+

+-+-+-+-+-+--------------------+

|1|1|1|1|0| Reserved | 240.0.0.0 - 247.255.255.255

+-+-+-+-+-+--------------------+

Figure 13.27:  IPv4 address classes

The assignment of IP multicast addresses differs from assignment of unicast IP addresses. Note
that IP unicast blocks of addresses are delegated to regional entries. However, multicast addresses
are assigned by the Internet Assigned Numbers Authority (IANA) directly. Table 13.2 summarizes
the current assignments.

Table 13.2:  Current assignments of IP multicast addresses

Range CIDR prefix Description

224.0.0.0 - 224.0.0.255 (224.0.0/24) Control Block for Local Network

224.0.1.0 - 224.0.1.255 (224.0.1/24) Control Block for Internetwork

224.0.2.0 - 224.0.255.0 - AD-HOC Block

224.1.0.0 - 224.1.255.255 (224.1/16) ST Multicast Groups

(Contd )

SOCKET PROGRAMMING  325

224.2.0.0 - 224.2.255.255 (224.2/16) SDP/SAP Block

224.252.0.0 - 224.255.255.255 - DIS Transient Block

225.0.0.0 - 231.255.255.255 - RESERVED

232.0.0.0 - 232.255.255.255 (232/8) Block for Source Specific Multicast

233.0.0.0 - 233.255.255.255 (233/8) GLOP Block

234.0.0.0 - 238.255.255.255 RESERVED

239.0.0.0 - 239.255.255.255 (239/8) Block for Administratively Scope

13.7.2	 MulticastSocket Class
Remember that DatagramSocket class itself allows exchanging of packets between exactly two

programs. Java provides another class MulticastSocket which is a direct subclass of DatagramSocket
class. Note that this class provides all the functionalities of DatagramSocket class. However, it
provides a few additional facilities so that a packet can be received by many programs belonging to
a common group having an address called multicast address. It also provides methods for joining
and leaving a multicast group.

Note that multicasting also allows us to send data across networks. In order to control the scope
of multicast (i.e. how far a datagram is allowed to traverse), MulticastSocket allows us to specify
a value of Time-To-Live (TTL) field in the IP datagram header. Note that TTL is used to avoid a
datagram being looped forever. Routers, upon receiving a packet, decrements the TTL by one and
discards the packet if the value becomes 0 (zero).

For multicasting, the TTL field is used to avoid a multicast datagram being traversed forever.
and works as follows: A TTL threshold is specified for each interfaces of a router (called multicast
capable router). The sender of the packet also specifies a TTL value. The multicast capable router
forwards only those multicast datagrams having a TTL value greater than the threshold. A list of
TTL threshold with their meaning is shown in Table 15.2:

Table 13.3:  TTL threshold list

TTL threshold Scope

0 Restricted within the same host. Not forwarded multicast packets through any interface.

1 Restricted within the subnet. Not forwarded multicast packets by the router interface.

<32 Restricted within the same department, organization, company etc.

<64 Restricted within the same region

<128 Restricted within the same continent

<255 Unrestricted

In the next few sections, we shall develop a simple multicasting application. Our first application
consists of two programs:

•	 A sender program that sends a single packet containing the message “Hello!” to a group having a multicast
address 224.0.0.1.

•	 A receiver program that joins the group and listens on port 8379 to receive the hello packet.

Note that the receiver must be started first and must be ready to accept packets. Once the receiver
is ready, sender program may be started.

Table 13.2:  (Contd )

326  ADVANCED JAVA PROGRAMMING

13.7.3	 Sending Data
Note that a normal DatagramSocket may be used to send any kind of datagram, be it unicast,

broadcast or multicast. Since, in our first example, server program will only send packets, a
DatagramSocket is sufficient to do that. However, a MulticastSocket may be created if it is required
to send as well as to receive packets. In our first application, we shall use DatagramSocket. Later,
we shall develop more complex applications where programs will use MulticastSocket to send and
receive multicast packets.

To send data, let us create a DatagramSocket as follows:
DatagramSocket socket = new DatagramSocket();

An optional port number may be specified if one needs other parties to be able to reach this socket.
Since our socket is not intended to receive any packets, port is not specified. This socket is now ready
to deliver packets. Let us create a DatagramPacket that contains a buffer (byte array) containing a
string “Hello!”. The following code creates such a buffer:

String msg = "Hello!";
byte[] out = msg.getBytes();

The DatagramPacket may then be created as follows:
InetAddress group = InetAddress.getByName("224.0.0.1");
int port = 8379;
DatagramPacket packet = new DatagramPacket(out, out.length, group, port);

Note that the multicast address 224.0.0.1 indicates a group consisting of all hosts within the
network. We shall use this address so that a receiver program on a remote host within the subnet
may also receive packet. We assume that the receiver listens on port 8379. To send the packet we call
send() method on the DatagramSocket object specifying the packet to be sent.

socket.send(packet);

13.7.4	 Receiving Data
We have mentioned in the previous section that a normal DatagramSocket may be used to send any

kind of datagram, be it unicast, broadcast or multicast. However, DatagramSocket can only receive
unicast and broadcast packets. Since our client wants to receive multicast packets (i.e. packets having
multicast address in its header), a MulticastSocket must be created.

Note that receiving broadcast packets is easier than multicast packets. To receive broadcast
packets, processes need not do any extra thing. This is because, broadcast packets are always
accepted by the underlying layers and forwarded to the proper applications. However, to receive
multicast packets, processes must inform the underlying layer which multicast groups they are
interested in. Multicast datagrams are then filtered by underlying MAC or IP (or sometimes both)
and datagrams having a previously registered destination group are only accepted and forwarded
to the registered processes. When a socket joins a group having an address addr, essentially it tells
the kernel as follows:

Hey kernel, I know that you reject all multicast datagrams by default. However, I am interested
in receiving multicast packets having address addr. So, if you get any datagram having destination
address addr, don’t reject them and instead kindly forward them to me (as well as other sockets who
are interested in them). Since, a normal DatagramSocket does not have any such functionality, we
used MulticastSocket which provided this additional facility.

The following code creates a MulticastSocket that is bound to the port 8379.
MulticastSocket socket = new MulticastSocket(8379);

SOCKET PROGRAMMING  327

The joinGroup() method of a MulticastSocket can inform the underlying protocol layers
that it is interested in receiving multicast packets having a particular multicast address in the header.
To join the group having address 224.0.0.1, the following code is used.

socket.joinGroup(InetAddress.getByName("224.0.0.1"));

To join the different groups, this method may be called repeatedly with a different multicast
address. The socket will then receive all the packets destined to groups to which it was registered.
Similarly, all the sockets of a group will receive copies of multicast packets sent to that group.
The only difference between a multicast receiver and a normal receiver is that a multicast receiver
joins a group. The remaining part is exactly same as a normal receiver. So, to receive a packet, we
create a DatagramPacket object as follows:

byte[] in = new byte[256];
DatagramPacket packet = new DatagramPacket(in, in.length);

Finally the packet is received using receive() method.
socket.receive(packet);

13.7.5	 Complete Example
Here is the complete source code of the sender stored in the file HelloSender.java.
//HelloSender.java
import java.net.*;
public class HelloSender {
 public static void main(String[] args) {
 try {
 //Create a DatagramSocket
 DatagramSocket socket = new DatagramSocket();
 //Fill the buffer with data
 String msg = "Hello!";
 byte[] out = msg.getBytes();
 //Muticast group where packet has to sent
 InetAddress group = InetAddress.getByName("224.0.0.1");
 //Port the receiver listens on
 int port = 8379;
 //Create a DatagramPacket with buffer, address and port
 DatagramPacket packet = new DatagramPacket(out, out.length, group, port);
 //Send to multicast IP address and port
 System.out.println("Sending a packet...");
 //Send the packet now
 socket.send(packet);
 System.out.println("Sent : " + msg);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Here is the complete source code of the receiver stored in the file HelloReceiver.java.
//HelloReceiver.java
import java.net.*;
public class HelloReceiver {
 public static void main(String[] args) {
 try {
 //Create a MulticastSocket and bind it to port 8379
 MulticastSocket socket = new MulticastSocket(8379);
 //Join to multicast group
 socket.joinGroup(InetAddress.getByName("224.0.0.1"));
 //Construct a DatagramPacket to receive packet
 byte[] in = new byte[256];
 DatagramPacket packet = new DatagramPacket(in, in.length);
 System.out.println("Waiting to receive a packet...");
 //Receive the packet now and display
 socket.receive(packet);
 String msg = new String(in, 0, packet.getLength());
 System.out.println("Received : " + msg);
 } catch (Exception ioe) {
 System.out.println(ioe);
 }
 }
}

328  ADVANCED JAVA PROGRAMMING

//HelloReceiver.java
import java.net.*;
public class HelloReceiver {
 public static void main(String[] args) {
 try {
 //Create a MulticastSocket and bind it to port 8379
 MulticastSocket socket = new MulticastSocket(8379);
 //Join to multicast group
 socket.joinGroup(InetAddress.getByName("224.0.0.1"));
 //Construct a DatagramPacket to receive packet
 byte[] in = new byte[256];
 DatagramPacket packet = new DatagramPacket(in, in.length);
 System.out.println("Waiting to receive a packet...");
 //Receive the packet now and display
 socket.receive(packet);
 String msg = new String(in, 0, packet.getLength());
 System.out.println("Received : " + msg);
 } catch (Exception ioe) {
 System.out.println(ioe);
 }
 }
}

Compile these programs. To run this application, we started three receivers in three separate
computers. The sender was then started in one computer. A sample output is shown in Figure 13.28:

Figure 13.28:  Sending multicasting packets

13.7.6	 Another Multicasting Example
In this application, a program continuously multicasts the score (runs) of a cricket match going on

between two teams. The score is generated artificially. Any program that wants to know the current
score may join the group and get the score. Since, the sender multicasts the score continuously, the
receiver of the score may be started at any time.

Here is the complete source code of the program that multicasts the score stored in the file.
ScoreSendor.java.ScoreSender.java.

import java.io.*;
import java.net.*;
import java.util.Random;
public class ScoreSender {
 public static void main(String[] args) {
 long score = 0, run;
 Random r = new Random();
 try {
 int port = 8379;
 InetAddress group = InetAddress.getByName(args[0]);
 //Create a DatagramSocket
 DatagramSocket socket = new DatagramSocket();
 while (true) {
 //Fill the buffer with score generated artificially
 do {
 Thread.sleep(1000+r.nextInt(1000));
 }while((run = r.nextInt(7)) == 0);
 score += run;
 String msg = "score: " + score;
 byte[] out = msg.getBytes();
 //Create a DatagramPacket
 DatagramPacket pkt = new DatagramPacket(out, out.length, group, port);
 //Send the pkt
 socket.send(pkt);
 System.out.println("Sent-->" + msg);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

SOCKET PROGRAMMING  329

ScoreSender.java.

import java.io.*;
import java.net.*;
import java.util.Random;
public class ScoreSender {
 public static void main(String[] args) {
 long score = 0, run;
 Random r = new Random();
 try {
 int port = 8379;
 InetAddress group = InetAddress.getByName(args[0]);
 //Create a DatagramSocket
 DatagramSocket socket = new DatagramSocket();
 while (true) {
 //Fill the buffer with score generated artificially
 do {
 Thread.sleep(1000+r.nextInt(1000));
 }while((run = r.nextInt(7)) == 0);
 score += run;
 String msg = "score: " + score;
 byte[] out = msg.getBytes();
 //Create a DatagramPacket
 DatagramPacket pkt = new DatagramPacket(out, out.length, group, port);
 //Send the pkt
 socket.send(pkt);
 System.out.println("Sent-->" + msg);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Here is the complete source code of the program that receives the score stored in the file.
ScoreReceiver.java.

import java.io.*;
import java.net.*;
public class ScoreReceiver {
 public static void main(String[] args) {
 byte[] inBuffer = new byte[256];
 try {
 InetAddress address = InetAddress.getByName("224.0.0.1");
 //Create a MulticastSocket
 MulticastSocket socket = new MulticastSocket(8379);
 //Join to the multicast group
 socket.joinGroup(address);
 while (true) {
 DatagramPacket packet = new DatagramPacket(inBuffer, inBuffer.length);
 socket.receive(packet);
 String msg = new String(inBuffer, 0, packet.getLength());
 System.out.println("Received<--" + msg);
 }
 } catch (IOException ioe) {
 System.out.println(ioe);
 }
 }
}

A sample output is shown in Figure 13.29:

Figure 13.29:  Sending and receiving match score

330  ADVANCED JAVA PROGRAMMING

13.7.7	 A Text Conference Example
Text mode conferencing and bulletin-board are the oldest models of communication. In these

models of communications, text messages are exchanged among two or more people using a terminal.
They have some distinct advantages over their counterpart audio/video conferencing.

•	 They require the least bandwidth as only plain text messages are exchanged.
•	 Developing applications supporting this model is very easy.

In this section, we shall develop a simple application that supports text conferencing. The
application deals with two issues: i) sending text messages supplied by the member to all other
participating members of the conference and ii) receiving those text messages. Since a message may
arrive, while one is typing a message, we create two child threads from the main thread. One takes
the responsibility to send the message being supplied through the keyboard and another one receives
the message and displays in the terminal window. Here is the complete source code of the program
stored in the file MulticastSenderReceiver.java.

//MulticastSenderReceiver.java
import java.io.*;
import java.net.*;
public class MulticastSenderReceiver {
 String name;
 InetAddress addr;
 int port = 3456;
 MulticastSocket group;
 public static void main(String[] args){
 new MulticastSenderReceiver(args[0]);
 }
 MulticastSenderReceiver(String name) {
 this.name = name;
 try {
 addr = InetAddress.getByName("224.0.0.1");
 group = new MulticastSocket(port);
 new Receiver().start();
 new Sender().start();
 }catch(Exception e){e.printStackTrace();}
 }
 private class Sender extends Thread {
 public void run() {
 try {
 BufferedReader fromUser = new BufferedReader(new
InputStreamReader(System.in));
 while(true) {
 String msg = name + ":" + fromUser.readLine();
 byte[] out = msg.getBytes();
 DatagramPacket pkt = new DatagramPacket(out, out.length, addr, port);
 group.send(pkt);
 }
 }catch(Exception e) {e.printStackTrace();}
 }
 }
 private class Receiver extends Thread {
 public void run() {
 try {
 byte[] in = new byte[256];
 DatagramPacket pkt = new DatagramPacket(in, in.length);
 group.joinGroup(addr);
 while(true) {
 group.receive(pkt);
 System.out.println(new String(pkt.getData(), 0, pkt.getLength()));
 }
 }catch(Exception e) {e.printStackTrace();}
 }
 }
}

SOCKET PROGRAMMING  331

//MulticastSenderReceiver.java
import java.io.*;
import java.net.*;
public class MulticastSenderReceiver {
 String name;
 InetAddress addr;
 int port = 3456;
 MulticastSocket group;
 public static void main(String[] args){
 new MulticastSenderReceiver(args[0]);
 }
 MulticastSenderReceiver(String name) {
 this.name = name;
 try {
 addr = InetAddress.getByName("224.0.0.1");
 group = new MulticastSocket(port);
 new Receiver().start();
 new Sender().start();
 }catch(Exception e){e.printStackTrace();}
 }
 private class Sender extends Thread {
 public void run() {
 try {
 BufferedReader fromUser = new BufferedReader(new
InputStreamReader(System.in));
 while(true) {
 String msg = name + ":" + fromUser.readLine();
 byte[] out = msg.getBytes();
 DatagramPacket pkt = new DatagramPacket(out, out.length, addr, port);
 group.send(pkt);
 }
 }catch(Exception e) {e.printStackTrace();}
 }
 }
 private class Receiver extends Thread {
 public void run() {
 try {
 byte[] in = new byte[256];
 DatagramPacket pkt = new DatagramPacket(in, in.length);
 group.joinGroup(addr);
 while(true) {
 group.receive(pkt);
 System.out.println(new String(pkt.getData(), 0, pkt.getLength()));
 }
 }catch(Exception e) {e.printStackTrace();}
 }
 }
}

A snapshot of the text conference involving four people is shown in Figure 13.30:

Figure 13.30:  A text conference of four people

332  ADVANCED JAVA PROGRAMMING

Figure 13.30:  (Contd )  A text conference of four people

13.8	� APPENDIX A (USEFUL METHODS
OF SERVERSOCKET CLASS)

The following sections give a summary of important methods of ServerSocket class.

13.8.1	 Constructors
ServerSocket()

Creates a raw server socket which is not yet bound to a specific socket address (IP address and
port). However, the binding may be done later using bind() method.
ServerSocket(int port)

Creates a server socket and bounds it to the specified port. If 0 is specified, any free port is used
to bind the socket object. The method getLocalPort() may be used to retrieve this port number.
This socket may be referred to by any IP address of the computer. The default queue length for this
socket is 50.
ServerSocket(int port, int queueLength)

Creates a server socket having the specified queueLength and bounds the socket to the specified
port. If 0 is specified for the port, any free port is used to bind the socket object. The method
getLocalPort() may be used to retrieve this port number. If the value of queueLength is less than
or equal to 0, the default value (50) is assumed. This socket may be referred to by any IP address of
the computer.
ServerSocket(int port, int queueLength, InetAddress address)

Creates a server socket having the specified queueLength and bounds the socket to the specified
port and address. If 0 is specified for the port, any free port is used to bind the socket object. The
method getLocalPort() may be used to retrieve this port number. If the value of queueLength is less
than or equal to 0, the default value (50) is assumed. The socket listens only on the specified IP address.

13.8.2	 Methods
Socket accept()

Processes client requests from the queue associated with the ServerSocket object in First-Come-
First-Served basis. When there are no requests in the queue, this method waits (blocks the caller)
for further incoming connections. Upon receiving a request, it creates a virtual channel between the
server and client and returns a Socket object that represents the sever-side end of the virtual channel.

SOCKET PROGRAMMING  333

void bind(SocketAddress address)
Binds the socket to the specified address (IP address and port). This method expects address

as InetSocketAddress object. The InetSocketAddress class extends SocketAddress class and
implements an IP Socket Address as [IP address, port number] or [hostname, port number] pair. In
the latter case, an attempt will be made to resolve the hostname. If resolution fails then the address is
said to be unresolved and a SocketException is thrown. However, the name can still be used in some
circumstances such as connecting through a proxy. If the address is null, bind() picks up an ephemeral
port and a valid local address to bind the socket. The default queue length for this socket is 50.
void bind(SocketAddress address, int queueLength)

Same as previous version except that the length of the queue is set to the specified queueLength.
If the value of queueLength is less than or equal to 0, the default value (50) is assumed.
InetAddress getInetAddress()

Returns the address to which the socket is bound or null if the socket is not yet bound.
int getLocalPort()

Returns the port number this socket is bound or -1 if the socket is not bound yet.
SocketAddress getLocalSocketAddress ()

Returns actually an InetSocketAddress object that represents the socket address (IP address and
port) of the endpoint of this socket or null if the socket is not yet bound.
boolean isBound()

Returns true if the socket is successfully bound to a socket address, false otherwise.
boolean isClosed()

Returns true if the socket is closed, false otherwise.
int getSoTimeout()

Returns SocketOptions.SO_TIMEOUT value. The value 0 indicates that timeout option is disabled
(i.e. infinite timeout).
void setSoTimeout(int timeout)

Sets the SocketOptions.SO_TIMEOUT value with the specified timeout in milliseconds. If a non-
zero timeout value is specified and subsequently accept() method is called, the accept() method
waits for only a specified amount of time for the incoming connection request. If no connection request
comes within this specified time, a SocketTimeoutException is thrown. However, the socket remains
valid and a different timeout value may be used (if required) later and accept() method may also be
called subsequently to have its effect. The timeout value is negative, an IllegalArgumentException
is raised. A timeout value of 0 (which is also the default timeout) is used for infinite timeout.
void setReuseAddress(boolean status)

Sets SocketOptions.SO_REUSEADDR value to true or false. If a ServerSocket object is closed using
close() method, the connection is not closed and the address and port are not freed immediately. It may
remain in a timeout state temporarily keeping the connection as it is. This state is known as TIME_WAIT
state. Note that TCP provides in order delivery of packets. However, since the underlying IP layer does
not provide any such guarantee on ordering, IP packets may arrive out of order. The task of TCP layer
is to arrange them in the correct order and forward them to the application layer. So, out of order packets
may arrive even if the connection is closed. That is why the connection is kept open (temporarily) so that
delayed packets may be handled appropriately. So, TIME_WAIT state basically means that one side closed
the connection but the final confirmation of the close is pending. The connection is finally terminated and
all resources are freed. However, it may not be possible for an application to use the same address and port,
if there is a connection in the TIME_WAIT state involving the address and port. The setReuseAddress()
method may be used to enable/disable SO_REUSEADDR option prior to binding the socket using bind()
to allow/disallow the socket to be bound even though a previous connection is in a TIME_WAIT state.

334  ADVANCED JAVA PROGRAMMING

boolean getReuseAddress()
Returns a true/false indicating whether or not SO_REUSEADDR is enabled/disabled.

ServerSocketChannel getChannel()
Returns a ServerSocketChannel object (if any) associated with this socket provided that the

channel itself was created using static open() method of ServerSocketChannel class.
void close()

Closes the socket. If the socket has an associated channel, the channel is also closed. If a thread
is currently blocked on accept() method, then the thread throws a SocketException.

13.9	 APPENDIX B (USEFUL METHODS OF SOCKET CLASS)
The following sections give a summary of important methods of Socket class.

13.9.1	 Constructors
Socket()

Creates a raw socket which is not yet bound to a specific socket address (IP address and port).
However, the binding may be done later using bind() method. The connection is not yet established
to the server socket. However, the connection may be established later using connect() method.
Socket(InetAddress address, int port)

Creates a stream socket and connects to the server socket having specified address and port.
The socket is also bound to an ephemeral port and a valid local address.
Socket(InetAddress host, int port, boolean stream)

This method is now deprecated. It is used to create stream as well as datagram socket. If the
stream argument is true, this creates a stream socket. If the stream argument is false, it creates a
datagram socket. The socket is connected to the server socket having specified address and port.
Socket(InetAddress address, int port, InetAddress localAddr, int localPort)

Creates a socket and connects to the server socket having specified address and port. The socket
is bound to the specified localAddr and localPort. If a host has more than one IP address, this
constructor is used to choose a specific IP address to bind the socket. If 0 (zero) is specified for port,
system picks up an ephemeral port.
Socket(Proxy proxy)

Creates a socket which is not yet connected to a server socket. The connection may be made
later using connect() method which consults specified proxy host to establish the connection. The
proxy mechanism is useful if the client computer is not configured with a gateway and/or DNS host.
Socket(SocketImpl impl)

Creates a customized socket. The functionality of the socket is provided by the specified
SocketImpl object. This SocketImpl class provides a plain implementation of the socket. Programmers
who want to extend the functionality of a plain socket should create a class that extends SocketImpl
class and override the methods defined in SocketImpl class.
Socket(String host, int port)

Creates a stream socket and connects to the specified port on the named host. The socket is also
bound to an ephemeral port and a valid local address.
Socket(String host, int port, boolean stream)

This method is now deprecated also. It is used to create stream as well as datagram socket. If the
stream argument is true, this creates a stream socket. If the stream argument is false, it creates a
datagram socket. The socket is connected to the specified port on the named host.

SOCKET PROGRAMMING  335

Socket(String host, int port, InetAddress localAddr, int localPort)
Creates a socket and connects to the specified port on the named host. The socket is bound to

the specified localAddr and localPort. If a host has more than one IP address, this constructor is
used to choose a specific IP address to bind the socket. If 0 (zero) is specified for port, system picks
up an ephemeral port.

13.9.2	 Methods
void bind(SocketAddress localEnd)

Binds the socket to the specified address (IP address and port). This method expects address
as InetSocketAddress object. The InetSocketAddress class extends SocketAddress class and
implements an IP Socket Address as [IP address, port number] or [hostname, port number] pair. In
the latter case, an attempt will be made to resolve the hostname. If resolution fails then the address
is said to be unresolved and a SocketException is thrown. However, the name can still be used on
some circumstances such as connecting through a proxy. If the address is null, bind() picks up an
ephemeral port and a valid local address to bind the socket.
void close()

Terminates the connection. Also closes the socket’s InputStream and OutputStream and hence
the socket is not available for further networking. Accordingly, if there is any thread currently
working on this socket, the thread throws a SocketException. A closed socket can never be rebound
or reconnected. If required to, a new socket may be created instead. If the socket has an associated
channel, the channel is also closed.
void connect(SocketAddress address)

Connects the socket to the specified address (IP address and port) of the server socket. This method
expects address as InetSocketAddress object. The InetSocketAddress class extends SocketAddress
class and implements an IP Socket Address as [IP address, port number] or [hostname, port number]
pair. In the latter case, an attempt will be made to resolve the hostname. If resolution fails then the
address is said to be unresolved and a SocketException is thrown. However, the name can still be
used on some circumstances such as connecting through a proxy.
void connect(SocketAddress address, int timeout)

Tries to connect this socket to the specified address for a specified time in milliseconds. If this
method fails to establish a connection within this stipulated time, a SocketTimeoutException is
thrown. A timeout of 0 (zero) indicates infinite timeout and in this case connect() blocks the caller
until a connection is established or an error occurs.
SocketChannel getChannel()

Returns a SocketChannel object (if any) associated with this socket provided that the channel
itself was created using static open() method of SocketChannel class.
InetAddress getInetAddress()

Returns the address of the server socket to which this socket is connected. It returns null if the
socket is not connected.
InputStream getInputStream()

Returns an InputStream object that may be used to read data bytes from the socket through
its read() method. The returned object is usually wrapped by other stream classes such as
BufferedReader to receive data conveniently.
boolean getKeepAlive()

Returns a boolean indicating whether or not SocketOptions.SO_KEEPALIVE is enabled.
InetAddress getLocalAddress()

Returns the address to which the socket is bound or null if the socket is not yet bound.

336  ADVANCED JAVA PROGRAMMING

int getLocalPort()
Returns the port number this socket is bound. A value of -1 is returned if the socket is not yet bound.

SocketAddress getLocalSocketAddress()
Returns the socket address (IP address and port number) to which this socket is bound. The returned

object is actually an InetSocketAddress object representing an IP address and a port number pair.
Note that InetSocketAddress is a subclass of abstract SocketAddress class. The returned object
is first converted to the InetSocketAddress type. To get the address and port, suitable methods on
this resultant object may be used. This method returns a value null if the socket is not yet bound.
OutputStream getOutputStream()

Returns an OutputStream object that may be used to write data bytes to the socket through its
write() method. The returned object is usually wrapped by other stream classes such as PrintWriter
to send data conveniently.
int getPort()

Returns the port number of the server socket to which this socket is connected. A value of 0 (zero)
is returned if this socket is not yet connected.
int getReceiveBufferSize()

Returns the value of the SO_RCVBUF option for this Socket set by setReceiveBufferSize() method.
The SO_RCVBUF option is the buffer size used by the platform for input on this Socket.
SocketAddress getRemoteSocketAddress()

Returns the socket address (IP address and port number) of the server socket to which this socket
is connected. The returned object is actually an InetSocketAddress object representing an IP address
and a port number pair. Note that InetSocketAddress is a subclass of abstract SocketAddress class.
The returned object is first converted to the InetSocketAddress type. To get the address and port,
suitable methods on this resultant object may be used. This method returns a value null if the socket
is not yet connected.
boolean getReuseAddress()

Returns a true/false indicating whether or not SO_REUSEADDR is enabled/disabled.
int getSendBufferSize()

Returns the value of the SO_SNDBUF option for this Socket set by setSendBufferSize() method.
The SO_SNDBUF option is the buffer size used by the platform for output on this Socket.
int getSoTimeout()

Returns SocketOptions.SO_TIMEOUT value. The value 0 indicates that timeout option is disabled
(i.e. infinite timeout).
boolean getTcpNoDelay()

Returns true if the Nagle’s algorithm is enabled, false otherwise.
int getTrafficClass()

Returns traffic class or Type-of-Service (ToS) that was set by the setTrafficClass() method.
boolean isBound()

Returns true if the socket is successfully bound to a local socket address, false otherwise.
boolean isClosed()

Returns true if the socket is closed, false otherwise.
boolean isConnected()

Returns true if the socket is connected to a server socket successfully, false otherwise.
boolean isInputShutdown()

Returns true if the input stream of the socket is closed, false otherwise.

SOCKET PROGRAMMING  337

boolean isOutputShutdown()
Returns true if the output stream of the socket is closed, false otherwise.

void setKeepAlive(boolean on)
Sets the SocketOptions.SO_KEEPALIVE option to true or false. The purpose of this option

is to detect if the peer host crashes or not. Setting this option to true instructs the system to
check the status of the peer if no data has been exchanged across the socket in either direction for
2 hours (the actual value is implementation dependent). In this case, the TCP sends a keepalive
probe to the peer who must respond. A response of ACK indicates that everything is fine and TCP
understands the fact and does nothing but repeating the entire procedure after 2 hours of inactivity.
If TCP gets a response RST (which indicates that the peer crashed and rebooted) or does not get
any response, it closes the socket.
void	 setReceiveBufferSize(int size)

Sets the SO_RCVBUF option for this socket to the specified value. The value of SO_RCVBUF is used
both to set the size of the internal socket receive buffer, and to set the size of the TCP receive window
that is advertized to the remote peer.
void	 setReuseAddress(boolean on)

Sets SocketOptions.SO_REUSEADDR value to true or false. If a Socket object is closed
using close() method, the connection is not closed and the address and port associated with
the socket are not freed immediately. It may remain in a timeout state temporarily keeping the
connection as it is. This state is known as TIME_WAIT state. Note that TCP provides in order
delivery of packets. However, since the underlying IP layer does not provide any such guarantee
on ordering, IP packets may arrive out of order. The task of TCP layer is to arrange them in
the correct order and forward them to the application layer. So, out of order packets may arrive
even if the connection is closed. That is why the connection is kept open (temporarily) so that
delayed packets may be handled appropriately. So, TIME_WAIT state basically means that one side
closed the connection but the final confirmation of the close is pending. The connection is finally
terminated and all resources are freed. However, it may not be possible for an application to use
the same address and port, if there is a connection in the TIME_WAIT state involving the address
and port. The setReuseAddress() method may be used to enable/disable SO_REUSEADDR option
prior to binding the socket using bind() to allow/disallow the socket to be bound even though a
previous connection is in a TIME_WAIT state.
void	 setSendBufferSize(int size)

Sets the SO_SNDBUF option for this socket to the specified value. The SO_SNDBUF option is a hint
for the size the platform’s networking code should use to set the underlying network I/O buffers.
static void	 setSocketImplFactory(SocketImplFactory fac)

This method is used to specify the client socket implementation factory for the application.
The factory can be specified only once. When a new client socket is created, the createSocketImpl()
method of socket implementation factory is called to create the actual socket implementation.
void	 setSoTimeout(int timeout)

Sets the SocketOptions.SO_TIMEOUT value with the specified timeout in milliseconds. If a
non-zero timeout value is specified and subsequently read() method is called on InputStream
associate with this socket, the read() method waits for only a specified amount of time for
incoming data. If data comes within this specified time, a SocketTimeoutException is thrown.
However, the socket remains valid and a different timeout value may be used (if required) later and
read() method may also be called subsequently to have its effect. The timeout value is negative,
an IllegalArgumentException is raised. A timeout value of 0 (which is also the default timeout)
is used for infinite timeout.

338  ADVANCED JAVA PROGRAMMING

void	 setTcpNoDelay(boolean on)
This method is used to enable/disable TCP_NODELAY option of the socket. Thet TCP_NODELAY option

corresponds to the Nagle’s algorithm. Note that in this algorithm, written data to the network is not
buffered which results in pending acknowledgement of previously written data.
void	 setTrafficClass(int tc)

Sets traffic class or Type-of-Service (ToS) field in the IP header for packets sent from this socket
to the specified value. It is just a hint as the underlying network implementation may ignore this value.
void	 shutdownInput()

Sends the input stream for this socket to the end of stream state. As a result, any data sent to the
input stream side of the socket is acknowledged and then discarded silently. Consequently, if we try to
read data from a socket input stream after invoking this method on the socket, the stream will return EOF.
void	 shutdownOutput()

Places the output stream for this socket to the disabled state. After invoking this method, any
previously written data (for a TCP socket) will be sent followed by TCP’s normal connection
termination sequence. Any attempt to write to a socket output stream after invoking shutdownOutput()
on the socket, results in an IOException.

13.10 � APPENDIX C (USEFUL METHODS OF
DATAGRAMSOCKET CLASS)

The following sections give a summary of important methods of DatagramSocket class.

13.10.1  Constructors

DatagramSocket()
Creates a datagram socket and binds it to any available port on the local host machine. This socket

is also bound to all IP addresses. This means that the socket may be referred to by any IP address
of the computer.
protected	 DatagramSocket(DatagramSocketImpl impl)

Constructs a datagram socket with the specified DatagramSocketImpl object. This socket is not
yet bound to any address or port.
DatagramSocket(int port)

Creates a datagram socket and binds it to the specified port on the local computer. This socket
is also bound to all IP addresses. This means that the socket may be referred to by any IP address
of the computer.
DatagramSocket(int port, InetAddress address)

Creates a datagram socket, bound to the specified port and address. If the port is 0 (zero), an
ephemeral port is used. If the address is 0.0.0.0, socket is bound to all addresses.
DatagramSocket(SocketAddress bindAddr)

Creates a datagram socket and bounds to the specified local socket address.

13.10.2  Methods

void	 bind(SocketAddress addr)
Binds the DatagramSocket object to the specified address (IP address and port). This method expects

address as InetSocketAddress object. The InetSocketAddress class extends SocketAddress class
and implements an IP Socket Address as [IP address, port number] or [hostname, port number] pair.
In the latter case, an attempt will be made to resolve the hostname. If resolution fails then the address

SOCKET PROGRAMMING  339

is said to be unresolved and a SocketException is thrown. However, the name can still be used on
some circumstances such as connecting through a proxy. If the address is null, bind() picks up an
ephemeral port and a valid local address to bind the socket.
void	 close()

Closes this datagram socket. If a thread is currently blocked on receive() method, then the
thread throws a SocketException.
void	 connect(InetAddress address, int port)

The functionality of this method is significantly different from the connect() method of
Socket class. Connects the socket to a remote socket having specified address and port. Usually, a
datagram socket (call it receiver) receives data using receive() method from any other datagram
socket (call it sender). If a receiver wants to receive data from a particular sender, it uses connect()
method specifying the address and port of the sender socket. Subsequent receive() method calls
reject data sent by other sockets. The connect() method may also be used to choose a particular
receiver among a group of receivers identified by a multicast address (e.g. 224.0.0.1). All hosts
in a multicast group are identified by a single multicast address. If a sender wants to send data to a
particular host in this group, the sender may use connect() method specifying the receivers’ own
address and port (which is used in multicast socket address). The sender must also use the same
address and port in the datagram packet, otherwise an IllegalArgumentException will be thrown.
void	 connect(SocketAddress addr)

Same as the previous one except the argument is a SocketAddress object that represents the
address and port. Actually an InetSocketAddress object that represents IP address and port is
passed to this method.
void	 disconnect()

Disconnects the socket. This method has no effect if the socket is not connected or already closed.
boolean	 getBroadcast()

Returns true if SO_BROADCAST is enabled, false otherwise.
DatagramChannel	 getChannel()

Returns the unique DatagramChannel object associated with this datagram socket, if any.
InetAddress	 getInetAddress()

Returns the address to which this socket is connected. If the socket is not connected it returns null.
InetAddress	 getLocalAddress()

Returns the local address to which the socket is bound.
int	 getLocalPort()

Returns the port number on the local host to which this socket is bound.
SocketAddress	 getLocalSocketAddress()

Returns the socket address (address and port) of the endpoint this socket is bound to.
int	 getPort()

Returns the port number to which this socket is connected. If the socket is not connected, it returns -1.
int	 getReceiveBufferSize()

Get value of the SO_RCVBUF option for this DatagramSocket, that is the buffer size used by the
platform for input on this DatagramSocket.
SocketAddress	 getRemoteSocketAddress()

Returns the socket address (address and port) of the endpoint this socket is connected to, or null
if the socket is not connected.
boolean	 getReuseAddress()
Tests if SO_REUSEADDR is enabled.

340  ADVANCED JAVA PROGRAMMING

int	 getSendBufferSize()
Get value of the SO_SNDBUF option for this DatagramSocket, that is the buffer size used by the

platform for output on this DatagramSocket.
int	 getSoTimeout()

Returns SocketOptions.SO_TIMEOUT value. The value 0 indicates that timeout option is disabled
(i.e. infinite timeout).
int	 getTrafficClass()

Returns traffic class or Type-of-Service (ToS) in the IP datagram header for packets sent from
this DatagramSocket.
boolean	 isBound()

Returns true if the socket is successfully bound to a socket address, false otherwise.
boolean	 isClosed()

Returns true if the socket is closed, false otherwise.
boolean	 isConnected()

Returns true if the socket is connected to a remote socket, false otherwise.
void	 receive(DatagramPacket p)

Receives a DatagramPacket if the packet is intended (i.e. the destination address of the packet
matches socket’s address) for this socket or the packet is a broadcast one. This method blocks until a
datagram is received. When this method returns, the DatagramPacket’s buffer is filled with the data
received. The packet also contains the IP address and the port number of the sender DatagramSocket.
The length field of the datagram packet object contains the length of the received message. If the
message is longer than the buffer’s size, the message is truncated.
void	 send(DatagramPacket p)

Sends a DatagramPacket from this socket. The packet contains socket address (IP address and port
number) of the intended destination host together with the data (payload). Note that the IP address
may be a unicast or multicast or broadcast address. It indicates that a simple DatagramSocket may
be used for unicasting, broadcasting and multicasting of packets.
void	 setBroadcast(boolean on)

Sets SocketOptions.O_BROADCAST option of the socket to true/false that enables/disables the
ability of the process to send broadcast messages through datagram sockets. It works only on networks
that support the concept of a broadcast message (e.g. Ethernet, token ring, etc.). The default value
of this option is true.
static void setDatagramSocketImplFactory(DatagramSocketImplFactory fac)

Sets the datagram socket implementation factory for the application.
void	 setReceiveBufferSize(int size)

Sets the SO_RCVBUF option for this DatagramSocket to the specified size. This option is used to
give a hint to the size of the underlying network buffer the kernel should use for receiving datagrams.
A larger value of this option may allow the network implementation to buffer multiple packets when
packets arrive faster than are being received using receive() method.
void	 setReuseAddress(boolean on)

Enable/disable the SO_REUSEADDR socket option.
void	 setSendBufferSize(int size)

Sets the SO_SNDBUF option for this DatagramSocket to the specified size. This option is used to
give a hint to the size of the underlying network buffer the kernel should use for sending datagrams.
A larger value of this option may allow the network implementation to queue multiple packets when
packets are submitted faster than are being sent using send() method.

SOCKET PROGRAMMING  341

Sets the SO_SNDBUF option to the specified value for this DatagramSocket.
void	 setSoTimeout(int timeout)

Sets the SocketOptions.SO_TIMEOUT value with the specified timeout in milliseconds. If a non-
zero timeout value is specified and subsequently receive() method is called on this datagram socket,
the receive() method waits for only a specified amount of time for incoming data. If data comes within
this specified time, a SocketTimeoutException is thrown. However, the datagram socket remains
valid and a different timeout value may be used (if required) later and receive() method may also be
called subsequently to have its effect. The timeout value is negative, an IllegalArgumentException
is raised. A timeout value of 0 (which is also the default timeout) is used for infinite timeout.
void	 setTrafficClass(int tc)

Note that Type-of-Service (TOS) is an 8-bit field in the IP datagram header. This field indicates
the abstract parameters of the quality of service desired. The setTrafficClass() method is used
to set this field with the specified tc for datagrams sent from this DatagramSocket. However, the
underlying network layer may ignore this. The value of tc must be in the range 0 to 255, otherwise
an IllegalArgumentException is thrown. A summary of the TOS field is given below:

 |<------------------TOS field------------------>|
 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+

 | PRECEDENCE | D | T | R | 0 | 0 |

 +-----+-----+-----+-----+-----+-----+-----+-----+

 Bits 0-2: Precedence.
 Bit 3: Delay (0 = Normal, 1 = Low Delay).
 Bits 4: Throughput(0 = Normal, 1 = High).
 Bits 5: Reliability(0 = Normal,1 = High).
 Bit 6-7: Reserved for Future Use.

 Precedence

 111 - Network Control

 110 - Internetwork Control

 101 - CRITIC/ECP

 100 - Flash Override

 011 - Flash

 010 - Immediate

 001 - Priority

 000 – Routine

13.11 � APPENDIX D (USEFUL METHODS OF
DATAGRAMPACKET CLASS)

The following sections give a summary of important methods of DatagramPacket class.

13.11.1  Constructors
DatagramPacket(byte[] buffer, int bytesToRead)

Creates a DatagramPacket to hold received data. The receive() method of DatagramSocket
reads bytesToRead bytes of data and stores in buffer. The bytesToRead must not be greater than
buffer.length else an IllegalArgumentException is thrown.

342  ADVANCED JAVA PROGRAMMING

DatagramPacket(byte[] buffer,int bytesToSend,InetAddress address,int port)
Creates a DatagramPacket to hold data to be sent to the specified port number on the specified

host. The send() method of DatagramSocket actually sends first bytesToSend bytes of buffer. The
bytesToSend must not be greater than buffer.length otherwise an IllegalArgumentException is
thrown.
DatagramPacket(byte[] buffer,int offset,int bytesToRead)

Creates a DatagramPacket to hold received data. The receive() method of DatagramSocket reads
bytesToRead bytes of data and places in buffer starting from specified offset. The bytesToRead
must not be greater than (buffer.length-offset) else an IllegalArgumentException is thrown.
DatagramPacket(byte[] buffer,int offset,int bytesToSend,InetAddress
address, int port)

Creates a DatagramPacket to hold data to be sent to the specified port number on the specified
host. The send() method of DatagramSocket actually sends bytesToSend bytes of buffer starting
from the specified offset. The bytesToSend must not be greater than (buffer.length-offset)
otherwise an IllegalArgumentException is thrown.
DatagramPacket(byte[] buffer,int offset,int bytesToSend, SocketAddress
address)

Creates a DatagramPacket to hold data to be sent to the destination datagram socket having
specified socket addres. The send() method of DatagramSocket actually sends bytesToSend bytes
of buffer starting from the specified offset. The bytesToSend must not be greater than (buffer.
length-offset) otherwise an IllegalArgumentException is thrown.
DatagramPacket(byte[] buffer,int bytesToSend,SocketAddress address)

Creates a DatagramPacket to hold data to be sent to the destination datagram socket having
specified socket addres. The send() method of DatagramSocket actually sends first bytesToSend
bytes of buffer. The bytesToSend must not be greater than buffer.length otherwise an
IllegalArgumentException is thrown.

13.11.2  Methods
InetAddress	 getAddress()

Returns the IP address of the host this datagram is destined to or datagram came from.
byte[]	 getData()

Returns the buffer containing the data received or to be sent. The starting position and size
(no of bytes) of the data may be obtained using getOffset() and getLength() methods respectively.
int	 getLength()

Returns the length of the data to be sent or the length of the data received.
int	 getOffset()

Returns the offset of the data to be sent or the offset of the data received in the buffer.
int	 getPort()

Returns the port number on the remote host to which this datagram is being sent or from which
the datagram was received.
SocketAddress	 getSocketAddress()

Returns the socket address (IP address and port number) of the remote host that this packet
is being sent to or is coming from. The returned object is actually an InetSocketAddress object
representing an IP address and a port number pair. Note that InetSocketAddress is a subclass of

SOCKET PROGRAMMING  343

abstract SocketAddress class. The returned object is first converted to the InetSocketAddress type.
To get the address and port, suitable methods on this resultant object may be used.
void	 setAddress(InetAddress iaddr)

Sets the IP address of the machine to which this datagram is being sent.
void	 setData(byte[] buf)

Set the data buffer for this datagram packet.
void	 setData(byte[] buf, int offset, int length)

Set the data buffer for this datagram packet. The buffer will contain length bytes of data starting
from index offset.
void	 setLength(int length)

Sets the length of the data in the data buffer for this packet.
void	 setPort(int iport)

Sets the port number on the remote host to which this datagram is being sent.
void	 setSocketAddress(SocketAddress address)

Sets the SocketAddress (usually IP address + port number) of the remote host to which this
datagram is being sent.

13.12 � APPENDIX E (USEFUL METHODS OF
MULTICASTSOCKET CLASS)

The MulticastSocket is a direct subclass of DatagramSocket class. So, it has all the methods
that the DatagramSocket class has. In this section only methods specific to MulticastSocket class
are discussed.

13.12.1  Constructors

MulticastSocket()
Creates a multicast socket and binds it to any available port on the local host machine. This socket

is also bound to all IP addresses. This means that the socket may be referred to by any IP address
of the computer.
MulticastSocket(int port)

Creates a multicast socket and binds it to the specified port on the local computer. This socket
is also bound to all IP addresses. This means that the socket may be referred to by any IP address
of the computer.
MulticastSocket(SocketAddress bindaddr)

Creates a multicast socket and bounds to the specified local socket address.

13.12.2  Methods

InetAddress  getInterface()
Returns the address of the network interface used for multicast packets.

boolean  getLoopbackMode()
Returns the setting for local loopback of multicast packets.

NetworkInterface  getNetworkInterface()
Returns network interface used for multicasting .

344  ADVANCED JAVA PROGRAMMING

int	 getTimeToLive()
Returns the default time-to-live for multicast packets which are sent out on this socket.

void	 joinGroup(InetAddress mcastaddr)
Adds the socket to the group having specified multicast address.

void	 joinGroup(SocketAddress mcastaddr, NetworkInterface netIf)
Joins to the specified multicast group at the specified interface.

void	 leaveGroup(InetAddress mcastaddr)
Used to leave a multicast group.

void	 leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf)
Leaves a multicast group on a specified local interface.

void	 setInterface(InetAddress inf)
Sets the multicast network interface used by methods whose behaviour would be affected by the

value of the network interface.
void	 setLoopbackMode(boolean disable)

Disable/Enable local loopback of multicast packets. The option is used by the platform’s
networking code as a hint for setting whether multicast data will be looped back to the local socket.
void	 setNetworkInterface(NetworkInterface netIf)

Specify the network interface for outgoing multicast packets sent on this socket.
void	 setTimeToLive(int ttl)

Set the default time-to-live for multicast packets which are sent out on this MulticastSocket to
control the scope of the multicasts.

KEYWORDS
Broadcasting—Sending a packet/data to all nodes

Client Socket—Client-side end point of the socket

Datagram Packet—Data container used to send and
receive information by UDP

Deserialization—A process of reconstructing the
object/data from the byte array obtained during
serialization

IP address—A 32-bit address used by the IP layer of
the TCP/IP protocol suite to identify a host uniquely

Multicasting—Sending a packet/data to multiple nodes

Multicast Address—An IP address that represents a
group of recipients in case of multicasting

Port number—A locally unique positive integer
assigned to a process to identify it within the computer
uniquely

Reserved ports—Some predefined port numbers
allocated to some processes

Serialization—A process of converting an object/data
to a linear array of bytes

Server Socket—Server-side end point of the socket

Socket address—A socket address of a process
consists of the port number of the process and the
computer where it is running. It can be thought of as
a channel connecting two entities

TCP socket—A channel established between the
client and the server prior to the communication

UDP socket—No dedicated channel established prior
to the communication

Unicasting—Sending a packet/data to one node

SUMMARY
Java, like other programming languages, provides well-
designed classes and interfaces (APIs) for network
programming. The class NetworkInterface is used to
retrieve most of the information about the installed
network devices.

One of the central ideas of network computing
is the client–server model. Many networking
applications including Internet’s primary protocols
such as HTTP, SMTP, DNS, etc. use this model.
In this programming paradigm, there are two basic

SOCKET PROGRAMMING  345

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
networking/sockets/
  Lesson: All About Sockets

http://docs.oracle.com/javase/tutorial/
networking/datagrams/index.html
  Lesson: All About Datagrams

http://www.ibm.com/developerworks/java/
tutorials/j-sockets/
  Java sockets 101

http://www.java2s.com/Tutorial/Java/0320__
Network/javanetSocket.htm
  java.net.Socket

http://docs.oracle.com/javase/6/docs/api/
java/net/Socket.html
  Class Socket

components: service providers, known as servers and
service requesters, known as clients. Java allows us
to write such client–server programs using TCP as
well as UDP sockets.

In the TCP socket, a client establishes a connection
to the server socket and sends and receives
data through this connection. In the UDP socket
data is sent and received in terms of datagrams.
Datagrams are containers of data. The client creates
a datagram and mentions the socket address of the
target host and sends the datagram. The datagram
is then forwarded typically by many intermediate

routers and eventually reaches its destination host.
A UDP socket does not guarantee that the packets
will be delivered to the target host, while TCP does.
The UDP socket allows us to send packets to the
server even if the server is not available at that time
but will be up soon.

A server is typically a multithreaded program. For
every request that the server process receives, a
new thread is created where the new request is
handed over while the server goes to the listening
state again.

EXERCISES
Objective-type Questions

	 1.	 Which of the following statements is used by the
server to listen for a connection request from a
client?

	 (a)	 Socket s = serverSocket.listen();
	 (b)	 Socket s = serverSocket.wait();
	 (c)	 Socket s = serverSocket.getSocket();
	 (d)	 Socket s = serverSocket.accept();

	 2.	 Which of the following is used by a client to
establish a socket connection with the server?

	 (a)	 Socket s = serverSocket.getSocket();
	 (b)	 Socket s = serverSocket.accept();
	 (c)	 Socket s = new Socket(ServerName, port);
	 (d)	 Socket s = serverSocket.connect();

	 3.	 What happens when a server uses a port to bind
an object, but the port is not available?

	 (a)	 The object is bound successfully.
	 (b)	 The server is blocked until the port is

available.
	 (c)	 The server encounters a fatal error and

must be terminated.
	 (d)	 The exception java.net.BindException

occurs.

	 4.	 What happens when a client requests connection
to a server that has not yet started?

	 (a)	 The exception java.net.Connection-
Exception occurs.

	 (b)	 The client gets blocked until the server is
started.

	 (c)	 The exception java.net.BindException
occurs.

	 (d)	 The client encounters a fatal error and must
be terminated.

	 5.	 Which of the following is used to get an InetAddress
object on a socket object skt.

	 (a)	 skt.obtainInetAddress();
	 (b)	 skt.retrieveInetAddress();
	 (c)	 skt.InetAddress();
	 (d)	 skt.getInetAddress();

	 6.	 Which of the following can be used for the host
name to establish a socket connection with the
server running on the same machine with the
client?

	 (a)	 "127.0.0.1"
	 (b)	 InetAddress.getLocalHost()

346  ADVANCED JAVA PROGRAMMING

	 (c)	 "localhost"
	 (d)	 All of the above.

	 7.	 To obtain an InputStream on a socket skt, we use
__________.

	 (a)	 InputStream in = skt.obtainInputStream();
	 (b)	 InputStream in = skt.getInputStream();
	 (c)	 InputStream in = skt.getStream();
	 (d)	 InputStream in = new InputStream(skt);

	 8.	 What is the full form of IPC?
	 (a)	 Inter-Process Computing
	 (b)	 Inter-Process Communication
	 (c)	 Internal-Process Communications
	 (d)	 Integrated-Process Computing

	 9.	 In which layer do socket applications belong?
	 (a)	 Application Layer
	 (b)	 Transport Layer
	 (c)	 Network Layer
	 (d)	 None of the above

	10.	 How many bits are there in a socket address
	 (a)	 8	 (c)	 32
	 (b)	 16	 (d)	 48

	11.	 Which of the following address pairs is known as
socket address?

	 (a)	 MAC address, port
	 (b)	 IP address, port
	 (c)	 IP address, MAC address
	 (d)	 Source IP address, destination IP address

	12.	 Which of the following ranges do reserved ports
belong to?

	 (a)	 0 to 65535	 (c)	 0 to 256
	 (b)	 -1023 to 1023	 (d)	 0 to1023

	13.	 Which of the following classes is used to create
TCP server socket?

	 (a)	 ServerSocket	 (c)	 DatagramSocket
	 (b)	 Socket	 (d)	 MulticastSocket

	14.	 Which of the following methods is used to listen
to incoming connections?

	 (a)	 accept()	 (c)	 receive()
	 (b)	 listen()	 (d)	 get()

	15.	 Which of the following methods is used to receive
a datagram?

	 (a)	 accept()	 (c)	 receive()
	 (b)	 get()	 (d)	 store()

	16.	 Which of the following methods is used to assign
a socket address to a socket?

	 (a)	 assign()	 (c)	 bound()
	 (b)	 attach()	 (d)	 bind()

	17.	 An object is said to be serializable if its class
implements

	 (a)	 Serializable interface
	 (b)	 DoSerialize interface
	 (c)	 DoExternalize interface
	 (d)	 Convertible interface

	18.	 What is the full form of TCP?
	 (a)	 Transmission Control Packet
	 (b)	 Transport Control Protocol
	 (c)	 Transfer Control Protocol
	 (d)	 Transmission Control Protocol

	19.	 What is the full form of UDP?
	 (a)	 Useful Datagram Protocol
	 (b)	 Useful Datagram Packet
	 (c)	 User Datagram Protocol
	 (d)	 User Datagram Packet

	20.	 Which of the following IP address classes do
multicasting addresses belong to?

	 (a)	 Class A	 (c)	 Class C
	 (b)	 Class B	 (d)	 Class D

Subjective-type Questions

	 1.	 What is a socket?

	 2.	 What is meant by port? Why is it used?

	 3.	 Which are reserved ports? Why are they kept
reserved?

	 4.	 Briefly explain the term socket address.

	 5.	 Write the names of Java socket classes used to
develop TCP socket applications.

	 6.	 Write the basic steps to develop TCP socket
applications

	 7.	 What is meant by binding a socket to a socket
address. Why is it necessary?

	 8.	 How do you develop a server application that can
handle multiple client requests concurrently?

	 9.	 Compare and contrast TCP and UDP sockets.

SOCKET PROGRAMMING  347

	10.	 What is a ServerSocket and how is it used?

	11.	 Write the names of Java socket classes used to
develop UDP socket applications.

	12.	 Write the basic steps to develop UDP socket
applications.

	13.	 What are the differences between uni-casting and
multicasting?

	14.	 How does multicasting differ from broadcasting?

	15.	 Give some examples where multicasting is used.

	16.	 Mention some advantages and disadvantages of

Java Sockets?

	17.	 How do you get the IP address of a machine from
its hostname?

	18.	 What are the differences between a TCP socket
and a UDP socket? How are they created in Java?

	19.	 Write a Java socket program to get the resource
http://www.google.com/index.html using HTTP
protocol.

	20.	 What is a serializable object? Give some examples
of non-serializable objects in Java.

CHAPTER – 14

Remote Method Invocation

Key Objectives

After completing this chapter readers will be able to—
•  get an overview about the Remote Procedure Call
•  understand the architecture and different components of Java RMI
•  know basic steps of writing RMI applications
•  write distributed applications using RMI
•  know what dynamic object activation is
•  get an idea about callback mechanism
•  know how dynamic class loading works

14.1	 INTRODUCTION
The network programs that we have developed so far use the concept of sockets. Although, socket

provides a simple way to write network programs, it is neither very convenient nor the most powerful.
This is because everything must be transferred over the network as a stream of bytes. Though, Java
provides a rich set of interfaces and classes to accomplish this, writing a complex application using
these facilities is undoubtedly not so easy.

Having realized this fact, in the later versions of Java, a new object-oriented version of networking
(known as Remote Method Invocation) was incorporated. This technology elevates network
programming to a higher plane. In this chapter, we shall explore how this mechanism can be used
easily to develop sophisticated networking applications.

14.2	 REMOTE METHOD INVOCATION
Java Remote Method Invocation (RMI) is an object-oriented Remote Procedure Call (RPC)

technique. It allows us to invoke methods on an object that exists in a different address space. This
address space may exist on the same computer or even on a different computer connected to the source

REMOTE METHOD INVOCATION 349

computer by a network. So, it enables objects, distributed in different computers, to communicate
with one another. Although it provides a simple but elegant model [Figure 14.1:], it is remarkably
powerful and can be used to invoke remote methods easily and in a natural way.

Network

2. Get reference

3. Invoke methods

Client program

Server program

Obj1
Obj2

Obj3

Object registry

Obj1 Obj1_proxy

Obj2 Obj2_proxy

Obj3 Obj3_proxy

1. Create and register objects

Figure 14.1: RMI programming model

The underlying communication between clients and server in this model takes place seamlessly
using sockets. It means that the message from the client is not method invocation in the OO sense.
Instead, it is a stream of data that must be interpreted by the server before it can invoke method
on the target object. However, RMI application developers need not know this complex socket
communication. Originally, in general, RMI architecture was developed taking the following goals
into consideration:

•	 A primary goal of Java RMI technology was to allow programmers to develop distributed Java programs with the
same syntax and semantics used for non-distributed programs.

•	 Another goal was to create a distributed object model that fits the Java programming language and the local object
model naturally. RMI architects finally succeeded in creating such a powerful system that extends the safety and
robustness of the Java architecture to the distributed computing world.

14.2.1	 Application components
Three entities are often involved [Figure 15.1:] in an RMI application: a server program, a client

program and object registry.

Server
This is a program that typically creates a remote object to be used for method invocation. This

object is an ordinary object except that its class implements a Java RMI interface. Upon creation, the
object is exported and registered with a separate application called object registry (or simply registry).

Client
A client program typically consults the object registry to get a reference (handle) to a remote

object with a specified name. It can then invoke methods on the remote object using this reference
(handle) as if the object is stored in the client’s own address space. The RMI handles the details of

350 ADVANCED JAVA PROGRAMMING

communication (using sockets) between the client and the server and passes information back and
forth. Note that this complex communication procedure is absolutely hidden to the client and server
applications.

Object Registry
It is essentially a table of objects. Each entry of the table maps the object name to its proxy known

as stub. The server registers the stub by a name to the object registry. Once the stub is registered
to the object registry successfully, the object is said to be available for others’ use. Clients can
now get a reference (handle) to the remote object (actually stub) from this registry and can invoke
methods on it.

14.2.2	 Basic Steps
Developing and running RMI applications involves the following steps:

•	 Define the remote interface
•	 Implement the remote interface
•	 Create, export and register a remote object in the server program
•	 Get a reference of the remote object in the client program
•	 Compile the Java source files
•	 Run the application

Define a remote interface
First, we define an interface that contains methods that the server wishes to publish. Since method

invocations on remote object occurs in a very different way from local method invocation, an interface
for the remote object must be declared as follows:

•	 The remote interface must be public.

•	 The remote interface extends (either directly or indirectly) the interface java.rmi.Remote. The interface
Remote is a marker interface and has no methods.
public interface java.rmi.Remote {

}

	 A remote interface implements this Remote interface only to indicate that its methods may be invoked remotely.

•	 Each method in the interface must declare that it throws java.rmi.RemoteException. Note that remote
objects may fail in a very different way from local objects. Therefore, every method exposes the additional exception
RemoteException so that programmers can handle this failure appropriately.

Implement the remote interface
We then write a concrete class implementing one or more such remote interfaces. These classes

may implement other interfaces or other methods may be added that can only be invoked locally.
All classes that are used by these methods as parameters or return type must also be implemented.
More than one implementation of the interface may be provided. Caller need not be aware of the
underlying implementation.

Implement the server
Implementing a server application that creates an instance of the remote object and registers it to

the RMI registry with a name is called object deployment. There are many ways to register an object
to the RMI registry. We shall describe them separately later in this chapter.

REMOTE METHOD INVOCATION 351

Implement the client
A client application gets a handle to this remote object and invokes methods on it. There are

different procedures to get a reference to the remote object. A detailed discussion can be found later
in this chapter.

Compile them
Use Java compiler (javac) to compile all source files including interfaces and other subsidiary

classes. To make the RMI technology work successfully, we should get help from the stub and the
skeleton. Note that with Java versions before Java 5.0, programmers had to generate RMI stubs in
a separate compilation step using rmic. Version 5.0 of Java and beyond no longer require this step.
Anyway, the functions of stub and skeleton [see Figure 14.2:] are as follows:

•	 When a client invokes a remote method, a similar method call occurs on local stub.
•	 The stub packs (marshals) the necessary information (method name, parameters etc.) and sends to the server-side

skeleton. The process of gathering data and transforming it into a standard format before it is transmitted over a
network is called marshalling. The stub knows all information (IP address, port) of the skeleton.

•	 The server-side skeleton, upon receiving the information, unpacks (un-marshals) the information and invokes
methods on the actual object. The process of retrieving data from the marshalled data is known as un-marshalling.
Finally, it packs the result and sends the result (if any) to the stub.

•	 The stub unpacks the information and forwards the result to the client.

Start the application
First, start an object registry. In Java, the object registry is started using the application rmiregistry.

It can also be created dynamically. Then start the server program. Finally, start the client program.

Stub

Remote Reference Layer

Transport Layer

Client Server

Network

Skeleton

Remote Reference Layer

Transport Layer

result method call resultmethod call

Figure 14.2: RMI architecture

14.3	 JAVA RMI INTERFACES AND CLASSES
The Java RMI provides remote method invocation a framework as package java.rmi. Application

developers use this package to create their programs. Java RMI hides almost all aspects of the
distribution and provides a uniform way by which objects (distributed or not) may be accessed. The
hierarchy of primary classes and interfaces is shown in Figure 14.3:

352 ADVANCED JAVA PROGRAMMING

«Remote»

RemoteObject

RemoteServer

UnicastRemoteObjectActivable

Interfaces

Classes

«Registry»

Figure 14.3: RMI class and interface hierarchy

14.4	 AN APPLICATION
In this section, we shall develop a simple but elegant distributed application using Java RMI

technology. In this application [Figure 14.4:], the server program creates and exports a simple remote
object (we call it calculator) which provides one method. The method takes two integers as arguments
and returns their sum. A client program gets a reference to the remote object and invokes this method
on the remote object to calculate the sum of two integers.

//…
Calculator cal = …
int x = 4, y = 3, result;

result = cal.add(x, y)

System.out.println(result);
//…

Network

Client program Server program

class … implements Calculator {
 //…
 public int add(int a, int b)
 {
 return a + b;
 }
 //…
}

add, 4, 3

7

Figure 14.4: Using a remote Calculator

Note that we rarely write such a simple RMI application in practice. An electronic calculator
will be much useful in solving this problem. However, the application scenario is kept simple so that
we can devote more time to understanding the procedures of developing an RMI application than
concentrating on the actual problem.

14.4.1	 Writing an interface
At first, communicating programs must agree upon a protocol. This protocol is expressed in an

interface and is usually developed by the service provider. An interface is an abstract description
of the methods that may be invoked on an object supporting that interface. To support an interface,
object’s class must provide implementations of those methods.

An interface only provides abstract description (signature) of methods without any implementation.
The signature provides necessary information such as name of a method, its return type as well as

REMOTE METHOD INVOCATION 353

number, order and type of arguments to be passed to invoke the method. This means the signature
provides enough information to determine the method call syntax. A program (call it server program/
service provider) creates an object whose class implements this interface (i.e. provides implementations
of these methods) and publishes this interface. By publishing an interface, server program conveys
the following:

“Hey all of you, I have created an object that is capable of providing a set of important services.
If you are interested, you can get these services by calling the corresponding methods on this object.
The necessary information (name of the method, argument list and return type) to invoke these
methods is given in the interface”.

Since method invocations on remote objects occur in a very different way from local method
invocation, an interface for the remote object must be declared as follows:

•	 The remote interface must be public.

•	 The remote interface extends (either directly or indirectly) the interface java.rmi.Remote. The interface
Remote is a marker interface and has no methods.
public interface java.rmi.Remote {

}

	 A remote interface implements this Remote interface only to indicate that its methods may be invoked
remotely.

•	 Each method in the interface must declare that it throws java.rmi.RemoteException. Note that remote
objects may fail in a very different way from local objects. Therefore, every method exposes the additional exception
RemoteException so that programmers can handle this failure appropriately.

In our application, remote object wants to provide a single method as follows:

•	 A method that takes two integers as arguments, adds them up and returns the result

An interface that specifies the above description may then be written as follows:
//Calculator.java
import java.rmi.*;
public interface Calculator extends Remote {
 public int add(int a, int b) throws RemoteException;
}

The Calculator interface defines the client’s view of the remote object. The interested programs
(call them client programs/service users) make use of this interface to know the details of services
(methods) that the object provides. In this way, the Calculator interface helps the clients and server
to agree upon a protocol.

This interface extends Remote interface (provided in java.rmi package) and hence becomes a
remote interface. Any object, whose class implements this interface, is a remote object whose methods
can be invoked from a different JVM.

The interface describes only one method add(). This is the method that remote programs will
use to find the sum of two integers. Since, this method will be called remotely, it may fail due to
problems related to communication or protocol or server. So, using throws clause, the method
indicates that a RemoteException might be thrown by this method during its execution. The exception
RemoteException (provided in java.rmi package) is a checked exception. Consequently, a program
that calls this method must prepare it to handle this exception explicitly by either catching or
re-throwing the exception

354 ADVANCED JAVA PROGRAMMING

A remote interface must be public. Note that a remote interface will most probably be used
by classes which do not belong to the same package where the interface is kept. We know that a
non-public interface is only accessible from the classes of the same package. Consequently, to make
an interface available to every other, it is declared as public. Our Calculator interface is also
declared public accordingly.

Note Java’s object serialization procedure is used by RMI to transfer objects. Consequently, objects/
variables that are transferred across different JVMs must be serializable. An object is said to be serializable
if its class implements the java.io.Serializable interface. The interface java.io.Serializable does
not define anything; it just specifies that the object of the class is serializable. In our application, a client
passes two integers to invoke the method add(). Fortunately, int type and all other Java primitive types
are serializable. Hence there is nothing to worry about the serialization procedure.

14.4.2	 Writing Implementation class
An interface merely helps us in determining method call syntax. It does not provide any method

implementation (body). The implementation is provided in another class. In general, an implementation
class of a remote object is developed as follows:

•	 It must declare that it implements at least one remote interface.
•	 It must provide implementations of all the methods specified in the remote interface.
•	 Optionally define one or more constructor.

14.4.2.1   Implementing the remote interface
There are two ways to write an implementation class (say SimpleCalculator for our application).

In the simplest way, an implementation class extends either java.rmi.server.UnicastRemoteObject
or javax.rmi.PortableRemoteObject class [Figure 14.5: (i)]. In this case, the implementation
class readily becomes a remote class. The advantage of this scheme is that the objects of this class
are exported automatically by the super class’s (UnicastRemoteObject or PortableRemoteObject)
constructor when they are created. So, we don’t have to export them explicitly. However, the problem
of this scheme is that, the implementation class cannot extend any other class further as Java does
not support multiple inheritance for classes. So, it is not a good idea to write implementation classes
extending UnicastRemoteObject or PortableRemoteObject.

(i) (ii)

RemoteObject

RemoteServer

UnicastRemoteObject

SimpleCalculator

or

implements extends

Remote

Calculator

RemoteObject

RemoteServer

Activable

SimpleCalculator

Remote

Calculator SimpleCalculator

Remote

Calculator

interface class

Figure 14.5: Writing implementation class (i) Extending a class (ii) Without extending a class

REMOTE METHOD INVOCATION 355

To avoid the aforesaid problem, there exists another (probably better) scheme. In this
scheme implementation class does not extend UnicastRemoteObject or PortableRemoteObject
classes which leave a provision of extending other classes if required later [Figure 15.5: (ii)].
However, instances of this implementation classes have to be exported explicitly, Fortunately,
both UnicastRemoteObject and Activatable classes provide several static overloaded versions
of exportObject() method for explicit export of remote objects. In this case, though we have
to write some extra piece of code, we shall have a provision to extend other classes if really
necessary.

In our class implementation, the last described procedure is followed. Accordingly, a sample class
is developed whose source code (stored in file SimpleCalculator.java) is given below:

//SimpleCalculator.java
import java.rmi.*;
public class SimpleCalculator implements Calculator {
 public int add(int a, int b) {
 System.out.println("Received: " + a + "and" + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

The implementation class in our example is SimpleCalculator. It declares that it implements a
remote interface Calculator as follows:

public class SimpleCalculator implements Calculator {

In general, an implementation class may implement any number of remote interfaces. An
implementation class may also extend any other implementation class of a remote interface.

14.4.2.2   Providing method implementation
The implementation class must provide definition (body) of all the methods specified in the

remote interface(s). For our implementation class SimpleCalculator, the only method add() is
defined as follows:

public int add(int a, int b) {
 System.out.println("Received: " + a + "and" + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
}

The implementation of add() method is very simple. It returns the sum of two integers passed
to this method. The System.out.println() methods are used only to print useful messages so that
we can track this method invocation.

Note that the method add() does not have to indicate that it throws any exception because its body
itself does not throw RemoteException nor does it throw any other checked exceptions.

When a class declares that it implements an interface, it basically promises to the compiler that
it will provide method bodies for all the methods specified in that interface. We know that methods
of an interface are implicitly public and abstract. So, if the implementation class doesn’t obey its
promise (it it does not provide definition of all methods), it becomes an incomplete class, which by
definition is called an abstract class. In this case, the compiler will figure this fact out if the class
itself does not declare it as abstract class.

356 ADVANCED JAVA PROGRAMMING

In an implementation class, it is possible to define methods not specified in the remote interface.
However, those methods can only be invoked locally (i.e. within the virtual machine running the
service) and cannot be invoked remotely.

The type of arguments to, or return values from, remote methods may be any valid type in Java,
including objects. For objects, the only requirement is that they implement the interface java.
io.Serializable. It is good to know that almost all classes in java.lang and java.util packages
implement the Serializable interface. However, certain types are inherently non-serializable and cannot
be passed to or returned from a remote method. Examples of such type include classes related to threads, file
descriptors, socket connection, database connection, that makes sense only within a single address space.

The following rules are employed when objects are passed to a remote method.
When a local object is passed to a remote method as an argument, the method’s formal parameter

refers to a local temporary object which is an exact copy of the actual object. Consequently, if a
method is called in the remote method through the formal parameter, invocation of the method occurs
on local object not on the actual object that was passed as an argument. Any changes to this local
object’s state in the remote method are reflected only in the receiver’s local copy, not in the caller’s
original object. Similarly, any changes to the original object’s state by the caller are not reflected in
the receiver’s copy. Note that, class definition of actual object must exist in the remote method’s JVM.

However, if the object passed to a remote method is itself a remote object, method’s formal
parameter refers to a local temporary object which is a proxy to the actual object. In this case, a method
call through the formal parameter results in a similar method invocation on local proxy object which
in turn forwards the method invocation information towards the actual object. A detailed description
of this procedure is given later in this chapter.

14.4.2.3   Writing Constructor
Writing the constructor is not mandatory if implementation class does not extend java.rmi.

server.UnicastRemoteObject or javax.rmi.PortableRemoteObject class. However, if the
implementation class extends any one of these two classes, a constructor is mandatory for the
following reason:

When an implementation class extends java.rmi.server.UnicastRemoteObject or javax.
rmi.PortableRemoteObject class, objects of the implementation class are exported by the super
class’s constructor automatically upon creation. Since, during this export, super class’s constructor
could potentially throw a java.rmi.RemoteException, we must define a constructor that throws a
RemoteException, even if the constructor does nothing else. Otherwise, the Java compiler produces
an error message.

Since our implementation class does not extend any of those two classes, we have not written
any constructor. However, a suitable constructor may always be written if initialization of variables
of each newly created instance of the class is needed.

14.4.3	 Writing an RMI Server
This is a simple Java application program (call it CalculatorServer.java) containing the well-

known main() method. This program usually performs the following steps:

•	 Creates an instance of implementation class
•	 Exports it so that the object can receive method invocation from remote client
•	 Registers the object to a registry so that remote client can get remote reference to this object

REMOTE METHOD INVOCATION 357

14.4.3.1   Creating a remote object
Creating an instance of the implementation class uses the same syntax used for creating ordinary

objects. So, the following piece of code creates an instance of our SimpleCalculator class.
SimpleCalculator calculator = new SimpleCalculator();

14.4.3.2   Exporting the object
The object created above is an ordinary object and is not capable of handling method invocation

requests that come from a remote program. To add this capability, it has to be exported. Exporting
an object basically means making the object capable of receiving invocations of its methods
from remote clients. Note that our implementation class does not extend UnicastRemoteObject
or PortableRemoteObject class. So, we have to export the object explicitly using static
exportObject() method of the UnicastRemoteObject (or PortableRemoteObject) class as
follows:

Calculator stub = (Calculator)UnicastRemoteObject.exportObject(calculator, 0);

The first argument of exportObject() method is an object to be exported. The second argument
is an int that specifies the TCP port to be used to listen for incoming remote invocation requests for
the object. Usually a 0 (zero) is used for this value which indicates that the port has to be chosen at
runtime by RMI or the underlying operating system. However, programmers may specify a specific
port to be used for listening. If exportObject() method returns successfully, our SimpleCalculator
object becomes ready to process incoming remote invocations.

Let us now understand the functionality of exportObject() method in detail. This is necessary
for programmers who want to understand the implementation of Java RMI architecture. A clear
understanding of this architecture enables programmers to develop sophisticated network applications
without any hassle.

The exportObject() method essentially creates and installs a proxy for the calculator object
at the server end passing the calculator object to the proxy. This proxy is known as skeleton. This
proxy has a reference to the calculator object. The task of the skeleton broadly is as follows:

It creates a TCP ServerSocket object and listens for the incoming connection requests on the
TCP port specified by the second argument. Upon establishing a connection, The ServerSocket waits
for the incoming remote method call on behalf of our calculator object.

Whenever a request for method call (in the packed format) comes to this skeleton, it unpacks
the request to obtain the method name and arguments to be used for this method. This unpacking
procedure is also called un-marshalling. Note that the calculator object and its skeleton belong
to the same JVM and skeleton has also reference to this local calculator object. So, skeleton can
invoke the desired method on the actual object and get the result. It then packs (called marshalling)
the result and sends it back to the caller.

The method exportObject() creates and returns another proxy for this object to be uploaded to
the object registry. This proxy is called stub. The stub knows the port the skeleton listens on as well
as the IP address of the computer. This means the stub knows all the information about the skeleton
and can communicate with e skeleton as and when necessary. The object registry essentially provides
this stub object on request. The type of this stub must be Calculator, not the SimpleCalculator.
This is because stub for a remote object (SimpleCalculator in this case) implements the interface
(Calculator) which is implemented by the exported object.

358 ADVANCED JAVA PROGRAMMING

The communication procedure is shown in Figure 14.6:

Client
subsystem

Server
subsystem

result

result

add, 2, 3 un-marshalling

marshalling

un-marshalling

add(2,3)

:client :stub :skeleton :calculator

add(2,3)

marshalling

result

socket

socket

Figure 14.6: Calculator client–server execution pattern

The interesting part of exportObject() method is that it creates and loads class files for stub
at runtime (if one not found). Consequently, we don’t have to generate class files for stub using
rmic compiler in Java 5.0 and later versions. This method also has another overloaded version
as follows:

public static RemoteStub exportObject(Remote obj) throws RemoteException

This method does not take any port number as arguments and expects existence of pre-generated
class files for stub and skeleton. The name of the stub class is determined by concatenating the binary
name of the remote object’s class with the suffix "_Stub". Indeed, rmic compiler generates class files
using the aforesaid naming convention. For example, the following command generates a class file
SimpleCalculator_Stub.class from an implementation class file

SimpleCalculator.class.

rmic SimpleCalculator

If the exportObject() method does not find an appropriate stub class or is unable to load the stub
class, or a problem occurs creating the stub instance, a StubNotFoundException is thrown.

To understand the functionality of this stub class, source code may be generated using any suitable
Java de-compiler. A sample source generated using DJ Java de-compiler is shown below:

import java.lang.reflect.Method;
import java.rmi.RemoteException;
import java.rmi.UnexpectedException;
import java.rmi.server.RemoteObject;
import java.rmi.server.RemoteRef;
import java.rmi.server.RemoteStub;

public final class SimpleCalculator_Stub extends RemoteStub implements
Calculator {

 private static final long serialVersionUID = 2L;
 private static Method $method_add_0;

 static {
 try {
 $method_add_0 = Calculator.class.getMethod("add", new Class[] { Integer.TYPE,
Integer.TYPE });
 }
 catch (NoSuchMethodException localNoSuchMethodException) {
 throw new NoSuchMethodError("stub class initialization failed");
 }
 }

 public SimpleCalculator_Stub(RemoteRef paramRemoteRef) {
 super(paramRemoteRef);
 }

 public int add(int paramInt1, int paramInt2) throws RemoteException {
 try {
 Object localObject = this.ref.invoke(this, $method_add_0, new Object[]
{ new Integer(paramInt1), new Integer(paramInt2) }, -7734458262622125146L);
 return ((Integer)localObject).intValue();
 }
 catch (RuntimeException localRuntimeException) {
 throw localRuntimeException;
 }
 catch (RemoteException localRemoteException) {
 throw localRemoteException;
 }
 catch (Exception localException) {
 throw new UnexpectedException("undeclared checked exception",
localException);
 }
 }
}

REMOTE METHOD INVOCATION 359

import java.lang.reflect.Method;
import java.rmi.RemoteException;
import java.rmi.UnexpectedException;
import java.rmi.server.RemoteObject;
import java.rmi.server.RemoteRef;
import java.rmi.server.RemoteStub;

public final class SimpleCalculator_Stub extends RemoteStub implements
Calculator {

 private static final long serialVersionUID = 2L;
 private static Method $method_add_0;

 static {
 try {
 $method_add_0 = Calculator.class.getMethod("add", new Class[] { Integer.TYPE,
Integer.TYPE });
 }
 catch (NoSuchMethodException localNoSuchMethodException) {
 throw new NoSuchMethodError("stub class initialization failed");
 }
 }

 public SimpleCalculator_Stub(RemoteRef paramRemoteRef) {
 super(paramRemoteRef);
 }

 public int add(int paramInt1, int paramInt2) throws RemoteException {
 try {
 Object localObject = this.ref.invoke(this, $method_add_0, new Object[]
{ new Integer(paramInt1), new Integer(paramInt2) }, -7734458262622125146L);
 return ((Integer)localObject).intValue();
 }
 catch (RuntimeException localRuntimeException) {
 throw localRuntimeException;
 }
 catch (RemoteException localRemoteException) {
 throw localRemoteException;
 }
 catch (Exception localException) {
 throw new UnexpectedException("undeclared checked exception",
localException);
 }
 }
}

So, if a programmer faces difficulty in generating a stub class (e.g. rmic compiler or implementation
class is not available etc.), the programmer may use the previous version of exportObject() method
without any trouble. We also have used this version to avoid generating stub class explicitly. In this
case, Java RMI generates a proxy class (having a name like Proxy0) whose functionality is very
much similar to the stub class generated by the rmic. It then creates and installs a proxy (skeleton)
dynamically for the calculator object. The method exportObject() also creates and returns another
proxy (stub) for this object to be uploaded to the object registry. We wrote a Java agent program to
find the class data and using a DJ Java de-compiler a source was generated as follows:

import java.lang.reflect.*;
import java.rmi.RemoteException;

public final class $Proxy0 extends Proxy implements Calculator {
 public $Proxy0(InvocationHandler invocationhandler){
 super(invocationhandler);
 }
 public final boolean equals(Object obj) {
 try {
 return ((Boolean)super.h.invoke(this, m1, new Object[] { obj
 })).booleanValue();
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final int hashCode() {
 try {
 return ((Integer)super.h.invoke(this, m0, null)).intValue();
 }
 catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final int add(int i, int j) throws RemoteException {
 try {
 return ((Integer)super.h.invoke(this, m3, new Object[] {
 Integer.valueOf(i), Integer.valueOf(j)})).intValue();
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final String toString() {
 try {
 return (String)super.h.invoke(this, m2, null);
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 private static Method m1;
 private static Method m0;
 private static Method m3;
 private static Method m2;

 static {
 try {
 m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] {
 Class.forName("java.lang.Object") });
 m0 = Class.forName("java.lang.Object").getMethod("hashCode", new
Class[0]);
 m3 = Class.forName("Calculator").getMethod("add", new Class[] {
 Integer.TYPE, Integer.TYPE });
 m2 = Class.forName("java.lang.Object").getMethod("toString", new
Class[0]);
 }catch(NoSuchMethodException nosuchmethodexception) {
 throw new NoSuchMethodError(nosuchmethodexception.getMessage());
 }
 catch(ClassNotFoundException classnotfoundexception) {
 throw new NoClassDefFoundError(classnotfoundexception.getMessage());
 }
 }
}

360 ADVANCED JAVA PROGRAMMING

import java.lang.reflect.*;
import java.rmi.RemoteException;

public final class $Proxy0 extends Proxy implements Calculator {
 public $Proxy0(InvocationHandler invocationhandler){
 super(invocationhandler);
 }
 public final boolean equals(Object obj) {
 try {
 return ((Boolean)super.h.invoke(this, m1, new Object[] { obj
 })).booleanValue();
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final int hashCode() {
 try {
 return ((Integer)super.h.invoke(this, m0, null)).intValue();
 }
 catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final int add(int i, int j) throws RemoteException {
 try {
 return ((Integer)super.h.invoke(this, m3, new Object[] {
 Integer.valueOf(i), Integer.valueOf(j)})).intValue();
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 public final String toString() {
 try {
 return (String)super.h.invoke(this, m2, null);
 }catch(Error _ex) { }
 catch(Throwable throwable) {
 throw new UndeclaredThrowableException(throwable);
 }
 }
 private static Method m1;
 private static Method m0;
 private static Method m3;
 private static Method m2;

 static {
 try {
 m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] {
 Class.forName("java.lang.Object") });
 m0 = Class.forName("java.lang.Object").getMethod("hashCode", new
Class[0]);
 m3 = Class.forName("Calculator").getMethod("add", new Class[] {
 Integer.TYPE, Integer.TYPE });
 m2 = Class.forName("java.lang.Object").getMethod("toString", new
Class[0]);
 }catch(NoSuchMethodException nosuchmethodexception) {
 throw new NoSuchMethodError(nosuchmethodexception.getMessage());
 }
 catch(ClassNotFoundException classnotfoundexception) {
 throw new NoClassDefFoundError(classnotfoundexception.getMessage());
 }
 }
}

Java RMI generates this proxy class using the concept of dynamic proxy. It may be noted that
the implementation of add() method in this class is similar to that of in the stub class generated by
rmic compiler.

14.4.3.3   Registering the stub
The object’s server-side proxy (skeleton) is now ready to accept the incoming method

invocation request. The object’s stub is also generated. This stub can communicate with the
skeleton remotely using socket. So, if we can somehow create an instance of this stub in a remote
computer, invoking a method on the remote object through that stub instance will be a matter of
time. The stub is obtained from a separate application called registry where the server registers
the stub.

To register the stub generated by exportObject() method with the object registry, a reference to
object registry is needed. A new object registry may be created or an existing one may be used. The
class java.rmi.registry.LocateRegistry provides many static methods for this purpose. In our
example, we shall use an existing object registry which can be started using rmiregistry application
provided by JVM. The rmiregistry application runs as a separate process and allows applications

REMOTE METHOD INVOCATION 361

to register remote objects or obtain references to named remote objects. Java RMI only allows us
to run rmiregistry and server in the same computer currently.

The following code is used to get a reference to an existing object registry which is already started
on the same computer on default port (1099).

Registry registry = LocateRegistry.getRegistry();

Specify the port number to the getRegistry() method, if object registry runs on a port other
than 1099. Instead of using an existing registry, the application itself may explicitly create a registry
as follows:

Registry registry = LocateRegistry.createRegistry(1099);

This creates a registry that listens on port 1099. Note that a registry created using the above piece
of code is available provided that the server application is started. Anyway, once we have a reference
to the registry, the stub is registered with this object registry as follows:

String name = "calculator";
registry.rebind(name, stub);

The rebind() method essentially binds a specified stub and a name. If there is an existing binding
for the specified name, it is overridden. So, the stub for the calculator object is hereafter known as
‘calculator’.

When a client requests the object registry to have a reference to the remote object, the stub for the
remote object is passed. The client-side application that contacted the object registry creates and installs
an instance of this stub in the client’s computer and returns a reference to the client. Client basically
invokes methods on this local stub object. As mentioned earlier, this stub has complete information about
the skeleton, which is object’s server-side proxy. The stub creates a socket to the skeleton. It packs the
information such as the method name to be invoked, parameters etc. This is called marshalling. The stub
then sends the packed data to the skeleton through the socket. The skeleton then un-marshals the data
and follows the steps as mentioned previously. The entire execution sequence is shown in Figure 14.6: .

The entire piece of code is embedded in a try-catch block.
The source code for server is stored in the file CalculatorServer.java. The source code for the

CalculatorServer.java class is given as follows:
//CalculatorServer.java
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CalculatorServer {
 public static void main(String args[]) {
 try {
 SimpleCalculator cal = new SimpleCalculator();
 Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0);
 Registry registry = LocateRegistry.getRegistry();
 String name = "calculator";
 registry.rebind(name, stub);
 System.out.println("Calculator server ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

14.4.4	 Writing an RMI Client
Clients for SimpleCalculator are relatively simple. It is the program that invokes add() method

on the object created and exported by the server. However, to invoke a method, it has to obtain a
reference to the remote object first. A reference to a remote object may be obtained using:

362 ADVANCED JAVA PROGRAMMING

•	 Registry
•	 RMI’s naming service
•	 Passing and returning remote objects

In the current application, we shall use the first method. Note that remote references are stored
in the object registry. So, client first synthesizes a remote reference to the object registry running on
the server host using the LocateRegistry.getRegistry() method as follows:

Registry registry = LocateRegistry.getRegistry(args[0]);

The argument to the getRegistry() method is the first command line argument args[0] which is
the name or IP address of the computer where the registry runs on the default port (1099). If the registry
runs on a port other than 1099, you specify the port as the second argument to the getRegistry()
method. The getRegistry() method consults the remote registry (using socket) and essentially
returns a local proxy registry (stub for registry which is an instance of RegistryImpl_Stub class).
Note that this proxy is created and loaded dynamically upon downloading the RegistryImpl_Stub
class data from the remote object registry. This proxy registry knows all the information of the remote
registry (port and IP address) and capable of communicating (using socket) with the remote registry
upon request. The information about the registry object (such as class file name) may be verified
using the following code:

System.out.println(registry);

When this statement is executed, it generates an output shown below:
RegistryImpl_Stub[UnicastRef [liveRef:[endpoint:[172.16.5.81:1099](remote),objI
D:[0:0:0, 0]]]]

Once the client gets a reference to the remote registry, it uses the lookup() method on this registry
to get a reference to the remote calculator object as follows:

String name = "calculator";
Calculator cal = (Calculator)registry.lookup(name);

Note that the client uses the same name that the server uses to register the object. The lookup method
of the proxy registry consults the remote registry, downloads the stub for the SimpleCalculator
object having the name “calculator” specified as argument. It then creates and installs an instance
of the stub (dynamically using the concept of dynamic class loading) and returns a reference to the
client. The reference cal is actually a local reference to the stub. The information about the cal object
(such as class file name) may be verified using the following code:

System.out.println(cal);

When this statement is executed, it generates an output shown below:
Proxy[Calculator,RemoteObjectInvocationHandler[UnicastRef [liveRef:
[endpoint:[172.16.5.81:52704](remote),objID:[-1812e356:1409d599c42:-7fff,
150949126975901178
6]]]]]

Note that, [172.16.5.81:52704] is the socket address of the skeleton. This stub sits behind the scene and
behaves as a proxy of the remote calculator object. When client invokes a method using the cal reference,
a similar method invocation on the stub occurs. The stub then creates a TCP socket connection with the
skeleton, marshals the method invocation information and sends the request. When the result comes back
from the skeleton, the stub returns the result to the client. The underlying procedure is transparent to the client.

Invoking the add() method on the remote object is now as simple as invoking a method on an
ordinary local object.

int x = 4, y = 3;
int result = cal.add(x,y);

Here is the complete source code for the client which is stored in CalculatorClient.java.

REMOTE METHOD INVOCATION 363

//CalculatorClient.java
import java.rmi.*;
import java.rmi.registry.*;
public class CalculatorClient {
 public static void main(String args[]) {
 try {
 String name = "calculator";
 Registry registry = LocateRegistry.getRegistry(args[0]);

//System.out.println(registry);
 //uncomment above line if you want to display the info. about registry
 Calculator cal = (Calculator)registry.lookup(name);
 //System.out.println(cal);
 //uncomment above line if you want to display the info. about cal
 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

14.5	 COMPILING THE PROGRAM
Suppose the server application is developed in the directory E:\Net\rmi\calculator\server of a

computer having IP address 172.16.5.81. Hereafter, we shall refer to this directory as server_home.
Now, put server-side files in server_home as shown in Figure 14.7: (i)

Calculator.java SimpleCalculator.java CalculatorServer.java

server_home

Calculator.java CalculatorClient.java

client_home

(i) (ii)

Figure 14.7: Directory content for Calculator (i) Server (ii) Client

Assume that the client application is developed in the directory E:\Net\rmi\calculator\client
of another computer. We shall refer to this directory as client_home. Now, put client-side files in
client_home as shown in Figure 14.7: (ii).

14.5.1	 Compiling Server
Open a terminal and go to the directory server_home. This directory contains three files,

Calculator.java, SimpleCalculator.java and CalculatorServer.java. Use javac command to
compile these Java source files as follows:

javac *.java

This generates the class files Calculator.class, SimpleCalculator.class and CalculatorServer.
class

14.5.2	 Compiling Client
Go to the directory client_home. The Calculator.class generated in server_home directory is

needed by the client to develop its own applications. Get this class file from server_home directory

364 ADVANCED JAVA PROGRAMMING

and put it in client_home. Alternatively, you can put the Calculator.java file in client_home and
generate the class file using the following command

javac Calculator.java

Now, give the following command to compile client-side source file.
javac CalculatorClient.java

This generates a class file CalculatorClient.class

14.6	 GENERATING STUB CLASSES
Java 5.0 and later releases add support for the dynamic generation of stub classes at runtime,

obviating the need to use the Java RMI stub compiler, rmic, to pregenerate stub classes for remote
objects. Note that rmic must still be used to pregenerate stub classes for remote objects that need to
support clients running on earlier versions.

When remote object is exported (using the constructors or static exportObject() methods of
the classes java.rmi.server.UnicastRemoteObject or java.rmi.activation.Activatable) and
a pregenerated stub class for the remote object is not found, the remote object’s stub will be a java.
lang.reflect.Proxy instance (whose class is dynamically generated) with a java.rmi.server.
RemoteObjectInvocationHandler as its invocation handler. A detail about enhancements that
have been incorporated in the current version of Java can be found in http://docs.oracle.com/
javase/1.5.0/docs/guide/rmi/relnotes.html.

However, if a stub class is really needed, use the following command to generate it:
rmic SimpleCalculator

14.7	 RUNNING THE PROGRAM
Before starting the server application, we need to start an object registry. In Java RMI, it is started

using the rmiregistry command. So, open a terminal, go to the server_home directory and type the
following command:

start rmiregistry

The command opens new windows and starts the object registry application on the default port
1099. Note that rmiregistry needs Calculator.class file when a Calculator object is registered. So,
rmiregistry should be started from a directory that contains Calculator.class file. However, RMI
has techniques for loading class dynamically, which will be illustrated in a separate application in detail.

14.7.1	 Start Server
Give the following command to start the server:
java CalculatorServer

It produces a sample output as shown in Figure 14.8:

Figure 14.8: Calculator server

REMOTE METHOD INVOCATION 365

14.7.2	 Start client
Go to the client_home directory and give the following command to start the client:
java CalculatorClient 172.16.5.81

It produces a sample output as shown in Figure 14.9: (i). The final output of the server application
is shown in Figure 14.9: (ii).

(i)

(ii)

Figure 14.9: Calculator application (i) Client (ii) Server

14.7.3	 Understanding object Registry
The registry is essentially an application for the server to register services it offers and a place for

clients to query for those services. Let us now understand how this application functions.
When a registry is started using rmiregistry command or Registry.createRegistry()

method, it creates a ServerSocket object and listens for incoming connection. If a client program
invokes lookup() method, it makes a socket connection to the remote registry application and
sends the name of the object specified as argument through the connection. The remote registry
finds the stub with this name and sends this object over the network back to the client using object
serialization. The lookup() method, upon receiving the serialized data, reconstructs the object and
finally returns it to the caller. The returned object is the client-side proxy of the server object and
knows how to communicate with the object through the server-side proxy. So, if we can somehow
create an instance of the stub at the client side, invoking a method on the remote object becomes
possible readily.

In this section, we shall develop a simple registry that behaves as described above. The following
is the complete source code of this registry store in a file SimpleRegistry.java.

366 ADVANCED JAVA PROGRAMMING

import java.rmi.*;
import java.io.*;
import java.net.*;
import java.util.*;
public class SimpleRegistry implements Runnable {
 int port;
 Hashtable objects = new Hashtable();
 public SimpleRegistry(int prt) {
 this.port = prt;
 new Thread(this).start();
 }
 public SimpleRegistry() {
 this(6789);
 }
 public void rebind(Remote o, String name) {
 objects.put(name, o);
 }
 public static Object lookup(String host, int port, String name) throws
IOException, ClassNotFoundException {
 Socket clientEnd = new Socket(host, port);
 PrintWriter toServer = new PrintWriter(clientEnd.getOutputStream(), true);
 toServer.println(name);
 ObjectInputStream in = new ObjectInputStream(clientEnd.getInputStream());
 return in.readObject();
 }
 public void run() {
 try {
 ServerSocket serverSocket = new ServerSocket(port);
 while(true) {
 Socket serverEnd = serverSocket.accept();
 BufferedReader fromClient = new BufferedReader(new
InputStreamReader(serverEnd.getInputStream()));
 String name = fromClient.readLine();
 Remote o = (Remote)objects.get(name);
 ObjectOutputStream oos = new
ObjectOutputStream(serverEnd.getOutputStream());
 oos.writeObject(o);
 }
 }catch(Exception e) {}
 }
}

Now modify the calculator server as follows:
//Registry registry = LocateRegistry.getRegistry();
//registry.rebind(name, stub);
SimpleRegistry reg = new SimpleRegistry();
reg.rebind(stub, name);

The original statements in the server are shown in the comment line. Also modify the calculator
client as follows:

//Registry registry = LocateRegistry.getRegistry(args[0]);
//Calculator cal = (Calculator)registry.lookup(name);

Calculator cal = (Calculator)SimpleRegistry.lookup(args[0],
Integer.parseInt(args[1]), name);

The original statements in the client are shown in the comment line. Compile and run the application
as discussed earlier. Note the calculator server creates a SimpleRegistry. So, a separate rmiregistry
application is not needed. A sample output is shown in Figure 14.10:

REMOTE METHOD INVOCATION 367

(i)

(ii)

Figure 14.10: Using custom registry (i) Calculator server (ii) Calculator client

14.7.4	 Using RMI URL
In our calculator example, server exports and registers a remote object explicitly using a tedious

procedure. The client also gets a reference to the remote object using a long method. Java RMI
provides a simple addressing mechanism, known as RMI URL, which may be used by the server as
well as the client for the same purpose.

The server application creates an object and registers it to the RMI registry using the static rebind()
method of java.rmi.Naming class. The server must specify the port number of RMI registry application
and the IP address or name of the computer where it runs. The server must also specify a logical name
by which the object will be known to clients. Clients use this name to get a reference to this object.

The entire information may be encapsulated using RMI URL. It is similar to the HTTP URL
except that it uses “rmi” as the protocol name. It takes the following form:

rmi://host:[port]/objectName

The host is the IP address or Fully Qualified Domain Name (FQDN) of the computer where
the RMI registry runs. The optional port is the port number of the RMI registry. The default port
number is 1099. The objectName is a logical name of the object. For example, if RMI registry runs
in a computer having IP address 172.16.5.81 on port 2000, and object name is calculator, the RMI
URL for this object will be as follows:

protocol	 host	 port	 name
                   

  rmi://172.16.5.81 : 2000/calculator

If RMI registry runs on default port (1099), the above URL reduces to
rmi://172.16.5.81/calculator

If RMI registry and server run on the same computer, the above URL further reduces to
calculator

Since, Java RMI only supports to run RMI registry and server on the same computer, the URL
of our remote object is simply calculator.

Now, create an object and register it using the Naming.rebind() method as follows:
String url = "calculator";
SimpleCalculator calculator = new SimpleCalculator();
Naming.rebind(url, calculator);

368 ADVANCED JAVA PROGRAMMING

The java.rmi.Naming.rebind() method, essentially parses the url, gets a reference to the registry
using LocateRegistry.getRegistry() method and finally calls rebind() method on this registry.
A code snippet of java.rmi.Naming.rebind() is given below:

package java.rmi;

import java.rmi.registry.*;
//…
public final class Naming {
//…
 public static void rebind(String name, Remote obj)
 throws RemoteException, java.net.MalformedURLException {
 ParsedNamingURL parsed = parseURL(name);
 Registry registry = getRegistry(parsed);
 if (obj == null)
 throw new NullPointerException("cannot bind to null");
 registry.rebind(parsed.name, obj);
 }
//…
}

Since java.rmi.Naming.rebind() method expects second argument as Java.rmi.Remote type
object, the class definition of SimpleCalculator needs to be modified slightly in this case as follows:

//SimpleCalculator.java
import java.rmi.*;
import java.rmi.server.*;
public class SimpleCalculator extends UnicastRemoteObject implements Calculator

SimpleCalculator()throws RemoteException {}
 public int add(int a, int b) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

{

The code that has been added is shown with bold face. Here is the modified source code of
CalculatorServer.Java.

//CalculatorServer.java
import java.rmi.*;
public class CalculatorServer {
 public static void main(String args[]) {
 try {
 String url = "calculator";
 SimpleCalculator calculator = new SimpleCalculator();

Naming.rebind(url, calculator);
 System.out.println("Calculator server ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

The Naming.rebind() method registers the calculator object with the name “calculator” to the
registry running on the same machine on the default port. You can now start the rmiregistry and
server as before.

The client application can also make use of RMI URL to get a reference. We are assuming that the
RMI registry will run on the default port. So, the URL of the remote object for the client looks like this:

String url = “rmi://” + args[0] + “/calculator”;

The name of the object is “calculator”. The first command line argument args[0] is the IP address
or Fully Qualified Domain Name (FQDN) of the server.

Calculator cal = (Calculator)Naming.lookup(url);

REMOTE METHOD INVOCATION 369

The code above contacts the RMI registry running in the computer specified by the command line
argument and asks for the stub for the object, registered under the name calculator. The rest of the
client code is the same. Compile the code and start the client application as before.

14.8	 CALLBACK
In a typical RMI application, clients invoke methods on remote objects created by the server.

Callback mechanism (as the name suggests) allows server to call methods back on remote objects
created and passed by the clients. This service is necessary in many cases. Consider the following
situations:

When a client invokes a method on a remote object and the method takes a long time to complete,
the client has to wait for the method to return. Callback mechanism allows the client to return to
whatever it was doing quickly after making a call. The server, having once completed the method
execution, sends the response back to the client asynchronously by calling a method on a remote
object that was created and passed by the client to the remote object created by the server.

Consider another situation. A client wants to display some data (say score of a game) as soon as it
arrives on a server. Since, the client does not have any idea when new data will arrive at the server, it
may periodically fetch data from the server. This may result in fetching the same data unnecessarily,
probably many times, that leads to consumption of network bandwidth as well as client and server
resources. To avoid this problem, instead of getting data by the client from server, the server may
send data to the client only when new data arrives.

The implementation of callback mechanism is very simple. As mentioned earlier, Java RMI allows
us to pass even a remote object (i.e its class implements Remote interface) to a remote method. To
understand callback mechanism, it is necessary to understand what happens when remote objects
are passed in Java RMI.

We know when an object is exported, an instance of its skeleton is created. This skeleton wraps
around the object and has similar methods of the remote object. So, when a client creates, exports
and passes a remote object to a remote method, the following actions are taken by Java RMI
[Figure 14.11:].

•	 An instance a proxy (stub) of this remote object is created.
•	 This stub knows everything (port number and IP address) about the arguments object’s skeleton.
•	 This stub is then serialized to have a linear array of bytes.
•	 This serialized data is sent to the recipient (i.e. remote method) over the network using socket.
•	 At the recipient, the stub instance is reconstructed and installed.
•	 Remote methods formal parameter refers to this instance.

Since, remote method’s formal parameter now refers to a proxy to the actual object passed by the
client, a method call through the formal parameter results in a similar method invocation on local
proxy object, which in turn forwards the method invocation information towards the actual object.
The server can then asynchronously invoke the remote methods on remote client objects in the same
way the client asynchronously invokes methods on remote-server objects.

In the following section, we shall develop a simple application as follows:
A client creates a receiver object and exports it. It then gets a reference to a remote notifier object.

The client, to register itself, calls registerMe() method of notifier object passing this receiver
object. Inside registerMe() method, the server calls the notify() method back on the receiver
object passing a string.

370 ADVANCED JAVA PROGRAMMING

Again note that the application that we are going to develop does not exhibit all the power
of callback mechanism. It merely shows us to write an RMI application using call back mechanism.

14.8.1	 Creating interfaces
Since, the client and server separately create their remote objects, we need two interfaces:
//Receiver.java
import java.rmi.*;
public interface Receiver extends Remote {
 public void notify(String s) throws RemoteException;
}

This is the interface for a remote object to be created by client. This declares a single method
notify() that accepts a String. The interface for server-side object is as follows:

//Notifier.java
import java.rmi.*;
public interface Notifier extends Remote {
 public void registerMe(Receiver r) throws RemoteException;
}

This interface defines a single method registerMe() to register a Receiver object.

Server sub-systemClient sub-system

result

result

reg, stub un-marshalling

marshalling

un-marshalling

reg(stub)

:client notifier::stub

notifier::skel :notifier

reg(stub) marshalling

result

socket

socket

marshalling

:receiver
receiver::skel

receiver::stub

un-marshalling

notify(“Hi”)

Notify, “Hi”

marshalling

un-marshalling

install

notify(“Hi”)
result

result

socket

socket

Callback

Figure 14.11: RMI callback mechanism

REMOTE METHOD INVOCATION 371

14.8.2	 Implementing interfaces
The following is a simple implementation class for Notifier:
//SimpleNotifier.java
import java.rmi.*;
public class SimpleNotifier implements Notifier {
 public void registerMe(Receiver r) {
 try {
 System.out.println("registered the receiver : "+r);
 String msg = "A message from SimpleNotifier";

r.notify(msg); //callback
 System.out.println("Sent : "+msg);
 }catch(RemoteException e) {}
 }
}

The registerMe() method simply calls the notify() method on specified Receiver with a
message.

The crucial part for the client to have callback service is to create remote object and export it. A
client can do this in two ways:

•	 	Create a class implementing a remote interface and extending java.rmi.server.UnicastRemoteObject
or javax.rmi.PortableRemoteObject. In this case, the object is exported automatically during its
instantiation.

•	 Create a class implementing a remote interface but, the class does not extend java.rmi.server.
UnicastRemoteObject or javax.rmi.PortableRemoteObject. Export the object explicitly using
static exportObject() method of java.rmi.server.UnicastRemoteObject or javax.rmi.
PortableRemoteObject class.

Since in our previous calculator application, we have used the second method, let us use the first
method for this application. The implementation of Receiver is as follows:

//SimpleReceiver.java
import java.rmi.*;
import java.rmi.server.*;
public class SimpleReceiver extends UnicastRemoteObject implements Receiver,
java.io.Serializable {
 SimpleReceiver() throws RemoteException {}
 public void notify(String msg) {
 try {
 System.out.println("received : " + msg);
 }catch(Exception e) {e.printStackTrace();}
 }
}

Note that this implementation class implements Serializable interface. This is necessary as
Java RMI uses serialization to send and receive objects. It also extends UnicastRemoteObject. So,
its instance is exported automatically during its creation. The notify() method simply displays the
string received.

14.8.3	 Writing the server
The server application is as simple as our previous Calculator server program. The complete

source code for the server (stored in CallbackServer.java) is shown below:

372 ADVANCED JAVA PROGRAMMING

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CallbackServer {
 public static void main(String args[]) {
 try {
 String name = "notifier";
 SimpleNotifier notifier = new SimpleNotifier();
 Notifier stub = (Notifier)UnicastRemoteObject.exportObject(notifier, 0);
 Registry registry = LocateRegistry.createRegistry(1099);
 registry.rebind(name, stub);
 System.out.println("Notifier ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

14.8.4	 Writing the client
The complete source code for the client (stored in CallbackClient.java) is shown below:
import java.rmi.*;
public class CallbackClient {
 public static void main(String args[]) {
 try {
 String url = "rmi://" + args[0] + "/notifier";
 Notifier notifier = (Notifier)Naming.lookup(url);
 SimpleReceiver recv = new SimpleReceiver();
 notifier.registerMe(recv);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Note that the instance recv is not exported explicitly. Since, its class (SimpleReceiver) extends,
UnicastRemoteObject, it is exported during its creation by the constructor of UnicastRemoteObject
class.

14.8.5	 Compiling the application
Compile the programs using javac command as described earlier.

14.8.6	 Running the application
Go to the server_home directory and use the following command to start the server.
javac CallbackServer

Note that, a registry is created on a port 1099 in the server program using static
createRegistry() method on LocateRegistry class. So, starting a registry using rmic is no
longer needed. We have assumed that the server is started in a computer having IP address
172.16.5.81.

Now go to the client_home directory and use the following command to start the client.
javac CallbackClient 172.16.5.81

REMOTE METHOD INVOCATION 373

A sample result is shown in Figure 14.12:

(i)

(ii)

Figure 14.12: RMI callback in action (i) Notifier (ii) Receiver

14.9	 ANOTHER CALLBACK APPLICATION
In our previous application, we have shown how to develop a simple callback application. In this

section, we shall develop a sophisticated application as follows:
The application consists of a server and one or more clients. The server is capable of notifying the

score of a game. The clients register themselves to receive the score from the server. To implement this
idea, the same Notifier and Receiver interfaces are used, The implementation of Notifier is as follows:

//ScoreNotifier.java
import java.rmi.*;
import java.util.*;
public class ScoreNotifier implements Notifier, Runnable {
 Hashtable receivers = new Hashtable();
 ScoreNotifier() {new Thread(this).start();}
 public void registerMe(Receiver r) {
 try {
 receivers.put(String.valueOf(receivers.size()), r);
 System.out.println("Registered a receiver");
 System.out.println("No of registered receivers: "+receivers.size());
 }catch(Exception e) {e.printStackTrace();}
 }
 public void run() {
 Random rand = new Random();
 int score = 0, run;
 while(true) {
 do {
 try {
 Thread.sleep(1000+rand.nextInt(1000));
 }catch(Exception e) {e.printStackTrace();}
 }while((run = rand.nextInt(7)) == 0);
 score += run;
 int no = receivers.size();
 for(int i = 0;i<no;i++) {
 Receiver r = (Receiver)receivers.get(String.valueOf(i));
 System.out.println("Sending : "+score);
 new Sender(r, score).start();
 }
 }

 }
 private class Sender extends Thread {
 Receiver receiver;
 int score;
 Sender(Receiver r, int s) {
 this.receiver = r;
 this.score = s;
 }
 public void run() {
 try {
 receiver.notify(String.valueOf(score));
 }catch(Exception e) {e.printStackTrace();}
 }
 }
}

374 ADVANCED JAVA PROGRAMMING

//ScoreNotifier.java
import java.rmi.*;
import java.util.*;
public class ScoreNotifier implements Notifier, Runnable {
 Hashtable receivers = new Hashtable();
 ScoreNotifier() {new Thread(this).start();}
 public void registerMe(Receiver r) {
 try {
 receivers.put(String.valueOf(receivers.size()), r);
 System.out.println("Registered a receiver");
 System.out.println("No of registered receivers: "+receivers.size());
 }catch(Exception e) {e.printStackTrace();}
 }
 public void run() {
 Random rand = new Random();
 int score = 0, run;
 while(true) {
 do {
 try {
 Thread.sleep(1000+rand.nextInt(1000));
 }catch(Exception e) {e.printStackTrace();}
 }while((run = rand.nextInt(7)) == 0);
 score += run;
 int no = receivers.size();
 for(int i = 0;i<no;i++) {
 Receiver r = (Receiver)receivers.get(String.valueOf(i));
 System.out.println("Sending : "+score);
 new Sender(r, score).start();
 }
 }

 }
 private class Sender extends Thread {
 Receiver receiver;
 int score;
 Sender(Receiver r, int s) {
 this.receiver = r;
 this.score = s;
 }
 public void run() {
 try {
 receiver.notify(String.valueOf(score));
 }catch(Exception e) {e.printStackTrace();}
 }
 }
}

It generates an artificial score and notifies all the registered clients. The server program creates
such a notifier as before. The result of such an application is shown in Figure 14.13:

(i)

(ii)

(iii)

Figure 14.13: Callback (i) Notifier (ii) and (iii) Receiver

REMOTE METHOD INVOCATION 375

14.10	 DYNAMIC OBJECT ACTIVATION
In our previous examples, remote objects run all the time even if no method on them is invoked.

Java 2 and later releases allow us to register information about remote object implementations
whose instance should be created and executed on demand, instead of running all the time. In fact,
the RMI system does not create an instance unless a method invocation request comes. This means,
the system acts a lazy activator.

14.10.1	 Basic idea
In the lazy activation scheme, no instance of a remote object is created by the server program in

advance. Instead, information about remote object implementation (such as object’s class file name,
location from which the class can be loaded, data to be used for object bootstrap etc.) is provided to an
application called rmid. At this moment, the object is said to be in inactive (or passive) state. However, a
stub of the remote object (which is yet to be created and exported) is obtained from this rmid and bound
to the registry so that clients can get a remote reference from this registry. When, method invocation
request comes, rmid checks the existences of the underlying object. If the object does not exist, a new
instance is created with the help of information provided during the registration procedure. This newly
created object is said to be in active state. The process of transforming a passive object into an active
object is known as activation. This active object is used for a further method invocation request.

14.10.2	 Implementation
RMI implements lazy activation using a faulting remote reference (also called a fault block).

Actually, stub of a remote object contains a faulting remote reference which consists of:

•	 an activation identifier for the remote object
•	 a transient reference referring to the active remote object.

The activation identifier contains enough information for activating the object. The transient
reference is the actual live reference to the active remote object. Initially the live reference to a remote
object is null which indicates that the object is not yet active. When the first method invocation
request comes, faulting reference checks the live reference and identifies that the object is in passive
state. In this case, it initiates an activation protocol (discussed in the next section) to activate the
object with the help of activation identifier and sets the live reference to the newly activated remote
object. Once the faulting reference obtains the live reference, it forwards method invocations to the
underlying remote reference which, in turn, forwards the method invocation to the remote object.

14.10.3	 The activation protocol
This is the protocol that specifies how to activate an activatable passive object. The protocol is

executed by the components: faulting reference (discussed in the previous section), activator, activation
group, and the object to be activated.

Activator
This component itself does not activate the remote object. Instead, it supervises the activation

process. The task of an activator is as follows:

•	 It keeps a database of information (such as object’s class file name, location from which the class can be loaded,
data to be used for object bootstrap etc.) necessary to activate an object.

•	 It forwards requests for object activation (along with the necessary information) to the correct activation group
inside a remote JVM.

•	 It manages Java virtual machines, that starts up (when necessary).

376 ADVANCED JAVA PROGRAMMING

Activation group
This is the component that actually activates the object with the specified activation information

and returns the activated object back to the activator. The object is then said to belong to this group.
The object activation occurs in the following way:

A faulting reference calls the activator (an RMI interface) with an activation identifier to activate
the object associated with the identifier. The activator consults the object’s activation descriptor
consisting of the following information:

•	 Group identifier of the object that specifies a JVM where it has to be activated
•	 Remote object’s underlying class name
•	 A URL path from which the class definition of the object can be loaded
•	 A file name containing initialization data for the object in marshalled (packed) form

The activator forwards the activation request to the group (if it already exists) in which this object
should reside. If the activation group is not yet created, the activator creates a new activation group
and then forwards the activation request to that group. The activation group reads the activation
information from the object’s activation descriptor, loads the class for the object and instantiates the
object using a special two argument constructor.

After activating the object, the activation group passes a marshalled object reference back to the
activator. The activator then records the live reference and activation identifier pair and returns the
live (active) reference to the faulting reference. The faulting reference of the stub finally forwards
method invocations via the live reference directly to the remote object.

14.10.4	 An example
We shall demonstrate RMI object activation procedure by modifying our calculator application.

The following are the three steps we shall follow to modify the application:

•	 Modify the implementation class.
•	 Modify the Server class.
•	 Modify the procedure to run the program.

14.10.4.1   Writing implementation class
The heart of RMI object activation is java.rmi.activation.Activatable class that provides

support for making remote objects activatable. The implementation class of an activatable remote
object usually extends this class. So, let us modify our SimpleCalculator class as follows:

public class SimpleCalculator extends Activatable implements Calculator {
//…
}

Also write the following import statement:
import java.rmi.activation.*;

Now add a two argument constructor as follows:
public SimpleCalculator(ActivationID id, MarshalledObject data) throws
RemoteException {
 super(id, 0);
 System.out.println("SimpleCalculator Instantiated.");
}

The implementation of add() method remains unchanged. Here is the complete source code
(written in SimpleCalculator.java) of the modified class:

REMOTE METHOD INVOCATION 377

//SimpleCalculator.java
import java.rmi.*;
import java.rmi.activation.*;
public class SimpleCalculator extends Activatable implements Calculator {

public SimpleCalculator(ActivationID id, MarshalledObject data) throws
RemoteException {

super(id, 0);
System.out.println("SimpleCalculator Instantiated.");

}
 public int add(int a, int b) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

The modified portion has been shown with bold face font.

14.10.4.2   Writing server class
The server itself does not create an instance of SimpleCalculator. Instead, it gathers necessary

information to create an activatable remote object. The server then forwards this information to
rmid, gets a reference to an instance of the activatable class’s stub class and finally registers this
stub with the rmiregistry. The server then quits silently. The client can consult rmiregistry to get a
remote reference.

Each activatable object is said to belong to a group called activation group. This activation
group is responsible for activating the object on demand. So, we have to get an ID of an
activation group. The activation group may be an existing one or a new one (if desired one does
not exist). For that reason, we create an activation group descriptor. The task of the activation
group descriptor is to provide all the information to rmid so that it can contact the appropriate
existing JVM or spawn a new JVM for the activatable object. It contains the following necessary
information:

•	 The class name of the group to be created
•	 Location from which the group’s class definition may be loaded
•	 A “marshalled” object that contains group-specific bootstrap data.

An activation group descriptor is created using ActivationGroupDesc class. It has two constructors
as follows:

ActivationGroupDesc(Properties overrides,
ActivationGroupDesc.CommandEnvironment cmd)

ActivationGroupDesc(String className, String location, MarshalledObject<?> data,
Properties overrides, ActivationGroupDesc.CommandEnvironment cmd)

The first constructor (which we shall use in our application) constructs a group descriptor using
the default group implementation and code location. Properties are used to override system properties
in the group implementation’s VM. The command environment controls the command/options used
to start a child VM, or can be null if rmid’s default is accepted. An activation group descriptor is
created as follows:

Properties props = new Properties();
props.put("java.security.policy", "policy");
ActivationGroupDesc aGroup = new ActivationGroupDesc(props, null);

378 ADVANCED JAVA PROGRAMMING

It constructs a group descriptor that uses the system defaults for group implementation, code
location and command environment. Since rmid runs under a security sandbox, we have specified
security policy stored in a file “policy”. For simplicity, we use a policy file that gives global permission
to anyone from anywhere as follows:

grant {
 // Allow everything for now
 permission java.security.AllPermission;
};

This group activation descriptor is then forwarded to the rmid as follows:
ActivationGroupID id = ActivationGroup.getSystem().registerGroup(aGroup);

The getSystem() method returns a reference to the ActivationSystem (rmid), which then registers
the specified activation group descriptor. The rmid then contacts the appropriate existing JVM or
spawn a new JVM for the activatable object and returns an id representing the group. This id is then
used to create an activation descriptor of the activatable object as follows:

ActivationDesc desc = new ActivationDesc (id, "SimpleCalculator", null, null);

The task of an activation descriptor is to provide all the information that rmid requires to
create a new instance of the implementation class. The second argument is the name of the
implementation class (SimpleCalculator in our case) for the activatable object. We assume that
the location of SimpleCalculator’s class is same as rmid’s start location. That’s why the third
argument is specified as null. In case the location of the class definition is different, specify it
using a URL. We also do not want to pass activatable object’s initialization parameter. So, the
last argument is also null.

Finally, register the activation descriptor with the rmid as follows:
Calculator stub = (Calculator)Activatable.register(desc);

The static register() method of Activatable class registers an activation descriptor and returns
a reference to the stub of the object to be activated on demand. This stub can then be registered to
the rmiregistry as follows:

Naming.rebind(“calculator”, stub);

The complete source code for the server (stored in Server.java) is given below:
import java.util.*;
import java.rmi.*;
import java.rmi.activation.*;
public class Server {
 public static void main(String args[]) throws Exception {
 Properties props = new Properties();
 props.put("java.security.policy", "policy");
 ActivationGroupDesc aGroup = new ActivationGroupDesc(props, null);
 System.out.print("Registering activation group descriptor...");
 ActivationGroupID id = ActivationGroup.getSystem().registerGroup(aGroup);
 System.out.println("[OK]");
 ActivationDesc desc = new ActivationDesc (id, "SimpleCalculator", null,
null);
 System.out.print("Registering activation descriptor... ");
 Calculator stub = (Calculator)Activatable.register(desc);
 System.out.println("[OK]");
 System.out.println("Obtained stub for the SimpleCalculator");
 Naming.rebind("calculator", stub);
 System.out.println("Stub for SimpleCalculator bound in registry");
 }
}

REMOTE METHOD INVOCATION 379

14.10.4.3   Compiling and running the program
Put all the four files Calculator.java, SimpleCalculator.java, Server.java and policy in a

directory. In our computer, we have put these files in the directory E:\Net\rmi\activation. Now,
go to the directory and compile these programs as follows:

javac *.java

To run the application, we have to start the Java’s rmid application. Go to the directory and use
the following command to start rmid:

start rmid -J-Djava.security.policy=policy

Now start the rmiregistry as follows:
start rmiregistry

Now run the server as follows:
java Server

A sample result is shown in Figure 14.14:

Figure 14.14: Dynamic Object activation server

Assume that rmid and rmiregistry are running in a computer having IP address 172.16.5.81. Our
previous calculator client program can now be started from a remote computer as follows:

java CalculatorClient 172.16.5.81

A sample result is shown in Figure 14.15: (i). A sample output of rmid terminal is shown in
Figure 15.14: (ii)

(i)

(ii)

Figure 14.15: Dynamic Object activation (i) Server (ii) Client (iii) rmid

14.11	 DYNAMIC CLASS DOWNLOADING
One of the important features of Java RMI is that it allows us to dynamically download the definition

of the object’s class if the same is not available in the receiver’s JVM. Figure 14.16: illustrates how
classes are downloaded from a client to a server and from a server to a client using the URL protocol .

380 ADVANCED JAVA PROGRAMMING

Client Host Server host

rmiregistry

Web server

RMI Client

Web RMI Server

2. Get reference

Download class

3. Invoke method

Download class
(URL)

1. Create and register object

Figure 14.16: Dynamic Class downloading

It is possible to transmit all of the fields and methods of an object to another, possibly remote, Java
virtual machine. The behaviour of the objects remain unchanged when they are transmitted to another
JVM as RMI passes objects by their actual classes. This facility enables new types and functionalities
to be migrated into a remote JVM, thus dynamically enhancing the behaviour of an RMI application.

14.12	 AN EXAMPLE
In this section, we shall develop another powerful distributed application using RMI technology

that makes use of the power of dynamic class downloading.
In this application [Figure 14.17:], the server creates a remote object called scheduler, which

accepts jobs from the clients, executes these jobs locally, calculates the execution time, and finally
returns the output as well as completion time. This way, clients can execute their jobs remotely on a
powerful computer, or a computer having specialized hardware or one that has special permission.

Execute job

Get result
Client Scheduler

Figure 14.17: Remote job execution scenario

The interesting part of the application is that the scheduler does not have to define the jobs that it
executes. Clients can create their custom jobs as and when required and submit them to the scheduler
for execution. The only restriction imposed on a job is that its class must implement an interface
defined by the scheduler. The class definition of a job can be downloaded at runtime from the client
that submits the job using RMI technology. Once the class file is available, the scheduler can execute
the job locally using its own resource.

How can a scheduler return the result to the client? If the result’s class is a built-in class, the client
already has the class definition and can use it easily. However, if the result’s class is a scheduler-
defined custom class, how can the client get it? Again there is no problem, since the client can
download it from the server side and get the result. The only requirement of a result object is that its
class implements an interface known to the client.

REMOTE METHOD INVOCATION 381

This way, the scheduler can execute arbitrary jobs without any prior knowledge of the job’s class
definition. Clients can also get the result without any prior knowledge of the result’s class definition.
The Java RMI runtime environment will download the necessary class files from the specified location
as and when required. This way, Java RMI allows us to change the behaviour of an object and install
it in a remote machine dynamically.

14.12.1	 Writing an RMI server
The server has three parts: scheduler interface, an implementation of that interface, and code that

creates the scheduler object.

14.12.1.1   Write an Interface
In this section, we shall describe the interface Scheduler that defines the client’s view of the

remote object. The Scheduler interface makes a connection between the server and the client. Here
is the source code (Scheduler.java) for Scheduler interface.

package intf;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Scheduler extends Remote {
 Result run(Job aJob) throws RemoteException;
}

The interface has a single method run()which will be used by clients to submit their jobs. This
interface uses two other interfaces Job and Result. The interface Job defines the structure of a job
to be submitted by the client. Here is the source code (Job.java) for the Job interface.

package intf;
public interface Job {
 String run();
}

The Job interface defines a single method run() that actually executes the job and returns the
result as a String. The class of every job submitted by clients must implement this interface and must
define the run() method. The scheduler must download this class definition to execute the job locally.

The Result interface describes the structure of the result returned by the scheduler. Here is the
source code (Result.java) for Result interface.

package intf;
public interface Result {
 String output();
 double completionTime();
}

It defines two methods, output() and completionTime(). The methods output() and
completionTime() return output and execution time of the job, respectively. The Result object’s class must
implement this interface. The client must download this Result object’s class definition to get the result.

Since, Java’s object serialization procedure is used by RMI to transfer objects, classes that
implement Job and Result must implement the java.io.Serializable interface.

14.12.1.2   Implement the interface
The server defines two classes: SchedulerImpl and ResultImpl, which implements remote

interface Scheduler and Result, respectively. Here is the source code (ResultImpl.java.) for
ResultImpl class.

382 ADVANCED JAVA PROGRAMMING

package impl;
import java.io.Serializable;
import intf.Result;
public class ResultImpl implements Result, Serializable {
 String output;
 double completionTime;
 public ResultImpl(String o, double c) {
 output = o;
 completionTime = c;
 }
 public String output() { return output; }
 public double completionTime() { return completionTime; }
}

An object of this class represents the result of a job in terms of its output and completion time.
This result object, generated by the scheduler, will be transferred to the client side and hence
must be serializable. This object is indeed serializable as its class implements the Serializable
interface. The definition of ResultImpl must be downloaded to the client side to reconstruct the
result object.

Here is the source code (SchedulerImpl.java.) for SchedulerImpl class.
package impl;
import java.rmi.RemoteException;
import intf.*;
public class SchedulerImpl implements Scheduler {
 public SchedulerImpl() {
 super();
 }
 public Result run(Job aJob) throws RemoteException {
 double startTime = System.nanoTime();
 String output = aJob.run();
 double endTime = System.nanoTime();
 return new ResultImpl(output, endTime-startTime);
 }
}

In the run() method of the scheduler object, the job is executed. Note that the class for job object
is defined by the client. As a result, the scheduler does not have any idea about the job. So, it simply
calls the run() method on the job object. The server must download the class definition of the job
object from the client side before calling the run() method. It calculates the execution time, creates
a result object, and returns it.

14.12.1.3   Implement the server
A server first creates an instance of the SchedulerImpl class using the usual syntax as follows:
SchedulerImpl scheduler = new SchedulerImpl();

This object is then exported to the RMI runtime so that it can accept the incoming remote method
call using the following piece of code [Figure 14.18]:

Scheduler stub = (Scheduler) UnicastRemoteObject.exportObject(scheduler, 0);

To register this stub with the object registry, we need to have a reference to object registry.
Registry registry = LocateRegistry.getRegistry();

The stub is then registered with object registry as follows:
String name = "Scheduler";
registry.rebind(name, stub);

The entire execution sequence is shown in Figure 14.18. The entire piece of code is embedded
in a try-catch block.

REMOTE METHOD INVOCATION 383

Client
subsystem

Server
subsystem

result

result

run, aJob un-marshalling

marshalling

un-marshalling

Run(aJob)

:client :stub :skeleton :scheduler

run(aJob)

marshalling

result

socket

socket

Figure 14.18: Java RMI framework

Since class files of the Job will be downloaded to the Scheduler, it is always safe to install a
security manager that will protect access to the system resources by this downloaded code. If the code
upon download performs any operation, the security manager will check whether the downloaded
code has the privilege to do that operation and takes necessary actions. The following code is used
to install a security manager:

if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
}

A security policy must be specified which will be used by the security manager. We shall specify
the security policy during the execution of the application. The source code for Server is stored in
the file Server.java. The source code for the Server class is given as follows:

package impl;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import intf.*;
import impl.*;
public class Server {
 public static void main(String[] args) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
 }
 try {
 SchedulerImpl scheduler = new SchedulerImpl();
 Scheduler stub = (Scheduler)
UnicastRemoteObject.exportObject(scheduler, 0);
 Registry registry = LocateRegistry.getRegistry();
 String name = "Scheduler";
 registry.rebind(name, stub);
 System.out.println("SchedulerImpl bound");
 } catch (Exception e) {
 System.err.println("SchedulerImpl exception:");
 e.printStackTrace();
 }
 }
}

384 ADVANCED JAVA PROGRAMMING

14.12.2	 Writing a client
A client gets a reference to the scheduler and submits jobs. However, the client must define the

job to be executed by the scheduler. Here we shall define a simple job that calculates the factorial of
a number. In practice, clients submit computationally intensive jobs to the server for execution. The
class definition of Factorial is shown as follows:

package impl;
import intf.*;
import java.io.Serializable;
public class Factorial implements Job, Serializable {
 int n;
 public Factorial(int v) {
 n = v;
 }
 public String run() {
 int result = 1;
 for(int i = 2; i <= n; i++)
 result *= i;
 return String.valueOf(result);
 }
}

The Factorial class implements the Job interface. Its run() method calculates and returns the
factorial of a specified integer. When a client submits such a Factorial job object to the remote
scheduler, the object is transferred to the scheduler using Java’s serialization procedure. So, Factorial
job object must be serializable. Since the Factorial class implements the Serializable interface,
objects of the Factorial class are indeed serializable.

To reconstruct the Factorial job object in the Scheduler object’s JVM, job object’s class
definition is needed. The RMI system downloads the class definition of Factorial on behalf of the
Scheduler object. The client must specify the location where the RMI system can find the object’s
class definition. Now, Scheduler object’s run() method is invoked which, in turn, invokes Factorial
object’s run() method where the job is executed.

Clients may also submit other jobs to the remote Scheduler object. The Scheduler executes these
jobs using the same procedure described. It need not know each job’s implementation procedure. It
only knows that each job it receives implements the Job interface and has the method run().

Let us now write the code for the client. The client will first get a reference to the remote registry
using the LocateRegistry.getRegistry() method as follows:

Registry registry = LocateRegistry.getRegistry(args[0]);

The argument to the getRegistry() method is the first command line argument args[0] which
is the name or IP address of the computer where the registry runs on the default port (1099). If
the registry runs on a port other than 1099, you specify the port as the second argument to the
getRegistry() method.

The client then uses the lookup() method on this registry to get a reference to the remote
Scheduler object as follows:

String name = "Scheduler";
Scheduler scheduler = (Scheduler) registry.lookup(name);

To submit a task, the client has to create an instance of the Factorial object.
Factorial aJob = new Factorial(Integer.parseInt(args[1]));

The second command line argument, after converting it to an integer, is passed to the Factorial
constructor. This argument indicates the integer whose factorial has to be calculated. The client can
now submit the job to the remote object for execution.

Result r = scheduler.run(aJob);

REMOTE METHOD INVOCATION 385

The result of job execution is stored in the Result object. Remember that the Result interface
was implemented by the server. So, the client does not have the definition of Result object’s class.
The RMI system will download the necessary class definition from the location as specified by the
server. So, the client can invoke methods on this Result object to get the desired result and other
information such as completion time.

System.out.println("Execution time = " + r.completionTime() + " micro sec(s)");

The entire piece of code is embedded in a try-catch block to handle the error that may occur at
runtime. A security manager should also be installed to protect the system as Result object’s class
definition is downloaded in the client’s JVM.

Here is the complete source code for the client which is stored in Client.java.
package impl;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import intf.*;
import impl.*;
public class Client {
 public static void main(String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
 }
 try {
 Registry registry = LocateRegistry.getRegistry(args[0]);
 String name = "Scheduler";
 Scheduler scheduler = (Scheduler) registry.lookup(name);
 Factorial aJob = new Factorial(Integer.parseInt(args[1]));
 Result r = scheduler.run(aJob);
 System.out.println(args[1] + "! = " + r.output());
 System.out.println("Execution time = " + r.completionTime() + " micro
sec(s)");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

14.12.3	 Compiling the program
In practice, the server should deploy the necessary files for a client program to use. In our

case the client must have a Scheduler, Job, and Result interface. The client also needs the
Result object’s class (ResultImpl in this case) definition which will be downloaded by the
RMI system from the location specified by the server at runtime. So, server must deploy these
four classes.

The server will then write the implementation of Scheduler and Result interface and deploy
an object in a computer accessible by the clients. The client programmers can then download the
necessary class files and develop their applications which will use the Scheduler object.

All the files are packaged as follows:
Server machine
intf: Scheduler, Job, Result
impl: SchedulerImpl, ResultImpl, Server
Client machine
impl: Factorial, Client

386 ADVANCED JAVA PROGRAMMING

implintf

Scheduler.java Result.java

Job.java

SchedulerImpl.java Server.java

server_home

ResultImpl.java

implSchedulerIntf.jar

Factorial.java Client.java

client_home

(i) (ii)

Figure 14.19: Directory configuration for Scheduler (i) Server (ii) Client

Suppose the developer of the server is developing an application in the directory “E:\Net\rmi\
scheduler\server” of a computer having IP address 172.16.5.81. Hereafter, we shall refer to this directory
as server_home. Create the directory structure and put server-side files as shown in Figure 14.19: (i).

14.12.3.1   Creating Interface classes
Go to the directory server_home. Give the following command to compile the interface source

files and generate a jar file (SchedulerIntf.jar) containing the generated interface class files.
javac intf*.java
jar cvf schedulerIntf.jar intf*.class

Make sure that the directory containing the Java compiler is included in your PATH environment
variable. The jar command will generate the following output:

added manifest
adding: intf/Job.class(in = 129) (out= 112)(deflated 13%)
adding: intf/Result.class(in = 167) (out= 143)(deflated 14%)
adding: intf/Scheduler.class(in = 222) (out= 169)(deflated 23%)

This SchedulerIntf.jar file is needed by the client to develop its own application. This file
must be put in a network accessible place so that the client can access it. For example, it can be put
on a web server accessible by the client.

14.12.3.2   Compiling Server
The impl package contains three source files: SchedulerImpl.java, ResultImpl.java, and

Server.java. SchedulerImpl.java is the implementation of Scheduler interface, ResultImpl.
java is the implementation of Result interface, and Server.java creates and exports the Scheduler
object. Use the following command to compile these source files.

javac impl*.java

The stub and skeleton for SchedulerImpl implements the Scheduler interface which refers to
the Job and Result interfaces. So, Java’s object registry needs the definition for these interfaces.
Remember, the class definition of Result interface is needed by the client. So, create a jar file
containing these four classes and put it in a network accessible place. Give the following command
to create the jar file scheduler.jar:

jar cvf scheduler.jar intf*.class impl\ResultImpl.class

This generates the following sample output:
added manifest
adding: intf/Job.class(in = 129) (out= 112)(deflated 13%)
adding: intf/Result.class(in = 167) (out= 143)(deflated 14%)
adding: intf/Scheduler.class(in = 222) (out= 169)(deflated 23%)
adding: impl/ResultImpl.class(in = 688) (out= 417)(deflated 39%)

REMOTE METHOD INVOCATION 387

To deploy this jar file, we shall use Apache’s tomcat web server running in the server computer
(IP address is 172.16.5.81) on a port 8080. Put this jar file in the web server’s document root. So,
the URL of this jar file will be http://172.16.5.81:8080/scheduler.jar. We shall specify this
URL while running the server application.

14.12.3.3   Compiling Client
Suppose client application is developed in another computer having IP address 172.16.4.248

in directory E:\Net\rmi\scheduler\client which we shall refer to as client_home. Create the
directory structure and put client-side files as shown in Figure 14.19: (ii).

First download the SchedulerIntf.jar file from a location specified by the server and put it in
the directory client_home. In the client computer, there are two files in the impl package Factorial.
java and Client.java. Factorial.java is the implementation of the Job interface. The Client.
java gets a reference of the Scheduler object and invokes the run() method using this reference.
Give the following command to compile source files:

javac -cp schedulerIntf.jar;. impl/*.java

Note that the server needs the implementation of Job interface, i.e., Factorial class in our case which
will be downloaded by the Java RMI system. However, the client must specify the location of this class
file. In the client application, we shall again use Apache’s tomcat server to deploy the Factorial class.
Configure the tomcat web server and put the Factorial.class in the impl subdirectory of document
root so that the RMI system can download this file whenever necessary. The base URL of this class
file is http://172.16.4.248:8080/. We shall specify this URL while running the client application.

14.12.4	 Running the application
Remember, we had installed a security manager in the Server.java and Client.java applications.

When we run these applications, we must specify a security policy for them. In this case we shall
specify the policy as a file in the form of command line argument. Create a file server.policy in
the server_home directory. The content of the file looks like this:

grant codeBase "file:/E:/Net/rmi/scheduler/server" {
 permission java.security.AllPermission;
};

Similarly, create another file client.policy in the directory client_home with the following content:
grant codeBase "file:/E:/Net/rmi/scheduler/client" {
 permission java.security.AllPermission;
};

Before starting the server application, we need to start an object registry. In Java RMI, it is started
using the rmiregistry command. So, open a terminal and type the following command:

rmiregistry

The command does not generate any output; it starts the object registry application on the default
port 1099. Give the following command to start the server:

java -Djava.rmi.server.codebase=http://172.16.5.81:8080/scheduler.jar
 -Djava.security.policy=server.policy

impl.Server

It produces a sample output as shown in Figure 14.20:

Figure 14.20: RMI server

388 ADVANCED JAVA PROGRAMMING

14.12.5	 Start client
Give the following command to start the client:
java -cp ./schedulerIntf.jar;.
 -Djava.rmi.server.codebase=http://172.16.4.248:8080/
 -Djava.security.policy=client.policy
 impl.Client 172.16.5.81 5

It produces a sample output as shown in Figure 14.21:

Figure 14.21: RMI client

Host: 172.16.4.248 Host: 172.16.5.81

Web server

rmiregisry

Client

Web server Scheduler

ResultImpl

Factorial

SchedulerJobResult

Figure 14.22: Scheduler runtime environment

Figure 14.22: illustrates where Client, rmiregistry, and scheduler find necessary classes at runtime.

KEYWORDS
Activation—The process of transforming a passive
object into an active object

Activation protocol—A protocol used to activate an
activatable object

Callback—A mechanism that allows server to call
methods back on remote objects created and passed
by the clients.

Client—A machine that requests the server to perform
some tasks on its behalf

Lazy Activator—An RMI component that creates
class instances on demand, instead of running all
the time

Marshalling—The process of gathering data and
transforming it into a standard format before it is
transmitted over a network

Object registry—A database that keeps the
information about objects and provides a reference to
the remote object on request

Remote Object—An object created and exported by
a server in such a way that remote clients can invoke
methods on it

Remote Interface—The interface of a remote object
used to publish the prototypes of methods on a remote
object

REMOTE METHOD INVOCATION 389

Remote Method—Methods on a remote object that
can be called by remote clients

RMI—A Java mechanism of Remote Procedure Call
(RPC) used to invoke methods on a remote object

Stub—An object that resides at the client computer
and acts as a proxy of the remote server object

Serialization—The procedure to convert an object
to the byte stream used by the Java RMI mechanism

Server—A remote machine which serves us the
requested operation

Skeleton—An object that resides at the server
computer and acts as a proxy of the remote server
object

Un-marshalling—The process of retrieving data from
the marshalled data

SUMMARY
Java Remote Method Invocation (RMI) is an object-
oriented Remote Procedure Call (RPC) technique. It
allows us to invoke methods on a remote object. One
of the important features of Java RMI is that it allows
us to dynamically download the definition of an object’s
class if the same is not available in the receiver’s JVM.
Similarly, it also allows the client to upload an object’s
implementation to the server dynamically if it is not
available on the server.

Primarily four components are involved in a Java RMI
application: an interface, its implementation, a server
program that creates and exports a remote object, and
a client which gets a reference on a remote object and
invokes method on it. Java RMI uses a mechanism
very much similar to the URL to access remote objects.

A server program typically creates a remote object to
be used for method invocation. The object is exported
and registered with a separate application called object
registry. A client program typically consults the object
registry to get a reference to a remote object with a
specified name. It can then invoke methods on the
remote object using this reference as if the object is
stored in the client’s own address space. Object registry
is essentially a table of objects. Each entry of the table
maps the object name to its proxy known as stub.

The client-side proxy of the remote is known as
stub. The function of stub is to communicate with
the remote skeleton on behalf of the client’s method
invocation request. The method invocation information

is marshalled and sent to the skeleton. Upon receiving
the response, it un-marshals the response, gets the
result and sends the result back to the client.

The function of skeleton is to unpack the request to
obtain the method name and arguments to be used
for this method. This unpacking procedure is also
called un-marshalling. Skeleton also has reference to a
local object and can invoke the desired method on the
actual object and get the result. It then packs (called
marshalling) the result and sends it back to the caller.

The type of arguments to, or return values from, remote
methods may be any valid type in Java, including
objects. For objects, the only requirement is that they
implement the interface java.io.Serializable.

Java RMI provides a simple addressing mechanism,
known as RMI URL, that may be used to register a
remote object and to get a reference to the remote object.

One of the powerful features of RMI is callback
mechanism which allows server to call methods back
on remote objects created and passed by the clients.

Dynamic object activation allows us to register
information about remote object implementations
whose instance should be created and executed on
demand, instead of running all the time. The RMI
system does not create an instance unless a method
invocation request comes which makes the system a
lazy activator. RMI implements lazy activation using
a faulting remote reference.

WEB RESOURCES
http://www.oracle.com/technetwork/java/

javase/tech/index-jsp-136424.html
Remote Method Invocation Home

http://docs.oracle.com/javase/tutorial/rmi/

index.html
Java RMI Tutorial

http://java.sun.com/javase/technologies/

core/basic/rmi/index.jsp
Remote Method Invocation

http://docs.oracle.com/javase/7/docs/api/

java/rmi/package-summary.html
Java API Reference for the RMI package

http://docs.oracle.com/javase/7/docs/

platform/rmi/spec/rmi-activation.html
Remote Object Activation

390 ADVANCED JAVA PROGRAMMING

EXERCISES
Objective-type Questions

	 1.	 What is the default port number of RMI?
	 (a)	 1099	 (c)	 1090
	 (b)	 1990	 (d)	 1909

	 2.	 A remote object must be an instance of
	 (a)	 java.rmi.RemoteObject
	 (b)	 java.io.Serializable
	 (c)	 java.lang.Cloneable
	 (d)	 java.rmi.Remote

	 3.	 Which of the following is a utility that registers
remote objects and provides naming services for
locating objects?

	 (a)	 rmiregistry	 (c)	 java
	 (b)	 rmic	 (d)	 javac

	 4.	 Which of the following is an object that resides
on the client host and serves as a proxy for the
remote server object?

	 (a)	 Stub
	 (b)	 RMI Registry
	 (c)	 Server implementation
	 (d)	 Skeleton

	 5.	 ___________ is an object that resides on the
server host and communicates with the stub and
the actual server object.

	 (a)	 Server object interface
	 (b)	 RMI Registry
	 (c)	 Skeleton
	 (d)	 Stub

	 6.	 Which of the following command is used in
Java RMI to start the object registry on port
1080?

	 (a)	 rmiregistry 1080
	 (b)	 rmiregistry
	 (c)	 objectregistry 1080
	 (d)	 objectregistry

	 7.	 Which of the following is used to register a remote
object o with a name obj at port 1080 on host
it.jusl.ac.in?

	 (a)	 Naming.bind(“rmi://it.jusl.ac.in/obj”, o);
	 (b)	 Name.rebind(“rmi://it.jusl.ac.in:1080/

obj”, o);
	 (c)	 Naming.rebind(“rmi://it.jusl.ac.in:1080/

obj”, o);
	 (d)	 Name.bind(“rmi:/ / i t . jusl.ac. in:1080/

obj”, o);

	 8.	 ____________ is a sub interface of java.rmi.Remote
that defines the methods for the server object.

	 (a)	 Skeleton
	 (b)	 Server object interface
	 (c)	 Server implementation
	 (d)	 RMI Registry

	 9.	 �To locate a remote object with the name obj at
port 1080 on host it.jusl.ac.in, we use

	 (a)	 Remote remoteRef = Name.lookup("rmi://
it.jusl.ac.in:1080/obj");

	 (b)	 Remote remoteRef = Name.lookup("//
it.jusl.ac.in:1080/obj");

	 (c)	 Remote remoteRef = Name.lookup("http://
it.jusl.ac.in:1080/obj");

	 (d)	 Remote remoteRef = Naming.lookup("rmi://
it.jusl.ac.in:1080/obj");

	10.	 Which of the following methods is used to export
an object?

	 (a)	 exportObject()		 (c)	 doExport()
	 (b)	 export()		 (d)	 exportIt()

	11.	 What is the full form of RMI?
	 (a)	 Remote Method Interaction
	 (b)	 Registered Method Invocation
	 (c)	 Registered Method Interaction
	 (d)	 Remote Method Invocation

	12.	 Which of the following commands is used to start
an object registry?

	 (a)	 startregistry	 (b)	 registrystart
	 (c)	 rmiregistry	 (d)	 activateregistry

	13.	 Which of the following interfaces must an
activatable remote object’s class implement?

	 (a)	 DoActivate	 (b)	 Activate
	 (c)	 Activable	 (d)	 Activatable

	14.	 Which of the following methods in Naming class
is used to bind an object?

	 (a)	 doBind()	 (b)	 bind()
	 (c)	 register()	 (d)	 DoRegister()

	15.	 Which of the following exceptions must be thrown
by a remote method?

	 (a)	 NetworkException
	 (b)	 MarshallingException
	 (c)	 CommunicationException
	 (d)	 RemoteException

REMOTE METHOD INVOCATION 391

	16.	 Which of the following methods is used to find an
object registry?

	 (a)	 findRegistry()		 (b)	 getRegistry()
	 (c)	 lookupRegistry()		 (d)	 searchRegistry()

	17.	 Which of the following methods is used to create
a new registry?

	 (a)	 createRegistry()
	 (b)	 makeRegistry()
	 (c)	 newRegistry()
	 (d)	 constructRegistry()

	18.	 Which of the following methods on registry is used
to get a remote reference?

	 (a)	 search()		 (b)	 get()

	 (c)	 find()		 (d)	 lookup()

	19.	 Which of the following interfaces must be
implemented by a class for its instances to be
serializable?

	 (a)	 DoSerialize
	 (b)	 MakeSerializable
	 (c)	 Serialize
	 (d)	 Serializable

	20.	 Which of the following components activates an
object?

	 (a)	 Activator		 (b)	 Activation group
	 (c)	 Faulting Reference		 (d)	 Stub

Subjective-type Questions

	 1.	 What is the difference between RMI and Socket?

	 2.	 What is RMI Registry?

	 3.	 What are the exceptions thrown by RMI?

	 4.	 What is the difference between a stub and a
skeleton?

	 5.	 Why does RMI require an interface?

	 6.	 What is a serializable object? Give some examples
of non-serializable objects in Java.

	 7.	 Explain the RMI architecture.

	 8.	 How do Java RMI clients contact remote Java RMI
servers?

	 9.	 What is a remote object? Why should we extend
UnicastRemoteObject ?

	10.	 What is the difference between RMI and CORBA?

	11.	 What are the services provided by the RMI Object?

	12.	 What are the differences between RMI and a
socket?

	13.	 How will you pass parameters in RMI ?

	14.	 What is the difference between using bind() and
rebind() methods of Naming Class?

	15.	 Can a class implementing a Remote interface
have non-remote methods?

	16.	 What are the layers of RMI Architecture?

	17.	 What is the role of java.rmi.Naming Class?

	18.	 What is the role of Remote Interface in RMI?

	19.	 Why must classes implement Serializable in order
to be written to an ObjectOutputStream?

	20.	 Write the format of an RMI URL.

CHAPTER – 15

Java Mail API

Key Objectives

After completing this chapter readers will be able to—
•  get an idea about SMTP, POP3 and IMAP
•  understand how to send emails using JavaMail API
•  write Java programs to retrieve emails
•  add attachment to an email
•  learn how to send html content
•  know how to forward and delete emails

15.1	 E-MAIL
An electronic mail (or simply email or e-mail), as its name suggests, is a digital version of a

message (or letter). This concept was introduced much earlier than evolution of the Internet. Needless
to say that the email system was very simple at that time. It was as simple as leaving a message on
someone’s desk. It allowed a user only to place a message in another user’s directory where later
one could see the message after logging in.

The current email system is much more powerful. It allows two parties to exchange emails across
networks using addresses called email addresses. It does not even require the sender and recipient to both
be online at the same time. It has, no doubt, become one of the most popular applications of the Internet.

A set of protocols is used for delivery and accessing of such emails. Simple Mail Transfer Protocol
(SMTP) is used to deliver emails, whereas Post Office Protocol (POP) and Internet Message Access
Protocol (IMAP) are used to access emails.

15.2	 JAVAMAIL API
JavaMail is a powerful API that provides a platform-independent framework to send and

retrieve electronic-mail (e-mail). Originally, the specification does not mandate support for a

JAVA MAIL API 393

specific protocol. However, JavaMail includes support for some well-known protocols such as
SMTP, POP and IMAP.

The package javax.mail contains classes that encapsulate the different components of the
email system. Initially, the detailed layout of these classes and interfaces may wrongly cause you
to believe that you are in big trouble. However, once you start working, you will certainly discover
that it is a very simple and handy API for incorporating robust mail/messaging functionality in
your applications.

The package com.sun.mail contains implementation classes for mail protocols such as SMTP,
POP and IMAP. Note that JavaMail itself does not implement an email server. It helps us in accessing
an existing email server. Since, almost all users have an account in the Gmail server, we shall use it
to test the code present in this chapter.

Note that sending email using the Java application has various practical use as follows:

•	 When a user creates an account, an email, containing critical information to be used by the user later, may be
sent automatically at the end of account creation.

•	 In the middle of an account creation, some web application may send an activation code to the specified email
address to verify if the user really owns that email address.

•	 In case a user forgets the password, an email containing the password may be sent to the user’s email address
automatically.

•	 For important updates, emails may be sent automatically to the relevant users.

15.3	 INSTALLING JAVAMAIL API
Java 2 Platform, Enterprise Edition (J2EE) 1.3 includes JavaMail API. So, if you have this version

installed in your computer, you need not download JavaMail API. However, for other versions of
Java, you have to download a jar (java archive) file that contains the necessary classes and interfaces.
During the development of this manuscript, the version of JavaMail API is 1.5.0. We downloaded
the jar file javax.mail.jar from https://java.net/projects/javamail/pages/Home.

To use this API, include this jar file in you CLASSPATH environment variable. If you do not have the
right to change this environment variable, specify this jar file (using –cp option) during compilation
and execution. If you still can’t understand, then follow the instruction given in the ‘Running the
example’ sections.

If you are not using Java SE 6 or newer, you will also need an extension called Java Activation
Framework (JAF). Being a kind of plug-in to Java, it basically helps us to handle multitude data
formats such as simple text or extremely complex documents composed of images, audio, video,
and even live objects. The JAF is provided as a separate package javax.activation. The JavaMail
API Design Specification (Version 1.5) can be found in the following URL:

http://javamail.java.net/nonav/docs/JavaMail-1.5.pdf

15.4	 SENDING EMAILS
The Simple Mail Transfer Protocol (SMTP) is an application layer protocol in the TCP/IP protocol

suite which is used to send electronic mails (email). It uses TCP as its underlying transport layer
protocol. The SMTP protocol specifies a set of commands and responses to send emails. A sample
set of SMTP commands and responses to send an email is shown in Figure 15.1:

394 ADVANCED JAVA PROGRAMMING

HELO: thinkpad

250 mail.jusl.ac.in

MAIL FROM:<u_roy@it.jusl.ac.in>

RCPT TO:<u_roy@it.jusl.ac.in>

BODY:<u_roy@it.jusl.ac.in>

250 2.1.0 Ok

250 2.1.5 Ok

354 End data with <CR><LF>.<CR><LF>

This is a sample mail

.

250 2.0.0 Ok: queued as 345576271

quit

221 2.0.0 Bye

Client SMTP Server

Figure 15.1: A typical SMTP message exchange

In this section, we shall discuss how to send an email containing simple text message. There are
three steps to follow to send an email using JavaMail API:

•	 Create a Session object that stores necessary information such as host name, user name and password to send
an email.

•	 Compose a message.
•	 Send the message.

15.4.1	 Creating a Session Object
The mail handling (i.e. sending and retrieving) task is typically started by obtaining a javax.

mail.Session object. This final Session class represents a mail session. A new Session object
may be created or an existing one may be used. To get a Session object, two static methods
getDefaultInstance() and getInstance() are available on Session class.

The former method returns an existing (or a new instance if the method is called for the first time)
Session object and later creates a fresh one. Since, the default session is potentially available to all
code executing in the same Java virtual machine, an application may prefer to create a new instance
for its own using getInstance() method. It has two overloaded versions:

static Session getInstance(Properties props)
static Session getInstance(Properties props, Authenticator authenticator)

The Properties object is used to configure the session. Configuring a session means specifying
email host, port number being used etc. The Authenticator object is required if the mail host enforces
a user to be authenticated (e.g. providing user name and password).

We know that SMTP itself does not mandate authentication. In practice, there exists some (wrongly
configured) mail servers which implements this raw SMTP and hence do not require authentication.
However, a good mail server does not open SMTP port (25) directly. Instead, an additional security
layer (such as SSL, TSL) is inserted in front of SMTP. Any program that wants to reach the SMTP

JAVA MAIL API 395

port, has to pass through this security layer. This security layer takes care of the authentication and
finally forwards the request to the SMTP.

Most of the mail servers (such as Gmail, Yahoo) have been configured this way. For these
mail servers, we should use the second overloaded version of getInstance() that requires an
Authenticator object. We shall discuss sending mails using mail servers that require authentication
in detail later in this chapter.

In our first program, we shall use a mail server (webmail.jusl.ac.in) that does not require
authentication. So, we shall use the first version of getInstance() method. Note that mail servers
that do not require authentication are potentially vulnerable for external attack and should always
be avoided.

Since, the above mentioned methods take a Properties object, let us first create a Properties
object as follows:

Properties props = new Properties();

This Properties object is used to configure the Session object. However, this object does not
so far contain any property. So, we must set some necessary properties as follows:

String host = "webmail.jusl.ac.in";
props.setProperty("mail.smtp.host", host);

This indicates that the mail server webmail.jusl.ac.in is to be used for sending mails. You
should use IP address or name of the mail server, where you have an account, in place of webmail.
jusl.ac.in.

Alternatively, an existing Properties object may also be used as follows:
Properties props = System.getProperties();

The System.getProperties() method returns the current set of system properties (such as java.
version, java.home etc.) as a Properties object. This object is useful if an application wants to use
default system properties. However, always make sure that some necessary properties (such as mail.
smtp.host) are set properly. The set of required properties is determined by the actual procedure
used to send the mail.

The Session object can be created with this property object as follows:
Session session = Session.getInstance(props);

Now, this Session object has relevant information necessary to Transport emails as well as to
have access to email Store. Let us now compose a message for delivery.

15.4.2	 Compose a Message
The abstract class javax.mail.Message encapsulates an email message. Since, it is an abstract

class, its direct known subclass javax.mail.internet.MimeMessage is usually used to create a mail
message as follows:

MimeMessage msg = new MimeMessage(session);

The constructor takes a Session object and creates an empty message. When this message is
sent, the session object is consulted for information necessary for email delivery. To populate this
message, a number of methods are available on MimeMessage class. For example, setSubject()
method sets the subject, and the setText() method sets the (plaintext) body content of the message.
The following is an example that fills the message:

String from = "u_roy@it.jusl.ac.in", to = from;
msg.setFrom(from);
msg.addRecipients(Message.RecipientType.TO, to);
msg.setSubject("A test mail");
msg.setText("Sent a mail without authentication");

396 ADVANCED JAVA PROGRAMMING

The addRecipients() method adds an email address to the list of intended receiver’s email
addresses. The first argument indicates the type of recipients and has possible values Message.
RecipientType.TO, Message.RecipientType.CC and Message.RecipientType.BCC. They represent
primary (TO), Carbon Copy (CC) and Blind Carbon Copy (BCC) recipients respectively.

It has another overloaded version that may be used to specify multiple email addresses:
void addRecipients(Message.RecipientType type, Address[] addresses)

Here, the second argument is a list of recipient’s email addresses.

15.4.3	 Sending the Mail
Sending the mail is as simple as follows:
Transport.send(msg);

The static send() method of Transport class delivers the specified message to all recipient’s
addresses, which were added to the message using addRecipients() method. If send() method
encounters any of the recipient addresses as invalid (e.g. wrong format or non-existing address),
during delivery of message, a SendFailedException is thrown.

Note that success does not always imply that the message is really delivered to the ultimate
recipient. The failures may occur in later stages of delivery, where usually an undeliverable message
is sent back to the user.

Alternatively, we can send mail using a specific instance from the session for SMTP protocol
as follows:

Transport transport = session.getTransport("smtp");
transport.connect(host, null, null);
transport.sendMessage(msg, msg.getAllRecipients());
transport.close();

The connect() method, establishes a connection to the specified host and username and password (null
if unnecessary). Finally, the sendMessage() delivers the message. Since, connect() method keeps the
connection with the mail server active between messages, this method is useful if sending multiple messages
is required. The static send() method makes a separate connection to the server for each method call.

The complete source code (SendEmail.java) is given below:
//SendEmail.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmail {
 public static void main(String [] args) {
 String host = "webmail.jusl.ac.in";
 String from = "u_roy@it.jusl.ac.in", to = from;
 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);
 Session session = Session.getInstance(props);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(from);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("A test mail");
 msg.setText("Sent a mail without authentication");
 Transport.send(msg);
 System.out.println("Sent message successfully....");
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

JAVA MAIL API 397

15.4.4	 Compiling and Running the Program
We assume that all the programs in the chapter are developed in a directory: E:\Net\mail. Place

the jar file javax.mail.jar in this directory. Go to the E:\Net\mail directory and use the following
command to compile our SendEmail.java:

javac -cp javax.mail.jar;. SendEmail.java

It generates a single class file SendEmail.class. To execute the program, use the following command:
java -cp javax.mail.jar;. SendEmail

To show that the mail has really been sent, a snapshot from the mail server interface is shown
in Figure 15.2:

Figure 15.2: Sending email using JavaMail API

15.5	 SENDING EMAILS DIRECTLY USING SOCKET
We know that SMTP itself does not mandate any user authorization procedure. This suggests to us

to establish a simple TCP socket to the server that implements the basic SMTP and gives commands
to send emails. The email server (webmail.jusl.ac.in) we have used in our previous program is
one such server. The following program sends an email from u_roy@it.jusl.ac.in to itself using
the basic socket mechanism.
import java.io.*;
import java.net.*;
class MailClient {
 public static void main(String argv[]) throws Exception {
 int port = Integer.parseInt(argv[1]);
 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));
 Socket clientSocket = new Socket(argv[0], port);
 if(clientSocket == null) System.out.println("error");
 else {
 System.out.println("connected to the server " + argv[0] + " at port " + port);
 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());
 BufferedReader inFromServer =
 new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));
 String[] out = { "HELO : thinkpad\n",
 "mail from: <u_roy@it.jusl.ac.in>\n",
 "rcpt to: <u_roy@it.jusl.ac.in>\n",
 "data\n",
 "This is a sample mail\n.\n",
 "quit\n"
 };
 try {
 System.out.println("From server: " + inFromServer.readLine());
 for(int i = 0; i < out.length; i++) {
 outToServer.writeBytes(out[i]);
 System.out.print("To server: " + out[i]);
 System.out.println("From server: " + inFromServer.readLine());
 }
 }catch(Exception e) {clientSocket.close();}
 }
 }
}

398 ADVANCED JAVA PROGRAMMING

import java.io.*;
import java.net.*;
class MailClient {
 public static void main(String argv[]) throws Exception {
 int port = Integer.parseInt(argv[1]);
 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));
 Socket clientSocket = new Socket(argv[0], port);
 if(clientSocket == null) System.out.println("error");
 else {
 System.out.println("connected to the server " + argv[0] + " at port " + port);
 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());
 BufferedReader inFromServer =
 new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));
 String[] out = { "HELO : thinkpad\n",
 "mail from: <u_roy@it.jusl.ac.in>\n",
 "rcpt to: <u_roy@it.jusl.ac.in>\n",
 "data\n",
 "This is a sample mail\n.\n",
 "quit\n"
 };
 try {
 System.out.println("From server: " + inFromServer.readLine());
 for(int i = 0; i < out.length; i++) {
 outToServer.writeBytes(out[i]);
 System.out.print("To server: " + out[i]);
 System.out.println("From server: " + inFromServer.readLine());
 }
 }catch(Exception e) {clientSocket.close();}
 }
 }
}

Compile the program as follows:
javac MailClient.java

Note that it does not use JavaMail API and hence does not require javax.mail.jar file. It creates
a socket connection to the port 25 (SMTP port) and fires SMTP commands. Run the program as
follows:

java MailClient webmail.jusl.ac.in 25

A sample output for this program is shown in Figure 15.3:

Figure 15.3: Sending email using Java TCP socket

15.6	 SECURED SMTP
The first standard for email delivery was Simple Mail Transfer Protocol (SMTP). As its

name implies, it is a very simple protocol and is still in use. However, SMTP is a fairly naive
protocol, and provides no facilities to verify the user’s identity. This means, any user who
has an account in the mail server can send an email to any other user without any password
verification.

This basic flaw in the protocol may be exploited by viruses, worms, security frauds and spammers
forging identities. This makes the system vulnerable and must be avoided. So, usually an SMTP server
runs an authorization protocol (typically Secure Socket Layer (SSL), or Transport Layer Security
(TLS)) over the SMTP protocol. In this case, usually users are not allowed to connect to the SMTP
port directly. A user typically connects to the SSL/TLS first and provides authorization information.
The SSL/TLS starts the authorization procedure and if the user passes this authorization procedure,
SSL/TLS forwards the request to the actual SMTP server. Some mail servers allow users to connect
to the port 25; however, users must go through the authentication procedure first before working
with normal SMTP.

JAVA MAIL API 399

SMTP may be made secured using SSL or TLS and the corresponding port number used is shown
in Table 15.1:

Table 15.1: Standard ports used by SMTP

Protocol Port number Protocol Port number

SMTP without SSL/TLS 25 SMTP with TLS 587

SMTP with SSL 465

A detailed description of these two protocols may be found in Chapter 20.
In this section, we shall discuss how to send mails using SSL or TLS and Java mail API. For

demonstration purpose, we have created an account in Gmail server having username usr.some and
password some.usr.

First we have to specify that an authentication is required as follows:
props.put("mail.smtp.auth", "true");

Then, we have to specify which protocol (SSL/TLS) we want to use for authentication.

15.6.1	 Using SSL
Most of the mail servers including mail support SSL for user authentication. So, it is a good

idea to use SSL to pass through the authentication procedure. The following properties are required
for SSL:

props.put("mail.smtp.port", "465");
props.put("mail.smtp.socketFactory.class","javax.net.ssl.SSLSocketFactory");

The first line indicates that the port number 465 (i.e. SMTP/SSL) is to be used for authentication.
If this standard port number is not used for SSL, find it and use it in place of 465. A list of port
numbers used by standard email servers is given later in this chapter. During the mail delivery, the
SSL handshake starts immediately when a client connects to this port, and only after the session is
encrypted, the SMTP protocol begins.

The second line tells that the client will get help from javax.net.ssl.SSLSocketFactory class
to talk to SSL server. Indeed, JavaMail API includes this class, which implements SSL. This second
line is mandatory if the SMTP server uses SSL (port 465) for authentication, like the Gmail SMTP
server does.

15.6.2	 Using TLS
If TLS is used as a security layer, the following properties are required:
props.put("mail.smtp.starttls.enable", "true");

Note that the above piece of code does not use any specialized class to talk to TLS server. This
is because TLS uses plaintext authentication and hence no specialized authenticator is required.
However, to start the authentication procedure, the above line is required.

Note that the previous mechanism uses two ports, 465 (for SSL) and 25 (for SMTP). Port 465
authenticates the user and forwards the request to 25. For plaintext authentication, only one port may
be used instead of two ports. However, one additional command STARTTLS is added to SMTP. So,
clients connect to regular SMTP port (25) and issue a STARTTLS command after which the session is
encrypted. Once the session is encrypted regular SMTP starts working.

By setting mail.smtp.starttls.enable property to true, we tell the client to issue a STARTTLS
command to start authentication procedure.

400 ADVANCED JAVA PROGRAMMING

However, for smooth transition from SSL to TLS, a separate port (587) for TLS is provided. So,
it is possible to connect to this port as follows:

props.put("mail.smtp.port", "587");

In this case, clients connect to the port 587 where authentication starts and once it is over, regular
SMTP starts. However, connecting to this port (587) it is not mandatory to use TLS.

15.6.3	 Providing Authentication Information
We create two strings, one for username and the other for password:
final String user = "usr.some", password = "some.usr";

Since, SSL or TLS requires authentication information, we have to pass username and password
information. There are many ways we can do this:

•	 Using Authenticator object

•	 Using send() method of Transport class.

•	 Using connect() method of Transport Class

Using Authenticator object
In this case, we create a subclass (usually inner) from abstract javax.mail.Authenticator class

overriding its getPasswordAuthentication() method as follows:
class MyAuthenticator extends javax.mail.Authenticator {
 String user, password;
 MyAuthenticator(String user, String password) {
 this.user = user;
 this.password = password;
 }
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user, password);
 }
}

The getPasswordAuthentication()method returns a PasswordAuthentication instance created
from a (username, password) pair. An instance of this class is then registered with the Session object
during its creation.

Authenticator auth = new MyAuthenticator(user, password);
Session session = Session.getInstance(props, auth);

When authentication is required, subclass’s getPasswordAuthentication() method is called.
We can also collect username and password using popup dialog as follows:

class PopupAuthenticator extends Authenticator {
 protected PasswordAuthentication getPasswordAuthentication() {
 String user = JOptionPane.showInputDialog("Enter username:");
 String password = JOptionPane.showInputDialog("Enter password:");
 return new PasswordAuthentication(user, password);
 }
}
Authenticator auth = new PopupAuthenticator();
Session session = Session.getInstance(props, auth);

Alternatively, we can create and use an anonymous inner class as follows:
Authenticator auth = new Authenticator () {
 public PasswordAuthentication getPasswordAuthentication(){
 return new PasswordAuthentication(user, password);
 }
};
Session session = Session.getInstance(props, auth);

JAVA MAIL API 401

To summarize, we create and use anonymous class during the creation of Session object as follows:
Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user, password);
 }
 });

Using send() method of Transport Class
Alternatively, the user name and password may be specified in the send() method of transport

class directly as follows:
Session session = Session.getInstance(props);
Transport.send(msg, user, password);

Using connect() method of Transport Class
We can also send a mail using a specific instance from the session for SMTP protocol as follows:
Transport transport = session.getTransport("smtps");
transport.connect(host, user, password);
transport.sendMessage(msg, msg.getAllRecipients());
transport.close();

The connect() method establishes a connection to the specified host and username and password,
whereas sendMessage() method delivers the message. Since, connect() method keeps the connection
(unless the connection is not closed explicitly using close() method) open with the mail server, this
method is useful if we want to send multiple messages. The static send() method makes a separate
connection to the server for each method call and closes it once the message is delivered.

The following program (SendEmail1.java) sends a mail from the user usr.some@gmail.com to
itself using SSL.

//SendEmail1.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmail1 {
 public static void main(String [] args) {
 String mailHost = "smtp.gmail.com";
 String from = "usr.some@gmail.com", to = "usr.some@gmail.com";
 final String user = "usr.some", password = "some.usr";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");

props.put("mail.smtp.port", "465");
 props.put("mail.smtp.socketFactory.class","javax.net.ssl.SSLSocketFactory");

 //disable two lines above and enable one line below to use TLS

 //props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user, password);
 }
 });

session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(from);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("A test mail");
 msg.setText("test message");
 Transport.send(msg);
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

402 ADVANCED JAVA PROGRAMMING

//SendEmail1.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmail1 {
 public static void main(String [] args) {
 String mailHost = "smtp.gmail.com";
 String from = "usr.some@gmail.com", to = "usr.some@gmail.com";
 final String user = "usr.some", password = "some.usr";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");

props.put("mail.smtp.port", "465");
 props.put("mail.smtp.socketFactory.class","javax.net.ssl.SSLSocketFactory");

 //disable two lines above and enable one line below to use TLS

 //props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user, password);
 }
 });

session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(from);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("A test mail");
 msg.setText("test message");
 Transport.send(msg);
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The added portion is shown with bold font. To view the debugging information and to understand
how the message is sent, we have used the following line of code:

session.setDebug(true);

Compile and run the program as described before. A sample output of this program is shown in
Figure 15.4:

Figure 15.4: Sending email using Java mail API

The following program (SendEmailTransport.java) sends a mail from the user usr.some@
gmail.com to itself using SSL and Transport object.

JAVA MAIL API 403

//SendEmailTransport.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmailTransport {
 public static void main(String [] args) {
 String host = "smtp.gmail.com";
 String from = "usr.some@gmail.com", to = "usr.some@gmail.com";
 final String user = "usr.some", password = "some.usr";
 Properties props = new Properties();
 Session session = Session.getInstance(props);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(from);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("A test mail");
 msg.setText("test message");

 Transport transport = session.getTransport("smtps");
 transport.connect(host, user, password);
 transport.sendMessage(msg, msg.getAllRecipients());
 transport.close();
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

15.7	 EMAIL MESSAGE REVISITED
The email messages, we have developed so far, have only text content. In this section, we shall

discuss creating messages having text and/or non-text content.

15.7.1	 MIME
Note that, SMTP was originally designed to transfer only plain (ASCII) text. The maximum

number of characters and lines were also limited. To overcome these limitations, a standard was
defined by Internet Engineering Task Force (IETF) in RFC 1521 and 1522 called Multipurpose
Internet Mail Extension (MIME). MIME is a standard intended for enhancing the capabilities of
SMTP. It provides a simple and standard way to represent and encode a wide variety of media types
for transmission via SMTP.

MIME especially supports the following:

•	 Both ASCII and non-ASCII character sets
•	 Messages having unlimited length
•	 Multi-font messages
•	 Multi-media: Image, Audio, and Video messages
•	 Multi-objects in a single message
•	 Even raw binary files

Moreover, MIME specification was built to be completely backward compatible and flexible and
open to extensions. It enables us describing and organizing new content type by defining additional
fields in the email header.

The javax.mail.internet.MimeMessage class, which is a subclass of abstract javax.mail.Message
class, implements MIME messages. A MIME message has basically two parts: header and body.

404 ADVANCED JAVA PROGRAMMING

The header section contains attributes that specify address(es) and other values necessary to send,
route, receive, decode and store the message. Attributes also specify the structure and type of data
contained in the message body.

The content of Message may consist of a single part or multiple parts. A single part Message is one
which has only one section of data, whereas multi-part Message has a body having multiple sections.

15.7.2	 Single-part Message
In this case, the content of a Message is represented by a javax.activation.DataHandler object,

which carries the content and provides useful methods to handle the content. A DataHandler object
knows how to deal with the content. To add content to a Message, the following steps are followed:

•	 Create some content

•	 Instantiate a DataHandler object

•	 Place content into that DataHandler object

•	 Place that DataHandler object into a Message object

•	 Define attributes for this DataHandler object in the Message header properly

Content

Format of a single part
message

Message
Header

DataHandler

The JavaMail API provides two methods setDataHandler() and setContent() to set the message
content:

void setDataHandler(DataHandler dh)
void setContent(Object obj, String type)
void setContent(Multipart mp)

The first two are used for messages having a single part and the last method is used for multi-part
message and is described in the next section.

Using setDataHandler()
In this case, we use setDataHanlder() method on Message to set a DataHandler that encapsulates

data. The DataHandler class provides a consistent interface to data obtained in different formats and
sources. A DataHandler object may be created using any of the following constructors:

DataHandler(DataSource ds)
DataHandler(Object obj, String mimeType)
DataHandler(URL url)

The constructors accept data as either a DataSource, which is a stream connected to the data or a
Java Object or a URL. For example, the following example creates a DataHandler object from a String:

//create a String
String content = "simple string";
//create a DataHandler object with this String
DataHandler dh = new DataHandler(content, "text/plain");

JAVA MAIL API 405

The second argument indicates that the content is plain text type. Similarly, the following code
creates a DataHandler object from file data:

String filename = "SendEmailTest.java";
DataSource ds = new FileDataSource(filename);
DataHandler dh = new DataHandler(ds);

We can now insert the DataHandler object dh having content into the Message object msg as follows:
//insert content to the message
msg.setDataHandler(dh);

Note that the content set by the last setDataHanlder() method persists overwriting existing (if
any) content.

Using setContent()
In this case, we can set content to a Message using its setContent() method directly. The following

example illustrates this:
//create a String
String content = "simple string";
//insert content to the message directly
msg.setContent(content, "text/plain");

15.7.3	 Multi-part MIME message
In this case, message content is represented by a Multipart object. A Multipart object is a

container that contains one or more Bodypart objects, each of which can in turn contain DataHandler
objects. For example, if a message has a text content and an attachment, the message is said to have
two body parts.

The javax.mail.internet.MimeMultipart class, which is a subclass of abstract javax.mail.
Multipart class, represents a muti-part content. To create a message having multiple parts, the
following steps are followed:

•	 Create a MimeMultipart object or create an object of a class that extends Multipart class.

•	 Create one or more MimeBodyPart object one for each part of the message content

•	 Populate these objects using setContent() or setDataHandler() method as described in the previous section

•	 Insert the MimeMultipart object into the message using setContent() method.

M
ul

tip
ar

t

Header

BodyPart
DataHandler(Content)

Message

BodyPart
DataHandler(Content)

BodyPart
DataHandler(Content)

Format of a multi-part
message

406 ADVANCED JAVA PROGRAMMING

15.7.4	 Composing a Mixed Message
In this section, we shall compose a message which has text content and an attachment (i.e. multiple

parts). To create a message having multiple parts, we first create a MimeMultipart object:
Multipart multipart = new MimeMultipart();

Since, there are two body parts (one text and another attachment) in our message, we create two
MimeBodyPart objects as follows:

MimeBodyPart part1 = new MimeBodyPart();
MimeBodyPart part2 = new MimeBodyPart();

The first part part1 holds a text message and the second part part2 holds an attachment. A piece
of text is placed in the first part as follows:

part1.setContent("This mail has an attachment.", "text/plain");

Since, the content type is plain text, setText() may also be used:
part1.setText("This mail has an attachment.");

The setText() method sets the specified String to the part1 with a MIME type of text/plain.
Let us now attach a file EmailWithAttachment.java with the second part as follows:

String filename = "EmailWithAttachment.java";
DataSource source = new FileDataSource(filename);
DataHandler dh = new DataHandler(source);

part2.setDataHandler(dh);
part2.setFileName(filename);

Alternatively, to be concise, attachFile() method may be used:
String filename = "EmailWithAttachment.java";
part2.attachFile(filename);

The attachFile() uses the given file to provide the data for part2. The file name specified is
used as the file name for this part and file data is used as the data for this part. The encoding is done
appropriately based on file data. These two parts are then added to the MimeMultipart object as follows:

multipart.addBodyPart(part1);
multipart.addBodyPart(part2);

Finally, this MimeMultipart object is attached to the actual message and delivered using the
following code:

msg.setContent(multipart);
Transport.send(msg);

The complete source code (EmailWithAttchment.java) is given below:
// EmailWithAttchment.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;
class EmailWithAttachment {
 public static void main(String [] args) {

 String to = "usr.some@gmail.com";
 final String user = "usr.some@gmail.com";
 final String password = "some.usr";
 String mailHost = "smtp.gmail.com";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user,password);
 }
 });
 //session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.addRecipients(Message.RecipientType.TO,to);
 msg.setSubject("Mail with attachment");

 Multipart multipart = new MimeMultipart();

 MimeBodyPart part1 = new MimeBodyPart();
 MimeBodyPart part2 = new MimeBodyPart();

 //part1.setContent("This mail has an attachment.", "text/plain");
 part1.setText("This mail has an attachment.");

 String filename = "EmailWithAttachment.java";
 //DataSource source = new FileDataSource(filename);
 //DataHandler dh = new DataHandler(source);

 //part2.setDataHandler(dh);
 //part2.setFileName(filename);

 part2.attachFile(filename);

 multipart.addBodyPart(part1);
 multipart.addBodyPart(part2);

 msg.setContent(multipart);

 Transport.send(msg);

 System.out.println("msg sent....");
 }catch (Exception e) {e.printStackTrace();}
 }
}

JAVA MAIL API 407

// EmailWithAttchment.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;
class EmailWithAttachment {
 public static void main(String [] args) {

 String to = "usr.some@gmail.com";
 final String user = "usr.some@gmail.com";
 final String password = "some.usr";
 String mailHost = "smtp.gmail.com";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user,password);
 }
 });
 //session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.addRecipients(Message.RecipientType.TO,to);
 msg.setSubject("Mail with attachment");

 Multipart multipart = new MimeMultipart();

 MimeBodyPart part1 = new MimeBodyPart();
 MimeBodyPart part2 = new MimeBodyPart();

 //part1.setContent("This mail has an attachment.", "text/plain");
 part1.setText("This mail has an attachment.");

 String filename = "EmailWithAttachment.java";
 //DataSource source = new FileDataSource(filename);
 //DataHandler dh = new DataHandler(source);

 //part2.setDataHandler(dh);
 //part2.setFileName(filename);

 part2.attachFile(filename);

 multipart.addBodyPart(part1);
 multipart.addBodyPart(part2);

 msg.setContent(multipart);

 Transport.send(msg);

 System.out.println("msg sent....");
 }catch (Exception e) {e.printStackTrace();}
 }
}

15.7.5	 Compiling the Program
This program uses javax.activation package. If you are using Java SE earlier than 6, then

download javax.activation.jar.zip file from the following link
http://www.java2s.com/Code/Jar/j/Downloadjavaxactivationjar.htm

The, javax.activation.jar.zip file contains a single javax.activation.jar file. Unzip and
put javax.activation.jar file in E:Netmail directory. Use the following command to compile:

javac -cp javax.mail.jar;javax.activation.jar;. EmailWithAttachment.java

Note that, Java SE 6 or later already has an activation package included. So, there is no need to
download the jar file separately. Use the following command to compile:

javac -cp javax.mail.jar;. EmailWithAttachment.java

A sample output is shown in Figure 15.5:

Figure 15.5: Sending an email with attachment

408 ADVANCED JAVA PROGRAMMING

Figure 15.6: shows a snapshot of Gmail interface that indicates that a mail arrived with an
attachment.

Figure 15.6: Receiving an email with attachment

Google and the Google logo are registered trademarks of Google Inc., used with permission

15.8	 EMAIL WITH HTML CONTENT
Sending messages having html content needs a little additional work. All we need to do is to

specify content type as text/html in setContent() method. For example, the following piece of
code sets a <h2> element to the content:

msg.setContent("<h2>Mail with html body.</h2>","text/html");

The complete source code of a program (SendEmail4.java) that sends a message having html
content is shown below:

//SendEmail4.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmail4 {
 public static void main(String [] args) {

 String to = "usr.some@gmail.com";
 String mailHost = "smtp.gmail.com";
 final String user = "usr.some@gmail.com", password = "some.usr";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user,password);
 }
 });
 //session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(user);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("Mail with html body");
 msg.setText("Test message");
 msg.setContent("<h2>Mail with html body.</h2>","text/html");
 Transport.send(msg);
 System.out.println("msg sent....");
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

JAVA MAIL API 409

//SendEmail4.java
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
public class SendEmail4 {
 public static void main(String [] args) {

 String to = "usr.some@gmail.com";
 String mailHost = "smtp.gmail.com";
 final String user = "usr.some@gmail.com", password = "some.usr";

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", mailHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user,password);
 }
 });
 //session.setDebug(true);
 try{
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(user);
 msg.addRecipients(Message.RecipientType.TO, to);
 msg.setSubject("Mail with html body");
 msg.setText("Test message");
 msg.setContent("<h2>Mail with html body.</h2>","text/html");
 Transport.send(msg);
 System.out.println("msg sent....");
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile and run the program as described previously. A sample output is shown in
Figure 15.7:

Figure 15.7:  Sending mail with html body

15.9	 ACCESSING EMAIL
In the previous sections, we have discussed how to send mails. Let us now discuss how to retrieve

email messages from a mail server such as Gmail. There exists two primary protocols that describe
syntax and semantics to retrieve emails: Post Office Protocol (POP) and Internet Message Access
Protocol (IMAP) [Figure 15.8:].

®

Network
Send mails
(SMTP)

Mail Client Mail Server Mail Client

Network
Access mails
(POP/IMAP) ®

Figure 15.8: Sending and retrieving mails

15.9.1	 POP
POP is an acronym for Post Office Protocol. Its current version is 3.0 and is known as POP3.

It is a standard protocol (see RFC 1939 for details) that supports basic functions (download and
delete) for electronic mail. Like most Internet protocols, the POP3 is a simple request–response
protocol.

A POP3 server listens for connections on standard TCP port 110. Once a connection is established,
the communication between the client and server takes places in the form of commands and responses.
The commands are sent by clients while server sends responses.

410 ADVANCED JAVA PROGRAMMING

An example POP3 session is shown below:
S: <wait for connection on TCP port 110>
C: <open connection>// e.g. telnet localhost 110
S: +OK uroy POP3 server (JAMES POP3 Server 2.3.2) ready
C: user abc
S: +OK
C: pass abc
S: +OK Welcome abc
C: STAT
S: +OK 2 320
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends message 1>
S: .
C: DELE 1
S: +OK message 1 deleted
C: RETR 2
S: +OK 200 octets
S: <the POP3 server sends message 2>
S: .
C: DELE 2
S: +OK message 2 deleted
C: QUIT
S: +OK Apache James POP3 Server signing off.
C: <close connection>
S: <wait for next connection>

The telnet application may be used to establish a connection to the pop server. Once the connection
has been established, the client application must send username and password information to the
email server. If the login credentials are accepted, the user can access the mailbox to download or
delete messages.

15.9.2	 IMAP
The POP provides the basic mail access functions and has become popular for its simplicity.

However, it lacks many important features that are increasingly in demand today.

To provide finer control over manageability of mails, a new one Internet Message Access
Protocol (IMAP) was introduced. It provides more functionalities and flexibility to the e-mail clients.
The current version of IMAP is 4 and is known as IMAP4. Using IMAP4, clients can manipulate
messages stored on a remote server in the same way they manipulate messages stored in the local
machine. IMAP has some specific advantages over its competitor POP, some of which are mentioned
below:

•	 In POP, clients get disconnected after downloading messages. However, IMAP4 allows clients stay connected
and download messages any time during the session.

•	 Unlike POP, which allows only one client to be connected to the mailbox at a time, the IMAP allows multiple clients
to access a mailbox simultaneously. It also provides facilities to the clients to detect changes made to the mailbox
by other connected clients.

•	 The IMAP4 allows us to retrieve individual parts of the message. This means a client can retrieve the text portion
of a message without retrieving attached files.

•	 In IMAP, clients can detect the message states (such as read, replied, deleted) using flags, which are stored on
the server. POP does not specify any such mechanism.

JAVA MAIL API 411

•	 It is possible to create, rename, and/or delete mailboxes (usually represented as folders) with IMAP4. It enables
us in copying and moving messages across mailboxes. It also enables us to create shared and public folders.

•	 IMAP4 clients can ask the server to provide messages that meet a search criteria. So, clients need not download
all messages to perform this searching.

Although, IMAP overcomes many of the pitfalls of POP, it introduces additional complexity which,
in turn, introduces server-side workaround. For example, a malicious client can provide critical search
criteria to the server to search messages that can potentially consume significant amount of server
resources. Due to tremendous complexity of IMAP fewer e-mail services support IMAP.

15.9.3	 Secured Mail Access
Like many other protocols, POP and IMAP, exchange login name, password and data in the clear

form. This means that anyone having access to the link between the server and client can listen and
probably discover passwords. To overcome this problem, it is strongly recommended to use POP
and IMAP that operate only through secure channels.

Usually, to make mail access secured, POP and IMAP are bundled with Transport Layer Security
(TLS) or Secure Sockets Layer (SSL). Most of the mail servers including Gmail use this mechanism.
The POP3 protocol, when used with an SSL layer, is called POP3S. Similarly, the IMAP when bundled
with SSL is called IMAPS. A list of port numbers used by these protocols is shown in Table 15.2:

Table 15.2: Ports used by POP and IMAP

Protocol Port number Protocol Port number

POP3 with or without TLS 110 POP3/SSL 995

IMAP4 with or without TLS 143 IMAP4/SSL 993

A detailed list of SMTP, POP and IMAP servers may be found in Section 15.14

15.9.4	 JavaMail API support
Fortunately, JavaMail API supports both of these protocols. In this section, we shall discuss how

JavaMail API allows us to retrieve emails from servers that implement POP and/or IMAP.
To describe message storage, JavaMail API provides two primary classes Store and Folder.

Messages, delivered by a transport protocol or an agent, are placed in Folders. The Store class
describes a Folder hierarchy and an access protocol such as POP, IMAP etc. These access protocols
are used to retrieve messages from folders.

15.9.5	 Reading Email
To read messages, a Store object is first created.
Store store = session.getStore("pop3s");

This indicates that store should use the protocol pop3s while retrieving the messages. The
protocol pop3s is a secured extension to pop3. Alternatively, imaps (which is a protocol similar to
pop3s) may be used:

Store store = session.getStore("imaps");

Since, both pop3s and imaps require user name and password to be verified, connect() method
is used to supply them:

String host = "pop.gmail.com", username = "usr.some", password = "some.usr";
store.connect(host, username, password);

412 ADVANCED JAVA PROGRAMMING

The connect() method takes a host name, user name, and password to authenticate a user. The
name of the POP3 server for Gmail is pop.gmail.com and is used as host name. There are other
overloaded connect() methods where missing information is obtained from the Session object’s
properties and Authenticator object.

If everything goes fine, we have an access to the message store now. To access messages, we
create a Folder object that represents a folder containing messages. Folders can contain subfolders
as well as messages, thus providing a hierarchical structure.

The following program (RetrieveEmail.java) shows how to retrieve all emails of the user usr.
some from the Gmail POP3 server pop.gmail.com using Java mail API and POP3.

import java.util.Properties;
import javax.mail.*;
public class RetrieveEmail {
 public static void main(String[] args) throws Exception {
 String host = "pop.gmail.com", protocol = "pop3s";
 String username = "usr.some", password = "some.usr";

 Properties props = new Properties();
 Session session = Session.getInstance(props);
 session.setDebug(true);
 Store store = session.getStore(protocol);
 store.connect(host, username, password);
 Folder inbox = store.getFolder("Inbox");
 if (inbox.exists()) {
 inbox.open(Folder.READ_ONLY);
 Message[] emails = inbox.getMessages();
 for (int i = 0; i < emails.length; i++) {
 System.out.println("Message " + (i + 1));
 emails[i].writeTo(System.out);
 }
 inbox.close(false);
 }
 else
 System.out.println("Inbox not available");
 store.close();
 }
}

A sample output of this program is shown in Figure 15.9:

Figure 15.9: Retrieving email using Java mail API and POP3

JAVA MAIL API 413

15.9.6	 Using Authenticator
Like sending emails, an Authenticator object may also be used to retrieve mails. In this

case, instead of passing host, user and password to the connect() method of Store directly, we
configure a Properties object to have the host, and create an Authenticator object having user
and password. These two objects are then supplied to the Session object. The following example
demonstrates this:

String host = "pop.gmail.com", protocol = "pop3s";
String username = "usr.some", password = "some.usr";

Properties props = new Properties();
//provide host
props.put("mail."+protocol+".host", host);

//provide user and password
Authenticator auth = new Authenticator () {
 public PasswordAuthentication getPasswordAuthentication(){
 return new PasswordAuthentication(user, password);
 }
};
Session session = Session.getInstance(props, auth);
Store store = session.getStore(protocol);
store.connect();

The protocol imaps may be used instead of pop3s.

15.10	 DELETING MAILS
To delete a message from a folder, the folder must be opened in READ_WRITE mode:
inbox.open(Folder.READ_WRITE);

The message deletion is a two-step process. We first set message’s DELETED flag to true:
msg.setFlag(Flags.Flag.DELETED, true);

However, setting the DELETED flag to true on a message does not remove it from the folder.
Instead it marks the message as deleted. The message is actually deleted when expunge() method
on the folder is invoked.

inbox.expunge();

Alternatively, close the folder using its close() method passing the argument true.
inbox.close(true);

The value true, tells the close() method to call expunge() method. Note that POP3 does
not support expunge() method. So, close() method should be called with an argument true for
POP3.

The following is a program that deletes all the messages from the folder “inbox”.
import java.util.Properties;
import javax.mail.*;
public class DeleteEmail {
 public static void main(String[] args) throws Exception {
 String host = "pop.gmail.com", protocol = "imaps";
 String username = "usr.some", password = "some.usr";

 Properties props = new Properties();
 Session session = Session.getInstance(props);
 //session.setDebug(true);
 Store store = session.getStore(protocol);
 store.connect(host, username, password);
 Folder inbox = store.getFolder("Inbox");
 if (inbox.exists()) {
 inbox.open(Folder.READ_WRITE);
 Message[] emails = inbox.getMessages();
 for (int i = 0; i < emails.length; i++) {
 System.out.println("Deleting Message " + (i + 1));
 emails[i].setFlag(Flags.Flag.DELETED,true);
 }
 inbox.close(true);
 }
 else
 System.out.println("Inbox not available");
 store.close();
 }
}

414 ADVANCED JAVA PROGRAMMING

import java.util.Properties;
import javax.mail.*;
public class DeleteEmail {
 public static void main(String[] args) throws Exception {
 String host = "pop.gmail.com", protocol = "imaps";
 String username = "usr.some", password = "some.usr";

 Properties props = new Properties();
 Session session = Session.getInstance(props);
 //session.setDebug(true);
 Store store = session.getStore(protocol);
 store.connect(host, username, password);
 Folder inbox = store.getFolder("Inbox");
 if (inbox.exists()) {
 inbox.open(Folder.READ_WRITE);
 Message[] emails = inbox.getMessages();
 for (int i = 0; i < emails.length; i++) {
 System.out.println("Deleting Message " + (i + 1));
 emails[i].setFlag(Flags.Flag.DELETED,true);
 }
 inbox.close(true);
 }
 else
 System.out.println("Inbox not available");
 store.close();
 }
}

Since, this program is potentially dangerous as it deletes all the messages from a folder, make
sure you either have copies of these messages stored elsewhere or the folder does not contain any
important messages. A sample output is shown in Figure 15.10:

Figure 15.10: Deleting email using Java mail API and IMAP

15.11	 REPLYING TO MAILS
To reply to an email received (and retrieved using POP or IMAP), reply() method may be used.
Message  reply(boolean replyToAll)

This method returns a new Message suitable for reply. This means reply() configures headers
and attributes of the reply Message properly. For example, the sender becomes the recipient, subject
is set to the original subject prefixed with “Re: ” etc. However, the content of this new Message will
be empty. The Boolean parameter indicates whether to reply to only the sender (false) or reply to
all (true). The following example demonstrates how to reply to an email:

Message replyMsg = recvMsg.reply(false);
replyMsg.setFrom(new InternetAddress("usr.some@gmail.com"));
replyMsg.setText("Received your mail.");
Transport.send(replyMsg);

Make sure that the session properties required to send an email are set properly.

15.12	 FORWARDING MAILS
Unlike reply(), there is no method to get a message suitable for forwarding. So, forwarding

an email is a little complicated. A message to be forwarded has two parts: one that contains the old
message and a new part which is added during forwarding. This tells us that a forwarding mail is a
multipart message. To create a forwarding email, the following steps are required:

•	 Create a fresh Message which will have two parts
•	 Set headers and attributes properly

JAVA MAIL API 415

•	 Create two BodyPart objects

•	 Fill one BodyPart by new content

•	 Fill the other BodyPart by old content

•	 Create a Multipart object

•	 Add those BodyParts to the Multpart object

•	 Finally, set this Multipart object as the content of the message

The following creates a fresh message:
MimeMessage frdMsg = new MimeMessage(session);

Now, set some important headers as follows:
frdMsg.setSubject("Fwd: " + message.getSubject());
frdMsg.setFrom(InternetAddress.toString(message.getFrom()));
frdMsg.addRecipients(Message.RecipientType.TO,"usr.some@gmail.com");

The message is forwarded to an email address: usr.some@gmail.com. Create a Multipart object
that will be set as content to the message:

Multipart multipart = new MimeMultipart();

Create a BodyPart object and populate it with text content:
BodyPart newPart = new MimeBodyPart();
newPart.setText("New Message:\n\n");

Now, create another BodyPart object to hold the entire content of the original message:
BodyPart oldPart = new MimeBodyPart();
oldPart.setContent(message.getContent(), message.getContentType());

Add these two parts to the Multipart object:
multipart.addBodyPart(newPart);
multipart.addBodyPart(oldPart);

Finally, add this Multipart object to the forwarding message:
frdMsg.setContent(multipart);

This message is now ready for forwarding and can be sent using the following code:
Transport.send(frdMsg);

15.13	 COPYING EMAILS
Messages are copied from one folder to another using copyMessages() method of Folder class:
public void copyMessages(Message[] msgs, Folder dest)

This method, if invoked on a folder, copies specified messages to the specified folder. Note that
the specified messages must belong to the source folder. For example, to copy all the messages from
inbox folder to backup folder, the following code may be used:

inbox.open(Folder.READ_ONLY);
Message[] emails = inbox.getMessages();
inbox.copyMessages(emails, backup);

Note that the source folder must be opened to get messages from it. However, the destination folder
does not have to be opened explicitly. The copyMessages() method invokes the appendMessages()
method on the destination folder to append the specified messages.

Also note that the destination folder must exist. If it does not exist, it may be created using the
following piece of code:

Folder defaultFolder = store.getDefaultFolder();
Folder backup = defaultFolder.getFolder("backup");
backup.create(Folder.HOLDS_MESSAGES);

416 ADVANCED JAVA PROGRAMMING

This creates a folder backup under the root directory. The following program (CopyEmail.java)
creates a folder backup and copies all the messages from inbox to this folder.

import java.util.Properties;
import javax.mail.*;
public class CopyEmail {
 public static void main(String[] args) throws Exception {
 String host = "pop.gmail.com", username = "usr.some", password = "some.usr";

 Properties props = new Properties();
 Session session = Session.getInstance(props);
 session.setDebug(true);
 Store store = session.getStore("imaps");

 store.connect(host, username, password);
 Folder inbox = store.getFolder("Inbox");

 Folder defaultFolder = store.getDefaultFolder();
 Folder backup = defaultFolder.getFolder("backup");
 boolean isCreated = backup.create(Folder.HOLDS_MESSAGES);
 System.out.println("created: " + isCreated);

 inbox.open(Folder.READ_ONLY);
 Message[] emails = inbox.getMessages();
 inbox.copyMessages(emails, backup);
 }
}

15.14	 LIST OF SMTP, POP3 AND IMAP SERVERS
Default port for SMTP, POP and IMAP:

•	 SMTP AUTH: Port 25 or 587
•	 SMTP StartTLS Port 587
•	 SMTP SSL Port 465
•	 POP Port 110
•	 POP SSL Port 995
•	 IMAP Port 143
•	 IMAP SSL Port 993
•	 IMAP StartTLS Port 143

Table 15.3: Standard ports used by SMTP, POP and IMAP

Server SMTP POP3 IMAP

AT&T Server smtp.att.yahoo.com SSL
Port: 465

pop.att.yahoo.com SSL
Port: 995

-

BT Connect Server pop3.btconnect.com mail.btconnect.com imap4.btconnect.com Port:
143

BT Openworld & BT
Internet Server

mail.btopenworld.com
mail.btinternet.com

pop.btopenworld.com pop.
btinternet.com

imap.btopenworld.com
imap.btinternet.com

Comcast Server smtp.comcast.net Port
: 587

pop.comcast.net imap.comcast.net

Gmail smtp.gmail.com SSL Port:
465 StartTLS Port: 587

pop.gmail.com SSL Port:
995

imap.gmail.com SSL Port:
993

(Contd)

JAVA MAIL API 417

Table 15.3 (Contd)

Server SMTP POP3 IMAP

Hotmail Server smtp.live.com StartTLS
Port: 587

pop3.live.com SSL Port:
995

-

NTL @ntlworld.com
Server

smtp.ntlworld.com SSL
Port: 465

pop.ntlworld.com SSL
Port: 995

imap.ntlworld.com SSL
Port: 993

O2 Server smtp.o2.ie smtp.o2.co.uk pop3.o2.ie pop3.o2.co.uk imap.o2.ie imap.o2.co.uk

O2 Online
Deutschland Server

mail.o2online.de pop.o2online.de imap.o2online.de

Orange Server smtp.orange.net smtp.
orange.co.uk

pop.orange.net imap.orange.net

T-Online Deutschland
Server

smtpmail.t-online.de
(AUTH) securesmtp.t-
online.de (SSL)

popmail.t-online.de
(AUTH) securepop.t-
online.de (SSL)

imapmail.t-online.de

Verizon Server hosted
on Yahoo Server

outgoing.yahoo.verizon.
net

incoming.yahoo.verizon.
net

incoming.yahoo.verizon.
net

Verizon Server outgoing.verizon.net SSL
Port: 465

incoming.verizon.net SSL
Port: 995

incoming.verizon.net

Wanadoo UK Server smtp.wanadoo.co.uk pop.wanadoo.co.uk -

Yahoo smtp.mail.yahoo.com SSL
Port 465

pop.mail.yahoo.com SSL
Port: 995

imap.mail.yahoo.com SSL
Port: 993

Yahoo Plus plus.smtp.mail.yahoo.com
SSL Port: 465

plus.pop.mail.yahoo.com
SSL Port: 995

-

Yahoo UK smtp.mail.yahoo.co.uk
SSL Port: 465

pop.mail.yahoo.co.uk SSL
Port: 995

-

Yahoo Deutschland smtp.mail.yahoo.de SSL
Port: 465

pop.mail.yahoo.de SSL
Port: 995

Yahoo AU/NZ smtp.mail.yahoo.com.au
SSL Port: 465

pop.mail.yahoo.com.au
SSL Port: 995

1&1 (1and1) Server smtp.1and1.com StartTLS
Port: 25 or 587

pop.1and1.com SSL Port:
995

imap.1and1.com SSL Port:
993

1&1 Deutschland
Server

smtp.1und1.de StartTLS
Port: 25 or 587

pop.1und1.de SSL Port:
995

imap.1und1.de SSL Port:
993

KEYWORDS
Authenticator—A class whose objects know how to
obtain authentication for a network connection

DataHandler—A Java class that provides a consistent
interface to data obtained in different formats and
sources

Email—Digital version of a message (or letter)

Email Address—A name that identifies an electronic
post office box on a network where e-mail can be sent

Expunge—A method that permanently removes
messages marked as DELETED

Folder—An abstract class that represents a folder for
mail messages

IMAP4—The Internet Message Access Protocol
version 4, used to retrieve emails from a mail server

IMAPS—IMAP bundled with SSL

MIME— An Internet standard that extends the format of
email to support ASCII as well as non-ASCII character
transmission

Multipart Message—An email message having
multiple body parts

PasswordAuthentication—A repository to hold user
name and password

POP3—The Post Office Protocol version 3, used to
retrieve emails from a mail server

418 ADVANCED JAVA PROGRAMMING

POP3S—The POP3 protocol, when used with an
SSL layer

Single-part Message—An email message having a
single body part

SMTP—A standard protocol used to send emails from
a mail server

SSL—A commonly used protocol for managing
the security of a message transmission on the
Internet

STARTTLS—A way to take an existing insecure
connection, and upgrade it to a secure connection
using SSL/TLS
Store— A Java abstract class that models a message
store and its access protocol, for storing and retrieving
messages
TLS— A successor of SSL that was designed to
provide communication security over the Internet
Transport—A Java abstract class that models a
message transport

SUMMARY
An electronic mail (or simply email or e-mail), as its
name suggests, is a digital version of a message (or
letter). Simple Mail Transfer Protocol (SMTP) is used
to deliver emails, whereas Post Office Protocol (POP)
and Internet Message Access Protocol (IMAP) are
used to access emails.

JavaMail is a powerful API that provides a platform-
independent framework to send and retrieve electronic
mail (e-mail).

There are basically three steps to follow to send an
email using JavaMail API: (i) Create a Session object
that stores the necessary information such as host
name, user name and password to send an email
(ii) Compose a message and (iii) Send the message.

This final Session class represents a mail session. The
Session class provides access to the protocol providers
that implement the Store, Transport, and related
classes. To send/retrieve emails, a Session object is
created and configured with some necessary properties.

The class MimeMessage represents a MIME style
email message. Multipurpose Internet Mail Extension
(MIME) is a standard intended for enhancing the
capabilities of SMTP. It provides a simple and standard
way to represent and encode a wide variety of media
types for transmission via SMTP.

The message is then sent using Transport class.

A typical SMTP server runs an authorization protocol
to make communication secured. There are two
protocols available to do this: Secure Socket Layer
(SSL) and Transport Layer Security (TLS). In this
case, a user typically connects to the SSL/TLS first and
provides authorization information. The SSL/TLS starts
the authorization procedure and if the user passes
this authorization procedure, SSL/TLS forwards the
request to the actual SMTP server.

There exists two primary protocols that describe
syntax and semantics to retrieve emails: Post Office
Protocol (POP) and Internet Message Access Protocol
(IMAP). POP is a standard protocol that supports basic
functions (download and delete) for electronic mail. To
provide finer control over manageability of mails, IMAP
was introduced. IMAP has some specific advantages
over its competitor POP.

Usually, to make mail access secured, POP and
IMAP are bundled with Transport Layer Security
(TLS) or Secure Sockets Layer (SSL). Most of the
mail servers including Gmail use this mechanism. The
POP3 protocol, when used with an SSL layer, is called
POP3S. Similarly, the IMAP when bundled with SSL
is called IMAPS.

WEB RESOURCES
http://www.ietf.org/rfc/rfc2821.txt
Simple Mail Transfer Protocol

http://www.ietf.org/rfc/rfc1939.txt
Post Office Protocol - Version 3

http://tools.ietf.org/html/rfc1730
Internet Message Access Protocol – Version 4

http://javamail.java.net/nonav/docs/

JavaMail-1.5.pdf
JavaMail API Design Specification, Version 1.5

https://javamail.java.net/nonav/docs/api/
JavaMail API documentation

http://www.oracle.com/webfolder/

technetwork/tutorials/obe/java/javamail/

javamail.html
Sending an Email using the JavaMail API

JAVA MAIL API 419

EXERCISES
Objective-type Questions

	 1.	 What is the default port number of SMTP?
	 (a)	 25	 (c)	 22
	 (b)	 465	 (d)	 110

	 2.	 What is the full form of SMTP?
	 (a)	 Simple Mail Transportation Protocol
	 (b)	 Simple Mail Transfer Policy
	 (c)	 Simple Message Transfer Protocol
	 (d)	 Simple Mail Transfer Protocol

	 3.	 What is the full form of POP?
	 (a)	 Post Office Policy
	 (b)	 Post Object Protocol
	 (c)	 Post Office Protocol
	 (d)	 Permanent Object Protocol

	 4.	 What is the full form of IMAP?
	 (a)	 Internet Message Access Protocol
	 (b)	 Internet Mail Access Protocol
	 (c)	 Internet Message Access Policy
	 (d)	 Internet Mail Access Policy

	 5.	 What is the full form of MIME?
	 (a)	 Multipurpose Internet Mail Extension
	 (b)	 Multipurpose Internet Message Extension
	 (c)	 Multipurpose Internet Mail Expansion
	 (d)	 Multipurpose Internet Message Expansion

	 6.	 Which of the following is used to retrieve emails
from a mail server?

	 (a)	 SMTP	 (c)	 HTTP
	 (b)	 POP3	 (d)	 FTP

	 7.	 Which of the following is used to send emails from
a mail server?

	 (a)	 SMTP	 (c)	 HTTP
	 (b)	 POP3	 (d)	 IMAP

	 8.	 When retrieving mail, which of the following is the
proper order of working with classes?

	 (a)	 Store, Folder, Message, Transport
	 (b)	 Session, Store, Folder, Message
	 (c)	 Session, Store, Folder, Transport, Message
	 (d)	 Session, Folder, Message, Transport

	 9.	 Which of the following characters is used in an
email address?

	 (a)	 @	 (c)	 $
	 (b)	 #	 (d)	 %

	10.	 Which of the following packages contains
classes and interfaces for sending and retrieving
mails?

	 (a)	 javax.email	 (c)	 java.email
	 (b)	 java.mail	 (d)	 javax.mail

	11.	 Which of the following methods is used to get an
instance of Session class?

	 (a)	 getInstance()
	 (b)	 createInstance()
	 (c)	 makeInstance()
	 (d)	 inatance()

	12.	 Which of the following methods of Transport class
is used to send an email?

	 (a)	 deliver()	 (c)	 send()
	 (b)	 doDeliver()	 (d)	 doSent()

	13.	 Which of the following port numbers are used for
SMTP with SSL?

	 (a)	 25	 (c)	 587
	 (b)	 465	 (d)	 22

	14.	 Which of the following properties is used to use
TLS?

	 (a)	 mail.smtp.enable
	 (b)	 mail.starttls.enable
	 (c)	 mail.smtp.starttls.enable
	 (d)	 mail.smtp.starttls

	15.	 Which of the following classes is used to create
a multi-part message?

	 (a)	 Multipart	 (c)	 Manypart
	 (b)	 Multiplepart	 (d)	 Multi-part

	16.	 Which of the following methods are used to attach
a file to an email message?

	 (a)	 addFile()	 (c)	 attachFile()
	 (b)	 appendFile()	 (d)	 doAttach()

	17.	 What is the correct content type for html
content?

	 (a)	 text/plain	 (c)	 html/text
	 (b)	 text/html	 (d)	 html/plain

	18.	 Which of the following ports is used for POP3 with
SSL?

	 (a)	 993	 (c)	 143
	 (b)	 110	 (d)	 995

420 ADVANCED JAVA PROGRAMMING

	19.	 Which of the following classes represents
message storage?

	 (a)	 Storage	 (c)	 Folder
	 (b)	 Store	 (d)	 Message

	20.	 Which of the following methods is used to delete
email messages permanently?

	 (a)	 expunge()	 (c)	 doDelete()
	 (b)	 delete()	 (d)	 doExpunge()

Subjective-type Questions

	 1.	 Mention some limitations of POP.

	 2.	 Write some of the advantages of IMAP over
POP.

	 3.	 Explain the format of an email address.

	 4.	 Describe briefly the working principle of SMTP.

	 5.	 Write the steps to be followed to send an email
using JavaMail API.

	 6.	 How does a client authenticate it to the SMTP that
uses SSL or TLS?

	 7.	 What is meant by secured SMTP and how is that
implemented?

	 8.	 What do you mean by a mail session?

	 9.	 Describe the different procedures to create a
Session object.

	10.	 What is the purpose of MIME?

	11.	 Describe briefly the format of a MimeMessage.

	12.	 What are the differences between a single-part
message and a multipart message?

	13.	 Describe the procedure of attaching a file to an email.

	14.	 How do you send an email having html content?

	15.	 A message may be sent using static send()
method as well as sendMessage() method. Which
one will you prefer and why?

	16.	 What do you mean by primary, Carbon Copy and
Blind Carbon Copy recipients?

	17.	 Explain briefly the function of SSL in the context
of SMTP.

	18.	 Describe briefly the Post Office Protocol.

	19.	 Describe briefly the working principle of IMAP.

	20.	 Explain briefly the function of SSL in the context
of POP.

	21.	 Describe the procedure to reply to an email.

	22.	 Write the steps to be followed to forward an email
to a given email address.

	23.	 Describe the procedure to copy emails from one
folder to another.

CHAPTER – 16

Applets

Key Objectives

After completing this chapter readers will be able to—
•  understand the execution philosophy of applets
•  understand the life cycle of an applet
•  learn how to embed applets in HTML documents
•  get an idea about methods available in the Applet class
•  write basic applets
•  understand the limitations of applets

16.1	 CLIENT SIDE JAVA
Applets are Java programs (usually small) that generally run within web browsers [Figure 16.1:].

They are usually incorporated in an HTML page. A web browser downloads the class file of the applet
together with the other parts of the web page from the web server. If the browser has a suitable Java
Virtual Machine (JVM), it executes the applet in the client computer. Since, applets run within web
browsers in the client computer, they are said to be client-side Java technology.

The power of Java is not limited to Java applications only. Applets are also written using Java.
Since, these applets can be embedded within web pages, they bring all facilities of Java in the html
documents with little restrictions. Accordingly, the importance of Java as a client-side technology
in the web is unquestionable.

Usually, applets are downloaded from a remote web server [Figure 16.1:]. Consequently, they
should be smaller in size. Larger applets have longer download time giving an unpleasant experience
to the visitors.

Note that applets work for the local files also. So, we need not always deploy html files containing
applets in a web server. The html documents containing applets may be opened directly in a

422 ADVANCED JAVA PROGRAMMING

Java-enabled browser. They work in the same way as they do upon downloading from a remote
server. Java also provides a utility appletviewer that may also be used to test applet’s functionality
as well to run standalone applets.

In this chapter, we shall discuss the structure of applets, their execution philosophy, and other
applet-specific issues.

16.2	 LIFE CYCLE
Though applets are Java programs, they have certain differences from Java application programs.

Applets, unlike Java application programs, do not have any main() method. Instead, they have an
init() method that can be used for a similar purpose. Applets do not have any constructor. The
way instances of applets are created and run is completely different from the way objects are created
in Java application programs. So, let us understand the philosophy behind an applet.

Development of an applet consists of two basic steps: writing the Java class and incorporating it
in an html document. We first concentrate on writing the applet class.

An applet (a Java class) must be created by extending the java.applet.Applet class [Figure
16.2:], which provides interfaces between the web browser and the applet. If you want to use swing
components, you should create your applets by extending this javax.swing.JApplet class instead of
Applet class. Note that the class, javax.swing.JApplet is a subclass of the Applet class [Figure 16.2:].

java.lang.Object
java.awt.Component

java.awt.Container
java.awt.Panel

java.applet.Applet
javax.swing.JApplet

Figure 16.2: The Applet class hierarchy

An applet, from its birth to death, goes through a number of states [Figure 16.3:].

•	 Instantiated or born
•	 Running
•	 Idle or Stopped
•	 Dead or destroyed

The duration when an applet remains alive is called life cycle of the applet. The class Applet
provides a framework where your applets can run. It has a set of methods to control and supervise
the smooth execution of applets [Figure 16.3:]. These methods (also called life cycle methods) are

Client
Server

Web Server
has

HTML files
containing applets

Web browser
downloads
and runs
applets

®

Network

HTTP request

HTTP response

Figure 16.1: Execution of an Applet

APPLETS 423

called in a specific order during an applet’s entire life cycle. An applet usually overrides these methods
to do a designated task.

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.3: Life cycle of an applet

Even though, life cycle methods are called automatically by the browser, we should have sound
knowledge about when they are called and what we can do with these methods. The following is a
brief description of these life cycle methods.

16.2.1	 init()
This is the first method that gets called only once [Figure 16.4:], when an instance of the applet is

created and loaded by a web browser. Applets do not have any constructor. Since this method
is called before all other methods, it can be used as a constructor. Usually, the piece of code that we
write in the constructor goes here. For example, instantiating other objects, initializing variables,
setting background and foreground color may be done here. A pictorial description of this method’s
functionality is shown in Figure 16.4:

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.4: Function of init() method

Do not make this method large, resource-consuming, and computationally intensive. Otherwise,
your applet will take a long time to load resulting in a bitter experience to the viewers.

16.2.2	 start()
This is the second method that gets called in the sequence [Figure 16.5:]. Note that init()

method merely creates an instance of applet which is not yet active. The start() method, as the name

424 ADVANCED JAVA PROGRAMMING

implies, starts the execution of an applet. It is also called every time an applet is restarted (revisited).
Restarting an applet means the applet was running, but stopped for some reason using stop() method
earlier and needs to be started again. If you want to perform a task after initialization, override this
method. It is also overridden if a task has to be performed every time the web page containing the
applet is revisited. A pictorial description of this method’s functionality is shown in Figure 16.5:

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.5: Function of start() method

It is also recommended to return from this method quickly. If it is really necessary to do any
computationally intensive task in the start() method, it is better to create a new thread which will
perform the task while start() method returns quickly.

16.2.3	 paint()
This method is inherited from the java.awt.Container class. It is called immediately when the

applet starts its execution [Figure 16.6:]. This method is also called when the output of an applet is
redrawn. There are several situations when an applet is redrawn.

•	 When the window containing the applet is minimized and restored
•	 When the applet’s container window is overwritten by another window and is uncovered at some later point

of time
•	 When the window containing this applet is moved/dragged to another location

A pictorial description of this method’s functionality is shown in Figure 16.6:

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.6: Function of paint() method

This method takes a single argument of the type Graphics, which encapsulates the graphic window
the applet is contained in. It has numerous useful methods that are used to display AWT components

APPLETS 425

such as graphic elements (e.g. lines, ovals, rectangles, etc.), images, strings, etc. on the window. This
is the method where we can write our code of what we expect from the applet such as animation etc.

16.2.4	 stop()
The method stop() makes the applet inactive temporarily. For example, when a visitor switches to

another window, leaving the current window containing the applet [Figure 16.7:], this method is called.
However, the applet may come back to the running state again using a call of start() method again. This way,
an applet can switch between these two states (stopped and running) any number of times in its life cycle.

A pictorial description of this method’s functionality is shown in Figure 16.7:

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.7:  Function of stop method

It is the right place to write code to cleanup resources that are not necessary during the inactive
period. For example, we should suspend all threads that were started in the start() method so that
they do not consume system resources. Consequently, if an applet shows some animation, we should
suspend it when visitors are not viewing it.

16.2.5	 destroy()
This method is called [Figure 16.8:] only once when the browser window containing the applet is

closed (exited). This method makes the applet dead (i.e., the applet is not available any more). Typically,
you need not override this method. If a browser window containing a running applet is closed, the
stop() method is called first, which calls destroy() method after performing all the necessary tasks
to shut down the applet. However, the method is still available to release other resources.

A pictorial description of this method’s functionality is shown in Figure 16.8:

Running

Stopped Destroyed

start()

start() stop()

destroy()

init()

Instantiated

paint()

Figure 16.8: Function of destroy method

426 ADVANCED JAVA PROGRAMMING

16.3	 WRITING AN APPLET
Let us now write our first applet called HelloWorld which will display a simple message “Hello

World!” on the screen. The following is the source code of the HelloWorld applet stored in the file
HelloWorld.java.

//HelloWorld.java
public class HelloWorld extends java.applet.Applet {
 public void paint(java.awt.Graphics g) {
 g.drawString("Hello World!", 20, 20);
 }
}

Your applet must extend either the java.applet.Applet or the javax.swing.JApplet class. In
this example, the class HelloWorld extends the Applet class and hence is an applet. It overrides
only the paint() method to display a message on the screen. Since this applet is not supposed
to do anything except displaying the message “Hello Word!”, we have not overridden any other
method. As mentioned earlier, the paint() method takes a Graphics object that represents the
applet window. Numerous methods are available on this Graphics object, to display text, images
and graphic objects (such as circle, ellipse, line, and rectangle) on the screen. In this case, we
have used the drawString() method, which takes three arguments: a string to be displayed on
the screen and two integer arguments, which represent the x and y coordinates, where the string
is displayed .

16.4	 GENERATING CLASS FILE
Generating class file for an applet is exactly same as generating class files from application

programs. The same javac compiler bundled with the Java Development Kit (JDK) is used. To
compile our HelloWorld applet, go to the directory containing the file HelloWorld.java and use the
following command:

javac HelloWorld.java

On successful compilation, it creates a class file named HelloWorld.class, which contains the
byte code for our HelloWorld applet. Make sure that the directory containing the javac compiler is
included in your PATH environment variable.

16.5	 RUNNING THE APPLET
Running an applet is different from running a Java application program. To run an applet, its class

file has to be embedded in an html file using <applet> tag. The following section describes how to
embed an applet within an html file.

16.5.1	 The Applet Tag
Two HTML tags are used to work with applets: <applet> and <param>. An applet is typically

embedded in an HTML document using the <applet> tag. The <param> tag is used to pass parameters
to an applet. Some browsers provide the <object> or <embed> tag to include an applet. For more
information, please see the documentation of your browser. The <applet> tag instructs the browser
that an applet has to be loaded and executed using the Java Runtime Environment (JRE). It takes
three mandatory attributes: code, width, and height. The code attribute specifies the class file for this

APPLETS 427

applet to be instantiated. The width and height attributes indicate the width and height, respectively,
of the applet window to be created. For our HelloWorld applet, we create a simple HTML file,
HelloWorld.html, as follows:

<!-- HelloWorld.html -->
<html>
 <head><title>Applet Demo</title></head>
 <body>

<applet code="HelloWorld" height=50 width=150 >
 </applet>
 </body>
</html>

Now, open it in a browser. If the browser is Java-enabled, it understands the meaning of the
<applet> tag. It loads the class file HelloWorld.class and executes it and places the result at
the place of the <applet> tag. Note that the extension .class is not used in the <applet> tag.
Put the HelloWorld.class file in the same directory as the HelloWorld.html file. The result is
shown in Figure 16.9:

Figure 16.9: Result of HelloWorld applet. The applet was opened in chrome
browser directly without deploying it on a web server

If you do not see the applet running, make sure that at least the Java 2 Standard Edition (J2SE)
platform is installed in your client computer and linked with the browsers. Most often the browsers
have their own Java Runtime Environment (JRE) to interpret applets. Alternatively, you can use the
application appletviewer, which comes with JDK, as follows.

appletviewer HelloWorld.html

The output [Figure 16.10:] now looks exactly the same except that it creates a window with a
different appearance.

Figure 16.10: Result of HelloWorld applet using appletviewer

The appletviewer program comes with JDK and allows us to run applets outside a web browser.
It displays applets embedded in the specified document (using <applet>, <object> or <embed> tags)

428 ADVANCED JAVA PROGRAMMING

in its own window. Note that the application appletviewer cannot download the class file from
the remote web server. It is usually used for testing applets before deploying them to a web server.
The appletviewer program is usually kept in the bin subdirectory of Java’s installation directory.
To use this program from any directory, make sure that the directory containing the appletviewer
program is included in your PATH environment variable.

Though appletviewer functions like a web browser, the way it functions is different. It processes
only applet tag (if any) embedded in a document. So, the document containing applets need not
always be an html document. Sometimes, for quick development and to avoid creating a separate
html file, the applet is embedded in the applet source file (.java file). For example, we can embed our
HelloWorld applet in the HelloWorld.java file as follows:

/*
<applet code="HelloWorld" height=50 width=300>
</applet>
*/
public class HelloWorld extends java.applet.Applet {
 public void paint(java.awt.Graphics g) {
 g.drawString("Hello World!", 20, 20);
 }
}

We can now pass this document to the appletviewer program. Since, the <applet> tag (which
is not a valid Java code) is inserted in the Java source file, which is compiled using javac, the tag is
written as comments to avoid compilation error. As mentioned earlier, the appletviewer program
looks at only <applet> tag ignoring everything else. Consequently, it is expected to display our applet
in its windows. The following command may be used to view the applet.

appletviewer HelloWorld.java

The result is exactly same as shown in Figure 16.10:

HelloWorld.html

<html>

<applet code="HelloWorld">
</applet>

</html>

W
eb

 s
er

ve
r

HelloWorld.class

Send me HelloWorld.html

Here is HelloWorld.html

Send me HelloWorld.class

Here is HelloWorld.class

W
eb

 b
ro

w
se

r

Server Client

HelloWorld.html

<html>

<applet code="HelloWorld">
</applet>

</html>

HelloWorld.class

Figure 16.11: The execution of HelloWorld.html deployed in a web server

If you want to deploy the applet on a web server, place these two files in the same folder. The
result is shown in Figure 16.12:

APPLETS 429

Figure 16.12: Result of HelloWorld applet. The applet was deployed on tomcat web
server running in a computer having IP address 172.16.5.81

The <applet> tag takes several other optional attributes. It takes the following general form:
<applet
 code='appletClassFile'
 [codebase='URLOfCodeBase']
 [alt='altervativeText']
 [name='NameOfApplet']
 width='width of Applet window in pixels'
 height='height of Applet window in pixels'
 [align='alignment']
 [vspace='pixels']
 [hspace='pixels']>

The optional attributes are shown in square brackets. Let us discuss the functionality of each of
these attributes.

�code — This attribute specifies the name of the class file (without the extension .class) that
contains the applet’s byte code.

�codebase — It specifies the base URL to be searched for the applet’s executable class file.
If nothing is mentioned, the directory from where the HTML document containing this applet
was downloaded is assumed. In such cases, you must put the applet’s class file and the HTML
document in the same directory. However, different URLs may also be used with some restrictions.

�alt — It specifies a message to be displayed if the browser has been able to understand the
applet, but has failed to execute it for some reason such as the user turning off the applet.

�name — This attribute specifies a name for an applet instance. Other applets use this name to
find it and communicate with it.
width — It is the width of the applet window in pixels.

height — It is the height of the applet window in pixels.

�align — It is used to adjust the position of an applet with respect to the surrounding text and
images. It can have the following values:

•    left — It puts the applet on the left side of the page and causes text to wrap around it.

•    right — It puts the applet on the right side of the page and causes text to wrap around it.

•    top — It aligns the top of the applet with the top of the text.

•    bottom — It aligns the bottom of the applet with the bottom of the text.

•    �middle — This value works differently in different browsers. In some browsers, it aligns the middle of the
text with the middle of the applet. In some other browsers, it aligns the bottom of the text with the middle of
the applet window.

•    �baseline — It aligns the bottom of the applet with the baseline of the text. The baseline is the bottom line
of characters such as a, b, c, d, and e. Some letters such as g, j, and p dangle below this baseline.

vspace — It specifies the space to be left above and below the applet window, in pixels.

hspace — It specifies the space to be left on the left and right of the applet window, in pixels.

430 ADVANCED JAVA PROGRAMMING

16.6	 SECURITY
Java applets were introduced a long time ago to provide animations in web pages. They are not

architected for large applications. So, your applets should be small in size and should not perform
computationally intensive tasks. Moreover, applets, after being downloaded from the server, are
executed on a client machine. Several restrictions are imposed for security reasons. The goal
imposing these restrictions is protecting client computer from potentially vulnerable applets. To
ensure this goal, applet capabilities are restricted, probably more than necessary. You should be
fairly aware of those restrictions if you are going to develop applets. Applets should not be allowed
to do the following:

•	 Reading, writing, creating, destroying, and renaming files on the local file system
•	 Sending sensitive information to other potentially vulnerable computers over the network
•	 Creating potentially destructive/malicious processes
•	 Writing virus programs that destroy your data or perform other malicious events.

Taking these points into consideration, many constraints are imposed, some of which are as
follows:

Limitations on Read and Write
Applets cannot access (i.e., read from or write into) the local file system. This restriction is

imposed on the applets to prevent searching and sending of valuable information, or even formatting
of the hard disk, upon being downloaded onto the client’s computer. Applets cannot create any file
in the local file system.

Limitations on Connectivity
Applets cannot create any network connection or transfer data to a third party server (i.e., the

server which they were downloaded from). If it were allowed, the developer would be able to write
malicious applets that send sensitive information from the client’s computer to other computers.

Limitations on Native Library Access
Applets are not allowed to access native libraries from other languages such as C++ though Java

applications do so. If this was allowed, there would be no way to prevent applets sitting on the client’s
computer from calling native methods that perform malicious actions.

Limitations on Process Creation
Applets are not allowed to spawn new processes from them. If this was allowed, users could write

malicious applets that spawn too many new processes. These processes could make all the resources
of the client computer busy. However, applets are allowed to create threads since threads belong to
the same address space of the applet and cannot do too many malicious things.

Limitations on Events
Applets cannot detect or handle events that occur outside the applet area.

Limitations on Accessing System Properties
Applets are allowed to read some (not potentially vulnerable) system properties but not all.

Table 16.1: shows some of the restricted system properties.

APPLETS 431

Table 16.1: Restricted System properties

System property Description

java.class.path Java classpath

java.home Directory where the Java was installed

user.dir Current working directory of the user

user.home Home directory of the user

user.name Account name of the user

However, there is a category of applets, called privileged applets which may run outside the
security boundary and have privilege to access the client computer. Also note that local applets
(loaded from local file system) have none of the restrictions that are imposed on the applets loaded
over the network. The reason for this is that local applets are considered to be more reliable than
unknown applets from the network.

16.7	 UTILITY METHODS
The Applet class provides a set of useful methods (in addition to the five methods init(), start(),

paint(), stop(), and destroy()) that can be used for different purposes. A brief description of
commonly used methods is given here:
isActive() — Returns true if the applet is active, false otherwise. An applet becomes active just
before the start() method is called and becomes inactive just before the stop() method is called.
resize(int width, int height) — Sets the size of the applet’s window with the specified
width and height
resize(Dimension new) — Sets the size of the applet with the specified dimension
showStatus(String message) — Displays the specified message in the status bar of the browser’s
window
getDocumentBase() — Returns the URL of the document containing this applet
getCodeBase() — Returns the URL of the base directory from which this applet was loaded
getParameter(String param) — Returns the value of the specified parameter passed to this applet
getParameterInfo() — Returns a two-dimensional array of strings that contains information
about the parameters that this applet understands.
getAppletContext() — Returns a java.applet.AppletContext object that represents applet’s
context, which allows us to query, and affects applet’s environment.
getAppletInfo() — Returns information about the applet as a string
getImage(URL url) — Returns an Image object from the specified URL of the image
getImage(URL base, String name) — Returns an Image object from the specified base URL
and relative name of the image
newAudioClip(URL) — Creates an AudioClip object specified by the URL
getAudioClip(URL) — Returns an AudioClip object specified by the absolute URL argument
getAudioClip(URL, String) — Returns an AudioClip object specified by the absolute base
URL and relative name arguments
play(URL) — Plays an audio clip specified by the absolute URL
play(URL, String) — Plays an audio clip specified by the absolute base URL and a relative name

432 ADVANCED JAVA PROGRAMMING

16.8	 USING STATUS BAR
You can display a short message on the status bar of the window using the showStatus() method.

Consider the following applet:
//Status.java
public class Status extends java.applet.Applet {
 public void paint(java.awt.Graphics g) {
 setBackground(java.awt.Color.gray);
 g.drawString("This is in the applet window", 20, 30);

showStatus("This is shown in the status bar");
 }
}

Now, create an HTML document containing an <applet> tag as follows:
<applet code=”Status” width=”300” height=”50”>
</applet>

Alternatively, you can embed in the file Status.java as explained previously. Now run appletviewer
specifying the file name containing the applet as an argument. A sample result is shown in Figure 16.13:

Figure 16.13: Displaying a message on the status bar

16.9	 APPLETCONTEXT INTERFACE
The Applet API provides an interface, java.applet.AppletContext, which can be used to

interact with the environment where the applet runs. For example, we can manipulate the content of
a web page, load a URL, interact with the JavaScript code embedded in the web page, communicate
with other applets running in the same web page, and so on.

An AppletContext object is obtained using getAppletContext() on the Applet object. The
prototype declaration of this method is as follows:

public java.applet.AppletContext getAppletContext();

The following code shows how to obtain an AppletContext object.
AppletContext ac = getAppletContext();

The AppletContext interface provides many useful methods, some of which are mentioned as follows:
AudioClip getAudioC.5lip(URL url);

Returns an AudioClip object from the specified URL
Image getImage(URL url);

Returns an Image object, which can be painted on the screen, from the specified URL
Applet getApplet(String appletName)

Finds and returns an Applet object that exist in the same context, with the specified name

APPLETS 433

Enumeration getApplets();

Finds and returns all applets that exist within the same context
void showDocument(URL url)

Loads the specified URL in the current window
void showDocument(URL url, String targetWindow)

Loads the specified URL in the specified window
void showStatus(String message)

Displays a short message on the status bar
void setStream(String key, InputStream stream)

Binds the specified stream with the specified key in this applet context
InputStream getStream(String key);

Returns the stream associated with the specified key within this applet context
Iterator getStreamKeys();

Returns a list of keys of the streams in this applet context

16.10	 DOCUMENT BASE AND CODE BASE
The document base is the URL of the HTML file containing this applet. The method

getDocumentBase() returns this URL.
The code base, on the other hand, is the name of the base directory from where the applet’s class

file was loaded. The values of the document base and code base are the same, unless the codebase
attribute of the <applet> tag is used to specify a different URL.

Typically, a code base (if specified) refers to a subdirectory of the document base directory where
applet’s class files may be found. This is because browsers restrict applets from accessing arbitrary
directories/URLs. If access permissions are given to the document base, subdirectories have similar
permissions. So, specifying a subdirectory as the code base is always safe. Consider the following
applet (Bases.java), which displays the code base and document base.

//Bases.java
public class Bases extends java.applet.Applet {
 public void paint(java.awt.Graphics g) {
 g.drawString("Document base : " + getDocumentBase(), 20, 10);
 g.drawString("Code base : " + getCodeBase(), 20, 30);
 }
}

Now, compile this applet and create an HTML page containing the following:
<applet code="Bases" codebase="./applets" width="400" height="40">
</applet>

The result is shown in Figure 16.14:

Figure 16.14: Document base and code base

434 ADVANCED JAVA PROGRAMMING

16.11	 PASSING PARAMETER
Like command line arguments, parameters can be passed to applets. Applets can access those

parameters and customize their tasks. This helps applets to function differently in different situations
without recompiling the source code.

Parameters are passed to the applet using the <param> child tag of the <applet> tag. Each <param>
tag, as its name implies, passes one parameter to the surrounding applet. It has two attributes, name
and value. They indicate the name and value of the parameter to be passed respectively. Consider
the following parameter specification:

<applet code="ParamDemo" width="200" height="60">
<param name="fontColor" value="FF0000">

 <param name="bgColor" value="EEEEEE">
</applet>

It means that a ParamDemo applet is to be instantiated with two parameters fontColor and bgColor,
whose values are FF0000 and EEEEEE, respectively.

16.11.1	 Retrieving Parameter
Parameters are retrieved from an applet using the getParameter() method. This methods takes

the name of the parameter as an argument and returns the value of the parameter as a String. The
prototype declaration of this method is as follows:

public java.lang.String getParameter(java.lang.String);

The following code shows how to retrieve the parameters using the getParameter() method. The
retrieved values are then used to set the background and foreground color of the applet.

//ParamDemo.java
import java.awt.*;
import java.applet.*;
public class ParamDemo extends Applet {
 String fontColor, bgColor;
 public void init() {
 fontColor = getParameter("fontColor");
 bgColor = getParameter("bgColor");
 }
 public void paint(Graphics g) {
 setBackground(color(bgColor));
 g.setColor(color(fontColor));
 g.drawString("Font Color :" + fontColor, 20, 20);
 g.drawString("Background color:" + bgColor, 20, 40);
 }
 public Color color(String color) {
 int c = Integer.parseInt(color, 16);
 int red = c / (256 * 256);
 int green = (c / 256) % 256;
 int blue = c % 256;
 return new Color(red, green, blue);
 }
}

Note that the method getParameter() always returns the value of the specified parameter as a
string. It is typically converted to the desired type. For example, in the ParamDemo applet, the value
of the fontColor and bgColor parameters is a hexadecimal RGB value. To get the actual color from
it, we have first converted it into an integer value using the Integer.parseInt() method. Then, we
have extracted red, green, and blue components and finally created a color with these components.

The following code results in the output as shown in Figure 16.15:

APPLETS 435

<applet code="ParamDemo" width="200" height="60">
 <param name="fontColor" value="FFFFFF">
 <param name="bgColor" value="AAAAAA">
</applet>

Figure 16.15: Parameter passing in applets

16.12	 EVENT HANDLING
The event handling mechanism is the same as the Java Application program. The following applet

demonstrates this:
//MouseEventDemo.java
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class MouseEventDemo extends Applet implements MouseListener {
 String msg = "";
 int x = 0, y = 0;
 public void init() {
 addMouseListener(this);
 }
 public void paint(Graphics g) {
 g.drawString(msg, x, y);
 }
 public void mouseClicked(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "clicked";
 repaint();
 }
 public void mouseEntered(MouseEvent me) {
 x = y = 10;
 msg = "entered";
 repaint();
 }
 public void mouseExited(MouseEvent me) {
 x = y = 10;
 msg = "exited";
 repaint();
 }
 public void mousePressed(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "pressed";
 repaint();
 }
 public void mouseReleased(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "released";
 repaint();
 }
}

436 ADVANCED JAVA PROGRAMMING

//MouseEventDemo.java
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class MouseEventDemo extends Applet implements MouseListener {
 String msg = "";
 int x = 0, y = 0;
 public void init() {
 addMouseListener(this);
 }
 public void paint(Graphics g) {
 g.drawString(msg, x, y);
 }
 public void mouseClicked(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "clicked";
 repaint();
 }
 public void mouseEntered(MouseEvent me) {
 x = y = 10;
 msg = "entered";
 repaint();
 }
 public void mouseExited(MouseEvent me) {
 x = y = 10;
 msg = "exited";
 repaint();
 }
 public void mousePressed(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "pressed";
 repaint();
 }
 public void mouseReleased(MouseEvent me) {
 x = me.getX();
 y = me.getY();
 msg = "released";
 repaint();
 }
}

Now create the following applet, which results in the output shown in Figure 16.16:
<applet code="MouseEventDemo" width="200" height="50">
</applet>

Figure 16.16: Event handling in applets

16.13	 COMMUNICATION BETWEEN TWO APPLETS
Sometimes it is necessary for an applet to find other applets and communicate with them to

do a complicated task. This happens when several distinct applets are not enough to accomplish a
task. In this section, we shall only explain how communication among applets running within the
same browser takes place. There is hardly any occasion where applets running in separate browsers
want to communicate. If it is really necessary, they can use various technologies, such as sockets,
RMI etc., which have already been discussed in the previous chapter.

The important part of applet communications is finding other applets. For this purpose the
AppletContext interface provides two methods getApplet() and getApplets().

16.13.1	 Using getApplet() Method
This method is used to find an applet by its name. It has the following form:
Applet getApplet(String appletName);

The getApplet() method returns an Applet object with the specified name. The name of an
applet is one that is specified by the name attribute of the <applet> tag.

For example, the name of the following applet is server.
<applet code="Server" width="200" height="80" name="server">
</applet>

Since the getApplet() method returns a generic Applet object, it is typically converted
to your custom applet object. Suppose, the name of your applet class is Server and an instance

APPLETS 437

is created with the name “server” (i.e., the value of name attribute of <applet> tag is “server”
as shown above). A reference to this applet can be obtained from another applet Client as
follows:

AppletContext ac = getAppletContext();
Server s = (Server) ac.getApplet("server");

Once a reference to an applet is obtained, desired methods can be invoked on it, as and when
required.

16.13.2	 Using getApplets() Method
This method is useful when one applet want to find another applet which has no name (i.e., no name

attribute is specified in <applet> tag). The getApplets() method on the AppletContext interface
takes the following form:

Enumeration getApplets();

Essentially, it returns a list of all (including itself) applets available in the same context as this
applet. In the following code, e is a list of applets.

AppletContext ac = getAppletContext();
Enumeration e = ac.getApplets();

The finder applet can now iterate through the list to get individual applets. Once the finder, gets
references to those applets, it can also invoke methods on them. The following example shows how
to find other applets.

//GetAppletDemo.java
import java.awt.*;
import java.applet.*;
public class GetAppletsDemo extends Applet {
 String id;
 public void init() {
 id = getParameter("id");
 }
 public void paint(Graphics g) {
 g.drawString("This is applet"+id, 20, 20);
 if(id.equals("1")) {
 setBackground(new Color(238,238,238));
 AppletContext ac = getAppletContext();
 java.util.Enumeration e = ac.getApplets();
 g.drawString("Found following applets:", 20, 40);
 int count=1;
 while(e.hasMoreElements()) {
 GetAppletsDemo a = (GetAppletsDemo)e.nextElement();
 String result = "applet's class name = "+a.getClass().getName()+",
id = "+a.id;
 g.drawString(result, 20, 40+count*20);
 count++;
 }
 g.drawString("Found "+count+"applets", 20, 40+count*40);
 }
 else {
 setBackground(new Color(170,170,170));
 }
 }
}

The following applet generates the output shown in Figure 16.17:
<applet code="GetAppletsDemo" width="500" height="40">
</applet>

438 ADVANCED JAVA PROGRAMMING

Figure 16.17: Finding all applets

16.13.3	 A Sample Application
Now, let us develop a simple but elegant application that demonstrates how two applets

communicate with each other. In this application, the applet Client sends an integer to another
applet Server. The Server applet simply returns the square of the number. Finally, Client displays
the result. The source code for the Server applet (Server.java) is as follows.

//Server.java
public class Server extends Applet {
 int val = 1, result = 0;
 public void paint(java.awt.Graphics g) {
 setBackground(java.awt.Color.LIGHT_GRAY);
 g.drawString("Server", 20, 20);
 g.drawString("received :" + String.valueOf(val), 20, 40);
 g.drawString("Sent :" + String.valueOf(result), 20, 60);
 }
 public int sqr(int n) {
 val = n;
 result = n * n;
 repaint();
 return result;
 }
}

The Server applet has a public method sqr(), which takes an integer and returns its square. The
Client applet will use this method to send an integer and get the result. The source code for the
Client applet (Client.java) is as follows:

//Client.java
import java.awt.*;
import java.applet.*;
public class Client extends Applet {
 int n = 2, result;
 Server s;
 public void init() {
 String param = getParameter("calculator");
 AppletContext ac = getAppletContext();
 Server s = (Server)ac.getApplet(param);
 result = s.sqr(n);
 }
 public void paint(Graphics g) {
 setBackground(Color.LIGHT_GRAY);
 g.drawString("Client", 20,20);
 g.drawString("Sent: \n"+String.valueOf(n), 20,40);
 g.drawString("Recived: "+String.valueOf(result), 20,60);
 }
}

APPLETS 439

//Client.java
import java.awt.*;
import java.applet.*;
public class Client extends Applet {
 int n = 2, result;
 Server s;
 public void init() {
 String param = getParameter("calculator");
 AppletContext ac = getAppletContext();
 Server s = (Server)ac.getApplet(param);
 result = s.sqr(n);
 }
 public void paint(Graphics g) {
 setBackground(Color.LIGHT_GRAY);
 g.drawString("Client", 20,20);
 g.drawString("Sent: \n"+String.valueOf(n), 20,40);
 g.drawString("Recived: "+String.valueOf(result), 20,60);
 }
}

Compile these two files and create an HTML file containing the applet declaration as follows:
<applet code="Server" width="200" height="80" name="server">
</applet>

<applet code="Client" width="200" height="80" name="client">
<param name="calculator" value="server">
</applet>

Create a Server applet first, with the name “server”. Now, create a Client applet and pass the
parameter calculator with the value “server”. The Client applet first gets the value of the parameter.
It then finds the applet having this name. If you open this HTML document in a browser, it appears
as shown in Figure 16.18:

Figure 16.18: Communication between two applets

16.14	 LOADING WEB PAGES
You can load a web page in the browser’s window using the showDocument() method on the

AppletContext object. It takes the following forms:
void showDocument(URL url)
void showDocument(URL url, String targetWindow)

The first form takes a URL argument and loads it in the current window. The second form
allows us to load the URL in the specified window. The second argument can have the following
values:

•    _blank — Loads the URL in a new unnamed window

•    targetWindow — Loads the URL in the window having the name targetWindow

•    _self — Loads the URL in the window containing this applet

•    _parent — Loads the URL of the parent window containing this applet

•    _top — Loads the URL in the top-level window.

440 ADVANCED JAVA PROGRAMMING

The following applet loads the URL http://www.yahoo.com in the applet’s window.
/LoadDemo.java
import java.awt.*;
import java.applet.*;
import java.net.*;
public class LoadDemo extends Applet {
 AppletContext ac; URL url;
 public void start() {
 ac = getAppletContext();
 url = getCodeBase();
 }
 public void paint(Graphics g) {
 try {

ac.showDocument(new URL("http://www.yahoo.com"));
 }catch(Exception e) {showStatus("URL not found");}
 }
}

The following applet declaration results in the output as shown in Figure 16.19:
<applet code="LoadDemo" width="200" height="80">
</applet>

Figure 16.19: Loading a URL using applet

Reproduced with permission of Yahoo. © 2014 Yahoo. YAHOO! and the YAHOO! logo are registered
trademarks of Yahoo.

16.15	 INTERACTING WITH JAVASCRIPT CODE
Java applets can invoke JavaScript functions that are present in the same html document as the

applet. The following applet calls the JavaScrip doAlert() function.
import java.applet.*;
import java.net.*;

public class AppletToJavaScript extends Applet{
 public void init(){
 String msg = "Hello from Java (using javascript alert)";
 try {
 getAppletContext().showDocument
 (new URL("javascript:doAlert(\"" + msg +"\")"));
 }
 catch (MalformedURLException me) { }
 }
}

APPLETS 441

Now consider the following html file containing a JavaScript doAlert() function and an applet.
<HTML><HEAD></HEAD><BODY>
<SCRIPT>
function doAlert(s) {
 alert(s);
 }

</SCRIPT>
<APPLET CODE="AppletToJavaScript"
 NAME="myApplet" MAYSCRIPT
 HEIGHT=10 WIDTH=10>
</APPLET>
</BODY>
</HTML>

A sample output is shown in Figure 16.20:

Figure 16.20: Calling a JavaScript function from an applet

KEYWORDS
Active Applets—Applets that are being viewed by
the user

Applet class—Base class of all applets

Applet Communication—The process by which
applets find other applets and exchange information.

AppletContext—It is the interface that provides
methods to query and affect the environment where
the applet is running.

Applet tag—An HTML tag used to embed applets in
HTML documents

Appletviewer—An application provided by the JDK to
view your applets without any browser

Applet—Tiny Java programs that run within the context
of a web browser

Codebase—Code base is the name of the base
directory from where the applet’s class file was loaded.

Document base—The document base is URL of the
HTML file that contains an applet

Graphics—An object that represents the canvas of
the applet

Inactive Applets—Applets that are stopped possibly
because the user selected another window

JApplet—Swing extension of the Applet class

Life Cycle— The stages through which an applet
passes, from its creation to its destruction.

Param tag—Used to pass parameters to the applets

SUMMARY
We started this chapter with the execution philosophy
of applets. Applets are tiny Java programs that
run within the context of web browsers. They are

embedded in HTML documents. Java-enabled web
browsers download the class files for applets and
execute them.

442 ADVANCED JAVA PROGRAMMING

Every applet must extend the java.applet.Applet
class, which provides interfaces to work with the
applets. The Applet class has five life cycle methods:
init(), start(), paint(), stop(), and destroy().
These methods are executed in that order, from the
creation of an applet to its destruction. Our applet class
should override these methods as and when necessary.
We can also add other methods in the applet class.

Applets are compiled using the same procedure
as Java application programs are compiled. HTML
provides two tags to work with the applets: <applet>
and <param>. The applets are embedded in an HTML
document using the <applet> tag. It has several
attributes that are used to customize applets.

Since applets are run in the client computer,
restrictions are imposed on applets so that they cannot
perform any malicious events. Developers of applets
should be aware of these limitations.

The <param> tag, which is a child tag of the <applet>
tag, is used to pass parameters to the applets. Applets
can retrieve parameters using the getParameter()
method. We described how to pass and retrieve
parameters with extensive examples.

The Applet class also provides several other
methods that are used to query and affect the
properties of applets. Then we described the event
handling mechanism in applets. Event handling in
applets is exactly the same as in other Java AWT
application programs.

Applets can find other applets and communicate with
them. We developed a sample application consisting
of two applets to demonstrate how applets can
communicate.

An applet can load web pages in the browser’s
window using the showDocument() method.

EXERCISES
Objective-type Questions

	 1.	 What is an Applet?
	 (a)	 The name of a database
	 (b)	 A kind of fruit
	 (c)	 A Java program that is run through a web

browser
	 (d)	 An interactive website

	 2.	 What is the difference between a Java Applet and
a Java application program?

	 (a)	 All the methods in an applet class are
private.

	 (b)	 Applets can create GUI, applications
cannot.

	 (c)	 Applets are run in web browsers but
applications are not.

	 (d)	 An application is a small program, whereas
an applet is large.

	 3.	 What is the full form of AWT?
	 (a)	 Adjust Window Table
	 (b)	 Abstract Window Toolkit

	 (c)	 Auto Window Transfer
	 (d)	 Advanced Window Toolkit

	 4.	 Which one of the following is a valid declaration
of an applet?

	 (a)	 class AnApplet implements Applet {
	 (b)	 public class AnApplet extends applet

implements Runnable {
	 (c)	 abstract class AnApplet extends java.

applet.Applet {
	 (d)	 public class AnApplet extends java.applet.

Applet {

	 5.	 Why does an applet have no main() method?
	 (a)	 The browser acts as the main. The applet

provides methods for the browser.
	 (b)	 The paint() method is like the main method

for an applet.
	 (c)	 Programs that do graphics do not need a

main.
	 (d)	 Only simple programs need a main.

WEB RESOURCES
http://java.sun.com/docs/books/tutorial/

deployment/applet/index.html
Java Applets Tutorial

http://java.sun.com/applets/
Applets: Code samples and Apps.

http://en.wikipedia.org/wiki/Applet
Applets

APPLETS 443

	 6.	 Which of the following classes must your applet
extend?

	 (a)	 Component	 (c)	 Applet
	 (b)	 Graphics	 (d)	 AWT

	 7.	 What is the function of the Graphics object?
	 (a)	 It represents the canvas of the applet and

provides drawing methods.
	 (b)	 It represents the status bar.
	 (c)	 It represents the entire screen of the

computer monitor.
	 (d)	 It represents the applet background.

	 8.	 Which of the following codes is used to display
the string “Hello World!” at X=20 Y=50 location?
Assume that g holds a Graphics object reference.

	 (a)	 g.println(“Hello World!”);
	 (b)	 drawString(“Hello World!”, 20, 50);
	 (c)	 g.drawString(20, 50, “Hello World!”);
	 (d)	 g.drawString(“Hello World!”, 20, 50);

	 9.	 Which of the following sets the background color
of the applet to white?

	 (a)	 setBackColor(gray);
	 (b)	 setBackGround(gray);
	 (c)	 setBackGround(Color.gray);
	 (d)	 setBackColor(Color.gray);

	10.	 Which of the following packages must be imported
to get the class Applet?

	 (a)	 java.applet.Applet
	 (b)	 java.util.*
	 (c)	 java.awt.*
	 (d)	 javax.swing.*

	11.	 Which of the following must be imported to get the
graphics components?

	 (a)	 java.util.*	 (c)	 java.Graphics
	 (b)	 java.awt.* 	 (d)	 java.lang.*

	12.	 Which of the following tags is used to pass
parameters to applets?

	 (a)	 <parameter>	 (c)	 <argc>
	 (b)	 <para>	 (d)	 <param>

	13.	 Which of the following tags is used to insert an
applet into an HTML document?

	 (a)	 <applet>	 (c)	 <insertapplet>
	 (b)	 <body>	 (d)	 <embedapplet>

	14.	 Which of the following methods is called by the
browser when it wishes to display on the monitor?

	 (a)	 draw()	 (c)	 display()
	 (b)	 show()	 (d)	 paint()

	15.	 Can the source code for your applet be compiled
by the usual javac compiler?

	 (a)	 No, because applets have no main()
method.

	 (b)	 Yes, if you are going to run it from the DOS
prompt.

	 (c)	 Yes, an applet is just another class as far
as the compiler is concerned.

	 (d)	 No, the web browser compiles the code.

	16.	 Which of the following methods is used to draw a
rectangle filled in with the current color?

	 (a)	 fillRect()	 (c)	 fillOval()
	 (b)	 drawRect()	 (d)	 drawOval()

	17.	 If you are using the Graphics object g and wish
to change the pen color to blue, what should
you do?

	 (a)	 g.setPen(Color.blue)
	 (b)	 setBackground(Color.blue)
	 (c)	 g.setColor(Color.blue)
	 (d)	 g.setBlue()

	18.	 Which of the following statements is true?
	 (a)	 Applets have main() function.
	 (b)	 Applets cannot use System.out.print()

method.
	 (c)	 Applets are JavaScript programs.
	 (d)	 Applets run within a web browser.

	19.	 Which of the following sequences is the correct
order of method call?

	 (a)	 start(), init(), paint(), stop(), destroy()
	 (b)	 init(), paint(), start(), stop(), destroy()
	 (c)	 init(), start(), paint(), stop(), destroy()
	 (d)	 start(), init(), paint(), destroy(), stop()

	20.	 Which of the following is not a method of the Applet
class?

	 (a)	 move()	 (c)	 play()
	 (b)	 resize()	 (d)	 isActive()

Subjective-type Questions

	 1.	 What are applets?

	 2.	 Explain why applets do not have constructors.

	 3.	 Explain briefly the applet’s life cycle methods.

	 4.	 What are the differences between Java applets
and Java applications?

	 5.	 Write the steps involved in applet development.

444 ADVANCED JAVA PROGRAMMING

	 6.	 Write the sequence of applet’s life cycle methods
in which they are called.

	 7.	 Demonstrate with example, how parameters are
passed to applets.

	 8.	 Describe how parameters are retrieved from an
applet.

	 9.	 Demonstrate with examples, how applets can
communicate with each other.

	10.	 Can applets on different pages communicate with
each other?

	11.	 How do you determine the width and height of an
applet?

	12.	 Show how URLs are loaded dynamically using
applets.

	13.	 Which classes and interfaces does the Applet
class contain?

	14.	 Which tags are used in HTML to display an
applet?

	15.	 Which methods are available to retrieve information
about an applet?

	16.	 Which method is used to display a string on the
applet’s window? Which function is this method
included in?

CHAPTER – 17

Java XML-RPC

Key Objectives

After completing this chapter readers will be able to—
•  understand the operational principle of XML-RPC
•  get an idea about Remote Procedure Call
•  learn how to use Apache XML-RPC Java library
•  write simple XML-RPC clients and servers
•  configure Apache XML-RPC servlet to handle XML-RPC requests
•  get an idea about introspection mechanism

17.1	 INTRODUCTION
XML-RPC, as its name suggests, is an XML-based Remote Procedure Call (RPC) protocol. In

this protocol, eXtensible Markup Language (XML) is used to describe a Remote Procedure Call.
Describing an RPC means encoding method invocation information (such as method name, parameter
list etc.) and reply from the method. These encoded XML messages are then exchanged between
applications using the HyperText Transfer Protocol (HTTP).

It is a very simple and portable way to call remote procedures over HTTP [Figure 17.1:]. The
XML-RPC specification promotes a platform-independent framework for describing remote procedure
call syntax. So, it can be used with almost all programming languages such as Java, C, C++, Python,
PHP, Perl etc. In this chapter, we shall focus on how to use this technology using Java.

XML-RPC was first proposed by Dave Winer in 1998. The primary goal of this technology was
to enable heterogeneous application components, running on heterogeneous platforms and operating
systems, to interoperate over network connections. The secondary goal was to use a standard protocol
to transport RPC messages. Consequently, XML was used to describe messages and the well-known
HTTP was used as its transport protocol. The use of HTTP as a transport protocol makes it relatively
easier to integrate XML-RPC with the existing web-enabled applications spreading across the
computing landscape. Dave Winer described this technology as “RPC over HTTP via XML”.

446  ADVANCED JAVA PROGRAMMING

®

XML-RPC Client XML-RPC Server

POST /xmlrpc/RPC HTTP/1.0
Content-Type: text/xml
Content-Length: 154

<?xml version="1.0"?>
<methodCall>
<methodName>fact</methodName>
<params>
<param>
<value><int>5</int></value>

</param>
</params>

</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 142

<?xml version="1.0">
<methodResponse>
<params>
<param>
<value><i4>120</i4></value>

</param>
</params>

</methodResponse>

XML-RPC request

XML-RPC response

Network

Figure 17.1:  XML-RPC Architecture

The extended version has evolved into what is currently known as SOAP (Simple Object Access
Protocol).

Like other RPC mechanisms, this protocol also deals with two primary components: a server
program and a client program. The server program is one which implements one or more methods,
invokes them on request and sends result (if any) back. The client program, on the other hand, makes
a request to the server to invoke a method with necessary parameters (if any).

These requests and responses are encoded as a standard XML format known as XML messages
[See Figure 17.1:].

17.2	 XML-RPC OPERATIONAL PRINCIPLE
The method call and response in XML-RPC happens broadly in the following way [Figure 17.2:]:

•	 A client encodes the name of a function to be called and its arguments in an XML message as described by
XML-RPC specification.

•	 The client then creates an HTTP post request message with the XML message as body and sends it to the server
over the network using HTTP.

•	 Upon receiving this request message, the server forwards it to an XML-RPC processor.
•	 The XML-RPC processor parses the message to obtain the name of the function to be called and its argument list.
•	 The server then calls the function with the specified arguments.
•	 The return value of the function (if any) is again encoded in an XML message as described by XML-RPC

specification.
•	 The server then creates an HTTP response message with this and the XML message as body and sends it back

to the client using HTTP.
•	 Finally, the client, upon receiving the response message, extracts the information and performs further processing.

JAVA XML-RPC  447

1. Builds an XML document specifying method
name and its parameters.

2. Sends an HTTP POST request message
whose payload (body) is the XML
document.

8. Receives the message and uses Content-
Length header to read the XML document..

9. Parses the XML document and reports the
result or error information to the user.

Time

3. Receives the message and uses Content-Length
header to read the XML document.

4. Parses the XML document, extracts the method
name and parameters for the method to be
invoked.

5. Looks for the specified method and, if found,
calls it with the specified parameters.

6. Builds an XML document including the return
value if the method call is successful. If an error
occurs during method call, XML document
contains error information

7. Sends an HTTP response message whose
payload (body) is this XML document.

Client Server

Figure 17.2:  XML-RPC timing diagram

Before developing XML-RPC-based applications, let us now have an overview of supported
data types.

17.3	 DATA TYPES
A method is usually invoked with some data in the form of parameters. The response from that

method may also contain data as a return value. However, unlike method call, which may contain
multiple parameters, the response contains at most one return value. A data item in an XML-RPC
request or response is embedded within a <value>...</value> element. To represent these values,
XML-RPC specification defines six basic data types and two compound data types. Only values
of these types may be passed to or returned from the remote method. Note that all the data is written
in XML as string values. The specific data type tags are used to indicate how a server/client should
interpret the data.

17.3.1	 Basic Data Types
XML-RPC specification defines six types for integer, floating point number, Boolean, string,

date-time and binary data. These types (except string) are always embedded in <value> elements.
Only strings may be embedded in a <value> element directly omitting the <string> element.

Integer
For integers, XML-RPC specification has defined only one type. This type represents a 32-bit

(four-byte) signed integer ranging from -2,147,483,648 (-231) to 2,147,483,647 (231-1). It is represented
by the tag <int> or <i4>, where i4 stands for 4-byte integer. The following shows some of the
examples of integer types:

448  ADVANCED JAVA PROGRAMMING

<i4>23</i4>
<i4>-7</i4>
<i4>+3</i4>
<int>3</int>
<int>-2</int>
<int>+4</int>

Note that an implementation of XML-RPC specification must recognize this type for input
parameters.

Floating point numbers
For floating point numbers, XML-RPC specification provides a type that refers to 64-bit double

precision signed floating point numbers ranging from ~4.94 × 10−324 to ~1.79 × 10308. The type is
indicated by the tag <double>. The following shows some of the examples of floating point types:

<double>3.42</double>
<double>-2.13</double>
<double>-0.13</double>
<double>+1.22</double>

Boolean values
A type is also incorporated to express Boolean values. This type represents only values 1 or 0

which corresponds to Boolean true and false respectively. It is represented by the tag <boolean>.
Here are all the possible representations of Boolean values in XML-RPC:

<boolean>1</boolean>
<boolean>0</boolean>

Strings
XMP-RPC string type refers to the sequence of ASCII characters. A string value is represented

using <string> tag. The following is an example representation of a string value in XML-RPC:
<string>RPC->Remote Procedure Call</string>

However, strings may be embedded in a <value> element directly omitting the <string> element.
Note that <value> tag is used as the container of all other types. An XML-RPC implementation must
understand both representations. So, the following representation is also valid and is usually used.

<value>RPC->Remote Procedure Call</value>

XML characters in the form of entity reference are permissible in a string. For example, if
we want to use special XML characters, such as ‘&’ and ‘<’, in a string value, we must use the
corresponding entity references (e.g., & for & and > for > etc.). The following are some valid
string representations that use special characters:

<string>XML & RPC</string>
<string>4 > 3</string>

The parsers of this XML document should interpret the first string as XML & RPC and the second
as 4 > 3 as they use the XML entities for the special characters & and >.

Date and Time
Dates and times are represented in XML-RPC using a single type and is indicated using dateTime.

iso8601 element. This type conforms to the ISO 8601 standard and hence has this name. It allows us
to specify both date and time simultaneously in the CCYYMMDDTHH:MM:SS format. Here is one example:

<dateTime.iso8601>20130902T06:49:21</dateTime.iso8601>

This indicates the date “2nd September, 2013” and time “06:49:21” (using the 24-hour clock
format). The following is another example:

JAVA XML-RPC  449

<dateTime.iso8601>20141015T15:45:00</dateTime.iso8601>

The above element represents the date “15th October, 2014” and time “15:45:00” (when this
manuscript is being developed).

Binary
We know that control characters (having ASCII code lower than that of space character (32)) are

not allowed in XML. So, arbitrary binary data cannot be transported using a sequence of integer values
as they may contain these control characters. For this reason, XML-RPC specification introduced
a type for raw binary data. This is indicated using <base64> tag. A value of this type is a base64
encoded value from binary data. The encoding technique is described in RFC 2045. The following
is an example encoding of the string "Hi!":

<base64>SGkh</base64>

Similarly, the following example shows the encoding of the string “Hello World!”
<base64>SGVsbG8gV29ybGQh</base64>

17.3.2	 Compound Data Types
The basic types represent simple values and are sufficient for simple and less complex applications.

However, complex applications may require more complex types to represent compound structure
such as array, struct etc. Fortunately, XML-RPC provides two types array and struct for these
compound values.

Array
In XML-RPC, an array is a sequence of data items. However, unlike traditional array where array

elements are of same type, XML-RPC allows array elements to be of different types. Also there is no
provision for numbering array elements. In general, an array is represented as follows:

<array>
 <data>
 <value>An XML-RPC value</value>
 <value>An XML-RPC value</value>
 …
 <value>An XML-RPC value</value>
 </data>
</array>

The sequence of values are written between <array><data> and </data></array>. Values are
specified using <value> tag. For example, the following shows an array of 3 integers:

<array>
 <data>
 <value><int>2</int></value>
 <value><int>3</int></value>
 <value><int>4</int></value>
 </data>
</array>

As mentioned earlier, array elements need not be of the same type. So, the following XML-RPC
array is valid.

<array>
 <data>
 <value><string>B. S. Roy</string></value>
 <value><int>35</int></value>
 <value><double>48.34</double></value>
 </data>
</array>

450  ADVANCED JAVA PROGRAMMING

In the above example, the array elements represent the name, age and weight of a person respectively.
The array elements need not always be basic type. They may be any valid compound types as

well. This enables us to create a multidimensional array by embedding arrays within an array. The
following shows a two-dimensional array of 2 rows and 3 columns:

<array>
 <data>
 <value>
 <array>
 <data>
 <value><int>1</int></value>
 <value><int>2</int></value>
 <value><int>3</int></value>
 </data>
 </array>
 </value>
 <value>
 <array>
 <data>
 <value><int>4</int></value>
 <value><int>5</int></value>
 <value><int>6</int></value>
 </data>
 </array>
 </value>
 </data>
</array>

Struct
A struct in XML-RPC is a sequence of name-value pair. Each pair is said to be a member of struct

and is represented by <member> element. The name of a member is an ASCII string and the value is
any valid XML-RPC value including array or struct. A struct has the following general form:

<struct>
 <member>
 <name>name1</name>
 <value>value1</value>
 </member>
 <member>
 <name>name2</name>
 <value>value2</value>
 </member>
 …
 <member>
 <name>nameN</name>
 <value>valueN</value>
 </member>
</struct>

The following is an example of struct that stores information of a person:
<struct>
 <member>
 <name>firstName</name>
 <value><string>Banhishikha</string></value>
 </member>
 <member>
 <name>lastName</name>
 <value><string>Roy</string></value>
 </member>
 <member>
 <name>age</name>
 <value><int>35</int></value>
 </member>
</struct>

JAVA XML-RPC  451

Similarly, the following example contains information of a method call:
<struct>
 <member>
 <name>methodName</name>
 <value><string>sqrt</string></value>
 </member>
 <member>
 <name>y</name>
 <value><int>4</int></value>
 </member>
</struct>

This represents a call of a method sqrt with parameter 4. A struct may contain arrays or arrays
may also contain struct. This enables XML-RPC programmers to describe even an extremely complex
structure in a very easy way. A summary of XML-RPC data types is shown in Table 17.1:

Table 17.1:  Basic data types supported by XML-RPC

Type Range Examples

int or i4 4-byte integers from 2,147,483,648
(-231) to 2,147,483,647 (231-1).

<int>2</int>
<i4>3</i4>
<int>-4</int>

double 64-bit double precision floating-point
numbers from ~4.94 × 10−324 to
~1.79 × 10308

<double>3.42</double>
<double>-2.13</double>
<double>-0.13</double>

Boolean true (1) or false (0) <boolean>1</boolean>
<boolean>0</boolean>

String sequence of ASCII of characters <string>XML</string>
<string>RPC</string>

dateTime.
iso8601

ISO8601 date and time in
CCYYMMDDTHH:MM:SS format

<dateTime.iso8601>20130902T06:49:21
</dateTime.iso8601>

Base64 Base-64 encoded character sequence
as defined in RFC 2045

<base64>SGkh</base64>

17.4	 XML-RPC MESSAGES
In XML-RPC, method call and response [Figure 17.1:] are described as HTTP messages having

body written in XML. The specification defines three types of messages [Figure 17.3:]: request
message, response message and fault message.

XML-RPC messages

Request message Response message Fault message

HTTP response messagesHTTP request message

Figure 17.3:  XML-RPC messages

XML-RPC request messages are a kind of HTTP request messages, whereas XML-RPC responses
and fault messages are HTTP response messages. The following section describes the format of
these messages briefly. Understanding message formats helps programmers to write their own
implementation of XML-RPC specification as well as to debug and to establish connections between
systems in different environments.

452  ADVANCED JAVA PROGRAMMING

17.4.1	 Request Message
An XML-RPC request message is basically an HTTP POST request message whose body is an

XML document. This XML message body encodes the method call syntax. The message has the
root element <methodCall> that contains method name and its arguments. The name of the method
is represented by the <methodName> element and argument list is provided using <params> element.
The <params> element contains a list of <param> elements one for each argument. The value of the
argument is specified by the <value> element. For example, to invoke a method called fact, which
takes an integer argument, the body of XML-RPC request message looks like this:

<?xml version="1.0"?>
<methodCall>
 <methodName>fact</methodName>
 <params>
 <param>
 <value><int>5</int></value>
 </param>
 </params>
</methodCall>

And the HTTP request line and header look something like this:
POST /xmlrpc/RPC HTTP/1.0
User-Agent: Apache XML-RPC
Host: client.host.name
Content-Type: text/xml
Content-Length: length of XML body in bytes

XML-RPC specification does not provide the format of the URL (Uniform Resource Locator) in
the request line and can be empty. In the above example, the /xmlrpc/RPC is the URL of the processor
who will process this request message. The next two lines of the header specify the User-Agent and
Host. The User-Agent is the name of the software making the request. The Host is the URL of the
client. Note that, these two headers are not mandatory for most of XML-RPC servers.

The last two lines specify mandatory headers Content-Type and Content-Length. The value of
Content-Type header is always text/xml as the content is an XML document. The value of Content-
Length is the size of XML message body in number of bytes.

So, the XML-RPC request message (which is an HTTP POST request message) finally looks as
shown in Figure 17.4:

Content-Type: text/xml
Content-Length: 154

<?xml version="1.0"? >
<methodCall>

<methodName>fact</methodName>
<params>

<param>
<value><int>5</int></value>

</param>
</params>

</methodCall>

POST /xmlrpc/RPC HTTP/1.0 Request line

Headers

Blank line

Body

Figure 17.4:  A sample XML-RPC Request message

Note that the content of <methodName> element is a sequence of alphanumeric characters,
underscore, dot, colon, and back slash. The interpretation of this string depends entirely on the server.
The string may be the exact name of the method (as shown in the previous example) or method name

JAVA XML-RPC  453

with object name as a prefix, or may be a name of a file containing a script to be executed etc. The
server of the Apache XML-RPC Java library (that we shall use to demonstrate XML-RPC) expects
this string as the following format:

objectName.methodName

Here objectName is the name of the object assigned by the server during its creation and
methodName is the actual name of the method to be invoked.

Note that <params> tag may be absent if a method does not take any parameter. So the following
is an example of method call without any parameter.

<?xml version="1.0"?>
<methodCall>
 <methodName>sayHello</methodName>

 </methodCall>

The <value> tag under <param> contains any of the six basic types or two compound types.

17.4.2	 Response Message
An XML-RPC response message is basically an HTTP response message whose body is an XML

document. This message is sent by the XML-RPC server as a result of method call. In the response
line, the server should always return ‘200 OK’ unless an HTTP error occurs. A fault is represented
by a separate message and is described in the next section. The header section should contain two
headers Content-Type and Content-Length. The value of Content-Type header should be text/
xml and the value of Content-Length is the correct number of bytes in the XML message body.

The body of the message is an XML document whose root element is <methodResponse>. This tag
contains a single <params> tag, which contains a single <param> tag. Since a method can only return
one value, there exists only one <param> tag. An example of a response message body is shown below:

<?xml version="1.0">
 <methodResponse>
 <params>
 <param>
 <value><i4>120</i4></value>
 </param>
 </params>
</methodResponse>

The HTTP response line and header look something like this:
HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 142

So, the XML-RPC response message (which is an HTTP response message) finally looks as
shown in Figure 17.5:

Content-Type: text/xml
Content-Length: 142

<?xml version="1.0">
<methodResponse>

<params>
<param>

<value><i4>120</i4></value>
</param>

</params>
</methodResponse>

HTTP/1.1 200 OK Response line

Headers

Blank line

Body

Figure 17.5:  A sample XML-RPC Response message

454  ADVANCED JAVA PROGRAMMING

17.4.3	 Fault Message
If XML-RPC server faces some problem processing the request, it notifies the client with a special

message called fault message. Note that a fault message is also a response message except that it has
a different format. In this case, the <methodResponse> tag contains <fault> tag, which designates the
message as a fault message. The <fault> contains a <value>, which is a <struct> containing two
members. The name of the first member is faultCode, whose value is an <int>, which indicates the
error code. The name of the second member is faultString, whose value is a <string> which gives
an explanation about the error occurred. The following is an example fault message:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 365

<?xml version="1.0"?>
 <methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>0</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value>No such handler: fact1</value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

This tells us that a fault occurred as an invalid method ‘fact1’ was mentioned in the request by
the client.

17.5	 JAVA XML-RPC
It is well-known that Java is well ahead of its competitors, as far as networking applications are

concerned due to its extremely powerful library. So, there is nothing to get surprised if we choose
Java as the programming language to develop XML-RPC-based networking applications.

In this section, we shall demonstrate how to build XML-RPC client and server using Java. It describes
how to build a variety of different XML-RPC clients, servers and handlers. Some of these use built-in
functionality to set up XML-RPC servers and handlers, whereas others prefer handling them directly.

For this purpose, we shall use Apache XML-RPC which is a popular Java implementation of
XML-RPC. The current version 3 is fully compliant with the XML-RPC specification. It includes
core functionalities such as:

•	 Interfaces and classes to create XML-RPC client and server quickly
•	 Light-weight web server to build up XML-RPC on systems that have no web server installed in them
•	 A light-weight servlet engine for efficiently servicing clients even under extremely high load

Moreover, we may also enable several vendor extensions which enhances the power of XML-
RPC greatly.

•	 All primitive Java types are supported, including long, byte, short, and double.
•	 Calendar objects are supported. In particular, timezone may be set and time in milliseconds may be sent/received.

JAVA XML-RPC  455

•	 It supports transmitting of DOM nodes, or JAXB objects as well as objects implementing the java.
io.Serializable interface.

•	 Instead of default mode, which is based on large internal byte arrays, both server and client can operate in a
streaming mode, which preserves resources much better

17.6	 INSTALLING THE APACHE XML-RPC JAVA LIBRARY
The web site for Apache XML-RPC Library for Java is http://ws.apache.org/xmlrpc.

Additional resources (such as documentation) are also available in this site. The examples in this
chapter use org.apache.xmlrpc package (and other sub packages), which is also available here.

To use Apache XML-RPC Java library, download the necessary .jar files from http://
ws.apache.org/xmlrpc/download.html. This is an open source software, which is another reason
for choosing it. We downloaded the zip file apache-xmlrpc-3.1.3-bin.zip and unzipped it in E:
drive. It creates the following directory structure:

The docs directory contains documentation and the lib directory contains XML-RPC Java library
as 5 (five) JAR (Java ARchive) files as follows:

commons-logging-1.1.jar
ws-commons-util-1.0.2.jar
xmlrpc-client-3.1.3.jar
xmlrpc-common-3.1.3.jar
xmlrpc-server-3.1.3.jar

These .jar files are necessary to develop XMP-RPC client–server application. The Java package
org.apache.xmlrpc contains useful classes for XML-RPC Java clients and server (e.g. XmlRpcClient,
XmlRpcServer, WebServer, XmlRpcServlet etc.) Include all .jar files in CLASSPATH environment
variable. Alternatively, they can be specified during compilation and execution of the application.

17.7	 XML-RPC VERSUS JAVA DATA TYPES
Since, we are going to develop XML-RPC application using Java, we must know which XML-

RPC types map to which Java types. Apache XML-RPC also provides some extended data types,
which may be used if required. However, both client and server must then use Apache XML-RPC.
A summary of all these mappings is provided in Table 17.2:

Table 17.2:  XML-RPC to Java mapping

Basic data Apache extension

XML Tag Name Java Type XML Tag Name Java Type

i4, or int Integer ex:nil None

boolean Boolean ex:i1 Byte

string String ex:float Float

double Double ex:i8 Long

dateTime.iso8601 java.util.Date ex:dom org.w3c.dom.Node

(Contd )

456  ADVANCED JAVA PROGRAMMING

Table 17.2:  (Contd )

base64 byte[] ex:i2 Short

struct java.util.Map ex:serializable java.io.Serializable

array Object[] ex:bigdecimal BigDecimal

ex:biginteger BigInteger

ex:dateTime java.util.Calendar

17.8	 EXAMPLE
In this section, we shall develop a simple client–server application using XML-RPC. In this

application, the server creates a factorial object on which a single method fact() can be invoked.
The client invokes this method using the procedure described in XML-RPC specification.

17.8.1	 Writing the server
Before setting up the server, let us develop a class for factorial object. The following is the source

code of class (stored in FactImpl.java file):
public class FactImpl {
 public int fact(int n) {
 System.out.println("Received : "+n);
 int prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 System.out.println("Sent : "+prod);
 return prod;
 }
}

This class has only on method fact() that takes a single integer (should be non-negative) and
returns the factorial of that integer.

Let us now develop a server program that is capable of handling a method invocation request
coming from clients over HTTP as XML-RPC request message. The simplest way to do this is to
create an instance of org.apache.xmlrpc.webserver.WebServer as follows:

WebServer webServer = new WebServer(6789);

A WebServer object is a minimal HTTP server that can handle only XML-RPC messages. It
enables us to set up XML-RPC in hosts even if they have no web server installed in them previously.
Note that the WebServer class does not implement full HTTP and is not capable of serving web pages.
The above webServer listens for XML-RPC requests on the port 6789.

This webServer itself is not capable of calling a method on an object. This functionality is provided
by org.apache.xmlrpc.server.XmlRpcServer class. So, internally, it maintains an XmlRpcServer
object, a reference to which may be obtained as follows:

XmlRpcServer rpcServer = webServer.getXmlRpcServer();

The XmlRpcServer class has a method execute(),which can invoke a method for a given
XmlRpcRequest. This XmlRpcRequest class encapsulates an XML-RPC request. The functionality
of a WebServer object is as follows:

•	 Upon receiving an XML-RPC request message, it processes its header and XML body.
•	 It then extracts method name and parameters from the given XML body.

•	 It creates an XmlRpcRequest object with this information.

•	 It then invokes the execute() method on its internal XmlRpcServer object passing XmlRpcRequest
object and records the result

JAVA XML-RPC  457

•	 Finally, it creates an XML body with this result for the XML-RPC response message.
•	 This XML response body is then embedded in an XML-RPC request message and sent back to the client.

The rpcServer object, on the other hand, maintains a list of named objects on which methods may
be invoked. However, rpcServer does not so far have any such list. To create this list, we instantiate
a org.apache.xmlrpc.server.PropertyHandlerMapping object as follows:

PropertyHandlerMapping mapping = new PropertyHandlerMapping();

This object basically maps objects to unique names. In other words, given a name, the underlying
object may be obtained. The addHandler() method on this object is usually used to create named
objects as follows:

mapping.addHandler("Factorial", FactImpl.class);

The addHandler() method takes two parameters. The second parameter is a Class (FactImpl.
class in our case) of the target object and the first parameter is a String, which is the name (“Factorial”
in our case) of the target object. This name “Factorial” is used by the clients to refer to the object
during method invocation.

Note that no object is created at this time. The object is created when the method invocation request
comes for the first time. A zero argument constructor is used to create this object. This implies that the
object’s class must have such a constructor. In our FactImpl class, since we have not written any constructor
explicitly, a zero argument constructor is present that will be used to create an instance of this class.

Our task is now to inform this mapping to the rpcServer as follows:
rpcServer.setHandlerMapping(mapping);

Finally, we start the web server so that it can listen for HTTP connection.
webServer.start();

The start() method spawns a new thread, which binds this server to the port, it was configured,
to accept connections on. The webServer is now capable of receiving XML-RPC POST request
messages. The complete source of our first server (Server1.java) is shown below:

//Server1.java
import org.apache.xmlrpc.server.*;
import org.apache.xmlrpc.webserver.*;
public class Server1 {
 public static void main(String args[]) {
 try {
 WebServer webServer = new WebServer(6789);
 XmlRpcServer rpcServer = webServer.getXmlRpcServer();
 PropertyHandlerMapping mapping = new PropertyHandlerMapping();
 mapping.addHandler("Factorial", FactImpl.class);
 rpcServer.setHandlerMapping(mapping);
 webServer.start();
 System.out.println("XML-RPC server ready...");
 }catch(Exception e) {e.printStackTrace();}
 }
}

17.8.2	 Writing the client
Writing XML-RPC client is relatively simple. The org.apache.xmlrpc.client package provides

the necessary classes and interface for this. The basic steps are as follows:

•	 We create an XmlRpcClient object and configure it so that it can contact the server.
•	 We specify the name of the method to be invoked and necessary parameters.

•	 The method invocation request is done using execute() method on this object.

•	 Finally, we display the result returned by execute() method.

458  ADVANCED JAVA PROGRAMMING

First, we create an XmlRpcClient object as follows:
XmlRpcClient client = new XmlRpcClient();

This client does not have any information about the XML-RPC server. So, it has to be configured
properly. This is done by creating an XmlRpcClientConfigImpl object as follows:

XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();

The URL of the XML-RPC server is specified in the setServerURL() as follows:
config.setServerURL(new URL("http://"+args[0]+":6789/"));

We are assuming that during the execution of the client, the IP address of the server is supplied
as an argument. Note that the port number 6789, on which the web server listens, is used here. This
configuration information is then passed to the client.

client.setConfig(config);

At this point, the client knows the URL of the server. Now, we have to specify the name method
name and its parameters. Since, the fact() method takes only one integer as parameter, we create
an array of one Integer object as follows:

int n = 6;
Object[] params = new Object[]{ new Integer(n)};

Note that, parameters must always be passed as an array of Object elements. So, primitive values
may be converted to the Object type using their respective wrapper classes. In this case, we have
used Integer class which is the wrapper class for primitive type int. Finally, to invoke the method
fact() on the server object (known as “Factorial”), the following piece of code is used:

Integer result = (Integer)client.execute("Factorial.fact", params);

The string Factorial.fact refers to the method fact() on an object whose name is Factorial.
Note that, in the server program this name was assigned to the factorial object. The execute()
method creates XML-RPC request message and forwards it to the server. A sample message is
shown below:

POST / HTTP/1.1
Content-Type: text/xml
User-Agent: Apache XML RPC 3.1.3 (Sun HTTP Transport)
Cache-Control: no-cache
Pragma: no-cache
Host: 172.16.5.81:6789
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-Length: 187

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
 <methodName>Factorial.fact</methodName>
 <params>
 <param>
 <value><i4>6</i4></value>
 </param>
 </params>
</methodCall>

Note that the method invocation information is encoded in XML and is included in the body of
the request message. The server in turn responds with an XML-RPC message as follows:

HTTP/1.1 200 OK
Server: Apache XML-RPC 1.0
Connection: close
Content-Type: text/xml
Content-Length: 155

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
 <params>
 <param>
 <value><i4>720</i4></value>
 </param>
 </params>
</methodResponse>

JAVA XML-RPC  459

HTTP/1.1 200 OK
Server: Apache XML-RPC 1.0
Connection: close
Content-Type: text/xml
Content-Length: 155

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
 <params>
 <param>
 <value><i4>720</i4></value>
 </param>
 </params>
</methodResponse>

Here, method’s return value is also encoded in XML and is included in the body of the response
message. The result is then displayed as follows:

System.out.println("Received : "+result);	

The complete source of our first client (Client1.java) is shown below:
//Client1.java
import org.apache.xmlrpc.client.*;
import java.net.URL;
public class Client1 {
 public static void main (String [] args) {
 try {
 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("http://"+args[0]+":6789/"));
 client.setConfig(config);
 int n = 6;
 Object[] params = new Object[]{ new Integer(n)};
 System.out.println("Sent : "+n);
 Integer result = (Integer)client.execute("Factorial.fact", params);
 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

17.8.3	 Running the application
Create the following directory structure in the XML-RPC server

computer. Now, place all Apache XML-RPC .jar files in lib directory
and place FactImpl.java and Server1.java in server directory.
Open a terminal and go to the server directory. Use the following
command to compile Java files.

javac -cp ..\lib*;. FactImpl.java Server1.java

This generates two class files: Server1.class and FactImpl.
class. The XML-RPC server can be started using the following
command:

java -cp ..\lib*;. Server1

This generates an output as follows:

FactImpl.java

Server1.java

460  ADVANCED JAVA PROGRAMMING

To run our client program, create the following directory structure in another
computer. If you do not have another computer, then create this client sub-
directory under xmlrpc directory where you created lib and server sub-directories
previously. Now, place all Apache XML-RPC .jar files in lib directory and place
Client1.java in client directory. Open a terminal and go to the client directory.
Use the following command to compile Java files.

javac -cp ..\lib*;. Client1.java

This generates one class files: Client1.class. Make sure that the directory
containing javac compiler is included in the PATH environment variable. We
assume that the XML-RPC server is running in a computer having IP address
172.16.5.81. The XML-RPC client can be started using the following command:

java -cp ..\lib*;. Client1 172.16.5.81

If the computer running your server has a different IP address, use that address in place of the
above mentioned IP address. A sample result for both server and client is shown in Figure 17.6:

(i)

(ii)

Figure 17.6:  XML-RPC factorial (i) Server (ii) Client

17.9	 DYNAMIC PROXIES
Remember that, in the previous client application, we have invoked a method using execute()

method of XmlRpcClient object passing method name and parameters. This way of method invocation
is neither straightforward nor matches the usual method call syntax. For example, it would have been
convenient if we could have invoked a method as follows:

int result = obj.fact(6);

Apache XML-RPC dynamic proxy allows us to invoke remote methods using traditional method
invocation syntax. However, to use this facility, remote object’s class is implemented in a slightly
different way. First, we write an interface which is used by both server and client. The following is
a simple interface (stored in Fact.java file) for our factorial object.

//Fact.java
public interface Fact {
 public int fact(int n);
}

Client1.java

JAVA XML-RPC  461

The FactImpl class should implement this interface. So, modify the FactImpl.java file as follows:
public class FactImpl implements Fact {

The added portion is shown with bold font. Now, use the name of interface during the object
mapping as follows:

mapping.addHandler(Fact.class.getName(), FactImpl.class);

Note that Fact.class.getName() method returns the name of the interface (i.e. Fact). This is
necessary because clients using dynamic proxy always use object’s interface name during method
invocation. Alternatively, the name may be hardcoded as follows:

mapping.addHandler("Fact", FactImpl.class);

The modified code is stored in a separate file (Server2.java) as follows:
//Server2.java
import org.apache.xmlrpc.server.*;
import org.apache.xmlrpc.webserver.*;
public class Server2 {
 public static void main(String args[]) {
 try {
 WebServer webServer = new WebServer(6789);
 XmlRpcServer rpcServer = webServer.getXmlRpcServer();
 PropertyHandlerMapping mapping = new PropertyHandlerMapping();
 mapping.addHandler(Fact.class.getName(), FactImpl.class);
 rpcServer.setHandlerMapping(mapping);
 webServer.start();
 System.out.println("XML-RPC server ready...");
 }catch(Exception e) {e.printStackTrace();}
 }
}

The modified portion is shown with bold font. The client, on the other hand, does not use execute()
method XmlRpcClient object to invoke methods. Instead, it creates a ClientFactory with a specified
XmlRpcClient object as follows:

XmlRpcClient client = new XmlRpcClient();
//configure this object
ClientFactory factory = new ClientFactory(client);

The newInstance() method of factory is then used to create a proxy dynamically for a given
interface.

Fact dProxy = (Fact) factory.newInstance(Fact.class);

This dProxy can then be used to invoke methods using the usual method invocation syntax.
int result = dProxy.fact(n);

The dynamic proxy internally calls the server by using the XmlRpcClient. The modified code is
stored in a separate file (Client2.java) as follows:

//Client2.java
import org.apache.xmlrpc.client.*;
import java.net.URL;
import org.apache.xmlrpc.client.util.ClientFactory;
public class Client2 {
 public static void main (String [] args) {
 try {
 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("http://"+args[0]+":6789"));
 client.setConfig(config);
 int n = 6;
 //Object[] params = new Object[]{ new Integer(n)};
 System.out.println("Sent : "+n);
 //Integer result = (Integer)client.execute("Factorial.fact", params);

ClientFactory factory = new ClientFactory(client);
 Fact dProxy = (Fact) factory.newInstance(Fact.class);
 int result = dProxy.fact(n);

 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

462  ADVANCED JAVA PROGRAMMING

//Client2.java
import org.apache.xmlrpc.client.*;
import java.net.URL;
import org.apache.xmlrpc.client.util.ClientFactory;
public class Client2 {
 public static void main (String [] args) {
 try {
 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("http://"+args[0]+":6789"));
 client.setConfig(config);
 int n = 6;
 //Object[] params = new Object[]{ new Integer(n)};
 System.out.println("Sent : "+n);
 //Integer result = (Integer)client.execute("Factorial.fact", params);

ClientFactory factory = new ClientFactory(client);
 Fact dProxy = (Fact) factory.newInstance(Fact.class);
 int result = dProxy.fact(n);

 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The added portion is shown with bold font and unnecessary code used in Client1.java is placed
under the comment lines.

Compile and start this application as described previously. Note that the class file for Fact interface
(i.e. Fact.class) in needed by both client and server. A sample result is shown in Figure 17.7:

(i)

(ii)

Figure 17.7:  XML-RPC factorial (i) Server (ii) Client using dynamic proxy

17.10	 USING XMLRPCSERVLET
Apache XML-RPC also provides XmlRpcServlet class, which has an embedded instance of

XmlRpcServer. This servlet may be installed to an existing web server (such as tomcat) to serve
XML-RPC requests. Note that Apache’s tomcat is an extremely versatile web server and full blown
servlet engine. Its performance is not questionable even under high load. So, it is a good choice to
use this built-in servlet instead of using light-weight WebServer class.

In this section, we shall discuss how to make use of this servlet to serve XML-RPC requests.
We assume that tomcat is already installed in your computer. The detailed installation procedure
may be found in Chapter 20. Consider the home directory of apache tomcat is D:\apache-tomcat-
8.0.0-RC1. Hereafter, we shall refer to this directory as tomcat_home. Create the following directory
structure under webapps sub directory of tomcat_home. Place all XML-RPC .jar files (i.e. commons-
logging-1.1.jar, ws-commons-util-1.0.2.jar, xmlrpc-client-3.1.3.jar, xmlrpc-common-
3.1.3.jar, xmlrpc-server-3.1.3.jar) in WEB-INF\lib directory. Alternatively, these .jar files
may be placed in the lib subdirectory of tomcat_home directory. Inside the classes directory, place
the file FactImpl.class.

Now, create a property file XmlRpcServlet.properties under webserver directory.

JAVA XML-RPC  463

Note that the XmlRpcServlet always reads the object mapping
information from a file named XmlRpcServlet.properties,
which must be stored in the directory org/apache/xmlrpc/
server/webserver/, relative to a directory recognized by tomcat.
Alternatively, this property file may be added to any of the .jar files
in lib directory. Enter the following line in this file.

Factorial=FactImpl

The XmlRpcServlet reads this property file and binds objects
with names as specified in the file. The left-hand side of ‘=’ sign is
the name of the object whose class name is written to the right side of
‘=’. In our case, the name of object is Factorial and its value is the
fully qualified name of the FactImpl class. This name is used by the
client during method invocation. Now, append the following entries to
<web-app>… </web-app> element in the war file WEB-INF\web.xml file.

<servlet>
 <servlet-name>XmlRpcServlet</servlet-name>
 <servlet-class>org.apache.xmlrpc.webserver.XmlRpcServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>XmlRpcServlet</servlet-name>
 <url-pattern>/servlet</url-pattern>
</servlet-mapping>

You may take a look at the sample web.xml file stored in tomcat_home\webapps\ROOT\WEB-INF
directory. Start tomcat using executing startup.bat in the tomcat_home\bin directory. If everything
goes fine, our XmlRpcServlet is now ready to serve XML-RPC requests. The URL of this servlet is:

http://”+args[0]+”:8080/xmlrpc/servlet

We assume that the IP address of the computer where this tomcat web server runs is given as a
command line argument. We also assume that tomcat listens on port 8080 for HTTP requests. Use
the above URL to modify either Client1.java or Client2.java and store it in another file Client3.
java. The complete source code is given below:

//Client3.java
import org.apache.xmlrpc.client.*;
import java.net.URL;
public class Client3 {
 public static void main (String [] args) {
 try {
 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("http://"+args[0]+":8080/xmlrpc/servlet"));
 client.setConfig(config);
 int n = 6;
 Object[] params = new Object[]{ new Integer(n)};
 System.out.println("Sent : "+n);
 Integer result = (Integer)client.execute("Factorial.fact", params);
 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

We can now compile and start this program. A sample result of tomcat terminal and Client3
terminal is shown in Figure 17.8:

XmlRpcServlet.properties

464  ADVANCED JAVA PROGRAMMING

(i)

(ii)

Figure 17.8:  Using XmlRpcServlet (i) tomcat web server’s terminal (ii) Client making XML-RPC request

17.11	 USING SERVLETWEBSERVER
The Apache WebServer is a minimal HTTP server. Though, it has become very popular amongst

Apache XML-RPC programmers, under heavy load, it becomes very slow in comparison to a real
servlet engine. This is because, WebServer neither handles multiple requests per physical connection
nor can it stream requests.

However, if a WebServer is really required, Apache recommends to use its enhanced version
org.apache.xmlrpc.webserver.ServletWebServer. This is a subclass of WebServer and provides
minimum subset of servlet API. It enables the programmers to bypass complicated tasks involved in
setting up a full-blown web server and servlet engine.

The use of the ServletWebServer is very simple. We don’t have to create and configure even a
XmlRpcServer object. Instead we create an XmlRpcServlet as follows:

XmlRpcServlet servlet = new XmlRpcServlet();

This servlet is a minimal servlet capable of handling XML-RPC
requests. It always reads the object mapping information from a
file named XmlRpcServlet.properties, which must be stored in
the directory org/apache/xmlrpc/server/webserver/, relative to
the servlet’s directory. So, create a directory structure as shown on
the right:

Make the following entry in this file and put it in the above
mentioned directory.

Factorial=FactImpl

This tells the servlet to create an object from the class FactImpl
and bound this object to the name “Factorial”. This name is used
by the client during a method call. Note that this servlet may be an
XmlRpcServlet or any subclass thereof. However, since servlets are stateless (i.e. multiple threads
may use a single servlet concurrently), user defined servlets must not use any unsynchronized instance
variables, except those which are read during initialization.

XmlRpcServlet.properties

JAVA XML-RPC  465

A ServletWebServer may then be created with this servlet and a specified port as follows:
ServletWebServer webServer = new ServletWebServer(servlet, 6789);

The web server is then started as follows:
webServer.start();

This ServletWebServer is now capable of receiving XML-RCP requests and forwarding method
invocation information to the specified servlet instance. The complete source code for this server
(ServletServer.java) is given below:

//ServletServer.java
import org.apache.xmlrpc.webserver.*;
public class ServletServer {
 public static void main(String args[]) {
 try {
 XmlRpcServlet servlet = new XmlRpcServlet();
 ServletWebServer webServer = new ServletWebServer(servlet, 6789);
 webServer.start();
 System.out.println("XML-RPC server ready...");
 }catch(Exception e) {e.printStackTrace();}
 }
}

To compile and run this program, one additional .jar file servlet-api.jar for servlet API
is needed. This file may be downloaded from the web or may be found in the tomcat_home\lib
directory if tomcat is already installed. Place this jar file in the xmcrpc\lib directory or include it in
the CLASSPATH environment variable or specify its location during compilation. We have placed
this jar file in xmcrpc\lib directory.

To compile the server, go to the server directory and use the following command:
javac -cp ..\lib*;. ServletServer.java

Now start the server as follows:
java -cp ..\lib*;. ServletServer

We can now use our Client1.java program to invoke methods as before. A sample result is
shown in Figure 17.9:

(i)

(ii)

Figure 17.9:  Using ServletWebServer (i) Server (ii) Client

466  ADVANCED JAVA PROGRAMMING

17.12	 INTROSPECTION
Note that, to invoke a remote method, a client must know method’s signature (i.e. name of the

method and type, number and order of parameters it takes). However, an obvious question is: “How
will a client know this information?”. Even a more important question is: “How will a client get
updated method signature if the signature is changed by the server?”.

Most implementations of XML-RPC provide a facility called introspection that enables a client
to dynamically learn from a server what XML-RPC methods the server implements and what their
signatures are.

Note that introspection facility is not a part of the XML-RPC official standard. However, a de facto
standard, originally invented around 2001 by Edd Dumbill, has been used by many implementations
of XML-RPC including Apache XML-RPC. In this section, we shall illustrate how this facility can
be used in Apahe XML-RPC.

Introspection facility basically allows a client to ask three questions to the server as follows:

•	 What method names do you offer?
•	 What is the signature of the given method name?
•	 Can you provide me help on the given method name?

A client may make these queries to the server by invoking special methods system.listMethods,
system.methodSignature and system.methodHelp respectively. These special methods always start
with the word system. An XML-RPC server implementing introspection should be capable of processing
these method invocation requests. A short description of these introspection methods is given below:

system.listMethods

This method may be used to find the name of all methods currently implemented by the XML-
RPC server. It is a zero argument method that returns names of methods currently supported by the
server as an XML-RPC array of strings.

system.methodSignature

This method may be used to know the signature of a specified method. It takes one parameter,
the name of the method, and returns an array. Each element of this array is a signature. This implies
that method overloading (i.e. multiple signatures) is allowed. However, the returned array may not
contain all possible signatures. Instead, a subset of all possible signatures is returned. For example,
signatures having a returned type void is not returned.

Each signature itself, in turn, is described as an array of types. The first of these types is the return
type of the method, and the remaining are for parameters. Note that a signature does not provide
detailed information of a complex type. For example, for array and struct, in the signature, they are
just mentioned as array and struct respectively without any further information of their internal
fields. Consequently, it is not possible to know the actual skeleton of the array and struct at all.

system.methodHelp

This method may be used to know additional information (such as textual description) of a method.
It takes one parameter, the name of the method and returns a description of the method in question,
for human use. Note that information provided depends solely on the server. The information may
be as much or as little a detail including an empty string.

JAVA XML-RPC  467

17.12.1	 Example
Let us now develop some program that introspects methods implemented by a server.
To provide information about the methods, Apache XML-RPC provides a class XmlRpcSystemImpl,

which requires a mapping to be provided to it. The static addSystemHandler() method is used to
provide this mapping as follows:

XmlRpcSystemImpl.addSystemHandler(mapping);

Let us add this line to our Server1.java program and call the resultant program as IntroServer.
java. The complete source code is provided below:

//IntroServer.java
import org.apache.xmlrpc.server.*;
import org.apache.xmlrpc.webserver.*;
import org.apache.xmlrpc.metadata.*;
public class IntroServer {
 public static void main(String args[]) {
 try {
 WebServer webServer = new WebServer(6789);
 XmlRpcServer rpcServer = webServer.getXmlRpcServer();
 PropertyHandlerMapping mapping = new PropertyHandlerMapping();
 mapping.addHandler("Factorial", FactImpl.class);
 rpcServer.setHandlerMapping(mapping);
 XmlRpcSystemImpl.addSystemHandler(mapping);
 webServer.start();
 System.out.println("XML-RPC server ready...");
 }catch(Exception e) {e.printStackTrace();}
 }
}

The added piece of code is shown with bold font. To examine the returned information, we have
developed a simple client program using socket that sends a simple XML-RPC request message and
prints an XML-RPC response message. The following is the source code for this client (IntroClient.
java):

//IntroClient.java
import java.net.*;
import java.io.*;
public class IntroClient {
 public static void main (String[] args) {
 try {
 BufferedReader xmlFile = new BufferedReader(new InputStreamReader(new
FileInputStream(args[1])));
 String xmlBody = "", line, result = "";
 while((line = xmlFile.readLine()) != null)
 xmlBody += line+"\n";

 String reqMsg="POST / HTTP/1.1\n"+
 "Content-Length: "+xmlBody.length() + "\n\n" + xmlBody;
 Socket socket = new Socket(args[0], 6789);
 OutputStream os = socket.getOutputStream();
 os.write(reqMsg.getBytes());
 os.flush();

 InputStream is = socket.getInputStream();
 int ch;
 while((ch=is.read())!= -1)
 result = result+(char)ch;

 System.out.println("Sent this XML-RPC message-->\n" + reqMsg);
 System.out.print("Received this XML-RPC message-->:\n" + result);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

468  ADVANCED JAVA PROGRAMMING

//IntroClient.java
import java.net.*;
import java.io.*;
public class IntroClient {
 public static void main (String[] args) {
 try {
 BufferedReader xmlFile = new BufferedReader(new InputStreamReader(new
FileInputStream(args[1])));
 String xmlBody = "", line, result = "";
 while((line = xmlFile.readLine()) != null)
 xmlBody += line+"\n";

 String reqMsg="POST / HTTP/1.1\n"+
 "Content-Length: "+xmlBody.length() + "\n\n" + xmlBody;
 Socket socket = new Socket(args[0], 6789);
 OutputStream os = socket.getOutputStream();
 os.write(reqMsg.getBytes());
 os.flush();

 InputStream is = socket.getInputStream();
 int ch;
 while((ch=is.read())!= -1)
 result = result+(char)ch;

 System.out.println("Sent this XML-RPC message-->\n" + reqMsg);
 System.out.print("Received this XML-RPC message-->:\n" + result);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This program expects the name of a file containing XML body for the XML-RPC request message
as an additional command line argument.

17.12.1.1   Listing methods
Compile and start IntroServer.java as described before. The client can be started with a different

XML file as input. For example, consider the following XML body stored in a file list.xml:
<?xml version='1.0'?>
<methodCall>
 <methodName>system.listMethods</methodName>
</methodCall>

The client can then be started as follows:
java -cp ..\lib*;. IntroClient 172.16.5.81 list.xml

A sample result is shown in Figure 17.10:

(i)

(ii)

Figure 17.10:  Using Apache XML-RPC introspection (i) Server (ii) Client

JAVA XML-RPC  469

If we format the XML body of returned message, it looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
 <params>
 <param>
 <value>
 <array>
 <data>
 <value>system.methodSignature</value>
 <value>Factorial.fact</value>
 <value>system.methodHelp</value>
 <value>system.listMethods</value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodResponse>

This indicates that 4 (four) methods (three system methods and one user defined method) are
available for invocation.

Alternatively, we can write an XML-RPC client specifying the method name as system.
listMethods. The following is the source code of such a client:

//IntroClient1.java
import org.apache.xmlrpc.client.*;
import java.net.URL;
public class IntroClient1 {
 public static void main (String [] args) {
 try {
 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("http://"+args[0]+":6789"));
 client.setConfig(config);
 Object[] params = null;
 Object[] result = (Object[])client.execute("system.listMethods", params);
 for(int i=0;i<result.length;i++)
 System.out.println(result[i]);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile and start this client as follows:
java -cp ..\lib*;. IntroClient1 172.16.5.81

A sample result is shown below:
system.methodSignature
Factorial.fact
system.methodHelp
system.listMethods

17.12.1.2   Finding method signature
To find the signature of a method (say Factorial.fact), create the following XML body and

store it in a file signature.xml.
<?xml version='1.0'?>
<methodCall>
 <methodName>system.methodSignature</methodName>
 <params>
 <param>
 <value><string>Factorial.fact</string></value>
 </param>
 </params>
</methodCall>

470  ADVANCED JAVA PROGRAMMING

<?xml version='1.0'?>
<methodCall>
 <methodName>system.methodSignature</methodName>
 <params>
 <param>
 <value><string>Factorial.fact</string></value>
 </param>
 </params>
</methodCall>

Start the client using the following command:
java -cp ..\lib*;. IntroClient 172.16.5.81 signature.xml

The resultant XML body is shown below:
<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<params>
 <param>
 <value>
 <array> <!—array of signatures -->
 <data>
 <value> <!—one signature found -->
 <array>
 <data>
 <value>int</value> <!—return type -->
 <value>int</value> <!—first argument -->
 </data>

 </array>
 </value>
 </data>
 </array>
 </value>
 </param>
</params>

</methodResponse>

It indicates that, for the method Factorial.fact, only one signature is available. The signature
tells us that the method returns an int and takes a single parameter of int type.

17.12.1.3   Getting help
To get help for a method (say Factorial.fact), create the following XML body and store it in

a file help.xml.
<?xml version='1.0'?>
<methodCall>
 <methodName>system.methodHelp</methodName>
 <params>
 <param>
 <value><string>Factorial.fact</string></value>
 </param>
 </params>
</methodCall>

Start the client using the following command:
java -cp ..\lib*;. IntroClient 172.16.5.81 help.xml

The resultant XML body is shown below:
<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<params>
 <param>
 <value>Invokes the method FactImpl.fact(int).</value>
 </param>
</params>
</methodResponse>

This tells us that for the method name Factorial.fact, server invokes fact() method on a
FactImpl object.

JAVA XML-RPC  471

17.13	 LIMITATIONS OF XML-RPC
The capabilities of XML-RPC are limited. However, some of these limitations (for example

simplicity) are in many ways the advantage of XML-RPC, as they reduce programmer’s effort
substantially. However, understanding these limitations make it possible to avoid pitfalls or traps
when designing complex applications. The following are some of its limitations:

•	 Choice of data types is limited.

•	 No facility to represent NaN for floating point number.
•	 Only ASCII characters are allowed in strings.
•	 There is no provision for passing objects.
•	 No way to check types of array values.
•	 No facility to check if a struct has duplicate names.
•	 Little or no provision for security.
•	 The XML-RPC specification is now frozen.

KEYWORDS
Basic Type—Types used to represent basic data
values such as integers, strings, floating point numbers
Booleans etc.

Compound Types— Types used to represent complex
data such as arrays and struct etc.

Dynamic Proxy—A mechanism that allows us to
invoke methods using traditional method call syntax

Fault String—A string describing an error that occurs
during parsing of request message

Handler—An object on which methods may be invoked

Introspection—A protocol that enables a client to
dynamically learn from a server what XML-RPC
methods the server implements and what their
signatures are

Metadata—Information about remote method such
as its name and number, type and order of data types
it accepts

Property file—A file containing a set of property
names and their value

RPC—A mechanism to invoke methods remotely

SOAP—An extended version of XML-RPC

ServletWebServer—An HTTP server provides
minimum subset of servlet API

XML-RPC Client—A program that makes method
invocation request

XML-RPC fault message—An HTTP message used
to send error information back to client

XML-RPC request message—An HTTP message
used to encode method invocation request in XML-RPC

XML-RPC response message—An HTTP message
used to send result of method invocation back to the client

XML-RPC Server—A program that processes method
invocation request, invokes the method and sends the
result back

WebServer—A minimal HTTP server provided by
Apache XML-RPC to process request messages

SUMMARY
XML-RPC is an XML-based Remote Procedure
Call (RPC) protocol, which uses eXtensible Markup
Language (XML) to describe a Remote Procedure Call
and HyperText Transfer Protocol (HTTP) to transport
encoded messages.

Two primary components are involved in XML-RPC:
a server program and a client program. The server
program implements one or more methods, invokes

them on request and sends result (if any) back. The
client program makes a request to the server to invoke
a method with necessary parameters (if any).

These requests and responses are exchanged using
HTTP messages whose body is an XML document. The
XML documents encode method invocation information
and reply. These messages are called XML-RPC
request and response messages respectively.

472  ADVANCED JAVA PROGRAMMING

To represent values passed to and returned from a
remote method, XML-RPC specification defines six
basic data types for integer, floating point number,
Boolean, string, date-time and binary data and two
compound data types for array and struct.

If XML-RPC server faces some problem processing
a request, it notifies the client with a special message
called fault message, which is a kind of response
message having a different format.

Apache XML-RPC is an open source implementation,
which is fully compliant to the XML-RPC specification
and is used in this chapter. We have demonstrated
how to build XML-RPC client and server using Java. It
describes how to build a variety of different XML-RPC
clients, servers, and handlers. Some of these use

built-in functionality to set up XML-RPC servers and
handlers, while others prefer handling them directly.

Apache XML-RPC dynamic proxy allows us to invoke
remote methods using traditional method invocation
syntax.

Apache XML-RPC also provides XmlRpcServlet
class, which has an automatically embedded instance
of XmlRpcServer. This servlet may be installed to
an existing tomcat web server to serve XML-RPC
requests.

XML-RPC specification provides a protocol called
introspection that enables a client to dynamically learn
from a server what XML-RPC methods the server
implements and what their signatures are.

WEB RESOURCES
http://www.tutorialspoint.com/xml-rpc/

index.htm
XML-RPC

http://ws.apache.org/xmlrpc/
Apache XML-RPC

http://www.ibm.com/developerworks/xml/

library/j-xmlrpc/index.html
XML-RPC in Java programming

http://xmlrpc.scripting.com/default.html
XML-RPC Specification

http://xmlrpc-c.sourceforge.net/

introspection.html
XML-RPC Introspection

http://scripts.incutio.com/xmlrpc/

introspection.html
Introspection

EXERCISES
Objective-type Questions

	 1.	 What is the full form of RPC?
	 (a)	 Redundant Procedure Call
	 (b)	 Remote Proxy Call
	 (c)	 Remote Procedure Call
	 (d)	 Remote Patient Care

	 2.	 What is the full form of XML?
	 (a)	 eXtra Markup Language
	 (b)	 X-Markup Language
	 (c)	 eXpandable Markup Language
	 (d)	 eXtensible Markup Language

	 3.	 Which of the following protocols is used as
transport protocol in XML-RPC?

	 (a)	 HTTPS	 (c)	 FTP
	 (b)	 SMTP	 (d)	 HTTP

	 4.	 Which one of the following types is a valid XML-
RPC data type?

	 (a)	 <int>	 (c)	 <double>
	 (b)	 <float>	 (d)	 <char>

	 5.	 Which one of the following types is compound
data type in XML-RPC?

	 (a)	 <linked-list>	 (c)	 <queue>
	 (b)	 <struct>	 (d)	 <stack>

	 6.	 Which of the following is a correct date format in
XML-RPC?

	 (a)	 CCYYDDMM	 (c)	 DDMMCCYY
	 (b)	 MMDDCCYY	 (d)	 CCYYMMDD

	 7.	 Which of the following tags is used in a request
message?

	 (a)	 <methodCall>
	 (b)	 <methodRequest>
	 (c)	 <methodInvocation>
	 (d)	 <callMethod>

JAVA XML-RPC  473

	 8.	 Which of the following tags is used to specify name
of the method?

	 (a)	 <methodName>	 (c)	 <method_Name>
	 (b)	 <method-Name>	 (d)	 <method>

	 9.	 An XML-RPC request message is an HTTP
	 (a)	 PUT message
	 (b)	 GET message
	 (c)	 HEAD message
	 (d)	 POST message

	10.	 Which of the following tags is used in a response
message?

	 (a)	 <methodResponse>
	 (b)	 <response>
	 (c)	 <methodResult>
	 (d)	 <methodReturn>

	11.	 Which of the following tags is used in a fault
message?

	 (a)	 <error>	 (c)	 <methodError>
	 (b)	 <fault>	 (d)	 <methodFault>

	12.	 Which of the following classes is used to create
a minimal web server?

	 (a)	 HTTPServer
	 (b)	 XmlRpcWebServer
	 (c)	 XmlRpcHTTPServer
	 (d)	 WebServer

	13.	 Which of the following classes is capable of
invoking methods on remote objects?

	 (a)	 XmlRpcRequest
	 (b)	 XmlRpcResponse
	 (c)	 XmlRpcClient
	 (d)	 XmlRpcServer

	14.	 Which of the following methods is used to add a
handler?

	 (a)	 putHandler()	 (c)	 handlerAdd()
	 (b)	 addHandler()	 (d)	 appendHandler()

	15.	 Which of the following methods is used to
configure an XML-RPC client?

	 (a)	 configClient()	 (c)	 configAdd()
	 (b)	 addConfig()	 (d)	 setConfig()

	16.	 Which of the following servlet classes can handle
XML-RPC requests?

	 (a)	 XmlRpcServlet
	 (b)	 ApacheServlet
	 (c)	 RpcServletRequest
	 (d)	 XmlRpcServletRequest

	17.	 Introspection is an ability to
	 (a)	 Declare a method as public
	 (b)	 To write method documentation
	 (c)	 To discover servers
	 (d)	 Find information about remote methods

	18.	 Which of the following is an introspection method?
	 (a)	 system.getMethods
	 (b)	 system.sendMethods
	 (c)	 system.retrieveMethods
	 (d)	 system.listMethods

	19.	 Which of the following system methods is used to
know method signature?

	 (a)	 system.listSignature
	 (b)	 system.getHelp
	 (c)	 system.methodSignature
	 (d)	 system.getSignature

	20.	 Which of the following is an extension to XML-RPC?
	 (a)	 SOAP	 (c)	 FTP
	 (b)	 HTTPS	 (d)	 Servlet

	21.	 An XML-RPC message is an HTTP
message

	 (a)	 HEAD	 (c)	 GET
	 (b)	 POST	 (d)	 DELETE

	22.	 Whcih of the following types does not require a
<value> element?

	 (a)	 int
	 (b)	 boolean
	 (c)	 date and time
	 (d)	 string

	23.	 Which of the following is used to represent
integers?

	 (a)	 int4	 (c)	 B4
	 (b)	 i4	 (d)	 b32

	24.	 How many bits are used to represent integers?
	 (a)	 8	 (c)	 32
	 (b)	 16	 (d)	 64

	25.	 How many bits are used to represent floating point
numbers?

	 (a)	 8	 (c)	 32
	 (b)	 16	 (d)	 64

	26.	 Which of the following is a valid date and time?
	 (a)	 D20141015T15:45:00
	 (b)	 T15:45:00D20141015
	 (c)	 20141015T15:45:00
	 (d)	 15:45:00D20141015

474  ADVANCED JAVA PROGRAMMING

	27.	 Which of the following elements is used to
represent elements of a struct?

	 (a)	 <element>	 (c)	 <field>
	 (b)	 <member>	 (d)	 <part>

	28.	 A fault message is represented as
	 (a)	 struct	 (c)	 boolean
	 (b)	 array	 (d)	 string

	29.	 Which of the following methods is used to call a
remote method?

	 (a)	 call()	 (c)	 execute()
	 (b)	 invoke()	 (d)	 refer()

	30.	 What is the default name of the file XmlRpcServlet
always

	 (a)	 XmlRpcServlet.properties
	 (b)	 XmlRpcServlet.xml
	 (c)	 XmlRpc.properties
	 (d)	 Servlet.properties

	31.	 Which of the following methods is used to start a
web server?

	 (a)	 run()	 (c)	 listen()
	 (b)	 init()	 (d)	 start()

	32.	 The facility to dynamically get information about
the server methods is called

	 (a)	 introspection	 (c)	 search
	 (b)	 reflection	 (d)	 digging

Subjective-type Questions

	 1.	 Explain XML-RPC architecture.

	 2.	 Briefly write the operational principle of XML-RPC.

	 3.	 In XML-RPC, which data types are supported?

	 4.	 Describe with example how arrays are represented
in XML-RPC.

	 5.	 How does struct differ from array?

	 6.	 For each of the XML-RPC types, write the
corresponding Java types.

	 7.	 Write with examples the format of XML-RPC
request and response messages.

	 8.	 What is a fault message? Why is it used?

	 9.	 Write briefly the functionality of WebServer class?

	10.	 What are the limitations of WebServer class?

	11.	 Write the relative merits and demerits of

WebServer and ServletWebServer

	12.	 What is meant by dynamic proxy with respect to
Apache XML-RPC?

	13.	 Explain the usefulness of introspection.

	14.	 Write some of the advantages of XML-RPC.

	15.	 Write some of the limitations of XML-RPC.

	16.	 What happens if a client specifies a nonexistent
method name?

	17.	 What are the different ways in which an XML-RPC
server can be created?

	18.	 What is the difference between array and struct?

	19.	 How do you represent multi-dimensional arrays?

	20.	 How do you represent raw binary bit-stream?

CHAPTER – 18

Java and SOAP

Key Objectives

After completing this chapter readers will be able to—
•  understand SOAP architecture
•  know the working principle of web service
•  learn the format of a SOAP message
•  develop, deploy and invoke simple web services
•  know how to deploy web services on tomcat
•  what asynchronous clients are and how to write them

18.1	 INTRODUCTION
Simple Object Access Protocol (SOAP), as its name implies, is a simple and lightweight

mechanism to exchange information between peers. It specifies a modular packaging model to
encode information to be changed. Specifically, it uses XML documents, called SOAP messages,
to represent information.

However, it does not specify any application semantics such as a programming model or
implementation specific semantics. As a result SOAP can be used in a wide variety of systems ranging
from messaging systems to RPC.

18.2	 DIFFERENCES WITH XML-RPC
XML-RPC was designed to be as simple as possible, while allowing complex data structures to

be transmitted, processed and returned. In fact, the specification itself is seven pages long, including
examples and an FAQ, and is fairly easy to understand. An ordinary programmer, after reading
its specification, should not find any difficulty whatsoever in implementing XML-RPC in his/her
software.

476 ADVANCED JAVA PROGRAMMING

Simplicity is also XML-RPC’s greatest limitation. Though almost all of our RPC needs can be
achieved using it, there are certain things that we just can’t do such as passing an object to a function,
or specifying which portion of a receiving application the message is intended for etc.

SOAP tried to pick up where XML-RPC left off by implementing user defined data types, the
ability to specify the recipient, message specific processing control, and other features. Consequently,
the SOAP specification became 40 pages long and is complex.

Literally it is not “lightweight” and it threw out the most important feature of XML-RPC, its
simplicity. SOAP extensively uses namespaces and attributes specification tags in almost every
element of a message. As a result, it incurs significantly more overhead. However, it adds much more
information about what is being sent.

18.3	 SOAP ARCHITECTURE
SOAP was designed as an object-access protocol by Dave Winer et al. in 1998. Its specification

is currently maintained by the XML Protocol Working Group of the World Wide Web Consortium.
SOAP architecture consists of three parts:

•	 The SOAP envelope construct that defines an overall framework to express message content, the message
exchangers.

•	 The SOAP encoding rules that define a mechanism that can be used successfully to exchange application-specific
type values.

•	 The SOAP RPC representation defines a protocol that can be used for remote procedure calls and responses.

®

SOAP Client SOAP Server

POST /ws/calc HTTP/1.1
Content-Type: text/xml
Content-Length: 215

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:add xmlns:ns2="http://ws.calc/">

<arg0>7</arg0>
<arg1>8</arg1>

</ns2:add>
</S:Body>

</S:Envelope>

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: text/xml

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:addResponse xmlns:ns2="http://ws.calc/">
<return>15</return>

</ns2:addResponse>
</S:Body>

</S:Envelope>

Network

SOAP request

SOAP response

Figure 18.1: RPC using SOAP

JAVA AND SOAP 477

This simple idea can potentially be used in combination with a variety of communication
protocols, However, the only bindings defined in the specifications so far describe how to use SOAP
in combination with HTTP and HTTP Extension Framework.

The RPC part specification describes a standard, XML-based way to encode requests and
responses, such as

•	 Requests to invoke a method including parameters
•	 Responses from a method including out parameters
•	 Errors

Figure 18.1: shows how a remote method can be invoked using HTTP POST messages according
to SOAP specification.

18.4	 SOAP FLAVORS
There are two versions of SOAP specification 1.1 and 1.2. Since these versions are referred to

frequently while working with SOAP, it is important to understand the relations between these two.
This section outlines the changes and benefits brought by SOAP Version 1.2.

Both SOAP Version 1.1 and 1.2 are standardized by World Wide Web Consortium (W3C).
Intuitively, version 1.2 extends the specification version 1.1. Some changes are significant, while
other changes are minor. In a single sentence, SOAP Version 1.2 is cleaner, better for web integration,
more versatile and faster. The following is a summary of significant changes made in Version 1.2.

•	 SOAP Version 1.2 provides clear processing model.
•	 SOAP 1.2’s testing and implementation requirements lead to better interoperability.
•	 SOAP 1.1 is based on XML 1.0. SOAP 1.2 is based on XML Information Set (XML Infoset).
•	 SOAP 1.2 provides the ability to define transport protocols other than HTTP.
•	 SOAP 1.2 includes HTTP binding for better integration to the World Wide Web.
•	 Introduced SOAP with Attachments API for Java (SAAJ) in Version 1.2.
•	 SOAP Version 1.2 delivers a very well-defined extensibility model.

A detailed list of changes can be found in http://www.w3.org/TR/2001/WD-soap12-20010709/
#changes and http://www.w3.org/2003/06/soap11-soap12.html

18.5	 SOAP MESSAGES
The primary part of the SOAP is the messaging framework. It specifies a set of XML elements

for “packaging” information for exchange between peers. The schema for SOAP messages can be
downloaded from http://schemas.xmlsoap.org/soap/envelope/.

Any SOAP message is an XML document having the following minimal specification.

•	 The mandatory root element <Envelop>.

•	 The <Envelop> element contains an optional <Header> element followed by a mandatory <Body> element.

Here is a sample template that shows the structure of a SOAP message:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header> <!-- optional -->
 <!—control information goes here... -->
 </soap:Header>
 <soap:Body> <!-- mandatory -->
 <!-- payload or Fault element goes here... -->
 </soap:Body>
</soap:Envelope>

478 ADVANCED JAVA PROGRAMMING

The elements must always belong to the namespace http://schemas.xmlsoap.org/soap/
envelope/. The root element <Envelop> and namespace together make an XML document a SOAP
message. Parsers can simply look at the root element to identify a SOAP message. The <Envelop>
contains an optional <Header> element and one mandatory <Body> element that contains payload.
Here is a simple SOAP message:

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <c:add xmlns:c="http://ws.calc/">
 <arg0>7</arg0>
 <arg1>8</arg1>
 </c:add>
 </soap:Body>
</soap:Envelope>

This message represents a call of a method add() with two argument values 7 and 8. The <Body>
element can have any number of attributes or children elements from any namespace. This is ultimately
where the data, which we want to send, goes in.

The receiver of the above message may send the result using another message as follows:
<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <c:addResponse xmlns:c="http://ws.calc/">
 <return>15</return>
 </c:addResponse>
 </soap:Body>
</soap:Envelope>

A SOAP messages can be validated against the underlying schema which can be downloaded
from http://schemas.xmlsoap.org/soap/envelope/. We downloaded it and put it in a file SOAP.
xsd. There are various XML document validators available on the web. We downloaded one such
free command line validator from https://dl.dropbox.com/u/10564628/xsd11-validator.jar.
Suppose the name of the file containing the above SOAP message is soap.xml. Then we can check
if this XML document is a SOAP message using the following command:

java -jar xsd11-validator.jar -sf SOAP.xsd -if soap.xml

Like most existing protocols, SOAP also distinguishes controls information and payload. The
<Header> contains application specific control information. Like <Body>, the <Header> element can
also have any number of attributes or children elements and must be qualified by any namespace (except
the SOAP namespace). However, SOAP itself does not specify any built-in headers. These elements
influence processing of payload. Here is an example of SOAP message that uses <Header> element.

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <s:mode xmlns:s="sample">cheque</s:mode>
 </soap:Header>
 <soap:Body>
 <pay>10000</pay>
 <to>B. S. Roy</to>
 </soap:Body>
</soap:Envelope>

The body contains an instruction to pay an amount 10000. The header tells that the payment
should be made by cheque.

If the receiver of a SOAP message finds anything wrong, it can inform the sender about it by
sending a special response message, called fault message, back to the sender. The <Fault> element

JAVA AND SOAP 479

is used for this purpose. It is an optional element and if it appears, must be the child of <Body>
element. This provides a standard error representation that makes possible for a generic architecture
to differentiate between success and error. Here is an example of fault message:

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>soap:Client</faultcode>
 <faultstring>Cannot find dispatch method for
{http://ws.calc/}add1</faultstring>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

This says that an error occurred due to Client as it couldn’t dispatch method for add1. The <Fault>
element has two mandatory children <faultcode> and <faultstring>. The former one holds a code
for identifying fault and the latter gives a human readable explanation of the fault.

18.6	 SOAP BINDING
One of the important features of SOAP is that it enables exchange of messages using various

underlying protocols. Since it is not bound to a specific protocol, a communicating peer can choose
any suitable protocol for SOAP message transport without affecting the message itself.

However, the only bindings defined in the specifications so far describe how to use SOAP in
combination with HTTP and HTTP Extension Framework. HTTP binding maps SOAP request/
response message to HTTP request/response message. In the next section, we shall describe how to
send SOAP messages over HTTP.

18.7	 RPC USING SOAP
Although SOAP was originally intended for exchanging any type of messages, it is primarily used

for Remote Procedure Call (RPC). So, it still defines a convention for encapsulating and exchanging
RPC calls and responses. Here is a sample HTTP SOAP request message.

POST /ws/calc HTTP/1.1
Accept: text/xml, multipart/related
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://ws.calc/Calculator/addRequest"
User-Agent: JAX-WS RI 2.2.4-b01
Host: 172.16.5.81:9999
Connection: keep-alive
Content-Length: 215

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:add xmlns:ns2="http://ws.calc/">
 <arg0>4</arg0>
 <arg1>3</arg1>
 </ns2:add>
 </S:Body>
</S:Envelope>

A SOAP request message is an HTTP POST request message with two mandatory headers
Content-Type and Content-Length. The body of the HTTP request message is a SOAP message
which represents the call of a method add with two arguments 4 and 3. The corresponding response
method may look like this:

480 ADVANCED JAVA PROGRAMMING

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: text/xml; charset=utf-8
Date: Sun, 30 Mar 2014 07:53:06 GMT

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:addResponse xmlns:ns2="http://ws.calc/">
 <return>7</return>
 </ns2:addResponse>
 </S:Body>
</S:Envelope>

Here, the body of the HTTP request message is also a SOAP message which represents the return
value 7 from the server.

18.8	 WEB SERVICE
A web service, as its name suggests, is an application component that provides a service which

is available over the web. An application that uses this service is called service consumer/client. The
communication (request and response) between a service provider and a consumer takes place through
XML messages. Since, XML is used as a communication language, web service is independent of
any programming language, operating system.

Usually, web services are built on the top of HTTP and SOAP messages are used for communication.
The description (operations offered, message formats, bindings, location etc.) of a web service is
provided as an XML document which is written in a language called Web Service Description Language
(WSDL). In the following section, we shall discuss how to develop, deploy and use a simple web
service using Java.

18.9	 JAX-WS
Java API for XML Web Services (JAX-WS) is an Application Programming Interface (API)

for developing web services and clients. It is one of the Java XML programming APIs. JAX-WS
web services and clients use SOAP messages for communication and HTTP for message transport.

The web service developer specifies the operations by defining methods in a Java interface and also
provides implementation of those methods. A client creates a proxy (a local object representing the
service) and then simply calls methods on the proxy. JAX-WS runtime system converts the calls and
responses to and from SOAP messages. The developer need not generate or parse SOAP messages.
The JAX-WS runtime hides the internal complexity from the application developer.

Though, JAX-WS is a part of the Java EE, it can also be used in Java SE version 6 and onwards.
The reason of including JAX-WS in Java SE is that it does not require any servlet of EJB container.
This also makes HTTP a competitor of RMI as a distributed computing technology. We shall start with
some examples to demonstrate how to develop, deploy and use simple web services using the Java
SE 7.0 environment. We shall then show how to use tomcat to work with web service. An overview
of the JAX-WS packages can be found in Table 18.1:

Table 18.1: Primary JAX-WS package with short description

Package Description

javax.jws APIs for Java to WSDL mapping annotations

javax.jws.soap APIs for mapping the Web Service to SOAP

(Contd )

JAVA AND SOAP 481

Table 18.1: (Contd )

javax.xml.ws The Core JAX-WS APIs

javax.xml.ws.http APIs for XML/HTTP Binding

javax.xml.ws.handler APIs for message handlers

javax.xml.ws.soap APIs for SOAP/HTTP Binding

javax.xml.ws.spi SPIs for JAX-WS

javax.xml.ws.spi.http HTTP SPI used for portable deployment of JAX-WS in containers

javax.xml.ws.wsaddressing APIs for WS-Addressing

Note that JAX-WS programming model extends the foundation provided by the Java API for
XML-based RPC (JAX-RPC) programming model. It was introduced to simplify developing web
services and clients and provides greater platform independence for Java applications by the use of
dynamic proxies and Java annotations. The tools included in this model support JAX-WS 2.0, 2.1,
and 2.2.

The JAX-WS strategically aligns itself with the current industry trend. It extensively uses a
document-centric messaging model which essentially replaces the remote procedure call programming
model as specified by JAX-RPC. However, it still supports the JAX-RPC programming model and
applications. It introduced some new features that were absent in JAX-RPC some of which are
mentioned below:

•	 Better platform independence for Java applications
•	 Annotations
•	 Invoking Web services asynchronously
•	 Data binding with JAXB 2.2
•	 Dynamic and static clients
•	 Message Transmission Optimization Mechanism (MTOM)
•	 Multiple payload structures
•	 SOAP 1.2 support
•	 Support for method parameters and return types

18.9.1	 Developing Web Service
We shall develop a web service for our calculator application. In this web service, we shall not

explore the sophisticated features of JAX-WS. Instead, we shall concentrate on how to write and
invoke a web service. The discussion about the extended features may be found later in this chapter.

Our web service will have a single operation add(). We first write an interface Calculator as
follows:

package calc.ws;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

//Service Endpoint Interface
@WebService
@SOAPBinding(style = Style.RPC)
public interface Calculator {
 @WebMethod public int add(int a, int b);
}

482 ADVANCED JAVA PROGRAMMING

Writing an endpoint interface is not always required. However, it makes testing and using the web
service from other Java clients far easier. This is an ordinary Java interface except that it uses some
annotations. JAX-WS uses annotations extensively, to simplify the development and deployment of
web service.

An interface, to be a web service interface, must be annotated by @WebService. The @SOAPBinding
annotation maps this web service to SOAP. The element style instructs to use RPC encoding style
for messages sent to and from the web service. Note that SOAP supports two kinds of encoding:
RPC style and document style. The default is document.

The @WebMethod tells that the method add() has to be exposed as a web service operation. Although
the specification says that the annotation is mandatory, often the code runs without it. The exposed
method must be public. The interface is ready and acts as a contract between the web service and
the client. The next step is to write an implementation of this interface.

package calc.ws;
import javax.jws.WebService;
//Service Implementation
@WebService(endpointInterface = "calc.ws.Calculator")
public class SimpleCalculator implements Calculator {
 @Override
 public int add(int a, int b) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

This class defines the method add() declared in Calculator interface. When a class implements
an endpoint interface, it is mandatory to use a @WebService annotation with a endpointInteface
element specifying the fully qualified name of the interface. In the above implementation class,
endpointInterface element tells that the name of the service endpoint interface defining the service’s
contract is calc.ws.Calculator.

18.9.2	 Deploying Web Service
JAX-WS includes a class javax.xml.ws.Endpoint to easily publish and configure a web service.

We do not need a container to deploy a web service. Instead, we can end up with a bootstrap class that
calls one of the publish() method of Endpoint class. This bootstrap class may be the same service
implementation or a different class. We shall use a separate class for publishing web service. Here
is the essential line of code in the bootstrap class:

Endpoint.publish("http://172.16.5.81:6789/ws/calc", new SimpleCalculator());

This essentially publishes an endpoint for SimpleCalculator object with the URL
http://172.16.5.81:6789/ws/calc. The necessary server infrastructure is created by the JAX-WS
implementation and configured using some default configuration. For custom configuration, we
can use other overloaded methods of Endpoint class. We assume that the IP address of the machine
publishing this web service is 172.16.5.81. If you have a different address, change it.

The following is a complete source code (CalculatorPublisher.java) of the web service
publisher:

import calc.ws.*;
import javax.xml.ws.Endpoint;
public class CalculatorPublisher {
 public static void main(String[] args) {
 Endpoint.publish("http://172.16.5.81:6789/ws/calc", new
SimpleCalculator());
 }
}

JAVA AND SOAP 483
import calc.ws.*;
import javax.xml.ws.Endpoint;
public class CalculatorPublisher {
 public static void main(String[] args) {
 Endpoint.publish("http://172.16.5.81:6789/ws/calc", new
SimpleCalculator());
 }
}

To compile and run the programs, create the following directory structure.
pub
 CalculatorPublisher.java

calc
ws

Calculator.java
SimpleCalculator.java

Go to the directory pub and use the following command to compile all classes:
javac calc\ws*.java *.java

To publish the web service, run the publisher using the following command
java CalculatorPublisher

You can check if the web service is published successfully or not by typing the following URL
in a web browser:

http://172.16.5.81:6789/ws/calc

If everything goes well, the browser’s screen looks as shown in Figure. 18.2:

Figure 18.2: Web services screen

Note that in practice, we hardly use Endpoint class to publish a web service; instead application
server is used for publishing the web services based on your web service SEI and other classes. We
shall see how to publish a web service using Apache’s tomcat servlet container later in this chapter.

18.9.3	 Invoking Web Service
To invoke a web service, a client first creates a Service object that encapsulates a web service,

which is a set of related ports. A port, in turn, includes a port type, bound to a particular protocol,
and a particular endpoint address. A Service object is usually created from WSDL contract which
is available via WSDL URL.

In this section, we shall create the Service object manually using its static create() method and
the next section describes how to create it from WSDL using wsimport command. The create()
method has many overloaded versions. The commonly used one takes a URL and a QName as follows:

URL url = new URL("http://172.16.5.81:6789/ws/calc");
QName qname = new QName("http://ws.calc/", "SimpleCalculatorService");

Service service = Service.create(url, qname);

The first argument specifies the location of the web service’s WSDL file and the second gives
the qualified name of the web service. Since this Service is created from a WSDL file, the port(s)

484 ADVANCED JAVA PROGRAMMING

binding ID, QName, and endpoint address are known to the Service. Anyway, this Service object
is then used to create a local proxy to the web service:

Calculator cal = service.getPort(Calculator.class);

The parameter specifies the service endpoint interface that is supported by the returned proxy.
Since, endpoint interface for the SimpleCalculator web service is Calculator, we have specified
it. Note that JAX-WS runtime system selects protocol binding (and a port) and configures the proxy
accordingly. The returned proxy should not be reconfigured by the client further. Note that to run the
client, service endpoint interface Calculator is needed. However, it is not difficult to obtain/create
this endpoint interface. There are also ways to write a client program without using the endpoint
interface. We shall discuss this method in the next section.

Invoking an operation on the web service is now as simple as invoking a method on a local object:
int x = 4, y = 3;
int result = cal.add(x,y);

The complete source code of the client (CalculatorClient.java) is shown below:
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import calc.ws.*;
public class CalculatorClient {
 public static void main(String[] args) throws Exception {
 URL url = new URL("http://172.16.5.81:6789/ws/calc");
 QName qname = new QName("http://ws.calc/", "SimpleCalculatorService");
 Service service = Service.create(url, qname);
 Calculator cal = service.getPort(Calculator.class);

 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }
}

Create the following directory structure in a machine for the web service client.
client

CalculatorClient.java
calc

 ws
 Calculator.java

Note that the service endpoint interface Calculator.java is needed by this client. Had there been
a provision, you may download it or may write one such interface manually. Open a terminal, go to
the client directory and use thje following command to compile client files:

javac calc\ws*.java *.java

Now, execute the client to invoke the web service as follows:
java CalculatorClient

A sample result is shown in Figure 18.3:

(i)

(ii)

(i)

(ii)

Figure 18.3: Web service (i) Publisher (ii) Consumer

JAVA AND SOAP 485

18.9.4	 Tracking SOAP messages
If you want to see the underlying SOAP messages at the publisher side, insert the following line

of code in CalculatorPublisher.java:
System.setProperty("com.sun.xml.internal.ws.transport.http.HttpAdapter.dump",
"true");

Similarly, insert the following line of code to see SOAP messages at the client side:
System.setProperty("com.sun.xml.internal.ws.transport.http.client.HttpTransport
Pipe.dump", "true");

You will see that the client sends a SOAP message which looks like this:
<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:add xmlns:ns2="http://ws.calc/">
 <arg0>4</arg0>
 <arg1>3</arg1><
 /ns2:add>
 </S:Body>
</S:Envelope>

The web service responds with the following SOAP message:
<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:addResponse xmlns:ns2="http://ws.calc/">
 <return>7</return>
 </ns2:addResponse>
 </S:Body>
</S:Envelope>

To check that the communication really takes place using SOAP messages, we may write a simple
Java socket program. The following is a sample socket program that sends a SOAP request message
directly to the web service:

import java.io.*;
import java.net.*;
class SoapClient {
 public static void main(String args[]) throws Exception {
 int c;
 Socket socket = new Socket("172.16.5.81", 6789);
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();
 InputStream fin = new FileInputStream(args[0]);
 while(((c = fin.read()) != -1)) out.write((char)c);
 while(((c = in.read()) != -1))
 System.out.print((char)c);
 in.close();
 }
}

To run this program, create a file (say request.txt) containing a HTTP SOAP request message
as follows:

POST /ws/calc HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 215

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:add xmlns:ns2="http://ws.calc/">
 <arg0>4</arg0>
 <arg1>3</arg1>
 </ns2:add>
 </S:Body>
</S:Envelope>

486 ADVANCED JAVA PROGRAMMING

POST /ws/calc HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 215

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:add xmlns:ns2="http://ws.calc/">
 <arg0>4</arg0>
 <arg1>3</arg1>
 </ns2:add>
 </S:Body>
</S:Envelope>

We can now invoke the web service from this socket program using the following command:
java SoapClient request.txt

You will see an output similar to as shown below:
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: text/xml; charset=utf-8
Date: Sun, 25 May 2014 06:40:35 GMT

c5
<?xml version="1.0" ?>
<S:Envelopexmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:addResponse xmlns:ns2="http://ws.calc/">
 <return>7</return>
 </ns2:addResponse>
 </S:Body>
</S:Envelope>

Note that we hardly create SOAP messages explicitly in our program. Instead, we use JAX-WS
API to invoke web service. JAX-WS runtime system converts the calls and responses to and from
SOAP messages. The example given above will help you understanding how the JAX-WS runtime
internally works.

18.9.5	 Using WSDL
WSDL is used to develop XML files that specify rules for communication between different

systems such as:

•	 How one system can talk to another system
•	 Which specific data are needed in the request
•	 What would be the structure of the XML file containing data
•	 What error messages to display when a certain rule for communication is not observed, to make troubleshooting

easier

Web service publisher generates WSDL document for the clients, who can inspect this document
to gather knowledge about the syntax of calling the web service. When we published our web service
using publish() method of Endpoint class, a WSDL document was also generated which can be
accessed using the URL http://172.16.5.81:6789/ws/calc?wsdl. In general, for a web service
endpoint URL U, the location of the WSDL file will be U?wsdl. The WSDL file looks like this:

<!--
 Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS
 RI 2.2.4-b01.
-->
<!--
 Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS
 RI 2.2.4-b01.
-->
<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-
utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-
policy"xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:
wsam="http://www.w3.o
rg/2007/05/addressing/metadata"xmlns:soap="http://schemas.xmlsoap.org/wsdl
/soap/" xmlns:tns="h
ttp://ws.calc/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:
//schemas.xmlsoap.org
/wsdl/"targetNamespace="http://ws.calc/" name="SimpleCalculatorService">
 <types/>
 <message name="add">
 <part name="arg0" type="xsd:int"/>
 <part name="arg1" type="xsd:int"/>
 </message>
 <message name="addResponse">
 <part name="return" type="xsd:int"/>
 </message>
 <portType name="Calculator">
 <operation name="add" parameterOrder="arg0 arg1">
 <input wsam:Action="http://ws.calc/Calculator/addRequest" message="tns:
 add"/>
 <output wsam:Action="http://ws.calc/Calculator/addResponse" message="tns:
 addResponse"/>
 </operation>
 </portType>
 <binding name="SimpleCalculatorPortBinding" type="tns:Calculator">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 <operation name="add">

<soap:operation soapAction=""/>
<input>
 <soap:body use="literal" namespace="http://ws.calc/"/>
</input>
<output>
 <soap:body use="literal" namespace="http://ws.calc/"/>
</output>

</operation>

JAVA AND SOAP 487

<!--
 Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS
 RI 2.2.4-b01.
-->
<!--
 Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS
 RI 2.2.4-b01.
-->
<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-
utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-
policy"xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:
wsam="http://www.w3.o
rg/2007/05/addressing/metadata"xmlns:soap="http://schemas.xmlsoap.org/wsdl
/soap/" xmlns:tns="h
ttp://ws.calc/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:
//schemas.xmlsoap.org
/wsdl/"targetNamespace="http://ws.calc/" name="SimpleCalculatorService">
 <types/>
 <message name="add">
 <part name="arg0" type="xsd:int"/>
 <part name="arg1" type="xsd:int"/>
 </message>
 <message name="addResponse">
 <part name="return" type="xsd:int"/>
 </message>
 <portType name="Calculator">
 <operation name="add" parameterOrder="arg0 arg1">
 <input wsam:Action="http://ws.calc/Calculator/addRequest" message="tns:
 add"/>
 <output wsam:Action="http://ws.calc/Calculator/addResponse" message="tns:
 addResponse"/>
 </operation>
 </portType>
 <binding name="SimpleCalculatorPortBinding" type="tns:Calculator">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 <operation name="add">

<soap:operation soapAction=""/>
<input>
 <soap:body use="literal" namespace="http://ws.calc/"/>
</input>
<output>
 <soap:body use="literal" namespace="http://ws.calc/"/>
</output>

</operation>
 </binding>
 <service name="SimpleCalculatorService">
 <port name="SimpleCalculatorPort" binding="tns:SimpleCalculatorPortBinding">
 <soap:address location="http://172.16.5.81:6789/ws/calc"/>
 </port>
 </service>
</definitions>

In a nutshell it defines one operation add() which takes two int arguments and returns the sum of them.
This WSDL file can be used to generate helper classes such as Service Endpoint Interface (SEI), Service
and Exception classes etc. using the application wsimport. These classes are popularly known as portable
artifacts (or simply artifacts). The wsimport takes URL of WSDL file as a parameter, and generates a set
of files, structured in a directory tree. In order to create these artifacts, create a directory (say client1), open
a terminal, go to this directory and use the following command to generate JAX-WS artifacts:

wsimport –keep http://172.16.5.81:6789/ws/calc?wsdl

This will generate the Java artifacts and compile them by importing the http://172.16.5.81:6789/
ws/calc?wsdl. A sample output of this command is shown below:

parsing WSDL...
Generating code...
Compiling code...

A sample directory after creating artifacts is shown here:
client1
└─calc
 └─ws

 Calculator.class
 Calculator.java
 SimpleCalculatorService.class
 SimpleCalculatorService.java

488 ADVANCED JAVA PROGRAMMING

The –keep option tells not to delete (keep) the source artifacts. You may use this option to inspect
the generated files. The SEI is Calculator.java and Service class is SimpleCalculatorService.
java. The name of the source file representing a service is generally named as <classname>Service.
java. The generated service class has many public constructors including a no-argument constructor.
This no-argument constructor is used most often which uses WSDL location and service name from
the WSDL file.

Developing the client using these artifacts is very easy. We first create a service as follows:
SimpleCalculatorService calcService = new SimpleCalculatorService();

The service class also has methods each of which returns a local proxy, called dynamic proxy,
of service implementation. We get a reference to this proxy as follows:

Calculator cal = calcService.getSimpleCalculatorPort();

The complete source code of the client is shown below:
import calc.ws.*;
public class CalculatorClient {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 Calculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }
}

You can now run this client exactly as before.
Since, in the above example, a client generates artifacts from WSDL document, the web service

need not implement an interface and may be coded as:
package calc.ws;
import javax.jws.*;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;
@WebService
@SOAPBinding(style = Style.RPC)
public class SimpleCalculator {
 @WebMethod public int add(int a, int b) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

Deploy it using Endpoint class as before. If you now generate the client artifacts in a directory
client2, using wsimport, the following files are generated:

client2
└─calc
 └─ws

 SimpleCalculator.class
 SimpleCalculator.java
 SimpleCalculatorService.class
 SimpleCalculatorService.java

With these artifacts, the client code in the client2 directory will look like this:
import calc.ws.*;
public class CalculatorClient {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 SimpleCalculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }
}

JAVA AND SOAP 489
import calc.ws.*;
public class CalculatorClient {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 SimpleCalculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }
}

In the subsequent sections, we shall use the above implementation of our SimpleCalculator class.

18.9.6	 Document Style
In the previous examples, we used RPC Style for our SOAP Binding. Actually, there are two

different ways to encode and construct SOAP messages: RPC style and Document style. In short,
RPC style SOAP messages contain an XML representation of the method’s call in their body. This
XML representation uses the name of the method and its parameters.

The WSDL document for RPC style merely tells us how to construct a SOAP message. Consider
the WSDL document fragment or our previous web service:

…
<message name="add">
 <part name="arg0" type="xsd:int"/>
 <part name="arg1" type="xsd:int"/>
</message>
<message name="addResponse">
 <part name="return" type="xsd:int"/>
</message>…
 <binding name="SimpleCalculatorPortBinding" type="tns:Calculator">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

It tells us that to call a method add, SOAP body should contain an XML document fragment as
follows:

<add>
 <arg0>4</arg0>
 <arg1>3</arg1>
</add>

However, there is no provision to verify this XML representation.

In Document style, the SOAP body contains an XML document that can be validated against a
defined XML schema. Since, this style relies on the pre-defined schema to determine the structure of
the SOAP message, it is a more customizable and flexible approach than RPC style. In this section,
we shall rewrite our SimpleCalculator web service using document style. Using document style
web service is very easy. Simply include @SOAPBinding annotation as follows:

@SOAPBinding(style = Style.DOCUMENT)

Actually, @SOAPBinding annotation is optional and the default style is document. So, if the
annotation is absent, the style is assumed to document.

The WSDL document fragment for this web service looks like this:
…
<xsd:schema>
<xsd:import namespace="http://ws.calc/"
schemaLocation="http://172.16.5.81:6789/ws/calc?xsd=1"/>
</xsd:schema>
…
<message name="add">
 <part name="parameters" element="tns:add"/>
</message>
<message name="addResponse">
 <part name="parameters" element="tns:addResponse"/>
</message>
…
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
…

490 ADVANCED JAVA PROGRAMMING

…
<xsd:schema>
<xsd:import namespace="http://ws.calc/"
schemaLocation="http://172.16.5.81:6789/ws/calc?xsd=1"/>
</xsd:schema>
…
<message name="add">
 <part name="parameters" element="tns:add"/>
</message>
<message name="addResponse">
 <part name="parameters" element="tns:addResponse"/>
</message>
…
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
…

It tells that XML document in the SOAP request and response can be validated against the XML
schema which can be downloaded from http://172.16.5.81:6789/ws/calc?xsd=1. We downloaded
it and it looks like:

<xs:schema xmlns:tns="http://ws.calc/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"
targetNamespace="http://ws.calc/">
 <xs:element name="add" type="tns:add"/>
 <xs:element name="addResponse" type="tns:addResponse"/>
 <xs:complexType name="add">
 <xs:sequence>
 <xs:element name="arg0" type="xs:int"/>
 <xs:element name="arg1" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="addResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This schema helps us to create XML document in the SOAP message on the fly. You can also
generate WSDL and schema from implementation class using the following command:

wsgen -keep -wsdl -cp . calc.ws.SimpleCalculator

It generates SimpleCalculatorService.wsdl (WSDL file) and SimpleCalculatorService_
schema1.xsd (schema) files.

18.9.7	 Using tomcat to deploy web service
Usually, a web service runs under the supervision of a servlet container such as Tomcat, JBoss

etc. We need to perform the following steps, at a minimum:

•	 Create the web application deployment descriptor (web.xml) and a proprietary web service deployment descriptor
(for example, sun-jaxws.xml).

•	 Package generated artifacts, service implementation class and those descriptors into a web archive (.war file).
•	 Deploy the .war archive into the servlet container.

web.xml

sun-jaxws.xml

Calculator.class

SimpleCalculator.class
  

JAVA AND SOAP 491

To deploy a JAX-WS Web Service using tomcat, we need JAX-WS API that can be downloaded
from https://jax-ws.java.net/. We downloaded jaxws-ri-2.2.8.zip and when unzipped, the
following directory structure was created. The API jars can be found in jaxws-ri/lib. Create a web
application directory (say calcWS) in tomcat’s webapps directory. The API jars may be copied in the
application’s lib (i.e. calcWS/WEB-INF/lib) directory. In that case, the jars will be only available to
the including web application. If you want them available from all applications, place those jar files
in tomcat’s lib directory. We placed them in the application’s lib directory.

Now we create a standard web deployment descriptor web.xml for the deployment. It specifies
WSServletContextListener as listener class and WSServlet as servlet class. A sample web.xml is
shown below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1"
 metadata-complete="true">
 <listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>ws</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>ws</servlet-name>
 <url-pattern>/ws</url-pattern>
 </servlet-mapping>
</web-app>

Note that in the current tomcat version 8.0, the use of web deployment descriptor web.xml is not
mandatory. It works fine without web.xml file. Since, older versions needs this file, we have used it
for illustration.

We then create a web service deployment descriptor. The name of this file for JAX-WS is sun-
jaxws.xml. A sample file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime" version="2.0">
 <endpoint name="Calculator" implementation="calc.ws.SimpleCalculator"
 url-pattern="/ws/calc"/>
</endpoints>

This essentially tells that for URL pattern ws/calc, the corresponding implementation class is
calc.ws.SimpleCalculator.

Now, start the tomcat . If everything goes fine, our web service will be deployed successfully and
the following message appears:

…
INFO: Deploying web application directory D:\apache-tomcat-8.0.0-
RC1\webapps\calcWS
Apr 08, 2014 10:10:7 AM com.sun.xml.ws.transport.http.servlet.WSServletDelegate
<init>
INFO: WSSERVLET14: JAX-WS servlet initializing
Apr 08, 2014 10:10:7 AM
com.sun.xml.ws.transport.http.servlet.WSServletContextListener
contextInitialized
INFO: WSSERVLET12: JAX-WS context listener initializing
Apr 08, 2014 10:10:7 AM
com.sun.xml.ws.transport.http.servlet.WSServletContextListener
contextInitialized
INFO: WSSERVLET12: JAX-WS context listener initializing
…

492 ADVANCED JAVA PROGRAMMING

…
INFO: Deploying web application directory D:\apache-tomcat-8.0.0-
RC1\webapps\calcWS
Apr 08, 2014 10:10:7 AM com.sun.xml.ws.transport.http.servlet.WSServletDelegate
<init>
INFO: WSSERVLET14: JAX-WS servlet initializing
Apr 08, 2014 10:10:7 AM
com.sun.xml.ws.transport.http.servlet.WSServletContextListener
contextInitialized
INFO: WSSERVLET12: JAX-WS context listener initializing
Apr 08, 2014 10:10:7 AM
com.sun.xml.ws.transport.http.servlet.WSServletContextListener
contextInitialized
INFO: WSSERVLET12: JAX-WS context listener initializing
…

This can be verified by typing the following URL at the address bar of a web browser:
http://172.16.5.81:9090/calcWS/ws/calc

You can now create a consumer of this web service as discussed earlier.

18.9.8	 Using Ant to build war file
If you want to build a web archive (WAR) file, create the following directory structure. Place all

JAR files from jaxws-ri/lib in calcWS/WebContent/WEB-INF/lib directory.
calcWS
│ build.xml

src
│ └─calc
│ └─ws
│ Calculator.java
│ SimpleCalculator.java

WebContent
 └─WEB-INF
 │ sun-jaxws.xml
 │ web.xml
 └─lib

There are various tools to build a web archive. We shall use the well-known Apache ant which
needs a build file (build.xml). The following is a sample ant build.xml file:

<project name="calcWS" default="war" basedir=".">
 <description>Web Services build file</description>
 <!-- set global properties for this build -->
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="dist" location="dist"/>
 <property name="webcontent" location="WebContent"/>

 <target name="compile" description="compile the source " >
 <mkdir dir="${build}"/>
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="war" depends="compile" description="generate war" >
 <!-- Create the war distribution directory -->
 <mkdir dir="${dist}/war"/>
 <!-- Follow standard WAR structure -->
 <copy todir="${dist}/war/build/"><fileset dir="${webcontent}"/></copy>
 <copy todir="${dist}/war/build/WEB-INF/classes/"><fileset
dir="${build}"/></copy>

 <jar jarfile="${dist}/war/calcWS.war" basedir="${dist}/war/build/"/>
 </target>

</project>

Open a terminal, go the directory calcWS and use the following command to build the WAR file:
ant

JAVA AND SOAP 493

Make sure that the ant application is in our PATH environment variable. If everything goes fine,
the following message appears:

Buildfile: E:\ajp\soap\calcWS\build.xml

compile:
 [mkdir] Created dir: E:\ajp\soap\calcWS\build
 [javac] Compiling 2 source files to E:\ajp\soap\calcWS\build

war:
 [mkdir] Created dir: E:\ajp\soap\calcWS\dist\war
 [copy] Copying 31 files to E:\ajp\soap\calcWS\dist\war\build
 [copy] Copying 2 files to E:\ajp\soap\calcWS\dist\war\build\WEB-
INF\classes

 [jar] Building jar: E:\ajp\soap\calcWS\dist\war\calcWS.war

BUILD SUCCESSFUL
Total time: 2 seconds

The war file calcWS.war is stored in calcWS/dist/war/ directory. Place this file in tomcat’s
webapps directory and restart the server. The SimpleCalculator web service will be deployed.

18.9.9	 Asynchronous Client
The clients that we have written so far are called synchronous clients as they wait for the response

to return. If processing of request takes a very long time, a synchronous client cannot continue its
work. Fortunately, JAX-WS provides a feature called asynchronous request–response that allows a
client application to continue its work and handle the response later on. This section describes how
to create a client that asynchronously invokes an add() operation in a calculator web service.

When using asynchronous request-response, a client, instead of invoking the operation directly,
invokes an asynchronous flavor of the same operation. The SEI, we generated so far, does not have
asynchronous methods included in the interface. We use JAX-WS bindings to add the asynchronous
callback or polling methods on the interface. To generate a service endpoint interface having such
asynchronous methods, we use enableAsyncMapping binding declaration. There are two ways to
specify binding declarations. In the first approach, all binding declarations are written in a separate
document, called an external binding file. In the second approach, the binding declarations are
embedded directly inside a WSDL document.

Using external binding file
A sample external binding file (bind.xml) at minimum, is shown below:
<!--bind.xml-->
<bindings xmlns="http://java.sun.com/xml/ns/jaxws">
 <enableAsyncMapping>true</enableAsyncMapping>
</bindings>

The <bindings> element is used as a container for JAX-WS binding declaration. The elements
must belong to the http://java.sun.com/xml/ns/jaxws namespace. The only child element
<enableAsyncMapping> indicates that asynchronous methods should be generated. We then use the
following command to create artifacts:

wsimport -b bind.xml -keep http://172.16.5.81:6789/ws/calc?wsdl

The file containing JAX-WS binding information is specified using –b option of wsimport tool.
Using embedded binding

The binding declaration may be written inside the WSDL file directly on any of the following nodes.

494 ADVANCED JAVA PROGRAMMING

•	 <definitions>—Applies to all operations of all portType attributes.
•	 <portType>—Applies to all operations in the portType.
•	 <operation>—Applies to the operation only.

Download the WSDL file from http://172.16.5.81:6789/ws/calc?wsdl and save it in a file
calc.xml (say). Now, modify this file as follows:

<portType name="SimpleCalculator">
 <bindings xmlns="http://java.sun.com/xml/ns/jaxws">
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>

…
</portType>

The inserted code is shown using bold face. Use the following command to generate the artifacts:
wsimport –keep calc.xml

Either case, it generates the following asynchronous methods along with the normal synchronous
methods in the resultant service endpoint interface SimpleCalculator.

public int add(int arg0, int arg1);
public Response<Integer> addAsync(int arg0, int arg1);
public Future<?> addAsync(int arg0, int arg1, AsyncHandler<Integer>
asyncHandler);

For clarity the annotations have been removed from the actual declaration. JAX-WS supports two
models to invoke methods asynchronously: polling and callback. The first is for ordinary synchronous
method and the last two are asynchronous polling and callback methods respectively. We have omitted
the annotations for better clarity. Asynchronous invocations require special consideration. For example,
instead of invoking the method add() directly, we invoke addAsync() method.

18.9.9.1     Polling
Consider the second method generated by wsimport application:
public Response<Integer> addAsync(int arg0, int arg1);

In the polling method, a client typically invokes this asynchronous method as follows.
SimpleCalculator cal = …
int x = 4, y = 3;
Response<Integer> response = cal.addAsync(x,y);

This method addAsync() does not block the client and lets client to continue its own work. The
client periodically checks for a response by polling the returned Response object. The response is
available when isDone() method of this object returns true. The following code segment illustrates this:

while (!response.isDone()) {
 // do something here
}

When this loop exits (i.e. response is available), the client gets the result using get() method of
Response as follows:

int result = response.get();

The complete source code of the client that used polling is shown below:
import javax.xml.ws.*;
import async.client.*;
public class CalculatorClientPoll {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 SimpleCalculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 Response<Integer> response = cal.addAsync(x,y);
 System.out.println("Sent: " + x +" and "+y);
 try {
 while (!response.isDone()) {
 Thread.sleep(10);
 System.out.println("Printing a message");
 }
 int result = response.get();
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

JAVA AND SOAP 495

import javax.xml.ws.*;
import async.client.*;
public class CalculatorClientPoll {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 SimpleCalculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 Response<Integer> response = cal.addAsync(x,y);
 System.out.println("Sent: " + x +" and "+y);
 try {
 while (!response.isDone()) {
 Thread.sleep(10);
 System.out.println("Printing a message");
 }
 int result = response.get();
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

The sleep() method is merely used to avoid printing too many messages on the screen. When
executed, this client produced the following result:

Sent: 4 and 3
Printing a message
Printing a message
Printing a message
Received(4+3=): 7

This implies that the client was printing a message after requesting the service. After some time,
the client receives the result from the service, prints and exits.

18.9.9.2     Callback
In this model of method invocation, the client does not continuously poll for response; it instead

sets up a handler and continues its normal work. The handler gets notified when the response is
available. The asynchronous operation takes an additional parameter, an AsyncHandler object that
refers to the handler.

public Future<?> addAsync(int arg0, int arg1, AsyncHandler<Integer>
asyncHandler);

The client provides an AsynchHandler instance as a callback handler to accept and process the
inbound response object. This handler implements javax.xml.ws.AsynchHandler interface which
has single method handleResponse(). The handler defines this method which gets called when an
asynchronous response is received from the server. The response is delivered to the callback handler
in the form of a javax.xml.ws.Response object. Here is a sample callback handler:

class MyHandler implements AsyncHandler<Integer> {
 private int result;
 public void handleResponse(Response<Integer> response) {
 try {
 result = response.get();
 } catch (Exception e) { e.printStackTrace(); }
 }
 int get(){ return result; }
}

This handler, upon receiving a response, extracts the result from Response object and stores it in
a variable result, which can be retrieved later using get() method. The client code looks similar to
polling method except that it passes a AsyncHandler object as follows:

SimpleCalculator cal = …
int x = 4, y = 3;
MyHandler mh = new MyHandler();
Future<?> response = cal.addAsync(x,y, mh);
while (!response.isDone()) {
 // do something here
}

When this loop exits (i.e. response is available), the client gets the result using get() method of
MyHandler as follows:

int result = mh.get();

496 ADVANCED JAVA PROGRAMMING

The complete source code of callback asynchronous client is shown below:
import javax.xml.ws.*;
import async.client.*;
import java.util.concurrent.Future;
public class CalculatorClientCallBack {
 public static void main(String[] args) {
 SimpleCalculatorService calcService = new SimpleCalculatorService();
 SimpleCalculator cal = calcService.getSimpleCalculatorPort();
 int x = 4, y = 3;
 MyHandler mh = new MyHandler();
 Future<?> response = cal.addAsync(x,y, mh);
 System.out.println("Sent: " + x +" and "+y);
 try {
 while (!response.isDone()) {
 Thread.sleep(10);
 System.out.println("Printing a message");
 }
 int result = mh.get();
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }catch(Exception e) {e.printStackTrace();}
 }
}

When executed, this client produced the following result:
Sent: 4 and 3
Printing a message
Printing a message
Printing a message
Printing a message
Received(4+3=): 7

KEYWORDS
Ant—A tool from Apache used to build web and
applications

Asynchronous client—A web service client that does
not wait for the response to return and continues its
own work

Body—A child element of <Envelope> containing payload

Envelope —The root element of a SOAP message

Header—Optional child element of <Envelop>
containing control information

JAX-WS—Java API for XML Web Services (JAX-WS)
is an Application Programming Interface (API) for
developing web services and clients

Polling—Checking for something continuously

Simple Object Access Protocol—A minimal set of
conventions for invoking code using XML over HTTP
defined by World Wide Web Consortium

SOAP messages—HTTP POST messages with an
XML document as body used to exchange information
between SOAP server and client

SOAP Fault Message—A SOAP message sent by
a SOAP server to a SOAP client to indicate an error

SOAP Request Message—A SOAP message sent
by a SOAP client to a SOAP server

SOAP Response Message—A SOAP message sent
by a SOAP server to a SOAP client

Synchronous client—A web service client that waits
for the response to return

Web Service—An application component that
provides a service which is available over the web

@WebService—An annotation used to declare an
interface as a web service

Web Service Cient—An application that consumes
a web service

@WebMethod—An annotation used to expose a
method as a web service operation

@SOAPBinding—An annotation used to indicate the
SOAP encoding to be in use

WSDL—A language used to describe a web service

wsgen—A Java tool to generate schema, WSDL
document etc.

wsimport—A Java tool to generate SOAP artifacts

JAVA AND SOAP 497

SUMMARY
Simple Object Access Protocol (SOAP), as its name
implies, is a simple and lightweight mechanism to
exchange information between peers. SOAP tried
to pick up where XML-RPC left off by implementing
user defined data types, the ability to specify the
recipient, message specific processing control, and
other features. SOAP can be used in a wide variety
of systems ranging from messaging systems to RPC.

SOAP was designed as an object-access protocol by
Dave Winer et al. in 1998. Its specification is currently
maintained by the XML Protocol Working Group of the
World Wide Web Consortium.

The primary part of the SOAP is the messaging
framework. Any SOAP message is an XML document
having the following minimal specification:

•	 The mandatory root element <Envelop>.
•	 �The <Envelop> element contains an optional

<Header> element followed by a mandatory
<Body> element.

A SOAP message may be a Request message or a
Response Message. In addition, it defines another
message to indicate erroneous situations.

Although SOAP was originally intended for exchanging
any type of messages, it is primarily used for Remote
Procedure Call (RPC). It still defines a convention
for encapsulating and exchanging RPC calls and
responses.

Java API for XML Web Services (JAX-WS) is an
Application Programming Interface (API) for developing
web services and clients. JAX-WS programming
model extends the foundation provided by the Java
API for XML-based RPC (JAX-RPC) programming
model. JAX-WS uses annotations extensively, to
simplify the development and deployment of web
service.

WSDL is used to develop XML files that specify web
services. Web service publisher generates WSDL
document for the clients, who can inspect this
document to gather knowledge about the syntax of
calling the web service. JAX-WS provides several
useful tools such as wsimport, wsgen to work with
web service. JAX-WS also provides libraries to deploy
a web service through an existing web server such
as tomcat. JAX also supports synchronous as well as
asynchronous clients.

WEB RESOURCES
http://docs.oracle.com/javaee/5/tutorial/

doc/bnayn.html
The Java EE 5 Tutorial

http://www.tutorialspoint.com/listtutorial/

Java-Web-Service-Tutorial-(With-SOAP-UI)--

Part-03/4455
Java Web Service Tutorial (With SOAP UI)- Part 03

http://www.informit.com/library/content.

aspx?b=STY_XML_21days&seqNum=228
A SOAP Example in Java

http://www.mkyong.com/webservices/jax-ws/

jax-ws-hello-world-example-document-style/
JAX-WS Hello World Example – Document Style

http://examples.javacodegeeks.com/

enterprise-java/jws/jax-ws-soap-handler-

example/
JAX-WS SOAP Handler Example

EXERCISES
Objective-type Questions

	 1.	 SOAP stands for
	 (a)	 Simultaneous Object Access Protocol
	 (b)	 Simple Object Access Policy
	 (c)	 Simple Object Access Protocol
	 (d)	 Standard Object Access Protocol

	 2.	 Which of the following is NOT the purpose of the
binding section of a WSDL document?

	 (a)	 To indicate the transport protocol of a
portType operation.

	 (b)	 To indicate how the body of a SOAP
message is constructed.

	 (c)	 To indicate how the header of a SOAP
message is constructed.

	 (d)	 To indicate the message transmission
sequence of a portType operation.

498 ADVANCED JAVA PROGRAMMING

	 3.	 Which of the following is the root element of every
SOAP message?

	 (a)	 <Root>	 (c)	 <Container>
	 (b)	 <Envelop>	 (d)	 <Header>

	 4.	 Which of the following is a mandatory element in
a SOAP message?

	 (a)	 <Header>	 (c)	 <faultcode>
	 (b)	 <Envelop>	 (d)	 <return>

	 5.	 WSDL stands for
	 (a)	 Web Service Designing Language
	 (b)	 Web Service Definition Language
	 (c)	 Web Site Description Language
	 (d)	 Web Service Description Language

	 6.	 JAX-WS stands for
	 (a)	 Java API for XML Web Site
	 (b)	 Java API for XHTML Web Service
	 (c)	 Java API for XML Wide Service
	 (d)	 Java API for XML Web Service

	 7.	 Which of the following does SOAP extend?
	 (a)	 HTTP	 (c)	 WSDL
	 (b)	 XML	 (d)	 XML-RPC

	 8.	 Which of the following annotations is used for
declaration of a web service?

	 (a)	 @SOAPBinding	(c)	 @WebService
	 (b)	 @WebMethod	 (d)	 @Style

	 9.	 What is the default encoding style?
	 (a)	 Document	 (c)	 XML
	 (b)	 RPC	 (d)	 None of the above

	10.	 Which of the following statements is correct if a
SOAP message contains the following statement?

		 <SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://
schemas.xmlsoap.org/soap/envelope/”>

	 (a)	 The SOAP processor will go to http://
schemas.xmlsoap.org/soap/envelope/ to
find out the meaning of Envelope.

	 (b)	 SOAP-ENV is a name in namespace xmlns.
	 (c)	 The tag <Envelope> mentioned above is

not the same as the tag <Envelope> of the
namespace http://www.w3.org/2001/09/
soap-envelope

	 (d)	 SOAP 1.2 standard is used when
constructing this SOAP message.

	11.	 In WSDL, a <portType> refers to
	 (a)	 TCP/IP or UDP port on the server
	 (b)	 the operations that can be performed, and

the messages that are involved

	 (c)	 the actual protocol used in the Web Service
	 (d)	 only the operations that can be performed

	12.	 Which of the following classes is used to publish
a web service?

	 (a)	 Publisher	 (c)	 WebService
	 (b)	 Endpoint	 (d)	 WSPublisher

	13.	 Which of the following methods is used to publish
a web service?

	 (a)	 export()	 (c)	 disclose()
	 (b)	 upload()	 (d)	 publish()

	14.	 The soap:binding element has two attributes. They are
	 (a)	 style attribute and transport attribute
	 (b)	 actor and name
	 (c)	 encoding and soapAction
	 (d)	 message and parts

	15.	 In WSDL a <port> refers to
	 (a)	 TCP/IP or UDP port on the server
	 (b)	 Represents the actual service used
	 (c)	 Exposes a <service> using a specific

protocol binding
	 (d)	 Defines the operation

	16.	 Which of the following statements is correct for
the SOAP message given below?

		 <SOAP-ENV:Body>
		 < n s 1 : g e t P r i c e R e s p o n s e x m l n s : n s 1 =

“urn:examples:priceservice” SOAP-ENV:
encodingStyle= “http://www.w3.org/2001/09/
soap-encoding”>

		 <return xsi:type=“xsd:double”>54.99<return>
		 </ns1:getPriceResponse/>
		 </SOAP-ENV:Body/>
	 (a)	 The SOAP processor will follow SOAP 1.1

standard to encode the number 54.99.
	 (b)	 The service tries to return a double number

of value 54.99 as a result.
	 (c)	 T h e n a m e s p a c e o f d o u b l e i s

urn:examples:priceservice
	 (d)	 This message is most probably generated

by Apache Soap or related engine

	17.	 Which of the following is correct about SOAP and
XML-RPC?

	 (a)	 SOAP can do RPC while XML-RPC cannot.
	 (b)	 SOAP is platform and language independent

while XML-RPC is not.
	 (c)	 SOAP specification has a part that

particularly defines data types while XML-
RPC has not.

	 (d)	 SOAP follows XML Schema when defining
data types while XML-RPC does not

JAVA AND SOAP 499

	18.	 What does SOAP define?
	 (a)	 The overall structure of the XML message
	 (b)	 The conventions representing the remote

procedure call in the XML message
	 (c)	 A binding to HTTP
	 (d)	 The conventions to wrap and send an error

back to the sender
	 e)	 All of the above

	19.	 Which of the following is true about Simple Object
Access Protocol (SOAP) ?

	 (a)	 SOAP is a protocol used in conjunction with
web services technology.

	 (b)	 SOAP outlines and defines the spec-
ifications used to describe a web service
to its requester.

	 (c)	 A SOAP message is formatted in HTML.
	 (d)	 SOAP is platform dependent.

	20.	 Which of the following tools is used to compile
WSDL file?

	 (a)	 wsgen	 (c)	 wscompile
	 (b)	 wsimport	 (d)	 wsc

	21.	 Which of the following classes represents a web
service?

	 (a)	 Service	 (c)	 WS
	 (b)	 WebService	 (d)	 WebServiceClass

	22.	 Which of the following is used for document style
encoding?

	 (a)	 @SOAPBinding(style = Style.RPC)
	 (b)	 @SOAPBinding(style = Style.DOCUMENT)
	 (c)	 @Binding(style = Style.DOCUMENT)
	 (d)	 @SOAPBinding(style = Style.DOC)

	23.	 The SOAP elements must always belong to the
namespace

	 (a)	 http://jax-ws.dev.java.net
	 (b)	 http://schemas.xmlsoap.org/ws/2004/09/

policy
	 (c)	 http://schemas.xmlsoap.org/soap/envelope
	 (d)	 http://schemas.xmlsoap.org/wsdl/soap

	24.	 The name of the tomcat web service servlet is
	 (a)	 WebServiceServlet
	 (b)	 TomcatWSServlet
	 (c)	 TomcatServlet
	 (d)	 WSServlet

	25.	 Which of the following tags is used to enable
asynchronous method generation?

	 (a)	 addAsync	 (c)	 addAsynchronous
	 (b)	 addAsyn	 (d)	 AsyncAdd

	26.	 Which of the following interfaces must an
asynchronous callback handler implement?

	 (a)	 AsynchronouscHandler
	 (b)	 Handler
	 (c)	 AsynHandler
	 (d)	 AsyncHandler

	27.	 What is the return type of asynchronous
methods?

	 (a)	 Future	 (c)	 void
	 (b)	 Response	 (d)	 Either a) or b)

	28.	 If the URL of a web service is http://172.16.5.81:6789/
ws/calc, what will the URL of the WSDL file be?

	 (a)	 http://172.16.5.81:6789/ws/wsdl
	 (b)	 http://172.16.5.81:6789/ws/calc?wsdl
	 (c)	 http://172.16.5.81:6789/ws/calc?wsdldoc
	 (d)	 http://172.16.5.81:6789/ws/calc?wsdlfile

	29.	 The JAX-WS <bindings> element may be written in
	 (a)	 <definitions>	 (c)	 <operation>
	 (b)	 <portType>	 (d)	 all of the above

	30.	 What is the default name of sun’s web service
deployment descriptor?

	 (a)	 sun-jaxws.xml
	 (b)	 sun-jaxws.properties
	 (c)	 jaxws.xml
	 (d)	 jaxws.properties

	31.	 Which of the following is used to generate schema
and WSDL from web service implementation
file?

	 (a)	 wsimport	 (c)	 Both a) and b)
	 (b)	 wsgen	 (d)	 None of the above

	32.	 SEI stands for
	 (a)	 Service Endpoint Implementation
	 (b)	 Simple Endpoint Interface
	 (c)	 Service Endpoint Interface
	 (d)	 Sample Endpoint Interface

Subjective-type Questions

	 1.	 What is SOAP and how does it relate to XML?

	 2.	 Write the purpose of Header element in SOAP
document.

	 3.	 Describe the structure of SOAP messages. Also
write the rules associated with the SOAP message
structure.

500 ADVANCED JAVA PROGRAMMING

	 4.	 How are SOAP messages embedded in POST
method of HTTP protocol?

	 5.	 Write the use of SoapMethod attribute in HTTP
header.

	 6.	 Discuss the various Fault elements associated
with SOAP fault.

	 7.	 Write the SOAP request message to call a method
“getPhoneNumber” with parameter “name” taking
value “John”. Use SOAP encoding. Also write the
SOAP response message for the same. Write
about the fault elements.

	 8.	 Compare Web Services with CORBA

	 9.	 Identify the purpose of envelope and encoding
namespace.

	10.	 Explain the role of XML in SOAP.

	11.	 Describe the basic steps to develop a web service
client.

	12.	 What is the difference between SOAP and other
remote access techniques?

	13.	 What are the elements that should be contained
in SOAP message?

	14.	 What is the function of a SOAP body element?

	15.	 What do you mean by SOAP encoding?

	16.	 Give examples where SOAP is used.

	17.	 What are Transport methods in SOAP?

	18.	 What is the difference between a synchronous
and asynchronous client?

	19.	 What is the difference between an asynchronous
polling and asynchronous callback?

	20.	 Describe the basic steps to develop an asyn-
chronous client.

	21.	 Explain how to develop an asynchronous callback
client?

	22.	 Define Web Services.

	23.	 What is the function of WSDL?

	24.	 Describe the process of communication between
Client and Web Service.

Chapter 19	 Security

Chapter 20	 Servlet

Chapter 21	 Java Server Pages

Chapter 22	 �Java Database Connectivity
(JDBC)

Chapter 23	 Hibernate

Chapter 24	 �Java Naming and Directory
Interface

Chapter 25	 Java Message Service

Chapter 26	 Introduction to J2EE

Chapter 27	 Java and CORBA

Chapter 28	 Java Server Faces

PART THREE
ENTERPRISE JAVA

CHAPTER – 19

Security

Key Objectives

After completing this chapter readers will be able to—
•  get an overview about the Java security classes and interfaces
•  write secured Java socket programs
•  use keytool utility to work with keys, certificates and stores
•  know how to make RMI applications secured
•  know the importance of signed, sealed and guarded objects
•  use jarsigner tool to sign and verify JAR files
•  understand how to work with security manager

19.1	 INTRODUCTION
Often, security is not considered as a fundamental design element in a programming language.

Consequently, software developers incorporate security mechanisms at the end of a project despite
recent high-profile attacks. However, Java uses a completely different philosophy where security is
considered as a crucial design element. It is aware of many security policies and permissions even
before the first class is loaded.

Note that, only attackers do not insert malicious code; poorly written applications may inadvertently
compromise system-level resources or affect the performance of other applications. Java applications
are hardly victimized by viruses due to the language’s insistence on a firm policy and permission
design.

Unfortunately, this topic has become one of the most confusing topics. This is mostly because
many example codes circumvent security features by granting all permissions to all codes. Needless to
say that these sample policies shouldn’t be applied in real-world applications; they remain otherwise
dangerous.

This chapter explores almost all the aspects of Java security mechanism including developing
custom permission classes.

504 ADVANCED JAVA PROGRAMMING

19.2	 JAVA SECURITY ARCHITECTURE
Java programming language, with its core features and security extensions, enables us in

writing powerful secure applications. Security includes language safety, cryptography, Public Key
Infrastructure (PKI), authentication, secure communication, and access control. In this chapter,
we shall discuss the basics of security and its implementation in Java, with numerous examples to
illustrate the concepts.

This section gives an overview of Java security, from secure language features to the security
APIs, tools, and built-in provider services, highlighting key packages and classes where applicable.

19.2.1	 Language Security
The Java language itself provides secure class loading and verification mechanism to ensure

that only legitimate Java code is executed. Java programs are compiled into machine-independent
representation called bytecode. When these bytecodes are executed, they are verified by a special
component of Java Runtime Environment, called bytecode verifier. The verifier thoroughly checks if
the bytecodes strictly conform to the language specification and violate language rules or namespace
regulations. The verifier also checks for illegal typecasts, stack overflows or underflows and memory
management violations. This ensures that only legitimate bytecodes are executed in the Java runtime.

In addition, Java itself is type-safe and provides automatic memory management, garbage
collection, and range-checking on arrays etc. enhancing the robustness of application code.

The Java language also enables developers to restrict access to their classes, methods, and
fields using different access modifiers such as private, protected, public and package. The
unrestricted access specifier is public. The most restrictive specifier is private. The protected
specifier allows access to any subclass, or to other classes within the same package. Package-level
access only allows access to classes within the same package.

19.2.2	 Basic Security
Java security technology spans a wide range of areas, including cryptography, public key

infrastructure, secure communication, authentication, access control and language safety. It contains
a rich set of APIs, tools, and implementations of commonly used security algorithms, mechanisms,
and protocols. These together provide the programmers a comprehensive security framework for
developing and managing applications.

Three principles were adopted while designing security APIs: Implementation independence,
Implementation interoperability and Algorithm extensibility.

The first principle says that the applications themselves need not implement security; instead they
can make use of the security services from Java. These services are implemented as providers which are
represented by the class java.security.Provider. Oracle’s implementation of Java includes a number
of built-in pre-configured providers that implement a basic set of security services. Applications may
rely on these providers, which are plugged into the Java platform via a standard interface.

The second principle says that providers are functionally similar and interoperable. This means
applications using different providers may seamlessly interoperate.

The last principle says that athough applications usually rely on built-in providers, they are free to
use proprietary services or emerging standards that have not yet been implemented. The Java platform
is helpful enough to install such custom providers implementing those services.

The following sections give an overview of various security areas such as cryptography,
authentication, etc.

SECURITY 505

19.2.3	 Java Cryptography Architecture (JCA)
The Java Cryptography Architecture (JCA) is a framework for accessing and developing

cryptographic functionality. The JCA is a major part of Java Security Architecture and contains
services such as

•	 Symmetric stream encryption
•	 Symmetric bulk encryption
•	 Asymmetric encryption
•	 Password-based encryption (PBE)
•	 Elliptic Curve Cryptography (ECC)
•	 Message digest algorithms
•	 Digital signature algorithms
•	 Key agreement algorithms
•	 Key generators
•	 Message Authentication Codes (MACs)
•	 (Pseudo-)random number generators

The cryptography APIs are organized into two distinct packages. The java.security package
and javax.crypto package.

The former package contains the classes and interfaces for the security framework. This
includes access control related classes and supports generation and storage of cryptographic
public key pairs, a number of cryptographic operations such as message digest and signature
generation. This package also includes classes that support signed/guarded objects and secure
random number generation.

The javax.crypto packages the classes and interfaces for cryptographic operations (such as
encryption, key generation and key agreement, and Message Authentication Code generation) and
supports secure streams and sealed objects. The encryption includes symmetric, asymmetric, block,
and stream ciphers.

The Java platform includes built-in providers for many of the most commonly used cryptographic
algorithms, including the RSA, DSA, and ECDSA signature algorithms, the DES, AES, and
ARCFOUR encryption algorithms, the MD5, SHA-1, and SHA-256 message digest algorithms,
and the Diffie-Hellman and ECDH key agreement algorithms. These default providers implement
cryptographic algorithms in Java code.

The Java comes with security providers that implement commonly used cryptographic algorithms,
including the RSA, DSA, and ECDSA signature algorithms, the DES, AES, and ARCFOUR encryption
algorithms, the MD5, SHA-1, and SHA-256 message digest algorithms, and the Diffie-Hellman and
ECDH key agreement algorithms. Java also includes a built-in provider, named SunPKCS11, that
acts as a bridge to a native PKCS#11 (v2.x) token.

The cryptography is often divided as two categories: secret key cryptography and public key
cryptography. Let us have a brief overview of these two:

19.2.3.1   Secret-key Cryptography
In this category of cryptography, both the sender and receiver share the key only known to the

communicating parties. Since, often the same key is used for encryption and dycryption, the key is
also referred to as symmetric key. One of its important advantages is that it can encrypt data with
arbitrary size. Though there are many powerful key generation algorithms, the main challenge is
exchanging the secret key in a safe way. Moreover if the secret key is somehow disclosed, the entire
purpose is lost.

506 ADVANCED JAVA PROGRAMMING

19.2.3.2   Public-key Cryptography
In this both communicating peers maintain a pair of two keys. One of the two keys is only known

to that party and is known as private key. The other one may be known to everybody and is known
as public key and hence its name. These two keys are related in such a way that one can be used
to decrypt data entrypted by the other. The advantage of this method lies in the use of public key.
Intruders can even know this key but cannot proceed too much further.

However, public key encryption algorithms do not support encryption of arbitrary size. For
example, RSA can encrypt maximum data as follows:

Maximum data size (in bytes) = RSA key size (in bytes) – header

For RSA PKCS#1 v1.5 padding, the header size is 11 bytes. So, for a key size of 256 bytes (i.e.
2048 bits), the maximum size of data that RSA can encrypt is 245 (=256 – 11) bytes. Although,
a larger key may be chosen, it takes too much time for encryption/decryption unrealistic for
real-time applications. That is why, public key encryption algorithms are not meant for general
data encryption. Instead, they are usually used to encrypt secret keys, authentication codes
etc. For encryption of arbitrary data, the following strategy may be employed (and is also
recommended):

	1.	 Generate a symmetric (secret) key with preferred size.
	2.	 Get the public key certificate from the intended receiver.
	3.	 Encrypt the symmetric key with RSA using receiver’s public key obtained from the certificate and send the

encrypted key.
	4.	 Decrypt the symmetric key (secret) with the RSA using receiver’s private key.
	5.	 Encrypt the data with the symmetric key and send it to the receiver.
	6.	 Decrypt the data with the symmetric key.

Steps 1–4 are done only once, whereas steps 5–6 are repeated until the data exchange is over.

19.2.4	 Public Key Infrastructure (PKI)
This is a framework that deals with the exchange of information based on public key cryptography.

The fundamental idea of public key cryptography is digitally signed public key certificates.
Java provides APIs to work with these certificates such as creating, building, and validating
certificates. The API supports X.509/PKIX compliant digital certificates. The API consists of two
packages java.security and java.security.cert.

19.2.4.1   Public Key Certificates
In public key cryptography, a certificate (also known as a digital certificate) is an electronic

document that contains a digital signature and a public key. This signature and key together identify
entities such as a person or an organization etc. The certificate is typically used to verify that a public
key belongs to an individual.

19.2.4.2   Certificate Format
The format of pubic key certificate was specified as a part of the well-known standard X.509.

The structure of an X.509 digital certificate is summarized as follows:

•	 Certificate

°    Version

°    Serial Number

°    Algorithm ID

°    Issuer

SECURITY 507

°    Validity
■    Not Before
■    Not After

°    Subject

°    Subject Public Key Info
■    Public Key Algorithm
■    Subject Public Key

°    Issuer Unique Identifier (optional)

°    Subject Unique Identifier (optional)

°    Extensions (optional)
■    ...

•	 Certificate Signature Algorithm
•	 Certificate Signature

Java security API provides classes and interfaces to represent such certificates and working with
them. We shall write several programs in Java to do various certificate-related operations.

19.2.4.3   Digital Signature
A digital signature is a scheme for ensuring the authenticity of a message or document. The signatory

of a digital signature has a pair of keys one of which is called public key (assumed to be known to
anybody), and the other is called private key (assumed to be known only to the signatory). Given a
piece of target data (usually another key), its summary, called a digest is created using a hash function.
The digest data summary is used in conjunction with the DSA algorithm to create the digital signature
that is sent with the message. Signature verification involves the use of the same hash function.

The digest is then encrypted using DSA algorithm in conjunction with the signatory’s private key.
This encrypted version of the data’s digest is known as signature of the data. The target data and its
signature are then sent (as a single entity or separately) to another application, which in turn, verifies
the signature of the data using DSA and the signatory’s public key. If the signature is correct, the
data is said to reach as an integral part (i.e. without any modification).

19.2.4.4   Key and Certificate Store
Java platform allows us to store keys and certificates in persistent store via java.security.

KeyStore and java.security.cert.CertStore respectively. In addition to standard PKCS11 and
PKCS12 key store types, Java also provides a built-in store in a format known as JKS (Java Key
Store) format. This JKS key store can be manipulated using a Java tool called keytool. A detailed
usage of this tool is demonstrated later in this chapter.

19.2.5	 PKI Tools
Java comes with tools to work with keys and certificates and keystores. The tool keytool can be

used to do the following:
•	 Create private/public key pairs using various key generation allgorithms
•	 Create self-signed certificates
•	 Display, import, and export X.509 certificates stored in files
•	 Issue certificate (PKCS#10) requests to be sent to CAs
•	 Create certificates based on certificate requests
•	 Import certificate replies (obtained from the CAs sent certificate requests)
•	 Designate public key certificates as trusted

The jarsigner tool is used to sign JAR (Java ARchive) files and/or to verify signatures on signed
JAR files. A detailed discussion about these tools can be found later in this chapter.

508 ADVANCED JAVA PROGRAMMING

19.3	 SECURE COMMUNICATION
The Java platform also provides API support and provides implementations for a number of

standard secure communication protocols. The primary protocols used for secure communication are
SSL and TLS. Although, SSL and TLS are not the only protocols currently in use for security, they are
very common for applications that could involve sensitive data (i.e. passwords etc.). A little knowledge
about these protocols will greatly help us in understanding how a secure link between a client and a
server is really established. Since, the term privacy (or simply securiy) comes first whenever we talk
about general security, we shall also start writing programs for secure communication.

19.4	 SSL
Secure Socket Layer (SSL) is a protocol used to make communication secured and is a primary

choice of the Internet community. The purpose of SSL is capable of securing any transmission over TCP,
such as HTTP, SMTP, FTP etc. The location of SSL in TCP/IP protocol suit is shown in Table 19.1:

Table 19.1: TCP/IP with SSL

TCP/IP Layers Protocols

Application Layer HTTP, SMTP, POP, IMAP, NNTP, LDAP, FTP

Secure Socket Layer SSL/TLS

Transport Layer TCP/UDP

Internet Layer IP

SSL was first conceived by Netscape in 1994 and is now under the control of Internet Engineering
Task Force (IETF). In 1999, IETF renamed SSL to Transport Layer Security (TLS), and released the
first specification, version TLS 1.0. Although TLS 1.0 is a modest upgrade to the most recent version of
SSL, version 3.0, the differences between SSL 3.0 and TLS 1.0 are minor. Other upgraded versions of
TLS (1.1 and 1.2) are also available. However, they are not as widely supported as TLS 1.0 and SSL 3.0.

19.4.1	 What does SSL do?
We must take care of the following issues before transferring critical information (such as password,

credit card number etc) over a public network:

•	 Anyone, who has access to the network, may intercept and view the information. This unauthorized third party is
sometimes known as an attacker.

•	 The attacker may also change the data, on its way to the receiver.
•	 The attacker may also relay some previously received data to the receiver.
•	 It is necessary to be sure that the party whom you are communicating with is really who you think it is.

SSL addresses all of these issues and provides solutions to the above mentioned problems using
several different cryptographic concepts. For example, it uses public-key cryptography with digital
signatures to provide authentication, and secret-key cryptography to provide for privacy and data integrity.

19.4.2	 How does it do?
The following is a brief description of SSL handshake messages.

1.	 The client sends a message containing SSL version, the cipher suites supported by the client, a random byte
string that is used in subsequent computations, etc.

2.	 The server responds with a message containing the cipher suite chosen, the session ID and another random byte
string and its digital certificate. If the server requires client authentication, it requests the client’s certificate.

SECURITY 509

	 3.	 The client tries to verify the server’s digital certificate. If the server is successfully authenticated, client goes to
the next step, else warns the user about the problem.

	 4.	 The client creates a pre-master secret key, encrypts it using server’s public key obtained from the server’s certificate
in step 2 and sends the encrypted to the server.

	 5.	 If the server requested client authentication, client generates a data unique to this handshake, encrypts with the
client’s private key and sends it along with the client’s digital certificate to the server.

	 6.	 If the server has requested client authentication, the server attempts to authenticate the client. If the client is
authenticated successfully, the server uses its private key to decrypt the pre-master secret, then performs a
series of steps (which the client also performs, starting from the same pre-master secret) to generate the master
secret.

	 7.	 Both the client and the server use the master secret to generate the session keys, which are symmetric keys used
to encrypt and decrypt information exchanged during the SSL session and to verify its integrity.

	 8.	 The client sends a message to the server informing it that future messages from the client are encrypted with the
session key. It also sends a separate encrypted message indicating that the client portion of the handshake is
complete.

	 9.	 The server sends a message to the client informing it that future messages from the server are encrypted with
the session key. It also sends a separate encrypted message indicating that the server portion of the handshake
is complete.

	10.	 The entire SSL handshake is now complete, and the SSL session starts.

19.4.3	 An Example
In this section, we shall develop a simple but elegant client–server socket application using SSL.

In this application, the client sends a string to the server. The server prints the string and sends it
back to the client. The client finally prints it. Although this application is very simple, it demonstrates
basic steps required to develop almost all SSL-based secure applications.

19.4.3.1   Writing the Server
In a traditional (non-SSL) socket application, the server program first creates a java.net.

ServerSocket object. In an SSL-enabled socket application, the equivalent object is javax.net.ssl.
SSLServerSocket object and is created in a slightly different way. All constructors of SSLServerSocket
class are protected. Consequently, those constructors cannot be used to instantiate SSLServerSocket
objects. The instances are created using SSLServerSocketFactory class. An instance of this factory
is usually created as follows:

SSLServerSocketFactory factory = (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

The SSLServerSocket object is then created using createServerSocket() method on this factory:
SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);

This creates an SSLServerSocket object that listens on port 6789. The server then starts listening
when an accept() method is invoked as follows:

SSLSocket ss = (SSLSocket) sss.accept();

The server is then ready to accept incoming connections. The complete source code (SSLServer.
java) is given below:

import javax.net.ssl.*;
import java.io.*;
public class SSLServer {
 public static void main(String[] args) {
 try {
 SSLServerSocketFactory factory = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

510 ADVANCED JAVA PROGRAMMING

import javax.net.ssl.*;
import java.io.*;
public class SSLServer {
 public static void main(String[] args) {
 try {
 SSLServerSocketFactory factory = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

This program simply sends strings, obtained from the client, back to the client.

19.4.3.2   Writing the Client
The client first creates a SSLSocketFactory as follows:
SSLSocketFactory factory = (SSLSocketFactory) SSLSocketFactory.getDefault();

The counterpart of Socket in SSL is SSLSocket which is created as follows:
SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

The complete source code (SSLClient.java) is given below:
import javax.net.ssl.*;
import java.io.*;
public class SSLClient {
 public static void main(String[] args) {
 try {
 SSLSocketFactory factory = (SSLSocketFactory)
 SSLSocketFactory.getDefault();
 SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = br.readLine()) != null) {
 out.println(line);
 System.out.println("sent --> "+line);
 System.out.println("received<-- "+in.readLine());
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

19.4.3.3   Compiling and Running the Application
Compile the server program using the following command:
javac SSLServer.java

Similarly, compile the client program using the following command:
javac SSLClient.java

Since, SSL uses certificates, we create a private/public keypair and a self signed certificate
for the server and store them in a JKS key store file server.ks using Java’s keytool utility as
follows:

keytool -genkey -keystore server.ks

SECURITY 511

The keytool asks for information necessary to generate a certificate. Provide the necessary
information when asked. A sample output is shown in Figure 19.1:

Figure 19.1: Generating a key store using keytool

The entire information may also be passed as command line arguments as follows:
keytool -genkey -alias mykey -keyalg RSA -keystore server.ks -storepass 123456
-keypass 123456 -dname "CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

The list of keystore entries may be displayed using the following command
keytool -list -storepass 123456 -keystore server.ks

It generates a samle output as follows:
Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

mykey, May 27, 2014, PrivateKeyEntry,
Certificate fingerprint (SHA1):
32:1D:8F:05:04:CB:03:62:C8:09:29:C5:F9:B3:D7:9D:F4:BC:AC:F0

We then extract (called export) the server’s certificate and store it in a separate file server.cer.
keytool -export -alias mykey -keystore server.ks -storepass 123456 -file server.cer

During export, keytool asks for the password of the key store. Use the same password used to
create the key store. A sample output is shown in Figure 19.2:

Figure 19.2: Generating a certificate using keytool

The content of this certificate file may be displayed using the following command:
keytool -printcert -file server.cer

512 ADVANCED JAVA PROGRAMMING

This generates a sample output as follows:
Certificate fingerprint (SHA1):
32:1D:8F:05:04:CB:03:62:C8:09:29:C5:F9:B3:D7:9D:
F4:BC:AC:F0

E:\ajp\sec\soc\server>keytool -printcert -file server.cer
Owner: CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN
Issuer: CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN
Serial number: 47e38e48
Valid from: Tue May 27 13:20:08 IST 2014 until: Mon Aug 25 13:20:08 IST 2014
Certificate fingerprints:
 MD5: 72:1F:9D:F8:35:EB:B3:3B:AA:A4:A4:F6:DD:ED:7C:F1
 SHA1: 32:1D:8F:05:04:CB:03:62:C8:09:29:C5:F9:B3:D7:9D:F4:BC:AC:F0
 SHA256:
4B:CD:03:2B:94:FE:04:A3:21:74:E5:52:8D:2A:F0:83:9E:7E:20:1D:91:
F5:99:90:DF:86:9B:7D:EB:BB:3B:62
 Signature algorithm name: SHA1withDSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: DE 14 6A 59 9D 48 45 57 2B 36 C3 B6 FC E8 C1 65 ..jY.HEW+6.....e
0010: 3D A4 C1 3B =..;
]
]

The usage of keytoll to work with keys, certificates and stores is discussed in detail later in this
chapter.

This certificate will be sent by the server to the client in step 2 of SSL handshake. A client maintains
a list of certificates it relies (trusts) on in a separate store called trust store. Note that the trust store only
contains public certificates, whereas a key store can store private/pub key pair as well as certificates.
Copy this certificate file in the client’s home directory which hereafter will be referred to as client_home.
Go to the client_home directory and use the following command to generate a trust store for the client:

keytool -import -v -keystore client.ts -storepass 123456 -file server.cer

Information about the certificate is displayed and a prompt appears asking if you want to trust the
certificate. Type yes (or y), then press Enter. A sample output is shown in Figure 19.3:

Figure 19.3: Generating a trust store using keytool

SECURITY 513

At this moment, both client and server are ready to communicate securedly after successful SLL
handshake. Start the SSL server first using the following command:

�java -Djavax.net.ssl.keyStore=server.ks -Djavax.net.ssl.keyStorePassword=123456
SSLServer

Note that the key store file and its password are passed to Java interpreter using command line
arguments. Start the client using the following command

�java -Djavax.net.ssl.trustStore=client.ts -
Djavax.net.ssl.trustStorePassword=123456 SSLClient localhost

Here, we provide the trust store file and its password. A sample output of the application is shown
in Figure 19.4:

(i)

(ii)

Figure 19.4: Socket communication over SSL (i) Server (ii) Client

The key store and trust store files and their password may also be specified using some Java
properties. Add the following lines in SimpleSSLServer.java:

System.setProperty("javax.net.ssl.keyStore", "server.ks");
System.setProperty("javax.net.ssl.keyStorePassword", "123456");

Also add the following lines in SimpleSSLClient.java:
System.setProperty("javax.net.ssl.trustStore", "client.ts");
System.setProperty("javax.net.ssl.trustStorePassword", "123456");

After recompilation, we can then run the server and client directly whose output is shown in
Figure 19.5:

(i)

(ii)

Figure 19.5: Communication over SSL Socket (i) Server (ii) Client

514 ADVANCED JAVA PROGRAMMING

19.4.4	 Using Client Authentication
SSL allows server to authenticate a client if the server wants to do so. Add the following entry

in SimpleSSLServer.java:
ss.setNeedClientAuth(true);

This configures the socket (in the server mode) that requires client authentication. Client must
send its certificate now, otherwise the server stops the negotiations and terminates the connection.
So, we create a keystore at the client_home directory and export its certificate:

keytool -genkey -alias mykey -keyalg RSA -keystore client.ks -storepass 123456
-keypass 123456 -dname "CN=B. C. Dhara, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

keytool -export -alias mykey -keystore client.ks -storepass 123456 -file
client.cer

Copy client.cer file in server_home. Generate a trust store for the server:
keytool -import -v -keystore server.ts -storepass 123456 -file client.cer

The following is a summary of keystore files used by client and server. We have used .ks and .ts
extensions for keystore file and truststore file respectively.

server.ks—server keystore, contains the server’s private key and self-signed X.509 certificate
containing associated public key.

server.ts—server truststore, contains the client’s self-signed X.509 certificate.
client.ks—client keystore, contains the client’s private key and self-signed X.509 certificate

containing associated public key.
client.ts—client truststore, contains the server’s self-signed X.509 certificate.
If keystore and truststore are not specified using System.setProperty() method, then start the

server using the following command:
java -Djavax.net.ssl.keyStore=server.ks -Djavax.net.ssl.keyStorePassword=123456
-Djavax.net.ssl.trustStore=server.ts -Djavax.net.ssl.trustStorePassword=123456
SSLServer

And start the client using the following command:
java -Djavax.net.ssl.keyStore=client.ks -Djavax.net.ssl.keyStorePassword=123456
-Djavax.net.ssl.trustStore=client.ts -Djavax.net.ssl.trustStorePassword=123456
SSLClient localhost

Instead of passing trust store information to the server at command line, the following system
properties may be set:

System.setProperty("javax.net.ssl.trustStore", "server.ts");
System.setProperty("javax.net.ssl.trustStorePassword", "123456");

Similarly, in the client the following system properties may be specified to provide keystore
information:

System.setProperty("javax.net.ssl.keyStore", "client.ks");
System.setProperty("javax.net.ssl.keyStorePassword", "123456");

If a trust store location is not specified (as a command line argument or using system property),
the SunJSSE implementation searches for and uses a truststore file in the following locations (in
order):

JAVA_HOME\jre\lib\security\jssecacerts
JAVA_HOME\jre\lib\security\cacerts

So, certificates may be added to these trust stores. The default password for Java trust store is
“changeit”. Copy server.cer and client.cer files to the directory JAVA_HOME\jre\lib\security.
Now, go to this directory and use the following commands to add client.cer and server.cer
certificate files to the system trust store file cacerts.

SECURITY 515

keytool -import -v -alias server -keystore cacerts -storepass changeit -file
client.cer
keytool -import -v -alias client -keystore cacerts -storepass changeit -file
server.cer

Check if the certificates are really added using the following command:
keytool -list –storepass changeit -keystore cacerts

The relevant portion will look like this:
...
client, May 29, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
32:1D:8F:05:04:CB:03:62:C8:09:29:C5:F9:B3:D7:9D:F4:BC:AC:F0
server, May 29, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8A:09:40:D4:16:0F:9C:FE:9C:AC:29:F8:4F:6F:0B:A5:C8:28:4A:5E
...

Now, both server and client can be started without specifying the trust store. When these
certificates are no longer needed, remove them from cacerts using the following commands:

keytool -delete -alias client -keystore cacerts -storepass changeit
keytool -delete -alias server -keystore cacerts -storepass changeit

19.4.5	 Using KeyStore
Java platform also provides a class java.security.KeyStore for a storage facility for

cryptographic keys and certificates. The following server program (SSLServer1.java) loads key
store and trust store information from files server.ks and server.ts respectively.

import javax.net.ssl.*;
import java.io.*;
import java.security.*;
public class SSLServer1 {
 public static void main(String[] args) {
 try {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("server.ks"), password);

 KeyStore ts = KeyStore.getInstance("JKS");
 ts.load(new FileInputStream("server.ts"), password);

 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks, password);

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ts);

 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 SSLServerSocketFactory factory =
(SSLServerSocketFactory)sslContext.getServerSocketFactory();

// SSLServerSocketFactory factory = (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();

 ss.setNeedClientAuth(true);

 BufferedReader in = new BufferedReader(new
InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

516 ADVANCED JAVA PROGRAMMING

import javax.net.ssl.*;
import java.io.*;
import java.security.*;
public class SSLServer1 {
 public static void main(String[] args) {
 try {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("server.ks"), password);

 KeyStore ts = KeyStore.getInstance("JKS");
 ts.load(new FileInputStream("server.ts"), password);

 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks, password);

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ts);

 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 SSLServerSocketFactory factory =
(SSLServerSocketFactory)sslContext.getServerSocketFactory();

// SSLServerSocketFactory factory = (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();

 ss.setNeedClientAuth(true);

 BufferedReader in = new BufferedReader(new
InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Similarly, the following client program loads key store and trust store information from files
client.ks and client.ts respectively.

import javax.net.ssl.*;
import java.io.*;
import java.security.*;

public class SSLClient1 {
 public static void main(String[] args) {
 try {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("client.ks"), password);

 KeyStore ts = KeyStore.getInstance("JKS");
 ts.load(new FileInputStream("client.ts"), password);

 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks, password);

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ts);

 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 SSLSocketFactory factory =
(SSLSocketFactory)sslContext.getSocketFactory();

 // SSLSocketFactory factory = (SSLSocketFactory)
SSLSocketFactory.getDefault();
 SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 BufferedReader in = new BufferedReader(new
InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = br.readLine()) != null) {
 out.println(line);
 System.out.println("sent --> "+line);
 System.out.println("received<-- "+in.readLine());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This application can be run without specifying key store and trust store information at runtime.

SECURITY 517

19.4.6	 Ignoring Server Certificates
A client may not always require server authentication. The following client program demonstrates

how to turn off server authentication:
import javax.net.ssl.*;
import java.io.*;
import java.security.*;
import java.security.cert.*;

public class SSLClientIgnore {
 public static void main(String[] args) {
 try {
 TrustManager[] trustAllCerts = {
 new X509TrustManager() {
 public X509Certificate[] getAcceptedIssuers() {return null;}
 public void checkClientTrusted(X509Certificate[] certs,
String authType) {}
 public void checkServerTrusted(X509Certificate[] certs,
String authType) {}
 }
 };

 SSLContext sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 SSLSocketFactory factory = (SSLSocketFactory)sc.getSocketFactory();

// SSLSocketFactory factory = (SSLSocketFactory)
SSLSocketFactory.getDefault();
 SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 BufferedReader in = new BufferedReader(new
InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = br.readLine()) != null) {
 out.println(line);
 System.out.println("sent --> "+line);
 System.out.println("received<-- "+in.readLine());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In this program, we override the default trust manager with one that trusts all certificates. This
client works even if server does not provide any certificate.

If you are using a URL connection then the following will also disable server authentication:
HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

Note that a client that does not authenticate a server is vulnerable to several attacks and it is
suggested to avoid it as far as possible.

19.4.7	 Working with HTTPS
This section describes how to configure tomcat web server to support HTTP over SSL. To

create a key store file tomcat.ks for tomcat, go to the tomcat_home directory and use the following
command:

�keytool -genkey -alias tomcat -keyalg RSA -keystore tomcat.ks -storepass 123456
-keypass 123456 -dname "CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

518 ADVANCED JAVA PROGRAMMING

Modify the tomcat_home\conf\server.xml files as follows:
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"

keystoreFile="tomcat.ks" keystorePass="123456"
 clientAuth="false" sslProtocol="TLS" />

Restart the tomcat server. The tomcat is now ready to work with HTTP over SSL on port 8443. To
talk to this tomcat server we have written a HTTPS client whose complete source code (HTTPSClient.
java) is shown below:

// HTTPSClient.java
import javax.net.ssl.*;
import java.io.*;
import java.net.*;
import javax.net.*;
import java.security.*;
import java.security.cert.X509Certificate;

public class HTTPSClient {
 public static void main(String args[]) throws Exception {
 String urlString = "https://127.0.0.1:8443/index.jsp";
 URL url = new URL(urlString);
 TrustManager[] trustAllCerts = {
 new X509TrustManager() {
 public X509Certificate[] getAcceptedIssuers() {return null;}
 public void checkClientTrusted(X509Certificate[] certs, String
authType) {}
 public void checkServerTrusted(X509Certificate[] certs, String
authType) {}
 }
 };
 SSLContext sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 SocketFactory factory = sc.getSocketFactory();
 Socket socket = factory.createSocket(url.getHost(), url.getPort());
 PrintWriter out = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()), true);
 BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 out.println("GET " + urlString + " HTTP/1.1\n");
 String line;
 while ((line = in.readLine()) != null)
 System.out.println(line);
 }
}

Run the client as follows:
java HTTPSClient

Note that this client does not need any trust store. The trust manager used in this program overrides
checkServerTrusted() method. Since, the body of this method is empty, it accepts server response
without authenticating the server.

Alternatively, the tomcat’s certificate may be added to the system trust store file (i.e. JAVA_HOME\
jre\lib\security\cacerts). To do this, go to the tomcat_home directory and export the public
certificate for tomcat to a file tomcat.cer using the following command:

keytool -export -alias tomcat -keystore tomcat.ks -storepass 123456 -file tomcat.cer

Now, copy tomcat.cer file, generated in tomcat_home directory to the directory JAVA_HOME\
jre\lib\security. Now, go to this directory and use the following command to add tomcat.cer
certificate file to the system trust store file cacerts.

keytool -import -v -keystore cacerts -storepass changeit -file tomcat.cer

SECURITY 519

The https client can now use the default socket factory without using a custom trust manager as
follows:

SocketFactory factory = SSLSocketFactory.getDefault();

The server’s certificate is then verified with the entries in the cacerts file which indeed contains
a certificate for tomcat.

19.5	 KEYTOOL REVISITED
Java provides a utility keytool (stored in java_home/bin directory) used to administer keystores

containing cryptographic keys, X.509 certificate chains, and trusted certificates. Programmers use
this tool to administer their own private/public key pairs and associated digital certificates for use
of self-authentication or data integrity. It also allows users to manage secret keys used in symmetric
encryption/decryption (e.g. DES). For a list of options, use the following command:

keytool –h

Before using this tool, let us quickly understand the different related concepts such as key store,
trust store, etc

19.5.1	 KeyStore
A keystore, as the name implies, is a repository of keys and certificates and can be a file or

a h/w device. There are different standards for keystore file formats. PKCS #12 is a portable
industry standard for storage and/or transport of private keys, certificates, miscellaneous secrets,
and other items. It is one of the PKCS (Public-Key Cryptography Standards) family of standards
published by RSA Laboratories. Files conforming to PKCS #12 usually have extensions .p12
or .pfx.

In addition to supporting PKCS #12 standard, Java has its own proprietary standards (hence not
portable) JKS (Java Key Store) provided by “SUN” and its extension JCEKS (Java Cryptography
Extension Key Store) provided by “SunJCE” that support almost the same functionalities of PKCS
#12. The JCEKS keystore gives much stronger protection (see Table 19.2:) for stored private keys
by using Triple DES encryption. Moreover, only JCEKS keystores can store secret keys. JKS and
JCEKS files usually have extensions .jks and .jceks respectively.

Table 19.2 Keystore file format

Name of standard Provider Public/private keys
and certificates

Secret keys

PKCS #12 RSA Laboratories Can store Can’t store

JKS SUN Can store Can’t store

JCEKS SunJCE Can store Can store

A keystore is protected by a store password, which is specified at the time of its creation. This
password is required for any access to the keystore further. Furthermore, each secret or private key
inside a keystore can be protected by an individual password. Since, there is no need to keep public
key certificates secret, they do not have passwords.

Java introduced the keytool application for manipulating such keystores. It can also be used to
generate self-signed certificates for test purposes. Before using keytool utility, let us understand
the format of a keystore.

520 ADVANCED JAVA PROGRAMMING

19.5.2	 Keystore Entries
In a JKS type keystore, each entry may be either of the following two types:

Key Entries
This type of entry may contain either a secret key (called secret key entry) or a private key together

with a certificate chain for the corresponding public key (called private key entry). Note that each of
these key entries contains very sensitive cryptographic key information, which is optionally stored
in a protected format to prevent unauthorized access.

Trusted Certificate Entries
Each of these types of entries contains a single trusted public key certificate of some party. The

certificate is said to be trusted since the owner of the keystore trusts party having this certificate
whose issuer vouches this by signing the certificate. These types of entries are used to authenticate
other parties.

19.5.2.1	 Truststore
A keystore having only trusted certificate entries is also called truststore. So, a truststore is a

specific kind of keystore having only certificate entries.

19.5.3	 Keystore Aliases
All keys and trusted certificates stored in the keystore are accessed through aliases. An alias is a

unique name associated with a certificate entry that keytool uses to uniquely identify each certificate
under its control. Aliases are case-insensitive. An alias is specifically used to add, delete, modify,
import or export an entry to the keystore using keytool command with different options.

The following is a list of useful commands for managing keys. When passwords for key store and
key are prompted, supply a suitable password (at least six characters long). We used the password
“123456” for all examples in this chapter.

The keytool assumes a default keystore file .keystore which is located in your home directory
or profile directory (for example C:\Users\root for Windows 7 and $HOME in Unix/Linux). To use
another keystore, the option -keystore is used with keytool command.

19.5.4	 Public Key Generation
Generate a private/public key pair with its associated self signed certificate:
�keytool -genkey -keystore test.ks -dname "CN=Test, OU=IT, O=JU, L=Kolkata,
ST=WB, C=IN"

The defaults for various option values are given below:
-alias "mykey"
-keyalg
 "DSA" (for option –genkeypair or -genkey)
 "DES" (for option -genseckey)
-keysize
 1024 (for option –genkeypair or -genkey)
 56 (for option -genseckey and -keyalg is "DES")
 168 (for option -genseckey and -keyalg is "DESede")
-validity 90 (in days)

The signature algorithm (-sigalg option) for a certificate is determined from the private key
generation algorithm. For DSA and RSA key generation algorithms, the -sigalg option defaults to
SHA1withDSA and MD5withRSA respectively.

SECURITY 521

To refer to a particular entry in the keystore, -alias option is used. The following adds an entry
named test to the key store test.ks.

�keytool -genkey -alias test -keystore test.ks -dname "CN=Test, OU=IT, O=JU,
L=Kolkata, ST=WB, C=IN"

The following adds an entry named test to the key store test.ks using RSA.
�keytool -genkey -alias test -keyalg RSA -keystore test.ks -dname "CN=Test, OU=IT,
O=JU, L=Kolkata, ST=WB, C=IN"

If an application references a key store file without specifying the type, the type as specified
(usually jks) by the keystore.type property in the Java security properties file <JAVA_HOME>\lib\
security\java.security is assumed. Consequently, by default, keytool uses JKS as the format of
the keystore and truststore. Use -storetype option set to pkcs12 or jks to work with PKCS12 or
JKS keystores and truststores respectively.

19.5.5	 Changing Password
keytool -storepasswd -keystore test.jks

Asks for the old and new password for the key store test.jks.

19.5.6	 Generating a Certificate Chain
The following commands creates four key pairs named ca1, ca1, ca2, and ca4:
keytool -alias ca1 -dname CN=ca1 -genkeypair -keystore test.jks -storepass
123456 -keypass 123456
keytool -alias ca2 -dname CN=ca2 -genkeypair -keystore test.jks -storepass
123456 -keypass 123456
keytool -alias ca3 -dname CN=ca3 -genkeypair -keystore test.jks -storepass
123456 -keypass 123456
keytool -alias ca4 -dname CN=ca4 -genkeypair -keystore test.jks -storepass
123456 -keypass 123456

The following command extracts ca1’s self signed certificate and stores in a file ca1.pem:
keytool -export -rfc -alias ca1 -keystore test.jks -storepass 123456 -file ca1.pem

The following command creates a certificate sign request for ca2’s certificate and stores in file
ca2.csr in PEM format.

keytool -alias ca2 -certreq -keystore test.jks -storepass 123456 -file ca2.csr

The following command creates a certificate for ca2 signed by ca1 and stores in a file ca2.pem:
�keytool -alias ca1 -gencert -infile ca2.csr -keystore test.jks -storepass
123456 -rfc -outfile ca2.pem

The following creates a chain of certificates; ca2’s certificate signed by ca1 followed by ca1’s
self signed certificate:

type ca1.pem >> ca2.pem

Subject:ca1
Issuer:ca1

Subject:ca2
Issuer:ca1

alias
ca2

This certificate chain is then imported to the keystore having alias ca2:
keytool -alias ca2 -importcert -file ca2.pem -keystore test.jks -storepass 123456

Similarly, the following series of commands creates a chain of three certificates:
keytool -alias ca3 -certreq -keystore test.jks -storepass 123456 -file ca3.csr
keytool -alias ca2 -gencert -infile ca3.csr -keystore test.jks -storepass
123456 -rfc -outfile ca3.pem
type ca1.pem >> ca3.pem
keytool -alias ca3 -importcert -file ca3.pem -keystore test.jks -storepass
123456

522 ADVANCED JAVA PROGRAMMING

Subject:ca1
Issuer:ca1

Subject:ca2
Issuer:ca1

Subject:ca3
Issuer:ca2

alias
ca3

Similarly, the following series of commands creates a chain of four certificates:
keytool -alias ca4 -certreq -keystore test.jks -storepass 123456 -file ca4.csr
keytool -alias ca3 -gencert -infile ca4.csr -keystore test.jks -storepass
123456 -rfc -outfile ca4.pem
type ca1.pem >> ca4.pem
keytool -alias ca4 -importcert -file ca4.pem -keystore test.jks -storepass
123456

Subject:ca1
Issuer:ca1

Subject:ca2
Issuer:ca1

Subject:ca3
Issuer:ca2

Subject:ca4
Issuer:ca3

alias
ca4

19.5.7	 Generating a Certificate Using Openssl
In the area of cryptographic functionality, OpenSSL is a well-know powerful opensource library

that includes a command line utility that can be used to perform a variety of cryptographic functions.
This section introduces some of the powerful openSSL commands. To work with openSSl, download
a suitable version from http://www.openssl.org/. We downloaded a file openssl-0.9.8h-1-bin.
zip and unzipped in a directory E:\ajp\sec\openssl. Include the directory E:\Net\ss\openssl\
bin in your PATH environment variable. Additionally, on windows, the environment variables used
by openssl have to be set as follows:

set RANDFILE=E:\ajp\sec\openssl\rnd
set OPENSSL_CONF=E:\ajp\sec\openssl\share\openssl.cnf

Now, OpenSSL is ready to use. The following are some useful commands to work with cryptography.

Creating Self-signed Certificate
openssl genrsa -des3 -out CA.key 1024
openssl req -new -key CA.key -out CA.csr
openssl x509 -req -days 365 -in CA.csr -signkey CA.key -out CA.crt

Creating Certificate Signed by the Server
openssl genrsa -des3 -out client.key 1024
openssl req -new -key client.key -out client.csr
openssl x509 -req -CA CA.crt -CAkey CA.key -in client.csr -out client.crt -days
365 –Cacreateserial

Creating Java Key Store (JKS) from a Private Key and Certificate
With a private key and public certificate, creating a JKS key store can be done in two steps: create

a PKCS12 key store using openssl first, then convert it into a JKS using keytool.
openssl pkcs12 -export -name mykey -in client.crt -inkey client.key -out
keystore.p12
keytool -importkeystore -destkeystore client.ks -srckeystore keystore.p12 -
srcstoretype pkcs12 -alias mykey

Converting Der Key File to Pem Key File
openssl rsa -inform der -in p.der -out p.pem

Creating a JKS Key store from a Chain of Certificates
Use the following command to create a PEM certificate file containing a chain of certificates.
copy client.crt com.crt
type CA.crt >> com.crt

SECURITY 523

In this case, the PEM certificate file com.crt contains two certificates, client.crt and CA.crt.
Now, create a PKCS12 key store from this combined certificate.

openssl pkcs12 -export -name mykey -in com.crt -inkey client.key -out com.p12

This PKCS12 file com.p12 contains an entry named “mykey” containing client’s private key and
a chain of two certificates. Now, import (convert) this PKCS12 file in a JKS file com.ks.

�keytool -importkeystore -destkeystore com.ks -srckeystore com.p12 -srcstoretype
pkcs12 -alias mykey

Secret Key Generation
Generate a secrete (sysmmetric) key using DES:
keytool -genseckey -keyalg DES -storetype jceks -keystore sec.ks

Note that only JCEKS keystores can store secret keys. So, -storetype is mentioned as jceks.
Generate a 128-bit secret (sysmmetric) key using AES:

keytool -genseckey -keyalg AES -keysize 128 -storetype jceks -keystore sec.ks

Currently supported secret key generation algorithms are DES, AES, ARCFOUR, Blowfish,
DESede, HmacSHA1, HmacSHA256, HmacSHA384, HmacSHA512 and RC2.

Viewing Key Store Entries
To view the contents of a keystore, -list option is used. View the content of the entry mykey of

the key store test.jks.
keytool -list –alias mykey -keystore test.jks

If no alias is specified, it displays all entries of key store test.jks:
keytool -list -keystore test.jks

The -list option does not, by default, display certificate information. Use –v to see the certificate
information:

keytool –v -list -keystore test.jks

To see certificate in PEM format, use -rfc option:
keytool -rfc -list -keystore test.jks

Deleting Key Store Entries
Delete an entry identified by alias mykey from the key store test.jks.
keytool -delete -alias mykey -keystore test.jks

Exporting Certificate
Export the certificate corresponding to alias mykey in the keystore test.jks in a file test.cer.
keytool -export -alias mykey -keystore test.jks -file test.cer

This command exports the certificate at the bottom of the certificate chain in that keystore entry
identified by alias mykey. If, instead, mykey is the alias for a trusted certificate entry, then that trusted
certificate is exported. The specified alias must correspond to a private/public key entry. Note that
for secret key entry, no certificate is stored, hence exporting certificate will not work. To export the
certificate in PEM format, use -rfc option:

keytool -export -alias mykey -keystore test.jks –jfc -file test.pem

Viewing Certificate
View the content of a certificate file test.cer.
keytool -printcert -file test.cer

The keytool utility understands both DER as well as PEM certificate encodings.

524 ADVANCED JAVA PROGRAMMING

Converting Keystore Format
Convert from JKS to PKCS12 format:
�keytool -importkeystore -srckeystore test.jks -srcstoretype jks -destkeystore
test.pfx -deststoretype pkcs12

Convert from JKS to JCEKS format:
�keytool -importkeystore -srckeystore test.jks -srcstoretype jks -destkeystore
test.jceks -deststoretype jceks

Convert from PKCS12 to JKS format:
�keytool -importkeystore -srckeystore test.pfx -srcstoretype pkcs12 -destkeystore
test.jks -deststoretype jks

Convert from PKCS12 to JCEKS format:
�keytool -importkeystore -srckeystore test.pfx -srcstoretype pkcs12 -destkeystore
test.jceks -deststoretype jceks

Convert from PKCS12 to PEM format:
openssl pkcs12 -in test.pfx -out test.pem

Generating Certificate Signing Request
Certificates generated by keytool can be exported in a form suitable for submission to a Certificate

Authority such as VeriSign. The following is an example:
keytool -keystore test.ks -certreq -alias mykey -keyalg dsa –file out.csr

This stores the signing request data in a file out.csr.

19.6	 GENERATING KEYS
Though Java’s keytool utility is a powerful tool for key generation and manipulation, Java

provides some useful classes and interfaces to work with both public and secret keys.

19.6.1	 Public Key Generation
A public key is generated using java.security.KeyGenerator class as follows:
String alg = "RSA";
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance(alg);
KeyPair keyPair = keyPairGenerator.genKeyPair();
PrivateKey pri = keyPair.getPrivate();
PublicKey pub = keyPair.getPublic();

This generates a private and public key pair using RSA algorithm with default parameters. The
overloaded initialize() methods of KeyPairGenerator class may be used to specify algorithm-
specific parameters such as key length, randomness etc. Currently, the supported public key generation
algorithms are RSA, DSA, EC and DiffieHellman (or simply DH).

19.6.2	 Private Key Generation
The class javax.crypto.KeyGenerator is used to generate secret (symmetric) keys which are

used in secret key cryptography. The following generates a key using DES algorithm:
KeyGenerator generator = KeyGenerator.getInstance("DES");
SecretKey secretKey = generator.generateKey();

The overloaded init() methods of KeyGenerator class may be used to specify algorithm
specific parameters such as key length, randomness etc. Currently, the supported secret key
generation algorithms are DES, AES, ARCFOUR, Blowfish, DESede, HmacSHA1, HmacSHA256,
HmacSHA384, HmacSHA512 and RC2.

SECURITY 525

19.7	 WORKING WITH KEYSTORE
A keystore, in Java, is represented by a java.security.KeyStore instance, which is created using

its static getInstance() method specifying keystore type and optionally a provider:
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());

This creates a KeyStore object of type as specified in the Java security properties file. The following
creates a KeyStore object of specified type “jks”.

KeyStore ks = KeyStore.getInstance("jks");

Specify keystore type “jceks” or “pkcs12” (case-insensitive) in getInstance() method for JCEKS
and PKCS12 type keystores respectively.

19.7.1	 Reading Keystore
The following program reads a JKS-type keystore file and prints information about all the entires:
import java.io.*;
import java.util.*;
import java.security.*;
import java.security.cert.Certificate;
public class ReadJKS {
 public static void main(String[] args) throws Exception {
 char[] password = args[1].toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(args[0]), password);
 Enumeration e = ks.aliases();
 while(e.hasMoreElements()) {
 String alias = (String)e.nextElement();
 KeyStore.ProtectionParameter protParam = new
KeyStore.PasswordProtection(password);
 KeyStore.PrivateKeyEntry pkEntry =
(KeyStore.PrivateKeyEntry)ks.getEntry(alias, protParam);

 PrivateKey pri = pkEntry.getPrivateKey();
 System.out.println(pri);
 java.security.cert.Certificate[] certs = pkEntry.getCertificateChain();
 for(java.security.cert.Certificate cert:certs)
 System.out.println(cert);
 }
 }
}

19.7.2	 Extracting Private Keys from Keystore
The keytool command does not allow us to extract the private key from a key store. A simple

Java program may be written to do this. The following program gets the key and the corresponding
certificate and saves them in files key.der and cert.der in DER format:

import java.io.*;
import java.security.*;
public class ReadKeyStore {
 public static void main(String[] args) throws Exception {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(args[0]), password);

 String alias ="mykey";
 FileOutputStream kos = new FileOutputStream("key.der");
 Key pri = ks.getKey(alias, password);
 kos.write(pri.getEncoded());

 FileOutputStream cos = new FileOutputStream("cert.der");
 java.security.cert.Certificate cert = ks.getCertificate(alias);
 cos.write(cert.getEncoded());
 }
}

526 ADVANCED JAVA PROGRAMMING

import java.io.*;
import java.security.*;
public class ReadKeyStore {
 public static void main(String[] args) throws Exception {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(args[0]), password);

 String alias ="mykey";
 FileOutputStream kos = new FileOutputStream("key.der");
 Key pri = ks.getKey(alias, password);
 kos.write(pri.getEncoded());

 FileOutputStream cos = new FileOutputStream("cert.der");
 java.security.cert.Certificate cert = ks.getCertificate(alias);
 cos.write(cert.getEncoded());
 }
}

Use the following command to create a keystore test.jks:
keytool -genkey -keystore test.jks -dname "CN=Test, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Run the above Java program as follows:
java ReadKeyStore test.jks

These private keys and certificates may be used in other applications.

19.7.3	 Storing Private Key and Certificate in Keystore
The following program creates an entry in the key store file aStore.jks from a given key and a

certificate file. These key and certificates may be generated using the previous program.
import java.security.*;
import java.io.*;
import java.security.spec.*;
import java.security.cert.Certificate;
import java.security.cert.CertificateFactory;
import java.util.*;
public class WriteKeyStore {
 public static void main (String args[]) throws Exception {
 char[] password = "123456".toCharArray();
 String alias = "aKey", name = "aStore.jks";
 KeyStore ks = KeyStore.getInstance("JKS", "SUN");
 ks.load(null , password);

 FileInputStream fis = new FileInputStream(args[0]);
 byte[] kdata = new byte[fis.available()];
 fis.read(kdata);

 PKCS8EncodedKeySpec kp = new PKCS8EncodedKeySpec (kdata);
 KeyFactory kf = KeyFactory.getInstance("DSA");
 PrivateKey pri = kf.generatePrivate (kp);

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 Collection c = cf.generateCertificates(new FileInputStream(args[1])) ;
 Certificate[] certs = new Certificate[c.size()];

 int in = 0;
 for(Iterator i = c.iterator(); i.hasNext();)
 certs[in++] = (Certificate)i.next();
 ks.setKeyEntry(alias, pri, password, certs);
 ks.store(new FileOutputStream (name),password);
 System.out.println ("Key and certificate stored.");
 }
}

Run the above Java program as follows:
java WriteKeyStore key.der cert.der

These stores may be used in other applications.

19.8	 WORKING WITH CERTIFICATES
A public key certificate (or simply certificate) is a document to bind a party to a public key which

is vouched by usually another party using its private key. In Java, such a certificate is represented

SECURITY 527

by java.security.Certificate class that abstracts the common functionality of different certificate
formats such as X.509 and PGP. An X.509 certificate is encapsulated by, java.security.cert.
X509Certificate class which is a subclass of Certificate. To work with certificates, an instance
of java.security.cert.CertificateFactory class is created first using its static getInstance()
method specifying the certificate format as string.

CertificateFactory cf = CertificateFactory.getInstance("X.509");

This creates a certificate factory for X.509 certificates. Once this factory is created, we can work
with X.509 certificates.

19.8.1	 Reading Certificate Information
The generateCertificate() method of CertificateFactory returns a Certificate object and

populates it with the data obtained from specified InputStream. The following is a sample program
to demonstrate this:

import java.io.*;
import java.security.cert.*;
public class ReadCertificate {
 public static void main(String args[]) throws Exception {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 Certificate c = cf.generateCertificate(new FileInputStream(args[0]));
 System.out.println(c);
 }
}

To view the content of a certificate file test.cer, use the following command:
java ReadCertificate test.cer

Note that generateCertificate() method can understand DER (Distinguished Encoding Rules),
PEM (Privacy-enhanced Electronic Mail) and PKCS#7 certificate file format. If a file contains multiple
certificates (possibly unrelated), use generateCertificates() method which returns a Collection
of certificates. Here is an example:

Collection c = cf.generateCertificates(new FileInputStream(args[0]));
for(Iterator i = c.iterator();i.hasNext();) {
 Certificate cert = (Certificate)i.next();
 System.out.println(cert);
}

19.8.2	 Creating Certificate
The following program (GenerateCertificate.java) creates a certificate (c.cer) using RSA key

generation and SHA1 signature algorithm. This program also creates a key store (c.jks) file and a
trust store (c.ts) for this certificate.

//GenerateCertificate.java
import sun.security.x509.*;
import java.security.cert.*;
import java.security.*;
import java.math.BigInteger;
import java.util.Date;
import java.io.*;

public class GenerateCertificate {
 public static void main(String args[]) {
 try {
 String enAlg = "RSA", sigAlg = "SHA1with"+enAlg;
 KeyPairGenerator kpg = KeyPairGenerator.getInstance(enAlg);
 KeyPair kp = kpg.generateKeyPair();
 PrivateKey priv = kp.getPrivate();

 X509CertInfo ci = new X509CertInfo();
 //populate certificate info
 ci.set(X509CertInfo.VERSION, new
CertificateVersion(CertificateVersion.V3));
 BigInteger sn = new BigInteger(64, new SecureRandom());
 ci.set(X509CertInfo.SERIAL_NUMBER, new CertificateSerialNumber(sn));
 String dn = "CN=myName, OU=myOU, O=myO, L=MyL, S=myS, C=myC";
 X500Name issuer = new X500Name(dn);
 ci.set(X509CertInfo.ISSUER, new CertificateIssuerName(issuer));
 Date from = new Date();
 Date to = new Date(from.getTime() + 365*24*60*60*1000l);
 CertificateValidity duration = new CertificateValidity(from, to);
 ci.set(X509CertInfo.VALIDITY, duration);
 ci.set(X509CertInfo.SUBJECT, new CertificateSubjectName(issuer));
 ci.set(X509CertInfo.KEY, new CertificateX509Key(kp.getPublic()));
 AlgorithmId aid = new AlgorithmId(AlgorithmId.sha1WithRSAEncryption_oid);
 ci.set(X509CertInfo.ALGORITHM_ID, new CertificateAlgorithmId(aid));

 X509CertImpl cert = new X509CertImpl(ci);
 //self sign
 cert.sign(priv, sigAlg);

 FileOutputStream os = new FileOutputStream("c.cer");
 os.write(cert.getEncoded());
 os.close();

 KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
 char[] password = "123456".toCharArray();
 ks.load(null, password);
 java.security.cert.Certificate[] chain = {cert};
 ks.setKeyEntry("abc", priv, password, chain);
 java.io.FileOutputStream fos = new java.io.FileOutputStream("c.jks");
 ks.store(fos, password);

 KeyStore ts = KeyStore.getInstance(KeyStore.getDefaultType());
 ts.load(null, password);
 ts.setCertificateEntry("abc", cert);
 java.io.FileOutputStream fos1 = new java.io.FileOutputStream("c.ts");
 ts.store(fos1, password);
 }catch(Exception e) {e.printStackTrace();}
 }
}

528 ADVANCED JAVA PROGRAMMING

//GenerateCertificate.java
import sun.security.x509.*;
import java.security.cert.*;
import java.security.*;
import java.math.BigInteger;
import java.util.Date;
import java.io.*;

public class GenerateCertificate {
 public static void main(String args[]) {
 try {
 String enAlg = "RSA", sigAlg = "SHA1with"+enAlg;
 KeyPairGenerator kpg = KeyPairGenerator.getInstance(enAlg);
 KeyPair kp = kpg.generateKeyPair();
 PrivateKey priv = kp.getPrivate();

 X509CertInfo ci = new X509CertInfo();
 //populate certificate info
 ci.set(X509CertInfo.VERSION, new
CertificateVersion(CertificateVersion.V3));
 BigInteger sn = new BigInteger(64, new SecureRandom());
 ci.set(X509CertInfo.SERIAL_NUMBER, new CertificateSerialNumber(sn));
 String dn = "CN=myName, OU=myOU, O=myO, L=MyL, S=myS, C=myC";
 X500Name issuer = new X500Name(dn);
 ci.set(X509CertInfo.ISSUER, new CertificateIssuerName(issuer));
 Date from = new Date();
 Date to = new Date(from.getTime() + 365*24*60*60*1000l);
 CertificateValidity duration = new CertificateValidity(from, to);
 ci.set(X509CertInfo.VALIDITY, duration);
 ci.set(X509CertInfo.SUBJECT, new CertificateSubjectName(issuer));
 ci.set(X509CertInfo.KEY, new CertificateX509Key(kp.getPublic()));
 AlgorithmId aid = new AlgorithmId(AlgorithmId.sha1WithRSAEncryption_oid);
 ci.set(X509CertInfo.ALGORITHM_ID, new CertificateAlgorithmId(aid));

 X509CertImpl cert = new X509CertImpl(ci);
 //self sign
 cert.sign(priv, sigAlg);

 FileOutputStream os = new FileOutputStream("c.cer");
 os.write(cert.getEncoded());
 os.close();

 KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
 char[] password = "123456".toCharArray();
 ks.load(null, password);
 java.security.cert.Certificate[] chain = {cert};
 ks.setKeyEntry("abc", priv, password, chain);
 java.io.FileOutputStream fos = new java.io.FileOutputStream("c.jks");
 ks.store(fos, password);

 KeyStore ts = KeyStore.getInstance(KeyStore.getDefaultType());
 ts.load(null, password);
 ts.setCertificateEntry("abc", cert);
 java.io.FileOutputStream fos1 = new java.io.FileOutputStream("c.ts");
 ts.store(fos1, password);
 }catch(Exception e) {e.printStackTrace();}
 }
}

If you want to use any other key generation algorithm and signature algorithm, specify them in
the variables enAlg and sigAlg.

19.8.3	 Converting Certificates
The following program converts one certificate file format to another.
// Converter.java
import java.io.*;
import java.security.cert.*;
public class Converter {
 public static void main(String args[]) {
 try {
 InputStream inStream = new FileInputStream(args[1]);
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 Certificate cert = (X509Certificate)cf.generateCertificate(inStream);
 byte[] buf = cert.getEncoded();

 if(args[0].equals("fromder")) {
 Writer wr = new OutputStreamWriter(new FileOutputStream(args[2]));
 wr.write("-----BEGIN CERTIFICATE-----".toCharArray());
 wr.write(new sun.misc.BASE64Encoder().encode(buf));
 wr.write("-----END CERTIFICATE-----".toCharArray());
 wr.flush();
 }
 if(args[0].equals("toder")) {
 FileOutputStream os = new FileOutputStream(args[2]);
 os.write(buf);
 os.close();
 }
 }catch(Exception e) { e.printStackTrace(); }
 }
}

SECURITY 529

// Converter.java
import java.io.*;
import java.security.cert.*;
public class Converter {
 public static void main(String args[]) {
 try {
 InputStream inStream = new FileInputStream(args[1]);
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 Certificate cert = (X509Certificate)cf.generateCertificate(inStream);
 byte[] buf = cert.getEncoded();

 if(args[0].equals("fromder")) {
 Writer wr = new OutputStreamWriter(new FileOutputStream(args[2]));
 wr.write("-----BEGIN CERTIFICATE-----".toCharArray());
 wr.write(new sun.misc.BASE64Encoder().encode(buf));
 wr.write("-----END CERTIFICATE-----".toCharArray());
 wr.flush();
 }
 if(args[0].equals("toder")) {
 FileOutputStream os = new FileOutputStream(args[2]);
 os.write(buf);
 os.close();
 }
 }catch(Exception e) { e.printStackTrace(); }
 }
}

From DER to PEM conversion:
java Converter fromder c.cer c.pem

From DER to PEM conversion:
java Converter toder c.pem c.cer

Using keytool
Convert a DER file (.crt .cer .der) to PEM
keytool -import -keystore temp.jks -storepass 123456 -file c.der
keytool -export -keystore temp.jks -storepass 123456 -rfc -file c.pem

Convert a PEM file to DER
keytool -import -keystore temp.jks -storepass 123456 -file c.pem
keytool -export -keystore temp.jks -storepass 123456 -file c.der

Convert a DER file (.crt .cer .der) to PEM
openssl x509 -inform der -in c.cer -out c.pem

Convert a PEM file to DER
openssl x509 -outform der -in c.pem -out c.cer

However, openssl accepts only trusted certificate.

19.8.4	 SignedObject
Java java.security.SignedObject class ensures the integrity of serializable objects when they

are transferred over or stored on untrusted media. The object, before reusing it, can be checked to
see if it was modified during its transit. An instance of the SignedObject encapsulates the serialized
representation of another object along with the signature information necessary to validate the wrapped
object’s authenticity and integrity. The following constructor is available:

SignedObject(Serializable object, PrivateKey key, Signature engine)

An
object

Serialized
form

signature

Signed object

This creates a SignedObject from a specified object, which is signed with the specified private
signing key and signature engine. The following is a typical example:

Serializable obj = ...
PrivateKey key = ...
Signature sig =...
SignedObject so = new SignedObject(obj, key, sig);

530 ADVANCED JAVA PROGRAMMING

Once an instance of SignedObject has been created, it can be transferred over or stored on even
untrusted media. Upon reconstruction, the integrity of this object can be verified and authenticated
using public key associated with the private key that signed the object as follows:

SignedObject so = …
PublicKey pub = …
Signature sig = Signature.getInstance(so.getAlgorithm());
if(so.verify(pub, sg)) {
 //the wrapped object remains unchanged, get it and use it
 Object obj = so.getObject();
}

A signed object contains the deep copy of the original object (in serialized form). Once the
original object is wrapped in a signed object, further manipulation of the original object has no side
effect on the copy.

Note that to verify the wrapped object’s integrity, the public key is needed. This public key may
be obtained in the form of public key certificate. The following program creates a SignedObject
from a String and signs it using a private key obtained from a key store test.ks and finally stores
the SignedObject in a file so.dat.

import java.security.*;
import java.io.*;
public class SignedObjectCreator {
 public static void main(String args[]) throws Exception {
 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("test.ks"), password);

 String str = "Hello World!";
 PrivateKey pri = (PrivateKey)ks.getKey("test", password);
 Signature sig = Signature.getInstance("SHA1withRSA");

SignedObject so = new SignedObject(str, pri, sig);

 ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("so.dat"));
 oos.writeObject(so);
 }
}

Create a key store test.ks containing one entry having alias test using the following
command:

keytool -genkey -alias test -keyalg RSA -keystore test.ks -storepass 123456
-keypass 123456 -dname "CN=Test, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Now, create a public certificate file test.cer for this entry using the following command:
keytool -export -alias test -keystore test.ks -storepass 123456 -file test.cer

Now, execute the above Java file using the following command:
Java SignedObjectCreator

This generates a file so.dat containing a signed string object. This so.dat along with the test.
cer can now be transferred anywhere else. The following program reconstructs the SignedObject
and verifies its wrapped object’s integrity using the public key obtained from the file test.cer.

import java.security.*;
import javax.security.cert.X509Certificate;
import java.io.*;
public class SignedObjectVerifier {
 public static void main(String args[]) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(new
FileInputStream("so.dat"));
 SignedObject so = (SignedObject)ois.readObject();
 PublicKey pub = X509Certificate.getInstance(new
FileInputStream("test.cer")).getPublicKey();

 Signature sg = Signature.getInstance(so.getAlgorithm());
 if (so.verify(pub, sg)) {

String s = (String)so.getObject();
 System.out.println(s);
 }
 }
}

SECURITY 531

import java.security.*;
import javax.security.cert.X509Certificate;
import java.io.*;
public class SignedObjectVerifier {
 public static void main(String args[]) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(new
FileInputStream("so.dat"));
 SignedObject so = (SignedObject)ois.readObject();
 PublicKey pub = X509Certificate.getInstance(new
FileInputStream("test.cer")).getPublicKey();

 Signature sg = Signature.getInstance(so.getAlgorithm());
 if (so.verify(pub, sg)) {

String s = (String)so.getObject();
 System.out.println(s);
 }
 }
}

Note that, it is possible to obtain the wrapped object from SignedObject without first verifying the
sender’s authenticity or the message’s integrity. This implies that SignedObject does not protect the
object’s content; it merely allows us to verify its integrity. To protect (hide) an object, SealedObject
may be used.

19.8.5	 SealedObject
The javax.crypto.SealedObject class, unlike SignedObject which deals with integrity, protects

an object’s confidentiality. A SealedObject contains an encrypted version of another object’s serialized
representation. So, unlike SignedObject, wrapped object cannot be retrieved without decryption key.
This implies that no one can examine or temper the wrapped object without knowing the decryption
key. Moreover, if public key encryption is used, the authenticity of the sender can also be verified.
It has the following constructor:

An
object

Encrypted
Serialized

form

Sealed object

SealedObject(Serializable object, Cipher chiper)

It creates a SealedObject from a specified Serializable object and a Chiper. The specified
object is serialized, and this serialized data is sealed (encrypted) using the given cipher. The
following is a typical example:

Serializable object = ...
Cipher cipher = ...
SealedObject so = new SealedObject(serializable, cipher);

Once an instance of SignedObject has been created, it can be transferred over or stored on
even untrusted media. Upon reconstruction, the original object can be retrieved using getObject()
method. This method decrypts the encrypted content using the corresponding algorithm and correct
decryption key, deserializes it and returns the original object. The getObject() method has the
following overloaded versions:

Object getObject(Cipher c)
Object getObject(Key key)
Object getObject(Key key, String provider)

So, any one of the following will work:
String provider = ...
Chiper chipper = ...
Key decryptionkey = ...

so.getObject(cipher);
so.getObject(decryptionkey);
so.getObject(decryptionkey, provider);

532 ADVANCED JAVA PROGRAMMING

Note that to retrieve the original object, the corresponding decryption key is needed. For public
key encryption, public key, obtained from the receiver’s certificate may be used for encryption.
Receiver can then use its private key for decryption. Since, public key cryptography cannot handle
data of an arbitrary size, secret key is usually used for encryption. Since, secret key cryptography uses
symmetric key, receiver has to obtain the secret decryption key. How will the receiver obtain the secret
decryption key without getting it observed or modified? The following strategies may be employed:

	1.	 Generate a symmetric (secret) key with preferred size.
	2.	 Get the public key certificate from the intended receiver.
	3.	 Encrypt the symmetric key with RSA using receiver’s public key obtained from the certificate and send the

encrypted key.
	4.	 Decrypt the symmetric key (secret) with the RSA using receiver’s private key.
	5.	 Encrypt the data with the symmetric key and send it to the receiver.
	6.	 Decrypt the data with the symmetric key.

Steps 1–4 are done only once, whereas steps 5–6 are repeated until the data exchange is over.
The following program creates a SealedObject from a String and signs it using a secret key and
finally stores the file data. The secret key is encrypted using a public key obtained from (receiver’s)
certificate file test.cer, wrapped in another sealed object which is then stored in a file key. Create
this test.cer file as described in the previous section.

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.security.cert.X509Certificate;
public class SealedObjectCreator {
 public static void main(String args[]) throws Exception {
 String alg = "DES", target = "Hello World!";

 PublicKey pub = X509Certificate.getInstance(new
FileInputStream("test.cer")).getPublicKey();
 Cipher cipher = Cipher.getInstance(pub.getAlgorithm());
 cipher.init(Cipher.ENCRYPT_MODE, pub);
 KeyGenerator kg = KeyGenerator.getInstance(alg);
 SecretKey sk = kg.generateKey();
 SealedObject so = new SealedObject(sk.getEncoded(), cipher);
 ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("key"));
 oos.writeObject(so);

 cipher = Cipher.getInstance(alg);
 cipher.init(Cipher.ENCRYPT_MODE, sk);
 so = new SealedObject(target, cipher);
 oos = new ObjectOutputStream(new FileOutputStream("data"));
 oos.writeObject(so);
 oos.close();
 }
}

This data along with the key file key can now be transferred anywhere else. The following program
first retrieves the secret key using private key obtained from the key store test.ks. This secret key
is then used further to retrieve wrapped data objects.

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class SealedObjectDecoder {
 public static void main(String args[]) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream("key"));
 SealedObject so = (SealedObject)ois.readObject();

 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("test.ks"), password);
 PrivateKey pri = (PrivateKey)ks.getKey("test", password);

 byte[] bytes = (byte[])so.getObject(pri);
 ois = new ObjectInputStream(new FileInputStream("data"));
 so = (SealedObject)ois.readObject();
 SecretKey sk = new SecretKeySpec(bytes, 0, bytes.length,
so.getAlgorithm());

 System.out.println(so.getObject(sk));
 }
}

SECURITY 533

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class SealedObjectDecoder {
 public static void main(String args[]) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream("key"));
 SealedObject so = (SealedObject)ois.readObject();

 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("test.ks"), password);
 PrivateKey pri = (PrivateKey)ks.getKey("test", password);

 byte[] bytes = (byte[])so.getObject(pri);
 ois = new ObjectInputStream(new FileInputStream("data"));
 so = (SealedObject)ois.readObject();
 SecretKey sk = new SecretKeySpec(bytes, 0, bytes.length,
so.getAlgorithm());

 System.out.println(so.getObject(sk));
 }
}

The following is a pair of sender/receiver socket programs that exchange data using sealed objects.
They make use of the basic mechanism used by SSL without using SSL.

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.security.cert.X509Certificate;
import java.net.*;
public class SealedObjectSender {
 public static void main(String args[]) throws Exception {
 Socket s = new Socket(args[0], 6789);
 ObjectInputStream in = new ObjectInputStream(s.getInputStream());
 ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());
 java.security.cert.Certificate c =
(java.security.cert.Certificate)in.readObject();
 //authenticate the certificate c here
 PublicKey pub = c.getPublicKey();

 String alg = "DES";
 KeyGenerator kg = KeyGenerator.getInstance(alg);
 SecretKey sk = kg.generateKey();

 Cipher cipher = Cipher.getInstance(pub.getAlgorithm());
 cipher.init(Cipher.ENCRYPT_MODE, pub);
 SealedObject so = new SealedObject(sk.getEncoded(), cipher);
 out.writeObject(so);

 cipher = Cipher.getInstance(alg);
 cipher.init(Cipher.ENCRYPT_MODE, sk);
 BufferedReader fromUser = new BufferedReader(new
InputStreamReader(System.in));
 while(true) {
 so = new SealedObject(fromUser.readLine(), cipher);
 out.writeObject(so);
 }
 }
}

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.net.*;
public class SealedObjectReceiver {
 public static void main(String args[]) throws Exception {
 ServerSocket ss = new ServerSocket(6789);
 Socket s = ss.accept();
 ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(s.getInputStream());

 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("test.ks"), password);
 PrivateKey pri = (PrivateKey)ks.getKey("test", password);

 out.writeObject(ks.getCertificate("test"));

 SealedObject so = (SealedObject)in.readObject();
 byte[] bytes = (byte[])so.getObject(pri);
 so = (SealedObject)in.readObject();
 SecretKey sk = new SecretKeySpec(bytes, 0, bytes.length,
so.getAlgorithm());
 while(true) {
 System.out.println(so.getObject(sk));
 so = (SealedObject)in.readObject();
 }
 }
}

534 ADVANCED JAVA PROGRAMMING

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.security.cert.X509Certificate;
import java.net.*;
public class SealedObjectSender {
 public static void main(String args[]) throws Exception {
 Socket s = new Socket(args[0], 6789);
 ObjectInputStream in = new ObjectInputStream(s.getInputStream());
 ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());
 java.security.cert.Certificate c =
(java.security.cert.Certificate)in.readObject();
 //authenticate the certificate c here
 PublicKey pub = c.getPublicKey();

 String alg = "DES";
 KeyGenerator kg = KeyGenerator.getInstance(alg);
 SecretKey sk = kg.generateKey();

 Cipher cipher = Cipher.getInstance(pub.getAlgorithm());
 cipher.init(Cipher.ENCRYPT_MODE, pub);
 SealedObject so = new SealedObject(sk.getEncoded(), cipher);
 out.writeObject(so);

 cipher = Cipher.getInstance(alg);
 cipher.init(Cipher.ENCRYPT_MODE, sk);
 BufferedReader fromUser = new BufferedReader(new
InputStreamReader(System.in));
 while(true) {
 so = new SealedObject(fromUser.readLine(), cipher);
 out.writeObject(so);
 }
 }
}

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.net.*;
public class SealedObjectReceiver {
 public static void main(String args[]) throws Exception {
 ServerSocket ss = new ServerSocket(6789);
 Socket s = ss.accept();
 ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(s.getInputStream());

 char[] password = "123456".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("test.ks"), password);
 PrivateKey pri = (PrivateKey)ks.getKey("test", password);

 out.writeObject(ks.getCertificate("test"));

 SealedObject so = (SealedObject)in.readObject();
 byte[] bytes = (byte[])so.getObject(pri);
 so = (SealedObject)in.readObject();
 SecretKey sk = new SecretKeySpec(bytes, 0, bytes.length,
so.getAlgorithm());
 while(true) {
 System.out.println(so.getObject(sk));
 so = (SealedObject)in.readObject();
 }
 }
}

To start this application, start the receiver program as follows:
java SealedObjectReceiver

Now start the sender program as
java SealedObjectSender 172.16.5.81

Here 172.16.5.81 is the IP address of the receiver computer.

19.8.6	 GuardedObject
The operations on a sensitive object should be governed by a permission. This means, each method

call on the object should verify if caller thread has proper permission. This tells us to insert security
check (probably redundant) in every method including constructor.

Moreover, the user of an object may not always be its creator. This happens especially when an
object is transferred across a network using serialization and deserialization. In this case, the security
context of an object’s caller may be different from that of its creator.

Note that when an object is reconstructed using deserialization, constructor is not used. Therefore,
security check code (if any) in the constructor may be bypassed during object reconstruction.

So, if every method requires the permission, it makes sense to require it once, at object level. Java
java.security.GuardedObject provides object level access control which ensures that permission
is checked once. This is done in getObject() method, which a caller must use to gain access to the
protected object. The basic idea is as follows:

A Guard object, which guards access to another target object, is first created. Any object can
become a Guard provided that the objects class implements the interface Guard. It has only one method
checkGuard() that takes an Object argument and performs certain (security) checks. Fortunately,
the java.security.Permission class (and hence its subclasses) implements the Guard interface and
can be used as a guard. We create a PropertyPermission object as guard as follows:

Guard guard = new PropertyPermission("usr.home", "read");

This represents a read access to the "usr.home" system property. For simplicity, let us create a
String object to be guarded as follows:

String pass = new String("123456");

The guarded object should be Serializable if it is intended to pass across the network. A
GuardedObject is then created from this pass along with its guard.

GuardedObject go = new GuardedObject(pass, guard);

SECURITY 535

The object go embeds the pass and guard objects. This GuardedObject object go can be
transferred to a different JVM having possibly a different security context. We serialize go and put
it in a file pass:

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("pass"));
oos.writeObject(go);

The complete source code is shown below:
import java.security.*;
import java.io.*;
import java.util.PropertyPermission;
public class GuardedObjectWrite {
 public static void main(String[] args) throws Exception {
 Guard guard = new PropertyPermission("usr.home", "read");
 String pass = new String("123456");
 GuardedObject go = new GuardedObject(pass, guard);
 ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("pass"));
 oos.writeObject(go);
 }
}

We assume that object is reconstructed at the receiver end using a code as follows:
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("pass"));
GuardedObject go = (GuardedObject)ois.readObject();

To gain access to the guarded object, getObject() method is used:
String ps = (String) go.getObject();

The getObject() method in turn invokes the checkGuard() method on the guard object that was
used to create GuardedObject. Our guard object was a PropertyPermission object which allows
accessing the guarded object to a thread only if the thread has the read access to the usr.home system
property.

The complete source code is shown below:
import java.security.*;
import java.io.*;
public class GuardedObjectRead {
 public static void main(String[] args) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream("pass"));
 GuardedObject go = (GuardedObject)ois.readObject();
 String pass = (String) go.getObject();
 System.out.println("pass = " + pass);
 }
}

19.9	 SECURE RMI
The underlying socket communication used by Java’s default RMI implementation is not secured.

So, how do you develop Java RMI applications that can make remote invocations over secure SSL
connections? In this section, we shall modify our calculator RMI application (discussed in the RMI
chapter) so that the underlying network communication becomes secured.

In general, Java RMI framework allows us to export a remote object specifying custom socket
factories that create sockets of desired type for underlying network communication. These factories
may be specified either in the overloaded constructor or exportObject() method of java.rmi.
server.UnicastRemoteObject or java.rmi.activation.Activatable class. They take a java.
rmi.server.RMIClientSocketFactory instance and a java.rmi.server.RMIServerSocketFactory
instance. The RMIClientSocketFactory may be used to control how connections are established and

536 ADVANCED JAVA PROGRAMMING

the type of socket to use. On the other hand, the RMIServerSocketFactory may be used to control
how incoming connections are listened for and accepted as well as the type of sockets to use for
incoming connections.

Since, we want our calculator application to work over an SSL connection, our task is now to
specify socket factories that create SSL sockets. Fortunately, RMI system provides two classes
SslRMIClientSocketFactory and SslRMIServerSocketFactory (in javax.rmi.ssl package) for
this purpose which implement RMIClientSocketFactory and RMIServerSocketFactory over the
SSL/TLS protocols respectively.

So, in the calculator server application, let us export our calculator object specifying them as
follows:

SimpleCalculator cal = new SimpleCalculator();
Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0, new
SslRMIClientSocketFactory(), new SslRMIServerSocketFactory());

So, our modified server (SSLCalculatorServer.java) looks like this:
//SSLCalculatorServer.java
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
import javax.rmi.ssl.*;
public class SSLCalculatorServer {
 public static void main(String args[]) {
 try {
 SimpleCalculator cal = new SimpleCalculator();

Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0, new
SslRMIClientSocketFactory(), new SslRMIServerSocketFactory());
 Registry registry = LocateRegistry.createRegistry(1099);
 String name = "calculator";
 registry.rebind(name, stub);
 System.out.println("Calculator server ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

The modified piece of code has been shown with bold face. The code of the client remains
unchanged as it was. To run the application, server creates a keystore server.ks using the following
command:

�keytool -genkey -alias mykey -keyalg RSA -keystore server.ks -storepass 123456
-keypass 123456 -dname "CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Now, export this certificate to a certificate file server.cer using the following command:
�keytool -export -alias mykey -keystore server.ks -storepass 123456
-file server.cer

Copy this server.cer file to client’s home directory and import it in the client’s trust store
client.ts using the following command:

keytool -import -v -keystore client.ts -storepass 123456 -file server.cer

The application is now ready to be started. Start the server as follows:
�java -Djavax.net.ssl.keyStore=server.ks -Djavax.net.ssl.keyStorePassword=123456
SSLCalculatorServer

Start the client as follows:
�java -Djavax.net.ssl.trustStore=client.ts -Djavax.net.ssl.trustStorePassword=123456
CalculatorClient 172.16.5.81

A sample output is shown in Figure 19.6:

SECURITY 537

(i)

(ii)

Figure 19.6: RMI over SSL (i) Server (ii) Client

If the server also needs client authentication, the overloaded constructor of SslRMIServerSocketFactory
may be used when an object is exported as follows:

Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0, new
SslRMIClientSocketFactory(), new SslRMIServerSocketFactory(null, null, true));

In this case, client creates a certificate and makes an entry in the keystore. Similarly, the server
imports this certificate in its truststore.

Note that a remote method invocation takes place in steps:

•	 A client consults remote registry to get a reference to the stub of the remote object
•	 The client then invokes methods on the remote object

Our application is so far secured for the second step. The communication with the remote registry
still takes place in a non-secure way. To solve this problem, custom socket factories may be specified
in the createRegistry() and getRegistry() methods of LocateRegistry. So, modify the calculator
server as follows:

�R e g i s t r y r e g i s t r y = L o c a t e R e g i s t r y . c r e a t e R e g i s t r y (1 0 9 9 , n e w
SslRMIClientSocketFactory(), new SslRMIServerSocketFactory(null, null, true));

Similarly, modify the client (call it SSLCalculatorClient.java) as follows:
�Registry registry = LocateRegistry.getRegistry(args[0], 1099, new
javax.rmi.ssl.SslRMIClientSocketFactory());

To run this application, client creates a keystore client.ks using the following command:
�keytool -genkey -alias mykey -keyalg RSA -keystore client.ks -storepass 123456
-keypass 123456 -dname "CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Now, export this certificate to a certificate file client.cer using the following command:
keytool -export -alias mykey -keystore client.ks -storepass 123456 -file client.cer

Copy this client.cer file to server’s home directory and import it in server’s trust store server.
ts using the following command:

keytool -import -v -keystore server.ts -storepass 123456 -file client.cer

The application is now ready to be started. Start the server as follows:
�java -Djavax.net.ssl.keyStore=server.ks -Djavax.net.ssl.keyStorePassword=123456
-Djavax.net.ssl.trustStore=server.ts -Djavax.net.ssl.trustStorePassword=123456
SSLCalculatorServer

538 ADVANCED JAVA PROGRAMMING

Start the client as follows:
�java -Djavax.net.ssl.keyStore=client.ks -Djavax.net.ssl.keyStorePassword=123456
-Djavax.net.ssl.trustStore=client.ts -Djavax.net.ssl.trustStorePassword=123456
SSLCalculatorClient 172.16.5.81

A sample output is shown in Figure 19.7:

(i)

(ii)

Figure 19.7: RMI over SSL using client authentication (i) Server (ii) Client

19.9.1	 Writing Custom Socket Factories
In our previous example, we have used classes provided by the Java RMI framework as custom

socket factories. It is also possible to develop our own factories and specify them. To create a custom
client socket factory, we implement the RMIClientSocketFactory interface which has a single method.
Here is a sample implementation (MySSLClientSocketFactory.java):

//MySSLClientSocketFactory.java
import java.io.*;
import java.net.*;
import java.rmi.server.*;
import javax.net.ssl.*;
public class MySSLClientSocketFactory implements RMIClientSocketFactory,
Serializable {
 public Socket createSocket(String host, int port) throws IOException {
 System.setProperty("javax.net.ssl.keyStore", "client.ks");
 System.setProperty("javax.net.ssl.keyStorePassword", "123456");
 System.setProperty("javax.net.ssl.trustStore", "client.ts");
 System.setProperty("javax.net.ssl.trustStorePassword", "123456");

 SocketFactory factory = SSLSocketFactory.getDefault();
 Socket s = factory.createSocket(host, port);
 return s;
 }
}

Here, we have created an SSLSocket using default implementation of SSLSocketFactory and
returned it. We also have set up necessary properties for SSL. Writing a custom server socket factory
is similar as follows (MySSLServerSocketFactory.java):

SECURITY 539

//MySSLServerSocketFactory.java
import java.io.*;
import java.net.*;
import java.rmi.server.*;
import javax.net.ssl.*;
import javax.net.*;

public class MySSLServerSocketFactory implements RMIServerSocketFactory {
 public ServerSocket createServerSocket(int port) throws IOException {
 System.setProperty("javax.net.ssl.keyStore", "server.ks");
 System.setProperty("javax.net.ssl.keyStorePassword", "123456");
 System.setProperty("javax.net.ssl.trustStore", "server.ts");
 System.setProperty("javax.net.ssl.trustStorePassword", "123456");

 ServerSocketFactory ssf= SSLServerSocketFactory.getDefault();
 ServerSocket ss = ssf.createServerSocket(port);
 ((SSLServerSocket)ss).setNeedClientAuth(true);
 return ss;
 }
}

Here, we have created an SSLServerSocket using default implementation of SSLServerSocketFactory
and returned it. We also have set up necessary properties for SSL. The factory also specifies that the
server needs client authentication using setNeedClientAuth() method.

The server is then modified as follows:
Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0, new
MySSLClientSocketFactory(), new MySSLServerSocketFactory());
Registry registry = LocateRegistry.createRegistry(1099, new
MySSLClientSocketFactory(), new MySSLServerSocketFactory());

Modify the client as follows:
�Registry registry = LocateRegistry.getRegistry(args[0], 1099, new
MySSLClientSocketFactory());

Start the server as follows:
java SSLCalculatorServer

Start the client as follows:
java SSLCalculatorClient 172.16.5.81

19.10	 SECURE XML-RPC
An XML-RPC application can be made secure using two ways:
Start the XML-RPC server in an SSL/TLS enabled web server and write an XML-RPC client to

communicate with the server or use an SSL enabled XML-RPC framework.

19.10.1	 Using XmlRpcServlet
In Chapter 17, we have seen that Apache XML-RPC provides a servlet XmlRpcServlet, which

has an automatically embedded instance of XmlRpcServer and may be installed to an existing
tomcat web server to serve XML-RPC requests. To make the communication secured, it is a good
idea to configure the tomcat web server so that it runs over SSL. A description is already given in
Section 17.6. The procedure of installing XmlRpcServlet is also given in Chapter 17. So, configure
tomcat to make it SSL-enabled and install XmlRpcServlet. Assume that the SSL-enabled tomcat
web server runs on a computer having IP address 172.16.5.81 on port 8443. The URL of the
servlet XmlRpcServlet will then be https://172.16.5.81:8443/xmlrpc/servlet. This URL

540 ADVANCED JAVA PROGRAMMING

may be used in the XML-RPC client application. The modified XML-RPC client that uses SSL
communication is shown below:

//SSLClient.java
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;

import org.apache.xmlrpc.client.*;
import java.net.URL;
public class SSLClient {
 public static void main (String [] args) {
 try {

HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String host, SSLSession ss) { return true; }
 });

 XmlRpcClient client = new XmlRpcClient();
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 config.setServerURL(new URL("https://"+args[0]+":8443/xmlrpc/servlet"));
 client.setConfig(config);

 int n = 6;
 Object[] params = new Object[]{ new Integer(n)};
 System.out.println("Sent : "+n);
 Integer result = (Integer)client.execute("Factorial.fact", params);
 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The modified code is shown using bold font. To run the application, copy tomcat.cer (described
in Section 19.4.7) to the client directory and import it in the client’s trust store (client.ts) using
the following command:

keytool -import -v -keystore client.ts -storepass 123456 -file tomcat.cer

Start the tomcat web server. Now, start the client using the following command:
�java -cp ..\lib*;. -Djavax.net.ssl.trustStore=client.ts -
Djavax.net.ssl.trustStorePassword=123456 SSLClient 172.16.5.81

19.10.2	 Using Secure XML-RPC
Apache XML-RPC version 2.0.1 also provides a framework that works on SSL. The security is

provided by two primary class files SecureWebServer and SecureXmlRpcClient (provided in the
package org.apache.xmlrpc.secure). The SecureWebServer class is used to create a secure XML-
RPC server. A sample usage of this class is shown (SslXmlRpcServer.java) below:

//SslXmlRpcServer.java
import org.apache.xmlrpc.secure.*;
public class SslXmlRpcServer {
 public int fact(int n) {
 System.out.println("Received : "+n);
 int prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 System.out.println("Sent : "+prod);
 return prod;
 }
 public static void main(String args[]) {
 SecureWebServer web=new SecureWebServer(6789);
 web.addHandler("Factorial", new SslXmlRpcServer());
 web.start();
 System.out.println("XML-RPC server ready...");
 }
}

SECURITY 541

//SslXmlRpcServer.java
import org.apache.xmlrpc.secure.*;
public class SslXmlRpcServer {
 public int fact(int n) {
 System.out.println("Received : "+n);
 int prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 System.out.println("Sent : "+prod);
 return prod;
 }
 public static void main(String args[]) {
 SecureWebServer web=new SecureWebServer(6789);
 web.addHandler("Factorial", new SslXmlRpcServer());
 web.start();
 System.out.println("XML-RPC server ready...");
 }
}

To create a secure XML-RPC client, we use SecureXmlRpcClient class. The source code of this
client (SslXmlRpcClient.java) is given below:

//SslXmlRpcClient.java
import java.util.*;
import javax.net.ssl.*;
import org.apache.xmlrpc.secure.*;
public class SslXmlRpcClient {
 public static void main(String args[]) {
 HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String host, SSLSession ss) { return true; }
 });
 try {
 SecureXmlRpcClient client=new
SecureXmlRpcClient("https://"+args[0]+":6789");
 Vector params= new Vector();
 int n = 5;
 params.add(n);
 System.out.println("Sent : " + n);
 Object result = client.execute("Factorial.fact",params);
 System.out.println("Received : "+result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

To run this application, we have to download a JAR file containing XML-RPC 2.0.1 classes
and interfaces. We downloaded xmlrpc-2.0.1.jar from http://www.java2s.com/Code/Jar/x/
Downloadxmlrpc201jar.htm. Since, SecureWebServer and SecureXmlRpcClient classes use a
set of utilities for encoding and decoding text and binary data, we need Apache Commons Codec
(TM) software that provides implementations of common encoders and decoders such as Base64,
Hex, Phonetic and URLs. These utilities (as commons-codec-1.9.jar file) can be downloaded from
http://commons.apache.org/proper/commons-codec/download_codec.cgi. Now create the
following directory structure. Place the JAR files in lib directory. Also place SslXmlRpcServer.java
and SslXmlRpcClient.java in the server and client directory respectively.

Now go to the server directory and create a key store (server.ks) using the following command:
�keytool -genkey -alias mykey -keyalg RSA -keystore server.ks -storepass 123456
-keypass 123456 -dname "CN=U. K. Roy, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Now, export the certificate to a file server.cer using the following command:
keytool -export -alias mykey -keystore server.ks -storepass 123456 -file server.cer

Now, copy this server.cer file to the client directory and use the following command to import
this certificate in the client’s trust store (client.ts):

keytool -import -v -keystore client.ts -storepass 123456 -file server.cer

542 ADVANCED JAVA PROGRAMMING

The application is now ready to run. Go to the server directory and use the following command
to compile the server:

javac -cp ..\lib*;. *.java

Now, start the server using the following command:
�java -cp ..\lib*;. -Djavax.net.ssl.keyStore=server.ks -
Djavax.net.ssl.keyStorePassword=123456 SslXmlRpcServer

Go to the client directory and use the following command to compile the client:
javac -cp ..\lib*;. *.java

Now, start the client using the following command:
�java -cp ..\lib*;. -Djavax.net.ssl.trustStore=client.ts -
Djavax.net.ssl.trustStorePassword=123456 SslXmlRpcClient 172.16.5.81

19.11	 SIGNING AND VERIFYING JAR
Java security architecture also provides a facility to digitally sign and verify a Java ARchive

(JAR) using the tool jarsigner. This is a very useful tool that enables parties to exchange data as
a single package (created using jar utility and consisting of class files, images, sounds and other
digital data) ensuring its integrity and authentication. It is used to

•	 sign JAR files, and
•	 verify the signatures and integrity of signed JAR files.

19.11.1	 Signing JAR
To sign a JAR-bundled file, jarsigner needs a private key, which is used to generate digital

signatures. We know that a keystore contains private key(s) each of which can be referred to by an
alias. During signing, the jarsigner tool takes this alias to get the private key. If you already have a
keystore use it or create one using the following command:

keytool -genkey -alias tom -keyalg RSA -keystore test.jks -storepass 123456 -keypass
123456 -dname "CN=Tom, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

We also assume that there exists a JAR test.jar to be signed. The following is a sample command
to create a JAR test.jar:

jar cvf test.jar *.class

A sample output is shown below:
added manifest
adding: First.class(in = 380) (out= 269)(deflated 29%)
adding: GetProps.class(in = 1624) (out= 857)(deflated 47%)

We can then use the following command to sign it:
jarsigner -keystore test.jks -storepass 123456 test.jar tom

The jarsigner uses private key from the keystore test.jks corresponding to the alias tom to
generate digital signatures for the JAR file test.jar. The signed JAR file also contains a copy of
the certificate containing the public key corresponding to the private key used to sign the file. This
certificate is used by jarsigner to verify the digital signature of the signed JAR file.

Since no output file is specified, signed JAR file is exactly the same as the input JAR file. The –
signedjar option may be used to specify the name of the output signed jar file as follows:

jarsigner -keystore test.jks -storepass 123456 -signedjar stest.jar test.jar tom

SECURITY 543

When a JAR file is signed, a digest is calculated for each file in the JAR. The digest of a file
is a hash or encoded representation of the content of the file. The digest changes if and only if the
content of the file changes. These digest values are placed in the archive’s manifest file (META-INF/
MANIFEST.MF). Here is a sample manifest file:

Manifest-Version: 1.0
Created-By: 1.7.0_07 (Oracle Corporation)

Name: First.class
SHA-256-Digest: W11oZ8EwfXKzq99Gzy1UXi9DnC3o2xWmyJwllmixfD8=

Name: GetProps.class
SHA-256-Digest: DPcVIuZOq6IU2rxGP4jojrWPc4YYl4ld78WSFwdWuVk=

The first two lines say that the manifest conforms to version 1.0 and was created by the 1.7.0_06
version of the JDK. Each pair of rest lines lists

•	 the file name,
•	 the name of the digest algorithm used (SHA), and
•	 an SHA digest value.

In the signed JAR file, two additional files are placed in the META-INF directory:

•	 a signature file, with extension .SF and
•	 a signature block file, with extension .DSA, .RSA, or .EC

This can be verified using the following command:
jar tvf test.jar

This results in a sample output as follows:
 237 Sat Jan 18 22:40:26 PST 2014 META-INF/MANIFEST.MF
 399 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.SF
 1298 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.RSA
 0 Sat Jan 18 22:40:10 PST 2014 META-INF/
 380 Sun Jan 12 09:53:26 PST 2014 First.class
 1624 Sun Jan 12 08:56:38 PST 2014 GetProps.class

This indicates that two additional files TOM.SF and TOM.RSA have been created and placed under
META-INF directory. By default the base file name of these files is decided from the alias name.
However, it may be specified using -sigFile option as follows:

-sigFile MYSIG

This generates files named MYSIG.SF and MYSIG.RSA.

19.11.1.1   Signature (.SF) File
The signature file looks similar to the manifest file. However, unlike manifest file where digest

values are computed from the file content, the digest values in the signature file are computed from
the corresponding entries in the manifest file. Here is a sample signature file:

Signature-Version: 1.0
SHA-256-Digest-Manifest-Main-Attributes: 2lFX/xw8/ju0AeReBcfmD78H9Mij7
 ZBd84CDIOniLrQ=
SHA-256-Digest-Manifest: hxfdz/3QnAKpMumlCOTR06uNLJ+iAqoWvozBZ83NTvQ=
Created-By: 1.7.0_07 (Oracle Corporation)

Name: First.class
SHA-256-Digest: 1M175uZYH+56F+3KqlCo/ZFagEVmzHBgVXQQvHAx8QI=

Name: GetProps.class
SHA-256-Digest: zRcuvs9fOa4EKXlt/JOPBnLO0+1Ivp/0KdL/obkU8Q8=

In addition, the signature file contains a digest for the entire manifest (SHA-256-Digest-Manifest
header in the previous example) file.

544 ADVANCED JAVA PROGRAMMING

19.11.1.2	 Signature Block File
This is the file which actually contains the signature of .SF file which basically summarizes the

contents of all source files of the JAR. It has the extension .DSA, .RSA, or .EC depending on the
signature algorithm used. The certificate or certificate chain from the keystore containing the public
key to be used for authentication (corresponding to the private key used for signing) is also placed
in the signature block file. This file is not human-readable.

19.11.2	 Verifying JAR
Verifying a JAR file means checking if the signature is valid and if all files remain unchanged as

they were when the signature was generated. This involves the following steps:

•	 Ensure that the .SF file has not been tempered with. This is done by checking if the signature stored in the signature
block (.RSA) file was indeed generated using the private key corresponding to the public key whose certificate
(or certificate chain) is also stored in the signature block file.

•	 Ensure that the manifest file has not been tempered with; ensure that no file has not been added/removed from
the JAR. This is done by checking the digest listed in each entry in the .SF file with each corresponding section
in the manifest.

•	 Ensure that all source files have not been tempered with. This is done by re-calculating the digest for each file
and comparing it with the corresponding digest recorded in the manifest file.

The Java Runtime Environment is responsible for executing those steps. We simply use –verify
option do all these steps as follows:

jarsigner –verify test.jar

If everything goes fine, the following message is generated:
jar verified.

If verification fails, the appropriate message is shown. For example, if the manifest file is changed,
the following message is displayed:

jarsigner: java.lang.SecurityException: Invalid signature file digest for Manifest
main attributes

To get more information, -verbose may be used as follows:
jarsigner –verify –verbose test.jar

This generates a sample output as follows:
 0 Sat Jan 18 23:26:58 PST 2014 META-INF/
 1298 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.RSA
 399 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.SF
s 237 Sat Jan 18 23:26:58 PST 2014 META-INF/MANIFEST.MF
sm 380 Sun Jan 12 09:53:26 PST 2014 First.class
sm 1624 Sun Jan 12 08:56:38 PST 2014 GetProps.class

 s = signature was verified
 m = entry is listed in manifest
 k = at least one certificate was found in keystore
 i = at least one certificate was found in identity scope

jar verified.

19.12	 MULTIPLE SIGNATURES FOR A JAR FILE
Note that signing JAR file does not change the content of constituent files; it merely adds some

additional files containing information which may be used for verification. This implies that a JAR

SECURITY 545

may be signed at times as we wish. Every time we sign a JAR, a pair of signature (.SF) and signature
block file (.DSA or .RSA or .EC) is created. For example, our resultant test.jar can be signed further
using a separate keystore alias Jerry as follows:

jarsigner -keystore test.jks -storepass 123456 test.jar jerry

This adds to additional files JERRY.SF (signature file) and JERRY.RSA (signature block file) in the
directory META-INF. This can be verified using the following command:

jar tvf test.jar

A sample output of the above command is shown below:
 237 Sat Jan 18 22:40:26 PST 2014 META-INF/MANIFEST.MF
 399 Sat Jan 18 22:45:32 PST 2014 META-INF/JERRY.SF
 1304 Sat Jan 18 22:45:32 PST 2014 META-INF/JERRY.RSA
 399 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.SF
 1298 Sat Jan 18 22:40:26 PST 2014 META-INF/TOM.RSA
 0 Sat Jan 18 22:40:10 PST 2014 META-INF/
 380 Sun Jan 12 09:53:26 PST 2014 First.class
 1624 Sun Jan 12 08:56:38 PST 2014 GetProps.class

This indeed shows that two more files have been added. Make sure that the keystore file has an
alias named jerry. If it doesn’t exist, create it using the following command:

�keytool -genkey -alias jerry -keyalg RSA -keystore test.jks -storepass 123456 -
keypass 123456 -dname "CN=Jerry, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

19.13	 ACCESS CONTROL
Although, application developers usually needn’t bother about the low-level functions of Java

security architecture, an overview of the different components and their interaction is required for
smooth understanding.

The heart of the Java security architecture is SecurityManager class. Note that not all the actions,
taken by various methods of Java libraries, are potentially safe. A small list of these actions is given
below:

•	 Read/write/delete files
•	 Read/write system properties
•	 Listen on a local port number
•	 Accept a socket connection from a specified host and port number
•	 Open a socket connection to a specified host and port number
•	 Modify a thread (change its priority, stop it, and so on)
•	 Create a new class loader
•	 Create a new process
•	 Exit from an application
•	 Load a class from a specified package
•	 Add a new class to a specified package
•	 Load a dynamic library containing native methods

Who decided which core actions are unsafe. Obviously, Java security designers made that
decision. Anyway, for each of these potentially unsafe actions (see list below), SecurityManager
class has a method (with name starting with ‘check’) which determines (by consulting
specified policy) if the action is allowed. For example, given a security policy, checkRead()
and checkWrite() method define if a thread is allowed to read from or write to a specified file
respectively.

546 ADVANCED JAVA PROGRAMMING

These check methods are invoked by various methods of Java library before performing those
sensitive operations. The call of such a check method typically looks like this:

SecurityManager security = System.getSecurityManager();
if (security != null) {
 security.checkXXX(argument, . . .);
}

So, the security manager has the opportunity to allow or disallow the operation after consulting
a given security policy. This is done by typically creating a Permission object (representing access
right being sought) and passing it to a special method checkPermission(). Current implementation
simply passes the Permission object to the static checkPermission() method of AccessController
class, which is the actual workhorse of the security core. This essentially gathers an array of
classes representing current calling thread’s stack. It then inspects the permissions (in the form of
ProtectionDomains) associated with each class in this stack. If any class does not have the permission
being tested, an AccessControlException is thrown. Otherwise the method returns silently.

19.13.1	 Installing Built-in Security Manager
By default, the Java interpreter does not provide a security boundary for a Java application. If we

want to run a Java application under the supervision of a security manager, we can explicitly inform
it in many ways. One way to do this is setting the system property java.security.manager using
command line argument as follows:

java -Djava.security.manager SomeApp

This instructs the interpreter to install an instance of the system’s default security manager (java.
lang.SecurityManager). Alternatively, an application can install it using the following piece of code:

SecurityManager sm = new SecurityManager();
System.setSecurityManager(sm);

The first line creates an instance of the security manager and the second line installs it.

19.13.2	 Policy Files
A policy specifies a set of allowable permission(s) to be used by the code from various sources and

running as various principals and is represented by a java.security.Policy object. A single Policy
object is installed in the runtime at any given time. Java’s default policy implementation expects
policy to be specified in files called policy configuration files. The policy information contained
in these configuration files is loaded in the Policy object during its creation. A security manager
installed for an application consults this Policy object and allows or disallows actions requested by
the application. The location of policy files may be specified either in the security property file or
at runtime (as command line argument). The security property file java.security can be found in
in the directory java.home\lib\security in Windows and java.home/lib/security in Unix like
OS where java.home refers to the directory that hosts the Java Runtime Environment (JRE). The
locations (urls) of policy files are specified in this property file as the values of properties whose
names have the form

policy.url.n

where possible values of n are 1, 2, 3,… The policy file locations are specified as values of these
properties in the following form:

policy.url.n=URL

where URL is the location of the policy file. The java.security file typically specifies two
policy files as follows:

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

SECURITY 547

The file java.policy can indeed be found in the directory java.home\lib\security in Windows
and java.home/lib/security in Unix like OS. This file is called system-wide default policy file as it
is consulted first by the Java’s built-in security manager. Similarly, a user may place his/her own policy
in file .java.policy which should be stored in the user’s home directory. Other policy files may also
be specified subsequently using the value of n as 3, 4, 5,…. A security manager loads the permissions
specified in all those policy files in order to take a decision. Make sure that the value of n is continuous.

This has a problem as those steps are required after every reinstallation of Java or after
redeployment in a different JVM. However, it may be useful for granting permissions to code that
are seldom redeployed.

Additional or a different policy file may also be specified using command line argument -Djava.
security.policy. Here is an example:

java -Djava.security.manager -Djava.security.policy=policyURL SomeApp
where policyURL is the location of the policy file, which is loaded in addition to all the policy files

that are specified in the security property file java.security. This policyURL may be any regular
URL including the name of a policy file in the current directory. Note that in a policy file, we basically
allow permission. So, once a permission is allowed in a policy file, it cannot be withdrawn in the
subsequent policy files. However, newer permissions can always be given in the subsequent policy files.

It is always a good idea to use forward slash(/), instead of backslash (\) as the directory separator
as it works both in Windows as well as Linux like OS. Note that, on Windows systems, whenever
we specify a file path in a string, we need to include two backslashes for each actual single backslash
in the path.

A different policy file is specified in Djava.security.policy argument using == (double equals)
as follows:

java -Djava.security.manager -Djava.security.policy==my.policy SomeApp

Here, security manager will ONLY load the policy file my.policy ignoring all other policy files
specified in the security property file. Note that for appletviewer, correct command line argument
is -J-Djava.security.policy. Also make sure that the value of policy.allowSystemProperty in
java.security file is true to work with Djava.security.policy command line argument.

An application that uses policy files is described in Section 16.16

19.13.3	 Policy File Syntax
In general, a permission merely states that some "thing" can take some "actions" on some

"target". For example, in a multi-user OS, a permission means if a user (thing) can read (action) a
file (target). Permissions are specified in a policy file using predefined syntax. A policy file contains
a list of entries. An entry may be of two types: keystore entry or grant entry. There may be zero or
one keystore entry and zero or more grant entries.

19.13.3.1   Keystore Entry
This entry is used to provide the keystore information to retrieve the public keys of the signers

specified in the grant entries. If any grant entries specify signer aliases, or principal aliases (see next
section), this entry is required and may appear anywhere outside the grant entries in the policy file.
It takes the following form:

keystore "URL", "type", "provider";

where URL is the location of the keystore, optional type if the keystore type (default is jks) and
optional provider is keystore provider (default is SUN). Here is an example of keystore entry:

keystore "jerry.jks";

The URL of the keystore is relative to the policy file location.

548 ADVANCED JAVA PROGRAMMING

19.13.3.2   Grant Entry
In this entry, actual permissions to be allowed are specified. Each grant entry has zero or more

permission entries. It may also have signedBy, codeBase and principal entries that collectively
specify the code which the permissions have to be applied on. A grant entry takes the following
form:

grant signedBy "signer_names", codeBase "URL",
 principal principal_class_name "principal_name",
 principal principal_class_name "principal_name",
 ... {

 permission permission_class_name "target_name", "action",
 signedBy "signer_names";
 permission permission_class_name "target_name", "action",
 signedBy "signer_names";
 ...
 };

A signedBy clause indicates that permissions are applicable only to the code which was signed
by the private key corresponding to the public key in the keystore (indicated by keystore entry) entry
specified by signedBy value. Consider the following example:

keystore "jerry.jks", "jks", "SUN";
grant signedBy "tom" {
 permission java.io.FilePermission "../data/*", "read";
};

This means “any code in a JAR file, which is signed using the private key corresponding to the
public key certificate in the keystore whose entry is aliased by tom, has read permission to all files
under the sibling data directory”.

The value of signedBy may be a comma-separated list of aliases to the keystore. For example,
signedBy "tom, jerry" means, the code must be signed using the private keys corresponding to
the public key certificates in the keystore whose entry is aliased by tom AND jerry to have the
designated permission.

The signedBy clause is optional and if absent, permissions are applied to all the codes, signed
by it or not.

The codeBase clause is used to allow permission to that code originated from a location specified
by the codeBase value. Consider the following example:

grant codeBase "file:/E:/ajp/sec/sm/jerry/*" {
…
};

This says that all class files under the specified directory have the listed permissions. Use forward
slash(/), not backslash (\), as the directory separator. Moreover, the characters at the end determine
the exact meaning of the codeBase value.

•	 A JAR file name matches only the classes in the JAR file.
•	 A trailing “/” matches all class files (but not JAR files) in the specified directory.
•	 Trailing “/*” matches all class and JAR files contained in the specified directory.
•	 A trailing “/-” matches all class and JAR files in the directory and recursively all files in subdirectories contained

in that directory.

The codeBase clause is optional and if absent, permissions are applied to the code originated
from any source.

SECURITY 549

19.13.3.3   Permission Entry
A permission entry starts with the keyword permission followed by the following piece of

information

•	 A permission class name representing a permission type
•	 The name of a target, permission has to be applied on
•	 Optional comma separated actions that are allowed to be performed on the target.
•	 Optional signedBy name/value pair

A permission class is a subclass (directly or indirectly) of abstract java.security permission class
and represents access to a system resource. Examples of permission classes include FilePermission,
SocketPermission, RuntimePermission, PropertyPermission etc. A target is a resource, which
the permission is specified for. The “actions” list tells the actions that are permitted for the resource.
Here is an example:

permission java.io.FilePermission "/tmp/*", "read,write";

This grants read/write access to all files in /tmp (in Linux). The action is not required for classes
such as java.lang.RuntimePermission.

The signedBy clause for a permission entry is optional. If present, it indicates that the permission
class itself must be signed by the specified alias(es) in order to grant the permission.

permission aClass "aTarget", "actions", signedBy "tom";

This says that for the permission aClass, actions on aTarget are granted if the permission class
aClass is placed in a JAR file, which was signed by the private key corresponding to the public key
in the certificate specified by the alias tom. The signedBy clause is ignored for system classes, since
they are not subject to policy restrictions.

Examples of Permission Entry
Allows accepting socket connection from 172.16.5.82
permission java.net.SocketPermission "172.16.5.82", "accept";

Allows connecting to port 6789 on 172.16.4.120.82
permission java.net.SocketPermission "172.16.4.120", "connect";

Allows accepting connections on, connect to, or listen on any port 999 and above on the local host.
permission java.net.SocketPermission "localhost:999-", "accept,connect,listen";

19.13.4	 Custom Permission Class
New permission classes may be created if built-in permission classes are not adequate. Consider

the following scenario:
A department has many students who want to get printouts from a printer. However, only “tom”

has the permission to do so. Since, no build-in permission class does not fit well for this situation,
we write our own permission class PrintPermission. All permission classes must extend either
Permission or BasicPermission (which itself is a subclass of Permission). The Permission defines
more complex permissions that require names and actions, whereas BasicPermission defines simpler
permissions that only require a name. Our PrintPermission also requires only a name and hence
can be extended from BasicPermission as follows:

public class PrintPermission extends java.security.BasicPermission {
 public PrintPermission(String target) {
 super(target);
 }
}

550 ADVANCED JAVA PROGRAMMING

We do not override the methods of BasicPermission as we don’t want extra functions. However,
we invoke super class constructor. We also write another minimal class Student having a single
method print() as follows:

//Student.java
public class Student {
 String name;
 public Student(String name) { this.name = name; }
 public void print() {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 sm.checkPermission(new PrintPermission(name));
 }
 //print document here
 }
}

To check if a student really has print permission, this class

•	 Calls System.getSecurityManager() to get the currently installed security manager.
•	 If there is a security manager (i.e. the result is not null), then

•	 Create a PrintPermission object, and

•	 Invoke security manager’s checkPermission() method passing newly created object.

The underlying security framework consults the security policy to see if the student indeed has
this permission. A sample application can then be written as:

//Dept.java
public class Dept {
 public static void main(String args[]) {
 Student s = new Student("tom");
 s.print();
 }
}

Below is a sample policy file that allows print permission for “tom”.
//sample.policy
grant {
 permission PrintPermission "tom";
};

Compile all the source files and start the application using the following command:
java -Djava.security.manager -Djava.security.policy=sample.policy
Dept

19.14	 AN APPLICATION
Here, we shall develop a very simple but elegant application to demonstrate how to make use of

all the concepts such as security manager, policy, jar signing and verifying etc. In this application,
tom writes a Java program and Jerry wants to have it and run it. Let us now understand the steps
they should follow for this purpose.

Suppose, tom has written the following program.
//FileSize.java
import java.io.*;
public class FileSize {
 public static void main(String[] args) throws Exception {
 InputStream in = new FileInputStream(args[0]);
 int count = 0;
 while (in.read() != -1) count++;
 System.out.println("Size of "+args[0]+" = "+count+" bytes");
 }
}

SECURITY 551

This application simply prints the size (in bytes) of a file specified as an argument. It is a useful
application that anyone else can use, if required, to know the file size. Suppose, Jerry is one such
person who wants to get it and run it. So tom generates a class file FileSize.class by compiling
this program using the following command:

javac FileSize.java

Tom then creates a JAR file FileSize.jar containing the FileSize.class file using command:
jar cvf FileSize.jar FileSize.class

A sample result of this command is shown below:
added manifest
adding: FileSize.class(in = 867) (out= 530)(deflated 38%)

To sign this JAR file, tom creates a keystore containing private/public key pair as follows:
�keytool -genkey -alias tom -keyalg RSA -keystore tom.jks -storepass 123456 -
keypass 123456 -dname "CN=Tom, OU=IT, O=JU, L=Kolkata, ST=WB, C=IN"

Now you are ready to sign the JAR file. Type the following in your command window
This private key in the keystore entry aliased by tom is used to sign the JAR file FileSize.jar,

to produce result JAR file tom.jar using the following command:
jarsigner -keystore tom.jks -storepass 123456 -signedjar tom.jar FileSize.jar tom

Tom also exports its certificate in a file tom.cer that contains the public key corresponding
to the private (that was used to sign the JAR file), which will be required by Jerry to authenticate
tom.

keytool -export -keystore tom.jks -alias tom -storepass 123456 -file tom.cer

Jerry can now download the JAR file tom.jar containing the class file FileSize.class and use
it. However, how can Jerry be sure that the JAR file tom.jar has not been tampered or trojaned by
an intruder during its transit? Well, this can verified using jarsigner tool as follows:

jarsigner –verify tom.jar

If everything goes fine, the following message appears:
jar verified.

If verification fails, an appropriate diagnostic error message is displayed. In that case, Jerry
continues to download it again until an unmodified version is obtained. Upon receiving a correct
version, Jerry is ready to run the application. Note that the application FileSize.class gets the size
of a file by reading the content of the entire file. Since it reads a file, it can see sensitive information
(if any) present in that file. So, this application is a potentially vulnerable application and should be
run within a security sandbox.

Suppose, Jerry wants to know the size of a file test.txt situated in the directory other than current
directory. For example, suppose test.txt is placed in a sibling (having common parent) directory
data. Jerry can use the following command:

java -Djava.security.manager -cp tom.jar FileSize ..\data\test.txt

This throws as exception:
Exception in thread "main" java.security.AccessControlException: access denied
(
"java.io.FilePermission" "..\data\test.txt" "read")
 at
java.security.AccessControlContext.checkPermission(AccessControlConte
xt.java:366)
 at
java.security.AccessController.checkPermission(AccessController.java:
555)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkRead(SecurityManager.java:888)
 at java.io.FileInputStream.<init>(FileInputStream.java:131)
 at java.io.FileInputStream.<init>(FileInputStream.java:97)
 at FileSize.main(FileSize.java:5)

552 ADVANCED JAVA PROGRAMMING

Exception in thread "main" java.security.AccessControlException: access denied
(
"java.io.FilePermission" "..\data\test.txt" "read")
 at
java.security.AccessControlContext.checkPermission(AccessControlConte
xt.java:366)
 at
java.security.AccessController.checkPermission(AccessController.java:
555)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkRead(SecurityManager.java:888)
 at java.io.FileInputStream.<init>(FileInputStream.java:131)
 at java.io.FileInputStream.<init>(FileInputStream.java:97)
 at FileSize.main(FileSize.java:5)

This is because the security manager consults only system and user policy files where no permission
to read the file test.txt is specified. To allow accessing this file, permission must be given explicitly.
This can be specified either in the existing policy files or in a separate policy file and specifying it
either in java.security file or at runtime. To demonstrate how to work with a policy file, we shall
give the permission in a separate policy file. Since, the code is a signed code, Jerry doesn’t grant
permissions to any file named tom.jar but only to tom.jar archives that tom signed. To do that, Jerry
needs to import Tom’s certificate in its trust store. So, copy the certificate tom.cer in Jerry’s working
directory and use the following command:

keytool -import -v -keystore jerry.jks -storepass 123456 -alias tom -file tom.cer

When you test, make sure that the trust store Jerry does not already contain an entry aliased tom.
Now, create the following policy file:

//jerry.policy
keystore "jerry.jks", "jks";
grant signedBy "tom" {
 permission java.io.FilePermission "../data/*", "read";
};

This tells that any code signed by tom has the read access to all files under the sibling directory
data of the present working directory. The signature can be verified against the public key which can
be found in the certificate in the trust store jerry.jks corresponding to the entry tom. The verification
of the JAR file against Jerry’s trust store may also be done explicitly as:

jarsigner -verbose -verify -keystore jerry.jks tom.jar

If verification is successful, it generates a message as follows:
s k 154 Sun Jan 12 13:09:20 PST 2014 META-INF/MANIFEST.MF
 316 Sun Jan 12 13:09:20 PST 2014 META-INF/TOM.SF
 1298 Sun Jan 12 13:09:20 PST 2014 META-INF/TOM.RSA
 0 Sun Jan 12 13:09:16 PST 2014 META-INF/
smk 867 Sun Jan 12 13:09:16 PST 2014 FileSize.class

 s = signature was verified
 m = entry is listed in manifest
 k = at least one certificate was found in keystore
 i = at least one certificate was found in identity scope

jar verified.

This policy file can be specified in the command line as follows:
�java -Djava.security.manager -Djava.security.policy=jerry.policy -cp tom.jar
FileSize ..\data\test.txt

The application reports the number of characters in the specified file without any error.
Alternatively, the location of this policy file may be specified as the value of policy.url.n in the
java.security file. For example, if jerry.policy is stored in a directory E:\ajp\sec\sm\jerry,
then add the following line after the line starting with policy.url.2:

policy.url.3=file:/E:/ajp/sec/sm/jerry/jerry.policy

KEYWORDS
Certificate—A digitally signed document from some
entity such as person, company, etc. indicating that
the public key of some other entity has some particular
value

Decryption— A process of getting cleartext back from
ciphertext using a cryptographic key

Digital Signature—A string of bits that is computed
from some data and the private key of an entity. The

SECURITY 553

signature can be used to verify that the data came from
the entity and was not modified in transit

Encryption—A process of converting cleartext to
ciphertext using a cryptographic key

jarsigner—A Java tool used to digitally sign and verify
a Java ARchive (JAR) files

Java Cryptography Architecture—A framework for
accessing and developing cryptographic functionality

Key Store—A persistent storage such as files to store
keys and certificates

keytool—A Java tool used to manipulate key store
and trust store

Message Digest algorithm—A function that takes
arbitrary-sized input data (referred to as a message) and
generates a fixed-size output, called a digest (or hash)

Permission—Indicates if some entity has the right to
access to a system resource

Policy—A set of rules that specifies which permissions
are available for code from various sources

Policy File—A file containing policy information

Private Key—A string/number that is supposed to be
known only to a particular entity

Provider—Essentially packages that implement
various cryptography algorithms

Public Key—A tring/number associated with a
particular entity such as an individual or an organization
and is intended to be known to everyone who needs
to have trusted interactions with that entity

Public Key Infrastructure—A framework that deals
with the exchange of information based on public key
cryptography

Security Manager—A component that checks the
policy currently in effect and perform access control
checks for a code being executed

Self-Signed Certificate—A certificate for which the
issuer (signer) is the same as the subject

SSL—A protocol used to make communication secured
and is a primary choice of the Internet community

SSL Handshake—Set of steps followed in SSL prior
to the data exchange

Trust Store—A key store that only stores certificates

SUMMARY
Java programming language, with its core features
and security extensions, enables us in writing powerful
secure applications. Security includes language
safety, cryptography, Public Key Infrastructure (PKI),
authentication, secure communication, and access
control.

The cryptography APIs are organized into two
distinct packages. The java.security package and
javax.crypto package. The API to support public
key infrastructure consists of two packages java.
security and java.security.cert.

Secure Socket Layer (SSL) is a protocol used to make
communication secured and is the primary choice of
the Internet community. The purpose of SSL is capable
of securing any transmission over TCP, such as HTTP,
SMTP, FTP etc.

Java provides a utility keytool (stored in java_
home/bin directory) used to administer keystores
containing cryptographic keys, X.509 certificate
chains, and trusted certificates. Programmers use
this tool to administer their own private/public key
pairs and associated digital certificates for use of self-
authentication or data integrity.

In addition to supporting PKCS #12 standard, Java
has its own proprietary standards (hence not portable)

JKS (Java Key Store) provided by “SUN” and its
extension JCEKS (Java Cryptography Extension Key
Store) provided by “SunJCE”. The JCEKS keystore
gives much stronger protection for stored private
keys by using Triple DES encryption. Moreover, only
JCEKS keystores can store secret keys. Java provides
a wide set of classes and interfaces to work with keys,
certificates, stores signatures etc.

Java also supports three kinds of objects
SignedObject, SealedObject and GuardedObject to
ensure object’s integrity, confidentially and access
control respectively. An instance of the SignedObject
encapsulates the serialized representation of another
object along with the signature information necessary
to validate the wrapped object’s authenticity and
integrity. A SealedObject contains an encrypted
version of another object’s serialized representation.
Java java.security.GuardedObject provides object
level access control which ensures that permission is
checked once.

RMI applications can also be made secured by
using SSL enabled client and server socket factories
used to create socket for underlying communications.
It is also possible to make XML-PRC applications
secured.

554 ADVANCED JAVA PROGRAMMING

Java security architecture also provides a facility to
digitally sign and verify a Java ARchive (JAR) using the
tool jarsigner. This is a very useful tool that enables
parties to exchange data as a single package (created
using jar utility and consisting of class files, images,
sounds and other digital data) ensuring its integrity
and authentication.

Java allows us to use security manager that allows
or disallows the operation after consulting a given
security policy. A policy specifies a set of allowable
permission(s) to be used by the code from various
sources and running as various principals and is
represented by a java.security.Policy object.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
security/
Trail: Security Features in Java SE

http://docs.oracle.com/javaee/6/tutorial/
doc/gijrp.html
The Java EE 6 Tutorial

http://www.oracle.com/technetwork/java/
javase/tech/index-jsp-136007.html
Java SE Security

http://www.tutorialspoint.com/
listtutorials/java/security/1
JAVA - Security Tutorials

http://idiotechie.com/java-security-
tutorial-step-by-step-guide-to-create-ssl-
connection-and-certificates/
Java Security Tutorial – Step by Step guide to create SSL

connection and certificates

EXERCISES
Objective-type Questions

	 1.	 A cipher in cryptography is
	 (a)	 An algorithm for performing encryption and

decryption
	 (b)	 An encrypted message
	 (c)	 Both (a) and (b)
	 (d)	 None of the above

	 2.	 Which one of the following is a cryptographic
protocol used to secure HTTP connection?

	 (a)	 Internet Protocol (IP)
	 (b)	 Transmission Control Protocol (SCTP)
	 (c)	 Transport Layer Security (TLS)
	 (d)	 Address Resolution Protocol (ARP)

	 3.	 In public key cryptography, the private key is kept by
	 (a)	 sender
	 (b)	 receiver
	 (c)	 both sender and receiver
	 (d)	 None of the above

	 4.	 Which one of the following algorithms is not used
in asymmetric-key cryptography?

	 (a)	 Electronic code book algorithm
	 (b)	 RSA algorithm
	 (c)	 Diffie-hellman algorithm
	 (d)	 None of the above

	 5.	 Which of the following is the most restricted access
specifier?

	 (a)	 public	 (c)	 protected
	 (b)	 private	 (d)	 package

	 6.	 JCEKS stands for
	 (a)	 Java Chiper Extension Key Store
	 (b)	 Joint Cryptography Extension Key Store
	 (c)	 Java Cryptography Expansion Key Store
	 (d)	 Java Cryptography Extension Key Store

	 7.	 A security provider is represented by
	 (a)	 Security class
	 (b)	 SecurityProvider class
	 (c)	 SecurityImplementer class
	 (d)	 Provider class

	 8.	 Which of these packages is used for handling
security-related issues in a program?

	 (a)	 java.lang.security		 (c)	 javax.security
	 (b)	 java.security		 (d)	 javax.sec

	 9.	 PKCS stands for
	 (a)	 Private-Key Cryptography Standards
	 (b)	 Public-Key Cryptography Standards
	 (c)	 Public-Key Chiper Standards
	 (d)	 Protected-Key Cryptography Standards

SECURITY 555

	10.	 Which of the following uses a public key?
	 (a)	 Symmetric key cryptography
	 (b)	 Secret key cryptography
	 (c)	 Private key cryptography
	 (d)	 Public key cryptography

	11.	 Which of the following is not a message digest
algorithm?

	 (a)	 DES	 (c)	 SHA-1
	 (b)	 MD5	 (d)	 SHA-256

	12.	 What is the full form of PEM?
	 (a)	 Privacy-enhanced Electronic Mail
	 (b)	 Privacy-enhanced Electronic Message
	 (c)	 Private Electronic Mail
	 (d)	 Public Electronic Mail

	13.	 Which of the following is a certificate standard?
	 (a)	 PKCS #12	 (c)	 JCEKS
	 (b)	 JKS	 (d)	 X.509

	14.	 Which of the following is not a signature algorithm?
	 (a)	 DSA	 (c)	 DES
	 (b)	 RSA	 (d)	 ECDSA

	15.	 Which of the following packages is used for
certificates?

	 (a)	 javax.security.cert	
	 (b)	 java.security.cert
	 (c)	 javax.cert
	 (d)	 java.cert

	16.	 SSL stands for
	 (a)	 Short Socket Layer
	 (b)	 Secure Session Layer
	 (c)	 Secure Socket Layer
	 (d)	 Short Session Layer

	17.	 A key store can contain
	 (a)	 secret key	 (c)	 Both a) and b)
	 (b)	 certificate	 (d)	 None of the above

	18.	 What is the full form of JKS?
	 (a)	 Java Key Storage
	 (b)	 Java Knowledge Store
	 (c)	 Java Key Store
	 (d)	 Joint Key Store

	19.	 A signature is contained in a
	 (a)	 secret key	 (c)	 public key
	 (b)	 certificate	 (d)	 None of the above

	20.	 A certificate contains
	 (a)	 Public key	 (c)	 Both a) and b)
	 (b)	 Private key	 (d)	 None of the above

	21.	 DER stands for
	 (a)	 Double Encoding Rules
	 (b)	 Distributed Encoding Rules
	 (c)	 Distinguished Embedded Rules
	 (d)	 Distinguished Encoding Rules

	22.	 Which of the following is not a standard for key store?
	 (a)	 PKCS #12	 (c)	 JCEKS
	 (b)	 JKS	 (d)	 X.509

	23.	 A trust store can contain
	 (a)	 secret key	 (c)	 Both a) and b)
	 (b)	 certificate	 (d)	 None of the above

	24.	 In Java, which of the following tools is used to
manipulate keystores?

	 (a)	 keytool	 (c)	 ktool
	 (b)	 javap	 (d)	 keychange

	25.	 A public key is represented in Java by
	 (a)	 PublicKey class
	 (b)	 PKey class
	 (c)	 GeneralKey class
	 (d)	 None of the above

	26.	 Which of the following is a certificate format?
	 (a)	 DER	 (c)	 PKCS12
	 (b)	 X.509	 (d)	 PKIX

	27.	 The object’s integrity is ensured using
	 (a)	 SealedObject	 (c)	 GuardedObject
	 (b)	 SignedObject	 (d)	 None of the above

	28.	 The object’s confidentiality is ensured using
	 (a)	 SealedObject	 (c)	 GuardedObject
	 (b)	 SignedObject	 (d)	 None of the above

	29.	 The object level access control is provided by
	 (a)	 SealedObject	 (c)	 GuardedObject
	 (b)	 SignedObject	 (d)	 None of the above

	30.	 Which of the following keys is used to sign an
object?

	 (a)	 private key	 (c)	 Both a) and b)
	 (b)	 public key	 (d)	 None of the above

	31.	 The integrity of a SignedObject is verified using
	 (a)	 private key	 (c)	 Both a) and b)
	 (b)	 public key	 (d)	 None of the above

	32.	 Which of the following is true about SignedObject?
	 (a)	 All objects can be signed
	 (b)	 Only String objects can be signed
	 (c)	 A SignedObject is a file
	 (d)	 Only Serializable objects can be signed

556 ADVANCED JAVA PROGRAMMING

	33.	 Which of the following methods is used to check
the integrity of a signed object?

	 (a)	 check()	 (c)	 verify()
	 (b)	 compare()	 (d)	 doCheck()

	34.	 Which of the following methods is used to obtain
the original object from a signed object?

	 (a)	 getOriginalObject()
	 (b)	 getEmbeddedObject()
	 (c)	 extractObject()
	 (d)	 getObject()

	35.	 Which of the following is true about signed object?
	 (a)	 Private key is required to obtain the

embedded object.
	 (b)	 Public key is required to obtain the

embedded object.
	 (c)	 No key is required to extract the embedded

object.
	 (d)	 The embedded object can never be

obtained.

	36.	 Which of the following is true about sealed object?
	 (a)	 Decryption key is required to extract the

embedded object.
	 (b)	 Private key is required to obtain the

embedded object.
	 (c)	 Public key is required to obtain the

embedded object.
	 (d)	 The embedded object can never be

obtained.

	37.	 Which of the following options is used with keytool
to display the content of a certificate?

	 (a)	 -printcert	 (c)	 -showcert
	 (b)	 -displaycert	 (d)	 -listcert

	38.	 Which of the following options is used with keytool
to display the content of a keystore?

	 (a)	 -print	 (c)	 -show
	 (b)	 -display	 (d)	 -list

	39.	 Which of the following store type can store secret
keys?

	 (a)	 PKCS #12	 (c)	 JCEKS
	 (b)	 JKS	 (d)	 None of the above

	40.	 Which of the following options is used with keytool
to generate a private/public key pair?

	 (a)	 -getseckey	 (c)	 -genkeypair
	 (b)	 -genkey	 (d)	 -genbothkey

	41.	 Which of the following is not a secret key
generation algorithm?

	 (a)	 DES	 (c)	 RC2
	 (b)	 AES	 (d)	 DSA

	42.	 Which of the following is not a public key
generation algorithm?

	 (a)	 RSA	 (c)	 DH
	 (b)	 DSA	 (d)	 DES

Subjective-type Questions

	 1.	 What is the difference between a SignedObject
and SealedObject?

	 2.	 Show how objects can be transferred over the
network keeping object’s confidentiality and intrigrity.

	 3.	 What is the purpose of a GuardedObject?

	 4.	 What are the advantages of GuardedObject?

	 5.	 Explain how an RMI application can be made
secured.

	 6.	 How will you write and use your own socket
factories for RMI applications?

	 7.	 Explain how to make an XML-RPC application
secured.

	 8.	 What does the tool jarsigner do?

	 9.	 Show the basic steps required to sign and verify
a JAR file using jarsigner tool.

	10.	 What is a message digest?

	11.	 What properties does a message digest satisfy?

	12.	 What do you mean by signing a JAR file multiple
times? What is its usefulness?

	13.	 Show the different procedures to install a security
manager.

	14.	 What is policy?

	15.	 What are policy files?

	16.	 Briefly describe the syntax of a policy file.

	17.	 What is the purpose of a grant entry in a policy
file?

	18.	 What is the purpose of a permission entry in a
policy file?

	19.	 How do you write custom permission classes?

CHAPTER – 20

Servlet

Key Objectives

After completing this chapter readers will be able to—
• get an idea about server-side technology
• understand the advantages of Java servlet technology over other similar technologies
• get an idea about the basic execution philosophy of servlets
• understand how to write, deploy, and invoke servlets
• learn how to install and configure Tomcat servlet engine
• learn how to use important concepts such as filters, session tracking, etc.

20.1 SERVER-SIDE JAVA
Like applets (discussed in the previous chapter), servlets are also Java classes. However, unlike

applets, which are used to implement client-side of a client–server application, servlets are used at
the server-side. They usually run inside a Java-enabled web server and extend its capabilities. This
capability is provided by servicing complex requests obtained from the web server, which itself is
not capable of handling those requests. Since, servlets are written in Java and Java is an extremely
powerful language, even a simple web server bundled with servlets, becomes unquestionably
powerful. Consequently, it has become the most popular technology for building interactive web
applications.

Note that servlets are not tied to a specific client–server protocol, but are most commonly used
with HTTP. That is why, the word servlet is often used to mean HTTP servlet. Execution of a servlet
consists of four basic steps [Figure 20.1:]:

•	 The	client	sends	a	request	to	the	web	server.
•	 The	web	server	interprets	it	and	forwards	it	to	the	corresponding	servlet.
•	 The	servlet	processes	the	request,	generates	the	output	(if	any),	and	sends	it	back	to	the	web	server.
•	 The	web	server	sends	the	response	back	to	the	client.	The	browser	then	displays	it	on	the	screen.

558 ADVANCED JAVA PROGRAMMINIG

®

Network Servlet
Request

Response

Web Browser Web Server

Figure 20.1: Execution of a Java Servlet

It runs entirely within the Java Virtual Machine (JVM). Since it runs on the server and may be
designed to generate simple output, which even older versions of browsers can interpret, there is no
browser incompatibility.

20.2 ADVANTAGES OVER APPLETS
Applets, upon download from the server, run in the client’s browser. They will function properly,

provided a proper Java Runtime Environment (JRE) is installed in the client’s browser. If the client uses
old fashioned browsers and the applets use advanced features, the browsers may fail to execute them.

Servlets, on the other hand, run on the server machine and usually generate simple HTML codes.
So, even an older version of the browser can display these HTML pages correctly.

Applets cannot access local resources such as files and databases. Servlets, if configured properly,
have full access to system resources. Therefore, servlets are more powerful than applets. However,
since applets and servlets are used at the opposite side of a client–server application, making a direct
comparison between them should be avoided.

20.3 SERVLET ALTERNATIVES
Numerous parallel technologies to servlets exist. However, each has its own set of problems.

Some of the other server-side technologies are discussed briefly here.

20.3.1 Common Gateway Interface (CGI)
CGI is one of the most common server-side solutions. Although widely used, CGI scripting

technology has a number of shortcomings, including platform dependence and lack of scalability.
A CGI application is an independent program that receives requests from the web server and sends
it back to the web server. Some of the common problems of this technology are as follows:

•	 A	new	process	is	created	every	time	the	web	server	receives	a	CGI	request.	Since	a	new	process	is	created	and	
initialized,	it	may	result	in	considerable	increase	of	response	time.	Servers	may	also	run	out	of	memory	if	not	
configured	properly.

•	 Although,	a	CGI	application	can	be	written	in	almost	every	language,	most	of	them	are	not	platform-independent.	
The	common	platform-independent	language	is	Perl.	Although	Perl	is	a	very	powerful	text	processing	language,	
for	every	request	it	requires	a	new	interpreter	to	be	started.	This	increases	the	overall	response	time.

•	 Since	a	CGI	application	is	a	completely	separate	process,	if	it	terminates	abnormally	before	responding,	the	web	
server	has	no	way	to	identify	what	happened	there.	Consequently,	it	fails	to	service	the	request	made	by	the	client.

20.3.2 Proprietary APIs
Many proprietary web servers have built-in support for server-side programming. Examples

include Netscape’s NSAPI, Microsoft’s ISAPI, and O’Reilly’s WSAPI. However, none of these
APIs is free and the newer versions may not be backward compatible. Most of these are developed in
C/C++ languages and hence can contain memory leaks and core dumps that can crash the web server.

SERVLET 559

20.3.3 Active Server Pages (ASP)
Microsoft’s Active Server Pages (ASP) is another technology that supports server-side programming.

Unfortunately, the only web server that supports this technology is Microsoft’s Internet Information
Server (IIS), which is not free. Although some third-party products support ASP, they are not free either.

20.3.4 Server-side JavaScript
Server-side JavaScript is another alternative to servlets. However, the only known servers that

support it are Netscape’s Enterprise and FastTrack servers. This ties you to a particular vendor and
hence, if possible, should be avoided.

20.4 SERVLET STRENGTHS
Java servlet technology has some distinct advantages over other competent technologies. Truly

speaking, except JSP (which is, in fact, an extension to servlet), no technology can compete with
servlet technology. The following are some advantages of Java servlet technology.

20.4.1 Efficient
When a servlet gets loaded in the server, it remains in the server’s memory as a single object

instance. Each new request is then served by a lightweight Java thread spawned from the servlet. This
is a much more efficient technique than creating a new process for every request, as done in CGI.
Servlets also have more alternatives for optimizations, such as caching the previous computation and
keeping database/socket connections open etc.

20.4.2 Persistent
Servlets can maintain the session by using the session tracking/cookies, a mechanism that helps

them track information from request to request. Critical information can also be saved to a persistent
storage and can be retrieved from it when the servlet is loaded the next time.

20.4.3 Portable
Servlets are written in Java and so they are portable across operating systems and server

implementations. This allows servlets to be moved across new operating systems seamlessly. We can
develop a servlet on a Windows machine running the Tomcat or any other server and later we can
deploy that servlet effortlessly on any other operating system such as a Unix server running an iPlanet/
Netscape application server. So, servlets are truly Write Once Run Anywhere (WORA) programs.

20.4.4 Robust
Since servlets can use the entire rich Java library, they can provide extremely robust solutions.

Java has a very powerful exception handling mechanism and provides a garbage collector to handle
memory leaks. It also has a very large and rich class library with network and file support, database
access, distributed object components, DOM support, security, utility packages, etc.

20.4.5 Extensible
Servlets are nothing but Java technology, which is popular for its well-known features such

as platform independence, garbage collection, exception handling, and extremely powerful utility
packages. Servlets can also make use of Java’s object orientation features, especially inheritance.

560 ADVANCED JAVA PROGRAMMINIG

A sub class inherits all the features of its super class. Additional features and methods can be added
and hence it is easily extendable.

20.4.6 Secure
Servlets run in a Java-enabled web server. So, they can use security mechanisms from both the

web server and the Java Security Manager.

20.4.7 Cost-effective
There are a number of free web servers available [Table 20.1:] for personal and commercial

use. Java Development Kit (JDK) is also free and can be downloaded from http://java.com. So,
applications can be developed practically without any cost.

Table 20.1: Standalone web server

Product Source Product Source

Apache Web Server Apache Web Server ZEUS

WebSphere
Application Server

IBM iPlanet Netscape

Weblogic Application
Server

BEA J Application Server GenStone

Resin Caucho Netscape Enterprise Server Netscape

JRUN Adobe LiteWebServer Gefion

Orion Application
Server

Orion Java Web Server Sun

Oracle Application
Server

Oracle CtO-JStar JavaOne

Dynamo Application
Server

ATG iServer ServerTec

J2EE Server Pramati Domino Go WebServer Lotus

AppServer Borland Java Servlet Server 2.0 Paperclips

Jetty Eclipse Foundation KonaSoft Enterprise Server KonaSoft

Jigsaw Server W3C Enhydra ObjectWeb

Table 20.2: also shows some other add-on software that support Java servlet technology.

Table 20.2: Add-on Servlet engine

Product Source Product Source

Tomcat Jakarta Project JRun web server Allaire

JServ Java-Apache Project ServletExec New Atlanta

20.5 SERVLET ARCHITECTURE
Servlet architecture consists of two packages: javax.servlet and javax.servlet.http. The first

package contains top-level interfaces and classes that are used and extended by all other servlets either
directly or indirectly. The second package is provided for servlets that can handle HTTP requests.
Figure 20.2: shows the Servlet architecture.

SERVLET 561

«interface»
javax.servlet.Servlet

init()
getServletConfig()
service()
getServletInfo()
destroy()

«interface»
javax.servlet.ServletConfig

getInitParameter()
getServletContext()
getInit ParameterNames()

javax.servlet.GenericServlet

getServletContext()
getInitParameter()
getInitParameterNames()
log()
getServletInfo()
init()
getServletCongif()
service()
destroy()

javax.servlet.HttpServlet

doDelete()
doGet()
doOptions()
doPost()
doPut()
doTrace()
getLastModified()
service()

«interface»
Java.io.Serializable

extends

implements

Figure 20.2: Servlet architecture

The top-level interface of the servlet architecture is javax.servlet.Servlet. It provides the
basic functionalities of all the servlets that are created by implementing this interface directly or
indirectly. For example, the init() method initializes the servlet, the service() method serves the
client request, and the destroy() method shuts the servlet down.

20.6 SERVLET LIFE CYCLE
The container in which the servlet has been deployed supervises and controls the life cycle [Figure 20.3:]

of a servlet. Typically, this container is nothing but a web server. When the container receives a request
from a client and determines that the request should be handled by a servlet, it performs the following steps.

•	 If	an	instance	of	the	target	servlet	does	not	exist,	the	container	does	the	following:

°    Finds	and	loads	the	servlet	class

°    Creates	an	instance	of	the	servlet	class

°    Calls	the	init()	method	on	this	servlet	instance	to	initialize	it

•	 The	container	then	invokes	the	service()	method	on	the	servlet	(newly	created	or	existing	servlet),	passing	
a	ServletRequest	type	object	and	a	ServletResponse	type	object.

•	 If	the	container	decides	that	the	servlet	is	no	longer	needed,	it	removes	and	finalizes	the	servlet	by	calling	the	
servlet’s	destroy()	method.

Destroyed

InitializedInstantiated

Ready to service

Not ready to service

Servicing

init()

service()

new()

destroy()

Figure 20.3: Life cycle of a Servlet

562 ADVANCED JAVA PROGRAMMINIG

A servlet, from its creation to destruction, undergoes a number of states [Figure 20.3:]:

•	 Instantiated	or	born
•	 Initialized
•	 Ready	to	service
•	 Servicing
•	 Not	ready	to	service
•	 Dead	or	destroyed

The entire period when a servlet remains alive is called life cycle of the servlet. The class Servlet
provides a framework where our servlets can run. It has a set of methods to control and supervise
the smooth execution of sevlets [Figure 20.2:]. These methods (also called life cycle methods) are
called in a specific order during a servlet’s entire life cycle. A servlet must override these methods
to do a designated task.

Even though, life cycle methods are called automatically by the container, we should have sound
knowledge about when they are called and what we can do with these methods. The following is a
brief description of these life cycle methods.

20.6.1 init()
A servlet’s life begins here. This method is called only once by the web container, just after it

instantiates and loads the servlet. So, it is a good idea to read the persistent configuration data, initialize
resources that will be used during the rest of the time, and perform any other one-time activity by
overriding the init() method. Once the servlet is initialized, it becomes ready to handle the client’s
request. The prototype of the init() method is as follows:

void init(ServletConfig)

The web container passes a ServletConfig object, which contains the startup configuration for
this servlet such as initialization parameters. To serve requests, this init() method must complete and
return successfully.

20.6.2 service()
This is the most important method, whose signature is as follows:
void service(ServletRequest request, ServletResponse response)

This method gets called each time the web container receives a request intended for this servlet.
The web container calls the service() method on a servlet with two objects: a ServletRequest
type object request and a ServletResponse type object response. The request object encapsulates
the communication from the client to the server, while the response object encapsulates the
communication from the servlet back to the client.

The ServletRequest interface provides methods to retrieve information sent by the clients.
Similarly, the ServletResponse interface provides methods to send data to the clients.

20.6.3 destroy()
The method signature is as follows:
void destroy();

This method gets called when the web container uninstalls the servlet. This method is overridden
to clean up the resources that were allocated to this servlet. It also makes sure that any persistent state
is synchronized with the servlet’s current in-memory state.

SERVLET 563

20.6.4 Other Methods
The javax.servlet.Servlet interface also provides the following methods to inspect the

properties of a servlet at runtime.
ServletConfig getServletConfig();

Returns a ServletConfig object, which contains the initialization parameters and startup
configuration used for this servlet. The returned object is the object that was passed to the init()
method during the servlets instantiation.
String getServletInfo();

Returns a String object containing information about the servlet, such as its version, author,
copyright, etc.

20.7 GENERICSERVLET
The class javax.servlet.GenericServlet implements the javax.servlet.Servlet interface

and, for convenience, the javax.servlet.ServletConfig interface. A servlet class is usually created
by extending either the GenericServlet class or its descendant javax.servlet.http.HttpServlet
class unless the servlet needs another class as a parent. If a servlet does need to be a subclass of
another class, it must implement the Servlet interface directly. This would be necessary when, for
example, RMI or CORBA objects act as servlets. In such a case, the servlet class must implement
all the methods of the Servlet interface.

The GenericServlet class defines (as its name suggests) a generic protocol-independent servlet,
in the sense that it can be extended to provide implementation of any protocol, such as HTTP, FTP,
and SMTP.

The GenericServlet class was created to make writing servlets easier. It provides implementations
of the life cycle methods init() and destroy(), as well as methods in the ServletConfig interface.
The servlet writer has to implement only the service() method. This is required because it is the
method that is called every time a client requests for the servlet. The prototype of this method is
shown as follows.

public void service(javax.servlet.ServletRequest request,
 javax.servlet.ServletResponse response)
 throws javax.servlet.ServletException, java.io.IOException;

This method expects two arguments. The ServletRequest type object request encapsulates
the client request and is used to extract information from the client’s request. On the other hand,
ServletResponse type object response contains information to be sent back to the client.

20.8 HTTPSERVLET
The HttpServlet class extends GenericServlet and provides a framework for handling

HTTP requests. Servlets that want to handle only HTTP requests are usually created by extending
this class. It provides an implementation for the service() method. So, you do not have to
implement the service() method if you extend the HttpServlet class. The service() method
in the HttpServlet class reads the method type stored in the HTTP request message and invokes
a specific method based on this value. Specifically, if the method type is GET, it calls doGet();
if the method type is POST, it calls doPost(); and so on. These are the methods that we need

564 ADVANCED JAVA PROGRAMMINIG

to override. Default implementations of these methods are also provided. The list of all such
methods is given in Figure 20.4:.

®

PUT

DELETE

TRACE

OPTIONS

POST

GET

service()

doGet()

doPost()

doPut()

doDelete()

doTrace()

doOptions()

HttpServlet

Network

Chain of filters Web Server

Figure 20.4: Http Servlet in action

Each of these methods takes two arguments: an HttpServletRequest type object and an
HttpServletResponse type object. The following is the prototype of the doGet() method:

void doGet(HttpServletRequest request, HttpServletResponse response)

The HttpServletRequest interface extends the ServletRequest interface and provides all the
functionalities of the ServletRequest interface. Additionally, it provides methods to retrieve HTTP-
specific information such as headers, method, URL, cookies sent, etc.

The HttpServletResponse interface extends the ServletResponse interface and provides all the
functionalities of the ServletResponse interface. Additionally, it provides methods to send HTTP-
specific information back to the client.

Servlets created by extending the HttpServlet class can handle multiple simultaneous requests.
For each request, a thread is created, which runs its service() method. If you want to create a
single-threaded servlet, your servlet must also implement the SingleThreadModel interface as
follows:

public class SimpleServlet extends HttpServlet implements SingleThreadModel { }

The interface SingleThreadModel does not define any method. It is used to merely declare that
the servlet should use a single thread.

20.9 FIRST SERVLET
Our first servlet is a simple servlet designed to handle the HTTP GET method. Create the following

servlet HelloWorldServlet.java using any text editor.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorldServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello World Servlet</title></head>");
 out.println("<body>");
 out.println("<h1>Hello World!</h1>");
 out.println("</body></html>");
 out.close();
 }
}

SERVLET 565

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorldServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello World Servlet</title></head>");
 out.println("<body>");
 out.println("<h1>Hello World!</h1>");
 out.println("</body></html>");
 out.close();
 }
}

The class HelloWorldServlet extends the HttpServlet class. So, it can handle HTTP requests.
It is written to handle only the GET method. Therefore, only the doGet() method is overridden.
The output of this servlet is a text document containing html tags. This is mentioned using the
setContentType() method. To send the data back to the client, a PrintWriter object is obtained
by calling the getWriter() method on the response object. Finally, it sends the following HTML
document.

<html><head><title>Hello World Servlet</title></head>
<body>
<h1>Hello World!</h1>
</body></html>

At the end, we close the PrintWriter object. It is not mandatory as the web container closes the
PrintWriter or ServletOutputStream automatically, when the service() method returns. An explicit
call to close() is useful when you want to perform some processing after responding to the client’s
request. This also tells the web container that the response is completed and the connection to the
client may be closed as well.

20.9.1 Installing Apache Tomcat web server
To install these servlets, we need a web server. Any web server that supports servlets may

be used. A list of web servers supporting servlets may be found in Table 20.1 and Table 20.2.
Note that the procedure for installing servlets varies from web server to web server. Please refer
to the documentation of your web server for definitive instructions. All the servlets are tested
in this book using Tomcat web server provided by Apache software foundation. Tomcat is a
lightweight, easily configurable free web server and is widely used by users who are new to
servlets.

Let us now discuss how to install and configure the Tomcat web server.
Before installing Tomcat, make sure that you have installed either Java 6 Standard Edition

(JDK 1.7) or Java 5 Standard Edition (JDK 1.6) in your computer. Download and install Java from
http://java.com/en/download/index.jsp. Once you have installed, include the Java “bin” directory
in the PATH environment variable. For example, if you have installed Java in D:\Java\jdk1.7.0_07,
include D:\Java\jdk1.7.0_07\bin subdirectory in the PATH environment variable. Additionally,
create an environment variable JAVA_HOME and set it by the Java installation directory (D:\Java\
jdk1.7.0_07 in our case).

Download the necessary files from http://tomcat.apache.org/. When I was writing this
book, the latest version was Tomcat 8.0. It is recommended to download a .zip or .zip.tar file
for the beginners. If you have downloaded an installer file, install it. If it is a .zip file or .zip.tar
file, simply unzip it in a folder. We shall assume that you have installed Tomcat in the D:\apache-
tomcat-8.0.0-RC1 directory.

Tomcat has a predefined directory structure. A typical directory structure is shown in
Figure 20.5:

566 ADVANCED JAVA PROGRAMMINIG

apache-tomcat-8.0.0-RC1

bin

conf

lib

logs

temp

webapps

docs

examples

host-manager

manager

ROOT

WEB-INF

work

Figure 20.5: Tomcat directory structure

Suppose $TOMCAT_HOME represents the root of the Tomcat installation directory. According to
Figure 20.5:, it represents the D:\apache-tomcat-8.0.0-RC1 directory. The following are some key
Tomcat directories under $TOMCAT_HOME:

•	 \bin	—	Startup,	shutdown,	and	other	scripts.	The	*.bat	(for	Windows)	files	and	Unix/Linux	counterparts	*.sh	files.

•	 \conf	—	Configuration	XML	files.	The	primary	configuration	file	is	server.xml,	which	describes	how	the	server	
starts,	behaves	and	finds	other	information.	All	the	information	in	the	configuration	files	is	loaded	whenever	the	
web	server	starts	up.	So,	any	change	to	the	files	needs	a	restart	of	the	web	server.

•	 \lib	—	Binary	jar	files	are	needed	for	the	server	to	function.	You	should	put	your	custom	jar	files	in	this	directory.	
Tomcat	can	find	them	at	runtime.

•	 \webapps	—	It	contains	web	applications.	The	directory	ROOT	under	it	contains	the	default	web	application,	which	
can	be	accessed	using	the	URL	http://172.16.5.81:8080,	where	172.16.5.81	is	the	IP	address	of	
the	computer	where	this	web	server	is	running.	You	should	create	your	own	directory	under	it.	We	shall	create	a	
directory	net	(short	for	network	programming)	to	put	our	servlet	files.	So,	the	document	root	of	our	website	will	
be	http://172.16.5.81:8080/net.

20.9.2 Building and Installing Servlet
To compile our HelloWorldServlet.java file, servlet class files are required. Tomcat comes with

a .jar file that contains necessary class files. For Tomcat 8.0, the name of this .jar file is servlet-api.
jar. You can find this jar file usually in the $TOMCAT_HOME\lib directory.

Compile the HelloWorldServlet.java using the following command:
javac -cp d:\apache-tomcat-8.0.0-RC1\lib\servlet-api.jar HelloWorldServlet.java

This generates the file HelloWorldServlet.class that contains the byte code for our servlet.
Create the following directory structure under the webapps subdirectory.

SERVLET 567

net

WEB-INF

classes

Put this HelloWorldServlet.class file in the $TOMCAT_HOME\webapps\net\WEB-INF\classes
directory.

The servlet class file is now ready to use. However, we have to inform the web server about the
existence of this servlet and the URL that will be used to refer to this servlet. This is specified in
the $TOMCAT_HOME\net\WEB-INF\web.xml file, which is the configuration XML file for this website.
If the file does not exist, create this file first.

Now, insert the following lines in this file. Some IDE provides interfaces to generate the same
information. However, it is recommended to beginners to do it manually. When you have sufficient
knowledge about how to install servlets and how they work, you may use IDEs.

<servlet>
 <servlet-name>HelloWorld</servlet-name>
 <servlet-class>HelloWorldServlet</servlet-class>
</servlet>

This code maps the servlet class (HelloWorldServlet.class) file to a servlet name (HelloWorld).
The <servlet> tag tells the Tomcat that an instance of the servlet has to be created. The name of the
class file (without the extension class) for this servlet is specified by the <servlets-class> tag.
Once this instance is created, it can be referred to by a name specified by the <servlet-name> tag.
You then need to map this servlet name to a URL to be used to invoke this servlet. This is a URL
relative to the document root for this website.

<servlet-mapping>
 <servlet-name>HelloWorld</servlet-name>
 <url-pattern>/servlet/HelloWorld</url-pattern>
</servlet-mapping>

The above <servlet-mapping> tag indicates that the servlet having the name HelloWorld can
be invoked using the URL pattern /servlet/HelloWorld relative to the document root. In our case,
the document root is http://172.16.5.81:8080/net. So, the complete URL of this servlet will be
http://172.16.5.81:8080/net/servlet/HelloWorld.

20.9.3 Invoking Servlet
Invoking this servlet is very easy. Start the Tomcat web server. If everything goes correct, your

web application will be deployed successfully. A sample output containing Tomcat startup message
is shown in Figure 20.6:

Figure 20.6: Tomcat startup screen (in windows)

568 ADVANCED JAVA PROGRAMMINIG

The deployment message for our simple web application is highlighted in the output screen. Now,
type the following URL in the address bar of your web browser and press enter. Make sure that the
computer where the web server runs is accessible from your computer.

http://172.16.5.81:8080/net/servlet/HelloWorld

It generates the result as shown in Figure 20.7:

Figure 20.7: The result of HelloWorld servlet

20.10 PASSING PARAMETERS TO SERVLETS
Like command line arguments, parameters can be passed to servlets. Servlets can access those

parameters and customize their tasks. This helps servlets to function differently in different situations
without recompiling the source code.

There are two ways in which you can pass parameters to a servlet: using URL and using HTML form.

20.10.1 Passing Parameters Directly to a Servlet
Parameters can be passed to servlets directly using URL. In this case parameters and their values

are attached directly to the URL when you use the URL to call the servlet. The URL and parameters
are separated by ‘?’ character. The character ? says “here are the parameters”. Each parameter
takes the form name=value. Multiple parameters are separated by the ‘&’ character Consider the
following URL.

http://172.16.5.81:8080/net/servlet/check?login=abc&password=xyz

In this example, two parameters are passed login and password whose values are abc and xyz,
respectively.

Certain special characters such as space and quote (“) are not allowed directly in the URL. These
characters are encoded in the %hh format where hh is the hex code of the character. For example, %20,
%22, and %7E represent the space, quote, and tilde (~) characters, respectively.

20.10.2 Passing Parameters Directly to a Servlet
One of the disadvantages of passing parameters using URLs is that users can view the parameter

names with their values passed. So, it is not safe to send sensitive information using this method.
Moreover, the number of parameters that we can pass is also limited. HTML forms can be used
to pass parameters in a convenient way. The following HTML code can be used to pass the same
information as the previous example.

<form method='post' action='http://172.16.5.81:8080/net/servlet/check'>
 Login:<input type='text' name='login'>

 Password:<input type='password' name='password'>

 <input type='submit' value='Login'>
</form>

SERVLET 569

The POST method is used here. In this case, the values of all form fields are embedded in the body
of the HTTP request message and hence cannot be viewed directly. However, servlets can retrieve
them using the usual way.

The servlet URL used in action attribute is an absolute URL. A relative URL may also be used
as follows:

action=’servlet/check’

The URL servlet/check is a URL relative to the current URL (i.e. the URL of the page from
which this servlet is invoked). The actual URL may be found by appending this path to the current
URL. For example, if http://172.16.5.81:8080/net/login.htm calls this servlet, the absolute
URL of the servlet is http://172.16.5.81:8080/net/servlet/check

20.11 RETRIEVING PARAMETERS
The three methods of the ServletRequest interface may be used to retrieve parameters. Their

signatures are as follows:
public abstract java.lang.String getParameter(java.lang.String);
public abstract java.lang.String[] getParameterValues(java.lang.String);
public abstract java.util.Enumeration getParameterNames();

The getParameter() method returns the value of the specified parameter. Make sure that the
parameter has exactly one value. If there are multiple parameters with the same name, use the
getParameterValues() method, which returns an array of string values of the specified parameter.

The getParameterNames() method returns all the parameters as an enumeration. The values
of the individual parameters can be obtained by iterating through the enumeration and using the
getParameter() method for each of these parameters. The following example shows how to retrieve
values of two parameters, login and password, and return back to the client.

// GetParameterServlet.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class GetParameterServlet extends HttpServlet {
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello World Servlet</title></head>");
 out.println("<body>");

String login = request.getParameter("login");
 String password = request.getParameter("password");
 out.println("<h2> login:" + login + "
password:" + password +
"</h2>");
 out.println("</body></html>");
 }
}

Compile the servlet, and put the generated GetParameterServlet.class file in the $TOMCAT_HOME\
webapps\net\WEB-INF\classes directory. Make the following entry in the web.xml file, and restart
the web server.

 <servlet>
 <servlet-name>GetParameter</servlet-name>
 <servlet-class>GetParameterServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>GetParameter</servlet-name>
 <url-pattern>/servlet/check</url-pattern>
 </servlet-mapping>

570 ADVANCED JAVA PROGRAMMINIG

Now an html file (call it login.html) is as follows:
<!--login.html-->
<html>
 <body>
 <form method='post' action='servlet/check'>
 Login:<input type='text' name='login'>

 Password:<input type='password' name='password'>

 <input type='submit' value='Login'>
 </form>
 </body>
</html>

Put this html file in the following directory:
$TOMCAT_HOME\webapps\net

a

We can now call the above servlet using this html file or using the following URL:
http://172.16.5.81:8080/net/servlet/check?login=abc&password=xyz

The form output is shown in Figure 20.8 (i), while a sample response from the servlet is shown
in Figure 20.8 (ii).

(i)

(ii)

Figure 20.8: Passing and retrieving parameters in servlet
(i) Passing parameter (ii) Retrieving parameter

In practice, servlets hardly return the parameter with their values back to the client. Typically,
they consult the database for further processing. In our case, the servlet will possibly verify the login
name and password information against the information stored in the database and depending upon
the result, either allow or disallow the user to login.

SERVLET 571

20.12 SERVER-SIDE INCLUDE
Server-Side Include (SSI) allows us to embed (include) servlets within HTML pages. The HTML

files containing servlets typically have the extension .shtml. The web server understands this extension
and forwards it to an internal servlet. This internal servlet parses the HTML document and executes
the referenced servlets and sends the result back to the web server after merging it with the original
HTML document. This lets us include dynamically generated content in an existing HTML file,
without having to serve the entire page via a CGI program or other dynamic technologies.

Tomcat uses org.apache.catalina.ssi.SSIServlet as its internal servlet. To enable SSI support,
remove the XML comments from around the SSI servlet and servlet-mapping configuration in $TOMCAT_
HOME/conf/web.xml. Also modify the <context> tag in $TOMCAT_HOME/conf/context.xml as follows:

<Context privileged="true">
 …
 <WatchedResource>WEB-INF/web.xml</WatchedResource>
 …
</Context>

The syntax for including servlets in HTML documents varies widely from web server to web
server. Tomcat SSI directives have the following syntax:

<!--#directive attribute=“value” attribute=“value” ... -->

Tomcat SSI directives are formatted like an HTML comment. So, if SSI is not correctly configured,
the browser will ignore it. Otherwise, the directive will be replaced by its results before sending the
page to the client. A brief description of the directives is given below:
echo

It just inserts the value of a variable. For example, the following directive inserts the value of
the local date.

<!--#echo var=“DATE_LOCAL” -->

This generates the following result:
Sunday, 11-Aug-2013 04:10:02 PDT

There are a number of standard variables including all the environment variables that are available
to servlets. Additionally, you can define your own variables with the set directive. A list of SSI servlet
variables is given in Appendix A at the end of this chapter.
printenv

It returns the list of all defined variables.
<!--#printenv -->

It results in the following:
HTTP_USER_AGENT=Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/28.0.1500.95 Safari/537.36 HTTP_ACCEPT_LANGUAGE=en-
US,en;q=0.8
HTTP_ACCEPT=text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
LAST_MODIFIED=08/11/13 DOCUMENT_URI=/net/SSI.shtml
HTTP_ACCEPT_ENCODING=gzip,deflate,sdch REMOTE_PORT=56237 SERVER_SOFTWARE=Apache
Tomcat/8.0.0-RC1 Java HotSpot(TM) Client VM/23.3-b01 Windows 7
SERVER_NAME=172.16.5.81 SCRIPT_FILENAME=D:\apache-tomcat-8.0.0-
RC1\webapps\net\SSI.shtml DATE_LOCAL=08/11/13 SERVER_ADDR=172.16.5.81
SERVER_PROTOCOL=HTTP/1.1 REQUEST_METHOD=GET DOCUMENT_NAME=SSI.shtml
SERVER_PORT=8080 SCRIPT_NAME=/SSI.shtml REMOTE_ADDR=172.16.5.81
DATE_GMT=08/11/13 REMOTE_HOST=172.16.5.81 HTTP_HOST=172.16.5.81:8080
HTTP_CONNECTION=keep-alive UNIQUE_ID=BEBC7FB2030AF4392C5871ED88FBCFB1
QUERY_STRING= GATEWAY_INTERFACE=CGI/1.1 org.apache.catalina.ssi.SSIServlet=true
REQUEST_URI=/net/SSI.shtml

572 ADVANCED JAVA PROGRAMMINIG

config

We can use the config directive, with a timefmt attribute, to modify the formatting of the date
and time as follows:

<!--#config timefmt="%A %B %d, %Y" -->
<!--#echo var="DATE_LOCAL" -->

This generates the following result:
Sunday August 11, 2013

fsize

This directive returns the size of the file specified by the file attribute.
<!--#fsize file=“SSI.shtml” -->

This directive returns the size of the file SSI.shtml in kilobytes.
flastmod

The last modification time of a file is inserted using flastmod directive whose file attribute specifies
the file name. The following code inserts the last modification time of the file named SSI.shtml.

<!--#flastmod file=“SSI.shtml” -->

You need to replace the SSI.shtml with the actual file name you want to refer to. Note that this
piece of code does not give the last modification time of an arbitrary file. It is better to use the echo
directive to print the value of the LAST_MODIFIED environment variable, which specifies the last
modification time of the file where this directive is included.

<!--#echo var=“LAST_MODIFIED” -->

include

The most common use of SSI is to include the result of a server-side program such as servlet or
CGI. The following directive includes the result of our HelloWorld servlet in the place of the directive.

<!--#include virtual=“servlet/HelloWorld” -->

The attribute virtual specifies the server-side script to be used. Note that the servlet URL used
here is relative to the .shtml file containing this directive.

So, create a file SSI.shtml containing a single line as follows and put in the $TOMCAT_HOME\
webapps\net directory.

<!--#include virtual=“servlet/HelloWorld” -->

It generates the same output as our HelloWorld servlet, as shown in Figure 20.9.

Figure 20.9: Using include directive of SSI

The include directive is useful if you want to insert the result of the same servlet in different
pages. Use the following to insert a header in every page.

<!--#include virtual=“header.html” -->

SERVLET 573

Note that the include directive can insert the result of any type of file. The following example
includes two html files header.html and footer.html.

<!--#include virtual="header.html" -->
SSI allows us to include other documents within HTML pages.
<!--#include virtual="footer.html" -->

It first inserts the content of header.html whose content is shown below:
<!--header.html-->
<h1>SSI: Server Side Include</h1>

Then a single line of text is inserted. Finally, it inserts the content of another file footer.html
whose content is shown below:

<!--header.html-->
<h4>Note:syntax of SSI varies widely from web server to web server. </h4>

A sample output is shown in Figure 20.10:

Figure 20.10: Including multiple documents

set

It is used for creating variables and setting their values for later use. The following directive
creates a variable SSI with the value “Server Side Include”.

<!--#set var=“SSI” value=“Server Side Include” -->

Similarly, the following code creates a variable sum with the value “0”.
<!--#set var=“sum” value=“0” -->

set

It is used for creating variables and setting their values for later use. The following directive
creates a variable SSI with the value “Server Side Include”.

<!--#set var=“SSI” value=“Server Side Include” -->

if elif endif else

This directive is used to write conditional sections. For example:
<!--#config timefmt="%A" -->
<!--#if expr="$DATE_LOCAL = /Sunday/" -->
<p>Today is Sunday</p>
<!--#elif expr="$DATE_LOCAL = /Saturday/" -->
<p>Today is Saturday</p>
<!--#else -->
<p>Week day</p>
<!--#endif -->

574 ADVANCED JAVA PROGRAMMINIG

20.13 COOKIES
HTTP is stateless. This means that every HTTP request is different from others. Sometimes, it is

necessary to keep track of a sequence of related requests sent by a client to perform some designated
task. This is called session tracking.

Cookies are one of the solutions to session tracking. A cookie is [key, value] pair created by
the server and is installed in the client’s browser when the client makes a request for the first time.
Browsers also maintain a list of cookies installed in them and send them to the server as a part of
subsequent HTTP requests. The server can then easily identify that this request is a part of a sequence
of related requests. This way, cookies provide an elegant solution to session tracking.

The servlet API supports cookies. A cookie is represented using the javax.servlet.http.Cookie
class and is created using the following constructor:

Cookie(String key, String value)

A cookie is added by the addCookie() method of the HttpServletResponse class. Similarly, the server
can get all cookies sent by the web browser using the getCookies() method of the HttpServletRequest class.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class CookieDemo extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 PrintWriter out = response.getWriter();
 Cookie[] cookies = request.getCookies();
 boolean found = false;
 if(cookies != null)
 for(int i=0;i<cookies.length;i++)
 if(cookies[i].getName().equals("session_started")) {
 found = true;
 out.println("You started this session on : ");
 out.println(cookies[i].getValue());
 }
 if(!found) {
 String dt = (new java.util.Date()).toString();
 response.addCookie(new Cookie("session_started", dt));
 out.println("Welcome to out site...");
 }
 }
}

When a client makes the call for the first time, the web browser does not send any cookie. The
servlet looks for the cookie with the name “session_started”. Naturally, it cannot find the cookie.
It creates, installs, and sends a cookie with the name “session_started” using the following code.

response.addCookie(new Cookie(“session_started”, dt));

For subsequent calls, web browsers send this cookie with a request. Our servlet finds it, and
retrieves the start time of this session and finally sends this value. So, when you access this servlet for
the first time, you will see an output as shown in Figure 20.11: (i). Any subsequent request generates
the output shown in Figure 20.11: (ii).

(i)

(ii)

SERVLET 575
(i)

(ii)

Figure 20.11: Working with cookies (i) First access (ii) Subsequent access

20.13.1 Limitations of Cookies
Cookies work correctly, provided that the web browsers have enabled cookie support. In addition

to the security concerns, there are some technical limitations:

•	 Cookies	can	carry	small	pieces	of	information	and	are	not	a	standard	way	of	communication.
•	 Some	web	browsers	limit	the	number	of	cookies	(typically	20	per	web	server)	that	can	be	installed.	To	avoid	this	

problem,	more	than	one	block	of	information	may	be	sent	per	cookie.
•	 The	value	of	a	cookie	should	never	exceed	4	KB.	If	the	value	of	a	cookie	is	larger	than	4	KB,	it	should	be	trimmed	to	fit.
•	 Cookies	cannot	identify	a	particular	user.	A	user	can	be	identified	by	a	combination	of	user	account,	browser,	

and	computer.	So,	users	who	have	multiple	accounts	and	use	multiple	computers/browsers	have	multiple	sets	
of	cookies.	Consequently,	cookies	cannot	differentiate	between	multiple	browsers	running	in	a	single	computer.

•	 Intruders	can	snoop,	steal	cookies,	and	attack	sessions.	This	is	called	session hijacking.

20.14 FILTERS
Filters are objects that are installed [Figure 20.12:] between the client and the server to inspect

requests and responses. They can transform the request or modify the response or both. Note that
filters are not servlets and hence cannot create actual responses. Filters process requests before they
reach a servlet and/or process responses after leaving a servlet. In general, a filter can do the following:

•	 Intercept	and	inspect	requests	before	dispatching	them	to	the	servlets
•	 Modify	requests’	headers	and	data	and	discard	or	filter	requests
•	 Intercept	and	inspect	responses	before	dispatching	them	to	the	clients
•	 Modify	requests’	headers	and	data	and	discard	or	filter	responses

A filter can work on behalf of a single servlet or a group of servlets. Similarly, zero or more filters
can be installed for a servlet. Filters are typically used in the following areas:

•	 Authentication
•	 Logging	and	auditing
•	 Image	compression
•	 Data	compression
•	 Encryption
•	 Tokenization
•	 XML	transformation

A filter class must implement the javax.servlet.Filter interface, which provides a framework
for the filtering mechanism. It defines the following methods to be implemented by each filter class:

void init(FilterConfig config)

The web container, after instantiating a filter, calls this method once to install it and to set its
configuration object. The method completes successfully; the filter can then start servicing. This
method takes a FilterConfig object that contains information that may be used to configure the filter.

576 ADVANCED JAVA PROGRAMMINIG

The FilterConfig interface provides methods to retrieve the filter’s name, its initialization parameters
(specified in web.xml file) and the underlying servlet context.

void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain)

This method is called every time a request from the client is passed through the filter. It takes three
arguments: A ServletRequest type object request, a ServletResponse type object response and
a FilterChain type object chain. The request and response objects encapsulate the client request
and response respectively whereas chain represents the next filter in this chain of filters installed for
the servlet. A usual implementation of this method is as follows:

Upon receiving the client request, it processes the request and takes necessary actions (e.g.
changing/formatting the content or header etc.) as much as it can do. The filter should then hand
over the control to the next filter in this chain by calling doFilter() method on chain. The next
filter takes further actions and forwards the request to the next filter in the chain. This way the client
request propagates towards the servlet. If there is no further filter in the chain, the doFilter() on
chain forwards the request to the servlet.

Web
container

service(…) {
…
…
…
}

init(…) {
}
doFilter(…) {
…
…
…
}
destroy() {
}

init(…) {
}
doFilter(…) {
…
…
…
}
destroy() {
}

init(…) {
}
doFilter(…)
{
…
…
}
destroy() {
}

request

response

Filter Filter Filter Servlet

Chain of filters

Figure 20.12: Function of filters

However, if a filter in the chain decides, it may not forward the request to the next filter; in this
case, the request will not reach the servlet at all. In this way, filters can drop malicious requests
intended for the servlet.

void destroy()

The method is called by the web container to uninstall the filter. Once this method is called on a
filter, the doFilter() method is not called further, hence it stops functioning.

Let us now develop a simple filter that forwards only those requests that come from the host
having the IP address “172.16.4.248”. Requests from all other hosts are discarded.

import java.io.*;
import javax.servlet.*;
public class Firewall implements Filter {
 private FilterConfig config = null;
 public void init(FilterConfig config) throws ServletException {
 this.config = config;
 }
 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

if (request.getRemoteAddr().equals("172.16.4.248"))
 chain.doFilter(request, response);
 }
 public void destroy() {
 config = null;
 }
}

SERVLET 577

import java.io.*;
import javax.servlet.*;
public class Firewall implements Filter {
 private FilterConfig config = null;
 public void init(FilterConfig config) throws ServletException {
 this.config = config;
 }
 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

if (request.getRemoteAddr().equals("172.16.4.248"))
 chain.doFilter(request, response);
 }
 public void destroy() {
 config = null;
 }
}

Compile this file using the following command.
javac -cp d:\apache-tomcat-8.0.0-RC1\lib\servlet-api.jar Firewall.java

Note that the file servlet-api.jar is necessary to compile the above filter class. Put the Firewall.
class file in the $TOMCAT_HOME\webapps\net\WEB-INF\classes directory.

20.14.1 Deploying Filter
To use this filter, you must specify it in the web.xml file using the <filter> tag.
<filter>
 <filter-name>myFirewall</filter-name>
 <filter-class>Firewall</filter-class>
</filter>

This notifies the server that a filter named myFirewall is implemented in the Firewall class. So,
the web server creates an instance of this filter and installs it during start up. Now, add the following
lines in the web.xml file.

<filter-mapping>
 <filter-name>myFirewall</filter-name>
 <url-pattern>/servlet/HelloWorld</url-pattern>
</filter-mapping>

This code states that a filter should function for the URL pattern /servlet/HelloWorld that
corresponds to our HelloWorld servlet. Now, try accessing the HelloWorld servlet from a host having
IP address 172.16.4.248. A response will be received as before. But, if the servlet is accessed from
any machine other than 172.16.4.248, no response will be received.

20.15 PROBLEMS WITH SERVLET
Servlets are not useful for generating presentation content such as HTML. Consider the following

piece of code.
out.println("<html>");
out.println(" <head>");
out.println(" <title>Hello World Servlet</title>");
out.println(" </head>");
out.println(" <body>");
out.println(" <h1>Hello World!</h1>");
out.println(" </body>");
out.println("</html>");

The purpose of the code is to generate the following HTML code.
<html>
 <head>
 <title>Hello World Servlet</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

This is acceptable if you want to generate smaller HTML files. However, if the size of the HTML
document is large, it is a tedious process to generate it.

578 ADVANCED JAVA PROGRAMMINIG

Another drawback of the servlet over Java Server Pages (JSP) is that you have to recompile
the source yourself after any modification is done. Moreover, the web server has to be restarted to
get the effect of modified code. However, JSP can perform these tasks automatically on our behalf.

Servlets often contain presentation logic as well as processing logic, which makes the code
difficult to read, understand and extend. If the presentation logic changes, the servlet code has to be
modified, recompiled, and redeployed.

20.16 SECURITY ISSUES
Different authors write servlets that are run using the resources of the server computer under

the supervision of a web server. So, before installing servlets in the web server, make sure that they
come from trusted sources. Certain access constraints should be imposed on the servlets depending
on their sources.

The concept of sandbox may be incorporated. A sandbox is a container of servlets where
restrictions are imposed. The administrator of the web server decides which servlets are given which
permissions, so that they cannot compromise with the system’s security.

In addition to these security issues, the author of the servlet should consider the following points:

•	 Take	sufficient	care	while	writing	the	file	upload	code.	If	not	implanted	carefully,	users	may	fill	the	hard	disk	of	the	
server	by	uploading	large	files.

•	 Review	the	code	that	accesses	files/database	based	on	the	user	input.	For	example,	do	not	allow	users	to	execute	
arbitrary	SQL	commands.	If	allowed,	users	may	fire	some	harmful	SQL	commands	that	can	delete	database	tables.

•	 Make	sure	that	the	request	comes	from	an	authorized	user.	Do	not	rely	on	the	existence	of	a	session	variable.

•	 Make	sure	that	you	have	not	used	the	System.exit()	method	anywhere	in	your	program.	This	will	terminate	
the	web	server.

•	 Do	not	display	sensitive	parameter	values	in	the	web	page.

20.17 APPENDIX A: LIST OF SSI SERVLET VARIABLES

Variable Name Description

AUTH_TYPE Authentication type (BASIC, FORM, etc.) used for this user

CONTENT_LENGTH The length of the data passed to this servlet

CONTENT_TYPE Type of data sent (e.g. text/html etc.)

DATE_GMT Current date and time in GMT

DATE_LOCAL Current date and time in the local time zone

DOCUMENT_NAME The current filename

DOCUMENT_URI Virtual path to the file

GATEWAY_INTERFACE The revision of the CGI (if enabled: “CGI/1.1”) that the server uses

HTTP_ACCEPT A list of the MIME types acceptable to the client.

HTTP_ACCEPT_ENCODING A list of the compression types acceptable to the client.

HTTP_ACCEPT_LANGUAGE A list of the languages that the client can accept.

HTTP_CONNECTION Connection type (persistent or non-persistent) sought:

HTTP_HOST The web site that the client requested

HTTP_REFERER The URL of the document that the client linked from

SERVLET 579

Variable Name Description

HTTP_USER_AGENT The browser the client is using to issue the request

LAST_MODIFIED Last modification date and time of the current document

PATH_INFO Extra path information passed to this servlet

PATH_TRANSLATED The translated version of the path given by the variable PATH_INFO

QUERY_STRING The query string passed to this servlet

QUERY_STRING_UNESCAPED Query string with all shell meta-characters escaped with “\”

REMOTE_ADDR The IP address of the remote host making the request

REMOTE_HOST The name of the remote host making the request

REMOTE_PORT The port number at remote IP address of the host making the request

REMOTE_USER The authenticated name of the user

REQUEST_METHOD The HTTP method (GET, POST etc.) used

REQUEST_URI The web page originally requested by the client

SCRIPT_FILENAME The location of the current web page on the server

SCRIPT_NAME The name of the web page

SERVER_ADDR The server’s IP address

SERVER_NAME The server’s hostname or IP address

SERVER_PORT The port on which the server received the request

SERVER_PROTOCOL The protocol used by the server. E.g. “HTTP/1.1”

SERVER_SOFTWARE The name and version of the server software that is answering the
client request

UNIQUE_ID A token used to identify the current session if one has been established

KEYWORDS
Cookie—A key–value pair used for session tracking

Filters—Objects that are installed between the client
and the server to inspect requests and responses

GenericServlet—The class GenericServlet
implements the Servlet and ServletConfig interfaces
and defines a generic protocol-independent servlet

HttpServlet—The HttpServlet class extends
GenericServlet and provides a framework for
handling HTTP requests

HttpServletRequest—An interface that represents an
HTTP request from the client

HttpServletResponse—An interface that represents
an HTTP response from the servlet

Life Cycle methods—The methods such as init(),
service(), destroy() that run during the life cycle
of a servlet

Multi-threaded servlet—A servlet that can handle
multiple simultaneous requests

Single-threaded servlet—A servlet that can service
one request at a time

Server Side Include—Server-Side Include (SSI)
allows us to embed (include) servlets within HTML
pages, using SSI directives

Servlet life cycle—The set of states that a servlet
goes through, from creation to destruction

Servlet interface—Top-level interface of the servlet
architecture, which provides the basic functionalities
of all servlets that are created by implementing this
interface directly or indirectly

ServletConfig interface—Represents the con-
figuration of a servlet

ServletRequest—An interface that represents a
request from the client

ServletResponse—An interface that represents a
response from the servlet

Web container—The environment/engine where
servlets or other server-side programs run

580 ADVANCED JAVA PROGRAMMINIG

EXERCISES
Objective-type Questions

 1. Which one of the following methods is called first
on a servlet?

 (a) start() (c) init()
 (b) initialize() (d) doInit()

 2. Which of the following is the name of a web
server?

 (a) Netscape (c) W3C
 (b) Borland (d) Tomcat

SUMMARY
Servlet is a Java technology for server-side
programming. A servlet is a Java module that runs
inside a Java-enabled web server and services
requests obtained from a web server.

Java servlet technology has some distinct advan-
tages over other competent technologies in terms
of efficiency, persistency, portability, robustness,
extensibility, etc. Servlets run in the server machine
and usually generate simple HTML codes. So, even a
very old browser can display generated HTML pages
correctly.

The basic servlet architecture consists of two
packages: javax.servlet and javax.servlet.
http. The first package contains top-level interfaces
and classes that are used and extended by all other
servlets. The second package is provided to use for
servlets that can handle HTTP requests.

The container in which the servlet is deployed,
supervises and controls the life cycle of a servlet.
During its lifetime, methods such as init() ,
service(), and destroy() are called in some specific
order.

The GenericServlet class defines a generic
protocol-independent servlet in the sense that it
can be extended to provide implementation of any
protocol such as HTTP, FTP, and SMTP. On the other
hand, HttpServlet class extends GenericServlet

and provides a framework for handling HTTP
requests.

There are two ways in which you can pass
parameters to a servlet: using URL and using
HTML form. One of the disadvantages of passing
parameters using URLs is that users can view the
parameter names with their values passed. So, it
is not safe to send sensitive information using this
method. Moreover, the number of parameters that we
can pass is also limited. HTML forms can be used to
pass parameters in a convenient way. The methods
of the ServletRequest interface are used to retrieve
parameters.

Server-Side Include (SSI) allows us to embed
(include) servlets within HTML pages, using SSI
directives. This lets us include dynamically generated
content in an existing HTML file, without having to
serve the entire page via a CGI program or other
dynamic technologies.

Sometimes, it is necessary to keep track of a
sequence of related requests sent by a client to
perform some designated task. This is called session
tracking. Cookies are one of the solutions to session
tracking.

Filters are objects that are installed between clients
and servers to inspect requests and responses. They
can transform requests or modify responses.

WEB RESOURCES
http://docs.oracle.com/javaee/6/tutorial/

doc/bnafd.html
Java Servlet Technology

http://www.tutorialspoint.com/servlets/
Servlets Tutorial

http://www.javatpoint.com/servlet-tutorial
Servlets Tutorial

http://www.java2s.com/Tutorial/Java/0400__

Servlet/Catalog0400__Servlet.htm
Servlet

http://www.ibm.com/developerworks/java/

tutorials/j-intserv/
Introduction to Java Servlet technology

SERVLET 581

 3. Which is the top-level class/interface in the servlet
class hierarchy?

 (a) javax.servlet.Servlet
 (b) javax.servlet.HttpServlet
 (c) javax.servlet.GenericServlet
 (d) javax.servlet.TopServlet

 4. Which of the following statements is false
regarding servlets?

 (a) The init() function is called only once during
the instantiation of the servlet.

 (b) The HttpServlet class implements the
Servlet interface.

 (c) The HttpServlet can handle HTTP requests.
 (d) The GenericServlet class implements the

Servlet interface.

 5. A servlet is instantiated when
 (a) a client makes a request for the first time
 (b) the web server starts up
 (c) the client makes a request
 (d) the source code is compiled

 6. Which of the following interfaces must a single
threaded servlet implement?

 (a) NoMultiThread
 (b) SingleThread
 (c) OneThreadModel
 (d) SingleThreadModel

 7. How many arguments does the service() method
take?

 (a) 1 (c) 3
 (b) 2 (d) 4

 8. Which of the following methods is used to retrieve
the value of a specified parameter?

 (a) getParameter()
 (b) retrieveParameter()
 (c) parameter()
 (d) getParam()

 9. Which of the following tags is used to make a
named servlet?

 (a) <servlet-name>
 (b) <servlet-class>
 (c) <servlet>
 (d) <servlet-mapping>

 10. Which of the following tags maps a named servlet
to a URL pattern?

 (a) <servlet>
 (b) <servlet-name>

 (c) <servlet-class>
 (d) <servlet-mapping>

 11. Which of the following SSI directives displays the
value of a variable?

 (a) display (c) echo
 (b) print (d) show

 12. What is the full form of SSI?
 (a) Server Side Include
 (b) Server Side Integration
 (c) Same Side Include
 (d) Same Side Integration

 13. Which of the following SSI directives is used to
insert the content of a server-side program?

 (a) insert (c) paste
 (b) include (d) import

 14. Which of the following methods is used to add a
cookie to the response?

 (a) addCookie() (c) installCookie()
 (b) sendCookie() (d) insertCookie()

 15. What is the name of the servlet configuration file?
 (a) servlet.xml (c) web.xml
 (b) config.xml (d) server.xml

 16. Which of the following packages contains Servlet
interface?

 (a) javax.server.servlet
 (b) javax.servlet
 (c) java.server.servlet
 (d) java.servlet

 17. The servlet initialization parameters are specified
in the __________ deployment descriptor file as
part of a servlet element.

 (a) web.xml (c) web.txt
 (b) web.doc (d) web.ini

 18. Which of the following identifies the correct
method a servlet developer should use to retrieve
data provided by the client?

 (a) getParameter() against the
HttpServletRequest object

 (b) getInputStream() against the
HttpServletRequest object

 (c) getBytes() against the
HttpServletRequest object

 (d) getQueryString() against the
HttpServletRequest object

582 ADVANCED JAVA PROGRAMMINIG

 19. Which package provides interfaces and classes
for writing servlets?

 (a) javax.servlet
 (b) javax.java.servlet
 (c) javax.awt.servlet
 (d) javax.swing.servlet

 20. The Web server that executes the servlet creates
an __________ object and passes this to the
servlet’s service method (which, in turn, passes
it to doGet or doPost).

 (a) HttpRequest
 (b) HttpResponse
 (c) Request
 (d) HttpServletResponce

 21. Which method can be used to access the
ServletConfig object ?

 (a) getServletInfo()
 (b) getServletConfig()
 (c) getInitParameters()
 (d) getConfig()

Subjective-type Questions

 1. What is a servlet?

 2. What are the advantages of servlets over CGI?

 3. What is the task of the javax.servlet.Servlet
interface?

 4. What are the two objects that a servlet receives
when it accepts a call from a client?

 5. What information does ServletRequest allow
access to?

 6. What type of constraints can ServletResponse
interface set on the client?

 7. Describe the life cycle of a servlet.

 8. Describe how an HTTP Servlet handles its client
requests.

 9. Differentiate between the single-threaded and
multi-threaded servlet model.

 10. What are the differences between servlets and
applets?

 11. Mention some uses of Servlets.

 12. How can you invoke other web resources such as
servlets /JSPs?

 13. How can you include other Resources in the
Response?

 14. What information does the ServletResponse
interface give to the servlet methods for replying
to the client?

 15. What do you understand by servlet mapping?

 16. What are the advantages of Cookies over URL
rewriting?

 17. What is session hijacking?

CHAPTER – 21

Java Server Pages

Key Objectives

After completing this chapter readers will be able to—
•  understand the advantages of JSP technology over other competitive technologies
•  learn the architecture of JSP pages and their execution philosophy
•  get an idea about the different components of JSP pages
•  get an overview about the methods used to track sessions
•  create and use JavaBean components
•  create and use custom tags

21.1	 INTRODUCTION AND MARKETPLACE
Java Server Pages (JSP) is a server-side technology that enables web programmers to generate

web pages dynamically in response to client requests. Among many server-side technologies used
to build dynamic web applications, JSP is the one that has pulled the attention of web developers
due to several reasons.

JSP is basically a high-level extension to the Java servlet technology. It enables us to insert
pure Java code in an HTML document directly. These pages are executed under the supervision of
an environment called web container. The web container first compiles the page on the server and
generates a servlet, which is loaded in the Java Runtime Environment (JRE) automatically. The
interesting part is that the web container only generates the servlet from the page if its last modification
time is newer than the time when the servlet was generated last. The servlet serves the client requests
in the usual way. This makes the development of web applications convenient, simple, and fast.
Maintenance also becomes very easy.

JSP technology provides excellent server-side programming for web applications that need
database access. JSP not only provides cross-web-server and cross-platform support, but also integrates
the WYSIWYG (What You See Is What You Get) features of static HTML pages with the extreme
power of Java technology.

584 ADVANCED JAVA PROGRAMMING

JSP also allows us to separate the dynamic content of our web pages from the static HTML content.
We can write regular HTML files in the usual way. We can then insert Java code for the dynamic
parts using special tags, which usually start with <% and end with %>.

Usually, JSP files have the extension jsp. They are also installed in a place where we can place
our normal web pages. Many web servers let us define aliases for JSP pages or servlets. So, a URL
that appears to reference an HTML file may actually point to a JSP page or servlet.

21.2	 JSP AND HTTP
Java Server Pages specification extends the idea of Java servlet API, to provide a robust framework

to developers of web applications for creating dynamic web content. Currently, JSP or servlet
technology supports only HTTP. However, a developer may extend the idea of servlet or JSP to
implement other protocols such as FTP or SMTP. Since, JSP uses HTML, XML, and Java code, the
applications are secure, fast, and independent of server platforms. It allows us to embed pure Java code
in an HTML document. It is important to note that JSP specification has been defined on top of the
Java servlet API. Consequently, it follows all servlet semantics and has all powers that a servlet has.

The life cycle and many of the capabilities, especially the dynamic aspects of JSP pages, are
exactly the same as Java servlet technology. So, much of the discussion in this chapter refers to
Chapter 20.

21.3	 JSP ENGINES
To process JSP pages, a web container that can understand JSP (sometimes referred to as JSP

engine) code is needed. It is interesting to note that what we know as the JSP engine is nothing but a
specialized servlet, which runs under the supervision of the servlet engine. This JSP engine is typically
connected with a web server or can be integrated inside a web server or an application server. Many
such servers are freely available and can be downloaded for evaluation and/or development of web
applications. Some of them are Tomcat, Java Web Server, WebLogic, and WebSphere.

Once you have downloaded and installed a JSP-capable web server or application server in your
machine, you need to know where to place the JSP files, what their URLs will be and how to access them
from the web browser or another application using those URLs. Since, Tomcat from Apache is an open
source, free and easily configurable JSP engine, we shall use it to test all our JSP pages in this chapter.

21.3.1	 Tomcat
Tomcat implements servlet 2.2 and JSP 1.1 specifications. It is very easy to install and can be used

as a small stand-alone server for developing and testing servlets and JSP pages. For large applications,
it is usually integrated into the more powerful Apache Web server.

Since, we shall use Tomcat JSP engine to test our JSP pages in this chapter, let us know how to
install Tomcat in our machine first.

•	 Download the appropriate version of Tomcat from the Apache site http://tomcat.apache.org\
•	 Uncompress the file in a directory. If it is an installer file in Windows, install it in a directory by double clicking on

the installer file.

•	 Set the environment variable JAVA_HOME to point to the root directory of your JDK hierarchy. For example, if the
root directory of your JDK is D:\Java\jdk1.7.0_07, the JAVA_HOME environment variable should point to
this directory. Also make sure that the directory (usually bin) containing the Java compiler (javac) and interpreter
is in your PATH environment variable.

JAVA SERVER PAGES 585

•	 Go to the bin directory under the tomcat installation directory and start Tomcat using the command-line command
startup.bat (in Windows) or startup.sh (in Unix/Linux). If everything goes well, you will see an output in
Windows as shown in Figure 21.1:

Figure 21.1: Starting tomcat server

•	 Tomcat is now running on port 8080 by default. You can test it by using the URL http://127.0.0.1:8080\ .
The page shown in Figure 21.2: appears.

Figure 21.2: Tomcat home page

586 ADVANCED JAVA PROGRAMMING

21.3.2	 Java Web Server
The Java System Web Server by Sun is a leading web server that delivers secure infrastructure

for medium and large business technologies and applications. Sun claims that it delivers 8x better
performance than Apache 2.0 with Tomcat. It is available on all major operating systems and supports
a wide range of technologies such as JSP and Java Servlet technologies, PHP and CGI.

21.3.3	 WebLogic
WebLogic by BEA Systems of San Jose, California, is a J2EE application server and also an

HTTP server for Microsoft Windows, Unix/Linux, and other platforms. WebLogic supports DB2,
Oracle, Microsoft SQL Server, and other JDBC-compliant databases.

The WebLogic server also includes the .NET framework for interoperability and allows integration
of the following native components:

•	 CORBA connectivity
•	 COM+ Connectivity
•	 J2EE Connector Architecture
•	 IBM’s WebSphere MQ connectivity
•	 Native JMS messaging for enterprise

Data Mapping functionality and Business Process Management are also included in WebLogic
Server Process Edition.

21.3.4	 WebSphere
IBM attempted to develop a software to set up, operate, and integrate electronic business

applications that can work across multiple computing platforms, using Java-based web technologies.
The result is WebSphere Application Server (WAS). It includes both the run-time components and
the tools that can be used to develop robust and versatile applications that will run on WAS.

21.4	 HOW JSP WORKS
When a client such as a web browser sends a request to a web server for a JSP file (usually having

an extension jsp) using a URL, the web server identifies the .jsp file extension in the URL and
figures out that the requested resource is a Java Server Page. The web server hands over the request
to a special servlet. This servlet checks whether the servlet corresponding to this JSP page exists or
not. If the servlet does not exist, or exists but it is older than the JSP page, it performs the following:

•	 Translates the JSP source code into an equivalent servlet source code
•	 Compiles the servlet source code to generate a class file
•	 Loads the servlet class file and creates an instance of this servlet

•	 Initializes the servlet instance by calling the jspInit() method

•	 Invokes the _jspService() method, passing request and response objects

If the servlet exists and is not older than the corresponding JSP page requested, it does the
following:

•	 If an instance is already running, it simply forwards the request to this instance.
•	 Otherwise, it loads the class file, creates an instance, initializes it, and forwards the request to this instance.

During development, one of the advantages of JSP pages over servlets is that the build process
is automatically performed by the JSP engine. When a JSP file is requested for the first time, or if it

JAVA SERVER PAGES 587

is changed, the translation and compilation phase occurs. The subsequent requests for the JSP page
directly go to the servlet byte code, which is already in the memory.

21.5	 JSP AND SERVLET
Java servlet technology is an extremely powerful technology. However, when it is used to generate

large, complex HTML code, it becomes a bit cumbersome.
In most servlets, a small piece of code is written to handle application logic and a large code

is written using several out.println() statements that handle output formatting (see Chapter 20).
Since the codes for application logic and formatting are closely tied, it is difficult to separate and
reuse portions of the code when a different logic or output format is required.

JSP separates the static presentation templates from the logic, to generate the dynamic content, by
encapsulating it within external JavaBean components. These components are then instantiated and used
in a JSP page using special tags and scriptlets. When the presentation template is changed by the web
designer, the JSP engine recompiles the JSP page and reloads it in the Java Runtime Environment (JRE).

Another problem of servlets is that each time the servlet code is modified, it needs to be recompiled
and the web server also needs to be restarted. The JSP engine takes care of all these issues automatically.
Whenever a JSP code is modified, the JSP engine identifies it and translates it into a new servlet.
The servlet code is then compiled, loaded, and instantiated automatically. The servlet remains in the
memory and serves requests subsequently without any delay.

JSP uses technologies based on reusable component engineering such as JavaBean component
architecture and Enterprise JavaBean (EJB) technology. So, JSP does not require significant developer
expertise, like Java servlets. Consequently, in the application development life cycle, page designers
can now play a major role. JSP pages can be moved easily across web servers and platforms, without
any significant changes or effort.

For these reasons, web application developers turn towards JSP technology as an alternative to
servlet technology.

21.5.1	 Translation and Compilation
Every JSP page gets converted to a normal servlet behind the scene by the web container

automatically. Figure 21.3: shows one such translation.

<html>
<head><title></title></head>
<body>

<%= new java.util.Date() %>
</body>

</html>

…
public final class date_jsp extends
org.apache.jasper.runtime .HttpJspBase

implements org.apache.jasper.runtime.JspSourceDependent {
…

Translation

date.jsp (a JSP file)

date_jsp.java (a servlet)

Figure 21.3: JSP to servlet translation

588 ADVANCED JAVA PROGRAMMING

Each type of data in a JSP page is processed differently during the translation phase. The translation
and compilation phases may result in errors. These errors (if any) are generated when a user requests
the page for the first time.

The JSP engine returns a ParseException, if an error occurs during the translation phase. In
such a case, the servlet source file will be empty or incomplete. The last incomplete line describes
the cause of error in the JSP page. If an error occurs during the compilation phase, the JSP engine
returns a JasperException and a message that describes the name of the JSP page’s servlet and the
line that caused the error.

Now, let us take a specific example to understand this translation procedure. Consider the following
JSP page. You may not understand the syntax used in this file. We shall discuss it in the rest of this
chapter.

<html>
 <head><title>Square table</title></head>
 <body>
 <table border="1">
 <caption>Temperature Conversion chart</caption>
 <tr><th>Celsius</th><th>Fahrenheit</th></tr>
 <%
 for(int c = 0; c <= 100; c+=20) {
 double f = (c*9)/5.0 + 32;
 out.println("<tr><td>" + c + "</td><td>" + f + "</td></tr>");
 }
 %>
 </table>
 </body>
</html>

This is a simple JSP page that prints temperature conversion (from Celsius to Fahrenheit) chart.
If you open this page in Google chrome, it looks as shown in Figure 21.4:

Figure 21.4: Temperature Conversion Chart

When you request this page for the first time, the JSP engine translates the JSP page into the
following servlet source code (temp_jsp.java created in tomcat_home\work\Catalina\localhost\
net\org\apache\jsp directory).

JAVA SERVER PAGES 589

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class temp_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

 private static final javax.servlet.jsp.JspFactory _jspxFactory =
 javax.servlet.jsp.JspFactory.getDefaultFactory();

 private static java.util.Map<java.lang.String,java.lang.Long> _jspx_dependants;

 private javax.el.ExpressionFactory _el_expressionfactory;
 private org.apache.tomcat.InstanceManager _jsp_instancemanager;

 public java.util.Map<java.lang.String,java.lang.Long> getDependants() {
 return _jspx_dependants;
 }

 public void _jspInit() {
 _el_expressionfactory =
_jspxFactory.getJspApplicationContext(getServletConfig().getServletContext()).g
etExpressionFactory();
 _jsp_instancemanager =
org.apache.jasper.runtime.InstanceManagerFactory.getInstanceManager(getServletC
onfig());
 }

 public void _jspDestroy() {
 }

 public void _jspService(final javax.servlet.http.HttpServletRequest request, final
javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {

 final javax.servlet.jsp.PageContext pageContext;
 javax.servlet.http.HttpSession session = null;
 final javax.servlet.ServletContext application;
 final javax.servlet.ServletConfig config;
 javax.servlet.jsp.JspWriter out = null;
 final java.lang.Object page = this;
 javax.servlet.jsp.JspWriter _jspx_out = null;
 javax.servlet.jsp.PageContext _jspx_page_context = null;

 try {
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 null, true, 8192, true);
 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;

 out.write("<html>\r\n");
 out.write("\t<head><title>Square table</title></head>\r\n");
 out.write("\t<body>\r\n");
 out.write("\t\t<table border=\"1\">\r\n");
 out.write("\t\t\t<caption>Temperature Conversion chart</caption>\r\n");
 out.write("\t\t\t<tr><th>Celsius</th><th>Fahrenheit</th></tr>\r\n");
 out.write("\t\t");

 for(int c = 0; c <= 100; c+=20) {
 double f = (c*9)/5.0 + 32;
 out.println("<tr><td>" + c + "</td><td>" + f + "</td></tr>");
 }

 out.write("\r\n");

590 ADVANCED JAVA PROGRAMMING

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class temp_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

 private static final javax.servlet.jsp.JspFactory _jspxFactory =
 javax.servlet.jsp.JspFactory.getDefaultFactory();

 private static java.util.Map<java.lang.String,java.lang.Long> _jspx_dependants;

 private javax.el.ExpressionFactory _el_expressionfactory;
 private org.apache.tomcat.InstanceManager _jsp_instancemanager;

 public java.util.Map<java.lang.String,java.lang.Long> getDependants() {
 return _jspx_dependants;
 }

 public void _jspInit() {
 _el_expressionfactory =
_jspxFactory.getJspApplicationContext(getServletConfig().getServletContext()).g
etExpressionFactory();
 _jsp_instancemanager =
org.apache.jasper.runtime.InstanceManagerFactory.getInstanceManager(getServletC
onfig());
 }

 public void _jspDestroy() {
 }

 public void _jspService(final javax.servlet.http.HttpServletRequest request, final
javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {

 final javax.servlet.jsp.PageContext pageContext;
 javax.servlet.http.HttpSession session = null;
 final javax.servlet.ServletContext application;
 final javax.servlet.ServletConfig config;
 javax.servlet.jsp.JspWriter out = null;
 final java.lang.Object page = this;
 javax.servlet.jsp.JspWriter _jspx_out = null;
 javax.servlet.jsp.PageContext _jspx_page_context = null;

 try {
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 null, true, 8192, true);
 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;

 out.write("<html>\r\n");
 out.write("\t<head><title>Square table</title></head>\r\n");
 out.write("\t<body>\r\n");
 out.write("\t\t<table border=\"1\">\r\n");
 out.write("\t\t\t<caption>Temperature Conversion chart</caption>\r\n");
 out.write("\t\t\t<tr><th>Celsius</th><th>Fahrenheit</th></tr>\r\n");
 out.write("\t\t");

 for(int c = 0; c <= 100; c+=20) {
 double f = (c*9)/5.0 + 32;
 out.println("<tr><td>" + c + "</td><td>" + f + "</td></tr>");
 }

 out.write("\r\n");
 out.write("\t\t</table>\r\n");
 out.write("\t</body>\r\n");
 out.write("</html>\r\n");
 } catch (java.lang.Throwable t) {
 if (!(t instanceof javax.servlet.jsp.SkipPageException)){
 out = _jspx_out;
 if (out != null && out.getBufferSize() != 0)
 try { out.clearBuffer(); } catch (java.io.IOException e) {}
 if (_jspx_page_context != null)
_jspx_page_context.handlePageException(t);
 else throw new ServletException(t);
 }
 } finally {
 _jspxFactory.releasePageContext(_jspx_page_context);
 }
 }

}

The JSP page’s servlet class extends HttpJspBase, which in turn implements the Servlet
interface. In the generated servlet class, the methods _jspInit(), _jspService(), and _jspDestroy()
correspond to the servlet life cycle methods init(), service(), and destroy(), respectively which
were discussed in Chapter 20. The _jspService() method is responsible for serving client’s requests.
JSP specification prohibits the overriding of the _jspService() method. However, the developers are
allowed to override the _jspInit() and _jspDestroy() methods within their JSP pages, to initialize
and shut down servlets, respectively.

By default, the servlet container dispatches the _jspService() method using a separate thread
to process concurrent client requests, as shown in Figure 21.5:

_jspInit()

_jspService()

_jspDestroy()

request
response

initialization

destroy

JSP page’s servlet

Figure 21.5: Life cycle of JSP’s servlet

The static HTML part is simply printed to the output stream associated with the servlet’s service()
method. The code in <% and %> is copied in the _jspService() method.

21.6	 ANATOMY OF A JSP PAGE
A JSP page basically consists of two parts: HTML/XML markups and JSP constructs. A large

percent of your JSP page, in many cases, just consists of static HTML/XML components, known as
template text. Consequently, we can create and maintain JSP pages using traditional HTML/XML
tools.

JAVA SERVER PAGES 591

We use three primary types of JSP constructs in a typical JSP page: scripting elements, directives,
and actions.

Java code that will become an integral part of the resultant servlet is inserted using scripting
elements. Directives let us control the overall structure and behaviour of the generated servlet.
Actions allow us to use existing components, and otherwise control the behaviour of the JSP engine.

There are three kinds of scripting elements: scriptlets, declarations, and expressions. Scriptlets
allow us to insert any Java-server-relevant API in the HTML or XML page provided that the syntax
is correct. Declarations allow us to declare variable and methods. Expressions are used to print the
value of Java expressions.

21.7	 JSP SYNTAX
The syntax of JSP is almost similar to that of XML. ALL JSP tags must conform to the following

general rules:

•	 Tags must have their matching end tags.
•	 Attributes must appear in the start tag.
•	 Attribute values in the tag must be quoted.

White spaces within the body text of a JSP page are preserved during the translation phase. To
use special characters such as ‘%’, add a ‘\’ character before it. To use the ‘\’ character, add another
‘\’ character before it.

21.8	 JSP COMPONENTS
A JSP page consists of the following components:

•	 Directives
•	 Scripting Elements

°    Declarations

°    Expressions

°    Scriptlets
•	 Actions

Table 21.1 lists some JSP tags and their meanings.

Table 21.1: JSP tags

JSP tag Meaning

<%@...%> Used for JSP directives such as page and include

<%!...%> Used for variables, methods, and inner class declarations

<%=...%> Used for JSP expressions

<%...%> Used for JSP scriptlets that can contain arbitrary Java
statements

21.8.1	 Directives
A JSP page may contain instructions to be used by the JSP container to indicate how this page

is interpreted and executed. Those instructions are called directives. Directives do not generate any
output directly, but tell the JSP engine how to handle the JSP page. They are enclosed within the <%@
and %> tags. The commonly used directives are page, include, and taglib.

592 ADVANCED JAVA PROGRAMMING

21.8.1.1   page directive
The following is the syntax of the page directive:
<%@ page
 [language="java"]
 [extends="package.class"]
 [import="{package.class | package.*}, ..."]
 [session="true | false"]
 [buffer="none | 8kb | sizekb"]
 [autoFlush="true | false"]
 [isThreadSafe="true | false"]
 [info="text"]
 [errorPage="relativeURL"]
 [contentType="MIMEType [;charset=characterSet]" | "text/html ;
charset=ISO-8859-1"]
 [isErrorPage="true | false"]
%>

The page directive has many attributes, which can be specified in any order. Multiple page directives
may also be used, but in this case, except for the import attribute, no attribute should appear more than
once. The code in boldface indicates the default values. Let us discuss the function of some attributes.

import
The value of this attribute is a list of fully qualified names of classes separated by commas (,), to

be imported by the JSP file. To import all the classes of a package, use “.*” at the end of the package
name. The following directive imports all the classes in the java.io and java.reflect packages and
the class Vector that belongs to the java.util package.

<%@ page import=“java.io.*, java.reflect.*, java.util.Vector” %>

The classes can then be referred from declarations, expressions, and scriptlets within the JSP
document, without using the package prefix. You must import a class before using it. You can use
import as many times as you wish in a JSP file. For example, the line of code we have just discussed
can be written as three directives, as follows:

<%@ page import="java.io.*" %>
<%@ page import="java.reflect.*" %>
<%@ page import="java.util.Vector" %>

Those directives are converted to the corresponding import statement in the generated servlet
file. You need not import the classes of the packages java.lang, javax.servlet, javax.servlet.
http, and javax.servlet.jsp, as they are imported implicitly.

session
This attribute indicates whether the JSP file requires an HTTP session. The following syntax is used:
session="true | false”

If true is specified (this is the default value), the JSP file has a session object that refers to the
current or new session. If the value is false, no session object is created. If your JSP file does not
require a session, the value should be set to false for performance consideration.

buffer
Syntax:
buffer="none | sizekb"

The buffer attribute indicates the size in kilobytes (default is 8kb) of the output buffer to be used
by the JSP file. The value none indicates a buffer with zero size. In such a case, the output is written
directly to the output stream of the response object of the servlet.

JAVA SERVER PAGES 593

autoFlush
Syntax:
autoFlush="true | false"

The autoFlush attribute specifies whether the buffer should be flushed automatically (true) when
it is full. If set to false, a buffer overflow exception is thrown when the buffer becomes full. The
default value is true. The value of autoFlush can never be set to false when the buffer is set to none.

isThreadSafe
Syntax:
isThreadSafe="true | false"

This attribute indicates whether the JSP page can handle multiple threads simultaneously. If true
(default value) is specified, the JSP container is allowed to send multiple concurrent client requests to
this JSP page. In this case, we must ensure that the access to shared resources by multiple concurrent
threads is effectively synchronized. If false is specified, the JSP container sends clients requests
one by one using a single thread. This attribute basically provides information to the underlying
servlet on whether it should implement the SingleThreadModel interface or not. Tomcat generates
the following servlet class declaration if false is specified.

public final class ThreadDemo_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent,
 javax.servlet.SingleThreadModel {

In this case, the JSP container loads multiple instances of the servlet in the memory. It then
distributes concurrent client requests evenly among these servlet instances for processing in a round-
robin fashion.

If true is specified, the following code is generated:
public final class ThreadDemo_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

info
Syntax:
info="text"

It allows us to specify a descriptive information about the JSP page. This information can be
retrieved using the Servlet.getServletInfo() method.

contentType
Syntax:
contentType="MIMEType [;charset=characterSet]"

It specifies the MIME type and encoding used in the generated response to be sent to the client.
MIME types and encoding supported by the JSP container can only be specified. The default MIME
type and character encoding are text/html and ISO-8859-1, respectively.

errorPage and isErrorPage
Syntax:
errorPage="relativeURL"
isErrorPage="true | false"

When an uncaught exception occurs in a JSP page, the JSP container sends information explaining
the exception, which is undesirable for some cases such as commercial sites. The errorPage attribute
specifies the relative path name of another JSP page to be displayed, in case an error occurs in the

594 ADVANCED JAVA PROGRAMMING

current page. In the error page, the isErrorPage attribute must be set to true. The error page can
access the implicit exception variable that represents the exception that has occurred as well as
other implicit variables. It can then send some message understandable by the clients, by consulting
those objects.

21.8.1.2   include directive
This directive inserts the content of a file in a JSP page, during the translation phase when the

JSP page is compiled.
Syntax:
<%@ include file="relativeURL" %>

If the file to be included is an HTML or text file, its content is directly included in the place of
the include directive. The following example includes an HTML file header.html in a JSP page.

<%@ include file="header.html" %>

If the included file is a JSP file, it is first translated and then included in the JSP page.
<%@ include file="login.jsp" %>

Make sure that the tags in the included file do not conflict with the tags used in including the JSP
page. For example, if the including JSP page contains tags such as <html> and <body>, the included
file must not contain those tags.

The include process is said to be static as the file is included at compilation time. JSP 1.1 specifies
that once the JSP file is compiled any changes in the included file will not be reflected. However,
some JSP containers, such as tomcat, recompile the JSP page if the included file changes.

21.8.2	 Comments
Comments are used to document the JSP pages and can be inserted anywhere in the JSP page.

The general syntax is as follows:
<%-- JSP comment --%>

Anything between <%-- and --%> is ignored by the JSP engine and is not even added to the
servlet’s source code. Here is an example:

<%-- Prints current date and time --%>

<%= new java.util.Date(); %>

The Java-like comments may also be used in scriptlets and declarations. They are added to the
servlet, but not interpreted and hence are not sent to the client.

<%
//get all cookies

 Cookie[] cookies = request.getCookies();
/*

 Following code checks whether the request contains
 a cookie having name "user"
 */
 String user = null;
 for(int i = 0; i < cookies.length; i++)
 if(cookies[i].getName().equals("user"))
 user = (String)cookies[i].getValue();
 if(user != null) {

//proceed
 }
%>

The HTML comments are enclosed in <!-- and --> and added to the servlet source code as well
as to the response, but browsers do not display them on the screen. Consider the following code:

JAVA SERVER PAGES 595

<!-- This page was generated at server on
<%= (new java.util.Date()) %>
-->

This generates the following HTML comment. This is sent to the client, but not displayed on
the screen.

<!-- This page was generated at server on
Sun Sep 22 04:14:07 PDT 2013
-->

21.8.3	 Expressions
JSP 2.0 specification includes a new feature, Expression. It is used to insert usually a small piece

of data in a JSP page, without using the out.print() or out.write() statements. It is a faster, easier,
and clearer way to display the values of variables/parameters/expressions in a JSP page. The general
syntax of JSP expressions is as follows:

<%= expressions %>

The expression is embedded within the tag pair <%= and %>. Note that no semicolon is used at the
end of the expression. The expression is evaluated, converted to a String and inserted in the place of
the expression using an out.print() statement. For example, if we want to add 3 and 4 and display
the result, we write the JSP expression as follows:

3 + 4 = <%= 3+4 %>

The expression is translated into the following Java statements in servlet source code.
out.write("3 + 4 = ");
out.print(3+4);

If everything works fine, you should see the following output:
3 + 4 = 7

The expression can be anything, as long as it can be converted to a string. For example, the
following expression uses a java.util.Date object.

Date and time is : <%= new java.util.Date() %>

JSP expressions can be used as attribute values as well as tag names of JSP elements. Consider
the following JSP code.

<%
 java.util.Date dt = new java.util.Date();
 String dateStr = dt.toString();
 String time = "currentTime";
%>
<<%= time %> value="<%= dateStr %>" />

This generates the following tag:
<currentTime value="Sun Sep 22 04:12:50 PDT 2013" />

JSP also has an equivalent tag for expression as follows:
<jsp:expression>

expressions
</jsp:expression>

21.8.4	 Scriptlets
You can insert an arbitrary piece of Java code using the JSP scriptlets construct in a JSP page.

This code will be inserted in the servlet’s _jspService() method. Scriptlets are useful if you want
to insert complex code which would otherwise be difficult using expressions. A scriptlet can contain

596 ADVANCED JAVA PROGRAMMING

any number of variables, class declarations, expressions, or other language statements. Scriptlets
have the following form:

<% scriptlets %>

For example, the following scriptlet inserts the current date and time in the JSP page.
<%
 java.util.Date d = new java.util.Date();
 out.println("Date and time is : " + d);
%>

The resultant servlet code looks like this:
…
public final class scriptlet_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {
…
 public void _jspService(final javax.servlet.http.HttpServletRequest request,
final javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {
…

java.util.Date d = new java.util.Date();
 out.println("Date and time is : " + d);
…

This results in the following:
Date and time is : Sun Sep 22 04:15:50 PDT 2013

JSP also has the following XML equivalent for scriptlet:
<jsp:scriptlet>

scriptlets
</jsp:scriptlet>

21.8.4.1   Conditional Processing
Several scriptlets and templates can be merged, to do some designated task. The following

example illustrates this:
<%
int no = (int)(Math.random()*10);
if(no % 2 == 0) {
%>
Even
<% } else { %>
Odd
<% } %>

This code gets converted into something like
int no = (int)(Math.random()*10);
if(no % 2 == 0) {

 out.write("\r\n");
 out.write("Even\r\n");
 } else {
 out.write("\r\n");
 out.write("Odd\r\n");
 }

21.8.5	 Declarations
JSP declarations are used to declare one or more variables, methods, or inner classes, which can

be used later in the JSP page. The syntax is as follows:
<%! declarations %>

JAVA SERVER PAGES 597

Examples are
<%! int sum = 0; %>
<%! int x, y , z; %>
<%! java.util.Hashtable table = new java.util.Hashtable(); %>

These variable declarations are inserted into the body of the servlet class, i.e., outside the _
jspService() method that processes the client requests. So, variables declared in this way become
instance variables of the underlying servlet.

<%! int sum = 0; %>

This is translated in the servlet as follows:
…
public final class scriptlet_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

int sum = 0;
 …
 public void _jspService(final javax.servlet.http.HttpServletRequest request,
final javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {
 …

Note that variables created using scriptlets are local to the _jspService() method. Instance
variables are created and initialized once the servlet is instantiated. This is sometimes useful, but
sometimes not desirable. The following declarations create an instance variable, lastLoaded.

<%! java.util.Date lastLoaded = new java.util.Date();%>
The servlet was last loaded on <%=lastLoaded%>

This generates the following result:
The servlet was last loaded on Sun Sep 22 04:19:12 PDT 2013

Similarly, the following piece of code displays the number of times the JSP page is referred after
the page is loaded.

<%! int count = 0;%>
This page is referred <%= ++count %> times after last modification

Variables generated using declarations are available in scriptlets. A declaration has the scope of
entire translation unit. It is valid in the JSP file as well as in all the files included statically. Declarations
are not valid in dynamically included files.

JSP also has the following XML equivalent for declaration:
<jsp:declaration>

declarations
</jsp:declaration>

21.8.6	 Scope of JSP Objects
In a JSP page, objects may be created using directives, actions, or scriptlets. Every object created in a

JSP page has a scope. The scope of a JSP object is defined as the availability of that object for use from a
particular place of the web application. There are four object scope: page, request, session, and application.

page
Objects having page scope can be accessed only from within the same page where they were

created. JSP implicit objects out, exception, response, pageContext, config, and page have
page scope. We have discussed implicit objects in the next section. JSP objects created using the
<jsp:useBean> tag also have page scope.

request
A request can be served by more than one page. Objects having request scope can be accessed

from any page that serves that request. The implicit object request has the request scope.

598 ADVANCED JAVA PROGRAMMING

session
Objects having session scope are accessible from pages that belong to the same session from

where they were created. The session implicit object has the session scope.

application
JSP objects that have application scope can be accessed from any page that belong to the same

application. An example is application implicit object.

21.8.7	 Implicit Objects
Web container allows us to directly access many useful objects defined in the _jspService()

method of the JSP page’s underlying servlet. These objects are called implicit objects as they are
instantiated automatically. The implicit objects contain information about request, response, session,
configuration, etc. Some implicit objects are described in Table 21.2:

Table 21.2: JSP Implicit Objects

Variable Class Description

out javax.servlet.jsp.JspWriter Output stream of the JSP page’s servlet.

request Subtype of javax.servlet.ServletRequest Current client request being handled by the JSP
page

response Subtype of javax.servlet.ServletResponse Response generated by the JSP page to be
returned to the client

config javax.servlet.ServletConfig Initialization information of the JSP page’s servlet

session javax.servlet.http.HttpSession Session object for the client

application javax.servlet.ServletContext Context of the JSP page’s servlet and other web
components contained in the same application.

exception java.lang.Throwable Represents error. Accessible only from an error
page

page java.lang.Object Refers to JSP page’s servlet processing the
current request

pageContext javax.servlet.jsp.PageContext The context of the JSP page that provides APIs
to manage the various scoped attributes. It is
extensively used by the tag handlers.

request
This object refers to the javax.servlet.http.HttpServletRequest type object that is passed

to the _jspService() method of the generated servlet. It represents the HTTP request made by a
client to this JSP page. It is used to retrieve information sent by the client such as parameters (using
the getParameter() method), HTTP request type (GET, POST, HEAD, etc), and HTTP request headers
(cookies, referrer, etc). This implicit object has request scope.

<%
 String name = request.getParameter("name");
 out.println("Hello " + name);
%>

For the URL http://127.0.0.1:8080/net/getParameterDemo.jsp?name=Monali, it displays
the following:

Hello Monali

JAVA SERVER PAGES 599

A JSP page can retrieve parameters sent through an HTML form. Consider the following form:
<form method='post' action='jsp/add.jsp'>
<input type='text' name='a' size='4'>+
<input type='text' name='b' size='4'>
<input type='submit' value='Add'>
</form>

Here is the code for the add.jsp file.
<%
 int a = Integer.parseInt(request.getParameter("a"));
 int b = Integer.parseInt(request.getParameter("b"));
 out.println(a + " + " + b + " = " + (a + b));
%>

The result is shown in Figure 21.6:

Figure 21.6: Retrieving form data from JSP page

response
This object refers to the javax.servlet.http.HttpServletResponse type object that is passed

to the _jspService() method of the generated servlet. It represents the HTTP response to the client.
This object is used to send information such as HTTP response header and cookies. This implicit
object has page scope.

pageContext
This javax.servlet.jsp.PageContext type object refers to the current JSP page context. It is

used to access information related to this page such as request, response, session, application, and
underlying servlet configuration. This implicit object has page scope.

session
This javax.servlet.http.HttpSession type object refers to the session (if any) used by the JSP

page. Note that no session object is created if the session attribute of the page directive is turned off
and any attempt to refer to this object causes an error. It is used to access session-related information
such as creation time and ID associated to this session. This implicit object has session scope.

application
This javax.servlet.ServletContext object refers to the underlying application and is used to

share data among all pages under this application. This implicit object has application scope.

out
It denotes the character output stream that is used to send data back to the client. It is a buffered

version of java.io.PrintWriter called javax.servlet.jsp.JspWriter type object. The object out
is used only in scriptlets. This implicit object has page scope.

<% out.println(“Hello World!”); %>

JSP expressions are placed in the output stream automatically and hence we do not use this out
object there explicitly.

600 ADVANCED JAVA PROGRAMMING

config
This javax.servlet.ServletConfig type object refers to the configuration of the underlying

servlet. It is used to retrieve initial parameters, servlet name, etc. This implicit object has
page scope.

page
This object refers to the JSP page itself. It can be used to call any instance of the JSP page’s

servlet. This implicit object has page scope.

exception
This represents an uncaught exception, which causes an error page to be called. This object is

available in the JSP page for which the isErrorPage attribute of the page directive is set to true.
This implicit object has page scope.

21.8.8	 Variables, Methods, and Classes
Variables, methods, and classes can be declared in a JSP page. If they are declared in the declaration

section, they become part of the underlying servlet class. For example, variables declared in the
declaration section become instance variables and are accessible from any method of the JSP page’s
servlet class.

Consider the following variable declaration:
<%! double PI = 22/7.0; %>

The resultant servlet code will look like this:
…
public final class method_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {
double PI = 22/7.0;
…

These variables are also shared among multiple threads. Classes and methods can be declared in
a similar way as follows:

<%!
int add(int a, int b) {
 return a + b;
}
class AnInnerClass {
}
%>

The resultant servlet source code will look like this:
…
public final class method_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {
int add(int a, int b) {
 return a + b;
}
class AnInnerClass {
}
…

Variables, methods, and classes declared in the declaration section are available in scriptlets. So,
the following scriptlet is valid for this declaration.

<%out.println(add(2, 3));%>

It displays the following:
5

JAVA SERVER PAGES 601

JSP allows us to declare variables and classes, but not methods, in the scriptlet section. Variables
declared in the scriptlet section are local to the _jspService() method. They are created each time
the client makes a request and destroyed after the request is over. Similarly, classes declared in the
scriptlet section become inner classes of the _jspService() method. Consider the following code:

<%
double temp = 0;
class TempClass {
}
%>

The resultant servlet code looks like this:
…
public final class method_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {
…
 public void _jspService(final javax.servlet.http.HttpServletRequest request,
final javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {
…
double temp = 0;
class TempClass {
}

21.8.8.1   Synchronization
Note that variables declared in the declaration section become instance variables. Instance variables

become shared automatically among all request handling threads. You must handle synchronization
issue to access these variables. Consider the following piece of code:

<%!int n = 1;%>
<%
for (int i = 0; i < 5; i++) {
 out.println("Next integer: " + n++ + "
");
 Thread.sleep(500);
}
%>

The code is intended to print five consecutive integers. Each time this JSP page is invoked, it
increments the instance variable n five times and displays the value. The code segment works fine if
only one request is dispatched to this JSP page at a time. However, if two or more requests are sent
to this JSP page, the result is not displayed correctly. To demonstrate this and to allow collision, a
delay is given between two consecutive out.println(). A sample output is shown in Figure 21.7: ,
if two requests are sent simultaneously.

Figure 21.7: Accessing JSP page without synchronization

602 ADVANCED JAVA PROGRAMMING

One of the solutions of this problem is to make the for loop atomic so that only one request can
access it at a time.

<%!
 int n = 1;

Object o = new Object();
%>
<%
synchronized(o) {
 for (int i = 0; i < 5; i++) {
 out.println("Next integer: " + n++ + "
");
 Thread.sleep(500);
 }
}
%>

Another way to solve this problem is to inform the JSP container that this page is not thread-safe,
so that the container dispatches requests one by one.

<%@ page isThreadSafe="false" %>
<%!int n = 1; %>
<%
for (int i = 0; i < 5; i++) {
 out.println("Next integer: " + n++ + "
");
 Thread.sleep(500);
}
%>

In either case, the result will be correct.

21.8.9	 Standard Actions
The JSP engine provides many built-in sophisticated functions to the programmers for easy

development of the web applications. These functions include instantiating objects in a JSP page,
communicating with other JSP pages and servlets, etc. JSP actions are nothing but XML tags that
can be used in a JSP page to use these functions.

Note that the same thing can be achieved by writing Java code within scriptlets. However, JSP
action tags are convenient ways to use those functions. They also promote component framework as
well as application maintainability. The following section describes the commonly used JSP action tags.

include
This action tag provides an alternative way to include a file in a JSP page. The general syntax of

the include action tag is
<jsp:include page="relativeURL | <%=expression%>" flush="true" />

For example, the following code includes the file header.jsp in the current page:
<jsp:include page="header.jsp" />

It is similar to the include directive but instead of inserting the text of the included file in the
original file at compilation time, it actually includes the target at run-time. It acts like a subroutine
where the control is passed temporarily to the target. The control is then returned to the original
JSP page. The result of the included file is inserted in the place of <jsp:include> action in the
original JSP page. Needless to say, the included file should be a JSP file, servlet, or any other
dynamic program that can process the parameters. The optional attribute flush can only take the
value true.

Let us illustrate with an example. Suppose the content of date.jsp is as follows:
Date and time: <%= new java.util.Date() %>

JAVA SERVER PAGES 603

Now, consider the file include.jsp, which has included the date.jsp file using the <jsp:include>
action tag as follows:

Before

<jsp:include page="date.jsp" />

After

This generates the following result:
Before
Date and time: Wed Dec 02 19:56:54 IST 2009
After

In jspService() method, the following code is inserted:
public void _jspService(final javax.servlet.http.HttpServletRequest request,
final javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException, javax.servlet.ServletException {
…
 out.write("Before
\r\n");
 org.apache.jasper.runtime.JspRuntimeLibrary.include(request, response,
"date.jsp", out, false);
 out.write("\r\n");
 out.write("
After");
…

The value of the page attribute may be a dynamically generated file name. The following example
illustrates this:

<%
String fileName = "sortByName.jsp";
String criteria = request.getParameter("sortCriteria");
if(criteria != null) fileName = criteria + ".jsp";
%>
<jsp:include page="<%=fileName%>" />

So, if the include.jsp page is invoked using the URL http://127.0.0.1:8080/net/include.
jsp?sortCriteria=sortByRoll, the include action effectively becomes:

<jsp:include page="sortByRoll.jsp" />

Note that the file sortByRoll.jsp must exist. Otherwise, an exception will be thrown. If the
include.jsp page is invoked using the URL http://127.0.0.1:8080/net/include.jsp, the include
action effectively becomes

<jsp:include page="sortByName.jsp" />

param
The JSP <jsp:param> action allows us to append additional parameters to the current request.

The general syntax is as follows:
<jsp:param name="parameterName" value="parameterValue | <%=expression%>" />

The name and value attributes of the <jsp:param> tag specify the case sensitive name and value
of the parameter, respectively.

It is typically used with the <jsp:include> and <jsp:forward> action tags. For example, the
following code passes the control to the JSP page process.jsp temporarily, with two additional
parameters, user and sessionId.

<jsp:include page="process.jsp">
 <jsp:param name="user" value="monali" />
 <jsp:param name="sessionId" value="12D43F3Q436N43" />
</jsp:include>

The value of the value attribute may be a dynamic value, but the value of the name attribute must
be static. The following example illustrates this:

604 ADVANCED JAVA PROGRAMMING

<% String user = request.getParameter("user"); %>
<jsp:include page="process.jsp">
 <jsp:param name="user" value="<%=user%>" />
 <jsp:param name="sessionId" value="<%=System.currentTimeMillis()%>" />
</jsp:include>

forward
This action tag hands over the current request to the specified page internally at the server side.

If the current page has already generated any output, it is suppressed. The output will only be caused
by the page that has handled the request last in the forward chain. The control is never returned to
the original page. The general syntax of the JSP forward action tag is

<jsp:forward page="relativeURL | <%=expression%>" />

Consider the forward.jsp file, which forwards the current request to the date.jsp file using the
<jsp:forward> action as follows:

Before

<jsp:forward page="date.jsp" />

After

This transfers the control to the date.jsp page. The result the file forward.jsp has generated
so far (Before
 in our case) is cleared. The output is due to the page date.jsp only, as follows.

Date and time: Sun Sep 22 09:31:15 PDT 2013

Like the <jsp:include> action tag, the value of the page attribute of <jsp:forward> may be a
dynamic file name. The following example illustrates this:

<% String mailbox = request.getParameter("mailbox") + ".jsp";%>
<jsp:forward page="<%=fileName%>" />

Additional parameters may be specified using the <jsp:param> action as follows:
<%
 String mailbox = request.getParameter("mailbox") + ".jsp";
 String user = request.getParameter("user");
%>
<jsp:forward page="<%=fileName%>" >
 <jsp:param name="user" value="<%=user%>" />
<jsp:forward>

plugin
The <jsp:plugin> action is used to generate an HTML file that can download the Java plug-in

on demand and execute applets or JavaBeans. It is an alternative way to deploy applets through Java
plug-in. Since JSP pages are dynamic in nature, the developers of web applications can make use
of Java plug-in to generate browser-specific tags to insert applets on the fly in a much easier and
flexible way.

The <jsp:plugin> action generates the embed or object tag for the applet to be executed,
depending upon the browser used. When the JSP is translated, the <jsp:plugin> action element
is substituted by either an <embed> or an <object> HTML tag. The following code specifies
an applet.

<jsp:plugin type="applet" code="Message" >
<jsp:params>
 <jsp:param name="message" value="Hello World!"/>
</jsp:params>
<jsp:fallback>
 <p> Unable to start Plug-in. </p>
</jsp:fallback>
</jsp:plugin>

JAVA SERVER PAGES 605

The type attribute of the <jsp:plugin> tag specifies the type (bean or applet) of plug-in to be
used and the code attribute specifies the name of the file (without extension) containing the byte code
for this plug-in. In the above example, the <jsp:plugin> action inserts an applet whose code can be
found in the class file Message.class.

The <jsp:plugin> action tag has a similar set of attributes as the <applet> tag. The <jsp:params>
and <jsp:param> actions are used to pass parameters to the plug-in. The <jsp:fallback> tag specifies
the message to be displayed if the Java plug-in fails to start due to some unavoidable reason.

Here is the source code for the Message applet (Message.java).
public class Message extends java.applet.Applet {
 String msg;
 public void init() {
 msg = getParameter("message");
 }
 public void paint(java.awt.Graphics g) {
 g.drawString(msg, 20, 20);
 }
}

This applet takes a single parameter message and displays its value at location (20, 20) on the
browser’s screen, relative to the applet window.

As mentioned earlier, the web server generates either an <embed> or an <object> tag, depending
upon the browser that requested the JSP page. For example, the following code is generated if Tomcat
8.0 is used as the web server and Internet Explorer 8.0 makes the request.

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-
win.cab#Version=1,2,2,0">
<param name="java_code" value="Message">
<param name="type" value="application/x-java-applet">
<param name="message" value="Hello World!">
<comment>
<EMBED type="application/x-java-applet"
pluginspage="http://java.sun.com/products/plugin/"java_code="Message"
message="Hello World!"/>
<noembed>

 <p> Unable to start Plug-in. </p>

</noembed>
</comment>
</object>

Though JSP specification includes the <jsp:plugin> action tag, different vendors may implement
it differently. For detailed information, read the documentation of the web server.

useBean
It is used to instantiate a JavaBean object for later use. We shall discuss this action in Section

23.9.1 in detail.

setProperty
It is used to set a specified property of a JavaBean object. A detailed description of this action

may be found in Section 23.9.2.

getProperty
It is used to get a specified property from a JavaBean object. This action has been discussed in

Section 23.9.3 in detail.

606 ADVANCED JAVA PROGRAMMING

21.8.10	 Tag Extensions
One significant feature added in the JSP 1.1 specification is tag extension. It allows us to define

and use custom tags in a JSP page exactly like other HTML/XML tags, using Java code. The JSP
engine interprets them and invokes their functionality. So, Java programmers can provide application
functionality in terms of custom tags, while web designers can use them as building blocks without
any knowledge of Java programming. This way, JSP tag extensions provide a higher-level application-
specific approach to the authors of HTML pages.

Though a similar functionality can be achieved using JavaBean technology, it lacks many features
such as nesting, iteration, and cooperative actions. JSP tag extension allows us to express complex
functionalities in a simple and convenient way.

21.8.10.1   Tag Type
JSP specification defines the following tags, which we can create and use in a JSP file.

Simple Tags
Tags with no body or no attribute. Example:
<ukr:copyright>

Tags with Attributes
Tags that have attributes but no body. Example:
<ukr:hello name="Monali" />

Tags with Body
Tags that can contain other tags, scripting elements, and text between the start and end tags. Example:
<ukr:hello>
 <%= name%>
</ukr:hello>

Tags Defining Scripting Variables
Tags that can define scripting variables, which can be used in the scripts within the page. Example:
<ukr:animation id="logo" />
<% logo.start(); %>

Cooperating Tags
Tags that cooperate with each other by means of named shared objects. Example:
<ukr:tag1 id="obj1" />
<ukr:tag2 name="obj1" />

In this example, tag1 creates a named object called obj1, which is later used by tag2.

21.8.10.2   Writing Tags
In this section, we shall discuss how to define and use simple tags. The design and use of a custom

tag has the following basic steps:

•	 Tag Definition
•	 Provide Tag Handler
•	 Deploy the tag
•	 Use the tag in the JSP file

JAVA SERVER PAGES 607

Tag Definition
Before writing the functionality of a tag, you need to consider the following points:

•	 Tag Name—The name (and prefix) that will be used for the tag we are going to write
•	 Attributes—Whether the tag has any attribute and whether it is mandatory
•	 Nesting—Whether the tag contains any other child tag. A tag directly enclosing another tag is called the parent

of the tag it encloses
•	 Body Content—Whether the tag contains anything (such as text) other than child tags

Provide Tag Handler
The functionality of a tag is implemented using a Java class called tag handler. Every tag

handler must be created by directly or indirectly implementing the javax.servlet.jsp.tagext.
Tag interface, which provides the framework of the JSP tag extension. In this section, we shall
develop a simple tag named <ukr:hello>, which has a single optional attribute, name. The
<ukr:hello> tag prints “Hello <name>“ or “Hello World!” depending upon whether the attribute
name is specified or not.

Note that the tag <ukr:hello> does not do much. It helps us understand the basic steps that we
must follow to write a custom tag. In practice, custom tags will do complex tasks, but the procedure
for developing such tags is exactly the same as the <ukr:hello> tag. After creating the <ukr:hello>
tag, it is used in either of the following ways:

<ukr:hello name="Monali" />

This prints “Hello Monali”.
<ukr:hello />

This prints “Hello World!”. Here is the complete source code for the hello tag handler (HelloTag.
java).

package tag;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import java.io.IOException;
public class HelloTag extends SimpleTagSupport {
 String name = "World!" ;
 public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 out.println("Hello " + name);
 }
 public void setName(String name) {
 this.name = name;
 }
}

Though each tag handler must implement the javax.servlet.jsp.tagext.Tag interface, it is
convenient to use one of the default implementations, the TagSupport or SimpleTagSuport class.
Our tag is one without any body and hence we have used the SimpleTagSupport class. Each tag
handler must define some predefined methods [Table 21.3:] that are called by the JSP engine. For
example, the JSP engine calls the doStartTag() and doEndTag() methods when the start tag and the
end tag, respectively, are encountered. The class SimpleTagSupport implements most of the work of
a tag handler. The implementation of our class is simple, as it extends the SimpleTagSupport class.
We have only implemented the doTag() method, which is called when the JSP engine encounters
the start tag.

608 ADVANCED JAVA PROGRAMMING

Table 21.3: Tag Handler Methods

Tag Handler Type Methods

Simple doStartTag, doEndTag, release

Attributes doStartTag, doEndTag, set/getAttribute1...N

Body, No Interaction doStartTag, doEndTag, release

Body, Interaction doStartTag, doEndTag, release, doInitBody, doAfterBody

The hello tag has one attribute, name, whose value the handler must access. The JSP engine sets
the value of an attribute xxx using the method setXxx() of the handler. This setXxx() method is
invoked after the start tag, but before the body of the tag. So, we have inserted one method setName(),
which will be used by the JSP engine to pass the value of the attribute name. Inside the handler, we
have stored this value in a variable name. If a tag has multiple attributes, the corresponding tag handler
must have separate set functions, one for each of these attributes.

Finally, we write the string “Hello” appended with the value of the name attribute to the servlet
output stream. A reference to this output stream is obtained using the getOut() method on javax.
servlet.jsp.JspContext, which is returned by the getJspContext() method.

Deploy the Tag
Save this code in file HelloTag.java and put it in the application’s /WEB-INF/classes/tag

directory. To compile this file, we need the necessary tag classes that are provided as the jar file jsp-
api.jar. This jar file can be found in the lib directory of Tomcat’s installation directory. Make sure
that this jar file is in your classpath during compilation. You can use the following command in the
/WEB-INF/classes/tag directory to compile the HelloTag.java file.

javac -classpath ../../../../../lib/jsp-api.jar HelloTag.java

This will generate the HelloTag.class file in the /WEB-INF/classes/tag directory. If everything
goes fine, restart the web server. The tag class is now ready to use.

Now, we have to map the tag hello with this tag handler class, HelloTag. This is done in an XML
file called Tag Library Descriptor (TLD). A TLD contains information about a tag library as well as
each tag contained in the library. The JSP engine uses TLDs to validate tags used in the JSP pages. The
Tag Library Descriptor is an XML document conforming to a DTD specified by Sun Microsystems.

We shall name our tag library file as tags.tld and put it in the application’s /taglib directory.
For example, if the application’s root directory is net, put the tags.tld file in the /net/taglib
directory. Make the following entry in the tags.tld file.

<?xml version="1.0"?>
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>Simple tag library</short-name>
 <tag>
 <description>Prints Hello 'name'</description>
 <name>hello</name>
 <tag-class>tag.HelloTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

JAVA SERVER PAGES 609

Each <tag> element in the TLD file describes a tag. The <name> element specifies the name of
the tag that will be used in the JSP file. The <tag-class> element associates the handler class with
this tag name. In this case, the tag.HelloTag class is the handler of the tag hello. Each <attribute>
element specifies the attribute that can be used for this tag. Our tag can have only one attribute, name.
The <required> element specifies whether the attribute is mandatory (true) or optional (false).
A tag without a body must specify that its body-content is empty.

Use the Tag in the JSP File
The tag hello is now ready to use. Use the following entry in the JSP page tag.jsp and put it

in the applications root directory, i.e., /net in our case.
<%@ taglib prefix="ukr" uri="/taglib/tags.tld" %>
<ukr:hello name="Monali"/>

The taglib directive includes a tag library whose tags will be used by the JSP page. It must
appear before using any custom tags it refers to. The uri attribute specifies a URI that uniquely
identifies the TLD. The prefix attribute specifies the prefix to be used for every tag defined in
this TLD. The prefix distinguishes tags in one library from those in others, if they contain tags
with the same name. Now, write the following URL in the address bar of your web browser and
press enter.

http://127.0.0.1:8080/net/tag.jsp

It displays
Hello Monali

For the following code
<%@ taglib prefix="ukr" uri="/taglib/tags.tld" %>
<ukr:hello />

The code
Hello World!

<%@ taglib prefix="ukr" uri="/taglib/tags.tld" %>
<%!String name="Kutu"; %>
<ukr:hello name="<%=name%>"/>

displays
Hello Kutu

21.8.11	 Iterating a Tag Body
Sometimes, it is necessary to iterate a specific code several times. For example, suppose we

want to generate a table containing integers and their factorial value. We can write scripts to do
this, as follows:

<%
for(int i = 2; i <= 6; i++) {
%>
<%=i%>!=<ukr:fact no="<%=i%>" />

<%
}
%>

We have assumed that there exists a tag handler for <ukr:fact> as follows:
package tag;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import javax.servlet.jsp.JspException;
import java.io.IOException;
import javax.servlet.jsp.JspWriter;
public class FactTag extends SimpleTagSupport {
 int no;
 public void doTag() throws JspException, IOException {
 int prod = 1;
 for(int j = 1;j <= no; j++)
 prod *= j;
 JspWriter out = getJspContext().getOut();
 out.println(prod);
 }
 public void setNo(int no) {
 this.no = no;
 }
}

610 ADVANCED JAVA PROGRAMMING

package tag;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import javax.servlet.jsp.JspException;
import java.io.IOException;
import javax.servlet.jsp.JspWriter;
public class FactTag extends SimpleTagSupport {
 int no;
 public void doTag() throws JspException, IOException {
 int prod = 1;
 for(int j = 1;j <= no; j++)
 prod *= j;
 JspWriter out = getJspContext().getOut();
 out.println(prod);
 }
 public void setNo(int no) {
 this.no = no;
 }
}

It would be better, if the same table uses the following code:
<ukr:FactTable start="2" end="6">
 ${count}! = ${fact}

</ukr:FactTable>

We can reduce the amount of code in the scripting element by moving the flow of control to the
tag handlers. The basic idea is to write a tag called iteration tags that iterates its body.

The iteration tag retrieves two parameters start and end. It calculates the factorial of each number
between these two numbers (both inclusive) and assigns them to a scripting variable. The body of
the tag retrieves the numbers and their factorials from scripting variables. Here is the handler for
the iteration tag.

package tag;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import javax.servlet.jsp.JspException;
import java.io.IOException;
public class FactorialTag extends SimpleTagSupport {
 int start, end;
 public void doTag() throws JspException, IOException {
 for(int i = start; i <= end; i++) {
 int prod = 1;
 for(int j = 1; j <= i; j++)
 prod *= j;
 getJspContext().setAttribute("count", String.valueOf(i));
 getJspContext().setAttribute("fact", String.valueOf(prod));
 getJspBody().invoke(null);
 }
 }
 public void setStart(int start) {
 this.start = start;
 }
 public void setEnd(int end) {
 this.end = end;
 }
}

This handler, in each iteration, stores the value of the integer and its factorial in the count and
fact variable, respectively, using the following code.

getJspContext().setAttribute("count", String.valueOf(i));
getJspContext().setAttribute("fact", String.valueOf(prod));

The body of the tag is iterated as follows:
getJspBody().invoke(null);

Now, make the following entry in the tags.tld file.

JAVA SERVER PAGES 611

<?xml version="1.0"?>
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>Simple tag library</short-name>
 <tag>
 <description>Calculates factorial from 'start' to 'end'</description>
 <name>FactTable</name>
 <tag-class>tag.FactorialTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>start</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>end</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

Obtaining the factorial tables is now very simple. Consider the following code.
<%@ taglib prefix="ukr" uri="/taglib/tags.tld" %>
Factorial table

<ukr:FactTable start="2" end="6">
 ${count}! = ${fact}

</ukr:FactTable>

In the body of the tag, the values of the count and fact variables are retrieved using expression
language. Note that the JSP page does not contain a single piece of script. It is displayed as
follows:

Factorial table
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720

21.8.12	 Sharing Data Between JSP Pages
All JSP pages participate in an HTTP session unless the session attribute of the page directive

is set to false. An HTTP session is represented by the implicit object session. This session object
has session scope and is thus shared among all the pages within the session.

This session object can be used as a shared repository of information such as beans and objects
among JSP pages of the same session. For example, login.jsp page may store the user name
in the session, while subsequent pages such as home.jsp can use it. Consider the code segment
in login.jsp:

login.jsp:
String user = request.getParameter("user");
session.setAttribute("user", user);

Now, see the code segment in home.jsp.
String user = (String)session.getAttribute("user");

612 ADVANCED JAVA PROGRAMMING

21.9	 BEANS
JavaBeans are reusable Java components that allow us to separate business logic from presentation

logic. Technically, a JavaBean class is a Java class that meets the following requirements:

•	 It has a public, no argument constructor.

•	 It implements the java.io.Serializable or java.io.Externalizable interface.
•	 Its properties are accessible using methods that are written following a standard naming convention.

With this simple definition, properly designed beans can be used virtually in all Java environments
such as JSP, servlet, applet, or even in Java applications. Note that most of the existing classes are
either already bean classes or they can be converted to bean classes very easily.

The methods of a bean must follow a naming convention. If the name of a bean property is xxx,
the associate reader and writer method must have the name getXxx() and setXxx(), respectively.
The following is a sample class declaration for JavaBean Factorial:

package bean;
public class Factorial implements java.io.Serializable {
 int n;
 public int getValue() {
 int prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 return prod;
 }
 public void setValue(int v) {
 n = v;
 }
}

Since no constructor is defined explicitly in this class, a zero argument constructor is inserted in
the Factorial class. The Factorial bean class has one property, value. So, the name of the reader
method is getValue(). Similarly, the name of the writer method is setValue(). The name of the
member variable need not be value; it is the property that we want to manipulate on a Factorial bean.

Save this code in the file Factorial.java and store it in the application’s /WEB-INF/classes/
bean directory. Compile the class exactly like other Java classes. Use the following command in the
/WEB-INF/classes/bean directory.

javac Factorial.java

This generates a class file, Factorial.class. If everything goes fine, restart the tomcat web server.
Tomcat loads all the class files under /classes directory and adds its subdirectories to the CLASSPATH
of the Java Runtime Environment (JRE). Those class files can now be used exactly like other Java classes.

There are three action elements that are used to work with beans.

21.9.1	 useBean
A JSP action element <jsp:useBean> instantiates a JavaBean object into the JSP page. The

syntax is
<jsp:useBean id="object_name" class="class_name" scope="page | request |
session |application"/>

Here, the id attribute refers to the name of the object to be created and the attribute class specifies
the name of the JavaBean class from which the object will be instantiated. The attribute scope specifies
the area of visibility of the loaded bean. The effect of the <jsp:useBean> element is equivalent to
instantiating an object as follows:

JAVA SERVER PAGES 613

<% class_name object_name = new class_name(); %>

For example, to instantiate a Factorial bean in a JSP page, the following action is used:
<jsp:useBean id="fact" scope="page" class="bean.Factorial" />

This is equivalent to the following scriptlet:
<% bean.Factorial fact = new bean.Factorial(); %>

Once a bean object is loaded into a JSP page, we can use two other action elements to manipulate it.

21.9.2	 setProperty
The <jsp:setProperty> action tag assigns a new value to the specified property of the specified

bean object. It takes the following form:
<jsp:setProperty name="obj_name" property="prop_name" value="prop_value"/>

The object name, property name, and its value are specified by the name, property, and value
attributes, respectively. This is equivalent to calling the setProp_name() method on the specified
object obj_name as follows:

<% obj_name.setProp_name(prop_value); %>

To set a property of our bean object fact, we use the following:
<jsp:setProperty name="fact" property="value" value="5" />

The equivalent scriptlet is as follows:
<% fact.setValue(5); %>

21.9.3	 getProperty
The <jsp:getProperty> action element retrieves the value of the specified property of the specified

bean object. The value is converted to a string. It takes the following form:
<jsp:getProperty name="obj_name" property="prop_name"/>

The object name and its property name are specified by the name and property attributes, respectively.
This is equivalent to calling the getProp_name() method on the specified object obj_name as follows:

<%= obj_name.getProp_name() %>

To get the value of the property value of our fact bean object, we use the following:
<jsp:getProperty name="fact" property="value" />

The equivalent scriptlet is as follows:
<%= fact.getValue() %>

21.9.4	 Complete Example
The following is a complete JSP page:
<table border="1">
 <caption>Factorial table</caption>
 <tr><th width="50">n</th><th width="100">n!</th></tr>

<jsp:useBean id="fact" scope="page" class="bean.Factorial" />
 <%
 for(int i = 2; i < 6; i++) {
 %>

<jsp:setProperty name="fact" property="value" value="<%=i%>" />
<tr><td><%=i%></td><td><jsp:getProperty name="fact" property="value" />
</td></tr>

 <%
 }
 %>
</table>

614 ADVANCED JAVA PROGRAMMING

It generates the output shown in Figure 21.8:

Figure 21.8: Using Beans in JSP

21.9.5	 Other Usage
Once a bean object is loaded into the page, it can be used exactly like other objects in scripting

elements in the same JSP page. Consider the following code:
<jsp:useBean id="fact" scope="page" class="bean.Factorial" />

This is equivalent to the following instantiation:
<% bean.Factorial fact = new bean.Factorial(); %>

Now, the bean object can be accessed using its name, as follows:
<%fact.setValue(6);%>
<%=fact.getValue()%>

This displays the following output:
720

21.10	 SESSION TRACKING
Since HTTP is a stateless protocol, the web server cannot remember previous requests.

Consequently, the web server cannot relate the current request with the previous one. This creates a
problem for some applications that require a sequence of related request–response cycles. Examples
include online examination systems, email checking systems, and banking applications. How does
the server know how many questions you have answered so far or when you started the examination?

We shall use a simple application to demonstrate session tracking using different methods. In this
application, the server initially dynamically generates an HTML file to display the integer 0, with
two buttons captioned “prev” and “next”. If the user clicks on the next button, the server sends the
integer next to the one displayed. Similarly, when prev button is clicked, the server sends the integer
previous to the one displayed.

Note that each time the server receives a request, it has to remember the number it sent in the
previous step. Let us now discuss the different methods used for session tracking.

21.10.1	 Hidden fields
An HTML hidden field is created using the <input> tag, with the type attribute hidden. For

example, the following creates a hidden field.

JAVA SERVER PAGES 615

<input type="hidden" name="user" value="monali" >

The interesting part about hidden fields is that web browsers do not display them, but send the
name–value pair of each hidden field exactly like other input elements when the enclosing form is
submitted. So, hidden fields may be used to send information back and forth between server and
client to track sessions, without affecting the display. Hidden fields are ideal for applications that do
not require a great deal of information.

Let us now implement the application mentioned, using hidden fields.
<%@page import="java.util.*"%>
<html>
 <head><title>Hidden field demo</title></head>
 <body>
 <%
 int current = 0;
 String last = request.getParameter("int");
 String button = request.getParameter("button");
 if(button != null) {
 if(button.equals("next"))
 current = Integer.parseInt(last) + 1;
 else
 current = Integer.parseInt(last) - 1;
 }
 out.println(current);
 %>

 <form name="myForm" method="post">
 <input type="hidden" name="int" value="<%=current%>">
 <input type="submit" name="button" value="prev">
 <input type="submit" name="button" value="next">
 </form>

 </body>
</html>

In this method, the JSP page uses a single hidden field in the generated HTML file named “int”.
The value of this hidden field is the integer being sent currently. The hidden field, together with the
two submit buttons captioned “prev” and “next”, are put in a form. So, the web browser receives an
HTML file like this:

<html>
 <head><title>Hidden field demo</title></head>
 <body>

 0

 <form name="myForm" method="post">
 <input type="hidden" name="int" value="0">
 <input type="submit" name="button" value="prev">
 <input type="submit" name="button" value="next">
 </form>
 </body>
</html>

The HTTP POST method is used in the form and no action attribute is specified. When the user
clicks any of the two submit buttons, the value of this hidden field (which is the integer currently
displayed) is sent to the same JSP page behind the scene. The JSP page extracts this value and
understands that this value was sent in response to the previous request. This way, the hidden field
helps the JSP page to remember information sent earlier. It also determines the button whose click
event generates this request. The JSP page can then easily calculate the value to be sent next, depending
on the button clicked.

616 ADVANCED JAVA PROGRAMMING

The advantage of this method is that it does not require any special support from the client’s side.
Hidden fields are supported by all browsers and the underlying information propagation is absolutely
transparent to the user.

Note that users can view the source code of the HTML page and consequently see the value of
the hidden field. So, the JSP page should not pass sensitive information such as passwords in the
hidden field.

21.10.2	 URL Rewriting
This is another simple but elegant method to track sessions and is widely used. It does not require

any special support from the web browser. Remember that HTTP allows us to pass information using
HTTP URL. This method makes use of that concept. The session information is appended to the
URL. Here is the solution using URL rewriting.

<%@page import="java.util.*"%>
<html>
 <head><title>URL rewriting demo</title></head>
 <body>
 <%
 int last = 0;
 String param = request.getParameter("int");
 if(param != null) last = Integer.parseInt(param);
 out.println(last);
 %>

 <a href="intUrl.jsp?int=<%=last-1%>">prev
 <a href="intUrl.jsp?int=<%=last+1%>">next
 </body>
</html>

In this case, the JSP page generates and sets the URL to be called for the hyperlinks “prev” and
“next”. For example, the web gets this HTML page for the first time:

<html>
 <head><title>URL rewriting demo</title></head>
 <body>

0

prev
next
 </body>
</html>

When a user clicks on the “prev” hyperlink, the integer that should be sent by the JSP page for
this request is appended to the URL. The JSP page simply extracts this information and sends it
back with the new URLs for those two hyperlinks. A similar sequence of events happen when a user
clicks on the “next” button.

21.10.3	 Cookies
This method requires support from the web browsers. In this method, session information is

represented by a named token called cookie. The JSP page sends this cookie to the web browser. The
browser must be configured properly to accept it. Upon receiving a cookie, the web browser installs
it. This cookie is then sent back to the server with the subsequent requests. The JSP page can then
extract session information from this cookie. This way, the server can identify a session.

JAVA SERVER PAGES 617

By default, most browsers support cookies. However, due to security reasons, very often cookie
support is disabled and in that case session management will not work correctly. The following is
the JSP page for the application we discussed earlier.

<html>
 <head><title>Cookie demo</title></head>
 <body>
 <%
 int current = 0;
 Cookie cookie = null;
 Cookie[] cookies = request.getCookies();
 if(cookies != null)
 for(int i = 0; i < cookies.length; i++)
 if(cookies[i].getName().equals("last"))
 cookie = cookies[i];
 if(cookie != null) {
 String button = request.getParameter("button");
 if(button != null) {
 if(button.equals("next"))
 current = Integer.parseInt(cookie.getValue()) + 1;
 else
 current = Integer.parseInt(cookie.getValue()) - 1;
 }
 }
 response.addCookie(new Cookie("last", String.valueOf(current)));
 out.println(current);
 %>

 <form name="myForm" method="post">
 <input type="submit" name="button" value="prev">
 <input type="submit" name="button" value="next">
 </form>
 </body>
</html>

The JSP page first looks for a cookie named “last”. If it finds the cookie, the value of the cookie
is obtained using the getValue() method. Depending on the button clicked, the integer to be sent
next is calculated and stored in the variable current. This integer, together with a new cookie with
the name “last” having the current value set is sent to the web browser. However, if the JSP page
does not find any cookie with the name “last”, which happens during the first time, it sends a new
cookie having the value 0, which is the initial value of the variable current.

21.10.4	 Session API
JSP technology (and its underlying servlet technology) provides a higher level approach

for session tracking. The basic building block of this session API is the javax.servlet.http.
HttpSession interface. The HttpSession objects are automatically associated with the client by the
cookie mechanism. An HttpSession object is one that persists during a session, until it times out or
is shutdown by the JSP page participating in this session.

In a JSP page, an HTTP session is created by default if it is not suppressed by setting the session
attribute of the page directive to false as follows.

<%@ page session="false" %>

This session can be accessed by the implicit object session. A JSP page may also create an
HttpSession object explicitly, using the following method in HttpServletRequest.

HttpSession getSession(boolean create);
HttpSession getSession();

618 ADVANCED JAVA PROGRAMMING

The first version takes a boolean parameter that indicates whether a new session has to be created
if one does not exist. If the parameter is true, a new session is created if it does not exist. Otherwise,
the existing session object is returned. If the parameter is false, it returns the existing session object if
it exists, and null otherwise. The second version simply calls the first version with the parameter true.

In the HttpSession object, we can store and retrieve key–value pair using setAttribute(),
getAttribute(), and getAttributes() methods.

Object getAttribute(String key);
Enumeration getAttributeNames();
void setAttribute(String key, Object value);

The return type of the getAttribute() method is Object. So you must typecast it to the required
type of data that was stored with a key in the session object. If the key specified in the setAttribute()
method does not already exist in the session, the specified value is stored with this key. Otherwise,
the old value is overwritten with the specified value.

The JSP engine uses the cookie mechanism to keep track of sessions. A session object is associated
with usually a long alphanumeric ID. This session ID is sent to the client as a cookie with the name
JSESSIONID, when the client makes a request for the first time using the HTTP response header Set-
Cookie, as follows:

Set-Cookie: JSESSIONID=g52d15acu325dlw532h234

For subsequent requests, the client sends this cookie back to the server using the HTTP request
header Cookie as follows:

Cookie: JSESSIONID=g52d15acu325dlw532h234

The server can then identify that this request has come from the same client. However, if the
client does not accept cookies, this mechanism fails. In that case, programmers may use the URL
rewriting mechanism, where each URL must have the session ID appended. The JSP engine, on
behalf of programmers, provides a straightforward mechanism to implement URL rewriting. The
HttpServletResponse object provides methods to append this session ID automatically. These
methods identify whether the client is configured to accept cookies. They append the session ID only
if the client does not accept cookies.

java.lang.String encodeURL(java.lang.String);
java.lang.String encodeRedirectURL(java.lang.String);

The encodeRedirectURL() method is used for the sendRedirect() and encodeURL() method is
used for the rest to create such URLs.

Here is the solution of our application using HttpSession API:
<%@page import="java.util.*"%>
<html>
 <head><title>Hidden field demo</title></head>
 <body>
 <%
 int current = 0;
 String last = (String)session.getAttribute("last");
 if(last != null) {
 String button = request.getParameter("button");
 if(button != null) {
 if(button.equals("next"))
 current = Integer.parseInt(last) + 1;
 else
 current = Integer.parseInt(last) - 1;
 }
 }
 session.setAttribute("last", String.valueOf(current));
 out.println(current);

%>

 <form name="myForm" method="post">
 <input type="submit" name="button" value="prev">
 <input type="submit" name="button" value="next">
 </form>
 </body>
</html>

JAVA SERVER PAGES 619

<%@page import="java.util.*"%>
<html>
 <head><title>Hidden field demo</title></head>
 <body>
 <%
 int current = 0;
 String last = (String)session.getAttribute("last");
 if(last != null) {
 String button = request.getParameter("button");
 if(button != null) {
 if(button.equals("next"))
 current = Integer.parseInt(last) + 1;
 else
 current = Integer.parseInt(last) - 1;
 }
 }
 session.setAttribute("last", String.valueOf(current));
 out.println(current);

%>

 <form name="myForm" method="post">
 <input type="submit" name="button" value="prev">
 <input type="submit" name="button" value="next">
 </form>
 </body>
</html>

21.11	 USERS PASSING CONTROL AND DATA BETWEEN PAGES
Sometimes, we need to hand over the control to another page, with the necessary data passed to

it. In this section, we shall discuss how to pass control across pages with data passed to them.

21.11.1	 Passing Control
Sometimes, a JSP page wants to pass the control to another server-side program for further

processing. For example, in an e-mail application, the login.jsp page on user verification may
want to forward the request to the home.jsp page. This is done using the <jsp:forward> action in
the login.jsp page as follows:

String user = request.getParameter("user");
String password = request.getParameter("password");
//verify the user here
<jsp:forward page="home.jsp" />

Once the JSP engine encounters the <jsp:forward> action, it stops the processing of the current
page and starts the processing of the page (called target page) specified by the page attribute. The
rest of the original page is never processed further.

The HttpServletRequest and HttpServletResponse objects are passed to the target page. So, the
target page can access all information passed to the original page. You can pass additional parameters
to the target page using the <jsp:param> action as follows.

String user = request.getParameter("user");
String password = request.getParameter("password");
//verify the user here
double startTime = System.currentTimeMillis();
<jsp:forward page="home.jsp">
 <jsp:param name="startTime" value="<%=startTime%>" />
</jsp:forward>

The target page can access these parameters in the same way as the original parameters, using
the getParameter() and/or getParameterNames() methods.

21.11.2	 Passing Data
The scope of an object indicates from where the object is visible. JSP specification defines four

types of scopes: page, request, session, and application. The objects having page scope are only
available within the page. So, objects that are created with page scope in a page are not available
in another page where the control is transferred using the <jsp:forward> action. If you make an
object visible across multiple pages across the same request, create the object with request scope.
The following example illustrates this.

<!--original.jsp-->
<jsp:useBean id="fact" scope="request" class="bean.Factorial" />
<%fact.setValue(5);%>
<jsp:forward page="new.jsp" />

620 ADVANCED JAVA PROGRAMMING

This page creates a bean object with the request scope and sets the value property with 5. It then
passes the control to the new.jsp page, which looks like this.

<!--new.jsp-->
<jsp:useBean id="fact" scope="request" class="bean.Factorial" />
<%=fact.getValue()%>

Since the bean was saved as the request scope in the original.jsp page, the <jsp:useBean>
action in the new.jsp page finds and uses it.

For the URL http://127.0.0.1:8080/net/original.jsp, the following is displayed:
120

Depending upon your requirement, you may create an object having any one of the four scopes.

21.12	 SHARING SESSION AND APPLICATION DATA
The objects having request scope are available in all pages across a single request. However,

sometimes objects should be shared among multiple requests.
Think about an online examination system. JSP pages requested from the same browser must

share the same user name that was provided during the login procedure. This is required because
different users have different sets of data such as expiry time, number of questions answered so far,
number of correct answers, and so on. This type of information can be shared through session scope.

The objects having session scope are available to all pages requested by the same browser. The
implicit object session is one such object. This session object can be used to store and retrieve other
objects. So, objects may be shared across pages in the same session using this session object. The
following is a code fragment used in login.jsp.

<!—login.jsp-->
<%
String user = request.getParameter("user");
String password = request.getParameter("password");
//verify the user here
double startTime = System.currentTimeMillis();
session.setAttribute(user, String.valueOf(startTime));

<jsp:forward page="exam.jsp" />
%>

It stores the time when the user starts its session in the session object and forwards the request
to exam.jsp. The exam.jsp will be called many times by the user. The exam.jsp retrieves the start
time for this user, checks whether the user has exhausted its time limit, and takes necessary actions.

String user1 = (String)session.getAttribute("user");

double startTime = Double.parseDouble((String)session.getAttribute("user"));
double currentTime = System.currentTimeMillis();
if(currentTime - startTime > 600000) { //duration is 10 minutes
 //the time is over, forward the request to the page logout.jsp
%>
<jsp:forward page="logout.jsp" />
<%
}
%>

Now, think about the same online examination system where different users are giving the
examination using different browser windows, but using the same database. For efficiency purposes,
information should be shared among pages even if the pages are requested by different users. This
type of information can be shared through application scope.

JAVA SERVER PAGES 621

The objects that have application scope are shared by all pages requested by any browser. One
such implicit object is application. Consider the following code fragment in the login.jsp page:

Object obj = application.getAttribute("config");
if(obj == null) {
 ExamConfig conf = new ExamConfig();
 application.setAttribute("config", conf);
}

It looks for an object having the name “config” in the application object. If no such object
exists, it creates an ExamConfig object and stores one such object in the application object. When
the ExamConfig object is created, connection to the database is established. This database connection
can now be shared by all other pages related to this application.

Here is the code fragment used in the exam.jsp page.
ExamConfig conf = (ExamConfig)application.getAttribute("config");
Statement stmt = conf.getConnection().createStatement();
//use stmt to fire SQL query

All requests that use the exam.jsp file can simply use the same object stored in the application
object to get the Statement object and fire the SQL query using JDBC technology.

KEYWORDS
Actions—XML tags that can be used in a JSP page
to use functions provided by the JSP engine

Bean—Reusable Java components, which allow us to
separate business logic from presentation logic

Cookie—A name–value pair

Declarations—Used to declare one or more variables,
methods, or inner classes that can be used later in
the JSP page

Directives—Instructions used in the JSP page to
inform the JSP engine how this page is interpreted
and executed

Expression—A faster, easier, and clearer way to display
values of variables/parameters/expressions in a JSP page

Implicit Objects—A web container allows us to
directly access many useful objects defined in the
_jspService() method of the JSP page’s underlying
servlet. These objects are called implicit objects.

JSP Engine—A specialized servlet that supervises
and controls the execution of JSP pages

Plug-in—The <jsp:plugin> action is used to
generate an HTML file that can download a Java
plug-in on demand and execute applets or JavaBeans.

Scope—The scope of a JSP object is defined as the
availability of that object for use from a particular place
of the web application.

Scriptlets—Sections in a JSP page where we can
insert an arbitrary piece of Java code

Session tracking—A procedure using which JSP
pages can relate a sequence of requests

Tag extension—Allows us to define and use custom
tags in a JSP page exactly like other HTML/XML tags,
using Java code

Template text—The static HTML/XML components
in a JSP page

Translation—The procedure for converting a JSP
page to its servlet source code

Web container— JSP pages run under the web server
called web container.

SUMMARY
JSP allows us to directly embed Java code in the HTML
pages. To process JSP pages, a JSP engine is needed.
It is interesting to note that what we know as the “JSP
engine” is nothing but a specialized servlet that runs
under the supervision of the servlet engine. Commonly
used JSP engines include Apache’s Tomcat, Java Web
Server, IBM’s WebSphere, etc.

JSP technology was developed on top of servlet

technology. The JSP pages are finally converted to
servlets automatically.
A JSP page basically consists of static HTML/XML

components called template text as well as JSP
constructs. JSP constructs consist of directives,
declarations, expressions, scriptlets, and actions.
A JSP page may contain instructions to be used by the

JSP container to indicate how this page is interpreted

622 ADVANCED JAVA PROGRAMMING

and executed. Those instructions are called directives.

Expressions are used to insert usually small pieces
of data in a JSP page without using out.print() or
out.write() statements.

You can insert an arbitrary piece of Java code using
JSP scriptlets construct in a JSP page.

JSP declarations are used to declare one or more
variables, methods, or inner classes that can be used
later in the JSP page.

JSP actions are XML tags that can be used in a JSP
page to use functions provided by the JSP engine.

In a JSP page, objects may be created using
directives, actions, or scriptlets. Every object created in
a JSP page has a scope. The scope of a JSP object is
defined as the availability of that object for use from a
particular place of the web application. There are four
object scopes: page, request, session, and application.

A web container allows us to directly access many
useful objects defined in the _jspService() method
of the JSP page’s underlying servlet. These objects
are called implicit objects as they are instantiated
automatically. The implicit objects contain information
about request, response, session, configuration, etc.

Variables, methods, and classes can be declared
in a JSP page. If they are declared in the declaration
section, they become part of the class.

JSP tag extension allows us to define and use custom
tags in a JSP page exactly like other HTML/XML tags,
using Java code.

JavaBeans are reusable Java components called
beans which allow us to separate business logic from
presentation logic. There are three action elements
that are used to work with beans. A JSP action element
<jsp:useBean> instantiates a JavaBean object into
the JSP page. The <jsp:setProperty> action tag
assigns a new value to the specified property of the
specified bean object. The <jsp:getProperty> action
element retrieves the value of the specified property
of the specified bean object.

There are many ways to track sessions in JSP. Hidden
fields may be used to send information back and forth
between server and client to track sessions, without
affecting the display. This is another simple but elegant
method to track sessions and is widely used. Cookies
are also used to track sessions. JSP technology (and
its underlying servlet technology) provides a higher
level approach for session tracking.

WEB RESOURCES
http://www.oracle.com/technetwork/java/
javaee/jsp/index.html
JavaServer Pages Technology

http://www.oracle.com/technetwork/java/
syntaxref12-149806.pdf
Java Server Pages (JSP) v2.0 Syntax Reference

http://docs.oracle.com/javaee/5/tutorial/
doc/bnalj.html
Custom Tags in JSP Pages

http://en.wikipedia.org/wiki/JavaServer_Pages
JavaServer Pages

http://www.visualbuilder.com/jsp/tutorial\
JSP Tutorial Home

http://download.oracle.com/otn-pub/
jcp/7322-jsp-1.0-fr-spec-oth-JSpec/
jsp1_0-spec.pdf?AuthParam=1379914991_
d1f98c766f1707c0ca2dc883ea1246a2
JavaServer Pages Specification 1.0

http://tomcat.apache.org/tomcat-8.0-doc\
Apache Tomcat 8.0, Documentation Index

http://tomcat.apache.org/tomcat-8.0-doc/
jasper-howto.html
Apache Tomcat 8.0, Jasper 2 JSP Engine How To

http://tomcat.apache.org/tomcat-8.0-doc/
config/context.html
Apache Tomcat 8, The Context Container

EXERCISES
Objective-type Questions

	 1.	 What is the full form of JSP ?
	 (a)	 Java Servlet Pages
	 (b)	 Java Server Pages
	 (c)	 Java Small Pages
	 (d)	 Java Special Pages

	 2.	 Which of the following statements is true?
	 (a)	 JSP and servlets are completely different

technologies.
	 (b)	 Servlets are built on JSP technology and all

servlets are ultimately converted to JSP pages.

JAVA SERVER PAGES 623

	 (c)	 Servlet is a client-side technology, whereas
JSP is a server-side technology.

	 (d)	 JSPs are built on servlet technology and all
JSPs are ultimately translated to servlets.

	 3.	 What is the advantage of using RequestDispatcher
over sendRedirect() to forward a request to
another resource?

	 (a)	 The RequestDispatcher does not use the
reflection API.

	 (b)	 sendRedirect() is no longer available in the
current servlet API.

	 (c)	 The RequestDispatcher does not require
a round trip to the client, and thus is more
efficient and allows the server to maintain
request state.

	 (d)	 sendRedirect() is not a cross-web server
mechanism.

	 4.	 In which one of the following cases is the scriptlet
better suited?

	 (a)	 Code that handles cookies
	 (b)	 Code that deals with logic that relates to

database access
	 (c)	 Code that deals with session management
	 (d)	 Code that deals with logic that is common

across requests

	 5.	 Which of the following handles a request first in a
page-centric approach?

	 (a)	 A JSP page
	 (b)	 A session manager	
	 (c)	 A servlet
	 (d)	 A JavaBean

	 6.	 Which of the following can be included using the
JSP include action?

	 (a)	 Servlet	 (c)	 Plain text file
	 (b)	 Another JSP	 (d)	 All of the above

	 7.	 Which of the following is used to read parameters
from a JSP page?

	 (a)	 <jsp:getParam/> action
	 (b)	 <jsp:param> action
	 (c)	 request.getParameter() method
	 (d)	 <jsp:readParam/> action

	 8.	 Which of the following is not a method of JSP’s
servlet ?

	 (a)	 _jspService()	 (c)	 jspService()
	 (b)	 _jspDestroy()	 (d)	 _jspInit()

	 9.	 Which of the following JSP actions is used to
include a file in another file?

	 (a)	 <jsp:import>	 (c)	 <jsp:read>
	 (b)	 <jsp:include> 	 (d)	 <jsp:get>

	10.	 What is a JSP page translated into?
	 (a)	 CGI	 (c)	 Applet
	 (b)	 Servlet	 (d)	 JavaBean

	11.	 Which of the following is not true regarding cookies?
	 (a)	 Cookie class has a two-argument constructor.
	 (b)	 The response object is used to add a cookie.
	 (c)	 The request object is used to get the cookie.
	 (d)	 The request object is used for creating

cookies.

	12.	 Which of the following scopes does the implicit
object exception have?

	 (a)	 page	 (c)	 session
	 (b)	 request	 (d)	 application

	13.	 Which of the following tags is used to override the
JSP file’s initialization method?

	 (a)	 <%= %>	 (c)	 <% %>
	 (b)	 <%@ %>	 (d)	 <%! %>

	14.	 Which of the following scopes is not valid with
respect to JavaBean in JSP?

	 (a)	 request	 (c)	 session
	 (b)	 response	 (d)	 application

	15.	 Which of the following statements is true regarding
HttpServletResponse.sendRedirect()?

	 (a)	 Server itself redirects the current request.
	 (b)	 sendRedirect() executes on the client.
	 (c)	 Server sends a redirection instruction to

the client.
	 (d)	 Server drops the current request.

	16.	 Which of the following tags is used for scriptlets?
	 (a)	 <%= %>	 (c)	 <% %>
	 (b)	 <%@ %>	 (d)	 <%! %>

	17.	 Which of the following attributes of the page
directive is used to indicate that the current page
is an error page?

	 (a)	 errorPage	 (c)	 anErrorPage
	 (b)	 isErrorPage	 (d)	 pageError

	18.	 Which of the following tags is used for expressions?
	 (a)	 <%= %>	 (c)	 <% %>
	 (b)	 <%@ %>	 (d)	 <%! %>

	19.	 Which of the following is not a JSP engine?
	 (a)	 Tomcat
	 (b)	 Java Web Server
	 (c)	 WebLogic
	 (d)	 Apache James

	20.	 Which of the following is not a JSP implicit object?
	 (a)	 request	 (c)	 in
	 (b)	 response	 (d)	 out

624 ADVANCED JAVA PROGRAMMING

Subjective-type Questions

	 1.	 Write some advantages of JSP over servlet.

	 2.	 What is the key difference between
HttpServletResponse.sendRedirect() and
<jsp:forward>?

	 3.	 What is the benefit of using JavaBeans to separate
business logic from presentation markup within
the JSP environment?

	 4.	 What is the function of a JSP engine?

	 5.	 Compare and contrast between JSP and servlet.

	 6.	 Briefly describe the structure of a JSP page.

	 7.	 Explain with examples the page directive.

	 8.	 What is the purpose of include directive in a JSP
page?

	 9.	 What is the difference between a declaration and
a scriplet?

	10.	 What do you mean by the scope of JSP objects?

	11.	 Explain with examples the different types of
scopes.

	12.	 What do request and response implicit object
represent?

	13.	 Write the usage of session and application implicit
objects.

	14.	 What do JSP action tags do? Write the names of
some JSP action tags.

	15.	 Describe briefly how to create custom tags in JSP.

	16.	 What are the different types of custom tags?
Explain with examples.

	17.	 Write the necessary properties that Java Bean
components must have.

	18.	 What are the different session tracking technologies
available in JSP?

	19.	 Describe how hidden fields can be used to track
sessions. What are the problems of using hidden
fields?

	20.	 Write the method of passing data between two
JSP pages.

CHAPTER – 22

Java Database Connectivity (JDBC)

Key Objectives

After completing this chapter readers will be able to—
•  get an idea about different types of JDBC drivers
•  learn how to use JDBC technology in Java Server Pages
•  know how to load JDBC drivers
•  retrieve database metadata
•  call stored procedures
•  understand scrollable and updatable result set

22.1	 INTRODUCTION
Many Java applications need access to databases. Java DataBase Connectivity (JDBC) allows us

to access databases through Java programs. It provides Java classes and interfaces to fire SQL and PL/
SQL statements, process results (if any), and perform other operations common to databases. Since
Java Server Pages can contain Java code embedded in them, it is also possible to access databases
from Java Server Pages. The classes and interfaces for database connectivity are provided as a
separate package, java.sql.

22.2	 JDBC DRIVERS
A Java application can access almost all types of databases such as relational, object, and object-

relational. The access to a specific database is accomplished using a set of Java interfaces, each of
which is implemented by different vendors differently. A Java class that provides interfaces to a
specific database is called JDBC driver. Each database has its own set of JDBC drivers. Users need
not bother about the implementation of those Java classes. They can concentrate on developing
database applications. Those drivers are provided (generally freely) by database vendors. This way,

626 ADVANCED JAVA PROGRAMMING

JDBC hides the underlying database architecture. JDBC drivers provided by database vendors convert
database access requests to database-specific APIs.

JDBC drivers are classified into four categories depending upon the way they work.

22.2.1	 JDBC-ODBC Bridge (Type 1)
This is the Type 1 driver. This type of driver cannot talk to the database directly. It needs an

intermediate ODBC (Open DataBase Connectivity) driver, with which it forms a kind of bridge. The
driver translates JDBC function calls to ODBC method calls. ODBC makes use of native libraries of
the operating system and is hence platform-dependent. For this mechanism to function correctly, the
ODBC driver must be available in the client machine and must also be configured correctly, which
is generally a long and tedious process. For this reason, the Type 1 driver is used for experimental
purposes or when no other JDBC driver is available. Sun provides a Type 1 JDBC driver with JDK
1.1 or later.

22.2.2	 Native-API, Partly Java (Type 2)
This is very similar to the Type 1 driver. However, it does not forward the JDBC call to the ODBC

driver. Instead, it translates JDBC calls to database-specific native API calls. This driver is not a pure
Java driver, as it interfaces with non-Java APIs that communicate with the database. This approach
is a little bit faster than the earlier one, as it interfaces directly with the database through the native
APIs. However, it has limitations similar to the previous one. This means that the client must have
vendor-specific native APIs installed and configured in it.

22.2.3	 Middleware, Pure Java (Type 3)
In this case, the JDBC driver forwards the JDBC calls to some middleware server [Figure 22.1: (ii)]

using a database-independent network protocol. The middleware server acts as a gateway for multiple
(possibly different) database servers and can use different database-specific protocols to connect to
different database servers. This intermediate server sends each client request to a specific database.
The results are then sent back to the intermediate server, which in turn sends the result back to the
client. This approach hides the details of connections to the database servers and makes it possible
to change the database servers without affecting the client.

22.2.4	 Pure Java Driver (Type 4)
These types of drivers communicate with the database directly by making socket connections.

It has distinct advantages over other mechanisms, in terms of performance and development time.
Since, it talks with the database server directly, no other subsidiary driver is needed. In this book,
we shall use only the Type 4 driver.

22.3	 JDBC ARCHITECTURE
The JDBC architecture is sometimes classified as: two-tier and three-tier. Type 2 and 4 drivers

use two-tier and Type 1 and 3 use three-tier architecture. Figure 22.1: (i) and (ii) show the JDBC
two-tier and three-tier architectures.

JAVA DATABASE CONNECTIVITY (JDBC) 627

(i) (ii)

Database
Proprietary Protocol

HTTP, CORBA,
RMI or other calls

Database Server

Client computer

Application

DBMS

Network

Java Application
Server(middle-tier)

JDBC

Network
Request Response

Database Server

Client computer

Java Application

JDBC

DBMS

Network

Figure 22.1: JDBC architecture (i) Two-tier (ii) Three-tier

22.4	 JDBC CLASSES AND INTERFACES
Java provides an API for accessing and processing data stored in a data source (usually a relational

database). A summary of JDBC classes and interfaces with a brief description is shown in Table 22.1:
Table 22.1: Java JDBC classes and interfaces

Class/Interface Description

DriverManager The basic service for managing a set of JDBC drivers

Connection A connection (session) with a specific database

Statement The object used for executing a static SQL statement and returning the results it
produces

ResultSet A table of data representing a database result set, which is usually generated by
executing a statement that queries the database

PreparedStatement An object that represents a precompiled SQL statement

CallableStatement The interface used to execute SQL stored procedures

DatabaseMetaData Comprehensive information about the database as a whole

ResultSetMetaData An object that can be used to get information about the types and properties of
the columns in a ResultSet object.

In this chapter, we shall demonstrate how to use JDBC with respect to JSP.

22.5	 BASIC STEPS
The following basic steps are followed to work with JDBC:
•	 Loading a Driver
•	 Making a connection
•	 Executing an SQL statement

628 ADVANCED JAVA PROGRAMMING

22.6	 LOADING A DRIVER
You have to first download an appropriate driver depending upon the database you want to

connect. Sun provides a Type 1 driver bundled with the JDK 1.1 or later. Other types of drivers are
database-specific and must be downloaded.

The latest version, Type 4 MySQL JDBC driver, can be downloaded from the following site:
http://dev.mysql.com/downloads/connector/j/#downloads

Download the .zip or .tar.gz file containing the jar (java archive) file mysql-connector-java-
5.1.26-bin.jar.

The latest version Type 4 JDBC driver for Oracle can be downloaded from the following site:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Download the appropriate driver depending upon the JDK and Oracle version you are using. For
example, the binary driver file for Oracle 12c and JDK 1.7 or later is ojdbc7.jar.

Once you have downloaded the appropriate .jar file, put it in Tomcat’s lib directory and restart
the web server.

If you are developing simple Java database applications, put this .jar file in the CLASSPATH
environment variable.

So far, we have downloaded and installed the JDBC driver. For it to start functioning, an instance
of the driver has to be created and registered with the DriverManager class so that it can translate the
JDBC call to the appropriate database call. The JDBC class DriverManager is an important class in
the java.sql package. It interfaces between the Java application and the JDBC driver. This class
manages the set of JDBC drivers installed on the system. It has many other useful methods, some of
which will be discussed in Section 26.17.

One way to register a driver with the driver manager is to use the static with a driver class name
as an argument. For example, the Type 1 driver provided by Sun can be instantiated and registered
with the driver manager as follows:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

The method forName() creates an instance of the class whose name is specified as an argument
using its default constructor. The instance created in this fashion must register itself with the
DriverManager class. The .jar file for MySQL contains two driver class files with the name Driver.
class, one in the com.mysql.jdbc package and the other in the org.gjt.mm.mysql package. So, you
may use any one of the following:

Class.forName("com.mysql.jdbc.Driver");
Class.forName("org.gjt.mm.mysql.Driver");

One can perform this registration procedure by explicitly creating an instance and passing it to
the static registerDriver() method of the DriverManager class. The method registerDriver()
in turn registers the driver with the driver manager. Some JDBC vendors such as Oracle recommend
the latter mechanism.

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

A similar procedure can be followed for other drivers as well. The implementation of the MySQL
driver file com.mysql.jdbc.Driver looks like this.

public class Driver extends NonRegisteringDriver implements java.sql.Driver {
 static {
 try {
 java.sql.DriverManager.registerDriver(new Driver());
 } catch (SQLException E) {
 throw new RuntimeException("Can't register driver!");
 }
 }
 public Driver() throws SQLException {}
}

JAVA DATABASE CONNECTIVITY (JDBC) 629public class Driver extends NonRegisteringDriver implements java.sql.Driver {
 static {
 try {
 java.sql.DriverManager.registerDriver(new Driver());
 } catch (SQLException E) {
 throw new RuntimeException("Can't register driver!");
 }
 }
 public Driver() throws SQLException {}
}

Since the static block registers the driver with the driver manager automatically, only creating an
instance is sufficient. So, one might use the following code as well:

new com.mysql.jdbc.Driver();

Now, the driver is ready to translate the JDBC call.

22.7	 MAKING A CONNECTION
Once a driver is instantiated and registered with the driver manager, the connection to the database

can be established using methods provided by the DriverManager class. For each connection created,
DriverManager makes use of the appropriate driver registered to it. The following methods are
available on the DriverManager class to establish a connection. All methods return a Connection
object on successful creation of the connection.

public static Connection getConnection(String url, String login, String passwd)
public static Connection getConnection(String url)
public static Connection getConnection(String url, Properties)

The Connection object encapsulates the session/connection to a specific database. It is used to
fire SQL statements as well as commit or roll back database transactions. It also allows us to collect
useful information about the database dynamically and to write custom applications. Many connections
can be established to a single database server or different database servers.

The primary argument that the getConnection() method takes is a database URL. This
argument identifies a database uniquely. DriverManager uses this URL to find a suitable
JDBC driver installed earlier, which recognizes the URL and uses this driver to connect to the
corresponding database.

The URL always starts with jdbc:. The format of the rest of the JDBC URL varies widely for
different databases. Some are mentioned in Table 22.2: The format of the MySQL JDBC URL is as
follows:

jdbc:mysql://[host]:[port]/[database]

Here, host is the name (or IP address) of the machine running the database at the port number port
and database is a name of a database. Suppose a MySQL database, test, is running in a machine,
uroy, at port 3306, the corresponding URL will be

jdbc:mysql://uroy:3306/test

A database connection can be established using this URL as follows:
Connection con = DriverManager.getConnection("jdbc:mysql://uroy:3306/test",
"root", "nbuser");

Similarly, the following code segment creates a database connection to the Oracle database mirora
running in the machine miroracle at port 1521.

Connection con =
DriverManager.getConnection("jdbc:oracle:thin:@miroracle:1521:mirora", "scott",
"tiger");

630 ADVANCED JAVA PROGRAMMING

Table 22.2 shows the JDBC URL formats.
Table 22.2: JDBC URL format

MySQL

Jar file mysql-connector-java-nn-bin.jar

Download URL http://dev.mysql.com/downloads/connector/j/5.1.html

Driver com.mysql.jdbc.Driver

URL format jdbc:mysql://[host]:[port]/[database]

Sample URL
jdbc:mysql://uroy:3306/test

jdbc:mysql://localhost:3306/sample

Oracle

Jar file
ojdbc6.jar (Java 1.6)
ojdbc7.jar (Java 1.7)

Download URL http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Driver oracle.jdbc.driver.OracleDriver

URL format
jdbc:oracle:[type]:@[host]:[port]:[service]
jdbc:oracle:[type]:[host]:[port]:[SID]
jdbc:oracle:[type]:[TNSName]

Sample URL

thin

jdbc:oracle:thin:@miroracle:1521: ORCL_SVC
jdbc:oracle:thin:@172.16.4.243:1521: ORCL_SID
jdbc:oracle:thin:@(description=(address=(host=localhost)(protocol=tcp)
(port=1521))(connect_data=(sid=ORCL)))
jdbc:oracle:thin:@TNS-NAME

Oci

jdbc:oracle:oci:@miroracle:1521: ORCL_SVC
jdbc:oracle:oci:@172.16.4.243:1521: ORCL_SID
jdbc:oracle:oci:@(description=(address=(host=localhost)(protocol=tcp)
(port=1521))(connect_data=(sid=ORCL)))
jdbc:oracle:oci:@TNS-NAME

Sun JDBC-ODBC Bridge

Jar file Bundled with JDK

Driver Sun.jdbc.odbc.JdbcOdbcDriver

URL format JDBC:ODBC:[data source name]

Sample URL JDBC:ODBC:test

DB2

Jar file db2jcc.jar

Download URL http://www-01.ibm.com/software/data/db2/ad/java.html

Driver Com.ibm.db2.jdbc.net.DB2Driver

URL format Jdbc:db2://[host]:[port]/[database]

Sample URL jdbc:db2://172.16.4.243:50000/test

Pervasive

Jar file pvjdbc2.jar

Driver com.pervasive.jdbc.v2.Driver

Download URL http://www.pervasive.com/developerzone/access_methods/jdbc.asp

URL format jdbc:pervasive://[host]:[port]/[database]

Sample URL jdbc:pervasive://uroy:1583/sample

(Contd )

JAVA DATABASE CONNECTIVITY (JDBC) 631

PostgreSQL

Jar file postgresql-nn.jdbc3.jar

Download URL http://jdbc.postgresql.org/download.html

Driver org.postgresql.Driver

URL format jdbc:postgresql://[host]:[port]/[database]

Sample URL jdbc:postgresql://[localhost]:[5432]/[test]

JavaDB/Derby

Jar file derbyclient.jar

Download URL http://db.apache.org/derby/derby_downloads.html

Driver org.apache.derby.jdbc.ClientDriver

URL format jdbc:derby:net://[host]:[port]/[database]

Sample URL jdbc:derby:net://[172.16.4.243]:[1527]/[sample]

The second overloaded version of the getConnection() method takes only a string argument.
This argument must contain URL information, together with other parameters such as user name and
password. The parameters are passed as a name–value pair separated by “&” using the same syntax
as the HTTP URL. The general syntax of such a URL is as follows:

basicURL?param1=value1¶m2=value2…

The following is an example of such a string argument for the MySQL database.
jdbc:mysql://uroy:3306/test?user=root&password=nbuser

Alternatively, parameters can be put in a java.util.Properties object and the object can be
passed to the getConnection() method. The following is an example using Properties.

 String url = "jdbc:mysql://uroy:3306/test";
 java.util.Properties p = new java.util.Properties();
 p.setProperty("user", "root");
 p.setProperty("password", "nbuser");
 Connection con = DriverManager.getConnection(url, p);

22.8	 EXECUTE SQL STATEMENT

Once a connection to the database is established, we can interact with the database. The Connection
interface provides methods for obtaining different statement objects that are used to fire SQL
statements via the established connection. The Connection object can be used for other purposes
such as gathering database information, and committing or rolling back a transaction. The following
section describes the different types of statement objects and their functionality.

22.9	 SQL STATEMENTS

The Connection interface defines the following methods to obtain statement objects.
Statement createStatement()
Statement createStatement(int resultSetType,
 int resultSetConcurrency)
Statement createStatement(int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

PreparedStatement prepareStatement(java.lang.String)
PreparedStatement prepareStatement(String sql,
 int resultSetType,
 int resultSetConcurrency)
PreparedStatement prepareStatement(String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

CallableStatement prepareCall(java.lang.String)
CallableStatement prepareCall(String sql,
 int resultSetType,
 int resultSetConcurrency)
CallableStatement prepareCall(String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

Table 22.2: (Contd )

632 ADVANCED JAVA PROGRAMMING

Statement createStatement()
Statement createStatement(int resultSetType,
 int resultSetConcurrency)
Statement createStatement(int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

PreparedStatement prepareStatement(java.lang.String)
PreparedStatement prepareStatement(String sql,
 int resultSetType,
 int resultSetConcurrency)
PreparedStatement prepareStatement(String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

CallableStatement prepareCall(java.lang.String)
CallableStatement prepareCall(String sql,
 int resultSetType,
 int resultSetConcurrency)
CallableStatement prepareCall(String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)

The JDBC Statement, CallableStatement, and PreparedStatement interfaces define the
methods and properties that enable you to send SQL or PL/SQL commands and receive data from
your database.

22.9.1	 Simple Statement
The Statement interface is used to execute static SQL statements A Statement object is instantiated

using the createStatement() method on the Connection object as follows:
Statement stmt = con.createStatement();

This Statement object defines the following methods to fire different types of SQL commands
on the database.
executeUpdate()

This method is used to execute DDL (CREATE, ALTER, and DROP), DML (INSERT,
DELETE, UPDATE, etc.) and DCL statements. In general, if an SQL command changes the
database, the executeUpdate() method is used. The return value of this method is the number
of rows affected.

Assume that stmt is a Statement object. The following code segment first creates a table named
accounts.

String create = "CREATE TABLE accounts ("+
 " accNum integer primary key, "+
 " holderName varchar(20), "+
 " balance integer "+
 ")";
stmt.executeUpdate(create);

Once the table is created, data can be inserted into it using the following code segment.
 String insert = "INSERT INTO accounts VALUES(1,'Uttam K. Roy', 10000)";

stmt.executeUpdate(insert);
 insert = "INSERT INTO accounts VALUES(2,'Bibhas Ch. Dhara', 20000)";

stmt.executeUpdate(insert);

The following JSP page (DDL.jsp) creates a table accounts and insert two rows in the table. Make
sure that the MySQL JDBC driver is in the /lib directory under the Tomcat installation directory.

<!--DDL.jsp-->
<%@page import="java.sql.*"%>
<%
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test?user=root&password=nbuser";
 Connection conn = DriverManager.getConnection(url);
 Statement stmt = conn.createStatement();

 String create = "CREATE TABLE accounts (" +
 " accNum integer primary key, " +
 " holderName varchar(20), " +
 " balance integer " +
 ")";
 stmt.executeUpdate(create);

 String insert = "INSERT INTO accounts VALUES(1,'Uttam K. Roy', 10000)";
 stmt.executeUpdate(insert);
 insert = "INSERT INTO accounts VALUES(2,'Bibhas Ch. Dhara', 20000)";
 stmt.executeUpdate(insert);
 stmt.close();
 conn.close();
 out.println("Created table accounts");
 } catch (Exception e) {
 out.println(e);
 }
%>

JAVA DATABASE CONNECTIVITY (JDBC) 633

<!--DDL.jsp-->
<%@page import="java.sql.*"%>
<%
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test?user=root&password=nbuser";
 Connection conn = DriverManager.getConnection(url);
 Statement stmt = conn.createStatement();

 String create = "CREATE TABLE accounts (" +
 " accNum integer primary key, " +
 " holderName varchar(20), " +
 " balance integer " +
 ")";
 stmt.executeUpdate(create);

 String insert = "INSERT INTO accounts VALUES(1,'Uttam K. Roy', 10000)";
 stmt.executeUpdate(insert);
 insert = "INSERT INTO accounts VALUES(2,'Bibhas Ch. Dhara', 20000)";
 stmt.executeUpdate(insert);
 stmt.close();
 conn.close();
 out.println("Created table accounts");
 } catch (Exception e) {
 out.println(e);
 }
%>

executeQuery()
This is used for DQL statements such as SELECT. Remember, DQL statements only read data

from database tables; it cannot change database tables. So, the return value of this method is a set of
rows that is represented as a ResultSet object.

The result of the executeQuery method is stored in an object of type ResultSet. This result
set object looks very much similar to a table and hence has a number of rows. A particular row is
selected by setting a cursor associated with this result set. A cursor is something like a pointer to the
rows. Once the cursor is set to a particular row, individual columns are retrieved using the methods
provided by the ResultSet interface. The cursor is placed before the first row of result set when it is
created first. JDBC 1.0 allows us to move the cursor only in the forward direction using the method
next(). JDBC 2.0 allows us to move the cursor both forward and backward as well as to move to a
specified row relative to the current row. These types of result sets are called scrollable result sets,
which will be discussed in Section 22.12.

Since the cursor does not point to any row (it points to a position before the first row), users have
the responsibility to set the cursor to a valid row to retrieve data from it. To retrieve data from a
column, methods of the form getX() are used, where X is the data type of the column. The following
is an example that retrieves information from the accounts table created earlier.

String query = "SELECT * FROM accounts";
ResultSet rs = stmt.executeQuery(query);
while(rs.next()) {
 out.println(rs.getString("accNum"));
 out.println(rs.getString("holderName"));
 out.println(rs.getString("balance"));
}

execute()
Sometimes, users want to execute SQL statements whose type (DDL, DML, DCL, or DQL) is

not known in advance. This may happen particularly when statements are obtained from another
program. In that case, users cannot decide which method they should use. In such cases, the execute()
method is used. It can be used to execute any SQL commands. Since it allows us to execute any
SQL commands, the result can either be a ResultSet object or an integer. However, how does a
user know it? Fortunately, this method returns a Boolean value, which indicates the return type. The
return value true indicates that the result is a ResultSet object, which can be obtained by calling
its getResultSet() method. On the other hand, if the return value is false, the result is an update
count, which can be obtained by calling the getUpdateCount() method.

The following JSP page (execute.jsp) takes an arbitrary SQL statement as a parameter and fires
this SQL statement on the database.

634 ADVANCED JAVA PROGRAMMING

<!--execute.jsp-->
<%@page import="java.sql.*"%>
<%
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");
 response.setDateHeader("Expires", -1);
 try {
 String query = request.getParameter("sql");
 if (query != null) {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement();
 if (stmt.execute(query) == false) {
 out.println(stmt.getUpdateCount() + " rows affected");
 }
 else {
 ResultSet rs = stmt.getResultSet();
 ResultSetMetaData md = rs.getMetaData();
 out.println("<table border=\"1\"><tr>");
 for (int i = 1; i <= md.getColumnCount(); i++) {
 out.print("<th>" + md.getColumnName(i) + "</th>");
 }
 out.println("</tr>");
 while (rs.next()) {
 out.println("<tr>");
 for (int i = 1; i <= md.getColumnCount(); i++) {
 out.print("<td>" + rs.getString(i) + "</td>");
 }
 out.println("</tr>");
 }
 out.println("</table>");
 rs.close();
 }
 stmt.close();
 con.close();
 }
 }
 catch (Exception e) {
 out.println(e);
 }
%>
<form name="sqlForm" method="post">
 SQL statement:
<input type="text" name="sql" size="50">

 <input type="reset"><input type="submit" value="Execute">
</form>

Figure 22.2: Executing SQL statements

JAVA DATABASE CONNECTIVITY (JDBC) 635

Note that this JSP page allows you to fire any valid SQL query, including DML. So, the JSP page
must perform user verification before providing this interface.

22.9.2	 Atomic Transaction
The database transaction made by the executeUpdate() method is committed automatically. This

may lead to data inconsistency if a series of related statements are executed. Consider the following
simple table for a banking application.

accounts(accNum, holderName, balance)

The bank manager wants to write a Java program to transfer some amount of money amount
from the source account src to the destination account dst. The basic task of this program will be to
subtract amount from the source account balance and add amount to the destination account balance.
A sample JSP page looks like this:

<!--manager.jsp-->
<%@page import="java.sql.*"%>
<%!
 Connection con;
 Statement stmt;
 String query;
 public void jspInit() {
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 con = DriverManager.getConnection(url, "root", "nbuser");
 stmt = con.createStatement();
 }catch(Exception e) {}
 }
 public boolean transfer(int src, int dst, int amount) {
 try {
 query = "SELECT balance FROM accounts WHERE accNum=" + src;
 ResultSet rs = stmt.executeQuery(query);
 rs.next();
 int srcBal = rs.getInt("balance") - amount;
 query = "SELECT balance FROM accounts WHERE accNum=" + dst;
 rs = stmt.executeQuery(query);
 rs.next();
 int dstBal = rs.getInt("balance") + amount;
 return doTransfer(src, dst, srcBal, dstBal);
 } catch (SQLException e) {
 return false;
 }
 }
 public boolean doTransfer(int src, int dst, int srcBal, int dstBal) {
 try {
 query = "UPDATE accounts SET balance=" + srcBal + " WHERE accNum=" + src;
 stmt.executeUpdate(query);
 query = "UPDATE accounts SET balance=" + dstBal + " WHERE accNum=" + dst;

//If anything goes wrong here, destination account will contain wrong
//result.

 stmt.executeUpdate(query);
 return true;
 } catch (SQLException e) {
 return false;
 }
 }
%>
<%
try {
 int src = Integer.parseInt(request.getParameter("src"));
 int dst = Integer.parseInt(request.getParameter("dst"));
 int amount = Integer.parseInt(request.getParameter("amount"));
 transfer(src, dst, amount);
}catch(Exception e) {out.println(e);}
%>

636 ADVANCED JAVA PROGRAMMING

<!--manager.jsp-->
<%@page import="java.sql.*"%>
<%!
 Connection con;
 Statement stmt;
 String query;
 public void jspInit() {
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 con = DriverManager.getConnection(url, "root", "nbuser");
 stmt = con.createStatement();
 }catch(Exception e) {}
 }
 public boolean transfer(int src, int dst, int amount) {
 try {
 query = "SELECT balance FROM accounts WHERE accNum=" + src;
 ResultSet rs = stmt.executeQuery(query);
 rs.next();
 int srcBal = rs.getInt("balance") - amount;
 query = "SELECT balance FROM accounts WHERE accNum=" + dst;
 rs = stmt.executeQuery(query);
 rs.next();
 int dstBal = rs.getInt("balance") + amount;
 return doTransfer(src, dst, srcBal, dstBal);
 } catch (SQLException e) {
 return false;
 }
 }
 public boolean doTransfer(int src, int dst, int srcBal, int dstBal) {
 try {
 query = "UPDATE accounts SET balance=" + srcBal + " WHERE accNum=" + src;
 stmt.executeUpdate(query);
 query = "UPDATE accounts SET balance=" + dstBal + " WHERE accNum=" + dst;

//If anything goes wrong here, destination account will contain wrong
//result.

 stmt.executeUpdate(query);
 return true;
 } catch (SQLException e) {
 return false;
 }
 }
%>
<%
try {
 int src = Integer.parseInt(request.getParameter("src"));
 int dst = Integer.parseInt(request.getParameter("dst"));
 int amount = Integer.parseInt(request.getParameter("amount"));
 transfer(src, dst, amount);
}catch(Exception e) {out.println(e);}
%>

Note that source and destination accounts must be updated atomically. However, if anything
goes wrong after updating the source account and before updating the destination account in the
doTransfer() method, the destination account will hold an incorrect balance.

This problem can be solved using the autoCommit() method available on the Connection object.
First the autoCommit flag of the Connection object is set to false. At the end of execution of all
related statements, the transaction is committed. If anything goes wrong during the execution of
those statements, it can be caught and the transaction gets rolled back accordingly. This way a set of
related operations can be performed atomically.

The correct doTransfer() method looks like this:
public boolean doTransfer(int src, int dst, int srcBal, int dstBal) {
 try {
 con.setAutoCommit(false);
 query = "UPDATE accounts SET balance=" + srcBal + " WHERE accNum=" + src;
 stmt.executeUpdate(query);
 query = "UPDATE accounts SET balance=" + dstBal + " WHERE accNum=" + dst;
 stmt.executeUpdate(query);
 con.commit();
 return true;
 } catch (SQLException e) {
 try {
 con.rollback();
 } catch (SQLException e1) {
 }
 return false;
 }
}

executeBatch()
This method allows us to execute a set of related commands as a whole. Commands to be fired on

the database are added to the Statement object one by one using the method addBatch(). It is always
safe to clear the Statement object using the method clearBatch() before adding any command to it.
Once all commands are added, executeBatch() is called to send them as a unit to the database. The
DBMS executes the commands in the order in which they were added. Finally, if all commands are
successful, it returns an array of update counts. To allow correct error handling, we should always
set auto-commit mode to false before beginning a batch command.

The following is the method doTransfer, rewritten using this mechanism.
 public boolean doBatchTransfer(int src, int dst, int srcBal, int dstBal) {
 try {
 String query;
 con.setAutoCommit(false);
 stmt.clearBatch();
 query = "UPDATE accounts SET balance=" + srcBal + " WHERE accNum=" + src;
 stmt.addBatch(query);
 query = "UPDATE accounts SET balance=" + dstBal + " WHERE accNum=" + dst;
 stmt.addBatch(query);
 stmt.executeBatch();
 con.commit();
 return true;
 } catch (SQLException e) {
 try {
 con.rollback();
 } catch (SQLException e1) {
 }
 return false;
 }
 }

JAVA DATABASE CONNECTIVITY (JDBC) 637

 public boolean doBatchTransfer(int src, int dst, int srcBal, int dstBal) {
 try {
 String query;
 con.setAutoCommit(false);
 stmt.clearBatch();
 query = "UPDATE accounts SET balance=" + srcBal + " WHERE accNum=" + src;
 stmt.addBatch(query);
 query = "UPDATE accounts SET balance=" + dstBal + " WHERE accNum=" + dst;
 stmt.addBatch(query);
 stmt.executeBatch();
 con.commit();
 return true;
 } catch (SQLException e) {
 try {
 con.rollback();
 } catch (SQLException e1) {
 }
 return false;
 }
 }

Since all the commands are sent as a unit to the database for execution, it improves the performance
significantly.

22.9.3	 Pre-compiled Statement
When an SQL statement is fired to the database for execution using the Statement object the

following steps get executed:

•	 DBMS checks the syntax of the statement being submitted.
•	 If the syntax is correct, it executes the statement.

DBMS compiles every statement unnecessarily, even if users want to execute the same SQL
statement repeatedly with different data items. This creates significant overhead, which can be avoided
using the PreparedStatement object.

A PreparedStatement object is created using the prepareStatement() method of the
Connection object. An SQL statement with placeholders (?) is supplied to the method Connection.
prepareStatement() when a PreparedStatement object is created. This SQL statement, together
with the placeholders is sent to the DBMS. DMBS, in turn, compiles the statement and if everything
is correct, a PreparedStatement object is created. This means that a PreparedStatement object
contains an SQL statement whose syntax has already been checked and hence is called pre-compiled
statement. This SQL statement is then fired repeatedly, with placeholders substituted by different data
items. Note that PreparedStatement is useful only if the same SQL statement is executed repeatedly
with different parameters. Otherwise, it behaves exactly like Statement and no benefit can be obtained.

The following example creates a PreparedStatement object:
PreparedStatement ps = con.prepareStatement("INSERT INTO user values(?,?)");

The SQL statement has two placeholders, whose values will be supplied whenever this statement
is sent for execution. Placeholders are substituted using methods of the form setX(), where X is the
data type of the value used to substitute. These methods take two parameters. The first parameter
indicates the index of the placeholder to be substituted and the second one indicates the value to be
used for substitution. The following example substitutes the first placeholder with “user1”.

ps.setString(1, "user1");

Consider a file, question.txt, which contains questions of the form question_no:question_
string as follows:

1:What is the full form of JDBC?
2:How is a PreparedStatement created?
…

The following example inserts questions and their numbers stored in this file in the table questions.
PreparedStatement ps = con.prepareStatement("INSERT INTO questions
values(?,?)");
BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream("question.txt")));
String line = br.readLine();
while (line != null) {
 StringTokenizer st = new StringTokenizer(line, ":");
 String qno = st.nextToken();
 String question = st.nextToken();
 ps.setString(1, qno);
 ps.setString(2, question);
 ps.executeUpdate();
 line = br.readLine();
}

638 ADVANCED JAVA PROGRAMMING

PreparedStatement ps = con.prepareStatement("INSERT INTO questions
values(?,?)");
BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream("question.txt")));
String line = br.readLine();
while (line != null) {
 StringTokenizer st = new StringTokenizer(line, ":");
 String qno = st.nextToken();
 String question = st.nextToken();
 ps.setString(1, qno);
 ps.setString(2, question);
 ps.executeUpdate();
 line = br.readLine();
}

PreparedStatement has another important role in executing parameterized SQL statements.
Consider this solution using the Statement object.

Statement stmt = con.createStatement();
BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream(application.getRealPath("/")+"question.txt")));
String line = br.readLine();
while (line != null) {
 StringTokenizer st = new StringTokenizer(line, ":");
 String qno = st.nextToken();
 String question = st.nextToken();
 String query = "INSERT INTO questions values("+qno+",'"+question+"')";
 stmt.executeUpdate(query);
 line = br.readLine();
}

This code segment will work fine, provided the question does not contain characters such as “’”.
For example, if the file question.txt contains a line “3:What’s JDBC?”, the value of the query will be

INSERT INTO questions values(3,’What’s JDBC?’)

This is an invalid query due the “’” character in the word “What’s”. If you try, you will get an
error message like this:

com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error in
your SQL syntax; check the manual that corresponds to your MySQL server version
for the right syntax to use near 's JDBC?')' at line 1

PreparedStatement can handle this situation very easily, as it treats the entire parameter as input.
So, the example given using the PreparedStatement will work correctly in this case.

22.9.4	 SQL Statements to Call Stored Procedures
JDBC also allows the calling of stored procedures that are stored in the database server. This

is done using the CallableStatement object. A CallableStatement object is created using the
prepareCall() method on a Connection object.

CallableStatement prepareCall(String)

The method prepareCall() takes a primary string parameter, which represents the procedure to
be called, and returns a CallableStatement object, which is used to invoke stored procedures if the
underlying database supports them. Here is an example:

String proCall = "{call changePassword(?, ?, ?)}";
CallableStatement cstmt = con.prepareCall(proCall);

The variable cstmt can now be used to call the stored procedure changePassword, which has three
input parameters and no result parameter. The type of ? placeholders (IN, OUT, or INOUT) depends on
the definition of the stored procedure changePassword.

JDBC API allows the following syntax to call stored procedures:
{call procedure-name [(?, ?, ...)]}

For example, to call a stored procedure with no parameter and no return type, the following
syntax is used:

{call procedure-name}

JAVA DATABASE CONNECTIVITY (JDBC) 639

The following syntax is used to call a procedure that takes a single parameter:
{call procedure-name(?)}

If a procedure returns a value, the following syntax is used:
{? = call procedure-name (?, ?)}

MySQL procedures are not allowed to return values. So, the last format is not allowed in MySQL.
The web developer must know what stored procedures are available in the underlying database.
Before using any stored procedure, one can use the supportsStoredProcedures() method on the
DatabaseMetaData object to verify if the underlying database supports the stored procedure. If it
supports, the description of the stored procedures can be obtained using getProcedures() on the
DatabaseMetaData object. Consider the following procedure created in MySQL.

DELIMITER //
CREATE PROCEDURE changePassword(IN loginName varchar(10), IN oldPassword
varchar(10), IN newPassword varchar(10))
BEGIN
 DECLARE old varchar(10);
 SELECT password INTO @old FROM users WHERE login=loginName;
 IF @old = oldPassword THEN
 UPDATE users SET password=newPassword WHERE login=loginName;
 END IF;
END //
DELIMITER ;

This procedure changes the password of a specified user in the table users. It takes three
parameters: the login id of the user whose password has to be changed, the old password, and a new
password.

If you are using MySQL command prompt to create a procedure, you may face a problem. Note
that the stored procedures use “;” as the delimiter. The default MySQL statement delimiter is also “;”.
This would make the SQL in the stored procedure syntactically invalid. The solution is to temporarily
change the command-line utility delimiter using the following command;

DELIMITER //

This command DELIMITER // is not related to the stored procedure. The DELIMITER statement is
used to change the standard delimiter (semicolon) to another. In this case, the delimiter is changed to
//, so that you can have multiple SQL statements separated by the semicolon inside stored procedure.
After the END keyword, we use delimiter // to show the end of the stored procedure. The last command
DELIMITER ; changes the delimiter back to the standard one (semicolon).

The IN parameters are passed to a CallableStatement object using methods of the form setXxx().
For example, setFloat() and setBoolean() methods are used to pass float and boolean values,
respectively.

The following code segment illustrates how to call this procedure.
<!--CallableStatement.jsp-->
<%@page import="java.sql.*"%>
<%
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 String proCall = "{call changePassword(?, ?, ?)}";
 CallableStatement cstmt = con.prepareCall(proCall);
 String login = request.getParameter("login");
 String oldPassword = request.getParameter("oldPassword");
 String newPassword = request.getParameter("newPassword");
 cstmt.setString(1, login);
 cstmt.setString(2, oldPassword);
 cstmt.setString(3, newPassword);
 if (cstmt.executeUpdate() > 0) {
 out.println("Password changed successfully");
 } else {
 out.println("Couldn't change password");
 }
 cstmt.close();
 conn.close();
 } catch (Exception e) {
 out.println(e);
 }
%>

640 ADVANCED JAVA PROGRAMMING

<!--CallableStatement.jsp-->
<%@page import="java.sql.*"%>
<%
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 String proCall = "{call changePassword(?, ?, ?)}";
 CallableStatement cstmt = con.prepareCall(proCall);
 String login = request.getParameter("login");
 String oldPassword = request.getParameter("oldPassword");
 String newPassword = request.getParameter("newPassword");
 cstmt.setString(1, login);
 cstmt.setString(2, oldPassword);
 cstmt.setString(3, newPassword);
 if (cstmt.executeUpdate() > 0) {
 out.println("Password changed successfully");
 } else {
 out.println("Couldn't change password");
 }
 cstmt.close();
 conn.close();
 } catch (Exception e) {
 out.println(e);
 }
%>

The following URL may be used to change the password for the user from pass1 to newPass1:
http://127.0.0.1:8080/net/jdbc/CallableStatement.jsp?login=user1&oldPassword=pa
ss1&newPassword=newPass1

Make sure that the table was created and populated with values as shown below:
String create = "CREATE TABLE users ("+
 " login varchar(20) primary key, "+
 " password varchar(20) "+
 ")";
stmt.executeUpdate(create);

String insert = "INSERT INTO users VALUES('user1','pass1')";
stmt.executeUpdate(insert);
insert = "INSERT INTO users VALUES('user2','pass2') ";
stmt.executeUpdate(insert);

The CallableStatement object also allows batch update exactly like PreparedStatement.
The following is an example:
String proCall = "{call changePassword(?, ?, ?)}";
CallableStatement cstmt = con.prepareCall(proCall);

cstmt.setString(1, "user1");
cstmt.setString(2, "pass1");
cstmt.setString(3, "newPass1");
cstmt.addBatch();

cstmt.setString(1, "user2");
cstmt.setString(2, "pass2");
cstmt.setString(3, "newPass2");
cstmt.addBatch();

int [] updateCounts = cstmt.executeBatch();

This example illustrates how to use batch update facility to associate two sets of parameters with
a CallableStatement object.

22.10	 RETRIEVING RESULT
A table of data is represented in the JDBC by the ResultSet interface. The ResultSet objects

are usually generated by executing the SQL statements that query the database. A pointer points
to a particular row of the ResultSet object at a time. This pointer is called cursor. The cursor is
positioned before the first row when the ResultSet object is generated. To retrieve data from a row
of ResultSet, the cursor must be positioned at the row. The ResultSet interface provides methods
to move this cursor.

next()

JAVA DATABASE CONNECTIVITY (JDBC) 641

•	 This method on the ResultSet object moves the cursor to the next row of the result set.
•	 It returns true/false depending upon whether there are more rows in the result set.

Since the next() method returns false when there are no more rows in the ResultSet object, it
can be used in a while loop to iterate through the result set as follows:

 String query = "SELECT * from users";
 ResultSet rs = stmt.executeQuery(query);
 while(rs.next()) {
 //process it
 }

The ResultSet interface provides reader methods for retrieving column values from the row
pointed to by the cursor. These have the form getXxx(), where Xxx is the name of the data type of the
column. For example, if data types are string and int, the name of the reader methods are getString()
and getInt(), respectively.

Values can be retrieved using either the column index or the name of the column. Using the
column index, in general, is more efficient. The column index starts from 1. The following example
illustrates how to retrieve data from a ResultSet object.

 String query = "SELECT * from users";
 ResultSet rs = stmt.executeQuery(query);
 while(rs.next()) {
 String login = rs.getString("login");
 String password = rs.getString("password");
 System.out.println(login+"\t"+password);

}

22.11	 GETTING DATABASE INFORMATION
Sometimes, it is necessary to know the capabilities of DataBase Management System (DBMS)

before dealing with it. This is because different DBMSs often provide different features, implement
them differently, and also use different data types. Moreover, the driver may also implement
additional features on top of the DBMS. The DatabaseMetaData interface provides methods to collect
comprehensive information about a DBMS. We can discover features a DBMS supports and develop
our application accordingly. For example, before creating a table, one may want to know what data
types are supported by this DBMS. The user may also want to know whether the underlying DBMS
supports batch update.

A DatabaseMetaData object is obtained using the getMetaData() method on the Connection
object as follows:

DatabaseMetaData md = con.getMetaData();

We can then use various methods on this DatabaseMetaData object to collect the required
information about the DBMS. The following is a list of commonly used methods:
getDatabaseMetaData()

Returns the DatabaseMetaData object, which contains detailed information about the underlying
database. Some important methods of DatabaseMetaData are
String getSQLKeywords()

Returns keywords available
getDatabaseProductName()

Returns the name of the manufacturer
getDatabaseProductVersion()

Returns the current version

642 ADVANCED JAVA PROGRAMMING

getDriverName()

Returns driver used
The following JSP page retrieves most of the MySQL database information.
<!--DBMetaData.jsp-->
<%@page import="java.sql.*, java.lang.reflect.*"%>
<%
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 DatabaseMetaData md = con.getMetaData();
 Method[] methods = md.getClass().getMethods();
 Object[] param = new Object[0];
 out.println("<table border=\"1\">");
 for (int i = 0; i < methods.length; i++) {
 if (methods[i].getParameterTypes().length == 0) {
 if (methods[i].getReturnType() == Boolean.TYPE ||
methods[i].getReturnType() == String.class) {
 out.println("<tr>");
 out.println("<td>"+methods[i].getName() + "</td>");
 try {
 out.println("<td>" + methods[i].invoke(md, param)+"</td>");
 }catch(Exception e) {out.println("<td>" + e+"</td>");}
 out.println("</tr>");
 }
 }
 }
 out.println("</table>");
%>

The result of this page is shown in Table 22.6.

22.12	 SCROLLABLE AND UPDATABLE RESULTSET
The result set returned so far by a query can be navigated in one direction (forward). Moreover the

data the result sets contain are read-only. Any change to the result set does not affect the actual database.
Result sets can be scrollable in the sense that the cursor can be moved backward and forward.

Additionally, a result set can be updatable, such that any change to the result set reflects in the database
immediately. A result set can be scrollable as well as updatable. Note that scrollable and updatable
result sets incur significant overhead. So, such result sets should be created if the underlying
application performs scrolling.

In addition to scrollability and updatability, another important concept, called sensitivity, is
defined. Sensitivity broadly answers the following question:

Can a result set see the changes that are made to the underlying database?

If a result cannot see any changes, it is said to be insensitive. Otherwise, the sensitivity of a result
set is defined with respect to the database operation as well as the operating party. For example, a
result set is said to be sensitive to update if it can see any update operation made on the underlying
database. The sensitivity rules are shown in Table 22.3:

The createStatement() and prepareStatement() methods take extra parameters that specify
the type of result returned by subsequent execution of SQL statements. The prototype of the
createStatement() method to generate a scrollable and updatable result set is as follows:

Statement createStatement(int resultSetType, int resultSetConcurrency)

Here, scrollability and updatability are controlled by the parameters resultSetType and
resultSetConcurrency, respectively.

JAVA DATABASE CONNECTIVITY (JDBC) 643

22.12.1	 Scrollability Type
The parameter resultSetType can assume the following static integer constants defined in

ResultSet. Their meaning is as follows:
• TYPE_FORWARD_ONLY

	 If this constant is used, the cursor starts at the first row and can only move forward.
• TYPE_SCROLL_INSENSITIVE

	� All cursor positioning methods are enabled; the result set does not reflect changes made by
others in the underlying table.

• TYPE_SCROLL_SENSITIVE

	� All cursor positioning methods are enabled; the result set reflects changes made by others in
the underlying table.

The visibility of internal and external changes to scrollable ResultSet in Oracle JDBC is shown
in Table 22.3:

Table 22.3: Visibility of Internal and External Changes to Scrollable Result Set
in Oracle JDBC

Scroll Type TYPE_FORWARD
_ONLY

TYPE_SCROLL
_SENSITIVE

TYPE_SCROLL
_INSENSITIVE

Internal

DELETE No Yes Yes

UPDATE Yes Yes Yes

INSERT No No No

External

DELETE No No No

UPDATE No Yes No

INSERT No No No

22.12.2	 Concurrency Type
The parameter resultSetConcurrency can assume the following static integer constants defined

in ResultSet. The following is a brief description:
• CONCUR_READ_ONLY

	 The result set is not updatable.
• CONCUR_UPDATABLE

	 Rows can be added and deleted; columns can be updated and are visible to others.

22.12.3	 Examples
The following example creates a Statement object, whose methods will return scrollable, update

insensitive, and read-only result sets.
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);
ResultSet rs = stmt.executeQuery("SELECT * FROM questions");

The ResultSet object rs is now scrollable, but update insensitive.
Originally, result sets could be navigated only in one direction (forward) and starting at only one

position (the first row). In JDBC 2.0, the row pointer can be manipulated as if it were an array index.
Some of the important methods available on the scrollable ResultSet object are shown in Table 22.4:
The following examples demonstrate how to navigate a scrollable result set:

644 ADVANCED JAVA PROGRAMMING

•	 Move the cursor forward by one row.
 rs.next();
 //or
 rs.relative(1);

•	 Move the cursor backward by one row.
 rs.previous();
 //or
 rs.relative(-1);

•	 Set the cursor before the first row.
rs.beforeFirst();

•	 Set the cursor after the last row.
rs.afterLast();

•	 Set the cursor at the first row (row 1).
rs.first();

//or

rs.absolute(1);

•	 Set the cursor at the last row.
rs.last();

//or

rs.absolute(-1);

•	 Set the cursor at the second row.
rs.absolute(2);

•	 Set the cursor at the second last row.
rs.absolute(-2);

•	 Move the cursor forward six rows from the current position.
 rs.relative(6);
 //Sets the cursor after the last row, if it goes beyond the last row

•	 Move the cursor backward four rows from the current position.
 rs.relative(-4);
 //Sets the cursor before the first row, if it goes before the first row

Table 22.4: Scrollable ResultSet methods

Method Description

next() Advances cursor to the next row

previous() Moves cursor back one row

first() Sets cursor to the first row

last() Sets cursor to the last row

beforeFirst() Sets cursor just before the first row

afterLast() Sets cursor just after the last row

absolute(int rowNumber) Sets the cursor to the specified row number. +ve and –ve numbers
indicate positions relative to the position before first row and after last row,
respectively. For example, 1 and -1 represent first and last row, respectively.

relative(int rows) Forwards or reverses cursor the specified number of rows relative to the
current position. +ve number indicates forwarding and –ve number indicates
reversing. For example, relative(1) forwards the cursor one position, which is
equivalent to next(). Similarly, relative(-1) moves the cursor one position back
and is equivalent to previous(). It throws an SQLException if cursor points
before the first row or after the last row.

(Contd )

JAVA DATABASE CONNECTIVITY (JDBC) 645

moveToInsertRow() Sets the cursor to a special row called “insert row” and remembers the
current position before moving the cursor.

moveToCurrentRow() Sets the cursor to the row from where the cursor was moved to “insert row”
using moveToInsertRow().

The following example creates a Statement object, whose methods will return scrollable as well
as external-update-insensitive and updatable result sets.

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT * FROM questions");

To update a row in a database table, the following steps are used:

•	 Obtain an updatable result set.

•	 Move the cursor to the row to be updated using positioning methods available on the ResultSet object.

•	 Update the value of one or more columns in that row using the updateXxx() method on the ResultSet
object, where Xxx is the data type of the column.

•	 Finally, update the database table using the updateRow() method.

The following example demonstrates how to update, insert, or delete a row from a database table
using an updatable result set.

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT * FROM users");

//Updating existing row
rs.absolute(4);
rs.updateString("password","newPassword");
rs.updateRow();

//inseting new row
rs.moveToInsertRow();
rs.updateString(1, "anik");
rs.updateString(2, "anik123");
rs.insertRow();

//Deleting a row
rs.deleteRow()

The following JSP page changes the password of a specified user using the updatable result set.
<!--UpdatableResultSetDemo.jsp-->
<%@ page import="java.sql.*" %>
<%
 try {
 String login = request.getParameter("login");
 String oldPassword = request.getParameter("oldPassword");
 String newPassword = request.getParameter("newPassword");

 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 String query = "SELECT * FROM users WHERE login='" + login + "'";
 ResultSet rs = stmt.executeQuery(query); //rs contains one row
 rs.next(); //set cursor at first row
 String password = rs.getString("password");
 if (password.equals(oldPassword)) {
 System.out.println(password);

rs.updateString("password", newPassword); //update the password column
 rs.updateRow(); //update database table
 }
 } catch (Exception e) {out.println(e); }
%>

Table 22.4: (Contd )

646 ADVANCED JAVA PROGRAMMING

<!--UpdatableResultSetDemo.jsp-->
<%@ page import="java.sql.*" %>
<%
 try {
 String login = request.getParameter("login");
 String oldPassword = request.getParameter("oldPassword");
 String newPassword = request.getParameter("newPassword");

 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 String query = "SELECT * FROM users WHERE login='" + login + "'";
 ResultSet rs = stmt.executeQuery(query); //rs contains one row
 rs.next(); //set cursor at first row
 String password = rs.getString("password");
 if (password.equals(oldPassword)) {
 System.out.println(password);

rs.updateString("password", newPassword); //update the password column
 rs.updateRow(); //update database table
 }
 } catch (Exception e) {out.println(e); }
%>

Use the following URL to verify the above JSP page:
http://127.0.0.1:8080/net/jdbc/UpdatableResultSetDemo.jsp?login=user2&oldPasswo
rd=pass2&newPassword=newPass2

The following example populates the table questions by inserting questions into the updatable
result set.

<!--UpdatableResultSetDemo1.jsp-->
<%@ page import="java.sql.*, java.io.*, java.util.*" %>
<%
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 Connection con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = stmt.executeQuery("SELECT * FROM questions");
 BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream(application.getRealPath("/")+"/jdbc/question.txt")));
 String line = br.readLine();
 while (line != null) {
 StringTokenizer st = new StringTokenizer(line, ":");
 String qno = st.nextToken();
 String question = st.nextToken();

 rs.moveToInsertRow();
 rs.updateString(1, qno);
 rs.updateString(2, question);
 rs.insertRow();
 line = br.readLine();
 }
 br.close();
 } catch (Exception e) {out.println(e); }
%>

Use the following URL to verify the above JSP page:
http://127.0.0.1:8080/net/jdbc/UpdatableResultSetDemo1.jsp

Make sure that the table questions exist. Otherwise, create it using the following SQL command:
create table questions (
 qno integer primary key,
 question varchar(100)
);

The following example creates a Statement object, whose methods will return scrollable as well
as external-update-sensitive and updatable result sets.

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT * FROM questions");

In this case, if the database table is updated, it is reflected in the result set. Before retrieving data
from a row, you should invoke the refreshRow() method of the ResultSet object so that it contains
the updated row. The following JSP page shows how to use an updatable result set.

<!--UpdateSensitive.jsp-->
<%@page import="java.sql.*"%>
<%!
 Connection con;
 Statement stmt;
 ResultSet rs;
 String query;
 public void jspInit() {
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 query = "SELECT * FROM users";
 rs = stmt.executeQuery(query);
 System.out.println("loaded");

 }catch(Exception e) {}
 }
%>
<table border="1">
<tr><th>Login name</th><th>Password</th></tr>
<%
 try {
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");
 response.setDateHeader("Expires", -1);

 rs.beforeFirst();
 while(rs.next()) {
 rs.refreshRow();
 out.println("<tr><td>" + rs.getString("login") + "</td>");
 out.println("<td>" + rs.getString("password")+"</td></tr>");
 }
 }catch(Exception e) {out.println(e);}
%>
</table>

JAVA DATABASE CONNECTIVITY (JDBC) 647
<!--UpdateSensitive.jsp-->
<%@page import="java.sql.*"%>
<%!
 Connection con;
 Statement stmt;
 ResultSet rs;
 String query;
 public void jspInit() {
 try {
 new com.mysql.jdbc.Driver();
 String url = "jdbc:mysql://uroy:3306/test";
 con = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 query = "SELECT * FROM users";
 rs = stmt.executeQuery(query);
 System.out.println("loaded");

 }catch(Exception e) {}
 }
%>
<table border="1">
<tr><th>Login name</th><th>Password</th></tr>
<%
 try {
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");
 response.setDateHeader("Expires", -1);

 rs.beforeFirst();
 while(rs.next()) {
 rs.refreshRow();
 out.println("<tr><td>" + rs.getString("login") + "</td>");
 out.println("<td>" + rs.getString("password")+"</td></tr>");
 }
 }catch(Exception e) {out.println(e);}
%>
</table>

This JSP page creates the ResultSet when this page is requested for the first time. The ResultSet
is created in the jspInit() method. Consequently, it becomes an instance variable. For subsequent
requests, it simply uses the ResultSet variable.

22.13	 RESULT SET METADATA
The ResultSetMetaData object is used to retrieve information about the types and properties of

the columns and other meta information about a ResultSet object. This is sometimes very useful, if
you do not know much about the underlying database table. A ResultSetMetaData object is obtained
using the getMetaData() method on the ResultSet object as follows:

ResultSet rs = stmt.executeQuery("SELECT * FROM questions");
ResultSetMetaData rsmd = rs.getMetaData();

It can be used to get some useful information such as number of rows, number of columns, column
names, and their type. The following are some commonly used methods on the ResultSetMetaData object:
int getColumnCount()

Returns the number of columns in the result
String getColumnName(int)

Returns the name of a column in a result set. Requires an integer argument indicating the position
of the column within the result set
int getColumnType(int)

Returns the type of the specified column in the form of java.sql.Types

648 ADVANCED JAVA PROGRAMMING

String getColumnTypeName(int)

Returns the type of the specified column as a string
String getColumnClassName(int)

Returns the fully qualified Java type name of the specified column
int getPrecision(int)

Returns the number of decimal positions
int getScale(int)

Returns the number of digits after the decimal position
String getTableName(int)

Returns the name of the column’s underlying table
int isNullable(int)

Returns a constant indicating whether the specified column can have a NULL value
The following JSP page shows how to retrieve meta information from a ResultSet object.
<!--ResultSetMetaData.jsp-->
<%@page import="java.sql.*, java.lang.reflect.*"%>
<%
 try {
 Class.forName("org.gjt.mm.mysql.Driver");
 String url = "jdbc:mysql://uroy:3306/test";
 Connection conn = DriverManager.getConnection(url, "root", "nbuser");
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM questions");
 ResultSetMetaData rsmd = rs.getMetaData();
 Object obj[] = new Object[1];
 Method[] methods = rsmd.getClass().getDeclaredMethods();
 out.println("<table border=\"0\"><tr><td>Method Name</td>");
 for(int j = 0; j < rsmd.getColumnCount(); j++)
 out.println("<td>" + rsmd.getColumnName(j+1) + "</td>");
 out.println("</tr>");
 for (int i = 0; i < methods.length; i++) {
 if(Modifier.isPublic(methods[i].getModifiers()))
 if (methods[i].getParameterTypes().length == 1) {
 if(!methods[i].getName().equals("isWrapperFor"))
 if(!methods[i].getName().equals("unwrap")) {
 out.print("<tr><td>" + methods[i].getName() + "</td>");
 for(int j=0;j<rsmd.getColumnCount();j++) {
 obj[0] = new Integer(j+1);
 out.print("<td>" + methods[i].invoke(rsmd,obj) +
"</td>");
 }
 out.println("</tr>");
 }
 }
 }
 out.println("<table>");
 }catch(Exception e) {e.printStackTrace();}
%>

A sample result for MySQL database is shown in Table 22.5:

Table 22.5: Result Set Metadata

Method Name qno question

isWritable true true

isCaseSensitive false false

getPrecision 11 100

(Contd )

JAVA DATABASE CONNECTIVITY (JDBC) 649

isNullable 0 1

getTableName questions questions

getScale 0 0

isCurrency false false

isSearchable true true

isSigned true false

getColumnType 4 12

getColumnDisplaySize 11 100

getColumnLabel qno question

isAutoIncrement false false

getCatalogName test test

getColumnClassName java.lang.Integer java.lang.String

getColumnTypeName INT VARCHAR

getSchemaName

isDefinitelyWritable true true

getColumnCharacterSet US-ASCII Cp1252

getColumnCharacterEncoding null null

isReadOnly false false

getColumnName qno question

Table 22.6: Database Metadata

Method Name Return value

autoCommitFailureClosesAllResultSets false

getDriverName MySQL Connector Java

allProceduresAreCallable false

allTablesAreSelectable false

supportsTransactions true

getDriverVersion mysql-connector-java-5.1.26 (Revision: ${bzr.revision-id})

getCatalogSeparator .

getCatalogTerm database

getNumericFunctions ABS,ACOS,ASIN,ATAN,ATAN2,BIT_COUNT,CEILING,
COS,COT,DEGREES,EXP,FLOOR,LOG,LOG10,MAX,
MIN,MOD,PI,POW,POWER,RADIANS,RAND,ROUND,
SIN,SQRT,TAN,TRUNCATE

getProcedureTerm PROCEDURE

getSQLKeywords ACCESSIBLE,ALGORITHM,ANALYZE,ASENSITIVE,
BEFORE,BIGINT,BINARY,BLOB,CALL,CHANGE,
CONDITION,COPY,DATA,DATABASE,DATABASES,
DAY_HOUR,DAY_MICROSECOND,DAY_MINUTE,
DAY_SECOND,DELAYED,DETERMINISTIC,DIRECTORY,
DISCARD,DISTINCTROW,DIV,DUAL,EACH,ELSEIF,
ENCLOSED,ESCAPED,EXCHANGE,EXCLUSIVE,EXIT,
EXPLAIN,EXPORT,FLOAT4,FLOAT8,FLUSH,FORCE,
FULLTEXT,GENERAL,HIGH_PRIORITY,

(Contd )

Table 22.5: (Contd )

650 ADVANCED JAVA PROGRAMMING

HOUR_MICROSECOND,HOUR_MINUTE,
HOUR_SECOND,IF,IGNORE,IGNORE_SERVER_IDS,
IMPORT,INFILE,INOUT,INPLACE,INT1,INT2,INT3,INT4,
INT8,ITERATE,KEYS,KILL,LEAVE,LIMIT,LINEAR,LINES,
LOAD,LOCALTIME,LOCALTIMESTAMP,LOCK,LONG,
LONGBLOB,LONGTEXT,LOOP,LOW_PRIORITY,
MASTER_HEARTBEAT_PERIOD,MAXVALUE,
MEDIUMBLOB,MEDIUMINT,MEDIUMTEXT,MIDDLEINT,
MINUTE_MICROSECOND,MINUTE_SECOND,MOD,
MODIFIES,NO_WRITE_TO_BINLOG,OPTIMIZE,
OPTIONALLY,OUT,OUTFILE,PARTITION,PURGE,
RANGE,READS,READ_ONLY,READ_WRITE,REBUILD,
REGEXP,RELEASE,REMOVE,RENAME,REORGANIZE,
REPAIR,REPEAT,REPLACE,REQUIRE,RESIGNAL,
RETURN,RLIKE,SCHEMAS,SECOND_MICROSECOND,
SENSITIVE,SEPARATOR,SHARED,SHOW,SIGNAL,
SLOW,SPATIAL,SPECIFIC,SQLEXCEPTION,
SQL_BIG_RESULT,SQL_CALC_FOUND_ROWS,
SQL_SMALL_RESULT,SSL,STARTING,STRAIGHT_JOIN,
TABLES,TABLESPACE,TERMINATED,TINYBLOB,
TINYINT,TINYTEXT,TRIGGER,UNDO,UNLOCK,
UNSIGNED,USE,UTC_DATE,UTC_TIME,
UTC_TIMESTAMP,VARBINARY,VARCHARACTER,
WHILE,X509,XOR,YEAR_MONTH,ZEROFILL

getSchemaTerm

getStringFunctions ASCII,BIN,BIT_LENGTH,CHAR,CHARACTER_LENGTH,
CHAR_LENGTH,CONCAT,CONCAT_WS,CONV,ELT,
EXPORT_SET,FIELD,FIND_IN_SET,HEX,INSERT,INSTR,
LCASE,LEFT,LENGTH,LOAD_FILE,LOCATE,LOCATE,
LOWER,LPAD,LTRIM,MAKE_SET,MATCH,MID,OCT,
OCTET_LENGTH,ORD,POSITION,QUOTE,REPEAT,
REPLACE,REVERSE,RIGHT,RPAD,RTRIM,SOUNDEX,
SPACE,STRCMP,SUBSTRING,SUBSTRING,SUBSTRING,
SUBSTRING,SUBSTRING_INDEX,TRIM,UCASE,UPPER

getSystemFunctions DATABASE,USER,SYSTEM_USER,SESSION_USER,
PASSWORD,ENCRYPT,LAST_INSERT_ID,VERSION

getTimeDateFunctions DAYOFWEEK,WEEKDAY,DAYOFMONTH,DAYOFYEAR,
MONTH,DAYNAME,MONTHNAME,QUARTER,WEEK,
YEAR,HOUR,MINUTE,SECOND,PERIOD_ADD,
PERIOD_DIFF,TO_DAYS,FROM_DAYS,DATE_FORMAT,
TIME_FORMAT,CURDATE,CURRENT_DATE,CURTIME,
CURRENT_TIME,NOW,SYSDATE,CURRENT_TIMESTAMP,
UNIX_TIMESTAMP,FROM_UNIXTIME,SEC_TO_TIME,
TIME_TO_SEC

isCatalogAtStart true

locatorsUpdateCopy true

nullsAreSortedAtEnd false

nullsAreSortedHigh false

nullsAreSortedLow true

supportsBatchUpdates true

supportsConvert false

Table 22.6: (Contd )

(Contd )

JAVA DATABASE CONNECTIVITY (JDBC) 651

supportsGroupBy true

supportsOuterJoins true

supportsSavepoints true

supportsUnion true

supportsUnionAll true

usesLocalFiles false

getIdentifierQuoteString `

supportsDataDefinitionAndDataManipulation
Transactions

false

dataDefinitionIgnoredInTransactions false

storesLowerCaseQuotedIdentifiers true

storesMixedCaseQuotedIdentifiers false

storesUpperCaseQuotedIdentifiers true

supportsANSI92IntermediateSQL false

supportsAlterTableWithAddColumn true

supportsAlterTableWithDropColumn true

supportsCatalogsInDataManipulation true

supportsCatalogsInIndexDefinitions true

supportsCatalogsInProcedureCalls true

supportsCatalogsInTableDefinitions true

supportsIntegrityEnhancementFacility false

supportsMixedCaseQuotedIdentifiers false

supportsOpenCursorsAcrossCommit false

supportsOpenCursorsAcrossRollback false

supportsOpenStatementsAcrossCommit false

supportsOpenStatementsAcrossRollback false

supportsSchemasInDataManipulation false

supportsSchemasInIndexDefinitions false

supportsSchemasInProcedureCalls false

supportsSchemasInTableDefinitions false

supportsSubqueriesInComparisons true

supportsSubqueriesInQuantifieds true

supportsTableCorrelationNames true

dataDefinitionCausesTransactionCommit true

supportsCatalogsInPrivilegeDefinitions true

supportsDataManipulationTransactionsOnly false

supportsDifferentTableCorrelationNames true

supportsSchemasInPrivilegeDefinitions false

supportsStoredFunctionsUsingCallSyntax true

doesMaxRowSizeIncludeBlobs true

generatedKeyAlwaysReturned true

getDatabaseProductName MySQL

Table 22.6: (Contd )

(Contd )

652 ADVANCED JAVA PROGRAMMING

getDatabaseProductVersion 5.0.51b-community-nt

getExtraNameCharacters #@

getSearchStringEscape \

nullPlusNonNullIsNull true

nullsAreSortedAtStart false

storesLowerCaseIdentifiers true

storesMixedCaseIdentifiers false

storesUpperCaseIdentifiers false

supportsANSI92EntryLevelSQL true

supportsANSI92FullSQL false

supportsColumnAliasing true

supportsCoreSQLGrammar true

supportsCorrelatedSubqueries true

supportsExpressionsInOrderBy true

supportsExtendedSQLGrammar false

supportsFullOuterJoins false

supportsGetGeneratedKeys true

supportsGroupByBeyondSelect true

supportsGroupByUnrelated true

supportsLikeEscapeClause true

supportsLimitedOuterJoins true

supportsMinimumSQLGrammar true

supportsMixedCaseIdentifiers false

supportsMultipleOpenResults true

supportsMultipleResultSets true

supportsMultipleTransactions true

supportsNamedParameters false

supportsNonNullableColumns true

supportsOrderByUnrelated false

supportsPositionedDelete false

supportsPositionedUpdate false

supportsSelectForUpdate true

supportsStatementPooling false

supportsStoredProcedures true

supportsSubqueriesInExists true

supportsSubqueriesInIns true

usesLocalFilePerTable false

providesQueryObjectGenerator false

getURL jdbc:mysql://uroy:3306/test

isReadOnly false

getUserName root@uroy

toString com.mysql.jdbc.JDBC4DatabaseMetaData@1b6c838

Table 22.6: (Contd )

JAVA DATABASE CONNECTIVITY (JDBC) 653

KEYWORDS
Atomic Transaction—A transaction that either does
not occur or occurs completely without any interleaving

CallableStatement—Statements that are used to call
stored procedures in a database

Connection—A class that encapsulates the session/
connection to a specific database

Database Metadata—An object that represents the
meta information about a database

DDL Statement—SQL statements typically used to
create tables

DCL Statement—SQL statements typically used to
control database tables

DML Statement—SQL statements typically used to
manipulate tables such as insert and update.

DQL Statement—SQL statements typically used to
read values from tables

Driver— A Java class that provides interfaces to a
specific database

JDBC—A Java framework that allows us to access
databases through Java programs

PreparedStatement—Pre-compiled statements used
to fire parameterized queries

ResultSet—The result of a DQL statement

Result Set Metadata—An object that represents the
meta information about a result set

Scrollable Result Set—A result set whose pointer
(cursor) can be moved back and forth

Statement—An interface is used to execute static
SQL statements

Stored Procedure—Subroutine written using SQL

Updatable Result Set—A result set that can be used
directly to modify original database tables

SUMMARY
Java DataBase Connectivity (JDBC) allows us to
access databases through Java programs. It provides
Java classes and interfaces to fire SQL and PL/SQL
statements, process results (if any), and perform other
operations common to databases.

A Java class that provides interfaces to a specific
database is called JDBC driver. JDBC drivers are
classified into four categories depending upon the
way they work.

The following basic steps are followed to work with
JDBC: Loading a Driver, Making a connection and
Executing an SQL statement

To work with database, an instance of the driver has
to be created and registered with the DriverManager
class. Two ways we can do this: using static forName()
method of the Java class Class or using static
registerDriver() method of the DriverManager class.

Once an instance of the driver is created, we create
Connection object using getConnection() method
of DriverManager class. The Connection interface
provides methods for obtaining different statement
objects that are used to fire SQL statements via
the established connection. The Connection object
can be used for other purposes such as gathering
database information, and committing or rolling back
a transaction.

A simple Statement object is instantiated using the
createStatement() method on the Connection object.
This Statement object defines the many methods

to fire different types of SQL commands on the
database.

Instead of a s imple Statement ob ject , a
PreparedStatement object is useful if users want to
execute the same SQL statement repeatedly with
different data items.

JDBC also allows the calling of stored procedures that
are stored in the database server. This is done using
the CallableStatement object. A CallableStatement
object is created using the prepareCall() method on a
Connection object.

A table of data is represented in the JDBC by the
ResultSet interface. The ResultSet objects are usually
generated by executing the SQL statements that query
the database. A pointer points to a particular row of the
ResultSet object at a time. This pointer is called cursor.
The cursor is positioned before the first row when the
ResultSet object is generated. To retrieve data from a row
of ResultSet, the cursor must be positioned at the row.

The DatabaseMetaData interface provides methods
to collect comprehensive information about a DBMS.
We can discover features a DBMS supports and
develop our application accordingly. For example,
before creating a table, one may want to know what
data types are supported by this DBMS.

Result sets can be scrollable in the sense that the cursor
can be moved backward and forward. Additionally, a
result set can be updatable, such that any change to the
result set reflects in the database immediately.

654 ADVANCED JAVA PROGRAMMING

The ResultSetMetaData object is used to retrieve
information about the types and properties of the
columns and other meta information about a ResultSet
object. This is sometimes very useful, if you do not

know much about the underlying database table.
A ResultSetMetaData object is obtained using the
getMetaData() method on the ResultSet object.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/

jdbc/basics/
Lesson: JDBC Basics

http://docs.oracle.com/javase/tutorial/

jdbc/
JDBC Database Access

http://www.tutorialspoint.com/jdbc/jdbc_

tutorial.pdf
JDBC Tutorial

http://www.javatpoint.com/jdbc-tutorial
JDBC Tutorial

http://infolab.stanford.edu/~ullman/fcdb/

oracle/or-jdbc.html
Introduction to JDBC

http://tutorials.jenkov.com/jdbc/index.html
Java JDBC

http://www.techmyguru.com/JDBC/
Java Database Connectivity (JDBC) Overview

EXERCISES
Objective-type Questions

	 1.	 Which packages contain the JDBC classes?
	 (a)	 java.db.sql and javax.db.sql
	 (b)	 java.jdbc and javax.jdbc
	 (c)	 java.db and javax.db
	 (d)	 java.sql and javax.sql

	 2.	 Which of the following drivers converts JDBC calls
into network protocol, to communicate with the
database management system directly?

	 (a)	 Type 1 driver	 (c)	 Type 3 driver
	 (b)	 Type 2 driver	 (d)	 Type 4 driver

	 3.	 Which of the following types of objects is used to
execute parameterized queries?

	 (a)	 ParameterizedStatement
	 (b)	 Statement
	 (c)	 PreparedStatement
	 (d)	 All of the above

	 4.	 Which of the following methods on the Statement
object is used to execute DML statements?

	 (a)	 executeInsert()	 (c)	 executeQuery()
	 (b)	 execute()	 (d)	 executeDML()

	 5.	 Which type of driver makes a JDBC–ODBC
bridge?

	 (a)	 Type 1 driver	 (c)	 Type 3 driver
	 (b)	 Type 2 driver	 (d)	 Type 4 driver

	 6.	 What is the meaning of ResultSet.TYPE_
SCROLL_INSENSITIVE

	 (a)	 This means that the ResultSet is insensitive
to scrolling.

	 (b)	 This means that the ResultSet is sensitive
to scrolling, but insensitive to changes
made by others.

	 (c)	 This means that the ResultSet is insensitive
to scrolling and insensitive to changes
made by others.

	 (d)	 This means that the ResultSet is sensitive
to scrolling, but insensitive to updates, i.e.
not updateable.

	 7.	 Which of the following SQL keywords is used to
read data from a database table?

	 (a)	 SELECT	 (c)	 READ
	 (b)	 CHOOSE	 (d)	 EXTRACT

	 8.	 Which of the following statement objects is used
to call a stored procedure in JDBC?

	 (a)	 Statement
	 (b)	 PreparedStatement
	 (c)	 CallableStatement
	 (d)	 ProcedureStatement

	 9.	 Which of the following objects is used to obtain
the DatabaseMetaData object?

	 (a)	 Driver	 (c)	 Connection
	 (b)	 DriverManager	 (d)	 ResultSet

	10.	 Which of the following methods is used to call a
stored procedure in the database?

	 (a)	 execute()	 (c)	 call()
	 (b)	 executeProcedure()	 (d)	 run()

JAVA DATABASE CONNECTIVITY (JDBC) 655

	11.	 What will be the effect if we call deleteRow()
method on a ResultSet object?

	 (a)	 The row pointed to by the cursor is deleted
from the ResultSet, but not from the
database.

	 (b)	 The row pointed to by the cursor is deleted
from the ResultSet and from the database.

	 (c)	 The row pointed to by the cursor is deleted
from the database, but not from the
ResultSet.

	 (d)	 None of the above

	12.	 If you want to work with a ResultSet, which of these
methods will not work on PreparedStatement?

	 (a)	 execute()	 (c)	 executeUpdate()
	 (b)	 executeQuery()	 (d)	 All of the above

	13.	 Which of the following characters is used as a
placeholder in CallableStatement?

	 (a)	 $	 (c)	 ?
	 (b)	 @	 (d)	 #

	14.	 Which one of the following will not get the data
from the first column of ResultSet rs, returned from
executing the SQL statement: “SELECT login,
password FROM USERS”?

	 (a)	 rs.getString(0)
	 (b)	 rs.getString(“login”)
	 (c)	 rs.getString(1)
	 (d)	 All of the above

	15.	 Which of the following interfaces is used to control
transactions?

	 (a)	 Statement	 (c)	 ResultSet
	 (b)	 Connection	 (d)	 DatabaseMetaData

	16.	 Which one of the following represents the correct
order?

	 (a)	 INSERT, INTO, SELECT, FROM, WHERE
	 (b)	 SELECT, FROM, WHERE, INSERT, INTO
	 (c)	 INTO, INSERT, VALUES, FROM, WHERE
	 (d)	 INSERT, INTO, WHERE, AND, VALUES

	17.	 Which of the following is not a benefit of using
JDBC?

	 (a)	 JDBC programs are tightly integrated with
the server operating system.

	 (b)	 Systems built with JDBC are relatively easy
to move to different platforms.

	 (c)	 JDBC programs can be written to connect
with a wide variety of databases.

	 (d)	 JDBC programs are largely independent of
the database to which they are connected.

	18.	 In which of the following layers of the JDBC
architecture does the JDBC–ODBC bridge reside?

	 (a)	 database layer
	 (b)	 client program layer
	 (c)	 both client program and database layers
	 (d)	 JDBC layer

	19.	 Which database application model would an
enterprise-wide solution most likely adopt?

	 (a)	 The monolithic model
	 (b)	 The two-tier model
	 (c)	 The three-tier model
	 (d)	 The n-tier model

	20.	 Which code segment could execute the stored
procedure “calculate()” located in a database
server?

	 (a)	 Statement stmt = connection.
createStatement();

		 stmt.execute(“calculate()”);
	 (b)	 CallableStatement cs = con.

prepareCall(“{call calculate}”);
		 cs.executeQuery();
	 (c)	 PrepareStatement pstmt = connection.

prepareStatement(“calculate()”);
		 pstmt.execute();
	 (d)	 Statement stmt = connection.

createStatement();
		 stmt.executeStoredProcedure(“calculate()”);

Subjective-type Questions

	 1.	 Write the differences between Type 2 and Type 3
drivers.

	 2.	 How do you get the ResultSet of a stored
procedure?

	 3.	 What is the purpose of the setAutoCommit()
method on the Connection object?

	 4.	 How do you move the cursor in scrollable
resultsets?

	 5.	 Describe the procedure we use to retrieve data
from the ResultSet.

	 6.	 What are the three statements in JDBC and the
differences between them?

656 ADVANCED JAVA PROGRAMMING

	 7.	 How do you update a ResultSet programmatically?

	 8.	 Why do we use PreparedStatement instead of
Statement?

	 9.	 What is stored procedure? How do you create a
stored procedure?

	10.	 How do you insert and delete a row prog
rammatically?

	11.	 What are batch updates? How are they useful?

	12.	 What are the four types of JDBC drivers?

	13.	 How can you use PreparedStatement ?

	14.	 Explain the different types of JDBC drivers with
their working principle.

	15.	 What are two-tier and three-tier JDBC architecture?

	16.	 Write the basic steps to be followed to work with
JDBC.

	17.	 Write the different types of SQL statements that
can be created in JDBC with their functionality.

	18.	 What does execute() method do? When should
we use it?

	19.	 Briefly describe how you would make a set of
transactions atomic.

	20.	 What are the advantages of pre-compiled state
ments over simple statements?

	21.	 Describe briefly how do you call stored procedures
in JDBC.

	22.	 What do you mean by database metadata? How
do you get them?

	23.	 What are scrollable and updatable result sets?

	24.	 What do you mean by result set metadata? How
do you get them?

CHAPTER – 23

Hibernate

Key Objectives

After completing this chapter readers will be able to—
•  understand the advantage of hibernate framework over JDBC
•  learn how to install and work with hibernate framework
•  write and run hibernate applications
•  understand the life cycle of hibernate objects
•  get an idea about Hibernate Query Language
•  get an overview of hibernate tools

23.1	 INTRODUCTION
Hibernate is an open source Object Relational Mapping (ORM) tool. It allows us to persist Plain

Old Java Objects (POJO) to the database. The POJO refers to normal Java objects that do not do any
special function nor implement any special interfaces of any of the Java frameworks such as EJB,
JDBC, DAO, JDO, etc. Although hibernate internally uses JDBC API to interact with the database,
it simplifies the development of Java application to interact with the database. The following are
some of the advantages of using hibernate:

•	 It is an open source framework under the LGPL licence and hence may be freely downloaded.
•	 Hibernate allows us to use database independent queries written in Hibernate Query Language (HQL). So,

changing the underlying database is simply a matter of modifying very few lines of code.
•	 Hibernate internally uses several levels of caching. Hence, the performance of hibernate framework is

unquestionable.
•	 This framework also provides the facilities to create database tables automatically. So, programmers need not

know SQL syntax.
•	 It also supports caching queries and provides statistics about query and database status.

658 ADVANCED JAVA PROGRAMMING

23.2	 INSTALLING HIBERNATE
We assume that the latest version of Java is already installed on your computer. Download .zip

(for windows) or .tgz (for Unix) from http://hibernate.org/orm/downloads. We downloaded
the file hibernate-release-4.3.1.Final.zip and when unzipped, a set of files was generated.
A sample screen shot is shown in Figure 23.1:

Figure 23.1: Content of hibernate-release-4.3.1.Final.zip file

The lib directory contains a set of folders containing Hibernate library. The primary JAR files to
use hibernate API are stored in lib/required folder. Modify your CLASSPATH environment variable
to point these JAR files or specify them using –cp option of Java and javac command. If you are
using an IDE such as Eclipse, place them in your project library directory.

23.3	 BASIC STEPS
A typical hibernate application is developed using the following steps:

•	 Writing a POGO class
•	 Creating a database table
•	 Creating configuration and mapping files
•	 Write code to save, retrieve, update, delete objects

23.4	 WRITING POJO CLASS
The first step is to create a Java POJO class. We consider a simple class Book as follows:
//Book.java
public class Book {
 private int b_id;
 private int b_price;
 private String b_title;
 public Book(){}
 public Book(String t, int p) {
 this.b_title = t;
 this.b_price = p;
 }
 public int getId() { return b_id; }
 public void setId(int id) { this.b_id = id; }
 public String getTitle() { return b_title; }
 public void setTitle(String t) { this.b_title = t; }
 public int getPrice() { return b_price; }
 public void setPrice(int p) { this.b_price = p; }
}

HIBERNATE 659

This contains three private fields b_id, b_price and b_title and get and set methods for these
fields. The b_id field works like an index, whereas b_title and b_price fields store the title and price
of a book respectively. It is a good idea to write a class in hibernate as JavaBeans compliant class.

23.5	 CREATING A TABLE
The next step is to create a database table. Since, MySQL is one of the most popular open-source

database systems available today, we shall use it to demonstrate hibernate. We assume that a MySQL
instance is running in the host having IP address 172.16.5.81 and the user name and password to
access this database are root and nbuser respectively. We also assume that a database test is already
created and configured. If it does not exist, create it using the following command at the MySQL
command prompt:

mysql> create database test;
Query OK, 1 row affected (0.00 sec)

Now, connect to test database using the following SQL command:
mysql> connect test;
Connection id: 88
Current database: test

Our database is now ready. We can create tables in it. For each class, there should exist a
database table which will hold object’s state (attribute values). Since, a Book object will have three
fields (b_id, b_title and b_price), let us create a table tbl_book having three columns using the
following SQL command:

  

create table tbl_book (
 no int auto_increment,
 name varchar(80),
 pr int,
 primary key (no)
);

Here no, name and pr columns correspond to id, title and price fields of the Book class
respectively.

23.6	 WRITING A HIBERNATE APPLICATION
We then write a simple Java hibernate application. This first application simply stores a single

Book object in the table book.
In this application, we first import necessary classes to work with hibernate. Two primary hibernate

API packages are org.hibernate and org.hibernate.cfg. Import classes from these packages:
import org.hibernate.*;
import org.hibernate.cfg.*;

The first object that we create in a hibernate application is an org.hibernate.cfg.Configuration
object and is usually created only once as follows:

Configuration cfg = new Configuration();

Note that hibernate needs to know, in advance, a set of configuration settings related to database
and other related parameters. It must also know where to find the mapping information that defines how
Java classes relate to the database tables. Hibernate finds necessary information from Configuration
object that contains the following information:

•	 Configuration information such as database connection properties and hibernate properties etc. and
•	 Object to database table mapping information

660 ADVANCED JAVA PROGRAMMING

The configuration information is stored in files called configuration files, which may be standard
Java properties files or XML files. The object to database table mapping information, on the other
hand, may be stored in XML files called mapping files or may be specified using annotation. The
Configuration object loads information from these files/annotations.

The default constructor of Configuration class always searches a configuration file named
hibernate.properties (which is an ordinary Java property file) in the current directory. So, create
a file with this name and put configuration information there. For MySQL, it looks like this:

#hibernate.properties
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://172.16.5.81/test
hibernate.connection.username root
hibernate.connection.password nbuser

Alternatively, this information may be put in an XML file (say config.xml) and passed to the
configure() method of Configuration object as follows:

cfg.configure("config.xml");

The config.xml file looks like this:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="connection.driver_class">com.mysql.jdbc.Driver</property>
 <property name="connection.url">jdbc:mysql://172.16.5.81/test</property>
 <property name="connection.username">root</property>
 <property name="connection.password">nbuser</property>
 </session-factory>
</hibernate-configuration>

This file essentially contains same information as hibernate.properties file. An XML
configuration file must comply with the hibernate 3 configuration DTD, which is available from
http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd. We may also use zero
argument configure() method as follows:

cfg.configure();

However, this always expects an XML file with name hibernate.cfg.xml. Note that XML
configuration file, in contrast to property configuration file, is capable of storing more information
such as name of mapping files. Moreover, the syntax of XML files may be validated against the above
mentioned DTD. That is why it is recommended to use XML files as configuration files instead of
flat property files.

The list of supported databases with their dialect are given in Table 23.1:

Table 23.1: Supported database list

RDBMS Dialect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5 with InnoDB org.hibernate.dialect.MySQL5InnoDBDialect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDialect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialect

Oracle 10g org.hibernate.dialect.Oracle10gDialect

(Contd)

HIBERNATE 661

RDBMS Dialect

Oracle 11g org.hibernate.dialect.Oracle10gDialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005Dialect

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008Dialect

SAP DB org.hibernate.dialect.SAPDBDialect

Informix org.hibernate.dialect.InformixDialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

H2 Database org.hibernate.dialect.H2Dialect

Ingres org.hibernate.dialect.IngresDialect

Progress org.hibernate.dialect.ProgressDialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Interbase org.hibernate.dialect.InterbaseDialect

Pointbase org.hibernate.dialect.PointbaseDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

Firebird org.hibernate.dialect.FirebirdDialect

Sybase org.hibernate.dialect.SybaseASE15Dialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialect

Anyway, so far the Configuration object is aware of database connection properties. Now, we have
to specify the object to database table mapping information. A mapping document describes persistent
fields and associations. The mapping documents are compiled at application startup time and provide
necessary information for a class to the Hibernate framework. They are also used to provide support
operations such as creating stub Java source files or generating the database schema etc. Mapping
may also be specified in two ways:

•	 Using XML files called mapping files or
•	 Using annotation

In this section, we shall use XML file to specify mapping. Here is a sample file (Book.hbm.xml)
that maps Book class to tbl_book table:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="Book" table="tbl_book">
 <id name="id" type="int" column="no"/>
 <property name="title" column="name" type="string"/>
 <property name="price" column="pr" type="int"/>
 </class>
</hibernate-mapping>

Table 23.1: (Contd )

662 ADVANCED JAVA PROGRAMMING

The name of this mapping file is usually chosen as [classname].hbm.xml. A mapping file must
have a root element <hibernate-mapping>..</hibernate-mapping>. The <class> element maps a
Java class to a database table specified using name and table attributes respectively. For our example,
it says that the Java class Book corresponds to the database table tbl_book.

The <id> element maps a unique property (specified by name attribute) in class to the primary
key (specified by column attribute) of the database table. The above example tells that the unique id
class property corresponds to primary key no in the table. The <property> element is used to map
a Java class property (specified by name attribute) to a column (specified by column attribute) in the
database table. In the above example, the title and price Java class properties correspond to name
and pr column of table tbl_book respectively.

Note that for each class property xxx, hibernate expects get and set methods as getXxx() and
setXxx() respectively. Hibernate uses these methods to get and set member fields. For properties
title and price, Hibernate expects getTitle(), setTitle() and getPrice(), setPrice() methods.
Needless to say that these methods really exist in our Book class. Hibernate uses these methods to
get and set corresponding fields. Note that name of the fields need not be same as property name.

The mapping file may contain other elements and attributes, which we shall discuss in due course.
Now, tell the Configuration object to look for mapping information in the XML file Book.hbm.xml
as follows:

cfg.addResource("Book.hbm.xml");

The name of the mapping file may also be specified in the XML configuration file using resource
attribute of <mapping> element as follows:

<hibernate-configuration>
 <session-factory>
 <!—Other entries-->
 <!-- List of XML mapping files -->
 <mapping resource="Book.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

Our Configuration object is now complete. This reads data from configuration and mapping files
and finally places them in a high level heavyweight hibernate object, the SessionFactory object, an
instance of which may be built as follows:

SessionFactory factory = cfg.buildSessionFactory();

We then create a Session object, which is primary runtime interface between a Java application
and Hibernate:

Session session = factory.openSession();

A Session object is equivalent to Connection object of JDBC. The main function of the Session
object is to allow creating, reading, updating and deleting instances of mapped entity classes. In our
application, we shall simply save a Book object. So, we create one such object:

Book b = new Book("Advanced Java Programming", 450);

For a database write (e.g. insert, update, delete) hibernate needs a logical Transaction to be
started as follows:

Transaction tx = session.beginTransaction();

Note that for database read operations, we do not require any logical transaction in hibernate.
The Session object provides useful methods to save, update, delete objects. We use save() to save
our Book object:

session.save(b);

HIBERNATE 663

Note that Hibernate, by default, does not automatically commit (autocommit mode false) database
transaction. So, the save() method merely writes b to the database; nothing will persist permanently
in the database until the transaction performs a commit explicitly. Hence, we do it using commit()
method of in Transaction:

tx.commit();

The entire source code (SaveBook.java) of our application is shown below:
//SaveBook.java
import org.hibernate.*;
import org.hibernate.cfg.*;
public class SaveBook {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 SessionFactory factory = cfg.buildSessionFactory();
 Session session = factory.openSession();
 Book b = new Book("Advanced Java Programming", 450);
 Transaction tx = session.beginTransaction();
 try {
 session.save(b);
 tx.commit();
 }catch (Exception e) {
 if (tx!=null) tx.rollback();
 }
 finally { session.close(); factory.close();}
 }
}

23.7	 COMPILING AND RUNNING APPLICATION
We created a directory structure under E:\ajp\hib (hereafter referred to as hibernate_home)

shown in Figure 23.2: The directory book contains the file Book.java and SaveBook.java and
hibernate-release-4.3.1.Final folder contains Hibernate API. The JAR file mysql-connector-
java-5.1.26-bin.jar contains MySQL drivers.

Figure 23.2: Hibernate application home directory structure

Go to the hibernate_homebook directory and use the following command to compile SaveBook.
java:

javac -cp ..\hibernate-release-4.3.1.Final\lib\required*;. SaveBook.java

Now, run this application using the following command:
java -cp ..\hibernate-release-4.3.1.Final\lib\required*;..\mysql-connector-
java-5.1.26-bin.jar;. SaveBook

664 ADVANCED JAVA PROGRAMMING

You may check if the application really added a row in the table book as follows:
mysql> select * from tbl_book;
+----+---------------------------+-------+
| id | title | price |
+----+---------------------------+-------+
| 32 | Advanced Java Programming | 450 |
+----+---------------------------+-------+
1 row in set (0.00 sec)

23.8	 USING ANNOTATION
We mentioned earlier that object to database mapping information may be specified in two ways:

(i) using XML files (which we have used so far) and (ii) using annotations. One minor problem
of the former method is that we need to make a separate XML file for this mapping. Annotations
avoid this problem by allowing developers to specify mapping directly into the POJO Java source
file. Consequently, it also develops to readily understand the object to table correspondence during
class file development.

23.9	 ENVIRONMENT SETUP FOR HIBERNATE ANNOTATION
The annotations used in hibernate are provided by Oracle (formerly Sun) under javax.persistence

package and hibernate has provided implementations for annotations given in that package. So, it is
necessary to download the distribution package javax.persistence. We downloaded the .zip file javax.
persistence.jar.zip from http://www.java2s.com/Code/Jar/j/Downloadjavaxpersistencejar.
htm and placed the javax.persistence.jar (contained in the .zip file) file in the hibernate_home\
hibernate-release-4.3.1.Final\lib\required directory. Alternatively, place this Jar file in your
CLASSPATH or specify it at compile time and runtime using –cp or –classpath option. Note that
any other JAR file containing javax.persistence package may also be used.

23.10	 BOOK APPLICATION USING ANNOTATION
Let us use our Book application to understand annotations. Change Book.java as described in

the following:
Import annotation interfaces from javax.persistence package as follows:
import javax.persistence.*;

The complete source of the modified annotated Book.java is shown below:
//Book.java
import javax.persistence.*;
@Entity
@Table(name = "tbl_book")
public class Book {
 private int b_id;
 private int b_price;
 private String b_title;
 public Book(){}
 public Book(String t, int p) {
 this.b_title = t;
 this.b_price = p;
 }

 @Id @GeneratedValue
 @Column(name = "no")
 public int getId() { return b_id; }
 public void setId(int id) { this.b_id = id; }

 @Column(name = "name")
 public String getTitle() { return b_title; }
 public void setTitle(String t) { this.b_title = t; }

 @Column(name = "pr")
 public int getPrice() { return b_price; }
 public void setPrice(int p) { this.b_price = p; }
}

HIBERNATE 665

//Book.java
import javax.persistence.*;
@Entity
@Table(name = "tbl_book")
public class Book {
 private int b_id;
 private int b_price;
 private String b_title;
 public Book(){}
 public Book(String t, int p) {
 this.b_title = t;
 this.b_price = p;
 }

 @Id @GeneratedValue
 @Column(name = "no")
 public int getId() { return b_id; }
 public void setId(int id) { this.b_id = id; }

 @Column(name = "name")
 public String getTitle() { return b_title; }
 public void setTitle(String t) { this.b_title = t; }

 @Column(name = "pr")
 public int getPrice() { return b_price; }
 public void setPrice(int p) { this.b_price = p; }
}

The XML mapping file Book.hbm.xml is no longer needed. So, delete the following line from
SaveBook.java:

cfg.addResource("Book.hbm.xml");

Add annotation class to the hibernate Configuration object:
cfg.addAnnotatedClass(Book.class);

The position of @Id annotation determines how Hibernate should access properties on objects.
If it is placed on any field, Hibernate accesses object properties directly through fields. In this case,
if a field name is different from a column name, @Column annotation must be present for that field
and must provide association.

On the other hand, if @Id annotation is placed on any method, object properties are accessed
through get and set methods. So, get and set methods must be present. In that case if property name
corresponding to a get method is different from column name, @Column annotation must be present
for that get method and must provide association.

In our previous example, @Id annotation is placed on the getId() method. Hence, Hibernate
uses get and set methods to access object properties. The following annotation instructs Hibernate
to access fields of Book object directly:

//Book.java
import javax.persistence.*;
@Entity
@Table(name = "tbl_book")
public class Book {
 @Id @GeneratedValue
 @Column(name = "no")
 private int b_id;

 @Column(name = "pr")
 private int b_price;

 @Column(name = "name")
 private String b_title;
 public Book(){}
 public Book(String t, int p) {
 this.b_title = t;
 this.b_price = p;
 }
}

Since, Hibernate accesses fields directly, get and set methods are not necessary for Hibernate.
However, if an application wants to access those private fields, suitable methods are necessary.

23.11	 FUNCTION OF DIFFERENT ANNOTATIONS

@Entity

It is used to declare a class as an Entity bean. The class should have at least a package scoped
no-argument constructor.

666 ADVANCED JAVA PROGRAMMING

@Table

This optional annotation is used to specify the table to store persistent objects. The value of name
attribute refers to the table name. If none are used, Hibernate uses the class name as the table name.

@Id

It is used to specify the identifier property of the entity bean.

@GeneratedValue

This optional annotation is used to specify the primary key generation strategy to use. If none
are used, default AUTO will be used.

@Column

This optional annotation is used to map a field or a property to a table column. If none are specified,
by default, the property name will be used as the column name.

23.12	 OBJECT LIFE CYCLE
Objects in Hibernate go through any of the three states: transient, persistent and detached.

Transient State

When an object is just instantiated, it is said to be in transient state. A transient object does not
yet correspond to any row in the database table. Consequently, any modification on a transient object
has no effect on the underlying table. Consider the following example:

Book aBook = new Book("Hibernate", 450);

Here, aBook is a transient object. Hibernate is not aware of aBook so far.

Persistent State

When an object is associated with a hibernate session in some way, it is said to be in persistent
state. The following are some ways to associate an object with a session:

•	 Load an already existing object from database
•	 Store/Update an object to database

The Session interface provides a number of persistence methods to associate an object with the
session such as save(), update(), saveOrUpdate(), merge(), load(), get(), persist(), etc.

A persistent object corresponds to a row of the database table. Persistent objects are stored in the
session’s cache. When a session is flushed (using commit() or rollback()), all persistent objects in
session’s cache are saved to the database. So, it is not mandatory to explicitly save or update persistent
objects, upon modification, to the database, if they are part of an active transaction. They are saved
when the transaction is committed.

Detached State

A detached object is one which was in a session’s cache earlier, but no longer remains there.
This may happen if

•	 cache is completely cleared (using clear() method), or

•	 object is removed from cache (using evict() method) or

HIBERNATE 667

•	 session is closed (using close() method),
•	 transaction is committed.

Unlike a transient object, a detached object did correspond to a table row. However, it does not
currently correspond to any table row. A detached object, however, may be attached to a session later
which makes it persistent again.

23.13	 HIBERNATE QUERY LANGUAGE
Hibernate Query Language (HQL) is a query language similar to SQL but operates on persistent

objects instead of tables. Hibernate translates HQL queries into SQL queries which in turn perform
action on database. The advantage of HQL over SQL is that, we can avoid database portability issues
and take benefits of Hibernate’s SQL generation and caching strategies.

An HQL query is represented as a Query object which is created using createQuery() method
of Session passing the query string to the method. Here is an example:

String str = "from Book";
Query query = session.createQuery(str);

Here "FROM Book" is an HQL query and query is a Query object that represents the query. The
Query interface has a list of useful methods that are used to work with queries such as executing
them, specifying parameters etc. Here is an example that prints the information of all persistent
objects:

List<Book> books = query.list();
for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

The following sections describe how to use different HQL clauses.

23.13.1	 From
This clause is used to obtain entire persistent objects.
Query query = session.createQuery("from Book");
List<Book> books = query.list();
for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

This prints the information of all persistent Book objects. The method list() executes the query
and returns all of Book objects as a list.

23.13.2	 Select
Unlike from clause which always returns entire objects, select clause can be used to obtain

individual properties of the objects.
Query query = session.createQuery("select title, price from Book");
List<Object[]> list = (ArrayList)query.list();

The query only selects title and price properties of Book objects. The list() methods returns
a list of Object arrays each of which has two elements—one for title and the other for the price. It
can be extracted as follows:

for(Object[] item : list) {
 String title = (String)item[0];
 int price = ((Integer)item[1]).intValue();
 System.out.println(title+" "+price);
}

668 ADVANCED JAVA PROGRAMMING

23.13.3	 Where
It is used to filter result and can be used with from or select clause.
Query query = session.createQuery("from Book where price < 400");
List<Book> books = query.list();

The following uses where with select:
Query query = session.createQuery("select * from Book where price < 400");
List<Object[]> list = (ArrayList)query.list();

23.13.4	 Filtering
It enables us to filter data obtained from the database using some query according to a custom

condition. Filters have a unique name for identification and can accept parameters and can also
be used with XML mapping and annotation. There are two steps to work with filters: define a
filter and attach it to a mapping element. A filter in mapping file is defined using <filter-def>
tag as follows:

<filter-def name="priceFilter">
 <filter-param name="price" type="java.lang.Integer" />
</filter-def>

This filter priceFilter is then attached to a class or collection:
<class>
 …

<filter name="priceFilter" condition="pr < :price"/>
</class>

Using the filter is as simple as follows:
Filter filter = session.enableFilter("priceFilter");
filter.setParameter("price", 400);
Query query = session.createQuery("from Book");
List<Book> books = query.list();

This list contains only those books whose price is less than 400.

23.13.5	 Order by
This clause is used to sort the result of an HQL query either in ascending (asc) or descending

(desc) order. The following query sorts the result with respect to id in ascending order:
Query query = session.createQuery("from Book order by id");

The following query sorts the result with respect to price in descending order:
Query query = session.createQuery("from Book order by price desc");

23.13.6	 Group by
This is similar to SQL group by clause. Here is a simple example:
Query query = session.createQuery("select count(price), price from Book group
by price");
List<Object[]> list = (ArrayList)query.list();

This finds number of books for each price category.

23.13.7	 Parameter Binding
A parameter may be passed to an HQL query by concatenating it as follows:
String val = "What is Hibernate?";
Query query = session.createQuery("FROM Book where title='"+val+"'");
List<Book> books = query.list();

HIBERNATE 669

This works fine as long as name does not contain any special character such as “’”. For example if
the name is What's Hibernate?, the resultant query FROM Book where title='What is Hibernate?
becomes invalid due to the character "'" in the word What's. This situation can be handled in two
ways: using named parameters or positional parameters.

Named Parameter
It first defines a named parameter using a colon followed by a parameter name. For example, the

following defines a named parameter :title.
Query query = session.createQuery("FROM Book where title=:title");

The value of this named parameter may be set using setParameter() method as follows:
query.setParameter("title", val);

The rest of the code now works fine. Alternatively, setString() method may be used:
query.setString("title", val);

The Query interface has many set methods, one for each data type. The setProperties() method
may also be used in general:

Book bk = new Book();
bk.setTitle(val);
query.setProperties(bk);

Positional Parameters
This is similar to prepared statements in SQL. In this case a parameter is defined using question

mark (?).
Query query = session.createQuery("FROM Book where title=?");

We specify their values using setParameter() or setString() method. Since, parameters defined
in this fashion are unnamed, we specify their positions (hence its name) instead of their names:

query.setParameter(0, val);

or
query.setString(0, val);

The basic disadvantage of this method is that if positions of parameters change, we must also
change their indexes in set method.

23.13.8	 Update
This is used to update one or more properties of one or more objects. The following is a simple

example:
Query query = session.createQuery("update Book set price=400 where id=1");
int result = query.executeUpdate();
System.out.println("Rows affected: " + result);

23.13.9	 Delete
This clause deletes one or more persistent objects. The following query when executed, deletes

all Book objects having price property greater than 400.
Query query = session.createQuery("delete from Book where price > 400");

23.13.10	 Insert
HQL currently supports record insertion from one object to another. Here is a simple example:
Query query = session.createQuery("insert into Book(title, price) select title,
price from Book where id=1");

670 ADVANCED JAVA PROGRAMMING

23.13.11	 Aggregate Methods
HQL supports a set of aggregate methods, similar to SQL and works the same way. Here is a

simple example:
Query query = session.createQuery("select count(*) from Book");

23.14	 USING NATIVE SQL QUERY
Since, every HQL query will finally be translated into SQL query, applications using HQL queries

takes more time to run. Fortunately, Hibernate allows us to use SQL queries in our applications as
well. It is sometimes useful to use database-specific features such as query hints or the CONNECT
keyword in Oracle. Hibernate also allows us to query, store procedures etc. in SQL. An SQL query
is created using createSQLQuery() method as follows:

SQLQuery query = session.createSQLQuery("select no, name, pr from tbl_book");

Note that the result of this query is an Object array. The types of array elements are determined from
ResultSetMetadata. It is the responsibility of the programmer to convert array elements in proper type.

List<Object[]> list = (ArrayList)query.list();
for(Object[] item : list) {
 Integer id = (Integer)item[0];
 String title = (String)item[1];
 Integer price = (Integer)item[2];
 System.out.println(id+" "+title+" "+price);
 }

However, we can (and should) explicitly indicate the data type of fields being retrieved. Below
is a description of how this can be achieved.

query.addScalar("no", org.hibernate.type.IntegerType.INSTANCE);
query.addScalar("name", org.hibernate.type.StringType.INSTANCE);
query.addScalar("pr", org.hibernate.type.IntegerType.INSTANCE);

However, it requires us to manually parse the results. This can be avoided by indicating what
data type is being retrieved using addEntity() method:

query.addEntity(Book.class);

The rest of the code works as before:
List<Book> books = query.list();
for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

23.15	NAMED QUERIES
Using too many queries makes Java code ugly. Fortunately, Hibernate provides a technique called

named queries that lets us separate queries from the coding section of the application. Developers place
queries in mapping xml file (.hbm files) or annotated class and assign unique names to them. A Java
application can refer to those queries by their name. The following are some advantages of named queries:

•	 Since, queries are no longer scattered in Java code, it greatly helps in code cleanup.
•	 It is possible to use the same query multiple times without writing the same query multiple times.
•	 Their syntax is checked when the session factory is created, making the application fail safe in case of an error.
•	 If queries are placed in the mapping file, no recompilation is required in case of query modification. However, since

most of the cases queries are cached, reloading of session factory is required which may result in server restart up.

However, named queries sometimes make debugging difficult as we have to locate the actual
query definition being executed and understand that as well. In terms of performance, named queries

HIBERNATE 671

do not make much difference nor put any extra cost. Hibernate supports both HQL as well as native
SQL named queries.

23.15.1	 Defining Named Queries
The named queries may be defined in the mapping file or in an annotated class.

Using Mapping File
We define an HQL named query using <query> tag in the mapping file as follows:
<hibernate-mapping default-access="property">
 …
 <query name="find_All_Books_HQL">
 from Book
 </query>
 …
</hibernate-mapping>

If there is a <class> element, put it before <query> element. The <query> tag has a mandatory
attribute name which specifies the name assigned to the query and referred by the application. The
query itself is written within the <query> tag. Since a query may contain some special characters
(such as <, > etc), it is usually placed within CDATA section as follows:

<query name="find_Books_price_less_than_300_HQL">
 <![CDATA[from Book where price < 300]]>
</query>

An SQL named query is defined using <sql-query> tag as follows:
<sql-query name="find_All_Books_SQL">
 <return class="Book"/>
 select * from tbl_book
</sql-query>

The <return> tag specifies entity object to be returned by the SQL query. The CDATA section is
usually used to embed query as it may contain special characters such as <, > etc. as follows:

<sql-query name="find_Books_price_less_than_300_SQL">
 <return class="Book"/>

<![CDATA[select * from tbl_book where pr < 300]]>
</sql-query>

Using Annotation
Named HQL queries may be defined in an annotated class using @NamedQueries annotation as

follows:
@NamedQueries({
 @NamedQuery(name="find_All_Books_HQL", query="from Book")
})

The @NamedQueries annotation contains a comma-separated list of queries, each of which is
specified by @NamedQuery annotation. @NamedQuery annotation has two important attributes: name
and query. The name specifies the name of the query by which it will be referred and the query
specifies the actual HQL query string to be executed in database. Multiple queries are defined as
follows:

@NamedQueries({
 @NamedQuery(name="find_All_Books_HQL", query="from Book"),
 @NamedQuery(name="find_Books_price_less_than_300_HQL",
 query="from Book where price < 300")
})

672 ADVANCED JAVA PROGRAMMING

SQL named queries are defined using @NamedNativeQueries and @NamedNativeQuery annotations.
@NamedNativeQueries({
 @NamedNativeQuery(name="find_All_Books_SQL", query = "select * from tbl_book",
 resultClass=Book.class
),
})

The resultClass attribute specifies entity to be returned by the SQL query. Multiple queries are
defined as follows:

@NamedNativeQueries({
 @NamedNativeQuery(name="find_All_Books_SQL", query = "select * from tbl_book",
 resultClass=Book.class),
 @NamedNativeQuery(name="find_Books_price_less_than_300_SQL",
 query = "select * from tbl_book where pr < 300", resultClass=Book.class)
})

The names of queries must be unique in XML mapping files or annotations. In practice, it’s
always a good idea to place all named queries in a separate file and include it in the Java code or in
the configuration file. Here is an example of named query file (NQ.hbm.xml):

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping SYSTEM
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <query name="find_All_Books_HQL"><![CDATA[from Book]]</query>
 <sql-query name="find_All_Books_SQL">
 <return class="Book"/>
 <![CDATA[select * from tbl_book]]
 </sql-query>
</hibernate-mapping>

To include this file in Java code, use addResource() of Configuration object as follows:
Configuration cfg = new Configuration();
//add configuration file
cfg.addResource("NQ.hbm.xml");

Alternatively, include the mapping resource in the configuration file (say config.xml) using
<mapping resource="NQ.hbm.xml"/> and add the configuration file as follows:

cfg.configure("config.xml");

23.15.2	 Calling Named Queries
Once a query is defined, it’s name may be used in getNamedQuery() method to create a Query

object as follows:
Query query = session.getNamedQuery("find_All_Books_HQL");

Execute the query calling its list() method:
List<Book> books = query.list();

This list can then be iterated to obtain information about all Book objects as follows:
for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

Here is the complete source code (NamedQueryTest.java) of Java program that uses named query
stored in NQ.hbm.xml file:

//NamedQueryTest.java
import org.hibernate.*;
import org.hibernate.cfg.*;
import java.util.*;
public class NamedQueryTest {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 cfg.addResource("NQ.hbm.xml");

 SessionFactory factory = cfg.buildSessionFactory();
 Session session = factory.openSession();
 Transaction tx=session.beginTransaction();

 try {
 Query query = session.getNamedQuery("find_All_Books_HQL");
 List<Book> books = query.list();
 for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

 tx.commit();
 }catch (Exception e) {
 e.printStackTrace();
 if (tx!=null) tx.rollback();
 }
 finally { session.close();factory.close();}
 }

}

HIBERNATE 673

//NamedQueryTest.java
import org.hibernate.*;
import org.hibernate.cfg.*;
import java.util.*;
public class NamedQueryTest {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 cfg.addResource("NQ.hbm.xml");

 SessionFactory factory = cfg.buildSessionFactory();
 Session session = factory.openSession();
 Transaction tx=session.beginTransaction();

 try {
 Query query = session.getNamedQuery("find_All_Books_HQL");
 List<Book> books = query.list();
 for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

 tx.commit();
 }catch (Exception e) {
 e.printStackTrace();
 if (tx!=null) tx.rollback();
 }
 finally { session.close();factory.close();}
 }

}

//NamedQueryTest.java
import org.hibernate.*;
import org.hibernate.cfg.*;
import java.util.*;
public class NamedQueryTest {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 cfg.addResource("NQ.hbm.xml");

 SessionFactory factory = cfg.buildSessionFactory();
 Session session = factory.openSession();
 Transaction tx=session.beginTransaction();

 try {
 Query query = session.getNamedQuery("find_All_Books_HQL");
 List<Book> books = query.list();
 for (Book b : books)
 System.out.println(b.getId() +" "+b.getTitle()+" "+ b.getPrice());

 tx.commit();
 }catch (Exception e) {
 e.printStackTrace();
 if (tx!=null) tx.rollback();
 }
 finally { session.close();factory.close();}
 }

}

23.16	 GENERATING DDL
Hibernate also provides useful classes to generate DDL. The generated schema may be printed to

the console, stored in a file for later use or even exported to a database. The org.hibernate.tool.
hbm2ddl.SchemaExport class can be used for these purposes. The SchemaExport object is created
from a given Configuration object as follows:

SchemaExport schemaExport = new SchemaExport(cfg);

The schema is then created using its create() method:
boolean print = true, export = true;
schemaExport.create(print, true);

This runs the schema creation script. The drop() method is automatically executed before running
the creation script. The variables print and export indicate that the schema has to be printed to the
console and exported to the database. The following is the complete source code of the program:

//GenerateDDL.java
import org.hibernate.cfg.*;
import org.hibernate.tool.hbm2ddl.*;
public class GenerateDDL {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 SchemaExport schemaExport = new SchemaExport(cfg);
 schemaExport.setDelimiter(";");
 schemaExport.setOutputFile("out.sql");
 boolean print = true, export = true;
 schemaExport.create(print, true);
 }
}

The program also stores the schema in a file out.sql containing the following SQL statements:
 drop table if exists tbl_book;
 create table tbl_book (
 no integer not null auto_increment,
 name varchar(255),
 pr integer,
 primary key (no)
);

674 ADVANCED JAVA PROGRAMMING drop table if exists tbl_book;
 create table tbl_book (
 no integer not null auto_increment,
 name varchar(255),
 pr integer,
 primary key (no)
);

If you check the database, you will find that the table tbl_book is created by the above program.
mysql> desc tbl_book;
+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
no	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
pr	int(11)	YES		NULL	
+-------+--------------+------+-----+---------+----------------+
3 rows in set (0.01 sec)

23.17	 SYNTAX OF O/R MAPPING FILE
The root element of an XML mapping document is <hibernate-mapping>, which has many

optional attributes. The list of possible attributes with their possible values is shown below:
<hibernate-mapping package="package.name" auto-import="true|false"
 schema="schemaName" catalog="catalogName" default-cascade="cascade_style"
 default-access="field|property|ClassName" default-lazy="true|false"/>

A short description of each of these attributes is given below:
package: Specifies a package prefix to be used for unqualified class names
auto-import (default is true): Specifies whether we can use unqualified class names in the

query language
schema: The name of a database schema
catalog: The name of a database catalog
default-cascade (default is none): The default cascade style
default-access (default is property): Specifies the strategy Hibernate should use to access

all properties. It may be a custom implementation of PropertyAccessor. When default-access is
property, Hibernate identifies property names corresponding to table columns from mapping files. It
then uses corresponding get and set methods to access the values of the object fields.

default-lazy (default is true): Specifies the policy for unspecified lazy attributes of class and
collection mappings
The <class> element

This element maps the domain object with the corresponding entity in the database. The <hibernate-
mapping> element allows us to nest several persistent <class> mappings. However, it recommended to
map only a single persistent class in one mapping file and name it after the persistent superclass, e.g. Book.
hbm.xml, Employee.hbm.xml. The list of possible attributes with their possible values is shown below:

<class
name="ClassName"
table="tableName"
discriminator-value="discriminator_value"
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxyInterface"
dynamic-update="true|false"
dynamic-insert="true|false"
select-before-update="true|false"
polymorphism="implicit|explicit"
where="arbitrary sql where condition"
persister="PersisterClass"
batch-size="N"
optimistic-lock="none|version|dirty|all"
lazy="true|false"
entity-name="EntityName"
catalog="catalog"
check="arbitrary sql check condition"
rowid="rowid"
subselect="SQL expression"
abstract="true|false"
/>

HIBERNATE 675

<class
name="ClassName"
table="tableName"
discriminator-value="discriminator_value"
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxyInterface"
dynamic-update="true|false"
dynamic-insert="true|false"
select-before-update="true|false"
polymorphism="implicit|explicit"
where="arbitrary sql where condition"
persister="PersisterClass"
batch-size="N"
optimistic-lock="none|version|dirty|all"
lazy="true|false"
entity-name="EntityName"
catalog="catalog"
check="arbitrary sql check condition"
rowid="rowid"
subselect="SQL expression"
abstract="true|false"
/>

The following is a brief description of each of the possible attributes:
name (optional):

The fully qualified Java class name of the persistent class/interface. If this attribute is absent, it
is considered that the mapping is for a non-POJO entity.
table (optional - defaults to the unqualified class name):

The name of table in database
discriminator-value (optional - defaults to the class name):

A value that distinguishes individual subclasses, used for polymorphic behaviour
mutable (optional, defaults to true):

Specifies if the instances of the class are mutable
schema (optional):

Override the schema name specified by the root <hibernate-mapping> element
catalog (optional):

Override the catalog name specified by the root <hibernate-mapping> element
proxy (optional):

Specifies an interface to use for lazy initializing proxies
dynamic-update (optional, defaults to false):

Specifies that update SQL statement should be generated at runtime and contain only those
columns whose values have changed
dynamic-insert (optional, defaults to false):

Specifies that insert SQL statements should be generated at runtime and contain only the columns
whose values are not null
select-before-update (optional, defaults to false):

Specifies that Hibernate should never perform an SQL update unless it is certain that an object
is actually modified
polymorphism (optional, defaults to implicit):

Determines whether implicit or explicit query polymorphism is used
where (optional):

Specifies an arbitrary SQL WHERE condition to be used when retrieving objects of this class
persister (optional):

Specifies a custom ClassPersister

676 ADVANCED JAVA PROGRAMMING

batch-size (optional, defaults to 1):

Specifies the batch size for fetching instances of this class by identifier
optimistic-lock (optional, defaults to version):

Determines the optimistic locking strategy
lazy (optional):

Lazy fetching may be completely disabled by setting lazy="false"
entity-name (optional):

Hibernate version 3 allows a class to be mapped multiple times and also allows entity mappings
that are represented by Maps or XML at the Java level. In these cases, we provide an arbitrary name
for the entity explicitly.
catalog (optional):

The name of a database catalog used for this class and its table
check (optional):

An SQL expression used to generate a multi-row check constraint for automatic schema generation
rowid (optional):

Hibernate can use the rowid extra column (for databases such as Oracle) for fast updates if this
option is set to rowid
subselect (optional):

Maps an immutable and read-only entity to a database subselect. Useful if you want to have a
view instead of a base table, but don’t
abstract (optional):

Used to mark abstract super classes in <union-subclass> hierarchies

23.18	 GENERATOR CLASS
The <generator> sub-element of <id> specifies how to generate the unique identifier for the

persistent objects. Hibernate defines many generator classes which implement org.hibernate.
id.IdentifierGenerator interface. It is also possible to write a generator class implementing this
interface. The type of generator is indicated in the <generator> element using class attribute as
follows:

<generator class="generator type"></generator>

Some of the built-in generator classes with their functions are discussed in Table 23.2:

Table 23.2: Built-in generator classes with their functions

Generator type Description

assigned Default strategy. Application must assign the id.

increment It generates the unique id. The first generated identifier is usually 1 and is incremented
by 1.

identity Similar to increment, but database dependent.

sequence It uses the sequence of the database. Creates a sequence HIBERNATE_SEQUENCE
automatically if there is none. Database specific.

hilo It uses high and low (hence the hilo) algorithm to generate the id.

(Contd)

HIBERNATE 677

Generator type Description

native It tries to use identity, sequence or hilo depending on the availability in the database.

seqhilo It uses high and low algorithm on the specified sequence name.

uuid It uses 128-bit UUID algorithm to generate the String id which is unique within a network
as IP is used. It is represented by 32 hexadecimal digits.

guid It uses GUID generated by database of type string.

select It uses the primary key returned by the database trigger.

foreign It uses the id of another associated object, mostly used with <one-to-one/> association.

sequence-identiy It uses a special sequence generation strategy. It is supported in Oracle 10g drivers only.

23.19	 HIBERNATE TOOLS
Hibernate tools is a set of utilities used to automatically generate various resources such as

•	 Java source files, database schemas and DAO classes from mapping file
•	 Mapping file from database schema etc.

It only works either as an Eclipse plug-in or in JBoss Developer Studio or with Apache Ant.
When used with Eclipse, it provides an editor to edit mapping files and a console. The editor also
supports auto-completion and syntax highlighting and semantic auto-completion for class names,
property/field names, table names and column names. The console allows us to configure database
connections, provides visualization of classes and their relationships with tables and allows us to
execute HQL queries interactively against database and view the query results.

In this section, we shall discuss how to use Hibernate Tools with Ant. If you are new to Ant, you
can read its manual from http://ant.apache.org/manual/index.html. We shall create a stand-
alone ant build file with the minimum number of required libraries.

23.19.1	 Using Hibernate Tools with Ant
This section describes how to install and configure Hibernate Tools to work with Apache Ant. If it

is not already installed in your machine, download it from https://ant.apache.org/bindownload.
cgi. We downloaded apache-ant-1.9.3-bin.zip and when unzipped in D: drive (in windows), the
following directory structure was created. The primary utility ant.bat may be found in bin directory.

To use this utility, either place this directory in your PATH environment variable
or use fully qualified path name of this utility.

A set of JAR files is needed to work with Hibernate tools. We downloaded
the following JAR files from www.java2s.com: and placed in a directory
antlib.

dom4j-1.6.1.jar
freemarker-2.3.19.jar
hibernate3.jar
hibernate-tools.jar
javax.persistence.jar
jtidy-r872-jdk15.jar
log4j-1.2.15.jar
mysql-connector-java-5.1.13.jar
org.apache.commons-logging-1.0.4.jar
slf4j-api-1.5.8.jar

Table 23.2: (Contd)

678 ADVANCED JAVA PROGRAMMING

The primary JAR file for Hibernate tools is hibernate-tools.jar. The JAR hibernate-
3.2.2.jar contains core Hibernate and annotation library. The rest of the files are required by Ant
build utility. The Hibernate Tools is now ready to work with Ant.

23.19.2	 Ant Task
The ant runs on a specified XML file containing build information. If none is supplied, ant assumes

a file build.xml. A typical structure of this file is shown below:
<project>
 …
</project>

Create an ant task for our Hibernate Tool in the <project> element as follows:
<project>
 …

<path id="libpath">
 <fileset dir="antlib" includes="*.jar"/>
 </path>

 <taskdef name="MyTask" classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="libpath" />
 …
</project>

This makes a task called MyTask and the class org.hibernate.tool.ant.HibernateToolTask
implements the task. This task can now be used anywhere in the Ant build.xml file:

<project>
 <path id="libpath">
 <fileset dir="antlib" includes="*.jar"/>
 </path>

 <taskdef name="MyTask" classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="libpath" />

<MyTask destdir="./target">
 …
 </MyTask>
…
</project>

The required attribute destDir specifies that directory to be used to place generated files by
exporters.

23.19.3	 Configuring Task
The task, to do its function, reads metadata from some files which are specified as follows:
<configuration configurationfile="config.xml">
 <fileset dir="." includes="Book.hbm.xml"/>
</configuration>

This tells the task to read configuration and mapping data from files config.xml and Book.hbm.
xml respectively. These are the files we used earlier to develop hibernate application. Only use the
following DOCTYPE for correct operation:

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

Since it gathers metamodel information from standard files, it is called standard configuration.
Given a configuration file and XML mapping files this configuration is usually used to generate

HIBERNATE 679

database schema and Java POJO and DAO source files, documentation files etc. In general, a standard
configuration takes the following form:

<configuration
 configurationfile="hibernate.cfg.xml"
 propertyfile="hibernate.properties"
 entityresolver="EntityResolver classname"
 namingstrategy="NamingStrategy classname"
>
 <fileset...>

</configuration>

In addition to standard configuration, Hibernate tools also support annotation and JDBC-based
configurations. An annotation-based configuration is used to read the meta model from annotated
class and is created using <annotationconfiguration> tag as follows:

<annotationconfiguration configurationfile="config.xml" />

The annotated class is specified in the config.xml as follows:
<mapping class="Book"/>

Given an annotated class this can be used to create database schema, mapping file and DAO
class, documentation files etc.

A JDBC-based configuration is used to perform reverse engineering of a database from a JDBC
connection using <jdbcconfiguration> tag. Here is an example JDBC configuration:

<jdbcconfiguration configurationfile="config.xml" />

It reads the connection properties from an XML configuration file and may be used to generate
Java POJO and DAO source files, mapping files, documentation etc. A JDBC configuration takes all
attributes of <configuration> tag together with the following additional attributes:

<jdbcconfiguration
 ...
 packagename="package.name"
 revengfile="hibernate.reveng.xml"
 reversestrategy="ReverseEngineeringStrategy classname"
 detectmanytomany="true|false"
 detectoptmisticlock="true|false"
>
 ...
 </jdbcconfiguration>

23.19.4	 Exporters
These are the tags which actually convert the Hibernate metamodel into various artifacts. The

following section describes various exporters available in the Hibernate Tool distribution.

Schema Exporter
For standard or annotation configuration and given a metamodel, this exporter (<hbm2ddl>)

generates SQL DDL statements, which can be stored in a file and/or exported to the database
directly.

<MyTask destdir="./dest">
 <configuration configurationfile="config.xml">
 <fileset dir="." includes="Book.hbm.xml"/>
 </configuration>

<hbm2ddl export="true" outputfilename="out.sql"/>
</MyTask>

680 ADVANCED JAVA PROGRAMMING

It is used with standard configuration and generates the following SQL DDL query and stores it
in a file out.sql:

create table tbl_book (
 no integer not null auto_increment,
 name varchar(255),
 pr integer,
 primary key (no)
);

The notation export="true" instructs the exporter to fire this query to the database also. The
result may be checked using the following SQL statements:

mysql> desc tbl_book;
+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
no	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
pr	int(11)	YES		NULL	
+-------+--------------+------+-----+---------+----------------+
3 rows in set (0.01 sec)

Annotation configuration may also be used to generate the same as follows:
<MyTask destdir="./dest">
 <classpath><path location="." /></classpath>
 <annotationconfiguration configurationfile="config.xml" />

<hbm2ddl export="true" outputfilename="out.sql"/>
</MyTask>

An additional <classpath> tag is necessary in this situation. In general <hbm2ddl> takes the
following form:

<hbm2ddl drop="true|false" create="true|false" export="true|false"
 update="true|false" outputfilename="filename.ddl" delimiter=";"
 format="true|false" >

POJO Class Exporter
This exporter (<hbm2java/>) generates Java POJO source files from any type of configuration.

It takes the following form:
<hbm2java jdk5="true|false" ejb3="true|false" />

The jdk5 attribute controls if the code is JDK 5 compatible and ejb3 controls if the code should
contain annotations. Here is an example:

<MyTask destdir="./dest">
 <configuration configurationfile="config.xml">
 <fileset dir="." includes="Book.hbm.xml"/>
 </configuration>

<hbm2java/>
</MyTask>

When used, it generated a POJO class Book.java in the dest directory as follows:
// default package
// Generated Mar 1, 2014 5:19:24 AM by Hibernate Tools 3.2.1.GA
/**
 * Book generated by hbm2java
 */
public class Book implements java.io.Serializable {
 private int id;
 private String title;
 private int price;
 public Book() { }
 public Book(String title, int price) {
 this.title = title;
 this.price = price;
 }
 public int getId() { return this.id; }
 public void setId(int id) { this.id = id; }
 public String getTitle() { return this.title; }
 public void setTitle(String title) { this.title = title; }
 public int getPrice() { return this.price; }
 public void setPrice(int price) { this.price = price; }
}

HIBERNATE 681

// default package
// Generated Mar 1, 2014 5:19:24 AM by Hibernate Tools 3.2.1.GA
/**
 * Book generated by hbm2java
 */
public class Book implements java.io.Serializable {
 private int id;
 private String title;
 private int price;
 public Book() { }
 public Book(String title, int price) {
 this.title = title;
 this.price = price;
 }
 public int getId() { return this.id; }
 public void setId(int id) { this.id = id; }
 public String getTitle() { return this.title; }
 public void setTitle(String title) { this.title = title; }
 public int getPrice() { return this.price; }
 public void setPrice(int price) { this.price = price; }
}

The following example generates an annotated Java source file.
<hbm2java ejb3="true" />

DAO Exporter
Hibernate tools also allows us to create DAO via <hbm2dao> exporter as follows:
<MyTask destdir="./dest">
 <configuration configurationfile="config.xml">
 <fileset dir="." includes="Book.hbm.xml"/>
 </configuration>

<hbm2dao/>
</MyTask>

When used, it generated a DAO class file BookHome.java for Book in the dest directory as
follows:

// default package
// Generated Mar 1, 2014 5:19:24 AM by Hibernate Tools 3.2.1.GA

import java.util.List;
import javax.naming.InitialContext;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.LockMode;
import org.hibernate.SessionFactory;
import org.hibernate.criterion.Example;

/**
 * Home object for domain model class Book.
 * @see .Book
 * @author Hibernate Tools
 */
public class BookHome {
 private static final Log log = LogFactory.getLog(BookHome.class);
 private final SessionFactory sessionFactory = getSessionFactory();
 protected SessionFactory getSessionFactory() {
 try {
 return (SessionFactory) new InitialContext().lookup("SessionFactory");
 } catch (Exception e) {
 log.error("Could not locate SessionFactory in JNDI", e);
 throw new IllegalStateException("Could not locate SessionFactory in JNDI");
 }
 }
 public void persist(Book transientInstance) {
 log.debug("persisting Book instance");
 try {
 sessionFactory.getCurrentSession().persist(transientInstance);
 log.debug("persist successful");
 } catch (RuntimeException re) {
 log.error("persist failed", re);
 throw re;
 }
 }
 …

}

682 ADVANCED JAVA PROGRAMMING

This DAO class can then be used to load, store Book objects to the database. However, this
generated class BookHome.java does not use persistence methods such as persist() within a
transaction boundary, which is required for correct function of these methods. Usually, a layer
above the DAO is used to control the Transaction boundaries. This might be Container Managed
Transaction (CMT) or a manually managed transaction boundary. We use the latter method and
insert a constructor as follows:

public BookHome(SessionFactory sf) {this.sessionFactory = sf;}

We also change the declaration of sessionFactory as follows:
private final SessionFactory sessionFactory;

To test this DAO, we write a test class DAOTest.java as follows:
//DAOTest.java
import org.hibernate.*;
import org.hibernate.cfg.*;
public class DAOTest {
 public static void main(String[] args) {
 Configuration cfg = new Configuration();
 cfg.configure("config.xml");
 cfg.addResource("Book.hbm.xml");
 SessionFactory factory = cfg.buildSessionFactory();
 BookHome dao = new BookHome(factory);
 Transaction tx=factory.getCurrentSession().beginTransaction();
 Book b = new Book("Introduction to Hibernate", 400);

dao.persist(b);
 tx.commit();
 factory.getCurrentSession().close();
 factory.close();
 }
}

Don’t forget to add the following property in config.xml file:
<property name="hibernate.current_session_context_class">thread</property>

The BookHome.java needs a package org.apache.commons.logging which can be found in org.
apache.commons-logging-1.0.4.jar file. Put all the necessary JAR files in a directory required
under the current directory. Use the following command to compile source files:

javac -cp .\required*;. Book.java BookHome.java DAOTest.java

Run the application as follows:
java -cp .\required*;. DAOTest

Check the database as follows:
mysql> select * from tbl_book;
+----+---------------------------+------+
| no | name | pr |
+----+---------------------------+------+
| 1 | Introduction to Hibernate | 400 |
+----+---------------------------+------+
1 row in set (0.00 sec)

Mapping File Exporter
This exporter is used to generate hibernate mapping files and is usually intended to use with

<annotationconfiguration> or <jdbcconfiguration>. Here is an example:
<jdbcconfiguration configurationfile="config.xml" />
<hbm2hbmxml/>

HIBERNATE 683

It generates a set of mapping files one for each table in the database specified by config.xml file.
<annotationconfiguration configurationfile="config.xml" />
<hbm2hbmxml/>

This generates mapping files one for each <mapping class=".."/> entry in config.xml file.

Configuration File Exporter
The <hbm2cfgxml> exporter generates XML configuration file with name hibernate.cfg.xml.
<jdbcconfiguration configurationfile="config.xml" />
<hbm2cfgxml ejb3="false"/>

The resultant configuration file hibernate.cfg.xml contains properties used in config.xml and
adds a few more and adds mapping entries for each mapped class. Depending on the value of optional
(default is false) attribute ejb3, the mapping entries take the form <mapping resource="..."/>
(false) or <mapping class=".."/> (true).

Documentation Exporter
The <hbm2doc> generates HTML documentation for Java Source files and database schema. It

takes the following form:
<hbm2doc>

HBM Query Exporter
The <query> exporter is used to execute HQL statements and optionally storing the result in a

file. It takes the following form:
<query destfile="filename">HQL statement</query>

The following JAR file is needed to work with query exporter:
antlr_2.7.6.jar
commons.collections-3.2.1.jar
javassist-3.10.0.GA.jar
javax.transaction.jar

The following example stores the title of the books having price less than 300 in a file out.txt.
<query destfile="out.txt">select title from Book where price < 300</query>

Multiple statement can be executed using nested <hql> elements as
<query destfile="filename">
 <hql>HQL statement1</hql>
 <hql>HQL statement2</hql>
 …
</query>

Here is an example:
<query destfile="out.txt">
 <hql>select title from Book where price < 300</hql>
 <hql>select count(*) from Book where price < 300</hql>
</query>

This first stores the titles of the books having price less than 300 and finally appends the number
of such books. Note that currently <query> exporter only supports DDL statements.

23.19.5	 Controlling Reverse Engineering
A JDBC configured Ant task reads database metadata and creates a Hibernate metamodel. During

this reverse engineering, a default strategy is used to map SQL types to Java types, to determine

684 ADVANCED JAVA PROGRAMMING

class names etc. For example, an SQL type VARCHAR is converted to Java String etc. However, this
strategy may be customized by the user. This is done by providing the strategy as an XML file (usually
hibernate.reveng.xml) and specifying it as a value revengfile attribute of <jdbcconfiguration>
tag as follows:

<jdbcconfiguration configurationfile="config.xml"
revengfile="hibernate.reveng.xml"/>

The following additional JAR files are needed to work with custom reverse engineering:
cglib-2.1_3.jar
asm-1.5.3.jar

A sample reverse engineering strategy file takes the following form:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering SYSTEM
"http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd" >
<hibernate-reverse-engineering>
 …
</hibernate-reverse-engineering>

To control the reverse engineering process <hibernate-reverse-engineering> tag contains
various tags which must match (schema-selection*, type-mapping?, table-filter*, table*).

Schema Selection
By default the reverse engineering reads all tables from all schemas. This is sometimes unnecessary

and may slow down the process. The <schema-selection> tag is used to select only necessary schemas
which in turn can speed-up the process significantly. It takes the following form:

<schema-selection match-schema="schema" match-catalog="catalog"
 match-table="table" />

The following example instructs reverse engineer to process all tables from the schema test.
<schema-selection match-schema="test" />

The following results in processing only table tbl_book from schema test:
<schema-selection match-schema="test" match-table="tbl_book"/>

Type Mappings
The <type-mapping> tag specifies how the database types should be mapped to Hibernate types.

It takes the following form:
<type-mapping>
 <sql-type
 jdbc-type="a java.sql.Types"
 length="a numeric value"
 precision="a numeric value"
 scale="a numeric value"
 not-null="true|false"
 hibernate-type="a hibernate type name"
 />
</type-mapping>

Here is an example:
<type-mapping>
 <sql-type jdbc-type="VARCHAR" length='1' hibernate-type='char' />
</type-mapping>

This specifies that a JDBC type VARCHAR with length 1 should be mapped to Hibernate type char
instead of default type string. The following maps VARCHAR with length 10 as char[].

<sql-type jdbc-type="VARCHAR" length='10' hibernate-type='char[]' />

HIBERNATE 685

Table Filters
The <table-filter> tag is used to include or exclude specific tables based on the schema. It takes

the following form:
<table-filter
 match-catalog="catalog_matching_rule"
 match-schema="schema_matching_rule"
 match-name="table_matching_rule"
 exclude="true|false"
 package="package.name"
/>

The following results in processing of only table tbl_book.
<table-filter match-name="tbl_book" />

Table Configuration
The <table> tag enables us to explicitly specify how to reverse engineer a particular table. For

example, we can specify class and property names corresponding to table and table columns, which
identifier generator should be used for the primary key etc. It takes the following form:

<table catalog="a catalog" schema="a schema" name="a table" class="a class" >
 <primary-key.../>
 <column.../>
 <foreign-key.../>
</table>

Here is an example:
<table schema="test" name="tbl_book" class="Book" >
 <column name="no" property="id"/>
 <column name="name" property="title"/>
 <column name="pr" property="price"/>
</table>

This tells that the name of the resultant class corresponding to table tbl_book should be Book
and names of the properties corresponding to table columns no, name and pr should be id, title
and price respectively.

23.19.6	 Controlling POJO Code Generation
Hibernate tools also support controlling certain aspects of custom POJO code generation using

<meta> tag to be used in mapping file. The <meta> tag has different attributes that tells what information
has to be placed in the resultant POJO code. Here is an example:

<hibernate-mapping default-access="property">
 <class name="Book" table="tbl_book">
 <meta attribute="class-description">
 Javadoc for the Book class
 @author UKR
 </meta>
 <meta attribute="implements">Resource</meta>
 <id name="id" type="int" column="no">
 <meta attribute="field-description">Unique id</meta>
 <generator class="native"/>
 </id>
 <property name="title" column="name" type="string"/>
 <property name="price" column="pr" type="int">
 <meta attribute="field-description">The price of the book</meta>
 <meta attribute="scope-field">protected</meta>
 </property>
 </class>
</hibernate-mapping>

686 ADVANCED JAVA PROGRAMMING

When used, this generated the following class:
// default package
// Generated Mar 3, 2014 7:19:01 PM by Hibernate Tools 3.4.0.CR1
/**
 * Javadoc for the Book class
 * @author UKR
 *
 */
public class Book implements Resource,java.io.Serializable {
 /**
 * Unique id
 */
 private int id;
 private String title;
 /**
 * The price of the book
 */

protected int price;
 public Book() { }
 public Book(String title, int price) {
 this.title = title;
 this.price = price;
 }
 /**
 * * Unique id
 */
 public int getId() { return this.id; }
 public void setId(int id) { this.id = id; }
 public String getTitle() { return this.title; }
 public void setTitle(String title) { this.title = title; }
 /**
 * * The price of the book
 */
 public int getPrice() { return this.price; }
 public void setPrice(int price) { this.price = price;}

}

The result of <meta> tag has been shown with bold face. A short description of list of attributes
of <meta> tag is shown in Table 23.3:

Table 23.3: Meta tag attributes

Meta Attribute Description

class-code Extra code to be inserted at the end of the class

class-description Javadoc description of classes

default-value Default initial value for a field

extends Class that the current class should extend

extra-import Extra import to be inserted at the end of all other imports

field-description Javadoc description of fields and properties

generated-class Override the name of the actual class generated

gen-property If property should be generated

implements Interface the class should implement

interface Generates an interface instead of class

(Contd)

HIBERNATE 687

Meta Attribute Description

property-type Overrides the default type of property

scope-class Scope of the class

scope-field Scope of the field

scope-get scope of the get method

scope-set Scope of the set method

use-in-equals Include this property in the equals() and hashCode() methods

use-in-tostring Include this property in the toString() method

Table 23.3: (Contd)

KEYWORDS
Column annotation—A hibernate annotation used to
map a field or a property to a table column

Configuration—A class whose instance allows
the application to specify properties and mapping
documents to be used

Configuration files—Standard Java properties
files or XML files containing hibernate configuration
information

Detached—A detached object is one which was in a
session’s cache earlier, but no longer remains there

Entity annotation—A hibernate annotation used to
declare a class as an Entity bean

Exporters—Tags which actually convert the Hibernate
metamodel into various artifacts such as schema,
POJO class, DAO etc.

GeneratedValue annotation—A hibernate annotation
used to specify the primary key generation strategy to use

Generator class—Specifies how to generate primary
key in the database table

Hibernate Tools—A set of utilities used to automatically
generate various resources

HQL—A query language similar to SQL but operates
on persistent objects instead of tables

Id annotation—A hibernate annotation used to specify
the identifier property of the entity bean

Mapping files—XML files containing object to
database table mapping information

Named Queries—HQL queries that can be identified
by their names

Object Life Cycle—The period objects in Hibernate
go through different states

Persistent—When an object is associated with a
hibernate session in some way, it is said to be in
persistent state

POJO—Java objects that do not do any special
function nor implement any special interfaces of any
of the Java frameworks

Reverse Engineering—Creating hibernate metamodel
from database metadata

Session—The main runtime interface between a Java
application and Hibernate that abstracts the notion of
a persistence service

Table annotation—A hibernate annotation used to
specify the table to store persistent objects

Transaction—An interface that defines the contract for
abstracting applications from the configured underlying
means of transaction management

Transient—When an object is just instantiated, it is
said to be in transient state

SUMMARY
Hibernate allows us to persist Plain Old Java Objects
(POJO) to the database. Hibernate supports virtually
all databases.

A typical hibernate application is developed using
the following steps

•	 Writing a POGO class
•	 Creating a database table
•	 Creating configuration and mapping files
•	 �Write code to save, retrieve, update, delete 	

objects

688 ADVANCED JAVA PROGRAMMING

A hibernate application starts with a Configuration
object that contains information such as database
connection properties and hibernate properties etc.
and object to database table mapping information.
These are specified using configuration files and
mapping files and or/annotations.

This information is actually place in a SessionFactory
object. The interface between Java application and
hibernate is the Session object which is created from
SessionFactory object. A Session object is equivalent
to Connection object of JDBC. The main function of the
Session object is to allow creating, reading, updating
and deleting instances of mapped entity classes. For
a database write (e.g. insert, update, delete) hibernate
needs a logical transaction which is represented by a
Transaction object.

Objects in Hibernate go through any of the three
states: transient, persistent and detached. When an
object is just instantiated, it is said to be in transient
state. When an object is associated with a hibernate
session in some way, it is said to in persistent state. A
detached object is one which was in a session’s cache
earlier, but no longer remains there.

Hibernate Query Language (HQL) is a query
language similar to SQL but operates on persistent

objects instead of tables. Hibernate translates HQL
queries into SQL queries which in turn perform action
on database. The advantage of HQL over SQL is that,
we can avoid database portability issues and take
benefits of Hibernate’s SQL generation and caching
strategies.

Hibernate provides a technique called named queries
that lets us separate queries from the coding section of
the application. Hibernate also provides useful classes
to generate DDL.

Hibernate tools is a set of utilities used to automatically
generate various resources such as

•	 �Java source files, database schemas and DAO classes
from mapping file

•	 �Mapping file from database schema, etc.

It only works either as an Eclipse plug-in or in JBoss
Developer Studio or with Apache Ant. We discussed
how to use Hibernate Tools with Ant. Exporters are
tags which actually convert the Hibernate metamodel
into various artifacts. Some of the useful exporters
are POJO class exporter, DAO exporter, Mapping
file exporter, configuration file exporter, HBM query
exporter etc. With the help of reverse engineering, it
is also possible to create hibernate metamodel from
database metadata.

WEB RESOURCES
http://docs.jboss.org/hibernate/core/3.3/

reference/en/html/tutorial.html
Hibernate Tutorial

http://www.tutorialspoint.com/hibernate
Hibernate Tutorial

http://www.roseindia.net/hibernate/
Complete Hibernate 3.0 and Hibernate 4 Tutorial

http://www.dzone.com/tutorials/java/hibernate

/hibernate-tutorial/hibernate-tutorial.html
Hibernate Tutorials

http://www.javaworld.com/article/2072999/

data-storage/get-started-with-hibernate.

html
Get started with Hibernate

http://www.mkyong.com/tutorials/hibernate-

tutorials/
Hibernate Tutorial

http://www.javatpoint.com/hibernate-

tutorial
Hibernate Tutorial

EXERCISES
Objective-type Questions

	 1.	 Which of the following is true about hibernate?
	 (a)	 Hibernate is a framework.
	 (b)	 Hibernate is an Object-Relational Mapping

(ORM) library for the Java language.
	 (c)	 Hibernate provides a mapping for object-

oriented domain model to a traditional
relational database.

	 (d)	 All of the above

	 2.	 What is the root level element in a hibernate
mapping file?

	 (a)	 <hibernate-mapping>
	 (b)	 <session-mapping>
	 (c)	 <sessionfactory-mapping>
	 (d)	 None of the above

HIBERNATE 689

	 3.	 How does bhm.xml file include other hbm.xml files?
	 (a)	 <mapping resource="activity.hbm.xml"/>
	 (b)	 <include resource="activity.hbm.xml"/>
	 (c)	 <add resource="activity.hbm.xml"/>
	 (d)	 None of the above

	 4.	 What is dirty checking in Hibernate?
	 (a)	 Object state changes in order to synchronize

the updated state with the database
	 (b)	 Remove the dirty data from database
	 (c)	 Check the data when inserted into database
	 (d)	 None of the above

	 5.	 What does "<generator class="native" />" means?
	 (a)	 Generate primary key
	 (b)	 Generate tables based on configuration
	 (c)	 Generate sql statement on configuration
	 (d)	 None of the above

	 6.	 Is it possible to declare mappings for multiple
classes in one mapping file?

	 (a)	 True	 (c)	 Can’t say
	 (b)	 False	 (d)	 None of the above

	 7.	 What does session.evict() method do?
	 (a)	 Remove the object and its collections from

the second level cache
	 (b)	 Remove the object and its collections from

the first level cache
	 (c)	 Remove the object and its collections from

the data base
	 (d)	 None of the above

	 8.	 Which of the following statements is correct?
	 (a)	 Only the Session that you obtained with

sf.getCurrentSession() is flushed and
closed automatically.

	 (b)	 Only the Session that you obtained with
sf.openSession() is flushed and closed
automatically.

	 (c)	 Only the Session that you obtained with
sf.getNewSession() is flushed and closed
automatically.

	 (d)	 None of the above

	 9.	 What does hibernate.hbm2ddl.auto create mean?
	 (a)	 Create session object automatically
	 (b)	 Create Sessio Factory object automatically
	 (c)	 Create tables automatically
	 (d)	 None of the above

	10.	 Is Hibernate Session threadsafe?
	 (a)	 No	 (c)	� No relation with thread
	 (b)	 Yes	 (d)	 None of the above

	11.	 How can you make a property be read from the
database but not modified in anyway?

	 (a)	 By using the isinsert="false" and isupdate=
"false" attributes.

	 (b)	 By using the isinsert="no" and isupdate="no"
attributes.

	 (c)	 By using the insert="false" and update=
"false" attributes.

	 (d)	 None of the above

	12.	 Which statement is correct?
	 (a)	 session.contains() method to determine if

an instance belongs to the database.
	 (b)	 session.contains() method to determine if

an instance belongs to the session cache.
	 (c)	 Both are correct
	 (d)	 None of the above

	13.	 How can you get a session object?
	 (a)	 SessionFactory.getSession();
	 (b)	 SessionFactory.openSession();
	 (c)	 SessionFactory.get();
	 (d)	 (session)SessionFactory.getObject();

	14.	 Which of the following is FALSE about Session in
hibernate?

	 (a)	 Session is a non-threadsafe object.
	 (b)	 You can share the session between

threads.
	 (c)	 Session represents a single unit-of-work

with the database.
	 (d)	 Session is the primary interface for the

persistence service.

	15.	 What is the name of the default configuration file?
	 (a)	 config.xml
	 (b)	 hibernate.config.xml
	 (c)	 cfg.hibernate.xml
	 (d)	 hibernate.cfg.xml

	16.	 Which of the following is not a function of the
Session interface?

	 (a)	 Acts as Factory for Transaction
	 (b)	 Wraps a JDBC connection
	 (c)	 Holds a mandatory first-level cache of

persistent objects, used when navigating
the object graph or looking up objects by
identifier

	 (d)	 Created during application initialization

	17.	 Which of the following is not a method on Session
interface?

	 (a)	 save()	 (c)	 saveorupdate()
	 (b)	 remove()	 (d)	 load()

690 ADVANCED JAVA PROGRAMMING

	18.	 Which of the following is the default generator
type?

	 (a)	 increment	 (c)	 assigned
	 (b)	 identity	 (d)	 sequence

	19.	 What is the full form of POJO?
	 (a)	 Plain Ordinary Java Object
	 (b)	 Plain Old Java Object
	 (c)	 Primitive Old Java Object
	 (d)	 Primary Old Java Object

	20.	 Where can you specify object to database
mapping information?

	 (a)	 Mapping files
	 (b)	 Classes
	 (c)	 Both a) and b)
	 (d)	 None of the above

	21.	 Which of the following does the default constructor
of Configuration class search?

	 (a)	 config.properties
	 (b)	 coonfig.xml
	 (c)	 hibernate.properties
	 (d)	 hibernate.cfg.xml

	22.	 What is the root element of a hibernate
configuration file?

	 (a)	 <hibernate-configuration>
	 (b)	 <hibernate-mapping>
	 (c)	 <hibernate-config>
	 (d)	 <config-hibernate>

	23.	 Which of the following methods on Session
interface is used to obtain a Transaction object?

	 (a)	 startTransaction()
	 (b)	 getTransaction()
	 (c)	 openTransaction()
	 (d)	 beginTransaction()

	24.	 Which of the following packages contains
hibernate annotations?

	 (a)	 javax.annotations
	 (b)	 javax.persistence
	 (c)	 javax.hibernate.annotations
	 (d)	 javax.persistence.annotations

	25.	 Which of the following is not a valid object state
in hibernate?

	 (a)	 transient	 (c)	 detached
	 (b)	 persistent	 (d)	 volatile

	26.	 What is the full form of HQL?
	 (a)	 High-level Query Language
	 (b)	 Hibernate Query List
	 (c)	 Hibernate Question Language
	 (d)	 Hibernate Query Language

	27.	 Which of the following is not a valid hibernate
annotation?

	 (a)	 Entity	 (c)	 Column
	 (b)	 Table	 (d)	 Row

	28.	 Which of the following is not HQL keyword?
	 (a)	 choose	 (c)	 select
	 (b)	 from	 (d)	 where

	29.	 Which of the following methods on Session
interface is used to create a Query?

	 (a)	 openQuery()	 (c)	 createQuery()
	 (b)	 getQuery()	 (d)	 prepareQuery()

	30.	 Which of the following is a hibernate to POJO
class exporter?

	 (a)	 <java2hbm>	 (c)	 <hbmtojava>
	 (b)	 <hbm2java>	 (d)	 <fromhbm2java>

Subjective-type Questions

	 1.	 What is Object Relational Mapping (ORM)?

	 2.	 Why do you need ORM tools like hibernate?

	 3.	 Write the advantages of Hibernate over JDBC?

	 4.	 What are POJOs?

	 5.	 Discuss the different ways hibernate can be
configured.

	 6.	 How can you specify hibernate to database
mapping information?

	 7.	 What happens when both hibernate.properties
and hibernate.cfg.xml are in the classpath?

	 8.	 Write the sample content of hibernate configuration
and mapping files.

	 9.	 What are the important tags of hibernate.cfg.xml?

	10.	 What is object/relational mapping metadata?

	11.	 Write the core interfaces and classes with their
functionality of hibernate framework.

HIBERNATE 691

	12.	 Write the basic steps required to communicate
with RDBMS using hibernate.

	13.	 What is the function of Session object in hibernate?

	14.	 What is the function of a SessionFactory object?
How will you obtain such an object?

	15.	 What is the difference between getCurrentSession()
and openSession() in Hibernate?

	16.	 Describe the life cycle of hibernate objects.

	17.	 What is the difference between transient and
detached objects?

	18.	 How do you map Java Objects with Database
tables?

	19.	 What are the primary differences between Entity
Beans and Hibernate ?

	20.	 What is Hibernate Query Language (HQL)?

	21.	 What is the difference between HQL and SQL?

	22.	 How will you create a primary key using Hibernate?

	23.	 What is the difference between JDBC and JTA
transactions in Hibernate?

	24.	 Which interfaces are defined to execute the query
in the Hibernate?

	25.	 What is the difference between load() and get()?

	26.	 What is a Named query and why is it used?

	27.	 How will you see Hibernate generated SQL
statements on console?

	28.	 What are the benefits of detached objects?

	29.	 How will you reattach detached objects to a
session?

	30.	 What can you do with hibernate tools?

CHAPTER – 24

Java Naming and Directory Interface

Key Objectives

After completing this chapter readers will be able to—
•  understand what naming and directory services are
•  appreciate the importance of JNDI
•  get an overview about JNDI classes and interfaces
•  write JNDI-based applications
•  work with Apache Directory Server
•  perform basic naming and directory operations

24.1	 NAMING CONCEPTS
Naming is a fundamental concept used in almost every system of the world. Our computing

systems are not exceptions. It allows us to associate (called binding) names with objects and to find
(called lookup) those objects later by their names. Names are some people-friendly identifiers. An
object in the naming system is a nameable/referenceable entity such as an object in a program, an
IP address, a file etc. A naming service maps these names to objects. The examples of such naming
systems are Domain Name System (DNS), File system, Java’s rmiregistry, Java IDL’s tnameserv
and orbd etc. The DNS is a naming system since it maps host names to IP addresses.

www.google.com→74.124.24.104

A file system is also a naming system since it maps a file name to some h/w specific address.
D:\progs\test.java→sector, track and cylinder number

A naming server typically provides services such as binding, unbinding, and looking up objects
by their names. It is also important to note that all name servers do not function in the same way.
However, in order to be a naming service, it must at the very least support the facility to bind objects
with names and to look up objects by name.

Apart from functional differences, the visible difference is the way each naming service requires
names to be specified—its naming convention.

JAVA NAMING AND DIRECTORY INTERFACE 693

24.1.1	 Naming Convention
A name is formed by one or more name components. The syntax of names, also called naming

convention, is specified by the naming system.
For example, in the DNS, a name (e.g. www.google.com) is an ordered sequence of name

components (www, google and com) separated by dots (‘.’). Here, google is a subdomain under com
domain (written as google.com) and www is a name under google.com.

A file name in windows (say D:\progs\test.java), on the other hand, starts with a drive name
(D:) and uses \ (back slash) as the name component separator.

Unix like OS uses / (forwards slash) in the file path names.
A name (e.g. ou=IT,o=JU,c=IN) in LDAP (Lightweight Directory Access Protocol) compliant

server is a comma (,) separated ordered sequence of name components, each of which is a name
and value pair separated by equality sign (=). This refers to the organizational unit (ou) IT under
organization (o) JU (for Jadavpur University) in the country (c) IN (for India).

24.1.2	 Naming Context
A naming context [Figure 24.1:] is a collection of zero or more name-to-object bindings. For

example, a directory in a file system, that contains a set of (file name, file) bindings, is a context.
A subcontext is child context of a parent context. For example, a sub directory is a subcontext.
A subcontext like its parent can also contain a list of bindings. Contexts and their subcontexts
together form a general tree. The root of the context tree is referred to as initial context or root
context.

D:
root context)

progs
(subcontext)

data
(subcontext)

java
(subcontext)

C++
(subcontext)

/
root context)

usr
(subcontext)

home
(subcontext)

student
(subcontext)

teacher
(subcontext)

in
root context)

co
(subcontext)

ac
(subcontext)

google
(subcontext)

jusl
(subcontext)

c=in
root context)

o=JU
(subcontext)

o=CU
(subcontext)

ou=IT
(subcontext)

ou=CSE
(subcontext)

Windows FS Unix FS DNS LDAP

Figure 24.1: Naming Context and Subcontext

Each context is identified by a name unique within its parent context. The fully qualified name
of a context starts from the root context and ends with its own name.

Note that not all naming servers allow creating subcontexts. For example, Java’s rmiregistry does
not permit to create sub contexts.

24.1.3	 Binding
The process of associating a name to an object is called binding. For example, a DNS name is

bound to an IP address; a file name is bound to a file and so on.
Many naming systems don’t store objects directly. Instead, they store references to objects.

For example, in DNS, the address 207.69.175.36 is a reference to a computer’s location on the
Internet, not the computer itself.

694 ADVANCED JAVA PROGRAMMING

24.2	 DIRECTORY CONCEPTS
A directory service extends the idea of naming service. In addition to associating names with

objects, a directory service allows objects to have attributes. Directory service also allows to perform
attribute-related operations such as reading, modifying, removing attributes, searching object based-
on attributes etc.

For example, an organization will not only have a name, but it will have a (mandatory and optional)
set of attributes such as its postal code, street address, telephone number, web link etc. Objects stored
in a directory server are called directory objects. Virtually, any entity may be represented as a directory
object. Attributes describe the entity the directory object represents. An attribute has a name (called
identifier) and one or more values. For example, postalCode attribute of an organization has only
one value, but telephone number can have many values.

Examples of directory servers include, Novell Directory Service (NDS), Network Information
Service (NIS) etc. There are also general directory services that use standard protocols such as X.500
and Lightweight Directory Access Protocol (LDAP).

As mentioned earlier, we can search objects based on their attributes. In that case, we supply
query, called search filter, consisting of a logical expression in which we specify the attributes that the
object or objects must have. This type of searching is known as content based searching or reverse
lookup. For example, we can search all educational institutions situated in Kolkata.

24.2.1	 Directory Context
Note that in a name tree, objects can only be bound under a context, not under another object.

However, unlike name tree, every node in a directory tree is a context. Consequently, objects can
be bound under other objects as well. A directory server, does not distinguish an object and context.

24.3	 JAVA NAMING AND DIRECTORY INTERFACE
The Java Naming and Directory Interface (JNDI) allows Java application to use naming and

directory. It is not an implementation; rather an interface which has been defined to be independent
of any specific service implementation. That’s the way, it works virtually for all implementation
seamlessly. However, it also provides implementations for three common name service, LDAP, RMI’s
rmiregistry and CORBA’s COS (Common Object Services) name service.

The JNDI architecture [Figure 24.2:] consists of an Application Programming Interface (API)
and a Service Provider Interface (SPI). The SPI helps to plug-in various service providers, whereas
API allows applications to use them. The API has two parts: one used to access naming service and
the other is used for directory service.

Service Provider Interface(SPI)

Application Programming Interface (API)

Java Applications

RMI service
implementation

File system NIS DNS LDAP rmiregistry COS naming service

LDAP service
implementation

CORBA
implementation

Other implementation
possibilities

Figure 24.2: JNDI architecture

JAVA NAMING AND DIRECTORY INTERFACE 695

24.4	 AN EXAMPLE
In this section, we shall show how to write a simple Java application using JNDI. We shall rewrite

our calculator RMI application that will use JNDI. The rmiregistry will be used as the name server.
If you have JDK installed, you also have rmiregistry installed. So, you don’t have to look for another
name server. Since it is an RMI application, the server side includes an interface (Calculator.java)
and an implementation (SimpleCalculator.java) as follows:

//Calculator.java
import java.rmi.*;
public interface Calculator extends Remote {
 public int add(int a, int b) throws RemoteException;
}
//SimpleCalculator.java
public class SimpleCalculator implements Calculator {
 public int add(int a, int b) {
 return a + b;
 }
}

24.4.1	 Writing the Server
To use JNDI interfaces and classes, it imports the naming package:
import javax.naming.*;

The server, as usual, creates an instance of servant and obtains a stub as follows:
SimpleCalculator cal = new SimpleCalculator();
Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0);

The next task of the server is to upload this stub to a name server. To work with naming service,
we must have a reference to a context in the name tree. The simplest way to create such an object
is as follows:

Context ctx = new InitialContext();

This ctx basically refers to a node (context) in the name tree [see Figure 24.1:] maintained by a
name server. To work with that name tree, we simply refer to this ctx object which, on behalf of us,
communicates with the name server. So, this Context object behaves like a proxy. The constructor
of the InitialContext class does not actually create a Context object; instead it looks for a provider
specific factory class that can manufacture such a proxy instance. However, we have not yet provided
any information (such as port number, IP address) about the name server; nor have we specified the
factory class.

There are different ways to specify the required information. In our example, we shall provide
them as command line arguments. Anyway, the server can add a binding using bind() method as
follows:

ctx.bind(args[0], stub);

This essentially binds the object stub to the context ctx with a name specified as the first command
line argument. The complete source code (CalculatorServerJNDI.java) is shown below:

//CalculatorServerJNDI
import java.rmi.server.*;
import javax.naming.*;
public class CalculatorServerJNDI {
 public static void main(String args[]) {
 try {
 SimpleCalculator cal = new SimpleCalculator();
 Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0);
 Context ctx = new InitialContext();
 ctx.bind(args[0], stub);
 System.out.println("Calculator server ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

696 ADVANCED JAVA PROGRAMMING

//CalculatorServerJNDI
import java.rmi.server.*;
import javax.naming.*;
public class CalculatorServerJNDI {
 public static void main(String args[]) {
 try {
 SimpleCalculator cal = new SimpleCalculator();
 Calculator stub = (Calculator)UnicastRemoteObject.exportObject(cal,0);
 Context ctx = new InitialContext();
 ctx.bind(args[0], stub);
 System.out.println("Calculator server ready...");
 }catch (Exception e) { e.printStackTrace(); }
 }
}

The relevant modification is shown with bold face.

24.4.2	 Writing the Client
A client, like server, also creates a Context object as follows:
Context ctx = new InitialContext();

It then looks up the object supplying the name in the command line using lookup() method:
Calculator cal = (Calculator)ctx.lookup(args[0]);

Since, the type of the object we bound earlier was a Calculator type, we can cast the result of
lookup() to its target class. The complete source code (CalculatorClientJNDI.java) is shown
below:

//CalculatorClientJNDI.java
import javax.naming.*;
public class CalculatorClientJNDI {
 public static void main(String args[]) {
 try {
 Context ctx = new InitialContext();
 Calculator cal = (Calculator)ctx.lookup(args[0]);
 int x = 4, y = 3;
 int result = cal.add(x,y);
 System.out.println("Sent: " + x +" and "+y);
 System.out.print("Received("+x+"+"+y+"=): " + result);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

The relevant modification is shown with bold face.

24.4.3	 Running Application
Place server related files (Calculator.java, SimpleCalculator.java and CalculatorServerJNDI.

java) in a directory, say E:\ajp\jndi\rmi\server. Compile all the classes normally. Open a terminal,
go to this directory and use the following command to start rmiregistry on port 6789

start rmiregistry 6789

To start the server, we have to specify the values of two primary properties java.naming.factory.
initial and java.naming.provider.url. The former one specifies the fully qualified name of
the factory class, to be used to create a Context object, to communicate with the name server. The
latter holds location information (port, IP address etc.) of the JNDI provider. The InitialContext’s
constructor uses this information to create a Context object and to connect to the naming server.
For rmiregistry running on port 6789 in host 172.16.5.81, the values of these properties are com.
sun.jndi.rmi.registry.RegistryContextFactory and rmi://172.16.5.81:6789 respectively.
For other name servers, the values of these two properties can be found in Table 24.1: Note that by
only changing these two values, we can talk to any name server. Use the following command to
start the server:

java -
Djava.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory -
Djava.naming.provider.url=rmi://172.16.5.81:6789 CalculatorServerJNDI
calculator

If everything goes fine, the following message appears:
Calculator server ready...

JAVA NAMING AND DIRECTORY INTERFACE 697

Now, place client related files (Calculator.java, and CalculatorClientJNDI.java) in a directory,
say E:\ajp\jndi\rmi\client, probably in a different host. Compile all the classes normally. Open
a terminal, go to this directory and use the following command to start the client:

java -
Djava.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory-
Djava.naming.provider.url=rmi://172.16.5.81:6789 CalculatorClientJNDI
calculator

If everything goes fine, the following message appears:
Sent: 4 and 3
Received(4+3=): 7

24.5	 SPECIFYING JNDI PROPERTIES
The values of the basic JNDI properties (java.naming.factory.initial and java.naming.

provider.url) may be supplied in different ways. In the previous example, we supplied them as
command line arguments. The InitialContext class also has an overloaded constructor that takes
a java.util.Hashtable object. So, we can place JNDI properties in a Hashtable object and pass it
to the InitialContext’s constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();
env.put("java.naming.factory.initial","com.sun.jndi.rmi.registry.RegistryContex
tFactory");
env.put("java.naming.provider.url", "rmi://172.16.5.81:6789");
Context ctx = new InitialContext(env);

Another way to specify JNDI parameters is to use an application resource file having name jndi.
properties. It contains a list of key/value pairs in the properties file format. The following is an
example of such a property file.

#jndi.properties
java.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory
java.naming.provider.url=rmi://172.16.5.81:6789

The JNDI automatically reads the application resource files from all components in the
applications’ classpaths and JRE_HOME/lib/jndi.properties, where JRE_HOME is the file directory
that contains Java Runtime Environment (JRE). Note that properties files are text files and should
not contain sensitive information, such as passwords.

Table 24.1: shows a list of initial context factory and provider URL for various naming service
providers.

Table 24.1: List of initial context factory and provider URL

java.naming.factory.initial java.naming.provider.url

rmiregistry com.sun.jndi.rmi.registry.RegistryContextFactory rmi://172.16.5.81:1099

file system com.sun.jndi.fscontext.RefFSContextFactory file:///D:/

LDAP com.sun.jndi.ldap.LdapCtxFactory ldap://172.16.5.81:10389/dc=example,dc=com

orbd, tnameserv com.sun.jndi.cosnaming.CNCtxFactory iiop://172.16.5.81:900

24.6	 NAME SERVERS
The previous example used rmiregistry name server. In practice, there exists various other name

servers such as file system, Java IDL’s tnameserv, and orbd. These servers do not support directory
service. To illustrate the concepts of directory as well as naming operations, we shall use a simple
directory server provided by Apache—known as Apache Directory Server (or simply ApacheDS).
The next section describes how to install and use ApacheDS.

698 ADVANCED JAVA PROGRAMMING

24.7	 USING APACHEDS
Apache Directory Server (often abbreviated as ApacheDS) is LDAPv3 compatible, open source

directory server entirely written in Java. It is a multi-platform application and runs on Mac OS X,
Linux and Windows. In this chapter, in addition to file system naming service, Java’s rmiregistry
and orbd, we shall use ApacheDS to demonstrate the JNDI concepts.

24.7.1	 Installing and Starting ApacheDS
To work with ApacheDS, download it from https://directory.apache.org/apacheds/

downloads.html. Apache provides native installers for several platforms. It also provides a zip and
tar.gz archive suitable for any platform. We downloaded apacheds-2.0.0-M15.zip. Extract this
archive and place the extracted folder (apacheds-2.0.0-M15) where you want Apache DS to be
installed. We placed the folder in D: drive. Hereafter, we shall refer to this D:\apacheds-2.0.0-M15
directory as <ApacheDS_TOP>).

ApacheDS requires a Java Runtime Environment 6 or later. So, make sure an appropriate version
is installed in your machine. Put the directory containing java interpreter in your PATH environment
variable. Go to <ApacheDS_TOP>\bin directory, where you will find two files apacheds.bat and
apacheds.sh, which are startup script for windows and linux respectively. To start ApacheDS in
windows, either double click on apacheds.bat or open a terminal, go to the <ApacheDS_TOP>\bin
directory and use the following command:

apacheds.bat

If everything goes fine, the startup window looks like this:
Starting ApacheDS instance 'default'...
[16:02:47] WARN [org.apache.directory.server.core.DefaultDirectoryService] -
You didn't change the admin password of directory service instance 'default'.
Please update the admin password as soon as possible to prevent a possible
security breach.

_ _ ____ ____
/ \ _ __ ___ ___| |__ ___| _ \/ ___|

/ _ \ | '_ \ / _` |/ __| '_ \ / _ \ | | ___ \
/ ___ \| |_) | (_| | (__| | | | __/ |_| |___) |

/_/ _\ .__/ __,_|___|_| |_|___|____/|____/
|_|

By default the ApacheDS listens on port 10389 (unencrypted or StartTLS) and 10636 (SSL).
However, the well-known port for LDAP is 389, which you may choose your ApacheDS to listen
on. The server configuration (including port number) is stored in a LDIF file <ApacheDS_TOP>\
instances\default\conf\config.ldif. The relevant portion for unencrypted LDAL is shown
below:

…
dn: ads-transportid=ldap,ou=transports,ads-serverId=ldapServer,ou=servers,ads-
directoryServiceId=default,ou=config
ads-systemport: 10389
…

And, here is the port specification for SSL-enabled LDAP:
dn: ads-transportid=ldaps,ou=transports,ads-serverId=ldapServer,ou=servers,ads-
directoryServiceId=default,ou=config
ads-systemport: 10636

Change the port of your choice. Note that a root privilege is required to use a port less than 1024.
We stuck on the default ports.

JAVA NAMING AND DIRECTORY INTERFACE 699

24.7.2	 JNDI Properties for ApacheDS
ApacheDS stores entries in distinct areas called partitions. Partitions are disconnected from each

other, meaning that changes to entries in partition P would never affect entries in partition Q. The
entries in a particular partition are stored in naming contexts called the partition suffix. The ApacheDS
default instance contains a partition with root suffix dc=example,dc=com. Although, a new partition
may be created, we shall use this existing partition to demonstrate our JNDI examples.

We shall assume that ApacheDS runs on 10389 in a host 172.16.5.81. The values of these two
properties java.naming.factory.initial and java.naming.provider.url will then be com.sun.
jndi.ldap.LdapCtxFactory and ldap://172.16.5.81:10389/dc=example,dc=com respectively
and will be used in all subsequent examples that use ApacheDS as the name server. If you start
ApacheDS on a different port, or in a different host, specify them in the value of java.naming.
provider.url property.

24.8	 CALCULATOR RMI APPLICATION USING LDAP
Let us now run our calculator application that will make use of ApacheDS as a naming server

instead of rmiregistry. We assume that the ApacheDS is running on 10389 in host 172.16.5.81. To
start the server, go the server’s home directory and use the following command:

java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory -
Djava.naming.provider.url=ldap://172.16.5.81:10389/dc=example,dc=com
CalculatorServerJNDI cn=calculator

Since an LDAP server expects names as pair of values separated by =, we have used name
cn=calculator. Note that in this case, server and ApacheDS need not necessarily run in the same
computer. To start the client, go to the client’s home directory and use the following command:

java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory -
Djava.naming.provider.url=ldap://172.16.5.81:10389/dc=example,dc=com
CalculatorClientJNDI cn=calculator

24.9	 CALCULATOR RMI-IIOP APPLICATION USING JNDI
Let us now redevelop our calculator application using RMI-IIOP and JNDI. We use the same

Calculator interface as used in RMI. The implementation of this interface that uses IIOP is shown
below:

// SimpleCalculator.java
import javax.rmi.PortableRemoteObject;
class SimpleCalculator extends PortableRemoteObject implements Calculator {
 public SimpleCalculator() throws java.rmi.RemoteException { }
 public int add(int a, int b) throws java.rmi.RemoteException {
 return a + b;
 }
 public String[] _ids() {
 String[] id = {"IDL:CalculatorApp/Calculator:1.0"};
 return id;
 }
}

24.9.1	 Server
The code for the server is shown below:
// CalculatorServerJNDI.java
import javax.naming.*;
public class CalculatorServerJNDI {
 public static void main(String args[]) {
 try {
 SimpleCalculator calc = new SimpleCalculator();
 Context ic = new InitialContext();
 ic.rebind(args[0], calc);
 System.out.println("Calculator Server ready...");
 } catch (Exception e) { e.printStackTrace();}
 }
}

700 ADVANCED JAVA PROGRAMMING// CalculatorServerJNDI.java
import javax.naming.*;
public class CalculatorServerJNDI {
 public static void main(String args[]) {
 try {
 SimpleCalculator calc = new SimpleCalculator();
 Context ic = new InitialContext();
 ic.rebind(args[0], calc);
 System.out.println("Calculator Server ready...");
 } catch (Exception e) { e.printStackTrace();}
 }
}

24.9.2	 Client
The code for the server is shown below:
//CalculatorClientJNDI.java
import javax.naming.*;
public class CalculatorClientJNDI {
 public static void main(String args[]) {
 try {
 Context ic = new InitialContext();
 Calculator calc = (Calculator)ic.lookup(args[0]);
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch(Exception e) {e.printStackTrace();}
 }
}

24.9.3	 Running the Application
Open a terminal in any machine in the network.
start orbd

The Java ID naming service now listens on port 900. We assume that the IP address of the
machine this service is started on is 172.16.5.81. Compile the server files using the following series
of commands:

javac SimpleCalculator.java
rmic -iiop SimpleCalculator
javac Calculator.java CalculatorServerJNDI.java

Now, start the server:
java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory -
Djava.naming.provider.url=iiop://172.16.5.81:900 CalculatorServerJNDI
calculator

This uploads a reference to the naming service with name “calculator”. Compile the client files
using the following series of commands:

javac Calculator.java
rmic -iiop Calculator
javac CalculatorClientJNDI.java

Start the client:
java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory -
Djava.naming.provider.url=iiop://172.16.5.81:900 CalculatorClientJNDI
calculator

24.10	 NAMING OPERATIONS
The following sections describe how to perform different name-related operations. We shall use

ApacheDS as the name server unless it is specified explicitly.

JAVA NAMING AND DIRECTORY INTERFACE 701

24.10.1	 Adding, Replacing and Removing Binding
A binding is added to a context using its bind() method, which takes an object and either a

String or a Name. The following example binds a Java String object with the name cn=AJavaObject
and associates with the specified initial context.

ctx.bind("cn=aJavaObject", new String("JNDI"));

The types of objects that are allowed [Table 24.2:] to bind depends on the naming server. For
example, LDAP can only bind Referenceable, Serializable and DirContext objects, whereas file
system can only bind Referenciable or Reference objects. Java’s rmiregistry can only bind Remote,
Reference and Referenciable objects and Java IDL’s orbd and tnameserv can only bind CORBA
objects. For more information, read the respective server’s documentation. So, Java’s String object
(which is only Serializable) can be bound to only LDAP naming service.

Table 24.2: Allowable object to be bound with name servers

Object type

Name server Serializable Referenceable Reference Remote DirContext CORBA

rmiregistry X X X

file system X X X X

LDAP X X X

orbd, tnameserv X X X X X

The bind() method throws a NameAlreadyBoundException if the name has already been used
to bind some other object. The rebind() method works like bind(), except that it replaces existing
binding (if any) with the specified one.

ctx.rebind("cn=aJavaObject", new String("JNDI"));

To remove an existing binding, use unbind() method specifying the name of the binding:
ctx.unbind("cn=aJavaObject");

This removes an existing binding having name aJavaObject from the current context.

24.10.2	 Looking Up
To find an object from the naming tree, we use lookup() method specifying name of the object

as follows:
Object o = ctx.unbind("cn=aJavaObject");

Since, the type of the object we bound earlier is a String, we can cast the result of lookup() to
its target class as follows:

String s = (String)ctx.lookup(args[0]);

24.10.3	 Renaming
The name of an object in a context may be renamed using rename() method.
ctx.rename("old_name", "new_name");

This renames the object that was bound to "old_name" to "new_name". The bound object remains
unchanged.

702 ADVANCED JAVA PROGRAMMING

24.10.4	 Listing
It is sometimes necessary to find all bindings under a certain context. JNDI provides two methods

for this: listBindings() and list().

24.10.4.1   Using list()
This method returns an enumeration of NameClassPair, which consists of the object’s name and

its class name. The following example illustrates this:
//List.java
import javax.naming.*;
public class List {
 public static void main(String args[]) {
 try {
 Context ctx = new InitialContext();
 java.util.Enumeration e = ctx.list(args[0]);
 while(e.hasMoreElements()) {
 NameClassPair ncp = (NameClassPair)e.nextElement();
 System.out.println(ncp.getName()+" <-> "+ncp.getClassName());
 }
 }catch (Exception e) { e.printStackTrace(); }
 }
}

This program lists all object’s names and their class names. So far, we have used name servers such
as rmiregistry and ApacheDS. Let us now use file system naming service. For file system, sun also
provides a factory class com.sun.jndi.fscontext.RefFSContextFactory. However, this class is not a
part of core Java. So, we downloaded the JAR fscontext.jar containing this class from http://www.
java2s.com/Code/Jar/f/Downloadfscontextjar.htm and placed in the class path during runtime.
To see the list of file bindings under D:\apacheds-2.0.0-M15 drive, use the following command:

java -cp ..\fscontext.jar;. -
Djava.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -
Djava.naming.provider.url=file:///D:/ List apacheds-2.0.0-M15

A sample result is shown below:
bin <-> javax.naming.Context
instances <-> javax.naming.Context
lib <-> javax.naming.Context
LICENSE <-> java.io.File
NOTICE <-> java.io.File

24.10.4.2   Using listBindings()
This returns an enumeration of Binding, which is a subclass of NameClassPair, and additionally

contains the object. The following code demonstrates this:
//ListBindings.java
import javax.naming.*;
public class ListBindings {
 public static void main(String args[]) {
 try {
 Context ctx = new InitialContext();
 java.util.Enumeration e = ctx.listBindings("");
 while(e.hasMoreElements()) {
 Binding b = (Binding)e.nextElement();
 System.out.println(b.getName()+" <-> "+b.getObject());
 }
 }catch (Exception e) { e.printStackTrace(); }
 }
}

JAVA NAMING AND DIRECTORY INTERFACE 703

To see the list of file bindings under D: drive, use the following command:
java -cp ..\fscontext.jar;. -
Djava.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -
Djava.naming.provider.url=file:///D:/ ListBindings apacheds-2.0.0-M15

A sample result is shown below:
bin <-> com.sun.jndi.fscontext.RefFSContext@2a15cd
instances <-> com.sun.jndi.fscontext.RefFSContext@fd68b1
lib <-> com.sun.jndi.fscontext.RefFSContext@e45076
LICENSE <-> D:\apacheds-2.0.0-M15\LICENSE
NOTICE <-> D:\apacheds-2.0.0-M15\NOTICE

24.11	 WORKING WITH SUBCONTEXT
In addition to operations on object bindings, JNDI also allows creating and destroying subcontexts.

To create a subcontext, we use createSubcontext() providing the name of the subcontext.
ctx.createSubcontext("cn=CU");

It creates a subcontext cn=CU under the current context. To destroy a context, we use
destroySubcontext() providing the name of the context to be destroyed.

ctx.destroySubcontext("cn=CU");

This destroys the context cn=CU from the context ctx.

24.12	 WORKING WITH DIRECTORY
To work with directory specific operations, we need the package javax.naming.directory. We

import all classes under this package, using the following import statement:
import javax.naming.directory.*;

In a directory, the counterparts of Context and InitialContext are DirContext and
InitialDirContext respectively. So, obtain a reference to an initial directory context as follows:

DirContext dc = new InitialDirContext();

The InitialDirContext also reads the values of two properties java.naming.factory.initial
and java.naming.provider.url. So, specify them using any one of the procedures described earlier.
Let us now discuss how to perform different directory-related operations. We shall use ApacheDS as
the name server unless it is specified explicitly. To avoid specifying long JNDI properties repeatedly,
we created property file jndi.properties and placed in the directory containing our test programs. The
content of this file is shown below:

#jndi.properties
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://172.16.5.81:10389/dc=example,dc=com

24.12.1	 Reading Attributes
Let us first see how to read all attributes of a directory object. The getAttributes() method on

Context object is used for it. It takes the name of an object and returns an Attributes object that
holds the unordered collection of attributes the object possesses. The Attributes interface has useful
methods to obtain individual attributes or listing all attributes. The following program prints all
attributes of the specified directory context:

//ReadAttributes.java
import javax.naming.*;
import javax.naming.directory.*;
public class ReadAttributes {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = ctx.getAttributes(args[0]);
 for (NamingEnumeration ne = attrs.getAll(); ne.hasMore();) {
 Attribute attr = (Attribute)ne.next();
 System.out.println("attribute: " + attr.getID());
 for (NamingEnumeration e = attr.getAll(); e.hasMore();)
 System.out.println("value: " + e.next());
 }
 }catch (Exception e) { e.printStackTrace(); }
 }
}

704 ADVANCED JAVA PROGRAMMING

//ReadAttributes.java
import javax.naming.*;
import javax.naming.directory.*;
public class ReadAttributes {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = ctx.getAttributes(args[0]);
 for (NamingEnumeration ne = attrs.getAll(); ne.hasMore();) {
 Attribute attr = (Attribute)ne.next();
 System.out.println("attribute: " + attr.getID());
 for (NamingEnumeration e = attr.getAll(); e.hasMore();)
 System.out.println("value: " + e.next());
 }
 }catch (Exception e) { e.printStackTrace(); }
 }
}

Use the following command to see all attributes of the ApacheDS partition dc=example,dc=com:
java ReadAttributes ""

A sample result is shown below:
attribute: dc
value: example
attribute: objectclass
value: domain
value: top

24.12.2	 Binding with Attributes
The DirContext class is a subclass of Context and provides overloaded methods many of which

accept an additional Attributes parameter. So, we can use these methods to associate attributes with
the object at the time of the binding. Consider the following example:

//BindAttr.java
import javax.naming.directory.*;
class BindAttr {
 public static void main(String[] args) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute("objectclass", "organization"));
 ctx.bind(args[0], new String("An organization"), attrs);
 } catch (Exception e) { e.printStackTrace(); }
 }
}

This associates an attribute objectclass having value organization with a String object and
binds it with the name specified as command line argument. The objectclass attribute tells that the
String object is a kind of organization object. Run this program using the following command:

java BindAttr o=JU

Since ApcaheDS specifies that an organization object must also have an o (o for organization)
attribute, the String object must have o attributes. We have specified it in its name o=JU. We can
check this using our previous program as follows:

java ReadAttributes o=JU

A sample result is shown below:
attribute: javaSerializedData
value: [B@70be88
attribute: objectclass
value: organization
value: javaSerializedObject
value: javaObject
value: top
attribute: javaClassNames
value: java.lang.String
value: java.lang.Object
value: java.io.Serializable
value: java.lang.Comparable
value: java.lang.CharSequence
attribute: javaClassName
value: java.lang.String
attribute: o
value: JU

JAVA NAMING AND DIRECTORY INTERFACE 705

attribute: javaSerializedData
value: [B@70be88
attribute: objectclass
value: organization
value: javaSerializedObject
value: javaObject
value: top
attribute: javaClassNames
value: java.lang.String
value: java.lang.Object
value: java.io.Serializable
value: java.lang.Comparable
value: java.lang.CharSequence
attribute: javaClassName
value: java.lang.String
attribute: o
value: JU

Like replacing a binding in a name service, we can use unbind() method to replace a binding
in a directory service.

24.12.3	 Creating subcontext with Attributes
To create a subcontext having attributes, we use createSubcontext() method specifying name

of the subcontext and attributes. Here is an example:
//AddEntry.java
import javax.naming.directory.*;
public class AddEntry {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs=new BasicAttributes(true);
 attrs.put(new BasicAttribute("objectclass", "country"));
 ctx.createSubcontext(args[0], attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

This creates a subcontext with an attribute objectclass having value country. The created
subcontext essentially is a DirContext object that can contain a set of country bindings. Use the
following command to run this:

java AddEntry c=India

We can check this using our List.java program as follows:
java List ""

A sample result is shown below:
o=JU <-> java.lang.String
c=India <-> javax.naming.directory.DirContext

24.12.4	 Adding Attributes
Attributes may be added, deleted, replaced using modifyAttributes() method that takes the

following form:
void modifyAttributes(Name name, int mod_op, Attributes attrs)

The second argument indicates the type of modification and can have any one of the static constants
ADD_ATTRIBUTE, REPLACE_ATTRIBUTE, REMOVE_ATTRIBUTE of DirContext class. The following
example adds an attribute description to the object having specified name.

//AddAttribute.java
import javax.naming.directory.*;
public class AddAttribute {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute(args[1],args[2]));
 ctx.modifyAttributes(args[0], DirContext.ADD_ATTRIBUTE, attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

706 ADVANCED JAVA PROGRAMMING

//AddAttribute.java
import javax.naming.directory.*;
public class AddAttribute {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute(args[1],args[2]));
 ctx.modifyAttributes(args[0], DirContext.ADD_ATTRIBUTE, attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

Run this program as follows:
java AddAttribute o=JU description A_University

This adds an attribute description to the object having specified name. We can check this using
our ReadAttributes.java program as follows:

java ReadAttributes o=JU

A sample result is shown below:
…
attribute: objectclass
value: organization
attribute: description
value: A_University
…
attribute: o
value: JU

24.12.5	 Modifying Attributes
We use the constant REPLACE_ATTRIBUTE for modifying an existing attribute. The following

example changes the value of description attribute:
//ModifyAttribute.java
import javax.naming.directory.*;
public class ModifyAttribute {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute(args[1],args[2]));
 ctx.modifyAttributes(args[0], DirContext.REPLACE_ATTRIBUTE, attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

Run this program as follows:
E:\ajp\jndi\final>java ModifyAttribute o=JU description "One of the top 5
universities in India"

We can check this using our ReadAttributes.java program as follows:
java ReadAttributes o=JU

A sample result is shown below:
…
attribute: objectclass
value: organization
attribute: description
value: One of the top 5 universities in India
…
attribute: o
value: JU

24.12.6	 Removing Attributes
We use the constant REMOVE_ATTRIBUTE for deleting an existing attribute. The following example

deletes the postalCode attribute:
//RemoveAttribute.java
import javax.naming.directory.*;
public class RemoveAttribute {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute(args[1]));
 ctx.modifyAttributes(args[0], DirContext.REMOVE_ATTRIBUTE, attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

JAVA NAMING AND DIRECTORY INTERFACE 707
//RemoveAttribute.java
import javax.naming.directory.*;
public class RemoveAttribute {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute(args[1]));
 ctx.modifyAttributes(args[0], DirContext.REMOVE_ATTRIBUTE, attrs);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

Before running this example, make sure that the attribute postalCode already exists. You can
add it using our AddAttribute.java program as follows:

java AddAttribute o=JU postalCode 700032

We can now delete this attribute using the following command:
java RemoveAttribute o=JU postalCode

If you read all attributes of o=JU, you will no longer see this attribute.

24.12.7	 Batch Operation on Attributes
The modifyAttributes() method also has an overloaded version that takes a list of modification

requests, each of which is represented by ModificationItem. Each ModificationItem consists of an
Attribute to be used for modification and one of the numeric constants (ADD_ATTRIBUTE, REPLACE_
ATTRIBUTE, REMOVE_ATTRIBUTE) indicating the type of modification to make. The following example
illustrates this:

//ModifyAttributes.java
import javax.naming.directory.*;
public class ModifyAttributes {
 public static void main(String args[]) {
 try {
 DirContext ctx = new InitialDirContext();
 ModificationItem[] mi = new ModificationItem[3];
 mi[0] = new ModificationItem(DirContext.ADD_ATTRIBUTE, new
BasicAttribute("description", "Located in Kolkata, India"));
 mi[1] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, new
BasicAttribute("description", "Located in Kolkata, India"));
 mi[2] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE, new
BasicAttribute("postalCode"));
 ctx.modifyAttributes(args[0], mi);
 }catch (Exception e) { e.printStackTrace(); }
 }
}

This adds a description attribute, then it changes its value and finally it removes the postalCode
attribute.

24.12.8	 Search
In addition to searching objects by their names, a directory server also allows us to search by

attributes. The directory then returns a list of entries satisfying the query. For example, we may want
to have all entries having an attribute o with value JU. The JNDI DirContext provides useful methods
for various types of searching described in the following sections:

24.12.8.1   Basic Search
In the simplest case, we can search within a given context for entries having specified set of

attributes. We first create an Attributes object and populate with desired attributes. The following
specifies an attribute o with value JU and objectclass with value organization.

708 ADVANCED JAVA PROGRAMMING

Attributes attrs = new BasicAttributes(true);
attrs.put(new BasicAttribute("o", "JU"));
attrs.put(new BasicAttribute("objectclass", "organization"));

We then pass this attribute and context to be searched to the search() method as follows:
NamingEnumeration result = ctx.search(args[0], attrs);

The search() method returns NamingEnumeration consisting of a list of SearchResult object
each of which represents an entry satisfying the search. The following program prints details of
entries having attributes o with value JU.

import javax.naming.*;
import javax.naming.directory.*;
class BasicSearch {
 public static void main(String[] args) {
 try {
 DirContext ctx = new InitialDirContext();
 Attributes attrs = new BasicAttributes(true);
 attrs.put(new BasicAttribute("o", "JU"));
 attrs.put(new BasicAttribute("objectclass", "organization"));
 NamingEnumeration result = ctx.search(args[0], attrs);
 while (result.hasMore()) {
 SearchResult sr = (SearchResult)result.next();
 System.out.println("name: " + sr.getName());
 for(NamingEnumeration ne = sr.getAttributes().getAll(); ne.hasMore();){
 Attribute attr = (Attribute)ne.next();
 System.out.println("attribute: " + attr.getID());
 for (NamingEnumeration e = attr.getAll(); e.hasMore();)
 System.out.println("value: " + e.next());
 }
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Before running this application, add some bindings using the following commands:
java BindAttr o=JU
java BindAttr o=CU
java BindAttr o=BU

Now, run the program using the following command:
java BasicSearch ""

A sample output is shown below:
name: o=JU
attribute: javaSerializedData
value: [B@28305d
attribute: objectclass
value: organization
value: javaSerializedObject
value: javaObject
value: top
attribute: javaClassNames
value: java.lang.String
value: java.lang.Object
value: java.io.Serializable
value: java.lang.Comparable
value: java.lang.CharSequence
attribute: javaClassName
value: java.lang.String
attribute: o
value: JU

JAVA NAMING AND DIRECTORY INTERFACE 709

The search() method returns, by default, all attributes associated with the entries that satisfy the
query. However, we can specify a set of attributes the search() method should include in the return
value. For example, the following specifies that only the objectclass attribute should be returned:

String[] desiredAttrs = {"objectclass"};
NamingEnumeration result = ctx.search(args[0], attrs, desiredAttrs);

This gives the following result:
name: o=JU
attribute: objectclass
value: organization
value: javaSerializedObject
value: javaObject
value: top

24.12.8.2   Filters
A search may be performed specifying search query, called search filter, consisting of logical

expressions. For example, the following search filter selects entries that have an attribute o with value
JU and objectclass with organization.

String filter = "(&(o=JU)(objectclass=organization))";

The following example essentially does the same thing as our previous example:
import javax.naming.*;
import javax.naming.directory.*;
class SearchFilter {
 public static void main(String[] args) {
 try {
 DirContext ctx = new InitialDirContext();
 SearchControls ctls = new SearchControls();
 String filter = "(&(o=JU)(objectclass=organization))";
 NamingEnumeration result = ctx.search(args[0], filter, ctls);
 while (result.hasMore()) {
 SearchResult sr = (SearchResult)result.next();
 System.out.println("name: " + sr.getName());
 for(NamingEnumeration ne = sr.getAttributes().getAll(); ne.hasMore();){
 Attribute attr = (Attribute)ne.next();
 System.out.println("attribute: " + attr.getID());
 for (NamingEnumeration e = attr.getAll(); e.hasMore();)
 System.out.println("value: " + e.next());
 }
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Like basic search, we can customize the set of attributes to be returned by the search() method
as follows:

String[] desiredAttrs = {"objectclass"};
ctls.setReturningAttributes(desiredAttrs);

KEYWORDS
Address—A specification of a communication
endpoint

Atomic name—An indivisible component of a name,
as defined by the naming convention of the context in
which the name is bound

Attribute—Information associated with a directory
object. An attribute consists of an attribute identifier
and a set of attribute values.

Binding—The association of an atomic name with
an object

710 ADVANCED JAVA PROGRAMMING

Composite name—A name that spans multiple
naming systems

Composite namespace—The arrangement of
namespaces from autonomous naming systems to
form one logical namespace

Composite name resolution—The process of
resolving a name that spans multiple naming systems

Compound name—A name in the namespace of a
single naming system. It is a sequence of zero or more
atomic names composed according to the naming
convention of that naming system.

Context—An object whose state is a set of bindings
that have distinct atomic names

Context factory—A specialization of an object factory.
It accepts information about how to create a context,
such as a reference, and returns an instance of the
context.

Directory—A connected set of directory objects

Directory entry—Same as directory object

Directory object—An object that is in the directory.
Also called a directory entry

Directory service—A service that provides operations
for creating, adding, removing, and modifying the
attributes associated with objects in a directory

Initial context—The starting point for resolution of
names for naming and directory operations

Name—A people-friendly identifier for identifying an
object or a reference to an object

Name resolution—The process of resolving a name
to the object to which it is bound

Namespace—A set of all names in a naming system

Naming convention—The set of syntactic rules
that govern how a name is generated. These rules
determine whether a name is valid or invalid in the
context in which the name is used.

Naming service—A service that provides the
operations on a naming system

Naming system—A connected set of contexts of the
same type (they have the same naming convention)

Schema—A set of rules that specifies the types of
objects that a directory may contain and the mandatory
and optional attributes that directory objects of different
types are to have. It may also specify the structure of
the namespace and the relationship between different
types of objects.

Search filter—A logical expression specifying the
attributes that the directory objects being requested
should have. It is used by the directory to locate those
objects.

Service provider—An implementation of a context
or initial context that can be plugged in dynamically
to the JNDI architecture to be used by the JNDI
client.

Subcontext—A context that is bound in another
context of the same type (it has the same naming
convention)

SUMMARY
Naming is a fundamental concept used in almost every
system of the world. It allows us to associate (called
binding) names with objects and to find (called lookup)
those objects later by their names. The examples of
such naming systems are Domain Name System
(DNS), File system, Java’s rmiregistry, Java IDL’s
tnameserv and orbd etc.

A name is formed by one or more name components.
The syntax of names, also called naming convention,
is specified by the naming system. For example, in the
DNS, a name (e.g. www.google.com) is an ordered
sequence of name components (www, google and com)
separated by dots (‘.’). A file name in windows (say
D:\progs\test.java), on the other hand, starts with a
drive name (D:) and uses \ (back slash) as the name
component separator. A name (e.g. ou=IT,o=JU,c=IN)
in LDAP (Lightweight Directory Access Protocol)
compliant server is a comma (,) separated ordered

sequence of name components, each of which is a
name and value pair separated by equality sign (=).
A naming context is a collection of zero or more

name-to-object bindings. A subcontext is child
context of a parent context. Contexts and their
subcontexts together form a general tree. The root
of the context tree is referred to as initial context or
root context. The process of associating a name to
an object is called binding. For example, a DNS name
is bound to an IP address; a file name is bound to
a file and so on.
A directory service extends the idea of naming

service. In addition to associating names with objects,
a directory service allows objects to have attributes.
Directory service also allows to perform attribute
related operations such as reading, modifying,
removing attributes, searching object based-on
attributes etc.

JAVA NAMING AND DIRECTORY INTERFACE 711

The Java Naming and Directory Interface (JNDI) allows
Java application to use naming and directory. This initial
context is represented by an InitialContext object
and provides the starting point of name operations.
The bind() and lookup() methods are used to bind
and find objects respectively. The information about
a JNDI server and factory to be used to create initial
context is specified by the two properties java.naming.
provider.url and java.naming.factory.initial.

Apache Directory Server (often abbreviated as
ApacheDS) is LDAPv3 compatible, open source
directory server entirely written in Java. In this

chapter, in addition to file system naming service,
Java’s rmiregistry and orbd, we used ApacheDS to
demonstrate the JNDI concepts.

JNDI name related operations are adding, listing,
looking up, replacing and removing binding. The
directory specific operations are reading attributes,
binding with attributes, creating subcontext with
attributes, adding, modifying, removing attributes etc.

In addition to searching objects by their names, a
directory server also allows us to search by attributes.
A search may be performed specifying search query,
called search filter, consisting of logical expressions.

WEB RESOURCES
http://docs.oracle.com/javase/jndi/
tutorial/
The JNDI Tutorial

http://docs.oracle.com/javase/tutorial/jndi/
Trail: Java Naming and Directory Interface

http://docs.oracle.com/javase/tutorial/
jndi/ldap/jndi.html
The JNDI Tutorial

http://directory.apache.org/apacheds/
ApacheDS

http://www.javaworld.com/article/2076888/
core-java/jndi-overview--part-1--an-
introduction-to-naming-services.html
JNDI overview, Part 1: An introduction to naming services

http://www.coderpanda.com/jndi-tutorial/
JNDI Tutorial

EXERCISES
Objective-type Questions

	 1.	 What is the full form of JNDI?
	 (a)	 Java Network and Directory Interface
	 (b)	 Java Naming and Directory Implementation
	 (c)	 Java Network and Directory Implementation
	 (d)	 Java Naming and Directory Interface

	 2.	 What is the full form of LDAP?
	 (a)	 Lazy Directory Access Protocol
	 (b)	 Lightweight Dynamic Access Protocol
	 (c)	 Lightweight Directory Access Protocol
	 (d)	 Little Directory Access Protocol

	 3.	 Which of the following is not an example of naming
service?

	 (a)	 DNS	 (c)	 file system
	 (b)	 rmiregistry	 (d)	 HTTP

	 4.	 Which of the following is used to obtain the initial
context?

	 (a)	 InitContext()	 (c)	 getInitialContext()
	 (b)	 InitialContext()	 (d)	 Context()

	 5.	 Which of the following is used to bind an object to
a name?

	 (a)	 assign()	 (c)	 bind()
	 (b)	 name()	 (d)	 map()

	 6.	 Which of the following are JNDI properties?
	 (a)	 java.naming.factory.initial
	 (b)	 java.naming.provider.url
	 (c)	 Both a) and b)
	 (d)	 None of the above

	 7.	 Which of the following methods is used to resolve
a name?

	 (a)	 lookup()	 (c)	 find()
	 (b)	 resolve()	 (d)	 search()

	 8.	 Which of the following is used to rename an
existing binding?

	 (a)	 change()	 (c)	 modify()
	 (b)	 renew()	 (d)	 rename()

	 9.	 Which of the following methods is used to find all
bindings?

	 (a)	 find()	 (c)	 list()
	 (b)	 search()	 (d)	 enumerate()

	10.	 Which of the following is an example of a directory
server?

	 (a)	 Apache tomcat	 (c)	 Apache
	 (b)	 Apache Ant	 (d)	 ApacheDS

712 ADVANCED JAVA PROGRAMMING

	11.	 Which of the following characters is used as
the separator between name and value in
LDAP?

	 (a)	 :	 (c)	 .
	 (b)	 =	 (d)	 -

	12.	 What is the full form of DNS?
	 (a)	 Directory and Naming Service
	 (b)	 Dynamic Name System
	 (c)	 Dynamic Native System
	 (d)	 Domain Name System

	13.	 A LDAP URL starts with
	 (a)	 jndi	 (c)	 iiop
	 (b)	 ds	 (d)	 ldap

	14.	 Which of the following Java command line options
is used to specify URL of the JNDI provider?

	 (a)	 -Djava.jndi.provider.url
	 (b)	 -Djava.provider
	 (c)	 -Djava.naming.provider.url
	 (d)	 -Djava.naming.url

	15.	 Which of the following Java command line options
is used to specify initial context factory?

	 (a)	 -Djava.naming.factory.initial
	 (b)	 -Djava.initial.context
	 (c)	 -Djava.initial.context.factory
	 (d)	 -Djava.factory.initial

	16.	 The association of an object with a name is called
	 (a)	 associating	 (c)	 assigning
	 (b)	 binding	 (d)	 referencing

	17.	 The procedure of finding an object by its name is
known as

	 (a)	 search	 (c)	 lookup
	 (b)	 find	 (d)	 look for

	18.	 Which of the following is a directory service?
	 (a)	 rmiregistry	 (c)	 orbd
	 (b)	 DNS	 (d)	 file system

	19.	 A directory context is represented by
	 (a)	 DirectoryContext	 (c)	 Dir
	 (b)	 DirContext	 (d)	 DContext

	20.	 Which of the following static constants is used to
indicate deletion of an attribute?

	 (a)	 DELETE_ATTRIBUTE
	 (b)	 DEL_ATTRIBUTE
	 (c)	 REMOVE_ATTRIBUTE
	 (d)	 THROW_ATTRIBUTE

	21.	 Which of the following static constants is used to
indicate deletion of an attribute?

	 (a)	 MODIFY_ATTRIBUTE
	 (b)	 EDIT_ATTRIBUTE
	 (c)	 CHANGE_ATTRIBUTE
	 (d)	 REPLACE_ATTRIBUTE

	22.	 Which of the following types of objects can LDAP
bind?

	 (a)	 Serializable	 (c)	 Remote
	 (b)	 Reference	 (d)	 CORBA

	23.	 Which of the following types of objects can
rmiregistry not bind?

	 (a)	 Referenceable	 (c)	 Remote
	 (b)	 Reference	 (d)	 Serializable

	24.	 Which of the following is used to find initial
directory context?

	 (a)	 InitialDirContext()
	 (b)	 InitDirContext()
	 (c)	 InitialContext()
	 (d)	 InitContext()

Subjective-type Questions

	 1.	 What is the format of an LDAP URL?

	 2.	 What is the relationship between LDAP and JNDI?

	 3.	 Explain the importance of JNDI.

	 4.	 What is the difference between JDBC, JNDI and
Hibernate?

	 5.	 What is a naming service?

	 6.	 What is a directory service?

	 7.	 Distinguish between naming and directory service.

	 8.	 Explain the components of JNDI.

	 9.	 What is Context and InitialContext?

	10.	 Differentiate among JNDI lookup(), list(),
listBindings(), and search() methods.

	11.	 What is an LDAP server? And what is it used for
in an enterprise environment ?

	12.	 How will you read all attributes of a directory object?

	13.	 How do you bind an object having attributes to a
context?

	14.	 Describe the procedure to add, modify and delete
attributes.

JAVA NAMING AND DIRECTORY INTERFACE 713

	15.	 Discuss how objects can be searched based on
their attributes.

	16.	 What are filters? Why are they used?

	17.	 Identify the different components of JNDI and
explain their functionality briefly.

	18.	 Describe how to perm a batch of operations on a
set of attributes.

	19.	 Explain how to search object by their attributes.

	20.	 Write the syntax of search filter.

CHAPTER – 25

Java Message Service

Key Objectives

After completing this chapter readers will be able to—
•  get an overview about the Java Message Service and its components
•  understand P2P and Pub/Sub model of messaging
•  know what synchronous and asynchronous message consumption are
•  install and configure Open Message Queue
•  write JMS applications
•  know how to use JNDI with JMS

25.1	 MESSAGING
Messaging is a communication technique between software components or applications. However,

unlike tightly-coupled communication techniques such as TCP sockets, RMI and CORBA, where both
the parties must be available during communication, messaging allows s/w components to exchange
messages; they don’t have to be available at the same time. This is achieved with the introduction of a
third component, called messaging agent that provides facilities such as creating, sending, receiving
and reading messages. Messaging clients connect to a messaging agent and communicate indirectly.
In fact, one need not know anything about the other, thus resulting the communication loosely-coupled.

Messaging is often used to coordinate programs in dissimilar systems or written in different
programming languages. However, unlike electronic mail, which is a method of communication
between people or between software applications and people, it is used for communication between
software components or applications.

25.2	 JMS API
The Java Message Service (JMS) is a Java API that allows s/w components to create, send,

receive and read messages. Formerly developed by Sun, this Message Oriented Middleware (MOM)
defines a set of interfaces and associated semantics, which allows Java programs to communicate
with other messaging implementations. The mandatory part, which a programmer must know to

JAVA MESSAGE SERVICE 715

understand basic messaging concept is very small. However, it supports enough features needed for
sophisticated messaging applications.

25.3	 JMS COMPONENTS
A JMS application typically has the following components [Figure 25.1:].

Administrative
tool

JMS ClientsJMS provider

JNDI Namespace

ConnectionFactory

Destination

2. Get resource

1. Upload
resource

3. Get
Connected

Figure 25.1: JMS Components

JMS Provider
This is a message Oriented Middleware (MOM) that implements JMS specification. It provides

requisite API library, a broker that provides message storage/delivery functions. It usually also
provides administrative and control features. Some of the well-known providers are Sun’s Open
Message Queue, Apache’s Active MQ and Qpid, JBoss’s HornetQ, IBM’s Websphere MQ, Progress
Software’s SonicMQ, ZeroMQ, RabbitMQ etc. In this chapter, we shall use Sun’s Open Message
Queue, which is also an integral part of J2EE.

JMS Clients
These are Java programs that produce and consume messages.

Administered Objects
There are preconfigured JMS objects created usually by an administrator and are maintained by the

broker for client’s use. There are two kinds of administered objects: destinations and connection factories.
A destination is nothing but a message store. It is a target where producers place messages or

it is a source consumers retrieve messages or both.
A connection factory object encapsulates a set of configuration properties for a connection.

A JMS client uses a connection factory to create a connection to the broker.

Messages
These are objects that JMS clients exchange. In addition to text message, JMS supports messages

that contain serialized Java objects and XML documents.

25.4	 MESSAGING MODELS
JMS supports two models for exchanging messages between producers and consumers: Point-to-

Point and Publish/Subscribe, which are frequently shortened to p2p (or PTP) and pub/sub respectively.
The JMS specification refers to these as messaging domains.

716 ADVANCED JAVA PROGRAMMING

25.4.1	 Point-to-Point
In this model, the destination, producer and consumer of messages are called queue, sender

and receiver respectively. Senders place messages in queues, and receivers get them [see Figure 25.2:].

msg

Sender
(Producer)

Receiver
(Consumer)

msg

Queue(Destination)

send() receive()

Figure 25.2: Point-to-Point Messaging

Messages live in a queue until they are consumed or until they expire. Any number of senders
can put messages to a queue and any number of receivers can consume messages from the queue
[Figure 25.3:]. However, each message is consumed by only one receiver. This means once a
message is taken off the queue by some receiver, it no longer exists in the queue.

The term queue in P2P model is just symbolic; it doesn’t guarantee that messages are delivered
in any particular order. Moreover, if more than one potential receiver exists for a queue, receivers
are chosen randomly for delivery of messages.

Sender
(Producer)

Receiver
(Consumer)

Queue(Destination)

send() receive()

Sender
(Producer)

Sender
(Producer)

send()

send()
Receiver

(Consumer)

Receiver
(Consumer)

receive()

receive()

Figure 25.3: Multiple sender, multiple receiver in P2P model

A receiver can get messages by explicitly extracting them from the queue or can register itself
to show its interest to get messages. In the former case, a sender and a receiver of a message need
not live at the same time. A receiver can still fetch the message later whether or not it was running
when the sender produced the message. However, if there is no message in the queue and a receiver
tries to extract a message, it gets blocked until a message appears in the queue. This type of message
consumption is known as synchronous consumption.

However, in P2P model, one receiver (and only one) may also get registered to a queue to get
messages and continue the normal flow of execution. The broker can deliver messages as soon
as they come in from some sender. This type of message consumption is known as asynchronous
consumption. What happens if a message appears in a queue and an asynchronous receiver and other
synchronous receivers are ready to get messages? Well, wait. We shall discuss more about synchronous
and asynchronous consumption of messages later in this chapter.

25.4.2	 Publish/Subscribe
In this model, the destination, producer and consumer of messages are called topic, publisher

and subscriber respectively. Subscribers first show their interest in receiving messages on a topic.

JAVA MESSAGE SERVICE 717

Publishers, in turn, produce some messages for the topic. As soon as the messages are produced,
they are distributed to all current subscribers who showed their willingness earlier [see Figure 25.4:].
So, a client is supposed to get those messages that come after the subscription.

Publisher
(Producer)

Subscriber
(Consumer)

Topic(Destination)
Subscriber
(Consumer)

Subscriber
(Consumer)

msg

msg

msg

msg

Figure 25.4: Publish-Subscribe Messaging

The primary difference of this model from P2P model is that a message is allowed to be consumed
by multiple subscribers. Moreover, messages on a topic remain valid as long as they are being
distributed to current subscribers. Messages do not retain the topic even if there is no subscriber for it.

The subscriber, after making a subscription must remain continuously active to receive messages.
However, JMS provides a novel facility called durable subscription, where the client is allowed to
be disconnected for some time. The JMS broker keeps messages published during the disconnection
period and delivers them whenever it reconnects.

25.5	 MESSAGE CONSUMPTION
JMS allows a message consumer to get messages in two ways: synchronously and asynchronously.

25.5.1	 Synchronous
This style of message consumption happens when a consumer explicitly extracts messages from

a destination using receive() method. The receive() method blocks the caller if no message is
available at that time. As a result, the consumer cannot continue its normal mode of execution.

25.5.2	 Asynchronous
In this style of message consumption, a consumer simply sets up a listener and continues its

normal work. The listener, on behalf of the consumer, listens on thereafter and gets notified by the
broker when a message appears in the destination.

25.6	 PROGRAMMING MODEL
JMS API defines a set of interfaces [Figure 25.5:] corresponding to different messaging components

and provides them as a package javax.jms. The primary interfaces are summarized below:

ConnectionFactory
This type of object encapsulates the configuration of a connection and is used to create connection.

It has two flavors, one for each messaging models P2P and pub/sub: QueueConnectionFatory and
TopicConnectionFactory.

718 ADVANCED JAVA PROGRAMMING

«interface»
ConnectionFactory

«interface»
QueueConnectionFactory

«interface»
TopicConnectionFactory

extends extends

Connection
A Connection object represents application’s active connection to a messaging broker. This is

used to create Session objects. Like ConnectionFactory, it also has two forms for the two models:
QueueSession and TopicSession.

«interface»
Connection

«interface»
QueueConnection

«interface»
TopicConnection

extends extends

Session
This is a context used to create destinations, producers, consumers, messages etc. It also has

two flavors: QueueSession and TopicSession.

«interface»
Session

«interface»
QueueSession

«interface»
TopicSession

extends extends

Destination
This is the message store where producers place messages and consumers get messages from.

A Destination object may be created from Session or by JNDI lookup. In P2P and pub/sub models,
destinations are called queues and topics respectively and are represented by Queue and Topic objects
respectively.

«interface»
Queue

extends extends

«interface»
Destination

«interface»
Topic

MessageProducer
A MessageProducer object is created from Session specifying a Destination and is used to

send messages to the specified destination. It has two forms for two messaging models: QueueSender
and TopicPublisher.

JAVA MESSAGE SERVICE 719

«interface»
MessageProducer

«interface»
QueueSender

«interface»
TopicPublisher

extends extends

MessageConsumer
A MessageConsumer object is created from Session specifying a Destination and is used

to receive messages from the specified destination. It has two forms for two messaging models:
QueueReceiver and TopicSubscriber.

«interface»
MessageConsumer

«interface»
QueueReceiver

«interface»
TopicSubscriber

extends extends

Message
The interface is the root interface of all JMS messages. It defines the message header and the

acknowledgement method to be used for all messages. A message usually consists of a header that
contains fields used for message routing and identification, application specific property values and
a payload that contains the application data being sent. Five types of messages are specified in JMS
API [Table 25.1:]:

Table 25.1: JMS generic and model specific interfaces

High-level interface P2P model Pub/sub model

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

Destination Queue Topic

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

StreamMessage
Contains a stream of Java primitive values.

MapMessage
Contains a set of name-value pairs.

TextMessage
Contains a java.lang.String object. This message type can be used to transport plain-text messages,

and XML messages.

ObjectMessage
Contains a Serializable Java object.

720 ADVANCED JAVA PROGRAMMING

BytesMessage
Contains a stream of un-interpreted bytes for encoding a body to match an existing message

format.

(i) (ii)

QueueConnectionFactory

QueueConnection

QueueSession

QueueSender QueueReceiver

Queue

send receive

create

create

create

Persistent
Storage

TopicConnectionFactory

TopicConnection

TopicSession

TopicPublisher TopicSubsrciber

Topic
publish subscribe

create

create

create

Messagecreate create

Figure 25.5: JMS programming model (i) P2P model (ii) Pub/Sub model

There are various JMS providers. However, for simplicity, we shall use a full-blown provider
such as J2EE server. Instead, we shall use formerly Sun’s Open Message Queue, which is lightweight,
easy to use and an integral part of J2EE. So, the next section discusses how to get and install Open MQ.

25.7	 INSTALLING OPEN MQ
The first step to create a JMS application is to get Open Message Queue. Download the latest

release of Open Message Queue from https://mq.java.net/downloads.html. We downloaded
the zip archive for windows openmq4_5_2-binary-WINNT.zip. Unzip the binary (.jar) bundle in a
directory, say D:\openmq4_5_2. Hereafter, we shall refer to this directory as <MQ_TOP>. Edit the file
<MQ_TOP>/etc/mq/imqenv.conf to set IMQ_DEFAULT_JAVAHOME to your JDK home directory. We did
this using the following:

set IMQ_DEFAULT_JAVAHOME=D:\Java\jdk1.7.0_07

Open Message Queue is now ready to function. Go to <MQ_TOP>/mq/bin and use the following
command to start the broker:

imqbrokerd

If everything goes fine, the output displayed should be similar to that shown below:
D:\openmq4_5_2\mq\bin>imqbrokerd
[08/Mar/2014:05:30:20 PST]

Open Message Queue 4.5.2
Oracle
Version: 4.5.2 (Build 2-d)
Compile: Thu 12/08/2011

Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.

Java Runtime: 1.7.0_07 Oracle Corporation D:\Java\jdk1.7.0_07\jre
[08/Mar/2014:05:30:20 PST] IMQ_HOME=D:\openmq4_5_2\mq
[08/Mar/2014:05:30:20 PST] IMQ_VARHOME=D:\openmq4_5_2\var\mq
[08/Mar/2014:05:30:20 PST] Windows 7 6.1 x86 uroy (4 cpu) root
[08/Mar/2014:05:30:20 PST] Java Heap Size: max=174784k, current=15744k
[08/Mar/2014:05:30:20 PST] Arguments:
[08/Mar/2014:05:30:20 PST] [B1060]: Loading persistent data...
[08/Mar/2014:05:30:20 PST] Using built-in file-based persistent store:
D:\openmq4_5_2\var\mq\instances\imqbroker\
[08/Mar/2014:05:30:20 PST] [B1270]: Processing messages from transaction log file...
[08/Mar/2014:05:30:21 PST] [B1039]: Broker "imqbroker@uroy:7676" ready.

To check the broker startup, use imqcmd utility as follows:
imqcmd query bkr –u admin

JAVA MESSAGE SERVICE 721

D:\openmq4_5_2\mq\bin>imqbrokerd
[08/Mar/2014:05:30:20 PST]

Open Message Queue 4.5.2
Oracle
Version: 4.5.2 (Build 2-d)
Compile: Thu 12/08/2011

Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.

Java Runtime: 1.7.0_07 Oracle Corporation D:\Java\jdk1.7.0_07\jre
[08/Mar/2014:05:30:20 PST] IMQ_HOME=D:\openmq4_5_2\mq
[08/Mar/2014:05:30:20 PST] IMQ_VARHOME=D:\openmq4_5_2\var\mq
[08/Mar/2014:05:30:20 PST] Windows 7 6.1 x86 uroy (4 cpu) root
[08/Mar/2014:05:30:20 PST] Java Heap Size: max=174784k, current=15744k
[08/Mar/2014:05:30:20 PST] Arguments:
[08/Mar/2014:05:30:20 PST] [B1060]: Loading persistent data...
[08/Mar/2014:05:30:20 PST] Using built-in file-based persistent store:
D:\openmq4_5_2\var\mq\instances\imqbroker\
[08/Mar/2014:05:30:20 PST] [B1270]: Processing messages from transaction log file...
[08/Mar/2014:05:30:21 PST] [B1039]: Broker "imqbroker@uroy:7676" ready.

To check the broker startup, use imqcmd utility as follows:
imqcmd query bkr –u admin

D:\openmq4_5_2\mq\bin>imqbrokerd
[08/Mar/2014:05:30:20 PST]

Open Message Queue 4.5.2
Oracle
Version: 4.5.2 (Build 2-d)
Compile: Thu 12/08/2011

Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.

Java Runtime: 1.7.0_07 Oracle Corporation D:\Java\jdk1.7.0_07\jre
[08/Mar/2014:05:30:20 PST] IMQ_HOME=D:\openmq4_5_2\mq
[08/Mar/2014:05:30:20 PST] IMQ_VARHOME=D:\openmq4_5_2\var\mq
[08/Mar/2014:05:30:20 PST] Windows 7 6.1 x86 uroy (4 cpu) root
[08/Mar/2014:05:30:20 PST] Java Heap Size: max=174784k, current=15744k
[08/Mar/2014:05:30:20 PST] Arguments:
[08/Mar/2014:05:30:20 PST] [B1060]: Loading persistent data...
[08/Mar/2014:05:30:20 PST] Using built-in file-based persistent store:
D:\openmq4_5_2\var\mq\instances\imqbroker\
[08/Mar/2014:05:30:20 PST] [B1270]: Processing messages from transaction log file...
[08/Mar/2014:05:30:21 PST] [B1039]: Broker "imqbroker@uroy:7676" ready.

To check the broker startup, use imqcmd utility as follows:
imqcmd query bkr –u admin

Supply the default password of admin, when prompted to do so. A sample output is shown
below:

D:\openmq4_5_2\mq\bin>imqcmd query bkr -u admin
Password:
Querying the broker specified by:

Host Primary Port

localhost 7676

Version 4.5.2
Instance Name imqbroker
Broker ID
Primary Port 7676
Broker is Embedded false
Instance Configuration/Data Root Directory D:\openmq4_5_2\var\mq

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Current Number of Messages in Dead Message Queue 0
Current Total Message Bytes in Dead Message Queue 0

Log Dead Messages false
Truncate Message Body in Dead Message Queue false

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers unlimited (-1)
Auto Created Queue Max Number of Backup Consumers 0

Cluster ID
Cluster is Highly Available false
Cluster Broker List (active) mq://172.16.5.81:7676/
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) 268435456

Successfully queried the broker.

722 ADVANCED JAVA PROGRAMMING

D:\openmq4_5_2\mq\bin>imqcmd query bkr -u admin
Password:
Querying the broker specified by:

Host Primary Port

localhost 7676

Version 4.5.2
Instance Name imqbroker
Broker ID
Primary Port 7676
Broker is Embedded false
Instance Configuration/Data Root Directory D:\openmq4_5_2\var\mq

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Current Number of Messages in Dead Message Queue 0
Current Total Message Bytes in Dead Message Queue 0

Log Dead Messages false
Truncate Message Body in Dead Message Queue false

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers unlimited (-1)
Auto Created Queue Max Number of Backup Consumers 0

Cluster ID
Cluster is Highly Available false
Cluster Broker List (active) mq://172.16.5.81:7676/
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) 268435456

Successfully queried the broker.

25.8	 WRITING JMS APPLICATION
The following are the basic steps to write a JMS client:
•	 Create/Look up a ConnectionFactory object.
•	 Use the ConnectionFactory to create a Connection.
•	 Use the Connection to create one or more Session objects.
•	 Create/Look up one or more Destination objects.
•	 Use a Session and a Destination to create MessageProducer and MessageConsumer objects.
•	 Send and receive messages.

To write any JMS client, we first need a reference to a ConnectionFactory object, which
encapsulates the necessary configuration properties for creating connections to the MQ broker. We
can easily create such an object by instantiating it explicitly as follows:

ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();

This object may be obtained by JNDI lookup, which we shall discuss later in this chapter. Since, we
have created this object, we have to configure it properly. The minimal configuration requires specifying
port number and name or address of the machine where broker is running. We do this as follows:

((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");

This ConnectionFactory object is used to create connections with the Sun’s Open Message Queue
JMS provider. The following is an example:

Connection con = cf.createConnection();

It represents an open connection (usually a TCP/IP socket) between a JMS client and a broker.
It is responsible for authenticating clients, providing connection meta data, creating Session objects
etc. and relatively heavyweight object. So, it is recommended to create one Connection object, unless
it is unavoidable. This connection initially remains in the stopped mode. It means, it does not allow
to consume messages from a destination. However, producers may produce their messages, even
though there is a stopped connection.

We then create a Session object:
Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);

A Session object represents a singled threaded communication session between a JMS client and a
JMS broker. It allows us to create producers/consumers, queues/topics, produce/consume messages etc.

This portion is common in all JMS clients. Let us now write code that sends messages to a queue
using P2P model.

25.9	 WRITING A P2P PRODUCER
A producer in P2P model is called queue sender. Let us write a simple queue sender that produces

a simple text message. Since, in P2P model, a message destination is called a queue, let us create a
Queue object explicitly as follows:

Destination dest = sn.createQueue(args[0]);

JAVA MESSAGE SERVICE 723

This creates a Queue in the broker with name AQueue, if it does not exist already. A Destination
object is also a JMS administered object and may also be obtained from a JNDI look up, which
we shall discuss later in this chapter.

To send messages to a destination, a queue sender uses a MessageProducer object, which is created
by passing a Destination object to createProducer() method of Session:

MessageProducer mp = sn.createProducer(dest);

It is also possible to create a MessageProducer without supplying a destination. The destination
is specified later when a message is sent using send() method. We then create a text message to be
sent as follows:

TextMessage tm = sn.createTextMessage();
tm.setText("A test message");

A TextMessage object is one that contains a String object, which has been specified using
setText() method. Finally, the message is sent to the queue using send() method:

mp.send(tm);

The interesting part is that there is no trace of who will finally read the message. Actually, the
producer need not know where or who the consumer is; it just sends messages into queue AQueue and
what happens from there to the sent messages is not of producer’s interest any more.

It is a good idea to close session and connection, so that resources occupied by these objects are
released:

sn.close();
con.close();

The entire source code (Sender.java) of the sender is shown below:
import javax.jms.*;
public class Sender {
 public static void main(String[] args) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createQueue(args[0]);
 MessageProducer mp = sn.createProducer(dest);
 TextMessage tm = sn.createTextMessage();
 tm.setText("A test message");
 mp.send(tm);
 System.out.println("Message sent:");
 sn.close();
 con.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

25.9.1	 Running Example
To send a message, make sure that the MQ broker is running port 7676 in a machine having IP

address 172.16.5.81.
Compile the program as follows:
javac -cp jms.jar;imq.jar;. Sender.java

The sender can then be executed as follows:
java -cp jms.jar;imq.jar;. Sender AQueue

724 ADVANCED JAVA PROGRAMMING

If everything goes fine, the following message appears on the screen:
Message sent:

The content of the queue may also be verified using imqcmd utility as follows:
imqcmd query dst -n AQueue -t q -u admin

Supply the default password of admin when prompted to do so. A sample output is shown below:
…
Destination Name AQueue
Destination Type Queue
Destination State RUNNING
Created Administratively false

Current Number of Messages
 Actual 1
…

25.10	 WRITING A P2P SYNCHRONOUS CONSUMER
A consumer in P2P model is called a queue receiver. Let us now see how to write such a receiver

to consume the sent message. Like producer, it also creates Session and Destination objects. Then
it creates a MessageConsumer:

MessageConsumer mc = sn.createConsumer(dest);

Note that a connection remains in the stopped mode where a consumer is not allowed to consume
any message from a destination. So, let’s make it running:

con.start();

Finally, the message is consumed explicitly by invoking receive() method. The receiver method
just returns a Message object and there are no separate methods for receiving just TextMessage. So,
we type cast it and print text message’s content:

TextMessage msg = (TextMessage) mc.receive();
System.out.println("Received message: "+msg.getText());

Note that the receive() method blocks the caller if there is no message in the queue currently. As
a result, the consumer cannot continue its normal flow of execution. However, as soon as a message
arrives in the queue, it is delivered to the consumer. This way of message consumption is called
synchronous consumption of message.

The complete source code (SynReceiver.java) is shown below:
import javax.jms.*;
public class SynReceiver {
 public static void main(String[] args) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createQueue(args[0]);
 MessageConsumer mc = sn.createConsumer(dest);
 con.start();
 TextMessage msg = (TextMessage) mc.receive();
 System.out.println("Received message: "+msg.getText());
 sn.close();
 con.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

JAVA MESSAGE SERVICE 725

Compile the program as follows:
javac -cp jms.jar;imq.jar;. SynReceiver.java

The receiver can then be executed as follows:
java -cp jms.jar;imq.jar;. SynReceiver AQueue

If everything goes fine, the following message appears on the screen:
Received message: A test message

The content of the queue may also be verified using imqcmd utility as follows:
imqcmd query dst -n AQueue -t q -u admin

Supply the default password of admin when prompted to do so. A sample output is shown below:
…
Destination Name AQueue
Destination Type Queue
Destination State RUNNING
Created Administratively false

Current Number of Messages
 Actual 0
…

It indicates that the message that was produced earlier has been consumed and no longer exists
in the queue.

25.11	 WRITING A P2P ASYNCHRONOUS CONSUMER
As mentioned in the previous section, the receiver gets blocked and cannot continue its normal

execution if it invokes a receive() method and the queue is empty. This can be avoided by consuming
messages asynchronously. In this style of message consumption, consumer simply sets up a listener
and continues its normal work. The listener, on behalf of the consumer, listens on thereafter and gets
notified by the broker when a message appears in the destination.

A message listener must implement MessageListener interface. Here is a sample listener class:
public class AListener implements MessageListener {

The interface MessageListener has a single method onMessage(), which takes a single parameter
Message as follows:

void onMessage(Message message)

The MQ runtime calls this method to deliver a message. We implement the method as follows:
public void onMessage(Message msg) {
 TextMessage tm = (TextMessage) msg;
 try {
 System.out.println("Received: " + tm.getText());
 } catch (Exception e) { e.printStackTrace(); }
}

An asynchronous consumer sets up a message listener using its setMessageListener() method:
mc.setMessageListener(new AListener());

The consumer can then continue its normal work. However, it must be active and therefore must
not close the connection and session. Here is the complete source code (AsynReceiver.java.) of
asynchronous consumer:

import javax.jms.*;
public class AsynReceiver {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createQueue(args[0]);
 MessageConsumer mc = sn.createConsumer(dest);
 con.start();
 mc.setMessageListener(new AListener());
 System.out.println("Continuing its own work");
 } catch (Exception e) { e.printStackTrace(); }
 }
}
class AListener implements MessageListener {
 public void onMessage(Message msg) {
 TextMessage tm = (TextMessage) msg;
 try {
 System.out.println("Received: " + tm.getText());
 } catch (Exception e) { e.printStackTrace(); }
 }
}

726 ADVANCED JAVA PROGRAMMING

import javax.jms.*;
public class AsynReceiver {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createQueue(args[0]);
 MessageConsumer mc = sn.createConsumer(dest);
 con.start();
 mc.setMessageListener(new AListener());
 System.out.println("Continuing its own work");
 } catch (Exception e) { e.printStackTrace(); }
 }
}
class AListener implements MessageListener {
 public void onMessage(Message msg) {
 TextMessage tm = (TextMessage) msg;
 try {
 System.out.println("Received: " + tm.getText());
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Compile and run the program as before. Note that this consumer can continue its work after setting
up a listener. The message Continuing its own work appears even if there is no message in the queue.

25.12	 WRITING A PUB/SUB PRODUCER
A producer in a pub/sub model is called a topic publisher. Let us write a simple topic publisher

that produces a simple text message. The code for this topic publisher will look exactly like a queue
sender except that it creates a topic instead of a queue as follows:

Destination dest = sn.createTopic(“ATopic”);

The complete source code (Publisher.java) is given below:
import javax.jms.*;
public class Publisher {
 public static void main(String[] args) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createTopic("ATopic");
 MessageProducer mp = sn.createProducer(dest);
 TextMessage tm = sn.createTextMessage();
 tm.setText("A test message");
 mp.send(tm);
 System.out.println("Message sent:");
 sn.close();
 con.close();
 } catch (Exception e) { e.printStackTrace();}
 }
}

25.13	 WRITING A PUB/SUB SYNCHRONOUS CONSUMER
A consumer in a pub/sub model is called a topic subscriber. Let us write a simple topic subscriber

that consumes a simple text message. The code for this topic publisher will look exactly like a queue
sender, except that it creates a topic instead of a queue as follows:

Destination dest = sn.createTopic(“ATopic”);

The complete source code (SynSubscriber.java) is given below:
import javax.jms.*;
public class SynSubscriber {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination d = sn.createTopic("ATopic");
 MessageConsumer mc = sn.createConsumer(d);
 con.start();
 TextMessage msg = (TextMessage) mc.receive();
 System.out.println("Received message: "+msg.getText());
 sn.close();
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

JAVA MESSAGE SERVICE 727import javax.jms.*;
public class SynSubscriber {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination d = sn.createTopic("ATopic");
 MessageConsumer mc = sn.createConsumer(d);
 con.start();
 TextMessage msg = (TextMessage) mc.receive();
 System.out.println("Received message: "+msg.getText());
 sn.close();
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This program is exactly same as SynReceiver.java except that it uses createTopic() method,
instead of createdQueue().

25.14	 RUNNING THIS EXAMPLE
In pub/sub model, publishers and subscribers have a timing dependency. A client can consume

only messages published after the client has subscribed itself and remains active. Moreover, the JMS
system delivers a message to all active subscribers. So, we can start multiple subscribers to receive
the same message. Open two terminals and start two subscribers as follows:

java -cp imq.jar;jms.jar;. SynSubscriber

The subscribers are now ready to receive a single message on topic ATopic. Now start a Publisher
that publishes a text message on the same topic.

java -cp imq.jar;jms.jar;. Publisher

A sample result is shown in Figure 25.6:

Figure 25.6: Publisher/Subscriber example

25.15	 WRITING A PUB/SUB ASYNCHRONOUS CONSUMER
An asynchronous topic subscriber looks almost like an asynchronous queue receiver, except that

the former creates a topic instead of a queue. The complete source code (AsynSubscriber.java) is
shown below:

import javax.jms.*;
public class AsynSubscriber {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createTopic("ATopic");
 MessageConsumer mc = sn.createConsumer(dest);
 con.start();
 mc.setMessageListener(new AListener());
 System.out.println("Continuing its own work");
 } catch (Exception e) { e.printStackTrace(); }
 }
}
class AListener implements MessageListener {
 public void onMessage(Message msg) {
 TextMessage tm = (TextMessage) msg;
 try {
 System.out.println("Received: " + tm.getText());
 } catch (Exception e) { e.printStackTrace(); }
 }
}

728 ADVANCED JAVA PROGRAMMING
import javax.jms.*;
public class AsynSubscriber {
 public static void main(String[] args) {
 try {
 ConnectionFactory conFactory = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)conFactory).setProperty(com.sun.messaging
.ConnectionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = conFactory.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createTopic("ATopic");
 MessageConsumer mc = sn.createConsumer(dest);
 con.start();
 mc.setMessageListener(new AListener());
 System.out.println("Continuing its own work");
 } catch (Exception e) { e.printStackTrace(); }
 }
}
class AListener implements MessageListener {
 public void onMessage(Message msg) {
 TextMessage tm = (TextMessage) msg;
 try {
 System.out.println("Received: " + tm.getText());
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Note that this program is exactly same as AsynReceiver.java except that it uses createTopic()
method instead of createdQueue().

We can now start multiple subscribers and publishers as before.

25.16	 BROWSING QUEUE
JMS also supports inspecting messages in a queue without receiving them. The following program

prints all messages in a queue AQueue, else prints a message if the queue is empty.
import javax.jms.*;
public class Browser {
 public static void main(String[] args) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Destination dest = sn.createQueue("AQueue");
 QueueBrowser browser = sn.createBrowser((Queue)dest);
 java.util.Enumeration msgs = browser.getEnumeration();
 if (!msgs.hasMoreElements())
 System.out.println("No messages in queue");
 else {
 while (msgs.hasMoreElements()) {
 Message tempMsg = (Message)msgs.nextElement();
 System.out.println("Message: " + tempMsg);
 }
 }
 sn.close();
 con.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Make sure that a queue with name AQueue exists before running the program.

JAVA MESSAGE SERVICE 729

25.17	 USING JNDI
JMS has not defined any address syntax by which clients communicate with the broker.

Instead, JMS utilizes Java Naming & Directory Interface (JNDI), that provides the following
advantages:

•	 Hides provider-specific details from JMS clients.
•	 Abstracts JMS configuration information into Java objects that are easily administrated and organized from a

common management console.
•	 Since, there exists JNDI providers for all popular naming services, JMS providers can provide single implementation

of administered objects that will run everywhere, thereby eliminating complicated deployment and configuration
issues.

Using JNDI, administered objects are created and configured by the MQ administrator and placed
on a publicly accessible naming service. These objects can then be used by JMS clients using JNDI
interface. This makes client code provider independent and becomes portable from one JMS provider to
another. The client can also avoid complicated task for creating and configuring administered objects.

However, for testing purpose or in the early stages of the application, it is more convenient to insert
a few lines of code in the client program to connect to the JMS provider directly, instead of using a
long procedure needed by JNDI. In the previous sections, we have seen how a client can connect to
the JMD provider directly. In this section, we shall discuss the same using JNDI.

So, a client, instead of creating administered object itself, can also look up predefined administered
objects such as ConnectionFactory and Destination using the Java Naming and Directory Interface
(JNDI). In this case, the administered objects are created and configured by the MQ administrator
and placed in a naming service such as file system, LDAP, rmiregistry etc.

It is expected that JMS providers will provide the tools an administrator needs to create and
configure administered objects in a JNDI namespace. Accordingly, MQ provides a utility imqadmin for
this purpose. A Java program may also be written to create such administered objects. The following
is a sample example that uses JNDI:

import javax.naming.*;
import javax.jms.*;
//import com.sun.messaging.*;
public class CreateAO {
 public static void main(String[] args) {
 try {
 Context ctx = new InitialContext();
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.
ConnectionConfiguration.imqAddressList,"172.16.4.248:7676");
 ctx.rebind(args[0], cf);
 ctx.rebind(args[1], new com.sun.messaging.Queue());
 ctx.rebind(args[2], new com.sun.messaging.Topic());
 System.out.println("Created and registered three administered objects");
 } catch (Exception e) { e.printStackTrace(); }
 }
}

This creates ConnectionFactory a Queue and a Topic objects and binds them to a naming
server with names specified as command lines arguments. The ConnectionFactory factory object
encapsulates the information of a broker running in a host 172.16.4.248 on port 7676 and hence, when
used later, is capable of establishing connection with this broker. If your broker runs on a different
host, use it in the setProperty() method. Note that this program configures administered objects

730 ADVANCED JAVA PROGRAMMING

minimally. For other sophisticated configurations such as performance tuning, use imqadmin utility
that provides a GUI instead. Compile the program as follows:

javac -cp imq.jar CreateAO.java

Note that the above program is capable of binding administered objects to any naming service,
provided that information of the name server is provided as JNDI command line arguments. For
example, to register these objects to the (local) file system naming service with base file:///D:/
openmq4_5_2/adminObjects , use the following command:

java -cp imq.jar;fscontext.jar;. -
Djava.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -
Djava.naming.provider.url=file:///D:/openmq4_5_2/adminObjects CreateAO ACF
AQueue ATopic

The names of the connection factory, queue and topic are specified as ACF, AQueue and ATopic
Respectively. This essentially creates a file .bindings that contains necessary information to
establish a connection to the broker running in 172.16.4.248 on port 7676 in the directory file:///D:/
openmq4_5_2/adminObjects.

Similarly, to register them to the rmiregistry on port 6789, use the following command:
java -cp imq.jar;. -
Djava.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory -
Djava.naming.provider.url=rmi://localhost:6789 CreateAO ACF AQueue ATopic

Start rmiregistery as follows:
rmiregistry 6789

Note that rmiregistry must be started in the local machine, as it does not allow us to register
objects created in a different machine. This problem may be avoided using an LDAP naming service.
We started Apache Directory Server in a machine 172.16.4.248 on port 10389. The administered
object can be registered to this LDAP server from any remote computer as follows:

java -cp imq.jar;. -
Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory -
Djava.naming.provider.url=ldap://172.16.4.248:10389/dc=example,dc=com CreateAO
cn=ACF cn=AQueue cn=ATopic

Apache directory sever has two default partitions dc=example,dc=com and ou=system. We used
the former one. A client can then get a reference to ConnectionFactory and Destination objects,
using JNDI as follows:

Context ctx = new InitialContext();
ConnectionFactory cf = (ConnectionFactory) ctx.lookup(args[0]);
Destination dest = (Destination)ctx.lookup(args[1]);

The complete source code (ProducerJNDI.java) of the producer that used JNDI is shown below:
import javax.jms.*;
import javax.naming.*;
public class ProducerJNDI {
 public static void main(String[] args) {
 try {
 Context ctx = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory) ctx.lookup(args[0]);
 Destination dest = (Destination)ctx.lookup(args[1]);

 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = sn.createProducer(dest);
 TextMessage tm = sn.createTextMessage();
 tm.setText("A test message");
 mp.send(tm);
 System.out.println("Message sent:");
 sn.close();
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

JAVA MESSAGE SERVICE 731

import javax.jms.*;
import javax.naming.*;
public class ProducerJNDI {
 public static void main(String[] args) {
 try {
 Context ctx = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory) ctx.lookup(args[0]);
 Destination dest = (Destination)ctx.lookup(args[1]);

 Connection con = cf.createConnection();
 Session sn = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = sn.createProducer(dest);
 TextMessage tm = sn.createTextMessage();
 tm.setText("A test message");
 mp.send(tm);
 System.out.println("Message sent:");
 sn.close();
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile this program using the following:
javac -cp jms.jar ProducerJNDI.java

Note that this program does not use any provider specific code and hence is capable of working
with any JMS provider, provided that JNDI parameters are passed to this program as follows:

java -cp jms.jar;imq.jar;fscontext.jar;. -
Djava.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -
Djava.naming.provider.url=file:///D:/openmq4_5_2/adminObjects ProducerJNDI ACF
AQueue

For file system naming service, a JAR file fscontext.jar that contains necessary classes for
file system JNDI is needed. This file can be found in <MQ_TOP>/lib directory. Make also sure that
the MQ broker is running on a machine, 172.16.4.248 on port 7676 since the ConnectionFactory
corresponds to such a broker. For rmiregistry naming service running on a computer 172.16.5.1
on port 6789, use the following command:

java -cp jms.jar;imq.jar;. -
Djava.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory -
Djava.naming.provider.url=rmi://172.16.5.81:6789 ProducerJNDI ACF AQueue

For LDAP service, use the following command:
java -cp jms.jar;imq.jar;. -
Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory -
Djava.naming.provider.url=ldap://172.16.4.248:10389/dc=example,dc=com
ProducerJNDI cn=ACFcn=AQueue

The JNDI properties may be specified directly in the program. For file system, it looks like
this:

java.util.Hashtable env = new java.util.Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///D:/openmq4_5_2/adminObjects");
Context ctx = new InitialContext(env);

And run the program simply as follows:
java -cp imq.jar;fscontext.jar;. ProducerJNDI ACF AQueue

Note that for a file system JNDI, the file system must be local to the JMS client. If it is created
by the MQ administrator in a different computer, transfer the .bindings file to the JMS client’s
machine and put it in any directory say D:/openmq4_5_2/remoteObjects and specify the directory
in the Djava.naming.provider.url property as follows:

env.put(Context.PROVIDER_URL, “file:///D:/openmq4_5_2/remoteObjects”);.

Or as a command line argument as
-Djava.naming.provider.url=file:///D:/openmq4_5_2/remoteObjects

25.18	 RELIABILITY MECHANISMS
JMS specification provides many features towards reliable message delivery some of which are

discussed briefly in the next few sections.

732 ADVANCED JAVA PROGRAMMING

25.18.1	 Acknowledgement
A message is supposed to be consumed successfully if it has been acknowledged. Acknowledgment

may be initiated either by the client or by the JMS provider. When and how a message is acknowledged
depends on if the session is transacted or not.

For a transacted session, acknowledgments are sent automatically by the provider when a
transaction is committed. If a transaction is rolled back, all consumed messages are resent to the
destination the messages consumed from.

25.18.2	 Message Persistence
By default, messages sent by producers and to be delivered to consumers are stored in stable

persistent storage before delivery. The send() method does not return successfully until a message is
stored. So, if the provider fails later during message delivery due to some reason, or if it is restarted,
the messages still sustain. This is known as PERSISTENT delivery mode. JMS also provides NON_
PERSISTENT delivery mode where messages before delivery are not stored in persistent storage. So,
messaging may be missing. However, it reduces storage and performance is expected to be better.

A JMS client can instruct the provider to use a specific kind of delivery mode. One way to do this
is to use the setDeliveryMode() method of the MessageProducer interface as follows:

mp.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

This sets the delivery mode for all messages sent by that producer to NON_PERSISTENT mode. We
can also use the overloaded send() method to set the delivery mode for a specific message as follows:

mp.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The second argument sets the delivery mode to NON_PERSISTENT. The third and fourth arguments
set the priority level and expiration time, which are described in the next sections.

25.18.3	 Message Priority
JMS specifies ten levels of priority range from 0 (lowest) to 9 (highest) that indicate how

urgently messages should be delivered. One way to do this is to use the setPriority() method of
the MessageProducer interface as follows:

mp.setPriority(6);

This sets the priority level for all messages sent by that producer to 6. We can also use the send()
method of the MessageProducer interface to set the priority for a specific message as follows:

mp.send(message, DeliveryMode.NON_PERSISTENT, 6, 10000);

The third argument sets the priority level.

25.18.4	 Message Expiration
By default, JMS provider retains all the messages in the memory indefinitely. In addition, they

are key in persistent storage if PERSITENT delivery mode is used. A message may be given an expiry
time after which the message is no longer retained in the JMS system. Note that the messages are
not deleted as soon as they expire. The JMS provider looks for all expired messages after a certain
time interval and deletes such messages from the memory. If an expired message is a persistent one,
it is deleted from the persistent message as well.

One way to do this is to use the setTimeToLive() method of the MessageProducer interface as
follows:

mp.setTimeToLive(10000);

JAVA MESSAGE SERVICE 733

This sets the expiry time for all messages sent by that producer to 10000 milliseconds (10 seconds).
We can also use the send() method of the MessageProducer interface to set the expiry time for a
specific message as follows:

mp.send(message, DeliveryMode.NON_PERSISTENT, 5, 10000);

The fourth argument sets expiry time.

25.18.5	 Temporary Destinations
The destinations (queues and topics), we have created so far lasts even after a provider restarts.

JMS API also allows to create TemporaryQueue and TemporaryTopic objects that only last till the
connection, in which they are created survives. We create these temporary queues and topic using
the createTemporaryQueue() and the createTemporaryTopic() methods on Session interface. The
temporary destinations are typically used to implement a simple request/reply mechanism.

25.19	 TRANSACTED SESSION
A transaction is the atomic unit of many operations, such as message sends and receives, so that

the operations either all succeed or all fail. An application can participate in such transactions by
creating a transacted session (or local transaction). The application completely controls the message
delivery by either committing or rolling back the session. If all the operations succeed, the transaction
is committed. If any one of the operations fails, the transaction is rolled back, and the operations may
be attempted again from the beginning.

Think about an application that reliably copies all the messages from a source queue to a destination
queue. So, receiving a message from the source and sending it to the destination queue must either
occur together or fail both. For this purpose, it can create a transacted session as follows:

 sn = con.createSession(true, Session.AUTO_ACKNOWLEDGE);

The complete source code (Copier.java) is shown below:
import javax.jms.*;
public class Copier implements MessageListener {
 Session sn;
 MessageProducer mp;
 public Copier(String args[]) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();

sn = con.createSession(true, Session.AUTO_ACKNOWLEDGE);
 Destination from = sn.createQueue(args[0]);
 MessageConsumer mc = sn.createConsumer(from);
 Destination to = sn.createQueue(args[1]);
 mp = sn.createProducer(to);
 con.start();
 mc.setMessageListener(this);
 } catch (Exception e) { e.printStackTrace(); }
 }
 public static void main(String[] args) {
 new Copier(args);
 }

 public void onMessage(Message msg) {
 try {
 mp.send(msg);

sn.commit();
 } catch (Exception e) {
 try {

sn.rollback();
 }catch(Exception e1) {e1.printStackTrace();}
 }

 }
}

734 ADVANCED JAVA PROGRAMMING

import javax.jms.*;
public class Copier implements MessageListener {
 Session sn;
 MessageProducer mp;
 public Copier(String args[]) {
 try {
 ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
((com.sun.messaging.ConnectionFactory)cf).setProperty(com.sun.messaging.Connect
ionConfiguration.imqAddressList,"172.16.5.81:7676");
 Connection con = cf.createConnection();

sn = con.createSession(true, Session.AUTO_ACKNOWLEDGE);
 Destination from = sn.createQueue(args[0]);
 MessageConsumer mc = sn.createConsumer(from);
 Destination to = sn.createQueue(args[1]);
 mp = sn.createProducer(to);
 con.start();
 mc.setMessageListener(this);
 } catch (Exception e) { e.printStackTrace(); }
 }
 public static void main(String[] args) {
 new Copier(args);
 }

 public void onMessage(Message msg) {
 try {
 mp.send(msg);

sn.commit();
 } catch (Exception e) {
 try {

sn.rollback();
 }catch(Exception e1) {e1.printStackTrace();}
 }

 }
}

KEYWORDS
Administered Objects—Preconfigured JMS objects
created usually by an administrator and are maintained
by the broker for client’s use

Connection—An object that represents application’s
active connection to a messaging broker and is used
to create Session objects

ConnectionFactory—An object that encapsulates
the configuration of a connection and is used to create
connection

JMS—Java API that allows s/w components to create,
send, receive and read messages

JMS Clients—Java programs that produce and
consume messages

JMS Provider—A message Oriented Middleware
(MOM) that implements JMS specification and
provides requisite API library, a broker that provides
message storage/delivery functions

Loosely-coupled systems—Systems where both
of the communicating parties need not be available
during communication

Messages—Objects that JMS clients exchange.
In addition to text message, JMS supports messages
that contain serialized Java objects and XML
documents.

MessageConsumer—An object is created from
Session specifying a Destination and is used to
receive messages from the specified destination.

Message Persistence—Message deliver mode that
specifies if the message being delivered has to be
stored in persistent storage

MessageProducer—An object which is created from
Session specifying a Destination and is used to send
messages to the specified destination

Message Priority—An integer ranging from 0 (lowest)
to 9 (highest) that indicates how urgently messages
should be delivered

Open Message Queue—A JMS provider implemented
by Oracle

Point-to-Point messaging—One of the two
messaging models of JMS where message are sent
by senders, kept in a queue and each message is
consumed by exactly one receiver

Pub/Sub messaging—One of the two messaging
models of JMS where messages are published by
publishers and are distributed to registered subscribers

Session—A context used to create destinations,
producers, consumers, messages etc

Temporary destinations—Destinations that only last
till the connection, in which they are created survives

Tightly-coupled systems—Systems where both
the communicating parties must be available during
communication

Transacted Session—Session that support trans
action facility

SUMMARY
Messaging is a communication technique between
software components or applications. The Java
Message Service (JMS) is a Java API that allows
s/w components to create, send, receive and read
messages.

A JMS application typically has the following
components: JMS Provider, JMS Clients, Administered
Objects and Messages. JMS supports two models

for exchanging messages between producers and
consumers: Point-to-Point and Publish/Subscribe.

In P2P model, the destination, producer and
consumer of messages are called queue, sender
and receiver respectively. Senders place messages
in queues, receivers get them. Messages live in a
queue until they are consumed or until they expire.
Any number of senders can put messages to a queue

JAVA MESSAGE SERVICE 735

and any number of receivers can consume messages
from the queue. However, each message is consumed
by only one receiver.

In Pub/Sub model, the destination, producer and
consumer of messages are called topic, publisher and
subscriber respectively. Subscribers first show their
interest in receiving messages on a topic. Publishers,
in turn, produce some messages for the topic. As soon
as the messages are produced, they are distributed to
all current subscribers who showed their willingness
earlier.

JMS allows a message consumer to get messages
in two ways: synchronously and asynchronously.
This style of message consumption happens when
a consumer explicitly extract messages from a
destination using receive() method. The receive()
method blocks the caller, if no message is available at
that time. As a result, the consumer cannot continue
its normal mode of execution. In this style of message
consumption, consumer simply sets up a listener and
continues its normal work. The listener, on behalf of

the consumer, listens on thereafter and gets notified by
the broker when a message appears in the destination.

JMS API defines a set of interfaces corresponding to
different messaging components and provides them
as a package javax.jms. The primary interfaces are:
ConnectionFactory, Connection, Session, Destination,
MessageProducer, MessageConsumer and Message.
Five types of messages are specified in JMS API:
StreamMessage, MapMessage, TextMessage,
ObjectMessage and BytesMessage.

We used formerly Sun’s Open Message Queue,
which is lightweight, easy to use and an integral part
of J2EE. JMS has not defined any address syntax by
which clients communicate with the broker. Instead
JMS utilizes Java Naming & Directory Interface (JNDI)
that provides several advantages.

JMS specificat ion provides many features
towards reliable and efficient message delivery
such as Acknowledgement, Message Persistence,
Message Priority, Message Expirationa, Temporary
destinations etc.

WEB RESOURCES
http://docs.oracle.com/javaee/6/tutorial/

doc/bncdq.html
The Java EE 6 Tutorial

http://docs.oracle.com/javaee/1.3/jms/

tutorial/
Java Message Service Tutorial

http://www.novell.com/documentation/

extend52/Docs/help/MP/jms/tutorial/
Java Message Service Tutorial

http://www.ibm.com/developerworks/java/

tutorials/j-jms/j-jms-updated.html
Java Message Service Tutorial

http://theopentutorials.com/tutorials/java-

ee/ejb3/mdb/java-message-service-jms-api/
JAVA MESSAGE SERVICE (JMS) API

http://java.dzone.com/articles/java-

messaging-service-jms
Java Messaging Service (JMS) Point to Point w/ JBoss Tutorial

EXERCISES
Objective-type Questions

	 1.	 What is the full form of JMS?
	 (a)	 Java Media Service
	 (b)	 Java Message Service
	 (c)	 Java Message Server
	 (d)	 Java Media Server

	 2.	 Which of the following objects does JMS message
support?

	 (a)	 dynamic	 (c)	 serialized
	 (b)	 nonserialized	 (d)	 All of the above

	 3.	 Which of the following packages are JMS APIs
contained in?

	 (a)	 java.lang.jms	 (c)	 java.ext.jms
	 (b)	 java.jms	 (d)	 javax.jms

	 4.	 Which of the following is not a JMS component?
	 (a)	 JMS provider
	 (b)	 JMS client
	 (c)	 JMS administered objects
	 (d)	 JMS cookie

736 ADVANCED JAVA PROGRAMMING

	 5.	 Which of the following provided Java Message
Service (JMS) specification?

	 (a)	 Sun Microsystems
	 (b)	 Javaloft
	 (c)	 Microsoft
	 (d)	 Apache

	 6.	 Which of the following is not a valid JMS message?
	 (a)	 ByteMessage
	 (b)	 ObjectMessage
	 (c)	 CharMessage
	 (d)	 TextMessage

	 7.	 Which of the following is FALSE?
	 (a)	 The JMS provider notifies asynchronous

consumer when new messages arrive.
	 (b)	 The synchronous consumer collects

messages from destination using
receive() method.

	 (c)	 An asynchronous consumer client
checks the destination periodically for
new messages arrival.

	 (d)	 JMS support both synchronous and
aynchronous consumption of messages.

	 8.	 Which of the following is true about synchronous
and asynchronous communications?

	 (a)	 The requester of a service must wait for a
response from the service in asynchronous
communication.

	 (b)	 In synchronous communication, the
requester of a service must wait for a
response from the service.

	 (c)	 Both parties must be active in asynchronous
communication.

	 (d)	 There is no difference between synchronous
and asynchronous communication.

	 9.	 Which of the following is not a valid acknowledge
ment mode?

	 (a)	 AUTO_ACKNOWLEDGE
	 (b)	 CLIENT_ACKNOWLEDGE
	 (c)	 DUPS_OK_ACKNOWLEDGE
	 (d)	 RECEIVER_ACKNOWLEDGE

	10.	 Which JMS component is obtained via JNDI
lookups?

	 (a)	 Connection
	 (b)	 ConnectionFactory
	 (c)	 Session
	 (d)	 MessageProducer

	11.	 Which of the following statements is false about
synchronous and asynchronous message
consumption JMS?

	 (a)	 receive() method is used to consume a
message synchronously.

	 (b)	 A message listener is used to consume a
message synchronously.

	 (c)	 Messages are consumed asynchronously
by using a message listener.

	 (d)	 In asynchronous messaging, the
onMessage() method of the listener is
invoked when a message arrives.

	12.	 Which of the following is not a role of a JMS
Destination component?

	 (a)	 Clients use the destination component as
target of messages that it produces.

	 (b)	 Clients use the destination component as
source of messages that it consumes.

	 (c)	 Destination component contains location
information of a JMS provider.

	 (d)	 Holds JMS messages.

	13.	 Which of the following protocols is an example of
an asynchronous protocol?

	 (a)	 Java TCP socket
	 (b)	 Remote Method Invocation (RMI)
	 (c)	 File Transfer Protocol
	 (d)	 Java Messaging Service (JMS)

	14.	 What type of data does a StreamMessage
contain?

	 (a)	 Stream of bytes
	 (b)	 Serializable Java object
	 (c)	 Stream of Java primitive types
	 (d)	 Name-value pairs

	15.	 What is TRUE about Message Producers in
JMS?

	 (a)	 A message producer is used for sending
messages to a destination.

	 (b)	 It uses send() method for pub/sub model.
	 (c)	 It uses publish() method for pub/sub

model.
	 (d)	 It uses send() method for P2P model.

	16.	 Which of the following is a preconfigured JMS
object?

	 a)	 Message
	 b)	 Destination
	 c)	 Connection
	 d)	 Session

JAVA MESSAGE SERVICE 737

	17.	 Which of the following methods is used to receive
messages synchronously in JMS?

	 (a)	 receive()
	 (b)	 receiveMessage()
	 (c)	 receiveNoWait()
	 (d)	 syncReceive()

	18.	 Which of the following is true?
	 (a)	 RMI supports only loosely-coupled

communication.
	 (b)	 RMI supports only tightly-coupled

communication.
	 (c)	 RMI supports both loosely-coupled and

tightly-coupled communication.
	 (d)	 JMS supports only loosely-coupled

communication.

	19.	 What is the priority range in JMS?
	 (a)	 0–9	 (c)	 0–6
	 (b)	 1–10	 (d)	 1–7

	20.	 Which of the following requires timing dependencies
between the sender(s) and receiver(s)?

	 (a)	 P2P Messaging
	 (b)	 pub/sub Messaging
	 (c)	 Both a) and b)
	 (d)	 None of the above

	21.	 The destination in P2P model is called
	 (a)	 queue	 (c)	 source
	 (b)	 topic	 (d)	 target

	22.	 The destination in pub/sub model is called
	 (a)	 queue	 (c)	 source
	 (b)	 topic	 (d)	 target

	23.	 The message producer in P2P model is called
	 (a)	 Publisher	 (c)	 Sender
	 (b)	 Subscriber	 (d)	 Receiver

	24.	 The message consumer in pub/sub model is
called

	 (a)	 Publisher	 (c)	 Sender
	 (b)	 Subscriber	 (d)	 Receiver

	25.	 Which of the following is not a JMS interface/class?
	 (a)	 ConnectionFactory	
	 (b)	 Connection
	 (c)	 Session
	 (d)	 Provider

	26.	 Which of the following is not a JMS provider?
	 (a)	 Sun’s Open Message Queue
	 (b)	 Apache’s Active MQ
	 (c)	 IBM’s Websphere MQ
	 (d)	 Apache Ant

	27.	 Which of the following is not true in P2P model?
	 (a)	 Any number of senders can put messages

to a queue.
	 (b)	 Any number of receivers can consume

messages from the queue.
	 (c)	 Each message is consumed by only one

receiver.
	 (d)	 The message is stored in the queue even

after the message is taken off.

	28.	 Which of the following is not true in pub/sub
model?

	 (a)	 Any number of publishers can put
messages to a queue.

	 (b)	 Any number of subscribers can consume
messages from the queue.

	 (c)	 Each message is consumed by only one
subscriber.

	 (d)	 Messages on a topic remain valid as long
as they are being distributed to current
subscribers.

	29.	 Which of the following is used to send a message?
	 (a)	 MessageProducer
	 (b)	 Destination
	 (c)	 Session
	 (d)	 Connection

	30.	 Which of the methods must a message listener
implement?

	 (a)	 getMessage()	 (c)	 receiverMessage()
	 (b)	 onMessage()	 (d)	 message()

Subjective-type Questions

	 1.	 What is a messaging framework?

	 2.	 What is JMS?

	 3.	 Are there other Java-based messaging
frameworks?

	 4.	 What are the benefits of JMS?

	 5.	 Identify the different components of JMS.

	 6.	 What are administered objects?

	 7.	 What is the role of the JMS server?

	 8.	 What can a JMS provider do except send and
receive messages?

738 ADVANCED JAVA PROGRAMMING

	 9.	 What are the differences between P2P and pub/
sub messaging models?

	10.	 Give suitable examples where these models may
be used.

	11.	 What are the core interfaces and/or classes
required for a JMS application?

	12.	 What is the advantage of persistent message
delivery compared to non-persistent delivery?

	13.	 What is the difference between the Mailing and
Messaging?

	14.	 What are the various message types supported
by JMS?

	15.	 What is the role of the JMS Provider?

	16.	 Write the basic steps required to develop a JMS
client.

	17.	 What are the differences between loose-coupled
and tightly-coupled systems?

	18.	 Discuss the various messaging models supported
by JMS. Write some application areas of each of
these models.

	19.	 Distinguish between synchronous and
asynchronous consumption of messages.

	20.	 Write interfaces and classes specific to P2P and
pub/sub model.

	21.	 Discuss the different types of messages supported
by JMS.

	22.	 Write the names of some JMS provider.

	23.	 What is the difference between a durable and a
non-durable subscriber?

	24.	 What do you mean by browsing a queue?

	25.	 Discuss the different message acknowledgement
mechanisms.

	26.	 Distinguish between persistent and non-persistent
messages.

	27.	 What is the significance of message priority?

	28.	 Explain the concept of message expiration.

	29.	 What is the usefulness of temporary destinations?

	30.	 Explain the concept of transacted and non-
transacted session.

CHAPTER – 26

Introduction to J2EE

Key Objectives

After completing this chapter readers will be able to—
•  have an idea about the technologies used in J2EE
•  learn JavaBean technology and its advantages
•  understand key JavaBean features such as Introspection, Customization, Persistence, etc
•  get an idea about EJB component architecture
•  learn Model–View–Controller architecture
•  get an idea about struts framework

26.1	 OVERVIEW OF J2EE
Today, in the fast-moving and highly demanding world of e-commerce and Information Technology

(IT), there is a tremendous need for low-cost, distributed applications (especially transactional
applications) for enterprises. These distributed enterprise applications must be designed, implemented,
and deployed in less time, with few resources and greater speed.

Fortunately, the Java 2 Enterprise Edition (J2EE) provides a component-based technology for the
design, development, assembly, and deployment of low-cost and fast-track enterprise applications. The
purpose of J2EE is to simplify the design and implementation of distributed enterprise applications.
J2EE offers the following functionalities:

•	 Multi-tiered distributed application model
•	 Reusable components
•	 Flexible transaction control
•	 Web services support through integrated data interchange on Extensible Markup Language (XML)-based open

standards and protocols
•	 Unified security model

Since J2EE solutions are basically Java-based, they are platform-independent and are not tied
to a specific vendor or customer. Customers and vendors are free to select from a wide variety of
products and components.

740 ADVANCED JAVA PROGRAMMING

J2EE is not a single technology; it consists of a large set of technologies, some of which are
mentioned as follows:

•	 Enterprise JavaBeans (EJB)
•	 Java Servlets
•	 Java Server Pages (JSP)
•	 Java Message Service (JMS)
•	 Java Naming and Directory Interface (JNDI)
•	 Java-XML
•	 J2EE Connector Architecture
•	 Java Mail
•	 Java DataBase Connectivity (JDBC)
•	 Remote Method Invocation (RMI)
•	 CORBA
•	 RMI-IIOP

We have already covered some of these technologies in the previous chapters. In this chapter,
we shall discuss some other J2EE technologies, especially, JavaBean and EJB. In Chapter 21, an
introduction to JavaBean technology was given. Since JavaBean is the fundamental component
technology and is a basic building block of EJB, we must discuss this technology in detail.

26.2	 INTRODUCTION TO JAVABEANS
JavaBean technology is a Java-based technology to design and develop reusable and platform-

independent software components. These components can then be integrated virtually in all Java-
compatible applications. JavaBean components are knows as beans. The appearance and features of
a bean can be changed or customized using builder tools such as BeanBox and NetBeans.

A bean class is nothing but a usual Java class with the following requirements:

•	 It must have a public no-argument constructor.
•	 It has public accessor methods to read and write properties.
•	 It should implement Serializable or Externalizable interface.

So, virtually all Java classes are already bean classes or they can be converted to beans with a
little effort. For example, the following is an example of a bean class.

//Factorial.java
import java.io.*;
public class Factorial implements Serializable {
 protected int n;
 public int getN() {
 return n;
 }
 public void setN(int n) {
 this.n = n;
 long prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 fact = prod;
 }
 protected long fact;
 public long getFact() {
 return fact;
 }
}

INTRODUCTION TO J2EE 741

Here is another example of a bean class:
//State.java
import java.io.Serializable;
public class State implements Serializable {
 protected String state = "off";
 public String getState() {
 return state;
 }
 public void setState(String state) {
 this.state = state;
 }
}

Most often, JavaBeans have a GUI representation of themselves. For example, button, calculator,
and calendar beans are expected to have a visual representation, so as to be useful. However, some
beans do not have any visual representation, and are called invisible beans. Invisible beans include
a spell checker, random number generator, and temperature monitor.

26.2.1	 Properties
A bean typically has one or more properties that control appearance and behaviour. Properties are

discrete, named attributes of a bean. They constitute the data part of a bean’s structure and represent
the internal state of a bean. Properties allow us to isolate component state information into discrete
pieces that can be easily modified.

In our Factorial bean, there are two properties: n and fact. The property n holds an integer value,
whose factorial is stored in the property fact. Here, n is said to be independent property and fact is
dependent on n as the value of fact can be calculated from n. There need not be such a relationship
in all the cases. For example, in the State bean, there is only one property state. In general, a bean
can have any number of properties.

26.2.2	 Accessor Methods
The primary way to access bean properties is through accessor methods. An accessor method is

a public method of the bean that directly reads or writes the value of a particular bean. For example,
the getN() method of the Factorial bean returns the value of the property n. Similarly, setN() sets
the value of n. For the fact property, only one method is provided, which returns the value of the
property fact. In general, a property can have two methods associated with it. The methods that
are responsible for reading property values are called reader methods. Similarly, methods that are
responsible for changing property values are called writer methods.

26.3	 BEAN BUILDER
Readymade applications are available that provide an environment in which we can build and

test beans. Those tools are known as builder tools. Some of the popular bean builder tools are Sun’s
BeanBox and NetBeans, JBuilder, Borland’s Delphi, etc.

A builder tool is able to display several beans simultaneously. It is also able to connect different
beans together in a visual manner. So, we can manipulate a bean without writing any piece of code.
Most builder tools have a palette of components from which developers can drag and drop components
onto a graphical canvas.

The facilities supported by a bean builder vary widely, but there are some common features as follows:

•	 Introspection—ability to analyze a bean to discover properties, methods, and events
•	 Properties—used for customization of the state of a bean

742 ADVANCED JAVA PROGRAMMING

•	 Events—a way used by beans to tell the outside that something is happening, or to react to something that
happened outside the bean

•	 Customization—a developer of a bean can customize the behaviour and appearance of the bean within a builder tool
•	 Persistence—a builder tool allows us to customize a bean, and have its state saved away and reloaded later

26.4	 ADVANTAGES OF JAVABEANS
Before we discuss the features and facilities supported by JavaBean technology, let us understand

what JavaSoft wanted to accomplish by developing this Java-based component technology. In this
regard, we can refer to JavaSoft’s own JavaBeans mission statement: “Write once, run anywhere,
use everywhere”. Let us examine each part of this statement to realize what JavaSoft had in mind.

Write Once
A good software component technology should encourage component developers to write code

only once. The component should not require rewriting of code to add and/or improve features.
Keeping this point in mind, JavaSoft developed JavaBean technology, which allows us to add or
improve functionality in the existing code, without re-engineering the original code.

The concept of writing components once also adds sense in terms of version control. This means
that developers can make changes to components incrementally, instead of rewriting significant
portions from scratch. This results in a steady improvement of functionality, which, in turn, dictates
a more consistent software component development through increasing versions.

Run Anywhere
A software technology must be platform independent to have a realistic meaning in today’s

rapidly varying software environment. This refers to the capability of software components developed
using a technology to be executed (run) in any environment. Fortunately, JavaBeans components are
ultimately Java components. Consequently, cross-platform support comes automatically.

Good software components should also run across distributed network environments. This can
be simply achieved using Java’s powerful technology, Remote Method Invocation (RMI), Socket,
and RMI-IIOP.

Use Everywhere
This is perhaps the most important part of the JavaSoft’s JavaBean mission statement. Well-

designed JavaBeans components are capable of being used in a wide range of situations, which
include applications, other components, documents, websites, application builder tools, and so on.

In addition to these key features, JavaBean technology has the following built-in features.
JavaBeans are compact components and can be transferred across a low-bandwidth Internet

connection that facilitates a reasonable transfer time.
JavaBeans components are so simple that they are not only easy to use, but also easy to develop.

Therefore, we can devote more time to embellishing components with interesting features than
debugging them.

26.5	 BDK INTROSPECTION
A bean builder usually uses Java core reflection API to discover methods of a bean. It then applies

the design pattern to discover other bean features (such as properties and events). This procedure is
known as introspection.

INTRODUCTION TO J2EE 743

26.5.1	 Design Patterns
The JavaBeans framework introduces a lot of rules for names to be used for classes and methods.

They are collectively called design patterns.
Note that the conventions and design patterns are all optional. However, by following those

conventions, we can create really useful beans that can be used within a builder tool as well as in other
JavaBean-enabled environments. Builder tools such as BeanBox, NetBeans, and JBuilder use these
conventions and design patterns to introspect a bean’s properties, methods, and events. Consequently,
they can provide an environment where we can customize bean features.

Suppose, a bean has a property called “xxx”. JavaBean technology encourages us to use “getXxx”
as the name of the reader method and “setXxx” as the name of the writer method. If the property
happens to be a Boolean, the reader method could be named “isXxx”. For example, our State bean
has the property state. So, the reader method is “getState” and the writer method is “setState”.

A BeanInfo class is a class that is used to provide information about a bean explicitly. To do this,
a class is created implementing the BeanInfo interface. The name of this class should also follow
a naming rule. The name of the BeanInfo class must be the name of the target bean, followed by
the string “BeanInfo”. For example, the name of the BeanInfo class for the bean Person must be
“PersonBeanInfo”.

Similarly, the name of the Customizer class (see Section 26.9) for the bean MyBean must be
MyBeanCustomizer.

JavaBean API provides interfaces and classes that can be used to discover properties and methods
of a bean dynamically. The following is a brief description of those interfaces and classes:
BeanInfo

The java.beans.BeanInfo interface defines a set of methods that allow bean developers to provide
information about their beans explicitly. By specifying BeanInfo for a bean component, a developer
can hide methods, specify an icon for the toolbox, provide descriptive names for properties, define
which properties are bound, etc.
Introspector

The java.beans.Introspector class provides descriptor classes (see Section 26.7) with
information about properties, methods, and events of a bean.

The getBeanInfo() method of the Introspector class can be used by builder tools and other
automated environments to provide detailed information about a bean. The getBeanInfo()
method relies on the naming conventions for the bean’s properties, events, and methods. A call to
getBeanInfo() results in the introspection process analyzing the bean’s classes and super classes.
The following example finds the properties and methods of our Factorial bean.

//IntrospectionDemo.java
import java.beans.*;
public class IntrospectionDemo {
 public static void main(String[] args) throws IntrospectionException {
 BeanInfo info = Introspector.getBeanInfo(Factorial.class,
Object.class);
 System.out.println("properties: ");
 for (PropertyDescriptor pd : info.getPropertyDescriptors())
 System.out.println(" " + pd.getName());
 System.out.println("methods: ");
 for (MethodDescriptor pd : info.getMethodDescriptors())
 System.out.println(" " + pd.getName());
 }
}

744 ADVANCED JAVA PROGRAMMING

It generates the output shown in Figure 26.1:

Figure 26.1: Bean Introspection

26.6	 PROPERTIES
The properties of a bean represent and control its behaviour and appearance. JavaBean API allows

us to create the following primary property types.

26.6.1	 Simple Properties
Simple properties of a bean are those that do not depend on other beans or control properties of

another bean. Properties are typically declared as private. To access them, get and set methods
are used. The names of the get and set methods follow specific rules, known as design patterns.
JavaBean-enabled builder/tester tools (such as NetBeans and BeanBox) use these design patterns to
do the following:

•	 Discover the properties of a bean
•	 Determine the types of the properties
•	 Display the properties in the property window
•	 Determine the read/write attribute of the properties
•	 Find the appropriate property editor for each property type
•	 Allow us to change the properties

Suppose a bean builder/tester tool encounters the following methods on a bean:
public int getValue() { ... }
public void setValue(int v) { ... }

The tool infers the following:

•	 There exists a property name value.
•	 Its type is int.
•	 It is readable and writable.
•	 It displays the value of this property in the property editor.
•	 Moreover, it finds the property editor that allows us to change the value of the property.

Creating a Simple Property
The following code is used in the bean to create the property propertyName:
private PropertyType propertyName = initialValue;

Providing a Reader Method
The following code is used to provide a reader method:
PropertyType getPropertyName() {
 return propertyName;
}

INTRODUCTION TO J2EE 745

Providing a Writer Method
The following code is used to provide a writer method:
void getPropertyName(PropertyType value) {
 propertyName = value;
}

The following example shows how to create a simple property:
//MyBean.java
public class MyBean {
 private int value = 0;

 /**
 * Get the value of value
 *
 * @return the value of value
 */
 public int getValue() {
 return value;
 }

 /**
 * Set the value of value
 *
 * @param value new value of value
 */
 public void setValue(int value) {
 this.value = value;
 }
}

26.6.2	 Bound Properties
Sometimes, when a property of a bean changes, you might want to notify another object about

this change. This object typically reacts to the change by changing one of its properties. For example,
consider two beans Parent and Child, each having two properties, firstName and familyName. The
familyName property of Child and Parent must have the same value. So, whenever the familyName
property of Parent changes, the familyName property of Child must also be changed to make them
synchronized.

This synchronization can be implemented using the bound property. The accessor or modifier
methods for a bound property are defined in the same way, except that whenever a bound property
changes, a notification is sent to the interested listeners. Whenever a property of a bean changes,
a “PropertyChange” event gets fired. The bean generating the event is called source bean. We can
register one or more “Listener” objects with a source, so that these objects get notified when a bound
property of the source bean is updated.

Bean Development Kit (BDK) provides special classes to accomplish coordination between the
notifier and listener.
PropertyChangeListener

If an object is interested in being notified about the property changes of a source bean, its class
must implement the PropertyChangeListener interface. This interface defines the following
method:

void propertyChange(PropertyChangeEvent pce)

The listener’s class must implement this method. If the listener is registered for a property change
event, this method gets called when a bound property of the source bean changes. In this method, the
listener object reacts to the property change by modifying one or more of its properties.

746 ADVANCED JAVA PROGRAMMING

PropertyChangeEvent
A PropertyChangeEvent object is generated whenever a bound property of a bean changes. This

object is then sent from the source bean to all registered PropertyChangeListener objects, as an
argument of their respective PropertyChange() method. This class encapsulates the property change
information. It provides several useful methods as follows:
String getPropertyName()

Returns the name of the property that was changed and caused this event firing
Object getOldValue()

Returns the value of the property as an object before it was changed. The bean writer should
typecast it to the desired type.
Object getNewValue()

Returns the value of the property as an object after it was changed. The bean writer must typecast
it to the desired type.
PropertyChangeSupport

This class is used by the beans having at least one bound property to keep track of registered
listeners. It is also used to deliver PropertyChangeEvent objects to those registered listeners when
a bound property changes. A source bean can instantiate this class as a member field or inherit the
functionality of this class by extending it. Figure 26.2 gives the framework for bound property support.

Parent

firstName

familyName

removePropertyChangeListener()

PropertyChangeSupport

addPropertyChangeListener
removePropertyChangeListener

PropertyChangeEvent

getPropertyName()

getOldValue()

getNewValue()

PropertyChangeListener
«interface»

propertyChange()

uses generates notifies

addPropertyChangeListener()

Figure 26.2: Bound Property support framework

Let us now discuss how to write a bound property. The following class acts as a source bean.
//Parent.java
import java.beans.*;
public class Parent {
 private String firstName = "Uttam", familyName = "Roy";
 private PropertyChangeSupport pcs;
 public Parent() {

pcs = new PropertyChangeSupport(this);
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String fname) {
 firstName = fname;
 }
 public String getFamilyName() {
 return familyName;
 }
 public void setFamilyName(String newFamilyName) {
 String oldFamilyName = familyName;
 familyName = newFamilyName;

pcs.firePropertyChange("familyName", oldFamilyName, newFamilyName);
 }
 public void addPropertyChangeListener(PropertyChangeListener pcl) {
 pcs.addPropertyChangeListener(pcl);
 }
 public void removePropertyChangeListener(PropertyChangeListener pcl) {
 pcs.removePropertyChangeListener(pcl);
 }
}

INTRODUCTION TO J2EE 747

//Parent.java
import java.beans.*;
public class Parent {
 private String firstName = "Uttam", familyName = "Roy";
 private PropertyChangeSupport pcs;
 public Parent() {

pcs = new PropertyChangeSupport(this);
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String fname) {
 firstName = fname;
 }
 public String getFamilyName() {
 return familyName;
 }
 public void setFamilyName(String newFamilyName) {
 String oldFamilyName = familyName;
 familyName = newFamilyName;

pcs.firePropertyChange("familyName", oldFamilyName, newFamilyName);
 }
 public void addPropertyChangeListener(PropertyChangeListener pcl) {
 pcs.addPropertyChangeListener(pcl);
 }
 public void removePropertyChangeListener(PropertyChangeListener pcl) {
 pcs.removePropertyChangeListener(pcl);
 }
}

The following bean is a listener that wants to be notified when the familyName property of the
Parent bean changes. So, it implements the PropertyChangeListener interface and defines the method
propertyChange(). In the propertyChange() method, it changes its own familyName property to
the new value of the familyName property of the Parent bean by using the getNewValue() method
on the PropertyChangeEvent object.

//Child.java
import java.beans.*;
public class Child implements PropertyChangeListener {
 private String firstName = "Rimisha", familyName = "Roy";
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String fname) {
 firstName = fname;
 }
 public String getFamilyName() {
 return familyName;
 }
 public void setFamilyName(String fname) {
 familyName = fname;
 }

public void propertyChange(PropertyChangeEvent pce) {
 if(pce.getPropertyName().equals("familyName"))
 setFamilyName((String)pce.getNewValue());

 }
}

For demonstration purposes, we have created the following Java application program. Typically,
a bean builder (such as BeanBox provided by Sun) may be used.

//BoundDemo.java
public class BoundDemo {
 public static void main(String args[]) {
 Parent p = new Parent();
 Child c = new Child();
 p.addPropertyChangeListener(c);
 System.out.println("Before changing family name");
 System.out.println("Parent: " + p.getFirstName() + " " +
p.getFamilyName());
 System.out.println("Child: " + c.getFirstName() + " " +
c.getFamilyName());

p.setFamilyName("Biswas");
 System.out.println("After changing family name of parent to 'Biswas'");
 System.out.println("Parent: " + p.getFirstName() + " " +
p.getFamilyName());
 System.out.println("Child: " + c.getFirstName() + " " +
c.getFamilyName());

 }
}

748 ADVANCED JAVA PROGRAMMING

//BoundDemo.java
public class BoundDemo {
 public static void main(String args[]) {
 Parent p = new Parent();
 Child c = new Child();
 p.addPropertyChangeListener(c);
 System.out.println("Before changing family name");
 System.out.println("Parent: " + p.getFirstName() + " " +
p.getFamilyName());
 System.out.println("Child: " + c.getFirstName() + " " +
c.getFamilyName());

p.setFamilyName("Biswas");
 System.out.println("After changing family name of parent to 'Biswas'");
 System.out.println("Parent: " + p.getFirstName() + " " +
p.getFamilyName());
 System.out.println("Child: " + c.getFirstName() + " " +
c.getFamilyName());

 }
}

This program creates a Parent bean and a Child bean. The Child bean is then registered with the
Parent bean. So, whenever the familyName property of the Parent bean changes, the Child bean gets
notified and it can change its own familyName property. Finally, we have changed the familyName
property of the Parent bean using the setFamilyName() method. We have also displayed the details
of parent and child before and after changing the property. The output is as shown in Figure 26.3.

Figure 26.3: Bean bound property demo

26.6.3   Constrained Properties
A constrained property of a bean is a special type of property, which can be changed subject

to prior permission taken from external object(s). External objects act as vetoers and exercise such
authority in this case. For example, think about Broker and ShareHolder beans. The Broker can sell
the shares at a rate provided ShareHolder allows it to do so.

JavaBean API provides a mechanism very similar to the one used for the bound property, which
allows other objects to veto the change of the source bean’s property. The basic idea for implementing
a constrained property is as follows:

•	 Store the old value of source bean’s property if it is to be vetoed.
•	 Ask listeners (vetoers) of the new proposed value.
•	 Vetoers are authoritative to process this new value. They disallow by throwing an exception. Note that no exception

is thrown if a vetoer gives the permission.
•	 If no listener vetoes the change, i.e., no exception is thrown, the property is set to the new value; optionally notify

“PropertyChange” listeners, if any.

Three objects are involved in this process.

•	 The source bean containing one or more constrained property
•	 A listener object that accepts or rejects changes proposed by the source bean
•	 A PropertyChangeEvent object encapsulating the property change information

26.6.3.1   Implementing Constrained Property Support
In the source bean, the accessor method for the constrained property is defined in the same way,

except that it throws a PropertyVetoException as follows:
public void setPropertyName(PropertyType pt) throws PropertyVetoException {
 //method body
}

INTRODUCTION TO J2EE 749

A source bean containing one or more constrained properties implements the following
functionalities:

•	 Provides methods to add and remove VetoableChangeListener objects to register and unregister them so
that they receive notification for property change proposal.

•	 When a property change is proposed, the source bean sends the PropertyChangeEvent object containing
the proposed information to interested listeners. This should be done before the actual property change takes
place. It allows listeners to accept or refuse a proposal.

•	 If any one listener vetoes by throwing an exception, continue to notify other listeners (if any) with the old value
of the property.

JavaBean API provides a utility class, VetoableChangeSupport, similar to PropertyChangeSupport.
The VetoableChangeSupport class provides the methods addVetoableChangeListener() and
removeVetoableChangeListener() to add and remove VetoableChangeListener objects,
respectively, and keeps track of such listeners. It also provides a method, fireVetoableChange(), to
send the PropertyChangeEvent object to each registered listener when a property change is proposed.

The source bean can instantiate this class as a member field or inherit the functionality of this
class by extending it. A VetoableChangeSupport object is instantiated as follows:

VetoableChangeSupport vcs = new VetoableChangeSupport(this);

26.6.3.2   Implementing constrained property listener
If an object’s class wants to act as a vetoer, it must implement the VetoableChangeListener

interface. This interface defines a single method as follows:
void vetoableChange(PropertyChangeEvent pce) throws PropertyVetoException;

A VetoableChangeListener must implement this method. This is the method where the vetoer
exercises its power and agrees or disagrees with the proposal. In this method, the listener processes
proposed property change and disagrees (vetoes) by throwing a PropertyVetoException exception.
A typical code looks like this:

void vetoableChange(PropertyChangeEvent pce) throws PropertyVetoException {
if(the_condition_is_not_fulfilled)

 throw new PropertyVetoException("NO", pce);
}

Figure 26.4 shows the constrained property support framework.

Broker

price

addVetoableChangeListener()
removeVetoableChangeListener()

VetoableChangeSupport

addVetoableChangeListener
removeVetoableChangeListener

PropertyChangeEvent

getPropertyName()
getOldValue()
getNewValue()

VetoableChangeListener
«interface»

VetoableChange()

uses generates notifies

Figure 26.4: Constrained property support framework

750 ADVANCED JAVA PROGRAMMING

26.6.3.3   Example
Let us now demonstrate the constrained property with our Broker and ShareHolder beans. The

Broker is the source bean that has a single constrained property, price. A Broker can sell a share owned
by a ShareHolder, provided that the ShareHolder object allows it. So, Broker should take permission
before it sells the share. If the permission is given, it actually sells the shares. Otherwise, it does not
do anything. The following is the source code of the Broker bean.

//Broker.java
import java.beans.*;
public class Broker {
 private float price = 10;
 private VetoableChangeSupport vcs;
 public Broker() {

vcs = new VetoableChangeSupport(this);
 }

 public float getPrice() {
 return price;
 }
 public void setPrice(float newPrice) throws PropertyVetoException {
 float oldPrice = price;

vcs.fireVetoableChange("price", oldPrice, newPrice);
 System.out.println("Setting new price limit");
 price = newPrice;
 }
 public void addVetoableChangeListener(VetoableChangeListener pcl) {
 vcs.addVetoableChangeListener(pcl);
 }
 public void removeVetoableChangeListener(VetoableChangeListener pcl) {
 vcs.removeVetoableChangeListener(pcl);
 }
}

The ShareHolder is the listener bean. It decides whether the Broker can sell shares at the specified
price. It allows the Broker selling shares if the proposed price is greater than or equal to H15. Otherwise,
it disallows, by throwing the PropertyVetoException object. Here is the source code of ShareHolder.

//ShareHolder.java
import java.beans.*;
public class ShareHolder implements VetoableChangeListener {

 public void vetoableChange(PropertyChangeEvent pce) throws
PropertyVetoException {
 if(pce.getPropertyName().equals("price")) {
 float price = ((Float)pce.getNewValue()).floatValue();
 if(!price >= 15) throw new PropertyVetoException("NO", pce);
 }

 }
}

For demonstration purposes, we have created a Java application that creates a Broker and a
ShareHolder bean. It then registers the ShareHolder with the Broker so that it receives notification for
the property change proposal. Finally, it tries to change the price limit of the share passed as an argument.

public class ConstrainedDemo {
 public static void main(String args[]) {
 Broker b = new Broker();
 ShareHolder s = new ShareHolder();
 b.addVetoableChangeListener(s);
 float price = Float.parseFloat(args[0]);
 try {
 System.out.println("Old price limit: " + b.getPrice());

 b.setPrice(price);
 System.out.println("New price limit: " + b.getPrice());
 }catch(Exception e) {
 System.out.println("Ah! failed to set price at " + price);
 }
 }
}

INTRODUCTION TO J2EE 751

public class ConstrainedDemo {
 public static void main(String args[]) {
 Broker b = new Broker();
 ShareHolder s = new ShareHolder();
 b.addVetoableChangeListener(s);
 float price = Float.parseFloat(args[0]);
 try {
 System.out.println("Old price limit: " + b.getPrice());

 b.setPrice(price);
 System.out.println("New price limit: " + b.getPrice());
 }catch(Exception e) {
 System.out.println("Ah! failed to set price at " + price);
 }
 }
}

Figure 26.5 shows a sample output.

Figure 26.5: Bean constrained property demo

26.6.4	 Indexed Properties
An index property is an array of properties. It can hold a range of values that can be accessed

through accessor functions. To access an individual element, the following methods are specified:
public PropertyElementType getPropertyName(int index)
public void setPropertyName(int index, PropertyElementType element)

The get method takes an array index and returns the element at that index. The set method takes
two arguments: an index of the property array and its value, and sets the element at the specified index
to the specified value. Methods to access the entire array are also specified as follows:

public PropertyElementType[] getPropertyName()
public void setPropertyName(PropertyElementType element[])

In this case, the get method returns the entire property array and the set method takes an entire
array to be used to set the property array.

The following bean class stores the temperatures of the last seven days.
//TemperatureBean.java
public class TemperatureBean {
 private float[] temperatures = new float[7];
 /**
 * Get the value of temperatures
 *
 * @return the value of temperatures
 */
 public float[] getTemperatures() {
 return temperatures;
 }

 /**
 * Set the value of temperatures
 *
 * @param temperatures new value of temperatures
 */
 public void setTemperatures(float[] temperatures) {
 this.temperatures = temperatures;
 }

 /**
 * Get the value of temperatures at specified index
 *
 * @param index
 * @return the value of temperatures at specified index
 */
 public float getTemperatures(int index) {
 return this.temperatures[index];
 }

 /**
 * Set the value of temperatures at specified index.
 *
 * @param index
 * @param newTemperatures new value of temperatures at specified index
 */
 public void setTemperatures(int index, float newTemperatures) {
 this.temperatures[index] = newTemperatures;
 }
}

752 ADVANCED JAVA PROGRAMMING

//TemperatureBean.java
public class TemperatureBean {
 private float[] temperatures = new float[7];
 /**
 * Get the value of temperatures
 *
 * @return the value of temperatures
 */
 public float[] getTemperatures() {
 return temperatures;
 }

 /**
 * Set the value of temperatures
 *
 * @param temperatures new value of temperatures
 */
 public void setTemperatures(float[] temperatures) {
 this.temperatures = temperatures;
 }

 /**
 * Get the value of temperatures at specified index
 *
 * @param index
 * @return the value of temperatures at specified index
 */
 public float getTemperatures(int index) {
 return this.temperatures[index];
 }

 /**
 * Set the value of temperatures at specified index.
 *
 * @param index
 * @param newTemperatures new value of temperatures at specified index
 */
 public void setTemperatures(int index, float newTemperatures) {
 this.temperatures[index] = newTemperatures;
 }
}

26.7	 BEANINFO INTERFACE
A bean builder typically uses the introspection process to discover features (such as properties,

methods, and events). In this case, the bean builder exposes all the features to the outside world.
We can also expose the bean’s features by using an associated class explicitly. By doing this we

obtain the following benefits:

•	 Hide features we do not want to disclose
•	 Provide more information about bean features
•	 Associate an icon with the target bean
•	 Group bean features into different categories such as normal and advanced groups
•	 Specify a customizer class
•	 Expose some bean features explicitly using Java reflection API

The features of a bean are exposed using a separate special class. This class must implement
the BeanInfo interface. The BeanInfo interface defines several methods that can be used to inspect
properties, methods, and events of a bean. The following is the declaration of the BeanInfo interface:

public interface java.beans.BeanInfo{
 public static final int ICON_COLOR_16x16;
 public static final int ICON_COLOR_32x32;
 public static final int ICON_MONO_16x16;
 public static final int ICON_MONO_32x32;
 public abstract java.beans.BeanDescriptor getBeanDescriptor();
 public abstract java.beans.EventSetDescriptor[] getEventSetDescriptors();
 public abstract int getDefaultEventIndex();
 public abstract java.beans.PropertyDescriptor[] getPropertyDescriptors();
 public abstract int getDefaultPropertyIndex();
 public abstract java.beans.MethodDescriptor[] getMethodDescriptors();
 public abstract java.beans.BeanInfo[] getAdditionalBeanInfo();
 public abstract java.awt.Image getIcon(int);
}

INTRODUCTION TO J2EE 753

The BeanInfo interface uses several descriptor classes, each of which describes specific features.
The following is a list of descriptors:

•	 BeanDescriptor—This descriptor class describes the bean’s name, type, and its customizer class, 	
if any.

•	 PropertyDescriptor—This descriptor encapsulates the target bean’s properties.
•	 MethodDescriptor—This descriptor encapsulates the target bean’s methods.
•	 EventSetDescriptor—This descriptor encapsulates the events that the target bean can fire.

Let us now write a BeanInfo class that describes the features of a bean. For this purpose, we
shall first write a bean and show how the BeanBox extracts information from this bean. Consider
the following bean class:

//Person.java
public class Person {
 private String name = "B. S. Roy";
 private String address = "Narayanpur, Kol-136";
 private String PAN = "AGCPR8830P";
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getAddress() {
 return address;
 }
 public String getPAN() {
 return PAN;
 }
 public void setPAN(String PAN) {
 this.PAN = PAN;
 }
 public void setAddress(String address) {
 this.address = address;
 }
}

The bean Person has three properties: name, address, and PAN. Each of the three properties has
a get and a set method. Compile this bean using the following command:

java Person.java

Create a class file, Person.class. Create a manifest file, manifest_person.mf, as follows:
Manifest-Version: 1.0

Name: Person.class
Java-Bean: True

Place this file in the same directory as Person.class. Now, create a jar file, person.jar, using
the following command:

jar cvfm person.jar manifest_person.mf Person.class

It typically generates the following output:
added manifest
adding: Person.class(in = 754) (out= 410)(deflated 45%)

The bean is now ready to test and use. Load the person.jar file in the Bean Box. Create an
instance of the Person bean and view its properties. It looks as shown in Figure 26.6.

754 ADVANCED JAVA PROGRAMMING

Figure 26.6: Bean introspection

As you can see, BeanBox shows all the properties of the Person bean. Suppose we do not disclose
the PAN property of the Person bean, as it is sensitive information. For that purpose, we can write the
BeanInfo class. The following is the source code of the BeanInfo class.

//PersonBeanInfo.java
import java.beans.*;
public class PersonBeanInfo extends SimpleBeanInfo {
 private Class personClass = Person.class;
 public PropertyDescriptor[] getPropertyDescriptors() {
 PropertyDescriptor name = null, address = null, PAN = null;
 try {
 name = new PropertyDescriptor("name", personClass);
 name.setDisplayName("Name:");
 name.setPreferred(true);

 address = new PropertyDescriptor("address", personClass);
 address.setDisplayName("Address:");
 address.setPreferred(true);
 } catch (IntrospectionException e) {}
 PropertyDescriptor[] result = {name, address};
 return result;
 }
}

To write a BeanInfo class, we need to give a name. The name of each BeanInfo class follows a
naming rule. The name of the BeanInfo class of the target bean X must have the name XBeanInfo.
For example, the name of the BeanInfo class of our Person bean must be PersonBeanInfo. The
string “BeanInfo” is appended to the target bean class name.

Since the BeanInfo interface implements several methods, we have to implement all of them.
Alternatively, a BeanInfo class can be created by sub-classing the SimpleBeanInfo class. The
SimpleBeanInfo class is a convenient base class for the BeanInfo classes. It implements all the
methods, but all are empty. So, the SimpleBeanInfo class does not disclose any property of the method

INTRODUCTION TO J2EE 755

at all. We can override a specific method, where we want to return specific information. Since we
want to hide the PAN property, we have overridden only the getPropertyDescriptors() method.
In this method, we have returned an array of only three properties.

Now, modify the manifest file, manifest_person.mf, as follows:
Manifest-Version: 1.0

Name: Person.class
Java-Bean: True

Name: PersonBeanInfo.class
Java-Bean: False

Create the person.jar file as shown in Figure 26.7.

Figure 26.7: Bean introspection

Load the jar file in BeanBox and create a Person bean. You can see that only three properties are
shown. The result is shown in Figure 26.8.

Figure 26.8: Bean introspection

756 ADVANCED JAVA PROGRAMMING

We can also associate an icon with the bean. Override the getIcon() method as follows:
public java.awt.Image getIcon(int iconKind) {
 if (iconKind == BeanInfo.ICON_MONO_16x16 ||
 iconKind == BeanInfo.ICON_COLOR_16x16) {
 java.awt.Image img = loadImage("person16.gif");
 return img;
 }
 if (iconKind == BeanInfo.ICON_MONO_32x32 ||
 iconKind == BeanInfo.ICON_COLOR_32x32) {
 java.awt.Image img = loadImage("person32.gif");
 return img;
 }
 return null;
}

The BeanBox displays the icon in the toolbox before the bean name. The following important
points can be noted:

•	 If we do not include a descriptor, that property, method, or event will not be exposed. So, we can selectively expose
properties, methods, or events by excluding those we do not want disclosed.

•	 If a feature’s get (for example, getMethodDescriptor()) method returns null, low-level Java reflection API
is then used to extract that feature. This means that developer-defined as well as low-level reflection can both
be used to discover the methods. If default methods of the SimpleBeanInfo class, which return null, are not
overridden, low-level reflection is used for that feature.

26.8	 PERSISTENCE
Sometimes, it is necessary to store the beans for later use. Persistence is a procedure to save a

bean in non-volatile storage such as a file. The bean can be reconstructed and used later. The important
point is that persistence allows bean developers to save the current state of the bean and retrieve the
same at some later point of time.

To understand the importance of persistence, let us understand the life cycle of a bean. A bean is
first created (possibly using a builder tool). Then its properties are accessed and/or manipulated by
calling its public methods. After a degree of use, the bean is no longer needed, and is destroyed and
removed from the memory. This is a typical life cycle of a bean. However, think about a situation
where you have decided to complete your application temporarily but use of the bean is not yet over.
You want the same bean with the state of the bean unchanged whenever the application is restarted
later. Persistence is a procedure that does exactly what we have described here.

Let us consider a simple example. Consider the following Factorial bean.
//Factorial.java
import java.io.*;
public class Factorial implements Serializable {
 protected int n;
 public int getN() {
 return n;
 }
 public void setN(int n) {
 this.n = n;
 long prod = 1;
 for(int i = 2; i <= n; i++)
 prod *= i;
 fact = prod;
 }
 protected long fact;
 public long getFact() {
 return fact;
 }
}

INTRODUCTION TO J2EE 757

This bean has two properties, n and fact. The property n has a get method and a set method
and fact has only a get method. The getFact() method returns the factorial of n, which can be
specified using the setN() method. So, this bean can be used to create a factorial table. Suppose
we want to create a table containing factorial of numbers from 2 to 10. So, we can write a code
like this:

Factorial f = new Factorial();
for(int i = 2; i <= 10; i++) {
 f.setN(i);
 System.out.println(i + "! = " + f.getFact()+ " ");
}

However, during the calculation, assume that an external interrupt may occur and in such a case,
the application must be terminated. Before terminating, we must save the state of the bean so that
we can retrieve the value of the integer up to which we calculated the factorial, so as to find the
factorial of the rest of the integers. Java’s Serialization procedure may be used to save and retrieve
the state of a bean. An object is said to be serializable if its class implements the Serializable
interface and all members are serializable. The Serializable interface does not define any method;
it merely indicates that the class implementing it can be serialized. The following code shows how
to save the state of a bean.

//SaveBean.java
import java.io.*;
public class SaveBean {
 public static void main(String args[]) {
 try {
 Factorial f = new Factorial();
 for(int i = 2; i < 10; i++) {
 f.setN(i);
 System.out.println(i + "! = " + f.getFact()+ " ");

if(i > Math.random()*10) break;
 }
 //save the state of f now
 FileOutputStream fos = new FileOutputStream("out.dat");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(f);
 oos.close();
 System.out.println("Factorial bean saved in file out.dat");
 }catch(Exception e) {e.printStackTrace();}
 }
}

The following code demonstrates how to retrieve the bean with its original state.
//RetrieveBean.java
import java.io.*;
public class RetriveBean {
 public static void main(String args[]) {
 try {
 FileInputStream fis = new FileInputStream("out.dat");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Factorial f1 = (Factorial)ois.readObject();
 ois.close();
 System.out.println("Factorial bean retrieved from file out.dat");
 for(int i = f1.getN()+1; i <= 10; i++) {
 f1.setN(i);
 System.out.println(i + "! = " + f1.getFact()+ " ");
 }
 }catch(Exception e) {e.printStackTrace();}
 }
}

758 ADVANCED JAVA PROGRAMMING

Figure 26.9 shows a sample output that is obtained if you run these two applications.

Figure 26.9: Saving and retrieving bean

The JavaBean framework provides a utility class, XMLEncoder, which allows us to save a bean in
XML format. The following example shows how to save a bean as an XML file:

XMLEncoder encoder = new XMLEncoder(
 new BufferedOutputStream(new FileOutputStream("fact.xml")));
encoder.writeObject(f);
encoder.close();

It creates the following XML document:
<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_10-beta" class="java.beans.XMLDecoder">
 <object class="Factorial">
 <void property="n">
 <int>6</int>
 </void>
 </object>
</java>

The bean can later be retrieved from this XML document using the following code:
XMLDecoder decoder = new XMLDecoder(
 new BufferedInputStream(new FileInputStream("fact.xml")));
f1 = (Factorial)decoder.readObject();
decoder.close();

The object f1 refers to the original bean now.

26.9	 CUSTOMIZER
Bean customization allows us to customize the appearance and behaviour of a bean at design

time, within a bean-compliant builder tool. There are two ways to customize a bean:

•	 Using a property editor
•	 Using Customizers

Property editors are usually supplied by the builder tool, although you can write your own property
editor. In this section, we shall discuss how to customize a bean’s appearance and behaviour using
customizers.

A property editor usually displays all properties that can be manipulated. Sometimes, it is not
a good idea to display a large number of properties, most of which are irrelevant. A Customizer

INTRODUCTION TO J2EE 759

class gives us complete control to configure and edit beans. Customizers are used when a specific
instruction is needed and property editors are too primitive for this purpose. A Customizer class
must do the following:

•	 A Customizer must be some kind of AWT component that is suitable for display in a dialog box created by the
BeanBox. So, it must extend java.awt.Component or one of its subclasses. Typically, the Customizer class
extends Panel.

•	 It must implement the Customizer interface. This interface looks like this:
public interface java.beans.Customizer{
 public abstract void setObject(java.lang.Object);
 public abstract void addPropertyChangeListener(java.beans.PropertyCha
ngeListener);
 public abstract void removePropertyChangeListener(java.beans.Property
ChangeListener);
}

So, the Customizer class must implement those properties. It must also fire PropertyChangeEvent
to all registered listeners when a change to the target Bean has occurred.

•	 Implement a default constructor
•	 Associate the customizer with its target class via BeanInfo.getBeanDescriptor

If a Bean that has an associated Customizer is dropped into the BeanBox, a “Customize...” item
is added by the BeanBox in the Edit menu.

26.10	 JAVABEANS API
JavaBean API provides a set of related interfaces and classes necessary to design and develop

beans in a separate package, java.beans. Not all the classes and interfaces are used all the time to
develop a bean. For example, the event classes are used by beans that fire property and vetoable change
events. However, most of the classes in this package are used by a bean builder/editor. In particular,
these classes and interfaces help the bean builder/editor to create user interfaces that the user can use
to customize their beans. Tables 26.1, 26.2, and 26.3 respectively show the list of interfaces, classes,
and exceptions, which are used to develop beans.

Table 26.1: Javabean interfaces

Interface Name Description

AppletInitializer It is designed to work in collusion with java.beans.Beans.instantiate.

BeanInfo A bean implementor who wants to provide information about their bean explicitly may
provide a class that implements this BeanInfo interface.

Customizer It provides a complete custom GUI for customizing a target JavaBean.

DesignMode It is intended to be implemented by, or delegated from, instances of BeanContext, in
order to propagate to its nested hierarchy of BeanContextChild instances, the current
“designTime” property.

ExceptionListener It is notified of internal exceptions.

PropertyChangeListener This event gets fired whenever a bean changes a “bound” property.

PropertyEditor It provides support for GUIs that want to allow users to edit a property value of a given
type.

VetoableChangeListener This event gets fired whenever a bean changes a “constrained” property.

Visibility A bean may be run on servers where a GUI is not available under some circumstances.

760 ADVANCED JAVA PROGRAMMING

Table 26.2: Javabean classes

Class Name Description

BeanDescriptor It provides global information about a bean, including Java class and
displayName.

Beans It provides some general purpose methods to control beans.

DefaultPersistenceDelegate It is an implementation of the abstract PersistenceDelegate class and is the
delegate used by default for classes about which no information is available.

Encoder A class that is used to create streams or files which encode the state of a
JavaBean collection in terms of its public APIs.

EventHandler It provides support for dynamically generating event listeners, whose methods
execute a statement involving an incoming event object and a target object.

EventSetDescriptor It describes a group of events that a specified Javabean fires.

Expression It represents a primitive expression where a single method is applied to a target
and a set of arguments to return a result.

FeatureDescriptor It is the common baseclass for PropertyDescriptor, EventSetDescriptor, and
MethodDescriptor, etc.

IndexedPropertyChangeEvent This event gets delivered whenever a component that conforms to the
JavaBeans specification (a “bean”) changes a bound indexed property.

IndexedPropertyDescriptor It describes a property that acts as an array and has an indexed read and/or
indexed write method to access specific elements of the array.

Introspector This class provides a standard way for buider tools to learn about the
properties, methods, and events that a target JavaBean supports.

MethodDescriptor It describes a particular method that a JavaBean supports for external access.

ParameterDescriptor It allows bean implementors to provide additional information for each
parameter.

PersistenceDelegate It takes the responsibility for expressing the state of an instance of a given class
in terms of the methods in the class’s public API.

PropertyChangeEvent This event is delivered when a “bound” or “constrained” property is changed.

PropertyChangeListenerProxy It extends the EventListenerProxy to add a named PropertyChangeListener.

PropertyChangeSupport It is a utility class that can be used by beans that support bound properties.

PropertyDescriptor It describes a property that a JavaBean exports through accessor methods.

PropertyEditorManager It is used to locate a property editor for any given type name.

PropertyEditorSupport It helps to build property editors.

SimpleBeanInfo This is a support class to make it easier for people to provide BeanInfo classes.

Statement A Statement object represents a primitive statement in which a single method is
applied to a target and a set of arguments.

VetoableChangeListenerProxy It extends the EventListenerProxy specifically for associating a
VetoableChangeListener with a “constrained” property.

VetoableChangeSupport It is a utility class that is used by beans that support constrained properties.

XMLDecoder The XMLDecoder class is used to read XML documents created using the
XMLEncoder and is used just like ObjectInputStream.

XMLEncoder The XMLEncoder class is a complementary alternative to ObjectOutputStream
and can be used to generate a textual representation of a JavaBean in
the same way that the ObjectOutputStream can be used to create binary
representation of Serializable objects.

INTRODUCTION TO J2EE 761

Table 26.3: Javabean exceptions

Exception Name Description

IntrospectionException It is thrown when an exception happens during Introspection.

PropertyVetoException It is thrown when a proposed change to a property represents an unacceptable value.

26.11	 EJB
Enterprise JavaBeans (EJB) is a Java-based comprehensive component architecture for design

and development of world-class distributed modular enterprise applications. EJBs are not only
platform-independent, but can also run in any application server that implements EJB specifications.
The EJB component architecture integrates several enterprise-level requirements such as distribution,
transactions, security, messaging, persistence, and Enterprise Resource Planning (ERP) systems.

26.11.1	 Benefits of EJB
Unlike other distributed component technologies such as CORBA and Java RMI, the EJB

architecture hides most of the underlying system-level semantics such as instance management,
object pooling, connection pooling, and thread management. The EJB container performs these
tasks on behalf of us.

In the EJB architecture, beans contain the business logic, not the client. Therefore, the client
developer can devote more time to the presentation of the client. Since clients do not have to implement
business logic, they are thinner. This is very much required if devices running client applications are
small and resource-constrained.

EJBs are portable and can run on any EJB compliant server.
It also provides us different types of components for business logic, session, persistence, and

enterprise messages.

26.11.2	 Usage Scenario
The EJB architecture should be used for those applications that have any of the following

requirements:

•	 The applications must be scalable. The application’s components need to be distributed across multiple machines
to accommodate a large number of users. EJBs can run on different machines. Moreover, their location will remain
transparent to the clients.

•	 Transactions are required to ensure data integrity. Enterprise beans allow us to perform transactions in a safe
way. They also provide mechanisms for accessing shared objects concurrently.

•	 The application will have a wide variety of clients. Remote clients can easily locate enterprise beans using just a
few lines of code. These clients can be thin, various, and numerous.

26.11.3	 EJB Architecture
Before discussing the EJB architecture, let us understand the fundamental requirements of the

distributed component architecture.

•	 It must provide mechanisms to instantiate the server-side and client-side proxies. A client-side proxy is created at
the client side that represents the actual remote server object and acts as a proxy. A server-server side proxy, on
the other hand, is created at the server-side. It must provide the basic mechanism to accept client requests and
delegate these requests to the object implementation.

762 ADVANCED JAVA PROGRAMMING

•	 It must provide a mechanism that allows us to have a reference to the client-side proxy. Using this reference, clients
invoke methods. The client-side proxy is responsible for communicating with the server-side proxy.

•	 It must support a mechanism that can be used to inform the system that a specific component is no longer needed.

To satisfy these requirements, the EJB architecture specifies two types of interfaces: javax.
ejb.EJBHome and javax.ejb.EJBObject. The javax.ejb.EJBHome defines the methods that allow a
remote client to create, find, and remove EJB objects, as well as home business methods that are not
specific to a bean instance. On the other hand, javax.ejb.EJBObject defines methods that collectively
provide the remote client view of an EJB object.

There are three kinds of beans in the EJB architecture: Session Beans, Entity Beans, and Message
Driven Beans.

26.11.4	 Session Beans
Session beans perform specific tasks for a client. They are plain remote objects meant for

abstracting business logic.
A client invokes methods of the session bean to access an application, which is deployed on the

EJB server. The session bean performs business tasks inside the server on behalf of the client, hiding
all the complexities from the client.

A session bean, as its name suggests, can be considered as an interactive session. A session bean
is not shared. It can handle a single client in the same way that an interactive session may have just
one client. A session bean, like an interactive session, is not also persistent. This means that its state
is not saved to a database. When the client finishes, its session bean is also terminated. There are two
types of session beans: stateless and stateful.

26.11.4.1   Stateless Session Beans
A stateless session bean does not keep the state between client requests. When a client sends

a request for method invocation, the EJB container assigns an instance of a stateless bean. During
the method invocation, bean’s instance variables may have a state, but that is valid only during the
method invocation. When the client makes another request, the same instance may not be assigned
to the client, possibly due to the reason that it is already assigned to another client.

Since a stateless bean can be assigned to any client, it supports multiple clients. Therefore, to
support the same number of clients, a lesser number of stateless session beans is required than stateful
session beans. Session beans are useful for applications that have a large number of clients.

26.11.4.2   Stateful Session Beans
The state of a bean consists of values of its instance variable. Unlike stateless session beans,

stateful session beans maintain their states. It means that a client sees the same state of the bean when
it interacts with the stateful session bean through multiple method invocation. This is accomplished
by assigning the same session bean to the client across multiple requests.

The stateful session bean loses its state when a client terminates. When the client terminates, the
state is no longer necessary.

26.11.5	 Entity Beans
Entity beans model real world business objects such as customers, orders, and products. They

contain business logic that can be saved in a persistent storage for later use. The state of an entity bean
persists beyond the lifetime of the application or the EJB server process. In J2EE, the persistency is
obtained using a relational database. Usually, each entity bean has an underlying table in a relational
database. Each instance of the bean corresponds to a row in that table.

INTRODUCTION TO J2EE 763

Persistency can be obtained in two ways: bean-managed and container-managed. In the bean-
managed persistency mechanism, the entity bean itself contains the code to save its state in the
underlying table. On the other hand, in the container-managed persistence mechanism, the EJB
container generates the necessary database access calls automatically.

Container-managed entity beans are not tied to a specific database. Therefore, you can redeploy
the same entity bean on different J2EE servers that use different databases without modifying or
recompiling the bean’s code.

Multiple clients may share entity beans. So, entity beans work within transactions. The EJB
container usually supports transaction management. In this case, you only have to specify the
transaction attributes in the bean’s deployment descriptor. The EJB container will take care of the
rest of the procedure.

26.11.6	 Message Driven Beans
A Message Driven Bean acts as a listener for the Java Message Service API, processing messages

asynchronously. It is similar to an event listener, except that it receives messages instead of events.
The messages may be sent by a wide range of entities such as J2EE components, application clients,

other enterprise beans, web components, JMS applications, or even systems that do not use J2EE
technology. Message Driven Beans currently process only JMS (Java Message Service) messages,
but provisions are left so that they can process other kinds of messages in the future.

The message-driven beans differ from session and entity beans in the sense that clients do not
access message-driven beans through interfaces. Message Driven Beans and stateless session beans
are similar with respect to the following points:

•	 They do not maintain state for a client. However, sometimes they can contain state across the handling of client
messages such as an open database connection, an object reference to an enterprise bean object, or a JMS
API connection.

•	 All instances are similar. The EJB container can use any instance to process a message. So, it can process
multiple messages concurrently.

•	 One instance of a Message Driven Bean can handle multiple requests.

Note that, session and entity beans allow us to send and receive JMS messages. However, it
happens in a synchronous way. We should not use synchronous ‘send-receive’, which are costly and
blocking in a server-side component. Instead, message-driven beans can be used to send and receive
messages asynchronously.

26.12	 INTRODUCTION TO STRUTS FRAMEWORK
Struts is an application framework for developing Java EE web applications. This is an open-

source framework and was originally developed by Craig McClanahan and donated to Apache.
Fundamentally, it uses and extends Java servlet API and supports Model–View–Controller (MVC)
architecture. It allows us to create flexible, extensible, and maintainable large web applications based
on standard technologies, such as Java servlets, JSP, JavaBeans, resource bundles, and XML.

26.12.1	 Basic Idea
In a Java EE-based web application, a client usually submits data to the server using the HTML

form. These data are then handed over to a servlet or a Java Server Page, which processes them,
typically interacts with the database, and finally processes the HTML output that is sent to the

764 ADVANCED JAVA PROGRAMMING

client. Since servlet as well as JSP technologies mix application logic with the presentation, they are
inadequate for large web projects.

The primary task of struts is to separate application logic that interacts with the database, called
model from HTML pages that are sent to the client, called view and instance that passes information
between model and view, called controller. For this purpose, struts provide a controller as a servlet,
called ActionServlet, and allows the writing of templates for the presentation (view), typically in
terms of JSP. This special servlet acts as a switchboard to route requests from clients to the appropriate
server page. This simple idea makes web applications much easier to design, develop, and maintain.
Figure 26.10 describes the struts framework.

Client ActionServlet Action

web.xml struts-config.xml

ActionForm

JSP file

submit

maprequest
in the

form*.do

determine
action

consult

determine
form bean

instantiate bean,
populate with

form data

invoke, execute

determine
view

send response with processed data

Figure 26.10: Struts framework

That was a high-level description of the struts framework. Let us now discuss the framework
technically in more detail.

Every web application has an associated XML file (WEB-INF/web.xml) called deployment
descriptor. This file must be configured by the web application developer. The deployment descriptor file
specifies the configuration of the web application such as servlet mapping, parameter to those servlets,
welcome pages, etc. This web.xml file is first configured to forward [Figure 26.10:] all requests with a
specified pattern (usually *.do) to the struts framework’s ActionServlet using the following entry:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

INTRODUCTION TO J2EE 765

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

If you use an IDE such as NetBeans, these entries are automatically inserted. The web.xml file
also specifies one or more configuration XML file (struts-config.xml) that the ActionServlet will
consult. This ActionServlet performs switching functions as mentioned earlier.

Suppose we are developing a web application using /myapp as a location relative to the server’s
document root. In the struts-config.xml file, we associate paths with the controller components
called Action classes. The following is an example:

<action-mappings>
<action name="LoginForm" path="/login" scope="request"
type="com.myapp.struts.LoginAction"validate="false">

 </action>
</action-mappings>

It specifies that the ActionServlet should invoke the controller component com.myapp.struts.
LoginAction for the URL http://myhost/myapp/login.do. We also give a name to this association
(“LoginForm” in our case) to refer to it further. Note that the web.xml file specified that for the *.do
pattern URL, ActionServlet should be invoked by the web container. So, the .do in this URL causes
the web container to invoke ActionServlet of the struts framework. This ActionServlet consults
the struts-config.xml file and sees the path “login” and invokes LoginAction. The form data are
temporarily stored in an ActionForm type bean. The developer has to write this bean by extending
the ActionForm class explicitly. Action and ActionForm are bound using the name property of the
<form-bean> tag. The following is an example:

<form-beans>
 <form-bean name="LoginForm" type="com.myapp.struts.LoginForm"/>
</form-beans>

This “LoginForm” is the name of the action defined earlier and com.myapp.struts.LoginForm
is the ActionForm bean.

For each Action, we can specify the names of the resulting page(s) that has(ve) to be sent to the
client as a result of that action. There can be more than one view as the result of an action. Typically,
there are at least two: one for “success” and one for “failure”. This is accomplished by returning a
string from the execute() method of Action to the ActionServlet.

The action form, in turn, can retrieve data sent by the client from ActionForm bean. The following
example illustrates this:

public class LoginAction extends org.apache.struts.action.Action {

 /* forward name="success" path="" */
 private final static String SUCCESS = "success1";
 /* forward name="failure" path="" */
 private final static String FAILURE = "failure";

 /**
 * This is the action called from the Struts framework.
 * @param mapping The ActionMapping used to select this instance.
 * @param form The optional ActionForm bean for this request.
 * @param request The HTTP Request we are processing.
 * @param response The HTTP Response we are processing.
 * @throws java.lang.Exception
 * @return
 */
 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 // extract user data
 LoginForm formBean = (LoginForm) form;
 String name = formBean.getName();
 String email = formBean.getEmail();

 // perform validation
 if ((name == null) || // name parameter does not exist
 email == null || // email parameter does not exist
 name.equals("") || // name parameter is empty
 email.indexOf("@") == -1) { // email lacks '@'
 formBean.setError();
 return mapping.findForward(FAILURE);
 }
 return mapping.findForward(SUCCESS);
 }
}

766 ADVANCED JAVA PROGRAMMING

public class LoginAction extends org.apache.struts.action.Action {

 /* forward name="success" path="" */
 private final static String SUCCESS = "success1";
 /* forward name="failure" path="" */
 private final static String FAILURE = "failure";

 /**
 * This is the action called from the Struts framework.
 * @param mapping The ActionMapping used to select this instance.
 * @param form The optional ActionForm bean for this request.
 * @param request The HTTP Request we are processing.
 * @param response The HTTP Response we are processing.
 * @throws java.lang.Exception
 * @return
 */
 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 // extract user data
 LoginForm formBean = (LoginForm) form;
 String name = formBean.getName();
 String email = formBean.getEmail();

 // perform validation
 if ((name == null) || // name parameter does not exist
 email == null || // email parameter does not exist
 name.equals("") || // name parameter is empty
 email.indexOf("@") == -1) { // email lacks '@'
 formBean.setError();
 return mapping.findForward(FAILURE);
 }
 return mapping.findForward(SUCCESS);
 }
}

The parameter mapping in the execute() method refers to the ActionServlet and form refers
to the associated ActionForm bean. The Action (the controller component) reports back to the
ActionServlet using words like “success”, “failure”, “ready”, “OK”, “UserError”, etc. We specify
corresponding view pages in the configuration file as follows:

<action name="LoginForm" path="/login" scope="request"
type="com.myapp.struts.LoginAction" validate="false">
 <forward name="success" path="/success.jsp"/>
 <forward name="failure" path="/login.jsp"/>
</action>

The ActionServlet knows from the configuration file where to forward and what to show as a
result. This has the added advantage of reconfiguration of the view layer by simply editing the XML
configuration file.

The ActionForm beans can be validated ensuring that the user provides valid data in the form.
The validation can be carried out on a per-session basis. It allows forms to span multiple pages of
the View and Actions in the Controller.

Since the framework works on the server side, the client’s view has to be composed at the server
before sending it to the client. Typically, some sort of server-side technology such as JSP, Velocity,
and XSLT is used for the view layer. Simple HTML files may be used to compose client’s view.
However, they cannot provide full advantage of all the dynamic features.

KEYWORDS
Accessor methods—Public methods of a bean used
to read and write bean properties

Bean builder—A tool that is used to build and/or test
beans

BeanInfo interface—Defines several methods that
can be used to inspect properties, methods, and
events of a bean

Bound property—One which when changed, notifies
one or more beans about this change

Constraint property—A constrained property of
a bean is a special type of property which can be

changed subject to prior permission from external
object(s).

Controller—Controls the Model and View components

Customization—Bean customization allows us to
customize the appearance and behaviour of a bean
at design time, within a bean-compliant builder tool.

Design Patterns—The JavaBeans framework introduces
several rules for names to be used for classes and
methods. They are collectively called design patterns.

EJB—Enterprise JavaBeans (EJB) is Java-based
comprehensive component architecture for design

INTRODUCTION TO J2EE 767

and development of world-class distributed modular
enterprise applications.

Entity Beans—Entity beans model real world business
objects such as customers, orders, and products. They
contain business logic that can be saved in a persistent
storage for later use.

Indexed Property—An index property is an array of
properties. It can hold a range of values that can be
accessed through accessor functions.

Introspection—A procedure to discover properties,
methods, and events of a bean dynamically.

Message Driven Beans—A Message Driven Bean
acts as a listener for the Java Message Service API,
processing messages asynchronously.

Model—Specific code that handles the business
logic

Persistence—Persistence is a procedure to save a
bean in non-volatile storage such as a file. The bean
can be reconstructed and used later.

Session Beans—Session beans perform specific
tasks for a client. They are plain remote objects meant
for abstracting business logic.

Stateful session beans—Stateful session beans
maintain their states across client requests.

Stateless session beans—A stateless session bean
does not keep the state between client requests.

View—Takes care of the appearance of web pages

SUMMARY
J2EE is not a single technology; it consists of a large
set of technologies.

JavaBean technology is a Java-based technology to
design and develop reusable and platform-independent
software components. These components can then be
integrated virtually in all Java-compatible applications.
JavaBean components are knows as beans. The
appearance and features of a bean can be changed or
customized using builder tools such as BeanBox and
NetBeans. A bean class is nothing but a usual Java
class with the following requirements:

 •  It must have a public no-argument constructor.
  • � It has public accessor methods to read and write properties.
  • � It should implement Serializable or Externalizable

interface

Properties control the behaviour and appearance
of a bean. Usually, beans are developed and tested
using tools called bean builder. A bean builder provides
several facilities to build a bean.

A bean builder usually uses Java core reflection API
to discover the methods of a bean. It then applies
design patterns to discover other bean features (such
as properties and events). This procedure is known as
introspection. The JavaBeans framework introduces
a lot of rules for names to be used for classes and
methods. They are collectively called design patterns.
The different types of bean properties, namely, simple,
bound constraint, and indexed properties were
explained with extensive examples. JavaBean API
provides interfaces and classes to discover properties,
methods, and events of a bean. The BeanInfo interface
defines several methods that can be used to inspect
properties, methods, and events of a bean. Sometimes,
it is necessary to store the beans for later use.

Persistence is a procedure to save a bean in non-
volatile storage such as a file. The bean can be
reconstructed and used later.

Bean customization allows us to customize the
appearance and behaviour of a bean at design time,
within a bean-compliant builder tool.

Enterprise JavaBeans (EJB) is a Java-based
comprehensive component architecture for design
and development of world-class distributed modular
enterprise applications. EJBs are not only platform-
independent, but also run in any application server that
implements EJB specification. The EJB component
architecture integrates several enterprise-level
requirements such as distribution, transactions,
security, messaging, persistence, and Enterprise
Resource Planning (ERP) systems. There are three
kinds of beans in EJB architecture: Session Beans,
Entity Beans, and Message Driven Beans.

Session beans perform specific tasks for a client.
They are plain remote objects meant for abstracting
business logic. A stateless session bean does not keep
the state between client requests. Unlike stateless
session beans, stateful session beans maintain their
states. Entity beans contain business logic that can be
saved in a persistent storage for later use. A Message
Driven Bean acts as a listener for the Java Message
Service API, processing messages asynchronously.

Struts is an application framework for developing Java
EE web applications. It uses and extends Java servlet
API and supports Model–View–Controller (MVC)
architecture. It allows us to create flexible, extensible,
and maintainable large web applications based on
standard technologies, such as Java servlets, JSP,
JavaBeans, resource bundles, and XML.

768 ADVANCED JAVA PROGRAMMING

WEB RESOURCES
http://java.sun.com/docs/books/tutorial/
javabeans/
Trail: JavaBeans

http://java.sun.com/j2ee/1.4/docs/tutorial/
doc/
The J2EE 1.4 Tutorial

http://www.ibm.com/developerworks/edu/j-dw-
java-gsejb-i.html
Getting started with Enterprise JavaBeans technology

http://java.sun.com/j2ee/tutorial/1_3-fcs/

doc/EJBConcepts.html
Enterprise Beans

http://struts.apache.org/
Struts

http://netbeans.org/kb/docs/web/quickstart-
webapps-struts.html
Introduction to the Struts Web Framework

http://www.vaannila.com/struts-2/struts-2-
tutorial/struts-2-tutorial.html
Struts 2 Tutorial

EXERCISES
Objective-type Questions

	 1.	 How do you make an instance variable into a
JavaBean property?

	 (a)	 Drop the Bean into the BeanBox property
sheet

	 (b)	 Specify get and set methods for the variable
	 (c)	 Declare the instance variable public and

static
	 (d)	 Declare the instance variable private and let

the BeanBox define get and set methods
for the variable

	 2.	 JavaBean methods are all
	 (a)	 Properties
	 (b)	 Event listeners
	 (c)	 Identical to methods of other Java classes
	 (d)	 Events

	 3.	 Which of the following aspects do properties
control?

	 (a)	 How a JavaBean is compiled and dropped
into the BeanBox (or other tool)

	 (b)	 The tools you can use to customize a
JavaBean

	 (c)	 The communication between JavaBeans
	 (d)	 A JavaBean’s appearance and behaviour

	 4.	 Which of the following is done using BeanBox’s
property tool?

	 (a)	 Change the value of a Bean’s property
	 (b)	 Add new properties to a Bean
	 (c)	 Delete a Bean’s property
	 (d)	 None of the above

	 5.	 Bound properties are associated with
	 (a)	 propertyBound event
	 (b)	 valueChanged event
	 (c)	 valueBound event
	 (d)	 propertyChange event

	 6.	 A property defined in a JavaBean typically
	 (a)	 is declared as a private type
	 (b)	 has a corresponding get method and set

method
	 (c)	 can be saved and retrieved at a later time
	 (d)	 all of the above

	 7.	 A bean that receives events generated by a source
bean is called

	 (a)	 EventHandler Bean
	 (b)	 Receiver Bean
	 (c)	 Acceptor Bean
	 (d)	 Listener Bean

	 8.	 The properties of a Bean
	 (a)	 are defined by the Bean itself
	 (b)	 may be inherited from Bean’s super

class
	 (c)	 are analogous to instance variables
	 (d)	 All of the above

	 9.	 Which of the following mechanisms is used to
discover the bean’s properties, methods, and
events?

	 (a)	 Persistence	 (c)	 Customization
	 (b)	 Introspection	 (d)	 Event delegation

	10.	 JavaBeans with constrained properties
	 (a)	 instantiate an ActionListener object.
	 (b)	 use methods of the VetoableChangeSupport

class.
	 (c)	 instantiate a ConstraintChangeSupport

object.
	 (d)	 None of the above

	11.	 Which of the following executes EJB components?
	 (a)	 A web server	 (c)	 A web browser
	 (b)	 An EJB container	 (d)	 A database server

INTRODUCTION TO J2EE 769

	12.	 Which of the following interfaces is used to find
and remove enterprise beans?

	 (a)	 java.rmi.Home
	 (b)	 javax.ejb.EJBObject
	 (c)	 javax.ejb.EJBHome
	 (d)	 javax.ejb.Object

	13.	 Which of the following is used to create business
objects?

	 (a)	 javax.ejb.EntityBean
	 (b)	 javax.ejb.Object
	 (c)	 javax.ejb.SessionBean
	 (d)	 javax.ejb.Business

	14.	 What type of bean is used to embody application
processing state information?

	 (a)	 javax.ejb.StateBean
	 (b)	 javax.ejb.Object
	 (c)	 javax.ejb.EntityBean
	 (d)	 javax.ejb.SessionBean

	15.	 Which of the following interfaces must the
enterprise bean implement so that an application
can invoke its operations?

	 (a)	 javax.ejb.EJBHome
	 (b)	 javax.ejb.EntityBean
	 (c)	 javax.rmi.Remote
	 (d)	 javax.ejb.EJBObject

	16.	 Which of the following is true about a Message-
driven bean?

	 (a)	 It has a remote interface.
	 (b)	 It does not feature a component interface.
	 (c)	 It has a local interface.
	 (d)	 It has a client view.

	17.	 What does the EJB architecture specify?
	 (a)	 Distributed object components
	 (b)	 Transactional components
	 (c)	 Server-side components
	 (d)	 All of the above

	18.	 What happens when a reference to a remote
method is passed?

	 (a)	 A local copy of the remote object is passed.
	 (b)	 The remote object reference is passed.
	 (c)	 The remote object’s stub is passed.
	 (d)	 None of these

	19.	 Each struts action element is uniquely identified by its
	 (a)	 path attribute	 (c)	 page attribute
	 (b)	 name attribute	 (d)	 input attribute

	20.	 What is the full form of MVC
	 (a)	 Multiple–View–Controller
	 (b)	 Model–View–Cache
	 (c)	 Multiple–View–Cache
	 (d)	 Model–View–Controller

Subjective-type Questions

	 1.	 What are JavaBeans?

	 2.	 Mention the types of bean properties.

	 3.	 How do you create a bound property?

	 4.	 Explain with example bean design patterns.

	 5.	 How do you create a constrained property?

	 6.	 What do you mean by bean customization?

	 7.	 What is the purpose of the BeanInfo interface?

	 8.	 Explain the importance of bean persistence. How
do you make a bean persistent?

	 9.	 What is Deployment Descriptor?

	10.	 Mention the advantages of EJB over other
component architectures.

	11.	 What is the difference between JavaBean and
Enterprise JavaBean?

	12.	 What is a bean managed transaction?

	13.	 What are the differences between stateless and
stateful session beans?

	14.	 How does a stateful session bean remember its
client state?

	15.	 What is the life cycle of an Entity Bean?

CHAPTER – 27

Java and CORBA

Key Objectives

After completing this chapter readers will be able to—
•  get an idea about CORBA
•  understand the architecture of CORBA and its components
•  know basic steps to write CORBA-based client–server applications using Java
•  understand the concept of DII and DSI
•  learn how to write RMI applications using IIOP
•  know how to handle in, out and inout parameters

27.1	 INTRODUCTION
CORBA (Common Object Request Broker Architecture) is a specification that describes how

heterogeneous objects can interoperate. CORBA objects can be created/accessed using virtually any
programming language (such as Java, C, C++, Smalltalk, Ada) and can exist on any platform (such
as Windows, Unix, Linux, Solaris). This means that a Java application running under Windows can
transparently access C++ objects created on a Unix platform.

Developers need not know what language a CORBA service is written in, or even where it is
located physically making CORBA systems extremely versatile. A CORBA object may be shutdown,
restarted on a different location and then re-registered with a name server. Clients can simply find
the object by looking up the service and then continue to make requests.

The CORBA is specified and controlled by the well-known Object Management Group (OMG), which
is a consortium of more than 700 companies that work together to create standards for object computing.

27.2	 CORBA ARCHITECTURE
The OMA defines four major parts a CORBA-compliant system should have:

•	 An Object Request Broker (ORB)—This acts as a software bus for intercommunication of heterogeneous
objects.

JAVA AND CORBA 771

•	 CORBAServices—This defines additional system-level services the ORB may provide, such as Security, Naming,
and Transactions.

•	 CORBAFacilities—This part defines application-level services, such as compound documents and other vertical
facilities.

•	 Business Objects—This describes real-world objects and applications, such as a Book or a BankAccount.

27.2.1	 IDL
A key feature of CORBA is IDL, a language-neutral Interface Definition Language. Interfaces

to CORBA objects are written using IDL. This allows CORBA application developers to describe
the service structure of an object without any language specific syntax. IDL interfaces are converted
to or obtained from the language specific code using tools provided by the CORBA S/W provider.
For example, Java provides a compiler idlj for this purpose.

27.2.2	 ORB
CORBA objects communicate through a broker called Object Request Broker (ORB). It is a library

that enables low-level communication between CORBA compliant applications written in different
programming languages. An application, during it life cycle, can ask ORB to do the following:

•	 Register and look up objects
•	 Marshal and un-marshal parameters from one programming language to another language
•	 Publish and retrieve metadata on objects on the local system for another ORB
•	 Handle security across your machine’s local boundary
•	 Invoke methods statically on a remote object using downloaded stub
•	 Invoke methods on a remote object using dynamic method invocation
•	 Automatically activate objects if they are not currently active
•	 Forward callback methods to appropriate local objects registered with the ORB

However, a developer need not know how those facilities are implemented. They simply use
some hooks to use those facilities. This transparency makes CORBA the first choice for writing
heterogeneous distributed applications.

27.2.3	 IIOP
Communication between ORBs takes place using a TCP/IP-based protocol called Internet Inter-

Orb Protocol (IIOP), which defines how CORBA-compliant ORBs pass information back and forth.
It is also standardized by OMG.

27.2.4	 IOR
CORBA provides several ways to locate CORBA objects. However, the most flexible one is

Interoperable Object References (IORs). An IOR contains enough information required for a client
ORB to connect to a remote server object or servant. IOR represents a reference to any CORBA
object including naming service, transaction service, or customized CORBA servant. It contains the
following information:

•	 IIOP version number
•	 Host and port number of the server, a request to be forwarded
•	 Class name and instance data required to create a local proxy (stub)
•	 A key that uniquely identifies the servant to the ORB exporting the servant
•	 Other information necessary for method invocations, such as supported ORB services and proprietary protocol

support, etc.

772 ADVANCED JAVA PROGRAMMING

A programmer need not know the information contained in an IOR. CORBA provides facilities
to convert an IOR to a string (called stringified object reference). This string can then be transferred
to other locations. CORBA also provides functions to reconvert the string to remote servant reference
(essentially a reference to a local proxy/stub). The process of converting an IOR to a string or a string
to a reference is known as stringification.

The CORBA standard, for stringification, defines the following two methods on
org.omg.CORBA.ORB:

String object_to_string(org.omg.CORBA.Object o)
org.omg.CORBA.Object string_to_object(String ior)

The first one converts the given CORBA object reference to a stringified IOR, whereas the latter
converts a stringified IOR produced by the method object_to_string() back to a CORBA object reference.

The representation of IOR is also ORB-implementation independent. So stringified object
reference works across different CORBA vendors.

27.3	 JAVA IDL
Java SDK provides an API (popularly known as Java-IDL) to support CORBA specification. This

means Java-IDL enabled applications can interact with other applications that also support CORBA.
The API consists of primarily the following packages: org.omg.CORBA, org.omg.CosNaming, org.
omg.PortableServer, org.omg.PortableInterceptor and org.omg.DynamicAny.

27.4	 DEVELOPING CORBA APPLICATIONS
In this section, we shall describe the basic steps needed to develop a distributed application using

Java IDL. The following are basic steps used to develop CORBA applications:

•	 Write an interface using IDL
•	 Mapping IDL interface to Java
•	 Implementing the interface
•	 Writing the server
•	 Writing the client

We shall consider our Calculator application in this regard. This application was developed earlier
using RMI technology. Let us now develop using Java-IDL and understand their relative advantages
and disadvantages. This application, in spite of its simplicity, uses all the tasks required to develop
almost any CORBA program that uses static invocation.

27.4.1	 Write an interface using IDL
Our Calculator object has a single method that takes two integers and returns their sum. The

interface for this object in IDL (stored in a file Calculator.idl) looks like this:
//Calculator.idl
module CalculatorApp {
 interface Calculator {
 long add(in long a, in long b);
 };
};

A CORBA module is a container for related interfaces and declarations. It corresponds to a
package in Java. The IDL compiler translates a module to a package statement in the Java code. A
CORBA interface is similar to Java interface that describes the service of an object. Our calculator
object provides a single service (method) that takes two integers and returns their sum.

JAVA AND CORBA 773

27.4.2	 Mapping IDL interface to Java
To develop an application using Java, this IDL interface is translated to Java code using Java’s

idlj compiler. The idlj compiler generates a set of Java files based on option(s) passed to it. We
use the following command to generate files required to both client and server:

idlj –fall Calculator.idl

This generates six files CalculatorOperations.java, Calculator.java, CalculatorPOA.java,
_CalculatorStub.java, CalculatorHelper.java and CalculatorHolder.java. The generated files
provide standard functionality as follows:
•	 CalculatorOperations.java

This is a pure Java interface corresponding to CORBA interface and is shared by both the stubs
and skeletons. It looks like this:

package CalculatorApp;

/**
* CalculatorApp/CalculatorOperations.java .
* Generated by the IDL-to-Java compiler (portable), version "3.2"
* from Calculator.idl
* Wednesday, February 5, 2014 11:58:17 AM PST
*/

public interface CalculatorOperations
{
 int add (int a, int b);
} // interface CalculatorOperations

It is easy to understand how the IDL statements map to the generated Java statements.
•	 Calculator.java

This is a Java interface that extends CalculatorOperations and thus corresponds to CORBA
interface. It is derived from org.omg.CORBA.Object and ensures the required CORBA functionality.
It looks like this:

package CalculatorApp;

/**
* CalculatorApp/Calculator.java .
* Generated by the IDL-to-Java compiler (portable), version "3.2"
* from Calculator.idl
* Wednesday, February 5, 2014 11:58:17 AM PST
*/

public interface Calculator extends CalculatorOperations, org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity
{
} // interface Calculator

•	 CalculatorPOA.java
This is the server-side skeleton class. It provides CORBA functionality at the server-side, hence

extends org.omg.PortableServer.Servant, and implements the org.omg.CORBA.portable.
InvokeHandler interface and the CalculatorOperations interface.
•	 _CalculatorStub.java

This class is the client-side stub. It provides CORBA functionality for the client, hence extends
org.omg.CORBA.portable.ObjectImpl and implements the Calculator interface.

774 ADVANCED JAVA PROGRAMMING

•	 CalculatorHelper.java
It provides additional functionality, notably the narrow() method which casts a CORBA object

reference to its proper type. It is also responsible to read/write data type to CORBA streams, and
insert and extract the data type from Anys.
•	 CalculatorHolder.java

This final class, as its name implies, holds a public Calculator instance. This is used when the
IDL type is an out or an inout parameter. Since these facilities are not directly available in Java,
this holder class provides operations to simulate them by delegating to the methods in the Helper
class for reading and writing.

27.4.3	 Implementing the interface
To implement the interface, we write a Java class called a servant, which inherits from a class

called the servant base, which is optionally generated by the idlj compiler. The servant base class is
the CORBA type-specific interface between the ORB and the servant. It unmarshals incoming request,
invokes servant methods, marshals results, and instructs the ORB to send the result back to the client ORB.

In our case, we write a servant class SimpleCalculator extending CalculatorPOA to provide
CORBA functionality. Here is our implementation class (SimpleCalculator.java):

// SimpleCalculator.java
import CalculatorApp.*;
class SimpleCalculator extends CalculatorPOA {
 public int add(int x, int y) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

A servant class defines methods of the interface it implements. Our SimpleCalculator servant
defines one, the add()method. This adds two integers passed to it and returns the result. It also prints
some messages to track method invocation and response.

27.4.4	 Writing the server
The trickiest part of any CORBA-based application is to create a servant instance and export

it to the ORB so that the other application can invoke methods on the servant. The Object Request
Broker (ORB) is represented in Java by org.omg.CORBA.ORB class. So, we create an instance of ORB
by calling its static init() method as follows:

ORB orb = ORB.init(args, null);

The command line arguments (args) are passed to the init() method so that we can set some
ORB properties (such as host and port, the naming service running on) at runtime. Now, we need a
Portable Object Adapter (POA). We get a reference to the existing POA, the root POA as follows:

POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

We then activate the associated POA manager using the following statement:
rootpoa.the_POAManager().activate();

The activated POA manager enables the associated POA to start processing requests. We then
create an instance of the servant that performs the actual operation as follows:

SimpleCalculator cal = new SimpleCalculator();

JAVA AND CORBA 775

The object is then registered (activated) with the POA and an Interoperable Object Reference
(IOR) is obtained. There are many ways to do this. The typical one uses servant_to_reference()
method as follows:

org.omg.CORBA.Object ref = rootpoa.servant_to_reference(cal);

This essentially activates the servant and returns an id encapsulating all necessary information
required to refer to the servant. This id is used by the clients for method invocation. The invocation
request eventually comes to the underlying ORB which consults the associated POA to map the object
reference to the servant. These two steps may be explicitly specified as follows:

byte[] id = rootpoa.activate_object(cal);
org.omg.CORBA.Object ref = rootpoa.id_to_reference(id);

This is also equivalent to:
org.omg.CORBA.Object ref = cal._this(orb);

To invoke the add() method this remote servant, client somehow need this IOR. This IOR may
be transferred physically to the client and reconverted to the object type using narrow() method of
CalculatorHelper class. Alternatively, the server may bind this IOR to the naming service from
where the client can get the IOR. We use the latter mechanism as it does not require the IOR to be
transferred explicitly.

27.4.4.1   Binding IOR to naming service
To get the root context of the name server, we use the following piece of code:
org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

The resolve_initial_references() method returns a generic org.omg.CORBA.Object, which
is then converted to the naming context (represented by NamingContextExt class) type using helper
class as follows:

NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

This refers to the root of the naming service and can be used to register IOR by a specified name as
an array of NameComponent. Let us use a single string “Calculator” as the name of our calculator servant.

String name = "Calculator";
NameComponent path[] = ncRef.to_name(name);

We register the IOR with this name as follows:
ncRef.rebind(path, ref);

We finally enable the ORB to wait for invocation requests:
orb.run();

The following is the complete code for the server (CalculatorServer.java):
// CalculatorServer.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class CalculatorServer {
 public static void main(String args[]) {
 try{
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // get a reference to rootpoa
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // activate the POAManager
 rootpoa.the_POAManager().activate();

 // create servant
 SimpleCalculator cal = new SimpleCalculator();

 // get IOR corresponding to the servant
 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(cal);

 // get the root naming context
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

 // Convert it to the proper type
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 //this the name of the servant
 String name = "Calculator";
 NameComponent path[] = ncRef.to_name(name);

 // register the IOR with the name service
 ncRef.rebind(path, ref);

 System.out.println("CalculatorServer ready and waiting ...");

 // wait for invocations from clients
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

776 ADVANCED JAVA PROGRAMMING

// CalculatorServer.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class CalculatorServer {
 public static void main(String args[]) {
 try{
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // get a reference to rootpoa
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // activate the POAManager
 rootpoa.the_POAManager().activate();

 // create servant
 SimpleCalculator cal = new SimpleCalculator();

 // get IOR corresponding to the servant
 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(cal);

 // get the root naming context
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

 // Convert it to the proper type
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 //this the name of the servant
 String name = "Calculator";
 NameComponent path[] = ncRef.to_name(name);

 // register the IOR with the name service
 ncRef.rebind(path, ref);

 System.out.println("CalculatorServer ready and waiting ...");

 // wait for invocations from clients
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

27.4.5	 Writing the Client
Like server, client also creates and initializes an instance of ORB:
ORB orb = ORB.init(args, null);

Here, the command line arguments (args) are also passed to the init() method so that we can
set some ORB properties (such as host and port, the naming service running on) at runtime. Before
invoking a method on the remote servant, client first needs to have an IOR to that servant. The IOR
may be obtained from the naming service by providing the name of the servant. The root of the
naming service is obtained as follows:

org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

It is then converted to the proper type using helper class as follows:
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

The client then obtains the IOR of the calculator servant as follows:
String name = "Calculator";
org.omg.CORBA.Object ref = ncRef.resolve_str(name);

This IOR is then converted to our Calculator type using narrow() method of CalculatorHelper
class as follows:

Calculator calc = CalculatorHelper.narrow(ref);

Method invocation is the easiest part and looks exactly like local invocation. All the complications
of marshalling parameters to the wire, routing them to the server-side ORB, unmarshalling, and
forwarding to the servant are completely transparent to the client.

int x =2, y = 3;
int result = calc.add(x, y);

JAVA AND CORBA 777

The following is the complete code for the client (CalculatorClient.java):
import CalculatorApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

public class CalculatorClient {
 public static void main(String args[]) {
 try{
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // get the root naming context
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

 // Convert it to the proper type
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 // get an IOR from naming service
 String name = "Calculator";
 org.omg.CORBA.Object ref = ncRef.resolve_str(name);

 System.out.println(ref);
 Calculator calc = CalculatorHelper.narrow(ref);

 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

27.5	 COMPILING APPLICATIONS
Create a directory (say server) and place all server-related files, namely Calculator.idl,

SimpleCalculator.java and CalculatorServer.java. Use the following command to compile IDL file:
idlj –fall Calculator.idl

Now, use the following command to compile all the server-related files:
javac *.java

Now, create a directory (client), probably on a different computer. Place all client-related files,
namely Calculator.idl and CalculatorClient.java. Use the following command to compile the
IDL file:

idlj –fall Calculator.idl

Now, use the following command to compile all the client-related files:
javac *.java

27.6	 RUNNING THE APPLICATION
To run the application, a name service is required.
The server uses this name service to bind reference to the servant implementing Calculator

interface. This reference is used by the client for method invocation. Java is shipped with two
applications tnameserv, a transient naming service, and orbd, which is a daemon process containing

778 ADVANCED JAVA PROGRAMMING

a Bootstrap Service, a Transient Naming Service, a Persistent Naming Service, and a Server Manager.
We shall use orbd in our example. The orbd runs by default on port 900, though –ORBInitialPort
option may be used to override the default port. We use the port number 6789.

Open a terminal in any computer (we assume that the IP address of this computer is 172.16.4.248)
in the network and use the following command to start orbd on port 6789.

orbd -ORBInitialPort 6789

Alternatively, the transient name service tnameserv may also be used as follows:
tnameserv -ORBInitialPort 6789

Note that only persistent binding in the tnameserv is the initial naming context. The rest of the
namespace is lost if tnameserv halts and restarts.

Now, open a terminal in a computer in the network and use the following command to start the
server:

java CalculatorServer -ORBInitialHost 172.16.4.248 –ORBInitialPort 6789

To start the client, open a terminal in another computer in the network and use the following
command:

java CalculatorClient -ORBInitialHost 172.16.4.248 -ORBInitialPort 6789

A sample output is shown in Figure 27.1:

(i)

(ii)

Figure 27.1: Calculator application using Java IDL (i) Server (ii) Client

27.7	 USING PROPERTIES
The host and port may be specified in the server as well as client program as follows:
Properties props = new Properties();
props.put("org.omg.CORBA.ORBInitialHost","172.16.4.248");
props.put("org.omg.CORBA.ORBInitialPort", "6789");

ORB orb = ORB.init(args, props);

In this case, use the following simple commands to start the server and client respectively.
java CalculatorServer

java CalculatorClient

JAVA AND CORBA 779

27.8	 STRINGIFIED OBJECT REFERENCE
Note that CORBA uses the concept of stringified object reference to identify CORBA objects.

A server program can publish a stringified IOR of a servant and a client can remotely invoke methods
on this servant using the IOR. The following program (CalculatorServerStr.java) exports a
calculator servant and prints its IOR on the screen:

// CalculatorServerStr.java
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class CalculatorServerStr {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 rootpoa.the_POAManager().activate();
 SimpleCalculator cal = new SimpleCalculator();
 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(cal);
 System.out.println(ref);
 System.out.println("CalculatorServer ready and waiting ...");
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

To invoke a method of the calculator servant, the only thing a client needs to know is servant’s IOR. The
IOR can be transferred to the client machine using different ways such as file transfer and mail attachment.
Once the client application has an object reference, it has all the information it needs to connect to the
object and make remote invocations on the object’s methods. The following client (CalculatorClientStr.
java) invokes the method add() on the remote object using the given IOR as a command line argument:

import CalculatorApp.*;
import org.omg.CORBA.*;
public class CalculatorClientStr {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object obj = orb.string_to_object(args[0]);
 Calculator calc = CalculatorHelper.narrow(obj);
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

A sample output is shown in Figure 27.2:

(i)

(ii)

780 ADVANCED JAVA PROGRAMMING

(i)

(ii)

Figure 27.2: Calculator application using stringified object reference (i) Server (ii) Client

27.9	 USING URL
CORBA defines two URLs corbaname and corbaloc to provide a human readable/editable way

to specify a location where an IOR can be obtained. The following sections describe how to use
these two URLS.

27.9.1	 Using corbaloc
The corbaloc URL is used to specify the location of a CORBA object in a human-readable format

with the minimum amount of information necessary. A corbaloc URL has the following format:
corbcaloc:[iiop]:[Version@]Host[:Port][/ObjectKey]

A brief description of different components is given below:

iiop
(Optional) Specifies that the transport protocol should be IIOP. If not present, the protocol defaults

to IIOP. So, corbaloc:iiop: and corbaloc:: are equivalent.

Version
(Optional) Specifies the GIOP version supported by the server. The allowed values are 1.0, 1.1

and 1.2; if not present, it defaults 1.0.

Host
Specifies the server’s hostname or IP address in dotted decimal format.

Port
(Optional) Specifies the IP port to be used to connect to the server. The default is 900.

ObjectKey
(Optional) A name of the CORBA object on the remote server.
Here is a typical example of a corbaloc URL
corbaloc:iiop:1.2@172.16.4.248:6789/NameService

This refers to the initial naming context of the name service running on a port 6789 in a machine
having IP address 172.16.4.248. The following program gets a reference to the initial context of a
remote name service using corbaloc.

import CalculatorApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class CalculatorClientLoc {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
orb.string_to_object("corbaloc:iiop:1.2@172.16.4.248:6789/NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 org.omg.CORBA.Object ref = ncRef.resolve_str("Calculator");
 Calculator calc = CalculatorHelper.narrow(ref);
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch (Exception e) {e.printStackTrace();}
 }
}

JAVA AND CORBA 781

import CalculatorApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class CalculatorClientLoc {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
orb.string_to_object("corbaloc:iiop:1.2@172.16.4.248:6789/NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 org.omg.CORBA.Object ref = ncRef.resolve_str("Calculator");
 Calculator calc = CalculatorHelper.narrow(ref);
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch (Exception e) {e.printStackTrace();}
 }
}

Unlike IOR that contains essentially the complete state of an object reference, the corbaloc URL
contains only the object’s address. Hence, object references constructed with a corbaloc URL will
not have same state as the remote servant; instead they are initialized in a provisional state. The
corbaloc URL can be used as a command line argument. The calculator client can be started using
the following command:

java CalculatorClient -ORBInitRef
NameService=corbaloc:iiop:1.2@172.16.4.248:6789/NameService

This tells that the program should contact the name service running on 6789 in a machine having
IP address 172.16.4.248.

27.9.2	 Using corbaname
The corbaname URL provides a mechanism for a client to bootstrap directly. It is typically used

to resolve the stringified name from the root naming context.
It is similar to the corbaloc, except that it adds the ability to specify an entry within the Naming

Service. A corbaname URL to an object has two parts. The first part obtains a reference to the naming
service and the second part refers to object key within that naming service. These two parts are
separated by #. Consider the following example:

corbaname:iiop:1.2@172.16.4.248:6789#Calculator

Here 172.16.4.248 is the host and 6789 is the port. The part corbaname:iiop:1.2@172.16.4.248:6789
refers to the root naming context. The part after # refers to the name of the object in question. So,
a corbaname URL is used to locate a name service and to resolve a name. The following program
resolves the calculator servant using corbaname URL.

import CalculatorApp.*;
import org.omg.CORBA.*;
public class CalculatorClientURL {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object ref =
orb.string_to_object("corbaname:iiop:1.2@172.16.4.248:6789#Calculator");
 Calculator calc = CalculatorHelper.narrow(ref);
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch (Exception e) {e.printStackTrace();}
 }
}

782 ADVANCED JAVA PROGRAMMING

27.10	 USING TIE
In our previous examples, we created servant class extending a class (idlj generated). This type of

servant implementation is referred to as inheritance model. The problem of this model is that servant
cannot extend another class (if it is required) as Java supports only single inheritance for classes. To
eliminate this problem, another model (called tie/delegation model) is introduced where servant need not
inherit an IDL generated class and hence can extend another class if it is necessary. The drawback of tie
model is that it introduces a level of indirection: one extra method call occurs when invoking a method.

In this section, we shall develop server-side of our calculator application using tie model. The
servant class is created as follows:

class SimpleCalculator implements CalculatorOperations {
 //…
}

Not that this class simply implements an interface, the CalculatorOperations interface. Since,
it does not extend any class, a slot is still there to extend another class. However, this class is an
ordinary class and hence an object of this class cannot act as a servant in CORBA environment. The
POA cannot bind this object and cannot create an IOR using servant_to_reference() method and
hence, delete the following line from CalculatorServer.java:

org.omg.CORBA.Object ref = rootpoa.servant_to_reference(cal);

So, how do you publish a SimpleCalculator object in CORBA then? The object is tied with POA
explicitly using a special class (called tie class). This class may be generated by the idlj compiler
using –falltie option as follows:

idlj -falltie Calculator.idl

This command, in addition to other files, generates a tie file with name CalculatorPOATie.java.
To tie our SimpleCalculator object with root POA, we create a CalculatorPOATie object as follows:

CalculatorPOATie tie = new CalculatorPOATie(cal, rootpoa);

Now get the IOR as follows:
Calculator ref = tie._this(orb);

This step also implicitly activates the object. Also add the following import statement:
import CalculatorApp.*;

The rest of the code is same as before. The server is now ready to work. Compile and start the
server as before.

27.11	 PERSISTENT OBJECTS
The objects that the server hosted so far are called transient objects, as they cannot live beyond

the server process. If an object’s server process halts, the transient object disappears with it and any
object references held by the client becomes invalid. In other words, a transient object has the same
lifetime as the execution of the server process that creates it.

However, CORBA specified another type of objects, called persistent objects that can live
beyond the process that created it. It allows a server process to create an object, register it with the
persistent service and exits. The persistence service deals with the object thereafter. If a client has
reference to a persistent object and sends an invocation request to the target object, the persistence
service creates and activates (if not already done) a server process for the object and then activates
(if not already activated) the object itself. The object persists until it is explicitly removed from the
persistence service. The entire activation process is transparent to the client.

JAVA AND CORBA 783

Note that transient or persistent has nothing to do with the state of the object. An application may
create transient objects to access some persistent information maintained in a database. Similarly,
some persistent object references may have no state or no persistent state. The persistence merely
means duration of existence.

Also note that transiency or persistency is implemented by a specific policy, called LifeSpanPolicy, of
the underlying POA. This means that any application that wants to provide persistent objects must use POAs
with the persistent life span policy. The following section describes how to work with persistent objects.

We first create and initialize an ORB instance:
ORB orb = ORB.init(args, null);

Then get a reference to the root POA:
POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

The standard life span policy for the RootPOA is TRANSIENT. So, we create a child POA of rootPOA
with life span policy set to PERSISTENT as follows:

Policy[] pPol = new Policy[1];
pPol[0] = rootpoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);
POA pPOA = rootpoa.create_POA("childPOA", null, pPol);

Activate persistent POA’s POAManager, since by default POAManager remains in the ‘HOLD’ state.
pPOA.the_POAManager().activate();

Now create a servant and activate the servant with persistent POA:
SimpleCalculator cal = new SimpleCalculator();
pPOA.activate_object(cal);

Now get a reference and bind it with the naming service as described before. The complete source
code of this server (PersistentCalculatorServer.java) is shown below:

// PersistentCalculatorServer.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class PersistentCalculatorServer {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // Create the persistent Policy
 Policy[] pPol = new Policy[1];
 pPol[0] = rootpoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);

 // Create a POA specifying this persistent Policy
 POA pPOA = rootpoa.create_POA("childPOA", null, pPol);

 // Activate the PersistentPOA's POAManager
 pPOA.the_POAManager().activate();

 SimpleCalculator cal = new SimpleCalculator();

 // Activate the servant with persistent POA
 pPOA.activate_object(cal);

 org.omg.CORBA.Object ref = pPOA.servant_to_reference(cal);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 NameComponent path[] = ncRef.to_name("Calculator");
 ncRef.rebind(path, ref);
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

784 ADVANCED JAVA PROGRAMMING

// PersistentCalculatorServer.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class PersistentCalculatorServer {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // Create the persistent Policy
 Policy[] pPol = new Policy[1];
 pPol[0] = rootpoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);

 // Create a POA specifying this persistent Policy
 POA pPOA = rootpoa.create_POA("childPOA", null, pPol);

 // Activate the PersistentPOA's POAManager
 pPOA.the_POAManager().activate();

 SimpleCalculator cal = new SimpleCalculator();

 // Activate the servant with persistent POA
 pPOA.activate_object(cal);

 org.omg.CORBA.Object ref = pPOA.servant_to_reference(cal);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 NameComponent path[] = ncRef.to_name("Calculator");
 ncRef.rebind(path, ref);
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

27.11.1	 Running Persistent Application
Compile the program as before. Go in the directory containing the class PersistentCalculatorServer.

class and use the following to start the persistence service, the orbd daemon on port 6789:
orbd -ORBInitialPort 6789

We assume that the daemon is started in a host having IP address 172.16.4.248. Since, a persistent
server usually creates a persistent object, registers it and then terminates, the server has to be started
in a different way. Fortunately, Java provides a tool servertool that allows developer to register,
unregister, startup, and shutdown a persistent server. It may be started on any host specifying the port
and the host (if different) on which orbd is executing as follows:

servertool -ORBInitialHost 172.16.4.248 -ORBInitialPort 6789

A message and a command prompt appear as follows:
Welcome to the Java IDL Server Tool
please enter commands at the prompt

servertool >

Use the following command to register an instance of persistence server:
servertool > register -server PersistentCalculatorServer -applicationName ps -
classpath .

If everything goes fine, the following message appears:
server registered (serverid = 260).

To see the list of registered server, use list command, a sample result of which is shown below:
 Server Id Server Class Name Server Application
 --------- ----------------- ------------------

 260 PersistentCalculatorServer ps

For more commands, type help. Now, start the client in any other computer using the following
command:

java CalculatorClient -ORBInitialHost 172.16.4.248 -ORBInitialPort 6789

27.12	CALLBACK
Sometimes, a client should synchronize itself on a change or update that occurs in a server. For

example a client, which displays the score of a game, should always get current score stored in a
game server. There are two ways a client can do this:

•	 Polling: The client can ask the server for the current score periodically.
•	 Callback: Request server to send score, only when it changes, to the client.

The primary problem of polling method is that the client may have downloaded the same score
possibly many times as the client does not have any idea about when the score changes. Alternatively,
instead of downloading the score by the client, the responsibility may be imposed on the server.
By doing so, the client gets a score only when it changes, thus reducing the number of messages
exchanged. This mechanism is called callback and has a direct positive impact of network bandwidth.

JAVA AND CORBA 785

A callback is an operation invocation made by a server to an object that is implemented
by a client. To implement this callback mechanism for score application, we write an IDL as follows:

//Callback.idl
module Callback {
 interface Listener {
 void receive(in string s);
 };
 interface Notifier {
 void register(in Listener r);
 };
};

In this example, since clients invoke operations on servers and servers invoke operations on clients,
IDL defines two interfaces through which each type of application can access the other. Specifically,
Listener is implemented at the client side and Notifier is implemented at the server side. A simple
implementation (ScoreListener.java) of Listener is shown below:

// ScoreListener.java
import Callback.*;
class ScoreListener extends ListenerPOA {
 public void receive(String s) {
 System.out.println("received: "+s);
 }
}

The receive() method gets a string (score) and displays it. A sample Notifier implementation
(ScoreNotifier.java) is shown below:

// ScoreNotifier.java
import Callback.*;
import java.util.*;
class ScoreNotifier extends NotifierPOA implements Runnable {
 Hashtable Listeners = new Hashtable();
 public ScoreNotifier() {
 new Thread(this).start();
 }
 public void register(Listener r) {
 System.out.println("Registered a listener: ");
 Listeners.put(r, r);
 }
 public void run() {
 int score = 0, run;Random r = new Random();
 while(true) {
 try {
 do {
 Thread.sleep(1000+r.nextInt(1000));
 }while((run = r.nextInt(7)) == 0);
 score += run;
 Enumeration e = Listeners.elements();
 while(e.hasMoreElements()) {
 Listener rec = (Listener)e.nextElement();
 System.out.println("Sent: "+score);
 rec.receive(score+"");
 }
 }catch(Exception e) {}
 }
 }
}

The register() method puts the specified Listener in a Hashtable. The listener is created and
bound to the ORB by the client. The child thread created from the constructor generates a score
artificially and sends it to all the registered Listeners by calling their respective receive() method.

786 ADVANCED JAVA PROGRAMMING

The server (ScoreServer.java) merely creates a ScoreNotifier object and exports it to the
naming service:

// ScoreServer.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class ScoreServer {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 rootpoa.the_POAManager().activate();
 ScoreNotifier cal = new ScoreNotifier();
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 NameComponent path[] = ncRef.to_name("ScoreNotifier");
 ncRef.rebind(path, rootpoa.servant_to_reference(cal));
 System.out.println("ScoreServer ready and waiting ...");
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The client, on the other hand, gets a reference to the ScoreNotifier object from the name
service, creates a ScoreListener object, gets it’s IOR and passes it to the notifier using in its
register() method. Remember that the register() method stores this IOR in a Hashtable and
is used subsequently to send a score created artificially. The source code (ScoreClient.java) is
shown below:

import Callback.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class ScoreClient {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 Notifier n = NotifierHelper.narrow(ncRef.resolve_str("ScoreNotifier"));
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 rootpoa.the_POAManager().activate();
 ScoreListener sl = new ScoreListener();
 Listener ref = ListenerHelper.narrow(rootpoa.servant_to_reference(sl));
 n.register(ref);
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile and run the application as before. A sample result is shown in Figure 27.3:

JAVA AND CORBA 787

(i)

(ii)

Figure 27.3: CORBA Callback mechanism (i) Server (ii) Client

27.13	 USING DYNAMIC INVOCATION INTERFACE (DII)
In our previous examples, for method invocation, client makes use of stub, helper classes, etc.,

which are generated from the given IDL interface and idlj compiler. What happens if the IDL
interface is not available? Note that a reference to the remote object may be obtained by querying the
naming service. However, how do you invoke a method using this reference if interfaces to the object
is not known at compile time? Fortunately, CORBA specification defines an API, called Dynamic
Invocation Interface (DII) for this purpose.

To make use of DII, the following steps are required:

•	 Obtain an IOR to the object
•	 Create a Request object from this IOR passing method name, parameters and result
•	 Invoke the request
•	 Retrieve the result (if any)

The primary classes to work with DII are as follows:
Request

This class is the heart of DII, which allows creation and invocation of requests dynamically. A
Request object basically contains method name (a String) together with list of arguments (a NVList
object) and an optional result from the method (a NamedValue object).

Any

An Any object may contain the Java equivalent of any IDL type and is used to specify an argument.
NamedValue
It, as its name implies, is an Any value tied with a name and is used to specify a named argument.
NVList

788 ADVANCED JAVA PROGRAMMING

A list of NamedValue arguments to be passed to a remote method request.
We have already seen how to get an IOR using different approaches. We assume that the following

statement gets an IOR of our remote calculator object:
org.omg.CORBA.Object ref = …

Once we get this reference (IOR), we can create and fire a method request to the object by building
a NVList object (holding parameter list), a NamedValue object (to hold the result) and then putting
all of these items to a Request object.

We first create and populate two Any objects for two integer arguments for our add() method:
Any arg1 = orb.create_any(), arg2 = orb.create_any();
int x =2, y = 3;
arg1.insert_long(x);
arg2.insert_long(y);

We then create a NVList to hold all arguments:
NVList argList = orb.create_list(2);

This list is populated by two named Anys as follows:
argList.add_value("a", arg1, org.omg.CORBA.ARG_IN.value);
argList.add_value("b", arg2, org.omg.CORBA.ARG_IN.value);

The add_value() method essentially creates a new NamedValue object initialized with the given
name, value, and flag, and adds it to the end of this NVList object. So, argList now contains NamedValue
objects for two arguments. We also create a NamedValue object to hold the return value:

Any ret = orb.create_any();
ret.type(orb.get_primitive_tc(TCKind.tk_long));
NamedValue resultVal = orb.create_named_value("result", ret,
org.omg.CORBA.ARG_OUT.value);

We then create a Request object using _create_request() method of org.omg.CORBA.Object class:
Request req = ref._create_request(null, "add", argList, resultVal);

The request is fired using invoke() method:
req.invoke();

Finally the result is extracted as follows:
int result = req.return_value().extract_long();

The entire piece of code (CalculatorClientDII.java) is given below:
//CalculatorClientDII.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class CalculatorClientDII {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 org.omg.CORBA.Object ref = ncRef.resolve_str("Calculator");

 Any arg1 = orb.create_any(), arg2 = orb.create_any();
 int x =2, y = 3;
 arg1.insert_long(x);
 arg2.insert_long(y);

 NVList argList = orb.create_list(2);
 argList.add_value("a", arg1, org.omg.CORBA.ARG_IN.value);
 argList.add_value("b", arg2, org.omg.CORBA.ARG_IN.value);

 Any ret = orb.create_any();
 ret.type(orb.get_primitive_tc(TCKind.tk_long));
 NamedValue resultVal = orb.create_named_value("result", ret,
org.omg.CORBA.ARG_OUT.value);

 Request req = ref._create_request(null, "add", argList, resultVal);
 req.invoke();

 int result = req.return_value().extract_long();

 System.out.println("Sent :" + x + " and " + y);
 System.out.println("Received : " + result);

 } catch (Exception e) {e.printStackTrace();}
 }
}

JAVA AND CORBA 789

//CalculatorClientDII.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class CalculatorClientDII {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 org.omg.CORBA.Object ref = ncRef.resolve_str("Calculator");

 Any arg1 = orb.create_any(), arg2 = orb.create_any();
 int x =2, y = 3;
 arg1.insert_long(x);
 arg2.insert_long(y);

 NVList argList = orb.create_list(2);
 argList.add_value("a", arg1, org.omg.CORBA.ARG_IN.value);
 argList.add_value("b", arg2, org.omg.CORBA.ARG_IN.value);

 Any ret = orb.create_any();
 ret.type(orb.get_primitive_tc(TCKind.tk_long));
 NamedValue resultVal = orb.create_named_value("result", ret,
org.omg.CORBA.ARG_OUT.value);

 Request req = ref._create_request(null, "add", argList, resultVal);
 req.invoke();

 int result = req.return_value().extract_long();

 System.out.println("Sent :" + x + " and " + y);
 System.out.println("Received : " + result);

 } catch (Exception e) {e.printStackTrace();}
 }
}

http://docstore.mik.ua/orelly/java-ent/jenut/ch04_05.htm

27.14	 USING DYNAMIC SKELETON INTERFACE (DSI)
The Dynamic Skeleton Interface (DSI) is the server-side counterpart of the DII. It allows us to

write servants that accept method invocation request even when an IDL interface is not known at
compile time and without creating skeleton class. The servant merely defines a method invoke()
which is called by the ORB providing necessary information (method name, types and values of
parameters, result, etc.) encapsulated as a ServerRequest object. This invoke() method acts as a
representative of methods being invoked. This method then performs the task being requested by the
client, and constructs and returns the result.

27.14.1	 Basic Steps
The following are the basic steps to be followed to write a server that uses DSI concept:

•	 Write a servant class extending org.omg.CORBA.DynamicImplementation

•	 Implement the invoke() method (that takes a ServerRequest parameter representing a request from
client) as follows:

°    Extract method name using op_name()

°    Create an NVList to hold method parameters.

°    Populate this list by passing it to arguments() method

°    Extract the parameter values from populated NVList.

°    Perform the operation, assign new values to out and inout parameters in the NVList as appropriate.

°    Create an Any holding result (if any)

°    Pass this Any to set_result() or set_except(), as appropriate.

•	 Implement the ids() method returning an array of repository IDs of the interfaces implemented by this servant.

•	 Create an instance of the DSI servant and register it with the ORB using connect() method of org.omg.
CORBA.ORB.

27.14.2	 An Example
We write a servant for our calculator application that uses DSI extending org.omg.CORBA.

DynamicImplementation as follows:
class SimpleCalculatorDSI extends DynamicImplementation {
//…
 public void invoke(ServerRequest request) {/*…*/}
 public String[] _ids() {/*…*/}
}

790 ADVANCED JAVA PROGRAMMING

This class implements two methods invoke() and _ids(). This invoke method is called by
the underlying ORB when a request from a client comes to it. ORB places all method invocation
information in a ServerRequest object and passes it to the invoke() method. Inside this method,
we first extract the name of the method specified by the client:

String methodName = request.op_name();

A DSI servant may want to provide the functionality of many methods. An ‘if ’ statement is
inserted for each such method. For our add() method of calculator, the following is used:

if (methodName.equals("add") == true) {
 //…
}

In this if block, we write the functionality of add() method. We know that add() method takes
two parameters and returns the sum of these two parameters. So, the client has certainly specified
two arguments which are encapsulated in the request object. To hold these two parameters, we
create an NVList as follows:

NVList nvlist = orb.create_list(2);

The list is populated with two Anys where actually the parameters are stored as follows:
Any any1 = orb.create_any(), any2 = orb.create_any();
any1.type(orb.get_primitive_tc(TCKind.tk_long));
any2.type(orb.get_primitive_tc(TCKind.tk_long));
nvlist.add_value("arg1", any1, ARG_IN.value);
nvlist.add_value("arg2", any2, ARG_IN.value);

Specifying the type of each Any is necessary so that they can hold parameter value properly.
The parameter values encapsulated in request object is then transferred to the NVList as follows:

request.arguments(nvlist);

We then extract those parameter values, add them and put it in result.
int a = nvlist.item(0).value().extract_long();
int b = nvlist.item(1).value().extract_long();
int result = a + b;

The result is placed in another Any:
Any result_any = orb.create_any();
result_any.insert_long(result);

Finally, the result is sent back to the client.
request.result(result_any);

Inside _ids() method, we simply return the repository ID of our calculator interface:
static String[] id = {"IDL:CalculatorApp/Calculator:1.0"};
public String[] _ids() { return id; }

The complete source code (SimpleCalculatorDSI.java) is shown below:
import org.omg.CORBA.*;
class SimpleCalculatorDSI extends DynamicImplementation {
 static String[] id = {"IDL:CalculatorApp/Calculator:1.0"};
 ORB orb;
 SimpleCalculatorDSI(ORB orb) { this.orb = orb; }
 public void invoke(ServerRequest request) {
 try {
 String methodName = request.op_name();
 if (methodName.equals("add") == true) {
 NVList nvlist = orb.create_list(2);
 Any any1 = orb.create_any(), any2 = orb.create_any();
 any1.type(orb.get_primitive_tc(TCKind.tk_long));
 any2.type(orb.get_primitive_tc(TCKind.tk_long));
 nvlist.add_value("arg1", any1, ARG_IN.value);
 nvlist.add_value("arg2", any2, ARG_IN.value);
 request.arguments(nvlist);
 int a = nvlist.item(0).value().extract_long();
 int b = nvlist.item(1).value().extract_long();
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);

 Any result_any = orb.create_any();
 result_any.insert_long(result);
 request.result(result_any);
 }
 }
 catch (Exception ex) {ex.printStackTrace();}
 }
 public String[] _ids() { return id; }
}

JAVA AND CORBA 791

import org.omg.CORBA.*;
class SimpleCalculatorDSI extends DynamicImplementation {
 static String[] id = {"IDL:CalculatorApp/Calculator:1.0"};
 ORB orb;
 SimpleCalculatorDSI(ORB orb) { this.orb = orb; }
 public void invoke(ServerRequest request) {
 try {
 String methodName = request.op_name();
 if (methodName.equals("add") == true) {
 NVList nvlist = orb.create_list(2);
 Any any1 = orb.create_any(), any2 = orb.create_any();
 any1.type(orb.get_primitive_tc(TCKind.tk_long));
 any2.type(orb.get_primitive_tc(TCKind.tk_long));
 nvlist.add_value("arg1", any1, ARG_IN.value);
 nvlist.add_value("arg2", any2, ARG_IN.value);
 request.arguments(nvlist);
 int a = nvlist.item(0).value().extract_long();
 int b = nvlist.item(1).value().extract_long();
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);

 Any result_any = orb.create_any();
 result_any.insert_long(result);
 request.result(result_any);
 }
 }
 catch (Exception ex) {ex.printStackTrace();}
 }
 public String[] _ids() { return id; }
}

We then create an instance of this dynamic servant:
SimpleCalculatorDSI cal = new SimpleCalculatorDSI(orb);

It is necessary to register this object to the ORB, so that it can forward (can call its invoke()
method) client request to it.

orb.connect(cal);

The IOR of this servant is registered with the naming server using a procedure used earlier. The
complete source code of the server is shown below:

// CalculatorServerDSI.java
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class CalculatorServerDSI {
 public static void main(String args[]) {
 try{
 ORB orb = ORB.init(args, null);
 SimpleCalculatorDSI cal = new SimpleCalculatorDSI(orb);
 orb.connect(cal);
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 NameComponent path[] = ncRef.to_name("Calculator");
 ncRef.rebind(path, cal);
 System.out.println("Calculator Server ready...");
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile and run the application as before. This dynamic server works exactly like a normal server.
Clients are completely unaware of the fact that a dynamic servant is being used at the server end.

27.15	 USING OUT AND INOUT PARAMETER
So far we have used in CORBA parameters, which is passed into the operation from the caller.

A in CORBA parameter is translated into normal Java parameter. However, a true local copy of the
actual argument passed by the caller is created at the receiver’s end. So, any modification on the local
copy has no effect on the actual argument.

CORBA supports two more types of parameter passing out and inout. An out parameter is one
which is passed out of the method to the caller, but no value is passed in. An inout parameter, as its

792 ADVANCED JAVA PROGRAMMING

name implies, is a combination of in and out, where the parameter is passed into the operation and
returned to the caller.

However, there is no standard mechanism available in Java for these two parameters. So, these
concepts are simulated with the help of some classes called holder classes. These classes are available
for all of the basic IDL datatypes in the org.omg.CORBA package and are generated for all named
user-defined types, except those defined by typedefs. The holder classes provide a level of indirection
and are passed instead of the actual type.

A client creates an instance of the respective holder class for each out and inout parameter. This
instance holds some content in its public member value and is passed to the method. The server may
then set or modify the content of the holder object. The client gets the modified content and processes
further. Since, the encapsulated actual object is modified without affecting the holder object itself,
the semantics of out and inout parameters are supported.

Holder classes for basic IDL types are available in the package org.omg.CORBA. The holder class
name is of the form [type]Holder, where [type] is the name of the mapped Java type, with the first
letter capitalized. For example, for IDL type long (corresponding Java type is int), the name of the
Java holder class is IntHolder.

Each holder class has a default constructor, a one argument constructor and has a public instance
member value, which holds the content. The default constructor sets the value field to the default
value for the type as defined by the Java language: false for boolean, 0 for numeric and char types,
null for strings, null for object references. The source code of IntHolder looks like this:

package org.omg.CORBA;
/*…*/
public final class IntHolder implements Streamable {
 public int value;
 public IntHolder() { }
 public IntHolder(int initial) { value = initial; }
 /*…*/
}

27.15.1	 Invoking Operation Using Holder Classes
The following are the basic steps to follow to pass inout and out parameters using holder classes:

•	 For each IDL out or inout parameter, the client creates an instance of the appropriate holder class
•	 The contents of the holder instance are set or modified by the receiver, and the client then uses the modified

contents after the call returns.
•	 For the inout parameter, the client must provide a valid content. The method typically uses this content and changes

the value if it wishes. The final content is returned to the client at the end of the operation.
•	 For the out parameter, the client does not initialize the holder with a content. The operation should not use the

initial value in the holder and must supply a valid value to be returned to the client.

27.15.2	 An Example
Consider the following IDL definition:
interface Service {
 void replace(inout string s, in char c, out long times);
};

The replace() operation replaces all space characters in the string s by the specified character
c and returns the number of times the replacement occurred. The first parameter comes in from the
caller and the modified string goes out to the caller. Hence it is declared as inout. The second one
comes from the caller but is not returned back. Accordingly, it is declared as in. The last one is only

JAVA AND CORBA 793

used to send a value back to the caller, hence is declared as out. The idlj compiler maps this operation
to a Java method as follows:

void replace (org.omg.CORBA.StringHolder s, char c, org.omg.CORBA.IntHolder

times);

A client application can be coded as follows:
//Get a reference to the remote CORBA object
Service s = …
StringHolder str = new StringHolder("CORBA parameter passing example");
char c = '_';
IntHolder times = new IntHolder();
System.out.println("Before call: "+str.value+" "+c+" "+times.value);
s.replace(str, c, times);
System.out.println("After call: "+str.value+" "+c+" "+times.value);

The implementation of replace() method looks like this:
 public void replace (org.omg.CORBA.StringHolder s, char c,
org.omg.CORBA.IntHolder times) {
 String temp = s.value;
 times.value = temp.length() - temp.replace(" ", "").length();
 s.value = s.value.replace(' ', c);
 }

A sample output of the client program is shown below:
Before call: CORBA parameter passing example _ 0
After call: CORBA_parameter_passing_example _ 3

27.16	 RMI-IIOP
RMI applications typically use Java Remote Method Protocol (JRMP) for underlying

communication. However, they can also use the CORBA’s IIOP as the communication protocol.
This solution is known as RMI-IIOP, which combines the best features of RMI with the best features
of CORBA.

RMI-IIOP utilizes the Java CORBA Object Request Broker (ORB). So, developers can work
completely in the Java programming language. So, there is no separate IDL or mapping to learn.
The rmic compiler may be used to generate the necessary code for connecting Java applications to
others via IIOP. To work with CORBA applications in other languages, IDL may be generated using
the rmic compiler with the -idl option. To generate IIOP stubs and tie classes, we use the rmic
compiler with the -iiop option.

Note that RMI-IIOP provides interoperability with other CORBA objects implemented in
different languages, provided that all the remote interfaces are originally defined as Java RMI
interfaces.

27.16.1	 An Example
In this section, we shall redevelop our calculator application where a client application invokes

a method on a remote server object via IIOP.

27.16.1.1   Writing an interface
We use the same Calculator RMI interface used in Chapter 14.
import java.rmi.Remote;
public interface Calculator extends java.rmi.Remote {
 int add (int a, int b) throws java.rmi.RemoteException;
}

794 ADVANCED JAVA PROGRAMMING

27.16.1.2   Implementing the interface
Since, object will be accessed via IIOP, its class extends javax.rmi.PortableRemoteObject. A

sample implementation class (SimpleCalculator.java) is shown below:
// SimpleCalculator.java
import javax.rmi.PortableRemoteObject;
class SimpleCalculator extends PortableRemoteObject implements Calculator {
 public SimpleCalculator() throws java.rmi.RemoteException {}
 public int add(int a, int b) throws java.rmi.RemoteException {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

Since, super class’s constructor might fail to construct the object, defining a constructor that
throws a RemoteException is necessary, even if it does nothing.

27.16.1.3   Writing the server
In the server, we create an instance of this SimpleCalculator and bind it to the CORBA’s naming

service (orbd) via JNDI. The following is the source code of the server (CalculatorServerJNDI.java):
// CalculatorServerJNDI.java
import javax.naming.*;
public class CalculatorServerJNDI {
 public static void main(String args[]) {
 try {
 SimpleCalculator calc = new SimpleCalculator();
 Context ic = new InitialContext();
 ic.rebind("Calculator", calc);
 System.out.println("Calculator Server ready...");
 } catch (Exception e) { e.printStackTrace();}
 }
}

27.16.1.4   Writing the Client
Writing the client is very simple. It gets a reference from the CORBA naming service via JNDI and

invokes the add() method. The following is the source code of the client (CalculatorClientJNDI.java):
//CalculatorClientJNDI.java
import javax.naming.*;
public class CalculatorClientJNDI {
 public static void main(String args[]) {
 try {
 Context ic = new InitialContext();
 Calculator calc = (Calculator)ic.lookup("Calculator");
 int x =2, y = 3;
 System.out.println("Sent :" + x + " and " + y);
 int result = calc.add(x, y);
 System.out.println("Received : " + result);
 } catch(Exception e) {e.printStackTrace();}
 }
}

27.16.1.5   Compiling server files
The server side of the application should have the files Calculator.java, SimpleCalculator.

java and CalculatorServerJNDI.java. Compile the implementation class first using the following
command:

javac SimpleCalculator.java

JAVA AND CORBA 795

To create CORBA-compliant stub and skeleton files, use rmic compiler with the -iiop option:
rmic -iiop SimpleCalculator

This generates the client stub Calculator_Stub.class and server skeleton _SimpleCalculator_
Tie.class. Now, compile server source files as follows:

javac Calculator.java CalculatorServerJNDI.java

27.16.1.6   Compiling Client Files
The client side should have files Calculator.java, and CalculatorClientJNDI.java. Compile

the interface file Calculator.java using the following command:
javac Calculator.java

To create CORBA-compliant stub, use the following file:
rmic -iiop Calculator

Now, compile the client file:
javac CalculatorClientJNDI.java

27.16.1.7   Running the Application
Start orbd in a host having IP address say 172.16.4.248 on port 6789 as follows:
orbd –ORBInitialPort 6789

Start the server as follows:
java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory -
Djava.naming.provider.url=iiop://172.16.4.248:6789 CalculatorServerJNDI

Start the client as follows:
java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory -
Djava.naming.provider.url=iiop://172.16.4.248:6789 CalculatorClientJNDI

27.17	 IDL TO JAVA LANGUAGE MAPPING
Java 2 SDK 5.0 and onwards includes idlj compiler that translates an IDL file to Java interface.

A summary of IDL to Java mapping is shown in Table 27.1:

Table 27.1: IDL to Java mapping

IDL Type Java Type

char, wchar char

octet byte

short, unsigned short short

long, unsigned long int

long long, unsigned long long long

float float

double double

fixed java.math.BigDecimal

string, wstring java.lang.String

boolean boolean

enum, struct, union class

sequence, array array

(Contd)

796 ADVANCED JAVA PROGRAMMING

Table 27.1: (Contd)

module package

interface (non-abstract) signature interface and an operations interface,
helper class, holder class

interface (abstract) signature interface, helper class, holder class

constant (not within an interface) public interface

constant (within an interface) fields in the Java signature interface for non-abstract,
or the sole Java interface for abstract

exception class

Any org.omg.CORBA.Any

type declarations nested within interfaces "scoped" package

typedef helper classes

pseudo objects pseudo interface

readonly attribute accessor method

readwrite attribute accessor and modifer methods

operation method

KEYWORDS
CORBA—A standard defined by the OMG to facilitate
the communication of systems that are deployed on
diverse platforms

Dynamic Invocation Interface (DII)—An API that
allows applications to invoke operations on CORBA
objects about which they have no prior information

Dynamic Skeleton Interface (DSI)—An API that
enables ORB to deliver method invocation requests to
an object implementation when the type of the object
implementation is not known at compile time

idlj compiler—A compiler to translate IDL interface
definitions to the corresponding Java interfaces,
classes, and methods, which can be used to implement
client and server code

Initial naming context—A NamingContext object that
refers to the root of the COS Naming Service and can
be used to create other descendant NamingContext
objects

Interface Definition Language (IDL)—A language
standardized by OMG for defining the interfaces for
all CORBA objects

Internet InterORB Protocol (IIOP)—A TCP/IP based
network protocol specified by OMG for inter-ORB
communication

Java IDL—A Java API consisting of classes, libraries,
and tools that makes CORBA programming possible

Name binding—Assigning a name to an object so that
it can be referred to by the name

Naming context—A node in the tree, similar to
directory tree, used by COS naming service

Naming service—A CORBA service that enables to
name CORBA objects via binding a name to an object
reference

Object Management Group (OMG)—A consortium of
over 700 members worldwide that establishes industry
guidelines and object management specifications
in order to provide a common framework for object-
oriented application development

Object reference—A CORBA object equivalent to
programming language-specific object pointers

Object Request Broker (ORB)—A library to provide
CORBA features

Object Request Broker Daemon (ORBD)—A Java
tool consisting of a Bootstrap Service, a Transient
Naming Service, a Persistent Naming Service, and a
Server Manager

Persistent object—An object that can survive beyond
the process or thread that created it and until it is
explicitly deleted

Portable Object Adapter (POA)—A mechanism that
connects a method invocation request using an object
reference to the proper servant to serve the request

JAVA AND CORBA 797

POA Manager—An object that encapsulates the
processing state of its associated one or more POAs

Policy—An object to specify the characteristics of a
POA

RMI-IIOP—A Java API that allows to develop RMI
applications that communicate via IIOP

Servant—A concrete object or entity that serves
method invocation requests

servertool—A Java IDL tool that provides the ease-
of-use facilities to programmers to register, unregister,
startup, and shutdown a server application

Skeleton—The object-interface-specific ORB com
ponent which assists an object adapter in passing
requests to particular methods

Static invocation—A mechanism for method
invocation on an object when the interface of the object
is known at compile time

Stringified object reference—A string obtained
from an object reference so that it may be stored on
persistent storage or transferred somewhere else

Stub—A local object corresponding to a remote
object that forwards method invocation request to
the object

tnameserv—A Transient Naming Service provided
by Java IDL API

Transient object—An object whose existence is
limited by the lifetime of the process or thread that
created it

SUMMARY
CORBA (Common Object Request Broker Architecture)
is a specification that describes how heterogeneous
objects can interoperate. The OMA defines four major
parts a CORBA-compliant system should have: An
Object Request Broker (ORB), CORBAServices,
CORBAFacilities and Business Objects.

A key feature of CORBA is IDL, a language-neutral
Interface Definition Language. Interfaces to CORBA
objects are written using IDL. This allows CORBA
application developers to describe the service structure
of an object without any language-specific syntax.
IDL interfaces are converted to or obtained from the
language specific code using tools provided by the
CORBA S/W provider. For example, Java provides a
compiler idlj for this purpose.

Java SDK provides an API (popularly known as Java-
IDL) to support CORBA specification. This means
Java-IDL enabled applications can interact with other
applications that also support CORBA. The basic steps
used to develop CORBA applications are: writing an
interface using IDL, mapping IDL interface to Java,
implementing the interface, writing the server and
writing the client.

Java is shipped with two applications tnameserv, a
transient naming service, and orbd, which is a daemon
process containing a Bootstrap Service, a Transient
Naming Service, a Persistent Naming Service, and
a Server Manager. We used orbd in our examples.

CORBA objects can also be identified using URLs.

They have two variations known as corbaname and
corbaloc. There are two models to implement a servant
in CORBA: inheritance model and tie model. Tie model
is useful if a servant has to extend a class.

The objects that the server hosted so far are called
transient objects as they cannot live beyond the server
process. CORBA specified another type of objects,
called persistent objects that can live beyond the
process that created it.

CORBA specification defines an API, called Dynamic
Invocation Interface (DII) for various purposes such
as obtaining an IOR to the object, creating a Request
object from this IOR passing method name, parameters
and result, invoking the request, retrieving the result
(if any). The Dynamic Skeleton Interface (DSI) is the
server-side counterpart of the DII. It allows us to write
servants that accept method invocation request even
when an IDL interface is not known at compile time
and without creating skeleton class.

In addition to in parameter, CORBA supports two
more types of parameter passing out and inout.
Since, there is no standard mechanism available in
Java for these two parameters, these concepts are
simulated with the help of some classes called holder
classes.

RMI applications can also use the CORBA’s IIOP as
the communication protocol. This solution is known as
RMI-IIOP, which combines the best features of RMI
with the best features of CORBA.

798 ADVANCED JAVA PROGRAMMING

WEB RESOURCES
http://docs.oracle.com/javase/7/docs/

technotes/guides/idl/jidlExample.html
Java IDL: The “Hello World” Example

http://docs.oracle.com/javase/7/docs/

technotes/guides/idl/GShome.html
Getting Started with Java IDL

http://www.javaworld.com/article/2077037/

soa/corba-meets-java.html
CORBA meets Java

http://www.omg.org/
Object Management Group

http://www.javacoffeebreak.com/articles/

javaidl/javaidl.html
Java and CORBA - a smooth blend

www.unf.edu/~sahuja/cis6302/corbaexample.

doc
CORBA Example

http://paginas.fe.up.pt/~nflores/

dokuwiki/lib/exe/fetch.

php?media=teaching:0809:java_20tutorial_

20and_20guide.pdf
Java IDL tutorial and Guide

EXERCISES
Objective-type Questions

	 1.	 What is the full form of CORBA?
	 (a)	 Client Object Request Broker Architecture
	 (b)	 Common Object Request Broker

Architecture
	 (c)	 Common Object Response Broker

Architecture
	 (d)	 Common Object Request Basic Architecture

	 2.	 What is the full form of IDL?
	 (a)	 Interface Dynamic Language
	 (b)	 Intermediate Definition Language
	 (c)	 Interface Declaration Language
	 (d)	 Interface Definition Language

	 3.	 What is the full form of IOR?
	 (a)	 International Object Reference
	 (b)	 Inter-operable Open Reference
	 (c)	 Inter-operable Object Reference
	 (d)	 International Open Reference

	 4.	 Which of the following is language independent?
	 (a)	 RMI	 (c)	 Servlet
	 (b)	 Applet	 (d)	 CORBA

	 5.	 Which of the following is used in Java programming
for objects interacting on different platforms across
a network?

	 (a)	 Java IDL
	 (b)	 Java Reflection
	 (c)	 Java Generic programming
	 (d)	 Java ORB

	 6.	 OMG stands for
	 (a)	 Open Management Group
	 (b)	 Object Manager Group
	 (c)	 Object Manager General
	 (d)	 Object Management Group

	 7.	 ORB stands for
	 (a)	 Open Request Book
	 (b)	 Object Request Broker
	 (c)	 Object Response Broker
	 (d)	 Open Response Book

	 8.	 Which of the following is not a part of CORBA core
architecture?

	 (a)	 ORB
	 (b)	 CORBAFacilities
	 (c)	 CORBAServices
	 (d)	 GUI

	 9.	 The name of IDL compiler in Java is
	 (a)	 idlc	 (c)	 jidlc
	 (b)	 idlj	 (d)	 jidlj

	10.	 Which of the following is not a task of ORB?
	 (a)	 Register and look up objects
	 (b)	 Marshal and un-marshal parameters from

one programming language to another
language

	 (c)	 Contact database server
	 (d)	 Publish and retrieve metadata on objects

on the local system for another ORB

JAVA AND CORBA 799

	11.	 IIOP stands for
	 (a)	 Internet Inter-ORB Policy
	 (b)	 Internet Inter-ORB Protocol
	 (c)	 International Inter-ORB Protocol
	 (d)	 International Inter-ORB Policy

	12.	 Which of the CORBA parameter passing
mechanism does Java support?

	 (a)	 in	 (c)	 inout
	 (b)	 out	 (d)	 All of the above

	13.	 POA stands for
	 (a)	 Pure Object Adapter
	 (b)	 Portable Open Adapter
	 (c)	 Portable Object Adapter
	 (d)	 Portable Object Anomaly

	14.	 Which of the following methods is used to initialize
an ORB?

	 (a)	 initialize()	 (c)	 getORB()
	 (b)	 init()	 (d)	 openORB()

	15.	 Which of the following methods is used to bind an
object?

	 (a)	 upload()	 (c)	 put()
	 (b)	 register()	 (d)	 bind()

	16.	 Which of the following methods is used for
typecasting in CORBA?

	 (a)	 typeCast()	 (c)	 narrow()
	 (b)	 convert()	 (d)	 change()

	17.	 Which of the following is CORBA name server?
	 (a)	 nameserver	 (c)	 nameserv
	 (b)	 orbd	 (d)	 namingServer

	18.	 Which of the following Java properties is used to
specify the IP address of the host where CORBA
naming service is running?

	 (a)	 org.omg.CORBA.ORBInitialHost
	 (b)	 org.omg.CORBA.Host
	 (c)	 org.omg.CORBA.InitialHost
	 (d)	 org.omg.CORBA.ORBHost

	19.	 A CORBA URL starts with
	 (a)	 corbaloc	 (c)	 Both a) and b)
	 (b)	 corbaname	 (d)	 None of the above

	20.	 Which of the following is a servant implementation
model?

	 (a)	 tie model
	 (b)	 inheritance model
	 (c)	 Both a) and b)
	 (d)	 None of the above

	21.	 Which of the following types of object does
CORBA support?

	 (a)	 Transient objects
	 (b)	 Persistent objects
	 (c)	 Both a) and b)
	 (d)	 None of the above

	22.	 Which of the following classes is used for
typecasting?

	 (a)	 Holder class	 (c)	 Stub
	 (b)	 Helper class	 (d)	 Skeleton

	23.	 What is the default port used by orbd?
	 (a)	 800	 (c)	 1099
	 (b)	 900	 (d)	 8080

	24.	 DII stands for
	 (a)	 Dynamic Invocation Implementation
	 (b)	 Dynamic Invocation Interface
	 (c)	 Dual Invocation Interface
	 (d)	 Dual Internal Interface

	25.	 DSI stands for
	 (a)	 Dual Skeleton Interface
	 (b)	 Dynamic Server Interface
	 (c)	 Dynamic Server Implementation
	 (d)	 Dynamic Skeleton Interface

	26.	 Which of the following protocols is used between
two ORBs?

	 (a)	 HTTP	 (c)	 SSL
	 (b)	 JRMP	 (d)	 IIOP

	27.	 A module in IDL corresponds to Java
	 (a)	 interface	 (c)	 class
	 (b)	 package	 (d)	 method

	28.	 Which of the following classes represents an
Object Request Broker?

	 (a)	 Broker	 (c)	 ObjectRequestBroker
	 (b)	 ORB	 (d)	 ObjReqBroker

	29.	 Which of the following methods is used to get a
reference to the root POA?

	 (a)	 resolve()
	 (b)	 getReference()
	 (c)	 resolveReference()
	 (d)	 resolve_initial_references()

	30.	 Which of the following methods is used to convert
a servant to a CORBA IOR?

	 (a)	 servant2reference()
	 (b)	 servant_to_reference()
	 (c)	 servant_to_IOR()
	 (d)	 servant2CORBA()

800 ADVANCED JAVA PROGRAMMING

Subjective-type Questions

	 1.	 What is the purpose of CORBA?

	 2.	 Write the functions of different components of
CORBA architecture.

	 3.	 Illustrate the steps required to develop a simple
client–server application using CORBA.

	 4.	 What is Dynamic Invocation Interface (DII)?

	 5.	 What is Dynamic Skeleton Interface (DSI)?

	 6.	 Illustrate the steps required to develop a simple
CORBA client using DII.

	 7.	 Describe the steps required to develop a simple
CORBA server using DSI.

	 8.	 What are holder and helper classes? What are
their usefulness?

	 9.	 What is a servant?

	10.	 Write the functionality of POA.

	11.	 What is initial naming context?

	12.	 What is the function of Object Request Broker
(ORB)?

	13.	 What is the purpose of Interface Definition
Language (IDL)?

	14.	 What do you mean by activating a POA?

	15.	 What do you mean by Inter-Operable Object
Reference?

	16.	 What is the function of an object adapter?

	17.	 What is the difference between transient objects
and persistent objects?

	18.	 How will you make an object persistent?

	19.	 What do you mean by callback? How will you
implement callback mechanism in CORBA?

	20.	 Write the basic steps required to develop an RMI-
IIOP-based application.

CHAPTER – 28

Java Server Faces

Key Objectives

After completing this chapter readers will be able to—
•  get an idea about Java Server Faces technology
•  understand the advantages of JSF technology over other similar technologies
•  get an idea about the basic execution philosophy of JSF life-cycle
•  understand how to write, deploy, and invoke JSF pages
•  learn how to install and configure JSF with Tomcat
•  learn how to use important concepts such as converters, validators, tracking, etc.

28.1	 INTRODUCTION
Java Server Faces (JSF) is a Java-based framework for creating web-based user interfaces.

It combines the power of Struts and Swing and follows Model-View-Controller (MVC) architecture
which is considered to be the best for web frameworks. In an MVC framework, the controller decides
which view to show next for a user request. JSF provides a powerful controller servlet for managing
the life cycle of web-applications as well as provides a rich component model complete with event
handling and component rendering. JSF uses lightweight POJO approach and is hence well-designed
and easy-to-use, clean and simple. In a nutshell, using JSF has the following benefits:

•	 Allows us to create user interfaces using a set of standard, reusable server-side components accessible through tags
•	 It saves state information of forms components transparently and repopulates forms when they are re-displayed
•	 Allows us to create custom components
•	 Encapsulates event handling and component rendering

In this chapter we shall discuss primary concepts with extensive examples starting with a simple
example JSF application.

802 ADVANCED JAVA PROGRAMMING

28.2	 FIRST APPLICATION
It is good to understand a technology with an application. In our first application, we shall develop

a simple JSF application having a page that displays a message “Hello world”. In practice, a JSF
application typically consists of several pages often backed by Java beans. This application merely
helps us in understanding the philosophy of a JSF application.

28.2.1	 Installing JSF
We shall set up a basic environment that will facilitate the development, deploy and testing of JSF

applications. Professionals often use IDE such as NetBeans, Eclipse, Rational Application Developer
etc. However, it is important to know what and how things happen behind the scene to get out of
situations if anything goes wrong. Our environment requires

•	 Java Development Kid (JDK), version 1.5 or higher installed,
•	 a web server (Tomcat 8) and
•	 the Mojarra JSF libraries from Oracle.
•	 A text editor notepad or wordpad
•	 The command prompt to compile Java programs.
•	 A web browser to test your JSF applications

Truly speaking, JSF is just a specification. To develop JSF-based web applications, we
must obtain and install a reference implementation of this specification. There are many such
implementations and any one can be used. The obvious choice is the JSF reference implementation
by Oracle. It was developed by the well-known Mojarra project and is freely downloadable from
https://javaserverfaces.java.net/. This link will guide you to a download page with many
download options. The entire library is now included in a single JAR file. Download the most recent
version of the JAR file. We downloaded the version javax.faces-2.2.8-04.jar. (Release on Dec
09 2014) from https://maven.java.net/content/repositories/releases/org/glassfish/
javax.faces/2.2.8-04/.

There are many ways to make this library available to web applications running under Tomcat. One
way to make it available to a specific application is to place this JAR file into the web application’s
WEB-INF\lib directory. Note that in this case, only this specific web application will have access to
that library. If another application needs access to this library, put the JAR file in its own WEB-INF\lib
directory. Alternatively, we can put the JAR files into a common location so that all web applications
can access it. For Tomcat, this location is <TOMCAT_HOME>\lib. In this case, all applications running
under Tomcat will have access to library. Sometimes, Tomcat requires it to be restarted so that it can
load the new JAR files. We put it in our application’s directory. WEB-INF\lib

JSF applications are simply standard web applications. So, every JSF application has an application
root. Create a directory somewhere in your file system. We created a directory jsf under E:\ajp. So
E:\ajp\jsf (hereafter referred to as JSF_HOME) will act as the root of our JSF application. Every web
application root should have a structure. So, we create the following directory structure.

JAVA SERVER FACES 803

The Java code that gets compiled and distributed with your JSF application will go in a classes\
directory. Although, we shall not use any Java code in our first example, it’s worthwhile creating
this folder for further examples.

The lib\ folder contains resources (such as JAR, xml files) that a web application might need at
runtime. Our JSF application needs the JSF library file javax.faces-2.2.8-04.jar, which is not a
part of Tomcat. So we put it in lib/ folder.

Every Java-based web application must have a special XML file known as a deployment descriptor,
whose name is always web.xml and resides in the WEB-INF\ folder. This extremely important file
provides information to the servlet engine such as Tomcat about how to configure the environment
in which the application will run.

JSF is not a part of servlet and JSP specification, a servlet engine like Tomcat cannot handle
JSF requests. So, let us first understand how to make an ordinary servlet engine JSF-compliant.
Since, Tomcat itself cannot handle JSF centric requests, it only identifies JSF requests (having a
specific pattern) and routes them to a special servlet capable of handling them. So, we must tell the
Tomcat which requests are JSF requests and who it should route them to. To distinguish JSF requests
from others, a common extension is used rather than having extensions such as .jsp file or. html.
JSF 2.0 favors the use of extension .xhtml for JSF files and we also use it. The servlet class that
understands JSF requests is javax.faces.webapp.FacesServlet which is incorporated in javax.
faces-2.2.8-04.jar.

The entire information is supplied to the Tomcat using application’s web.xml file by adding the
following lines between, <web-app> and </web-app> tags.

<web-app
...
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>

</servlet-mapping>

</web-app>

Note that value of <servlet-name> tag in the <servlet> and <servlet-mapping> must match.
The above codes essentially tell servlet engine that any request that comes in with an extension
.xhtml should be forwarded to the “Faces Servlet”, which is implemented through the Java class
named javax.faces.webapp.FacesServlet. The class file is included in javax.faces-2.2.8-04.jar
file placed in application’s lib/ directory.

28.2.2	 Writing a JSF Page
The basic configuration is over. It is time to write a simple JSF page. A JSF page, in addition to

the html tags, contains namespace qualified special tags, called JSF tags. For these tags we need to
use the following namespaces of URI in html node.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html" >

The following JSF page (HelloWorld.xhtml) contains only one JSF tag <h:outputText> that
renders a text specified in its value attribute.

804 ADVANCED JAVA PROGRAMMING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html" >
<head>

<title>Simple JSF page</title>
</head>
<body>

<h:outputText value="Hello World!" />
</body>

</html>

This is a very rudimentary JSF page that introduces a few important concepts and helps us to
verify that indeed, a basic JSF application is working in our local environment.

Create this file using a standard text editor, such as Microsoft’s Notepad, and save the file as
HelloWorld.xhtml in the application root folder, which for our case is jsf\. Note that the extension
to this file should be .xhtml. The application is now ready to deploy and test.

jsf/
├─HelloWorld.xhtml

├─ web.xml
├─lib/
│ └─javax.faces-2.2.8-04.jar
└─classes/

└─ukr/
└─HelloWorld.class

└─WEB-INF/

28.2.3	 Deploying the Application
The final directory structure is shown here. A summary of the entire directory structure is shown

in Table 28.1:

Table 28.1: Description of HelloWorld JSF application

Folder or file Explanation

jsf/ JSF-based web application root directory

HelloWorld.xhtml The web page to be used by the browser

WEB-INF/ This folder inside the jsf folder holds configuration files such as web.xml, faces-
config.xml etc. that are used by web server.

web.xml This file inside the WEB-INF folder is the Web Application Deployment
Descriptor for your application. This is an XML file describing the servlets and
other components that make up your application.

lib/ This folder inside the WEB-INF folder holds libraries required by our web
application, for example, javax.faces-2.2.8-04.jar file.

javax.faces-2.2.8-04.jar This file inside the lib folder is the JSF library file.

classes/ This folder inside the WEB-INF folder holds compiled Java classes.

There are many ways to deploy the application. One way to deploy is to place the entire jsf/
directory in the Tomcat’s webapps folder. We can also create a WAR (Web Application aRchive)
file and place it in the Tomcat’s webapps directory.

A WAR file has a standard format for distributing and deploying Java EE, web-based applications.
The jar utility that comes with the JDK can be used to create deployable WAR files.

JAVA SERVER FACES 805

To create a WAR file, open a terminal, go the jsf/ directory and use the following command:
jar cvf jsf.war *

We assume that the Java installation home directory is included in your PATH environment
variable. If everything goes fine, an output as shown will be generated:

added manifest
adding: HelloWorld.xhtml(in = 385) (out= 257)(deflated 33%)
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/lib/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/lib/javax.faces-2.2.8-04.jar(in = 2572391) (out=
2349858)(deflated 8%)
adding: WEB-INF/web.xml(in = 748) (out= 344)(deflated 54%)

The command creates a WAR file jsf.war which may be found in jsf\ directory. This jsf.war
file contains all the necessary files needed for the HelloWorld JSF application. Put it in the Tomcat’s
webapps directory. Don’t forget to restart the Tomcat server. If everything goes fine, a sample screen
will appear as follows. The message for our JSF application has been highlighted.

28.2.4	 Testing the Application
It is time to open up a web browser and navigate to our JSF application. Use the following URL

to open the JSF page:
http://127.0.0.1:8080/jsf/HelloWorld.xhtml

We are assuming that the Tomcat server is running on port 8080. See the conf\server.xml file
under Tomcat’s installation home directory to find the port it is running on. A sample screen shot is
shown below:

806 ADVANCED JAVA PROGRAMMING

28.3	 REQUEST PROCESSING LIFE-CYCLE
It is extremely important to JSF programmers to know how JSF requests are processed behind

the scenes. Each JSF request, from its submission to completion, known as life-cycle, is processed
by a series of phases, known as life-cycle phases [Figure 28.1:] named as follows:

•	 Restore View
•	 Apply Request Values
•	 Process Validations
•	 Update Model Values
•	 Invoke Application
•	 Render Response

During these phases, a JSF engine performs all necessary jobs such as

•	 Validates incoming data, converts them to server-side data types and generates error messages when they fail.
•	 Updates model objects with incoming data.
•	 Invokes server-side application to perform tasks further.
•	 Saves the request state to be provided to the subsequent requests.
•	 Generates a response back to the client, including the “follow-up” requests made by the browser for images,

scripts, and style sheets.

Restore
View

Process
Events

Apply Request
Values

Process
Validations

Update
Model Values

Invoke
Application

Render
Response

Process
Events

Process
Events

Process
Events

Response complete

Response completeResponse complete

Response complete

Validation/conversion errors

JSF
Request

JSF
Response

Normal flow Error

Conversion errors

Figure 28.1: JSF request processing life-cycle phases

The following sections give a short description of these phases.

28.3.1	 Restore View
When a JSF page is requested, usually by clicking a link or a button component, the request

processing life-cycle begins with this phase. Note that for each UI presented in a client, a tree of
UI components, called faces view is maintained in the server side. In fact the client UI is obtained
(rendered) from this view.

The task of this phase is to build a new empty view when a request is made for the first time. The
life-cycle then advances to the Render Response phase, during which the view is populated with
the components corresponding to elements in the page. For subsequent requests, it restores the view
(created previously for the first request).

The view also contains validators, converters, event handlers (if any), etc. The tree is saved to
be used by other phases in a FacesContext type container object which holds all the information

JAVA SERVER FACES 807

required to process current request. All the components, event handlers, converters and validators
have the access to this container to extract necessary information.

28.3.2	 Apply Request Values
This is the next phase in the request processing life-cycle and is executed only for a postback

request that refers to some previously requested page. A postback request is usually sent from an
already rendered JSF page by submitting a form containing some elements. In this phase, the individual
components of restored view tree is updated with the values of form elements. More specifically, the
processDecodes() method on all the components is called. The process of extracting name-value
pair and applying matching incoming value to the UI component is known as decoding.

Equivalently, the following happens for each UIInput component in the view tree:
input.setSubmittedValue(request.getParameter(input.getClientId()));

Here input is a UIInput type component and request is HttpServletRequest. Note that new
values are applied to those components that are capable of holding a value. Components (such as
text fields, labels) that implement javax.faces.component.ValueHolder interface has an attribute
value and can hold a value. Components that implement the EditableValueHolder interface, can
hold values that can be edited by the user. If the immediate attribute of these editable components
is set to true, then converters, validators and value change listeners (if any attached) will also be
invoked in this phase. However, failing of any conversions or validations transfers the control directly
to the Render Response phase.

Components (such as buttons, links etc.) that implement ActionSource interface may generate
action events and hence are called action components. Action events (if any) associated with these
components are queued in this phase. If immediate attribute of the action components are set to true,
then action events are fired in this phase. Otherwise, they are fired in the Invoke Application phase.

Note that not all the phases occur in all the cases in order. A call to renderResponse() method
at any time, on the current FacesContext stops the current processing and skips the control directly
to the Render Response phase.

FacesContext.getCurrentInstance().renderResponse();

Note that this phase does not yet update the business objects that compose the model. It updates
only the UI components with the new data.

28.3.3	 Process Validations
This phase invokes (if it was not already done in the previous phase) convertors and validators

(if any) attached to the components to convert and validate the data captured in the previous phase.
More specifically, the processValidators() method is invoked on all the components of view

tree. The processValidators() method, in turn, calls the associated converters and validators. Any
conversion/validation error at this stage causes the control to jump directly to the Render Response
phase skipping Update Model Values and Invoke Application phases.

Validators and convertors may be attached to the components in many ways. The following
attached a validator to a text component by setting its required attribute to true.

<h:inputText id="login" required="true" />

The task of the validator is to check if the value of the text component is empty or not. A detailed
discussion on how to attach convertors and validators can be found later in this chapter.

Event listeners for editable components are also called (if not already called in Apply Request
Values phase).

808 ADVANCED JAVA PROGRAMMING

28.3.4	 Update Model Values
If the process validation phase is passed successfully without any validation error, the model

objects are updated with the validated data from the request. However, JSF runtime will update only
the bean properties pointed at by an input component’s value attribute. Also, if the data type of a
property is not a String or a Java primitive, data conversion occurs in this phase. If there is any error,
similar thing happens as validation errors i.e. the life cycle advances directly to the render response
phase so that the page is re-rendered with errors displayed. Any event listener (such as phase listener)
registered to this phase is also notified with the event object.

28.3.5	 Invoke Application
Event listeners for action components, such as command buttons, links are called (if not already

called in Apply Request Values phase i.e. immediate attribute was set to false).

28.3.6	 Render Response
In this phase, the entire component tree is rendered and sent to the client. After the content of

the view is rendered, the response state is saved so that subsequent requests can access it and it is
available to the restore view phase.

28.4	 TRACING PHASES
For better understandability, we can use a phase listener to trace the JSF life-cycle phases and to

see what happens in which phase. A phase listener class must implement PhaseListener interface
which has three methods. Here is a simple phase listener class:

package phaseListeners;
import javax.faces.event.*;

public class MyListener implements PhaseListener {
public void beforePhase(PhaseEvent pe) {

System.out.println("Start phase : "+pe.getPhaseId());
}
public void afterPhase(PhaseEvent pe) {

System.out.println("End phase : "+pe.getPhaseId());
}
public PhaseId getPhaseId() {

return PhaseId.ANY_PHASE;
}

}

This phase listener is interested in all the phases and hence the getPhaseId() method returns
the identifier ANY_PHASE. The beforePhase() and afterPhase() methods are called just before and
after a phase is started and completed. To active the phase listener to a JSF application, it must be
registered in faces-config.xml as follows:

<lifecycle>
 <phase-listener>phaseListeners.MyListener</phase-listener>
</lifecycle>

For an initial request, it produces the following in the system output:
Start phase : RESTORE_VIEW 1
End phase : RESTORE_VIEW 1
Start phase : RENDER_RESPONSE 6
End phase : RENDER_RESPONSE 6

JAVA SERVER FACES 809

For a postback request, it produces the following output:
Start phase : RESTORE_VIEW 1
End phase : RESTORE_VIEW 1
Start phase : APPLY_REQUEST_VALUES 2
End phase : APPLY_REQUEST_VALUES 2
Start phase : PROCESS_VALIDATIONS 3
End phase : PROCESS_VALIDATIONS 3
Start phase : UPDATE_MODEL_VALUES 4
End phase : UPDATE_MODEL_VALUES 4
Start phase : INVOKE_APPLICATION 5
End phase : INVOKE_APPLICATION 5
Start phase : RENDER_RESPONSE 6
End phase : RENDER_RESPONSE 6

28.5	 MANAGED BEAN
User Interface (UI) components in a JSF page are often associated with JavaBeans (called backing

beans) that provide application logic. A JSF page may also use beans for other purposes such as
validations, conversions etc. Since these beans are created and managed by a JSF implementation,
they are affectionately called managed beans. A managed bean is called a backing bean if it is bound
with a UI component. Here is an example of a very simple managed bean (HelloWorld.java):

package ukr;
import javax.faces.bean.ManagedBean;
@ManagedBean
public class HelloWorld {
public String getMessage() {

return "Hello World!";
}

}

It has only one method getMessage() that returns the string Hello World!. The @ManagedBean
annotation registers the bean to be managed with the FacesServlet implementation. A managed bean
is connected to a web page through Expression Language (EL). The <h:outputText> component in
our previous web page (HelloWorld.xhtml) may be connected to this bean as follows:

<h:outputText value="#{helloWorld.message}" />

The EL #{helloWorld.message} retrieves the value of the message property (through
getMessage() method) of the managed bean helloWorld. A detailed syntax of EL expressions is
discussed later in this chapter. Note that the name helloWorld is used to refer to the managed bean
HelloWorld. If no name is specified in the @ManagedBean annotation, the managed bean’s name
becomes the class name with the first letter in lowercase.

To compile this file, we need the javax.faces.bean.ManagedBean annotation class which is
included in the JSF library file javax.faces-2.2.8-04.jar. Specify this jar file using –cp option of
javac command. For example, we placed this jar file in the same directory containing HelloWorld.
java file and used the following command to compile

javac -cp javax.faces-2.2.8-03.jar HelloWorld.java

It generates the HelloWorld.class file. Create a directory ukr under JSF_HOME\WEB-INF\classes
and copy HelloWorld.class file there. The final directory content will look exactly as shown in the
following page.

The web application is now ready to deploy. One way to do this is to place the entire jsf/ directory
in the Tomcat’s webapps folder. We can also create a .war file and place it in the Tomcat’s webapps
directory. To create a .war file, go to the jsf/ directory and use the following command:

jar cvf jsf.war *

810 ADVANCED JAVA PROGRAMMING

jsf/
├─HelloWorld.xhtml
└─WEB-INF/

├─web.xml
├─lib/
│ └─javax.faces-2.2.8-04.jar
└─classes

└─ukr/
└─HelloWorld.class

A sample output of this command is shown below:
added manifest
adding: HelloWorld.xhtml(in = 364) (out= 242)(deflated 33%)
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/ukr/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/ukr/HelloWorld.class(in = 366) (out= 270)(deflated 26%)
adding: WEB-INF/lib/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/lib/javax.faces-2.2.8-04.jar(in = 3127585) (out=
2905152)(deflated 7%)
adding: WEB-INF/web.xml(in = 748) (out= 344)(deflated 54%)

This jsf.war file contains all the necessary files needed for the HelloWorld JSF application. Put it
in the Tomcat’s webapps directory. Don’t forget to restart the Tomcat server. If everything goes fine,
a sample screen as follows will appear. The message for our JSF application has been highlighted.

In this example, we registered the managed bean using @ManagedBean annotation. In general,
there are two ways we can register a managed bean with the JSF runtime: using faces-config.xml
file and using @ManagedBean annotation.

28.5.1	 Using faces-config.xml File
JSF runtime processes a special file under application’s WEB-INF/ directory. The name of this

file is faces-config.xml and contains configuration information of the application. We can configure
managed bean in this file using <managed-bean> tag to enable the JSF framework to instantiate and
store them in the appropriate scope as follows:

<?xml version="1.0" encoding="UTF-8"?>
<faces-config
...
<managed-bean>

<managed-bean-name>helloWorld</managed-bean-name>
<managed-bean-class>ukr.HelloWorld</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

</faces-config>

JAVA SERVER FACES 811

<?xml version="1.0" encoding="UTF-8"?>
<faces-config
...
<managed-bean>

<managed-bean-name>helloWorld</managed-bean-name>
<managed-bean-class>ukr.HelloWorld</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

</faces-config>

This registers the bean exactly the way it was done using @ManagedBean annotation. Note that
the file faces-config.xml should contain only application level configuration. So, the above code
could have been placed in a separate file (say managed-beans.xml) and tell the web.xml file about
its existence as:

<context-param>
<param-name>javax.faces.CONFIG_FILES</param-name>
<param-value>WEB-INF/managed-beans.xml</param-value>

</context-param>

28.5.2	 Using @ManagedBean Annotation
In JSF 2.0 and higher, we can use various annotations in the Java classes for different purposes,

which make your development easier and faster.
The @ManagedBean annotation in a class automatically registers that class with JSF runtime as

a managed bean class. We do not need to configure it in the application configuration resource file
using <managed-bean> tag. Here is an example:

@ManagedBean
public class HelloWorld {/*...*/}

This annotation may have two attributes: name and eager. The value of the name attribute is the
name to be used to refer to this bean further. If name attribute is absent, the name of the bean is same
as the unqualified class name with the first letter in lower case. For example, the name of the above
bean will be helloWorld. The following registers a bean with name now.

@ManagedBean(name="now")
class DateBean {/*...*/}

If the value of the eager attribute is true, and the scope (discussed in the next section) of the
managed bean is “application”, the managed bean is instantiated when the application starts. Here
is an example:

@ManagedBean(name="now", eager="true")
@ApplicationScoped
class DateBean {/*...*/}

If the value of eager attribute is unspecified or false, the default “lazy” instantiation of the
managed bean occurs.

28.5.3	 Scope Annotations
The scope of a managed bean tells JSF runtime when to instantiate the bean and how long

the instance should be kept alive. Six kinds of scopes are defined in JSF specification and are
represented by scope annotations @NoneScoped, @RequestScoped, @ViewScoped, @SessionScoped,
@ApplicationScoped and @CustomScoped annotations. Here is an example:

@ManagedBean(name="now")
@SessionScoped
class DateBean {/*...*/}

This registers the bean whose instance is created upon the first HTTP request in a session and
destroyed when the HTTP session completes. If no scope annotation is used, the @RequestScoped
annotation is assumed. The function of other scope annotations is shown in Table 28.2:

812 ADVANCED JAVA PROGRAMMING

Table 28.2: JSF scope annotations

Scope Description

@RequestScoped Bean lives during a single HTTP request-response pair. Created upon an HTTP
request and destroyed when HTTP response completes.

@SessionScoped Bean lives during an HTTP session. Created upon the first HTTP request in a
session and destroyed when the HTTP session completes.

@ApplicationScoped Bean lives during the web application entire lifetime. Created upon the first HTTP
request (if eager attribute is false) or when the web application starts (if eager
attribute is true) and destroyed when the web application stops.

@NoneScoped Bean lives as a single EL evaluation. Created upon an EL evaluation and destroyed
after the EL evaluation.

@ViewScoped Bean lives during the period a user interacts with the same JSF view in the browser
window/tab. Created upon an HTTP request and destroyed when user postbacks a
different view.

@CustomScoped Bean lives during the period the bean’s entry in the custom Map which is created for
this scope lives.

28.5.4	 @ManagedProperty Annotation
This annotation (together with @ManagedBean) is used to inject a value into a property. Here is

an example:
@ManagedBean
public class MyBean {
@ManagedProperty(value="Hi!")
private String message;

/*...*/
}

This sets the value of message field to “Hi”. Note that this could have been done by assigning the
value “Hi” to the field directly as follows:

String message = "Hi";

However, the value of value attribute may be an EL value expression. This means the
@ManagedProperty annotation may be used to refer one bean from another. For example, the value
of message property of helloWorld bean may be injected as follows:

@ManagedBean
public class MyBean {
@ManagedProperty(value="#{helloWorld.message}")
private String message;

/*...*/
}

Note that the scope of referenced bean (helloWorld in our case) must not be shorter that the
bean making the reference (myBean in our case.). The function of @ManagedProperty annotation can
be implemented using <managed-property> tag in faces-config.xml file as follows:

<managed-bean>
<managed-bean-name>myBean</managed-bean-name>
<managed-bean-class>ukr.MyBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>

<property-name>message</property-name>
<value>#{helloWorld.message}</value>

</managed-property>
</managed-bean>

JAVA SERVER FACES 813

This means a bean can be referred to from a configuration resource file. The injected bean may be
any bean including the param bean that holds the parameters passed with the HTTP request message.
So, the value of a bean property may be set dynamically from the HTTP request. Here is an example:

@ManagedBean
public class MyBean {
@ManagedProperty(value="#{param.msg}")
private String message;
/*...*/

}

This sets the message property by the value of msg parameter present in the HTTP request. To
verify this, use the following tag in a file ManagedPropertyDemo.xhtml.

<h:outputText value="#{myBean.message}" />

Now, use the following URL to access this page:
http://127.0.0.1:8080/jsf/ManagedPropertyDemo.xhtml?msg=Hi

Since the scope of the param bean is request, the scope of the myBean must also be request.

28.6	 ACCESSING MANAGED BEAN PROGRAMMATICALLY
We have seen how to access properties of managed bean from both pages and faces configuration

files. It is also possible to do the same using Java code from an event listener class or another managed
bean. There are many ways to do this. For all cases, we must first have a reference to the current
javax.faces.context.FacesContext as follows:

FacesContext fc = FacesContext.getCurrentInstance();

28.6.1	 Using javax.faces.context.ExternalContext
If the scope of the bean is known, we can query the containing application environment to have

a Map object containing registered beans as follows:
ExternalContext ec = fc.getExternalContext();
Map m = ec.getApplicationMap();

In case of session and request scoped bean, use getSessionMap() and getRequestMap() methods
respectively. A reference to the bean having the name “myBean” can then be obtained as follows:

MyBean mb = (MyBean) m.get("myBean");

Programmers often love to use the following concise code:
MyBean mb=(MyBean)
FacesContext.getCurrentInstance().getExternalContext().getApplicationMap().get(
"myBean");

We can now invoke its methods as usual. Note that this method works fine if the scope of the bean
is not changed subsequently this code is written. Alternatively, the following methods may be used.

28.6.2	 Using javax.el.ELContext
Any EL expression can be evaluated from a Java code with the help of ELContext which is

obtained as follows:
ELContext ec = fc.getELContext();

Note that this class in not included in faces JAR file. Download a suitable JAR file containing
this class. We downloaded javax.el-api-2.2.4.jar from http://www.java2s.com/Code/Jar/j/
Downloadjavaxelapi224jar.htm. The bean instance can be then obtained as follows:

MyBean mb = (MyBean) ec.getELResolver().getValue(ec, null,"myBean");

814 ADVANCED JAVA PROGRAMMING

If you want to work with arbitrary EL value expression, we may create a ValueExpression
object as follows:

ExpressionFactory ef = fc.getApplication().getExpressionFactory();
ValueExpression ve = ef.createValueExpression(ec, "#{myBean}", MyBean.class);

Note that the expression #{myBean} refers to the entire bean instance which can be obtained as
shown here:

MyBean mb = (MyBean) ve.getValue(ec);

The individual properties such as message of the bean can also be obtained as follows:
ValueExpression ve = ef.createValueExpression(ec, "#{myBean.message}",
String.class);
String msg = (String) ve.getValue(ec);

This advantage of this method is that it also allows us to set the value of EL expression as follows:
ve.setValue(ec, "abc");

Like ValueExpression, a MethodExpression can be used to invoke a method of a managed bean.
For example, the following shows how to invoke the getMessage() method of myBean:

MethodExpression me =
ef.createMethodExpression(ec,"#{myBean.getMessage}",String.class, new
Class[]{});
String msg = (String)me.invoke(ec, null);

28.6.3	 Using evaluateExpressionGet() Method
In JSF 2.0, there is a concise way to evaluate an EL expression using evaluateExpressionGet()

method as follows:
Application a = fc.getApplication();
MyBean mb = (MyBean)a.evaluateExpressionGet(fc, "#{myBean}", MyBean.class);

However, this method cannot set the value of the EL expression.

28.7	 BASIC JSF TAGS
JSF provides various tags to render standard HTML tags. In this section, we shall see which JSF

tags are available to generate HTML tags and how to use them. To use these tags, we need to use the
following namespaces of URI in html node.

<html xmlns:h="http://java.sun.com/jsf/html">
...
</html>

<h:outputText>
This tag is used to render a piece of text. Here is an example:
<h:outputText value="Hello World!"/>

It is rendered in HTML as:
Hello World!

<h:inputText>
Renders an HTML <input> element of type=“text”. It renders the current value of the component

as the value of the “value” attribute. Here is an example:
<h:inputText size="10" value="Type your name"/>

It is rendered as:
<input type="text" name="j_idt4" value="Type your name" size="10" />

JAVA SERVER FACES 815

<h:inputSecret>
Renders an HTML <input> element of type=“password”. The characters entered in this element

are not echoed. Here is an example:
<h:inputSecret size="10"/>

It is rendered as:
<input type="password" name="j_idt6" value="" size="10" />

<h:inputTextarea>
Renders an HTML <textarea> element. The current value of the component is displayed inside

the element. Here is an example:
<h:inputTextarea value="Hello World!" readonly="true"/>

It is rendered as:
<textarea name="j_idt8" readonly="readonly">Hello World!</textarea>

<h:inputHidden>
Renders an HTML <input> element of type=“hidden”. It renders the current value of the

component as the value of the “value” attribute. Here is an example:
<h:inputHidden value="next"/>

It is rendered as:
<input type="hidden" name="j_idt10" value="next" />

<h:commandButton>
Renders an HTML <input> element of type=“submit” button. It renders the current value of the

component as the value of the “value” attribute. Here is an example:
<h:commandButton value="Logout" onclick="alert('Are to sure to logout?');" />

It is rendered as:
<input type="submit" name="j_idt12" value="Logout" onclick="alert('Are to sure
to logout?');" />

<h:commandLink>
Render an HTML <a> anchor element that acts like a form submit button when clicked. Here is

an example:
<h:commandLink value="Help" action="help" />

It is rendered as:
<a href="#
"onclick="mojarra.jsfcljs(document.getElementById('j_idt14'),{'j_idt14:j_idt17':
'j_idt14:j_idt17'},'');return false">Help

<h:outputLink>
Renders an HTML anchor. The value of the component is rendered as the value of the href

attribute. Here is an example:
<h:outputLink value="help.xhtml" >Help</h:outputLink>

It is rendered as:
Help

<h:selectBooleanCheckbox>
Renders a single HTML check box. Here is an example:
<h:selectBooleanCheckbox value="Encrypt" id="encrypt"/>

816 ADVANCED JAVA PROGRAMMING

It is rendered as:
<input id="encrypt" type="checkbox" name="encrypt" />

<h:selectManyCheckbox>
Renders a group of HTML check boxes. Here is an example:
<h:selectManyCheckbox >

<f:selectItem itemValue="hdd" itemLabel="HDD" />
<f:selectItem itemValue="monitor" itemLabel="Monitor" />

</h:selectManyCheckbox>

It is rendered as:
<table>

<tr>
<td>
<input name="j_idt24" id="j_idt24:0" value="hdd" type="checkbox" /><label
for="j_idt24:0" class=""> HDD</label></td>
<td>
<input name="j_idt24" id="j_idt24:1" value="monitor" type="checkbox" /><label
for="j_idt24:1" class=""> Monitor</label></td>

</tr>
</table>

<h:selectOneRadio>
Renders a single HTML radio button. Here is an example:
<h:selectOneRadio:<h:selectOneRadio >

<f:selectItem itemValue="cheque" itemLabel="Cheque" />
<f:selectItem itemValue="cash" itemLabel="Cash" />

</h:selectOneRadio>

It is rendered as:
<table>

<tr>
<td>
<input type="radio" name="j_idt28" id="j_idt28:0" value="cheque" /><label
for="j_idt28:0"> Cheque</label></td>
<td>
<input type="radio" name="j_idt28" id="j_idt28:1" value="cash" /><label
for="j_idt28:1"> Cash</label></td>

</tr>
</table>

<h:selectOneListbox>
Renders a single HTML list box. Here is an example:
<h:selectOneListbox >

<f:selectItem itemValue="cheque" itemLabel="Cheque" />
<f:selectItem itemValue="cash" itemLabel="Cash" />

</h:selectOneListbox>

It is rendered as:
<select name="j_idt32" size="2"> <option value="cheque">Cheque</option>

<option value="cash">Cash</option>
</select>

<h:selectManyListbox>
Renders multiple HTML list boxes. Here is an example:
<h:selectManyListbox >

<f:selectItem itemValue="hdd" itemLabel="HDD" />
<f:selectItem itemValue="monitor" itemLabel="Monitor" />

</h:selectManyListbox>

JAVA SERVER FACES 817

It is rendered as:
<select name="j_idt36" multiple="multiple" size="2"> <option
value="hdd">HDD</option>

<option value="monitor">Monitor</option>
</select>

<h:selectOneMenu>
Renders an HTML combo box. Here is an example:
<h:selectOneMenu >

<f:selectItem itemValue="cheque" itemLabel="Cheque" />
<f:selectItem itemValue="cash" itemLabel="Cash" />

</h:selectOneMenu>

It is rendered as:
<select name="j_idt40" size="1"> <option value="cheque">Cheque</option>

<option value="cash">Cash</option>
</select>

<h:graphicImage>
Renders an image. Here is an example:
<h:graphicImage value="back.jpg"/>

It is rendered as:

<h:outputStylesheet>
Includes a CSS style sheet in HTML output. Here is an example:
<h:head>

<h:outputStylesheet library="css" name="myStyles.css"/>
</h:head>

It is rendered as:
<link type="text/css" rel="stylesheet"
href="/jsf/javax.faces.resource/myStyles.css.xhtml?ln=css" />

The <h:outputStylesheet> requires a <h:head>. Also note that myStyles.css file must be put
in the directory webapps/resources/css/.

<h:outputScript>
Includes a script in HTML output. Here is an example:
<h:head>

<h:outputScript library="js" name="fn.js" />
</h:head>

It is rendered as:
<script type="text/javascript"
src="/jsf/javax.faces.resource/fn.js.xhtml?ln=js"></script>

The <h:outputScript> also requires a <h:head>. Also note that fn.js file must be put in the
directory webapps/resources/js/.

28.8	 EXPRESSION LANGUAGE
The Expression Language (EL) specifies rules to write simple expressions for accessing and

manipulating managed beans in an elegant manner. Specifically, EL expressions can set bean properties
and can invoke arbitrary static and public methods.

818 ADVANCED JAVA PROGRAMMING

An EL expression is written as #{...} or ${...}. The evaluation of EL expressions may happen
at different times and is referred to as immediate evaluation and deferred evaluation. The former
means that the expression is evaluated when the page is rendered and happens for expressions that take
the form of ${...}. Expression in the form of #{...}, on the other hand, are evaluated at appropriate
time during the page life-cycle and is referred to as deferred evaluation.

EL expression is also categorized as: value expressions and method expressions. Value expressions
can either yield a value or set a value, whereas a method expression invokes a method.

Value expressions can be further categorized into rvalue expression and lvalue expressions.
Expressions that can only read data, but cannot write it, are called rvalue expressions. Lvalue
expressions can both read and write data. Expressions that evaluated immediately (i.e. in the form
${...}) are always rvalue expressions. Value expressions that use deferred evaluation syntax can
act as both rvalue and lvalue expressions as well as method expressions.

Note that ultimately it is upto the framework how it treats #{...} or ${...} expressions. In Facelets,
unfortunately, the ${...} is always treated exactly the same way as #{...}. So ${...} evaluation
is also deferred in JSF. So, hereafter we shall only talk about expressions that take the form #{...}.

28.8.1	 Value Expression
A value expression can be used in static text or in any tag attribute that can accept an expression.

Value expressions (both rvalue and lvalue expressions) can refer to JavaBeans, collection objects,
implicit object and enumerated types. For example, the following expression references a managed
bean named myBean:

#{myBean}

EL expression can contain implicit objects which are listed in Table 28.3:

Table 28.3: JSF implicit objects

Implicit Object Description

pageContext The context of the JSP page

initParam Maps the name of a context initialization parameter to its value

param Maps a request parameter name to its first value

paramValues Maps a request parameter name to an array of its values

cookie Maps a cookie name to a single cookie

header Maps a request header name to its first value

headerValues Maps a request header name to an array of its values

pageScope Maps page-scoped variable names to their values

requestScope Maps request-scoped variable names to their values

sessionScope Maps session-scoped variable names to their values

applicationScope Maps application-scoped variable names to their values

To refer to properties of beans, implicit objects or items of a collection, we use the . or [] notation.
For example, to refer to the message property, either of the following can be used:

#{myBean.message}
#{myBean['message']}

We can use . or [] (or combination of them) in a cascaded fashion to refer to a nested property.
For example, the following refers to the first property of the message property of myBean.

#{myBean.message[‘first’]}

JAVA SERVER FACES 819

If the result of an EL value expression is an array or a List instance, elements of the array or the
list can be obtained using [] notation with int indices. Here is an example:

#{myBean.colors[0]

However, to access Map elements, we use string literal as follows:
#{myBean.passwords[‘user1’]

EL expressions can contain operators and literals which may be Boolean (true and false), Integer,
Floating-point, String (single and back-slashed double quotes) and Null. Here are some examples:

#{5.0 gt 3} //true
#{2 le (3/2)} //false
#{10 == 11} //false
#{'a' lt 'b'} //true
#{'J++' gt 'C++'} //true
#{17 mod 4} //1
#{5 div 2} //2.5
#{1.2 + 1.5} //2.7

It is also possible to write composite expression where more than one expression is written one
after another as follows:

Text1#{expr1}#{expr2}text2#{expr3}

Each expression of the composite expression is converted to a String and then concatenated with
any intervening text.

28.8.2	 Method Expression
A method expression can be used to invoke arbitrary public methods of a bean, which return a

value. A component tag uses method expressions to invoke methods that perform some processing
for the component. For example, we can specify a method expression to the action attribute of
<h:commandButton> tag as follows:

<h:form>
<h:commandButton value="Validate" action="#{myBean.validate}"/>

</h:form>

Here, when the button is clicked, the method validate() on myBean is invoked. Like value
expressions, we can also use . and the [] operators in method expressions. For example, the above
code could have been written as:

<h:form>
<h:commandButton value="Validate" action="#{myBean['validate']}"/>

</h:form>

The literal inside the [] is converted to String and is used to find the name of the method that
matches it. The above method expressions merely call a method validate that does not take any
parameters. However, we can also pass parameters to bean methods. Both the . and [] operators can
be used for invoking method calls with parameters, as shown in the following expression syntax:

expr1.methodname(parameters)
expr1[expr1](parameters)

In the first expression syntax, expr1 evaluated to represent a bean object, and methodname is
a string that represents a method in the bean object. In the second expression, expr2 is evaluated
and cast to a string that represents a method in the bean represented by expr1. The parameters in
parentheses are the arguments for the method invocation. Parameters can be zero or more values or
expressions, separated by commas.

So the following expression invokes a method validate() with parameter ‘Me’.
#{myBean[‘validate’](‘Me’)}

820 ADVANCED JAVA PROGRAMMING

28.8.3	 Facelets
There are a set of special tags provided for page layout for web applications. These tags are called

facelets tags. These tags must be qualified by the following namespace:
xmlns:ui="http://java.sun.com/jsf/facelets"

28.8.3.1   Templates
Often web pages have common parts such as header and footer. Templates allow us to place

common part in a single file and refer to it from pages that need it. So, it allows content to be changed
in one place, but used in multiple pages. When working with templates, we use the tags <ui:insert>,
<ui:define>, <ui:include> and <ui:composition>.

A template is basically a page having some facelets tags that define the layout of the page. Here
is an example (myTemplate.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<body>
<ui:insert name="header" >

<ui:include src="header.xhtml" />
</ui:insert>

<ui:insert name="content" >

<ui:include src="contents.xhtml" />
</ui:insert>

<ui:insert name="footer" >

<ui:include src="footer.xhtml" />
</ui:insert>

</body>
</html>

The <ui:insert> tag, as its name suggests, creates logical named segments. For example, the
above template has three sections. The section contents are populated by the <ui:include> tag. So
the above template is a composition of three documents header.xhtml, contents.xhtml and footer.
xhtml, which are ordinary xhtml documents and usually contain <ui:composition> tag. This tag is
used to group a number of elements which are used inside the template. To illustrate this, the relevant
content of header.xhtml is given below:

<html xmlns:ui="http://java.sun.com/jsf/facelets">
<body>

<ui:composition>
Header

</ui:composition>
</body>

</html>

The content of the contents.xhtml and footer.xhtml will look similar. To use this template
from another page (say index.html), we can use <ui:composition> specifying URL of the template
page to its template attribute as follows:

<ui:composition template="myTemplate.xhtml" />

The content of the included template may be re-defined using <ui:define> tag as follows:
<ui:composition template="myTemplate.xhtml">

<ui:define name="content">
New Content

</ui:define>
</ui:composition>

This replaces the content of content section by a new line of text. JSF also allows us to pass
parameters to template file or an included file using <ui:param>. To hold the parameter in the header.
xhtml, we write:

JAVA SERVER FACES 821

<ui:composition>
#{header}

</ui:composition>

To pass a value to the header section, in myTemplate.xhtml, we write
<ui:insert name="header" >

<ui:include src="header.xhtml" >
<ui:param name="header" value="My Header" />

</ui:include>
</ui:insert>

28.8.3.2   Custom Tags
Open source JSF implementation such as Oracle’s JSF offers just a few very standard, reusable

UI components for forms, primitive tags for page layout and to display data. Fortunately JSF allows
us to enhance their functionality of built-in tags or to create new custom tags. There are two ways to
create custom tags: using <ui:composition> tag and using Java program.

Using Composition Tag
The following is a list of steps required to implement custom tags:

•	 Create a source(xhtml) file and define tag contents using <ui:composition> tag.
•	 Create a tag library descriptor (an XML file) and declare the above custom tag in it.
•	 Register the tag library descriptor in web.xml.
•	 Use the above declared tag in an XHTML file.

We shall develop a simple custom tag similar to <h:inputText> but has also a label. Here is the
content of labeledInput.xhtml file.

<!--labeledInput.xhtml-->
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">
<h:body>

<ui:composition>
<h:outputLabel value="#{label}" />
<h:inputText size="#{size}"/>

</ui:composition>
</h:body>

</html>

The result of the new tag is a composition of built-in <h:outputText> and <h:inputText> tags.
The new tag will have only two attributes viz. label and size. This is stored in the directory jsf/
customTags/. Once the UI of the tag is defined, it is time to give it a name and specify its unique
namespace and location of the source file. This is done on an XML file called tag library description.
Here is sample tag library descriptor myTags.xml.

<?xml version="1.0"?>
<!--myTags.xml-->
<facelet-taglib>

<namespace>http://www.uroy.biz/facelets</namespace>
<tag>

<tag-name>labeledInput</tag-name>
<source>../customTags/labeledInput.xhtml</source>

</tag>
</facelet-taglib>

This defines a custom tag labeledInput in namespace http://www.uroy.biz/facelets. The
file is saved in WEB-INF/ folder of the web application. Inform the JSF runtime about this tag library
in web.xml file as follows:

822 ADVANCED JAVA PROGRAMMING

</web-app
...

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</param-name>
<param-value>/WEB-INF/myTags.xml</param-value>

</context-param>
</web-app>

We can now use newly defined/declared tag in the test.xhtml file as follows:
<html

xmlns:ct="http://www.uroy.biz/facelets">
<body>

<ct:labeledInput label="First Name:" size="10"/>
<ct:labeledInput label="Middle Name:" size="5"/>
<ct:labeledInput label="Last Name:" size="10"/>

</body>
</html>

At the top of the xhtml file, we first define the namespace for our tag. The final directory content
is shown here. A sample output of this test.xhtml is also shown here:

jsf/
├─customTags/
│ ├─labeledInput.xhtml
│ └─test.xhtml

├─web.xml
└─myTags.xml

└─WEB-INF/

Using Java Program
The previous method merely uses existing tags to compose a new one. To create an absolutely

new one, we can write a Java class that defines the behaviour of the tag. All the classes representing
the standard components extend javax.faces.component.UIComponentBase class that defines the
default behaviour of a component class. Here is an example:

package tags;
import javax.faces.component.*;
import javax.faces.context.*;
@FacesComponent(value = "tags.toUpper")
public class ToUpper extends UIComponentBase {
public String getFamily() {

return "toUpper";
}
public void encodeBegin(FacesContext context) throws java.io.IOException {

String value = (String) getAttributes().get("value");
if (value != null)

context.getResponseWriter().write(value.toUpperCase());
}

}

JAVA SERVER FACES 823

This class corresponds to a simple tag which will have a value attribute. The class translates
the string in the value attribute to upper-case characters. The class is then registered in a tag library
myTags.xml as follows:

Tag library: myTags.xml
<facelet-taglib>

<namespace>http://www.uroy.biz/facelets</namespace>
<tag>

<tag-name>toUpper</tag-name>
<component>

<component-type>tags.toUpper</component-type>
</component>

</tag>
</facelet-taglib>

Inform the JSF runtime about this tag library in web.xml file as before. We can now place this
tag in the test.xhtml file as follows:

<html
xmlns:ct="http://www.uroy.biz/facelets">
<body>

<ct:toUpper value="Java Server Faces"/>
</body>

</html>

The final directory content is shown here:
jsf/
├─customTags/
│ └─test.xhtml
└─WEB-INF/

├─web.xml
├─myTags.xml
└─classes/

└─ToUpper.class

28.8.3.3   Composite Components
JSF 2.0 addressed all the concerns to create a custom tag by introducing composite components

which can be created using the following steps:

•	 Create a folder resources/ under the web application root.
•	 Create another folder under resource/ and create an xhtml file in this directory.
•	 Define the content of the composite component in the xhtml file using <c:interface>, <c:attribute> and

<c:implementation> tags.
•	 Use the component from another xhtml file using namespace http://java.sun.com/jsf/<folder-name> where folder-

name is folder in resources directory containing the custom component.

Here is a file (labeledInput.xhtml) that defines a composite tag for a labelled input text.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:c="http://java.sun.com/jsf/composite">
<c:interface>

<c:attribute name="label" />
<c:attribute name="size" />

</c:interface>

<c:implementation>
<h:outputLabel value="#{cc.attrs.label}" />
<h:inputText size="#{cc.attrs.size}" />

</c:implementation>
</html>

824 ADVANCED JAVA PROGRAMMING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:c="http://java.sun.com/jsf/composite">
<c:interface>

<c:attribute name="label" />
<c:attribute name="size" />

</c:interface>

<c:implementation>
<h:outputLabel value="#{cc.attrs.label}" />
<h:inputText size="#{cc.attrs.size}" />

</c:implementation>
</html>

When defining composite component, the #{cc.attrs.attribute-name} expression is used to
access the attributes defined for the composite component’s interface. So #{cc.attrs.label} and
#{cc.attrs.size} expressions refer to the values of the attribute label and size attribute of composite
component tag.

Now store the file labeledInput.xhtml in a folder named resources/test/, under the web
application web directory. This directory resources/ is considered to hold JSF components. To use
this component, we can use the test.xhtml file as follows:

<html
xmlns:ct="http://java.sun.com/jsf/composite/test">
<body>

<ct:labeledInput label="First Name:" size="10"/>
<ct:labeledInput label="Middle Name:" size="5"/>
<ct:labeledInput label="Last Name:" size="10"/>

</body>
</html>

Note that the component library is accessed using the name space http://java.sun.com/jsf/
composite/test. In general, if the components are stored in a directory sample, they can be accessed
using the namespace http://java.sun.com/jsf/composite/sample. In our case the component
itself is accessed through the <ct:labeledInput> tag.

28.8.3.4   Remove
Although, JSF engine does not process contents commented by <!-- and -->, they do present

in the rendered HTML page in the commented form and hence can be viewed by the clients. For
example, the following JSF code

<!-- <h:outputText value="Hello World!" />-->

will appear at the client side as
<!-- <h:outputText value="Hello World!" />-->

Moreover, JSF processes the value expression even commented by <!-- and --> and outputs the
result to the generated HTML page. For example, if #{myBean.message} returns a sting “Hi”, the
following JSF code

<!--<h:outputText value="#{myBean.message}" />-->

will appear at the client as
<!--<h:outputText value="Hi" />-->

This way some sensitive server-side code may get disclosed at the client side. JSF <ui:remove>
may be used to prevent the JSF specific code to be rendered on client side. For example, the above
JSF code may be hidden as:

<ui:remove><h:outputText value="#{myBean.message}" /></ui:remove>

It does not output anything as desired.

28.8.4	 Converter Tags
The value provided to a component is a string. Conversion from strings to Java objects and vice

versa is necessary in many cases. For example, consider a text field where a user supplies his/her Date of
Birth (DoB) in a pattern dd-MM-yyyy corresponding to a java.util.Date property of the backing bean.

JAVA SERVER FACES 825

The string must be converted properly to store the converted data in the property. Similarly, when
the user response comes back, the text field must hold the Date value converted in dd-MM-yyyy
pattern. Moreover, if the user doesn’t fill Dob field in the correct format, a message indicating the
conversion failure should be displayed.

Oracle’s JSF provides many built-in convertor classes (Implementing the javax.faces.convert.
Converter interface) to perform standard conversions between strings and simple data types in the
package javax.faces.convert. Table 28.4: shows the list.

Table 28.4: JSF built-in converter classes

Class Name Conversion between

BooleanConverter javax.faces.Boolean String and java.lang.Boolean (and boolean primitive) values

CharacterConverter javax.faces.Character String and java.lang.Character (and char primitive) values

ByteConverter javax.faces.Byte String and java.lang.Number values

ShortConverter javax.faces.Short String and java.lang.Short (and short primitive) values

IntegerConverter javax.faces.Integer String and java.lang.Integer (and int primitive) values

BigIntegerConverter javax.faces.BigInteger String and java.math.BigInteger values

LongConverter javax.faces.Long String and java.lang.Long (and long primitive) values

FloatConverter javax.faces.Float String and java.lang.Float (and float primitive) values

BigDecimalConverter javax.faces.BigDecimal String and java.math.BigDecimal values

DoubleConverter javax.faces.Double String and java.lang.Double (and double primitive) values

DateTimeConverter javax.faces.DateTime String and java.util.Date values

NumberConverter javax.faces.Number String and java.lang.Number values

These classes are registered in JSF under a symbolic name shown in the middle column. Out of
these 12 classes, last two classes DateTimeConverter and NumberConverter also have their own tags
<f:convertDateTime> and <f:convertNumber> respectively. We can specify the format and type of
the component data by configuring these tag attributes. Here is an example:

<!--date.xhtml-->
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<body>

<h:form>
<h:inputText value="#{dateBean.date}" >

<f:convertDateTime pattern="dd-MM-yyyy" />
</h:inputText>
<h:commandButton value="submit" />

</h:form>
<h:messages style="color:red" />

</body>
</html>

The <f:convertDateTime> tag in the above code can convert a string in dd-MM-yyyy format to a
Date type object and vice versa. Please note that the pattern is dd-MM-yyyy and not dd-mm-yyyy. The
backing bean to hold the date is this:

package converter;
import java.util.Date;
import javax.faces.bean.*;
@ManagedBean
@SessionScoped
public class DateBean {

private Date date = new Date();
public Date getDate() {

return date;
}
public void setDate(Date date) {

this.date = date;
}

}

826 ADVANCED JAVA PROGRAMMING

package converter;
import java.util.Date;
import javax.faces.bean.*;
@ManagedBean
@SessionScoped
public class DateBean {

private Date date = new Date();
public Date getDate() {

return date;
}
public void setDate(Date date) {

this.date = date;
}

}

The date.xhtml produces the following output:

The converter classes (specifically which do not have tags) can also be used in the following ways:

•	 Add the converter attribute to a component using name of the converter as the value.
•	 Nest the f:converter tag within a component. Use this tag’s converterID attribute to reference the converter’s name.

For example, the text box in the above could have been written as:
<h:inputText value="#{dateBean.date}" converter="javax.faces.DateTime" />

However, the default date format will be “dd MMM, yyyy”. Equivalently, The <f:converter>
may be used as follows:

<h:inputtext value="#{datebean.Date}" >
<f:converter converterid="javax.Faces.Datetime" />

</h:inputtext>

Other classes which do not have tags may be used using either of the above two ways. If JSF’s
built-in converter classes do not fulfil our requirement, we can also write a custom converter of our
own. Here are the basic steps to write a custom convertor:

•	 Create a class implementing javax.faces.convert.Converter interface.
•	 Implement getAsObject() and getAsString() methods of above interface.
•	 Assign a unique id to the custom convertor using either @FacesConvertor annotation or faces-config.xml file.

Here is an example:
package converter;
import javax.faces.convert.*;
import javax.faces.context.FacesContext;
import javax.faces.component.UIComponent;
import javax.faces.application.FacesMessage;
@FacesConverter("converter.URLConverter")
public class URLConverter implements Converter {

@Override
public Object getAsObject(FacesContext fc, UIComponent c, String val) {

try {
return new java.net.URL(val);

}catch(java.net.MalformedURLException e) {
FacesMessage msg = new FacesMessage(e.toString());
msg.setSeverity(FacesMessage.SEVERITY_ERROR);
throw new ConverterException(msg);

}
}

@Override
public String getAsString(FacesContext fc, UIComponent c, Object val) {

return val.toString();
}

}

JAVA SERVER FACES 827

package converter;
import javax.faces.convert.*;
import javax.faces.context.FacesContext;
import javax.faces.component.UIComponent;
import javax.faces.application.FacesMessage;
@FacesConverter("converter.URLConverter")
public class URLConverter implements Converter {

@Override
public Object getAsObject(FacesContext fc, UIComponent c, String val) {

try {
return new java.net.URL(val);

}catch(java.net.MalformedURLException e) {
FacesMessage msg = new FacesMessage(e.toString());
msg.setSeverity(FacesMessage.SEVERITY_ERROR);
throw new ConverterException(msg);

}
}

@Override
public String getAsString(FacesContext fc, UIComponent c, Object val) {

return val.toString();
}

}

Here, the method getAsObject() converts the given string value into a URL object and
getAsString() method converts the given object into a string representation. The @FacesConverter
annotation registers this converter class with name “converter.URLConverter” for further reference.
It could have been registered in the faces-cinfig.xml file as follows:

<converter>
<converter-id>converter.URLConverter</converter-id>
<converter-class>converter.URLConverter</converter-class>

</converter>

We can then refer to this converter by its name using either converter attribute of a component
as follows:

<h:inputText value="#{converterBean.url}" converter="converter.URLConverter" />

or using <f:converter> tag as follows:
<f:converter converterId="converter.URLConverter" />

The corresponding backing bean is shown below:
package converter;
import javax.faces.bean.*;
import java.net.URL;
@ManagedBean(name="converterBean")
@SessionScoped
public class Bean {

private URL url;
public URL getUrl() { return url; }
public void setUrl(URL url) { this.url = url; }

}

A converter may also be registered by the @ManagedBean annotation. Consider the following is
used for our URLConverter class:

@ManagedBean
@SessionScoped
public class URLConverter implements Converter {
/*...*/
}

This converter can be referred to as
<h:inputText value="#{converterBean.url}" converter="#{uRLConverter}" />

28.8.5	 Displaying Messages
Oracle’s JSF implementation provides two tags <h:messages> and <h:message> to display messages

in the client UI. The former is used to display all messages at once. By default, component-specific
messages are shown. Set its globleOnly attribute to true to display only global messages as follows:

<h:messages globalOnly="true" />

This tag can be placed anywhere in a JSF page. To display messages for a specific component,
<h:message> tag is used. Its for attribute refers to the id attribute of the component whose messages
are to be displayed:

<h:inputText id="login" required="true" />
<h:message for="login"/>

A message may be a summary or a detailed description or both. The <h:message> and
<h:messages> tags, by default, show the detail and summary message respectively. However, they
can be controlled using the Boolean showSummary and showDetail attributes.

828 ADVANCED JAVA PROGRAMMING

<h:message for="login" /> <!--detailed -->
<h:message for="login" showSummary="true"/> <!--both detailed and summary-->
<h:message for="login" showDetail="false"/> <!--none-->

<h:messages /> <!--summary -->
<h:messages showDetail="true"/> <!--both summary and detail-->
<h:messages showSummary="fa lse"/> <!--none-->

28.8.6	 Validations
Often code that processes data expect clean, correct and useful data. So it is a good idea to

validate data prior to forwarding them to processing code. Like other frameworks, JSF also provides
facilities to validate data of editable components in the Process Validations phase of request
processing life-cycle.

The most commonly used validation happens when a form field cannot be left empty (i.e. user
must provide some information) and is implemented in JSF as an attribute required. All tags that
implement EditableValueHolder interface has this attribute. Here is an example:

<h:inputText required="true" />

Oracle’s JSF provides some useful tags that can be leveraged to implement validation of any
user input. These tags must be qualified by the namespace URI http://java.sun.com/jsf/core.
Here is an example:

<h:inputText value="#{validateBean.temperature}">
<f:validateLongRange minimum="-273" />

</h:inputText>

The above text box corresponds to the validateBean’s temperature property that holds the
temperature in Celsius. Since the lowest possible temperature is −273° C, it is restricted using minimum
attribute of <f:validateLongRange> tag. A list of built-in validation tags with brief description is
shown in Table 28.5:

Table 28.5: Oracle’s JSF validator tags

Validator class Tag Description

LengthValidator validateLength Checks if the length of a component’s local String value is
within a particular range.

DoubleRangeValidator validateDoubleRange Checks if a component’s local value is within a range of
floating-point values.

LongRangeValidator validateLongRange Checks if a component’s local value is within a range of
long values.

RegexValidator validateRegEx Checks if a component’s local value matches against a
regular expression.

RequiredValidator validateRequired Checks if a component’s local value is empty or not.

BeanValidator validateBean Registers a bean validator for the component.

To validate a value against a pattern, the powerful <f:validateRegex> tag may be used specifying
the regular expression to its pattern attribute. Here is an example:

<h:form >
<h:inputText >

<f:validateRegex pattern="^\w{4,8}$" />
</h:inputText>
<h:commandButton value="Click" />

</h:form>

JAVA SERVER FACES 829

This tells that the value of the text box must only contain 4 to 8 alphanumeric characters. Note
that server-side data validation requires a client–server round trip. Data may be validated, if possible,
at the client side using JavaScript code as follows:

<h:form id="myForm">
<h:inputText id="txt" />
<h:commandButton value="Click"

onclick="var v = document.getElementById('myForm:txt').value;
if(v.match(/^\w{4,8}$/)) return true;
else return false;" />

</h:form>

Note that JSF renderer may not retain the tag attributes values. For example, for the id attribute
value “txt” will be substituted by the “myform:txt” which we have used in our getElementById()
method. If the JSF implementation follows a different convention, or a different JSF implementation
is used, the above code may not work properly.

Data validation may be done using a method of a backing bean. The declaration of the method
will look like this:

public void <METHOD_NAME> (FacesContext context, UIComponent component, Object
value) { .. }

JSF framework automatically calls this method at an appropriate time in the life-cycle. Here is a
method added to our ValidateBean class:

package validate;

/*...*/
public class ValidateBean {

/*...*/
public void checkValue (FacesContext context, UIComponent component, Object

value) throws ValidatorException {
if(Integer.parseInt((String)value) < -273) {

String summary = "temp can't be less than -273", detail= summary;
throw new ValidatorException(new

FacesMessage(FacesMessage.SEVERITY_ERROR, summary, detail));
}

}
}

If the value is found to be less than −273, this exits by throwing a ValidatorException() passing
an instance of javax.faces.application.FacesMessage else the code exits normally. The message
is queued in the messages list and displayed to the user. This method is now ready to be bound with
a component using validator attribute:

<h:inputText validator="#{validateBean.checkValue}" />

JSF also allows us to write a custom validator class that implements javax.faces.validator.
Validator interface and provides the validate() method. Here is a sample example that validates
temperature:

package validate;
import javax.faces.component.*;
import javax.faces.context.*;
import javax.faces.validator.*;
import javax.faces.application.*;

@FacesValidator
public class TemperatureValidator implements Validator {

@Override
public void validate (FacesContext context, UIComponent component, Object

value) throws ValidatorException {
if(Integer.parseInt((String)value) < -273) {

String summary = "temp can't be less than -273", detail= summary;
throw new ValidatorException(new

FacesMessage(FacesMessage.SEVERITY_ERROR, summary, detail));
}

}

}

830 ADVANCED JAVA PROGRAMMING

package validate;
import javax.faces.component.*;
import javax.faces.context.*;
import javax.faces.validator.*;
import javax.faces.application.*;

@FacesValidator
public class TemperatureValidator implements Validator {

@Override
public void validate (FacesContext context, UIComponent component, Object

value) throws ValidatorException {
if(Integer.parseInt((String)value) < -273) {
String summary = "temp can't be less than -273", detail= summary;
throw new ValidatorException(new

FacesMessage(FacesMessage.SEVERITY_ERROR, summary, detail));
}

}

}

The @FacesValidator annotation registers the class with the runtime as a validator. Since no
value is specified for the @FacesValidator annotation, the name of validator will be the name of
the class with the first letter in lower case i.e. temperatureValidator. The registration can be in the
faces-config.xml file as follows:

<validator>
<validator-id>temperatureValidator</validator-id>
<validator-class>validate.TemperatureValidator</validator-class>

</validator>.

This validator is then referred to in the validatorId attribute of <f:validator> tag:
<h:inputText>

<f:validator validatorId="temperatureValidator" />
</h:inputText>

28.9	 AJAX
Since, AJAX is an extremely powerful technology, JSF provides the tag <f:ajax> to support

AJAX capabilities in a standard way. Note that Ajax allows web pages to communicate with the web
server asynchronously and can refresh a part of the web page. This is implemented with its execute
and render attributes. The execute attribute holds space-separated ids of the components whose
values have to be sent to the server. The result of the AJAX request is placed in a component whose
id is specified in the render attribute. Here is an example(AjaxTest.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<body>

<h:form>
<h:inputText id="in" value="#{expander.shortName}"/>=
<h:outputText id="out" value="#{expander.longName}"/>

<h:commandButton value="Get full form">

<f:ajax execute="in" render="out"/>
</h:commandButton>

</h:form>
</body>

</html>

This page contains three components: a text box, a label and a button. Users type an abbreviated form
such as JSF, JSP etc in the text box. The <f:ajax> tag within opening and closing <h:commandButton>
tags makes the button Ajaxable. This means, when the button is clicked, an AJAX request is sent to
the server instead of submitting the whole form. The value of the text box having id attribute value
in is sent to the server. Upon response, the result (expanded form) is placed in the component having
the id out. The managed bean that performs the expansion is shown below:

package ajax;
import javax.faces.bean.*;
@ManagedBean(name="expander", eager=true)
@ApplicationScoped
public class Expander {

java.util.Hashtable db = new java.util.Hashtable();
String sn="JSP";
public Expander() {

db.put("JSF", "Java Server Faces");
db.put("JSP", "Java Server Pages");

}
public String getShortName() { return sn; }
public void setShortName(String sn) { this.sn = sn; }
public String getLongName() {

Object o = db.get(sn);
return o != null? (String)o : "Not found";

}
}

JAVA SERVER FACES 831

package ajax;
import javax.faces.bean.*;
@ManagedBean(name="expander", eager=true)
@ApplicationScoped
public class Expander {

java.util.Hashtable db = new java.util.Hashtable();
String sn="JSP";
public Expander() {

db.put("JSF", "Java Server Faces");
db.put("JSP", "Java Server Pages");

}
public String getShortName() { return sn; }
public void setShortName(String sn) { this.sn = sn; }
public String getLongName() {

Object o = db.get(sn);
return o != null? (String)o : "Not found";

}
}

The values of multiple components have to be sent to the server, specify their ids in the execute
attribute. The result can be placed in multiple components in the same way:

<h:form id="f1">
<h:inputText id="txt1" value="#{aBean.property1}"/>
<h:outputText id="out1" value="#{aBean.property4}"/>

</h:form>
<h:form>

<h:inputText id="txt1" value="#{aBean.property2}"/>
<h:inputText id="txt2" value="#{aBean.property3}"/>
<h:outputText id="out1" value="#{aBean.property4}"/>

<h:commandButton value="Submit">

<f:ajax execute="txt1 txt2 f1:txt1" render="out1 f1:out1"/>
</h:commandButton>

</h:form>

To send values of every component in the parent form, use
<f:ajax execute="@form" render="out"/>

28.10	 EVENT HANDLING
In JSF event handling model, an event is represented by an instance of an event class. An event

source generates an event which is then delivered to event listener objects registered to receive the
event.

JSF supports three kinds of events: value-change events, action events and phase change events.
A value-change event occurs when the user changes the value of components (such as UIInput,
UISelectOne, UISelectMany, and UISelectBoolean), that implements EditableValueHolder
interface. An action event occurs when the user performs some actions such as clicking on components
(such as buttons or links) that implement ActionSource interface.

We can specify event listeners using either event attributes or event tags. When attribute is
used, we implement a method in a backing bean to handle the event and refer that method in an EL
expression from the appropriate attribute of the component. On the other hand, if the listener tag is
used, we implement an event listener to handle the event and register the listener on a component by
nesting a listener tag inside the UI component tag.

28.10.1	 Value Change Listener
A value change listener can be implemented in two ways: Using valueChangeListener attribute

of the component tag and using <f:valueChangeListener> tag

28.10.1.1   Using valueChangeListener Attribute
We first implement a method in a managed bean. The method should look like this:
public void methodName(ValueChangeEvent e);

832 ADVANCED JAVA PROGRAMMING

Here is an example:
@ManagedBean(name = "ehBean")
public class Bean {
public void valueChanged(ValueChangeEvent e) {

//take actions
}

}

We can write any code inside the method. This listener method can then be attached with a
component using its valueChangeListener attribute as follows:

<h:form >
<h:inputText valueChangeListener="#{ehBean.valueChanged}" onchange="submit()"/>
</h:form>

The onchange attribute is used to make a JSF call when a value of the text box is changed. JSF
runtime implementation then calls this valueChanged() method. Note that for components such as
buttons or links, onchange attribute is not necessary. Also note that this method limits us to use only
one listener for the component.

28.10.2	 Using <f:valueChangeListener> tag
Here, we write a class that implements ValueChangeListener interface that has single method

public void processValueChange(). Here is a sample value change listener class:
package eh;
import javax.faces.event.*;
public class MyValueChangeListener implements ValueChangeListener {

@Override
public void processValueChange(ValueChangeEvent event) throws

AbortProcessingException {
//take actions

}
}

We can then attach this listener with a component as follows:
<h:form >

<h:inputText onchange="submit()">
<f:valueChangeListener type="eh.MyValueChangeListener"/>

</h:inputText>
</h:form>

The type attribute specifies fully-qualified name of the listener class. When the value of the text
box changes, the processValueChange() method of the listener gets called. This method allows us
to attach more than one listener with a component.

28.10.3	 Action Listener
An action listener may also be implemented in two ways: Using actionListener attribute of the

component tag and using <f:actionListener> tag.

28.10.3.1   Using actioneListener Attribute
Here, we first implement a method in a managed bean. The method should look like this:
public void methodName(ActionEvent e);

Here is an example:
@ManagedBean(name = "ehBean")
public class Bean {
public void actionMethod(ActionEvent e) {

//take actions
}

}

JAVA SERVER FACES 833

We can write any code inside the method. This listener method can then be attached with a
component using its actionListener attribute as follows:

<h:form >
<h:commandButton value="Click" actionListener="#{ehBean.actionMethod}"/>

</h:form>

When the button is clicked, the form is submitted which makes a JSF call. The JSF runtime
implementation then calls this actionMethod() method. Note that this method limits us to use only
one listener for the component.

28.10.4	 Using <f:actionListener> tag
Here, we write a class that implements ActionListener interface that has single method public

void processAction(). Here is a sample value change listener class:
package eh;
import javax.faces.event.*;

public class MyActionListener implements ActionListener {
@Override
public void processAction(ActionEvent event) throws AbortProcessingException{
//take actions

}
}

We can then attach this listener with a component as follows:
<h:form >

<h:commandButton value="Click" >
<f:actionListener type="eh.MyActionListener"/>

</h:commandButton>
</h:form>

The type attribute specifies fully-qualified name of the listener class. When the button is clicked,
the processAction() method of the listener gets called. This methods allows us to attach more than
one listeners with a component.

28.11	 AN EVENT HANDLING EXAMPLE
In the previous sections, we have seen how to work with JSF events. Let us now write a simple

application that leverages JSF’s event model. The application has a simple xhtml file containing
two selection boxes. The first one has a list of components (such as HDD, Monitor etc.) present in
a computer system. The purpose of the second selection box is to provide a set of options for the
component selected. This requires the content of the second selection box to be changed when a user
selects a component from the first one. Here is the relevant part of the xhtml file:

<h:form>
Select component:
<h:selectOneMenu onchange="submit()" valueChangeListener="#{ehMyBean.set}" >

<f:selectItems value="#{ehMyBean.items}" />
</h:selectOneMenu>
Size:
<h:selectOneMenu >

<f:selectItems value="#{ehMyBean.spec}" />
</h:selectOneMenu>

</h:form>

The backing bean is shown here:
package eh;
import java.util.*;
import javax.faces.bean.*;
import javax.faces.event.*;

@ManagedBean(name = "ehMyBean", eager = true)
@SessionScoped
public class MyBean {

Map<String, String[]> maps = new LinkedHashMap<String,String[]>();;
String[] spec;
public MyBean(){

maps.put("HDD", new String[] {"200 GB", "500 GB"});
maps.put("Monitor", new String[] {"20'", "21'"});
spec = maps.get("HDD");

}
public void set(ValueChangeEvent e){

spec = maps.get(e.getNewValue());
}
public String[] getSpec() { return spec; }
public Object[] getItems(){return maps.keySet().toArray();}

}

834 ADVANCED JAVA PROGRAMMING

package eh;
import java.util.*;
import javax.faces.bean.*;
import javax.faces.event.*;

@ManagedBean(name = "ehMyBean", eager = true)
@SessionScoped
public class MyBean {

Map<String, String[]> maps = new LinkedHashMap<String,String[]>();;
String[] spec;
public MyBean(){

maps.put("HDD", new String[] {"200 GB", "500 GB"});
maps.put("Monitor", new String[] {"20'", "21'"});
spec = maps.get("HDD");

}
public void set(ValueChangeEvent e){

spec = maps.get(e.getNewValue());
}
public String[] getSpec() { return spec; }
public Object[] getItems(){return maps.keySet().toArray();}

}

A sample screen shot of this application is shown here:

28.12	 PAGE NAVIGATION
A web site typically contains a number of pages. A page can navigate another page using

•	 Implicit navigation.
•	 Navigation rules (including conditional rules) defined in managed beans.
•	 Navigation rules defined in JSF configuration file named faces-config.xml.

28.12.1	 Auto Navigation
The simplest way to refer to a page from another is to use action attribute of <h:commandButton>

or <h:commandLink> tag.
<h:form>

<h:commandButton action="check" value="Login" />
</h:form>

When this button captioned “Login” is clicked, the request is forwarded to a page check.xhtml
which is expected to exist in the same directory of the current page. The <h:commandLink> tag may
be used in the same way as follows:

<h:form>
<h:commandLink action="help" value="Help" />

</h:form>

Here, when the link captioned “Help” is clicked, the request is forwarded to a page help.xhtml.
JSF by default forwards requests to navigated page and the URL of the application does not

change. To redirect the request to the navigated page, we can pass the value of the faces-redirect
parameter as true as follows:

<h:commandButton action="check?faces-redirect=true" value="Login" />

JAVA SERVER FACES 835

28.12.2	 Using Managed bean
The value of action attribute may be view name returned by a managed bean method as

follows:
<h:form>

<h:commandButton action="#{loginBean.redirect}" value="Login" />
</h:form>

Here the view name is obtained by calling the redirect() method of loginBean which looks
like this:

package navigation;
import javax.faces.bean.*;
@ManagedBean
public class LoginBean {
public String redirect() {

return "check";
}

}

The method returns the view name “check”. So when the button is clicked, JSF forwards the
request to the page check.xhtml. The bean method may take a parameter:

public String redirect(String str) { return str; }

This is referred to as:
<h:commandButton action="#{loginBean.redirect(‘check’)}" value="Login" />

Ability to pass a parameter to bean method gives us more control on page navigation. For example,
the bean method may return different view names based on the parameter passed as follows:

public String redirect(String str) { return "page"+str; }

We can now use the same method to navigate different pages as follows:
<h:commandButton action="#{loginBean.redirect('1')}" value="Page1" />
<h:commandButton action="#{loginBean.redirect('2')}" value="Page2" />

allows us to navigate a page conditionally.

28.12.3	 Using Navigation Rule in Faces-config.xml
Navigation rules may be specified explicitly in faces-config.xml as follows:
<navigation-rule>

<from-view-id>index.xhtml</from-view-id>
<navigation-case>

<from-action>#{controller.method1}</from-action>
<from-outcome>page</from-outcome>
<to-view-id>p1.xhtml</to-view-id>

</navigation-case>
<navigation-case>

<from-action>#{controller.method2}</from-action>
<from-outcome>page</from-outcome>
<to-view-id>p2.xhtml</to-view-id>

</navigation-case>
</navigation-rule>

This specifies a set of rules to be used to find pages from the page index.xhtml. This first rule
says that for form action #{controller.method1} that outcomes page, the page p1.xhtml is to be
used. Similarly, for form action #{controller.method2} that outcomes page, the page p2.xhtml
is to be used. Note that the target view is determined from the form action as well as outcome.
This means even if the outcome of two different form actions is same, different target views may
be specified.

836 ADVANCED JAVA PROGRAMMING

KEYWORDS
Apply Request Values—The second phase of JSF
request processing life-cycle where submitted values
are stored in the component tree

Converter tags—JSF tags that can convert String
data to other Java type and vice versa

Deferred evaluation—Evaluation of EL expressions
that takes place at different phases of JSF request
processing life-cycle

Expression Language—A language that specifies
rules to write simple expressions for accessing and
manipulating managed beans in an elegant manner

Facelets tags—JSF tags used for page layout for
web applications

Invoke Application—The fifth phase of JSF request
processing life-cycle where event listeners are invoked
(if not already invoked)

Immediate evaluation—Evaluation of EL expressions
that takes place when the page is rendered

Java Server Faces— A Java-based framework for
creating web-based user interfaces

Life-cycle phases—Steps of JSF request processing
life-cycle

Lvalue expressions—Expressions that can read and

write data

Managed Bean— A bean created and managed by a
JSF implementation

Method Expression—An EL expression that can
invoke a method

Process Validations—The third phase of JSF request
processing life-cycle where converters and validators
are invoked

Rvalue expressions—Expressions that can only read
data, but cannot write

Render Response—The last phase of JSF request
processing life-cycle where the client interface is
generated

Request Processing Life-Cycle—Duration between
a JSF request to JSF response

Restore View—The first phase of JSF request
processing life-cycle where the component tree is
either created or restored

Update Model Values—The fourth phase of JSF
request processing life-cycle where model objects
are updated

Value Expression—An EL Expression that can either
yield a value or set a value

SUMMARY
Java Server Faces (JSF) is a Java-based framework
for creating web-based user interfaces. Each JSF
request, from its submission to completion, known as
life-cycle, is processed by a series of phases, known
as life-cycle phases: Restore View, Apply Request
Values, Process Validations, Update Model Values,
Invoke Application and Render Response.

User Interface (UI) components in a JSF page are
often associated with JavaBeans. Since these beans
are created and managed by a JSF implementation,
they are affectionately called managed beans. The
@ManagedBean annotation registers the bean to be
managed with the FacesServlet implementation. We
can also configure managed bean in faces configuration
file faces-config.xml using <managed-bean>.

The scope of a managed bean tells JSF runtime
when to instantiate the bean and how long the
instance should be kept alive. Six kind of scopes are

defined in JSF specification and are represented by
scope annotations @NoneScoped, @RequestScoped,
@ViewScoped, @SessionScoped, @ApplicationScoped
and @CustomScoped annotations. This annotation
@ManagedProperty is used to inject a value into a
property.

The properties of managed bean can be accessed
from pages, faces configuration files as well as Java
code.

The Expression Language (EL) specifies rules to write
simple expressions for accessing and manipulating
managed beans in an elegant manner. Specifically, EL
expressions can set bean properties and can invoke
arbitrary static and public methods. The evaluation
of EL expressions may happen at different times and
is referred to as immediate evaluation and deferred
evaluation. EL expressions are also categorized
as: value expressions and method expressions.

JAVA SERVER FACES 837

Value expressions can either yield a value or set a
value, whereas a method expression invokes a method.

Templates allow us to place common part in a single
file and refer to it from pages that need it. JSF also
allows us to enhance the functionality of built-in tags
or to create new custom tags.

Data conversion and validation are important
concepts of JSF. Oracle’s JSF provides many built-in

convertor classes to perform standard conversions
between strings and simple data types in the package
javax.faces.convert. JSF also provides facilities to
validate data of editable components in the Process
Validations phase of request processing life-cycle.

JSF provides the tag <f:ajax> to support AJAX
capabilities in a standard way. Event handling in JSF
is done in a standard way.

WEB RESOURCES
http://docs.oracle.com/javaee/6/tutorial/

doc/bnaph.html
JavaServer Faces Technology

https://netbeans.org/kb/docs/web/jsf20-

intro.html
Introduction to JavaServer Faces 2.x

http://www.tutorialspoint.com/jsf/
JavaServer Faces (JSF) Tutorial

http://www.exadel.com/tutorial/jsf/

jsftutorial-kickstart.html
JSF KickStart: A Simple JavaServer Faces Application

http://www.vogella.com/tutorials/

JavaServerFaces/article.html
JSF (JavaServer Faces) - Tutorial

http://www.java-samples.com/jsf/
JSF (JavaServer Faces) - Tutorial

http://www.javabeat.net/jsf-2/
JSF 2 Tutorials and Examples

EXERCISES
Objective-type Questions

	 1.	 What is the use of the <h:column> tag?
	 (a)	 Tag provides a row into dataTable
	 (b)	 Tag provides a column into dataTable.
	 (c)	 Tag provides a cell into dataTable.
	 (d)	 None of the above

	 2.	 What is the full form of JSF?
	 (a)	 Java Server Finding
	 (b)	 Java Service Facility
	 (c)	 Java Server Faces
	 (d)	 Java Simple Facility

	 3.	 The name of servlet capable of processing JSF
requests is

	 (a)	 JSFServlet
	 (b)	 JSFServiceServlet
	 (c)	 JavaServerFacesServlet
	 (d)	 FacesServlet

	 4.	 What is the name of the default faces configuration
file?

	 (a)	 faces-config.xml
	 (b)	 config.xml
	 (c)	 config-faces.xml
	 (d)	 jsf-config.xml

	 5.	 What is namespace for JSF tags to render HTML
tags?

	 (a)	 http://www.w3.org/1999/xhtml
	 (b)	 http://java.sun.com/jsf/html
	 (c)	 http://java.sun.com/jsf/facelets
	 (d)	 http://java.sun.com/jsf/composite

	 6.	 Which of the following is not a phase in JSF
request processing life-cycle?

	 (a)	 Restore View
	 (b)	 Apply Request Values
	 (c)	 Process Validations
	 (d)	 Prepare Response

	 7.	 What is namespace for JSF tags to facelet tags?
	 (a)	 http://www.w3.org/1999/xhtml
	 (b)	 http://java.sun.com/jsf/html
	 (c)	 http://java.sun.com/jsf/facelets
	 (d)	 http://java.sun.com/jsf/composite

	 8.	 How many phases are there in JSF request
processing life-cycle?

	 (a)	 5	 (c)	 7
	 (b)	 6	 (d)	 8

838 ADVANCED JAVA PROGRAMMING

	 9.	 Which of the following phases is responsible to
update model objects?

	 (a)	 Restore View
	 (b)	 Apply Request Values
	 (c)	 Process Validations
	 (d)	 None of the above

	10.	 Which of the following phases is invoked for the
first request?

	 (a)	 Process Validations
	 (b)	 Render Response
	 (c)	 Invoke Application
	 (d)	 Update Model Values

	11.	 Which of these listeners can be registered for any
phase?

	 (a)	 phase listener
	 (b)	 action listener
	 (c)	 value change listener
	 (d)	 None of the above

	12.	 What is the first phase called in JSF request
processing life-cycle?

	 (a)	 Render Response
	 (b)	 Invoke Application
	 (c)	 Update Model Values
	 (d)	 Restore View

	13.	 Which of the following annotations used to register
a bean as managed bean?

	 (a)	 @CreateManagedBean
	 (b)	 @RegisterManagedBean
	 (c)	 @ManagedBean
	 (d)	 @RegisterAsManagedBean

	14.	 Which of the following tags is used in the faces
configuration file to register a bean as managed
bean?

	 (a)	 <managed-bean>
	 (b)	 <create-managed-bean>

	 (c)	 <register-managed-bean>
	 (d)	 <register-bean>

	15.	 Which of the following scope annotations is
assumed if none is specified?

	 (a)	 @NoneScoped
	 (b)	 @RequestScoped
	 (c)	 @SessionScoped
	 (d)	 @ApplicationScoped

	16.	 Which of the following annotations is used for
property injection?

	 (a)	 @InjectProperty
	 (b)	 @InjectManagedProperty
	 (c)	 @UpdateProperty
	 (d)	 @ManagedProperty

	17.	 What is the full form of EL?
	 (a)	 Expression Literal
	 (b)	 Example Language
	 (c)	 Expression Language
	 (d)	 Efficient Language

	18.	 Which of the following tags is used to render HTML
anchor tag?

	 (a)	 <h:commandButton>
	 (b)	 <h:commandLink>
	 (c)	 <h:outputLink>
	 (d)	 All of the above

	19.	 Which of the following characters is used to
indicate immediate evaluation of EL expression?

	 (a)	 $	 (c)	 &
	 (b)	 #	 (d)	 *

	20.	 Which of the following characters is used to
indicate deferred evaluation of EL expression?

	 (a)	 $	 (c)	 &
	 (b)	 #	 (d)	 *

Subjective-type Questions

	 1.	 What are the advantages of JSF?

	 2.	 How do you configure the configuration file?
Is it possible to have more than one Faces
Configuration file?

	 3.	 Explain briefly the life-cycle phases of JSF.

	 4.	 How are the components of JSF rendered?

	 5.	 How do you declare the page navigation
(navigation rules) in faces-config.xml file?

	 6.	 What are the differences between a Backing Bean
and Managed Bean?

	 7.	 How do you pass a parameter to the JSF
application using the URL string?

JAVA SERVER FACES 839

	 8.	 Describe briefly JavaServer Faces event and
listener model.

	 9.	 What is the use of immediate attribute?

	10.	 How do you print out html markup with
h:outputText?

	11.	 What is the differences between action and
actionlistener in JSF components ?

	12.	 Briefly describe the concept of Validators and
Converters in JSF.

	13.	 How do you show confirmation dialog when a user
clicks a button?

	14.	 How do you access web.xml init parameters from
Java code?

	15.	 How do you pass parameters to methods using
El expressions?

Answers to Objective-type Questions

Chapter-1: Java Tools

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. d 3. b 4. d

5. a 6. a 7. d 8. b

9. c 10. d 11. d 12. a

13. b 14. b 15. a 16. a

17. b 18. d 19. c 20. c

Chapter-2: Exception Handling

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. a 3. c 4. c

5. a 6. b 7. d 8. a

9. b 10. c 11. d 12. a

13. c 14. a 15. b 16. c

17. d 18. d 19. b 20. a

21. b 22. b 23. d 24. a

25. c 26. c 27. b 28. d

29. a 30. d

Chapter-3: Multi-threading

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. d 3. d 4. c

5. d 6. a 7. c 8. a

9. d 10. b 11. c 12. a

13. c 14. c 15. a 16. c

17. a 18. b 19. d 20. A

21. d 22. b 23. a 24. c

25. a 26. a 27. c 28. d

29. c 30. b

842 ANSWERS TO OBJECTIVE-TYPE QUESTIONS

Chapter-4: Garbage Collection

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. d 3. b 4. d

5. a 6. c 7. a 8. d

9. d 10. c 11. d 12. b

13. a 14. b 15. a 16. d

17. d 18. d 19. b 20. a

Chapter-5: Collection Framework

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. d 3. d 4. a

5. a 6. c 7. c 8. a

9. b 10. a 11. d 12. b

13. a 14. d 15. d 16. b

17. c 18. c 19. d 20. b

21. a 22. a 23. b 24. d

Chapter-6: Generic Programming

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. c 3. b 4. b

5. c 6. a 7. d 8. d

9. b 10. a 11. a 12. c

13. b 14. b 15. d 16. d

17. c 18. b 19. b 20. a

Chapter-7: Reflection

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. b 3. b 4. c

5. a 6. d 7. b 8. c

9. a 10. d 11. c 12. b

13. c 14. d 15. d 16. b

17. a 18. c 19. d 20. c

21. a

Chapter-8: Java Native Interface

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. c 3. a 4. c

5. c 6. d 7. c 8. a

ANSWERS TO OBJECTIVE-TYPE QUESTIONS  843

9. a 10. b 11. d 12. c

13. c 14. c 15. a 16. a

17. c 18. d 19. c 20. d

21. d 22. a 23. b 24. a

25. c 26. c 27. b 28. a

29. c 30. c 31. a 32. b

Chapter-9: AWT and Swing

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. c 3. d 4. b

5. a 6. a 7. b 8. d

9. a 10. c 11. c 12. a

13. b 14. d 15. a 16. a

17. c 18. c 19. a 20. b

Chapter-10: Java and XML

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. b 3. a 4. a

5. c 6. d 7. c 8. b

9. d 10. c 11. b 12. c

13. d 14. a 15. b 16. c

17. c 18. a 19. b 20. b

Chapter-11: Input /Output

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. b 3. d 4. a

5. c 6. d 7. c 8. b

9. d 10. b 11. a 12. b

13. a 14. c 15. a 16. b

17. c 18. c 19. b 20. a

21. b 22. a 23. c 24. a

25. a 26. d 27. b 28. b

Chapter-12: Basic Networking

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. c 3. c 4. a

5. c 6. a 7. d 8. b

9. c 10. d 11. c 12. b

844 ANSWERS TO OBJECTIVE-TYPE QUESTIONS

13. d 14. c 15. a 16. d

17. b 18. d 19. a 20. a

Chapter-13: Socket Programming

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. c 3. d 4. a

5. d 6. d 7. b 8. b

9. a 10. d 11. b 12. a

13. a 14. a 15. c 16. d

17. a 18. d 19. c 20. d

Chapter-14: Remote Method Invocation

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. a 2. d 3. a 4. a

5. c 6. a 7. c 8. b

9. d 10. a 11. d 12. c

13. d 14. b 15. d 16. b

17. a 18. d 19. d 20. b

Chapter-15: Java Mail API

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. a 2. d 3. c 4. a

5. a 6. b 7. a 8. b

9. a 10. d 11. a 12. c

13. b 14. c 15. a 16. c

17. b 18. d 19. c 20. a

Chapter-16: Applets

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. c 3. b 4. d

5. a 6. c 7. a 8. d

9. c 10. a 11. b 12. d

13. a 14. d 15. c 16. a

17. c 18. d 19. c 20. a

ANSWERS TO OBJECTIVE-TYPE QUESTIONS  845

Chapter-17: Java XML-RPC

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. d 3. d 4. a

5. b 6. d 7. a 8. a

9. d 10. a 11. b 12. d

13. c 14. b 15. d 16. a

17. d 18. d 19. c 20. A

21. b 22. d 23. b 24. c

25. d 26. c 27. b 28. a

29. c 30. a 31. d 32. a

Chapter-18: Java and SOAP

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. c 3. b 4. b

5. d 6. d 7. d 8. c

9. a 10. c 11. b 12. b

13. d 14. a 15. c 16. b

17. d 18. d 19. a 20. b

21. a 22. b 23. c 24. d

25. a 26. d 27. d 28. b

29. d 30. a 31. b 32. c

Chapter-19: Security

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. c 3. b 4. a

5. b 6. d 7. d 8. b

9. b 10. d 11. a 12. a

13. d 14. c 15. b 16. c

17. c 18. a 19. b 20. a

21. d 22. d 23. b 24. a

25. a 26. a 27. b 28. a

29. c 30. a 31. b 32. d

33. c 34. d 35. c 36. a

37. a 38. d 39. c 40. c

41. d 42. d

846 ANSWERS TO OBJECTIVE-TYPE QUESTIONS

Chapter-20: Servlet

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. d 3. a 4. b

5. b 6. d 7. b 8. a

9. c 10. d 11. c 12. a

13. b 14. a 15. c 16. b

17. a 18. b 19. a 20. d

21. b

Chapter-21: Java Server Pages

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. d 3. c 4. d

5. a 6. d 7. c 8. c

9. b 10. b 11. d 12. a

13. d 14. b 15. c 16. c

17. b 18. a 19. d 20. c

Chapter-22: Java Database Connectivity (JDBC)

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. d 3. c 4. b

5. a 6. b 7. a 8. c

9. c 10. a 11. b 12. b

13. c 14. a 15. b 16. a

17. a 18. d 19. d 20. b

Chapter-23: Hibernate

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. a 3. a 4. a

5. a 6. a 7. b 8. a

9. c 10. b 11. c 12. b

13. b 14. a 15. d 16. b

17. b 18. c 19. b 20. c

21. c 22. a 23. d 24. b

25. d 26. d 27. d 28. a

29. c 30. b

ANSWERS TO OBJECTIVE-TYPE QUESTIONS  847

Chapter-24: Java Naming and Directory Interface

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. d 2. c 3. d 4. b

5. c 6. c 7. a 8. d

9. c 10. d 11. b 12. d

13. d 14. c 15. a 16. b

17. a 18. d 19. b 20. c

21. d 22. a 23. d 24. a

Chapter-25: Java Message Service

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. c 3. d 4. d

5. a 6. c 7. c 8. b

9. d 10. b 11. b 12. c

13. d 14. c 15. d 16. b

17. a 18. b 19. a 20. a

21. a 22. b 23. c 24. b

25. d 26. d 27. d 28. c

29. a 30. b

Chapter-26: Introduction to J2EE

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. c 3. d 4. a

5. d 6. d 7. d 8. d

9. b 10. b 11. b 12. c

13. a 14. d 15. d 16. b

17. d 18. c 19. a 20. d

Chapter-27: Java and CORBA

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. c 2. d 3. c 4. d

5. a 6. d 7. b 8. d

9. b 10. c 11. b 12. s

13. c 14. b 15. a 16. c

17. c 18. a 19. c 20. c

21. c 22. a 23. b 24. b

848 ANSWERS TO OBJECTIVE-TYPE QUESTIONS

25. d 26. d 27. b 28. b

29. d 30. b

Chapter-28: Java Server Faces

Q. No Answer Q. No Answer Q. No Answer Q. No Answer

1. b 2. c 3. d 4. a

5. b 6. d 7. c 8. b

9. d 10. b 11. a 12. d

13. c 14. a 15. b 16. d

17. c 18. d 19. a 20. b

Features of

Application-based
Examples
The book tries to give the
practical applications of the
concepts of Advanced Java
Programming by providing ample
application-based examples, with
step-by-step explanations.

SECURITY 11

At this moment, both client and server are ready to communicate securedly after successful SLL
handshake. Start the SSL server first using the following command:

 java -Djavax.net.ssl.keyStore=server.ks -Djavax.net.ssl.keyStorePassword=123456
SSLServer

Note that the key store file and its password are passed to Java interpreter using command line
arguments. Start the client using the following command

 java -Djavax.net.ssl.trustStore=client.ts -
Djavax.net.ssl.trustStorePassword=123456 SSLClient localhost

Here, we provide the trust store file and its password. A sample output of the application is shown
in Figure 19.4:

(i)

(ii)

Figure 19.4: Socket communication over SSL (i) Server (ii) Client

The key store and trust store files and their password may also be specified using some Java
properties. Add the following lines in SimpleSSLServer.java:

System.setProperty("javax.net.ssl.keyStore", "server.ks");
System.setProperty("javax.net.ssl.keyStorePassword", "123456");

Also add the following lines in SimpleSSLClient.java:
System.setProperty("javax.net.ssl.trustStore", "client.ts");
System.setProperty("javax.net.ssl.trustStorePassword", "123456");

After recompilation, we can then run the server and client directly whose output is shown in
Figure 19.5:

(i)

(ii)

Figure 19.5: Communication over SSL Socket (i) Server (ii) Client

Chapter 19.indd 11 1/20/2015 5:51:29 PM

SECURITY 7

	 3.	 The	client	tries	to	verify	the	server’s	digital	certificate.	If	the	server	is	successfully	authenticated,	client	goes	to	
the	next	step,	else	warns	the	user	about	the	problem.

	 4.	 The	client	creates	a	pre-master	secret	key,	encrypts	it	using	server’s	public	key	obtained	from	the	server’s	certificate	
in	step	2	and	sends	the	encrypted	to	the	server.

	 5.	 If	the	server	requested	client	authentication,	client	generates	a	data	unique	to	this	handshake,	encrypts	with	the	
client’s	private	key	and	sends	it	along	with	the	client’s	digital	certificate	to	the	server.

	 6.	 If	the	server	has	requested	client	authentication,	the	server	attempts	to	authenticate	the	client.	If	the	client	is	
authenticated	successfully,	 the	server	uses	 its	private	key	to	decrypt	 the	pre-master	secret,	 then	performs	a	
series	of	steps	(which	the	client	also	performs,	starting	from	the	same	pre-master	secret)	to	generate	the	master	
secret.

	 7.	 Both	the	client	and	the	server	use	the	master	secret	to	generate	the	session	keys,	which	are	symmetric	keys	used	
to	encrypt	and	decrypt	information	exchanged	during	the	SSL	session	and	to	verify	its	integrity.

	 8.	 The	client	sends	a	message	to	the	server	informing	it	that	future	messages	from	the	client	are	encrypted	with	the	
session	key.	It	also	sends	a	separate	encrypted	message	indicating	that	the	client	portion	of	the	handshake	is	
complete.

	 9.	 The	server	sends	a	message	to	the	client	informing	it	that	future	messages	from	the	server	are	encrypted	with	
the	session	key.	It	also	sends	a	separate	encrypted	message	indicating	that	the	server	portion	of	the	handshake	
is	complete.

	10.	 The	entire	SSL	handshake	is	now	complete,	and	the	SSL	session	starts.

19.4.3 An Example
In this section, we shall develop a simple but elegant client–server socket application using SSL.

In this application, the client sends a string to the server. The server prints the string and sends it
back to the client. The client finally prints it. Although this application is very simple, it demonstrates
basic steps required to develop almost all SSL-based secure applications.

19.4.3.1 Writing the Server
In a traditional (non-SSL) socket application, the server program first creates a java.net.

ServerSocket object. In an SSL-enabled socket application, the equivalent object is javax.net.ssl.
SSLServerSocket object and is created in a slightly different way. All constructors of SSLServerSocket
class are protected. Consequently, those constructors cannot be used to instantiate SSLServerSocket
objects. The instances are created using SSLServerSocketFactory class. An instance of this factory
is usually created as follows:

SSLServerSocketFactory factory = (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

The SSLServerSocket object is then created using createServerSocket() method on this factory:
SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);

This creates an SSLServerSocket object that listens on port 6789. The server then starts listening
when an accept() method is invoked as follows:

SSLSocket ss = (SSLSocket) sss.accept();

The server is then ready to accept incoming connections. The complete source code (SSLServer.
java) is given below:

import javax.net.ssl.*;
import java.io.*;
public class SSLServer {
 public static void main(String[] args) {
 try {
 SSLServerSocketFactory factory = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Chapter 19.indd 7 1/20/2015 5:51:19 PM

SECURITY 7

	 3.	 The	client	tries	to	verify	the	server’s	digital	certificate.	If	the	server	is	successfully	authenticated,	client	goes	to	
the	next	step,	else	warns	the	user	about	the	problem.

	 4.	 The	client	creates	a	pre-master	secret	key,	encrypts	it	using	server’s	public	key	obtained	from	the	server’s	certificate	
in	step	2	and	sends	the	encrypted	to	the	server.

	 5.	 If	the	server	requested	client	authentication,	client	generates	a	data	unique	to	this	handshake,	encrypts	with	the	
client’s	private	key	and	sends	it	along	with	the	client’s	digital	certificate	to	the	server.

	 6.	 If	the	server	has	requested	client	authentication,	the	server	attempts	to	authenticate	the	client.	If	the	client	is	
authenticated	successfully,	 the	server	uses	 its	private	key	to	decrypt	 the	pre-master	secret,	 then	performs	a	
series	of	steps	(which	the	client	also	performs,	starting	from	the	same	pre-master	secret)	to	generate	the	master	
secret.

	 7.	 Both	the	client	and	the	server	use	the	master	secret	to	generate	the	session	keys,	which	are	symmetric	keys	used	
to	encrypt	and	decrypt	information	exchanged	during	the	SSL	session	and	to	verify	its	integrity.

	 8.	 The	client	sends	a	message	to	the	server	informing	it	that	future	messages	from	the	client	are	encrypted	with	the	
session	key.	It	also	sends	a	separate	encrypted	message	indicating	that	the	client	portion	of	the	handshake	is	
complete.

	 9.	 The	server	sends	a	message	to	the	client	informing	it	that	future	messages	from	the	server	are	encrypted	with	
the	session	key.	It	also	sends	a	separate	encrypted	message	indicating	that	the	server	portion	of	the	handshake	
is	complete.

	10.	 The	entire	SSL	handshake	is	now	complete,	and	the	SSL	session	starts.

19.4.3 An Example
In this section, we shall develop a simple but elegant client–server socket application using SSL.

In this application, the client sends a string to the server. The server prints the string and sends it
back to the client. The client finally prints it. Although this application is very simple, it demonstrates
basic steps required to develop almost all SSL-based secure applications.

19.4.3.1 Writing the Server
In a traditional (non-SSL) socket application, the server program first creates a java.net.

ServerSocket object. In an SSL-enabled socket application, the equivalent object is javax.net.ssl.
SSLServerSocket object and is created in a slightly different way. All constructors of SSLServerSocket
class are protected. Consequently, those constructors cannot be used to instantiate SSLServerSocket
objects. The instances are created using SSLServerSocketFactory class. An instance of this factory
is usually created as follows:

SSLServerSocketFactory factory = (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

The SSLServerSocket object is then created using createServerSocket() method on this factory:
SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);

This creates an SSLServerSocket object that listens on port 6789. The server then starts listening
when an accept() method is invoked as follows:

SSLSocket ss = (SSLSocket) sss.accept();

The server is then ready to accept incoming connections. The complete source code (SSLServer.
java) is given below:

import javax.net.ssl.*;
import java.io.*;
public class SSLServer {
 public static void main(String[] args) {
 try {
 SSLServerSocketFactory factory = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Chapter 19.indd 7 1/20/2015 5:51:19 PM

8 ADVANCED JAVA PROGRAMMING

import javax.net.ssl.*;
import java.io.*;
public class SSLServer {
 public static void main(String[] args) {
 try {
 SSLServerSocketFactory factory = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sss = (SSLServerSocket) factory.createServerSocket(6789);
 SSLSocket ss = (SSLSocket) sss.accept();
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = in.readLine()) != null) {
 System.out.println("received<-- "+line);
 out.println(line);
 System.out.println("sent --> "+line);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

This program simply sends strings, obtained from the client, back to the client.

19.4.3.2 Writing the Client
The client first creates a SSLSocketFactory as follows:
SSLSocketFactory factory = (SSLSocketFactory) SSLSocketFactory.getDefault();

The counterpart of Socket in SSL is SSLSocket which is created as follows:
SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

The complete source code (SSLClient.java) is given below:
import javax.net.ssl.*;
import java.io.*;
public class SSLClient {
 public static void main(String[] args) {
 try {
 SSLSocketFactory factory = (SSLSocketFactory)
 SSLSocketFactory.getDefault();
 SSLSocket ss = (SSLSocket) factory.createSocket(args[0], 6789);

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.getInputStream()));
 PrintWriter out = new PrintWriter(ss.getOutputStream(), true);

 String line = null;
 while ((line = br.readLine()) != null) {
 out.println(line);
 System.out.println("sent --> "+line);
 System.out.println("received<-- "+in.readLine());
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

19.4.3.3 Compiling and Running the Application
Compile the server program using the following command:
javac SSLServer.java

Similarly, compile the client program using the following command:
javac SSLClient.java

Since, SSL uses certificates, we create a private/public keypair and a self signed certificate
for the server and store them in a JKS key store file server.ks using Java’s keytool utility as
follows:

keytool -genkey -keystore server.ks

Chapter 19.indd 8 1/20/2015 5:51:20 PM

Comprehensive Coverage
Extensive coverage of topics

such as JSP, JNDI, JMS, Java
and CORBA, J2EE, and JSF

in separate chapters provides
detailed insight into Advanced

Java Programming.

Socket Programming

Key Objectives

After completing this chapter readers will be able to—
• understand the basic idea of Inter-Process Communication
• get an overview of peer-to-peer and client–server network architecture
• know about the different types of sockets and their functionality
• know what socket address, port and reserved ports are
• use socket-related Java classes
• develop networking applications using TCP and UDP sockets
• understand how to develop iterative and concurrent server applications
• write multicasting application using sockets

13.1 INTRODUCTION
In the previous chapter, we have discussed some of the high level Java mechanisms for Inter-

Process Communication (IPC). In fact, these mechanisms use sockets as part of their underlying
implementation. In this chapter, we shall discuss sockets as a lower-layer IPC mechanism.

In distributed computing, Inter-Process Communication (IPC) is the fundamental idea for
the exchange of data among multiple processes and/or threads [Figure 13.1:]. It allows processes
(probably running on different computers) to communicate by exchanging information to perform
a designated task.

One process Another process

5! = ?

5! = 120

Figure 13.1: Inter-process Communications

CHAPTER – 13

Chapter 13.indd 1 1/20/2015 5:44:14 PM

CHAPTER – 14

Remote method InvocatIon

Key Objectives

After completing this chapter readers will be able to—
• get an overview about the Remote Procedure Call
• understand the architecture and different components of Java RMI
• know basic steps of writing RMI applications
• write distributed applications using RMI
• know what dynamic object activation is
• get an idea about callback mechanism
• know how dynamic class loading works

14.1 INTRODUCTION
The network programs that we have developed so far use the concept of sockets. Although, socket

provides a simple way to write network programs, it is neither very convenient nor the most powerful.
This is because everything must be transferred over the network as a stream of bytes. Though, Java
provides a rich set of interfaces and classes to accomplish this, writing a complex application using
these facilities is undoubtedly not so easy.

Having realized this fact, in the later versions of Java, a new object-oriented version of networking
(known as Remote Method Invocation) was incorporated. This technology elevates network
programming to a higher plane. In this chapter, we shall explore how this mechanism can be used
easily to develop sophisticated networking applications.

14.2 REMOTE METHOD INVOCATION
Java Remote Method Invocation (RMI) is an object-oriented Remote Procedure Call (RPC)

technique. It allows us to invoke methods on an object that exists in a different address space. This
address space may exist on the same computer or even on a different computer connected to the source

Chapter14.indd 1 1/23/2015 2:40:11 PM

CHAPTER – 21

Java Server PageS

Key Objectives

After completing this chapter readers will be able to—
• understand the advantages of JSP technology over other competitive technologies
• learn the architecture of JSP pages and their execution philosophy
• get an idea about the different components of JSP pages
• get an overview about the methods used to track sessions
• create and use JavaBean components
• create and use custom tags

21.1 INTRODUCTION AND MARKETPLACE
Java Server Pages (JSP) is a server-side technology that enables web programmers to generate

web pages dynamically in response to client requests. Among many server-side technologies used
to build dynamic web applications, JSP is the one that has pulled the attention of web developers
due to several reasons.

JSP is basically a high-level extension to the Java servlet technology. It enables us to insert
pure Java code in an HTML document directly. These pages are executed under the supervision of
an environment called web container. The web container first compiles the page on the server and
generates a servlet, which is loaded in the Java Runtime Environment (JRE) automatically. The
interesting part is that the web container only generates the servlet from the page if its last modification
time is newer than the time when the servlet was generated last. The servlet serves the client requests
in the usual way. This makes the development of web applications convenient, simple, and fast.
Maintenance also becomes very easy.

JSP technology provides excellent server-side programming for web applications that need
database access. JSP not only provides cross-web-server and cross-platform support, but also integrates
the WYSIWYG (What You See Is What You Get) features of static HTML pages with the extreme
power of Java technology.

Chapter21.indd 1 1/21/2015 1:01:06 PM

CHAPTER – 22

Java Database ConneCtivity (JDbC)

Key Objectives

After completing this chapter readers will be able to—
• get an idea about different types of JDBC drivers
• learn how to use JDBC technology in Java Server Pages
• know how to load JDBC drivers
• retrieve database metadata
• call stored procedures
• understand scrollable and updatable result set

22.1 INTRODUCTION
Many Java applications need access to databases. Java DataBase Connectivity (JDBC) allows us

to access databases through Java programs. It provides Java classes and interfaces to fire SQL and PL/
SQL statements, process results (if any), and perform other operations common to databases. Since
Java Server Pages can contain Java code embedded in them, it is also possible to access databases
from Java Server Pages. The classes and interfaces for database connectivity are provided as a
separate package, java.sql.

22.2 JDBC DRIVERS
A Java application can access almost all types of databases such as relational, object, and object-

relational. The access to a specific database is accomplished using a set of Java interfaces, each of
which is implemented by different vendors differently. A Java class that provides interfaces to a
specific database is called JDBC driver. Each database has its own set of JDBC drivers. Users need
not bother about the implementation of those Java classes. They can concentrate on developing
database applications. Those drivers are provided (generally freely) by database vendors. This way,

Chapter22.indd 1 1/20/2015 5:55:09 PM

CHAPTER – 25

Java Message service

Key Objectives

After completing this chapter readers will be able to—
• get an overview about the Java Message Service and its components
• understand P2P and Pub/Sub model of messaging
• know what synchronous and asynchronous message consumption are
• install and configure Open Message Queue
• write JMS applications
• know how to use JNDI with JMS

25.1 MESSAGING
Messaging is a communication technique between software components or applications. However,

unlike tightly-coupled communication techniques such as TCP sockets, RMI and CORBA, where both
the parties must be available during communication, messaging allows s/w components to exchange
messages; they don’t have to be available at the same time. This is achieved with the introduction of a
third component, called messaging agent that provides facilities such as creating, sending, receiving
and reading messages. Messaging clients connect to a messaging agent and communicate indirectly.
In fact, one need not know anything about the other, thus resulting the communication loosely-coupled.

Messaging is often used to coordinate programs in dissimilar systems or written in different
programming languages. However, unlike electronic mail, which is a method of communication
between people or between software applications and people, it is used for communication between
software components or applications.

25.2 JMS API
The Java Message Service (JMS) is a Java API that allows s/w components to create, send,

receive and read messages. Formerly developed by Sun, this Message Oriented Middleware (MOM)
defines a set of interfaces and associated semantics, which allows Java programs to communicate
with other messaging implementations. The mandatory part, which a programmer must know to

Chapter 25.indd 1 1/20/2015 6:01:25 PM

Codes and Screenshots
Readers can thoroughly understand

each topic with the help of
program codes and screenshots.

8 ADVANCED JAVA PROGRAMMING

Writing an endpoint interface is not always required. However, it makes testing and using the web
service from other Java clients far easier. This is an ordinary Java interface except that it uses some
annotations. JAX-WS uses annotations extensively, to simplify the development and deployment of
web service.

An interface, to be a web service interface, must be annotated by @WebService. The @SOAPBinding
annotation maps this web service to SOAP. The element style instructs to use RPC encoding style
for messages sent to and from the web service. Note that SOAP supports two kinds of encoding:
RPC style and document style. The default is document.

The @WebMethod tells that the method add() has to be exposed as a web service operation. Although
the specification says that the annotation is mandatory, often the code runs without it. The exposed
method must be public. The interface is ready and acts as a contract between the web service and
the client. The next step is to write an implementation of this interface.

package calc.ws;
import javax.jws.WebService;
//Service Implementation
@WebService(endpointInterface = "calc.ws.Calculator")
public class SimpleCalculator implements Calculator {
 @Override
 public int add(int a, int b) {
 System.out.println("Received: " + a + " and " + b);
 int result = a + b;
 System.out.println("Sent: " + result);
 return result;
 }
}

This class defines the method add() declared in Calculator interface. When a class implements
an endpoint interface, it is mandatory to use a @WebService annotation with a endpointInteface
element specifying the fully qualified name of the interface. In the above implementation class,
endpointInterface element tells that the name of the service endpoint interface defining the service’s
contract is calc.ws.Calculator.

18.9.2 Deploying Web Service
JAX-WS includes a class javax.xml.ws.Endpoint to easily publish and configure a web service.

We do not need a container to deploy a web service. Instead, we can end up with a bootstrap class that
calls one of the publish() method of Endpoint class. This bootstrap class may be the same service
implementation or a different class. We shall use a separate class for publishing web service. Here
is the essential line of code in the bootstrap class:

Endpoint.publish("http://172.16.5.81:6789/ws/calc", new SimpleCalculator());

This essentially publishes an endpoint for SimpleCalculator object with the URL
http://172.16.5.81:6789/ws/calc. The necessary server infrastructure is created by the JAX-WS
implementation and configured using some default configuration. For custom configuration, we
can use other overloaded methods of Endpoint class. We assume that the IP address of the machine
publishing this web service is 172.16.5.81. If you have a different address, change it.

The following is a complete source code (CalculatorPublisher.java) of the web service
publisher:

import calc.ws.*;
import javax.xml.ws.Endpoint;
public class CalculatorPublisher {
 public static void main(String[] args) {
 Endpoint.publish("http://172.16.5.81:6789/ws/calc", new
SimpleCalculator());
 }
}

Chapter18.indd 8 1/20/2015 5:50:23 PM

JAVA AND SOAP 9
import calc.ws.*;
import javax.xml.ws.Endpoint;
public class CalculatorPublisher {
 public static void main(String[] args) {
 Endpoint.publish("http://172.16.5.81:6789/ws/calc", new
SimpleCalculator());
 }
}

To compile and run the programs, create the following directory structure.
pub
 CalculatorPublisher.java

calc
ws

Calculator.java
SimpleCalculator.java

Go to the directory pub and use the following command to compile all classes:
javac calc\ws*.java *.java

To publish the web service, run the publisher using the following command
java CalculatorPublisher

You can check if the web service is published successfully or not by typing the following URL
in a web browser:

http://172.16.5.81:6789/ws/calc

If everything goes well, the browser’s screen looks as shown in Figure. 18.2:

Figure 18.2: Web services screen

Note that in practice, we hardly use Endpoint class to publish a web service; instead application
server is used for publishing the web services based on your web service SEI and other classes. We
shall see how to publish a web service using Apache’s tomcat servlet container later in this chapter.

18.9.3 Invoking Web Service
To invoke a web service, a client first creates a Service object that encapsulates a web service,

which is a set of related ports. A port, in turn, includes a port type, bound to a particular protocol,
and a particular endpoint address. A Service object is usually created from WSDL contract which
is available via WSDL URL.

In this section, we shall create the Service object manually using its static create() method and
the next section describes how to create it from WSDL using wsimport command. The create()
method has many overloaded versions. The commonly used one takes a URL and a QName as follows:

URL url = new URL("http://172.16.5.81:6789/ws/calc");
QName qname = new QName("http://ws.calc/", "SimpleCalculatorService");

Service service = Service.create(url, qname);

The first argument specifies the location of the web service’s WSDL file and the second gives
the qualified name of the web service. Since this Service is created from a WSDL file, the port(s)

Chapter18.indd 9 1/20/2015 5:50:25 PM

Software Information
The book lists steps for installation
and configuration of relevant
software (wherever necessary),
which is required for executing
the examples explained therein.

SERVLET 9

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorldServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello World Servlet</title></head>");
 out.println("<body>");
 out.println("<h1>Hello World!</h1>");
 out.println("</body></html>");
 out.close();
 }
}

The class HelloWorldServlet extends the HttpServlet class. So, it can handle HTTP requests.
It is written to handle only the GET method. Therefore, only the doGet() method is overridden.
The output of this servlet is a text document containing html tags. This is mentioned using the
setContentType() method. To send the data back to the client, a PrintWriter object is obtained
by calling the getWriter() method on the response object. Finally, it sends the following HTML
document.

<html><head><title>Hello World Servlet</title></head>
<body>
<h1>Hello World!</h1>
</body></html>

At the end, we close the PrintWriter object. It is not mandatory as the web container closes the
PrintWriter or ServletOutputStream automatically, when the service() method returns. An explicit
call to close() is useful when you want to perform some processing after responding to the client’s
request. This also tells the web container that the response is completed and the connection to the
client may be closed as well.

20.9.1 Installing Apache Tomcat web server
To install these servlets, we need a web server. Any web server that supports servlets may

be used. A list of web servers supporting servlets may be found in Table 20.1 and Table 20.2.
Note that the procedure for installing servlets varies from web server to web server. Please refer
to the documentation of your web server for definitive instructions. All the servlets are tested
in this book using Tomcat web server provided by Apache software foundation. Tomcat is a
lightweight, easily configurable free web server and is widely used by users who are new to
servlets.

Let us now discuss how to install and configure the Tomcat web server.
Before installing Tomcat, make sure that you have installed either Java 6 Standard Edition

(JDK 1.7) or Java 5 Standard Edition (JDK 1.6) in your computer. Download and install Java from
http://java.com/en/download/index.jsp. Once you have installed, include the Java “bin” directory
in the PATH environment variable. For example, if you have installed Java in D:\Java\jdk1.7.0_07,
include D:\Java\jdk1.7.0_07\bin subdirectory in the PATH environment variable. Additionally,
create an environment variable JAVA_HOME and set it by the Java installation directory (D:\Java\
jdk1.7.0_07 in our case).

Download the necessary files from http://tomcat.apache.org/. When I was writing this
book, the latest version was Tomcat 8.0. It is recommended to download a .zip or .zip.tar file
for the beginners. If you have downloaded an installer file, install it. If it is a .zip file or .zip.tar
file, simply unzip it in a folder. We shall assume that you have installed Tomcat in the D:\apache-
tomcat-8.0.0-RC1 directory.

Tomcat has a predefined directory structure. A typical directory structure is shown in
Figure 20.5:

Chapter 20.indd 9 1/20/2015 5:53:29 PM

2 ADVANCED JAVA PROGRAMMING

23.2 INSTALLING HIBERNATE
We assume that the latest version of Java is already installed on your computer. Download .zip

(for windows) or .tgz (for Unix) from http://hibernate.org/orm/downloads. We downloaded
the file hibernate-release-4.3.1.Final.zip and when unzipped, a set of files was generated.
A sample screen shot is shown in Figure 23.1:

Figure 23.1: Content of hibernate-release-4.3.1.Final.zip file

The lib directory contains a set of folders containing Hibernate library. The primary JAR files to
use hibernate API are stored in lib/required folder. Modify your CLASSPATH environment variable
to point these JAR files or specify them using –cp option of Java and javac command. If you are
using an IDE such as Eclipse, place them in your project library directory.

23.3 BASIC STEPS
A typical hibernate application is developed using the following steps:

•	 Writing	a	POGO	class
•	 Creating	a	database	table
•	 Creating	configuration	and	mapping	files
•	 Write	code	to	save,	retrieve,	update,	delete	objects

23.4 WRITING POJO CLASS
The first step is to create a Java POJO class. We consider a simple class Book as follows:
//Book.java
public class Book {
 private int b_id;
 private int b_price;
 private String b_title;
 public Book(){}
 public Book(String t, int p) {
 this.b_title = t;
 this.b_price = p;
 }
 public int getId() { return b_id; }
 public void setId(int id) { this.b_id = id; }
 public String getTitle() { return b_title; }
 public void setTitle(String t) { this.b_title = t; }
 public int getPrice() { return b_price; }
 public void setPrice(int p) { this.b_price = p; }
}

Chapter23.indd 2 1/20/2015 5:56:53 PM

EXCEPTION HANDLING 41

KEYWORDS
catch block—Contains code to handle exceptions

Checked Exception—A set of exceptions that must
be caught or declared to be thrown

Custom Exception classes—User-defined exception
classes that represent meaningful exceptional situations

Error—A subclass of Throwable that represents serious
problematic scenarios (we shall call them errors) that
applications can neither anticipate nor recover from

Exception—A subclass of Throwable that represents
exceptional scenarios that applications can catch and
handle

Exception hierarchy—A hierarchy of Java
exception classes that represent various exceptional
situations

Exceptions—Exceptional or unusual or abnormal
events that occur during the execution of programs

finally block—Contains code that always gets
executed no matter how try block exited

Nested try-catch— A try, catch or a finally block
containing another set of try-catch-finally blocks

Runtime exception—A set of exceptions that need not
be caught or declared to be thrown explicitly

throw—A keyword used to throw an exception
explicitly

Throwable—The root class of Java exception class
hierarchy

throws—A keyword used to specify a set of exceptions
a method might throw during its execution

try block—Used to contain a piece of code to be
examined

Try-with-resource statement—A construct that
allows us to use resources that get closed automatically
by the Java Runtime Environment

Unchecked Exceptions—A set of exceptions that
need not be caught or declared to be thrown explicitly

SUMMARY
Exceptions are exceptional/unusual/abnormal events
that occur during the execution of programs. Five
keywords are used for exception handling—try,
catch, throw, throws and finally. A try block contains
code to be examined. A try block is followed by one or
more catch blocks and/or one finally block. Exceptions
are thrown and caught by the respective catch block (if
any). The finally block, if present, is always executed
irrespective of how try block exits.

In Java, exceptional scenarios are represented by
various classes which are organized in a hierarchy. The
class Throwable is the root of this class hierarchy. The
Throwable class has several useful methods to collect
detailed information about an exception. Two subclasses
of this class are Exception and Error. The class
Error represents serious problematic scenarios that
applications can neither anticipate nor recover from them.
The class Exception represents rest of the exceptional
scenarios that applications can catch and handle.

Usually, exceptions are categorized into two groups:
checked exceptions and unchecked exceptions.

Checked exceptions are those that must be caught or
declared to be thrown. Java considers Throwable and
any of its subclass that is not also a subclass of either
RuntimeException or Error as checked exceptions.
Unchecked exceptions (also called runtime exceptions)
are those which need not be caught or declared to be
thrown explicitly.

It is also possible to explicitly throw an exception
using throw keyword. A method must specify the list
of checked exceptions that it might (directly/indirectly)
raise but does not handle them using throws clause.
Java 7 and later provides mechanism known as try with
resource statement that enables us to create and use
resources that get closed automatically by the Java
Runtime Environment.

It is possible for exception handlers to be nested within
one another. This means a try, catch or a finally block
can in turn contain another set of try-catch-finally blocks.

It is also possible to define custom exception classes
which must inherit (directly or indirectly) the class
Throwable.

WEB RESOURCES
http://docs.oracle.com/javase/tutorial/
essential/exceptions/
Lesson: Exceptions

http://www.tutorialspoint.com/java/java_
exceptions.htm
Java Exception Handling

Chapter2.indd 41 2/4/2015 5:12:59 PM

20 ADVANCED JAVA PROGRAMMING

The Java Naming and Directory Interface (JNDI) allows
Java application to use naming and directory. This initial
context is represented by an InitialContext object
and provides the starting point of name operations.
The bind() and lookup() methods are used to bind
and find objects respectively. The information about
a JNDI server and factory to be used to create initial
context is specified by the two properties java.naming.
provider.url and java.naming.factory.initial.

Apache Directory Server (often abbreviated as
ApacheDS) is LDAPv3 compatible, open source
directory server entirely written in Java. In this

chapter, in addition to file system naming service,
Java’s rmiregistry and orbd, we used ApacheDS to
demonstrate the JNDI concepts.

JNDI name related operations are adding, listing,
looking up, replacing and removing binding. The
directory specific operations are reading attributes,
binding with attributes, creating subcontext with
attributes, adding, modifying, removing attributes etc.

In addition to searching objects by their names, a
directory server also allows us to search by attributes.
A search may be performed specifying search query,
called search filter, consisting of logical expressions.

WEB RESOURCES
http://docs.oracle.com/javase/jndi/
tutorial/
The JNDI Tutorial

http://docs.oracle.com/javase/tutorial/jndi/
Trail: Java Naming and Directory Interface

http://docs.oracle.com/javase/tutorial/
jndi/ldap/jndi.html
The JNDI Tutorial

http://directory.apache.org/apacheds/
ApacheDS

http://www.javaworld.com/article/2076888/
core-java/jndi-overview--part-1--an-
introduction-to-naming-services.html
JNDI overview, Part 1: An introduction to naming services

http://www.coderpanda.com/jndi-tutorial/
JNDI Tutorial

EXERCISES
Objective-type Questions

 1. What is the full form of JNDI?
 (a) Java Network and Directory Interface
 (b) Java Naming and Directory Implementation
 (c) Java Network and Directory Implementation
 (d) Java Naming and Directory Interface

 2. What is the full form of LDAP?
 (a) Lazy Directory Access Protocol
 (b) Lightweight Dynamic Access Protocol
 (c) Lightweight Directory Access Protocol
 (d) Little Directory Access Protocol

 3. Which of the following is not an example of naming
service?

 (a) DNS (c) file system
 (b) rmiregistry (d) HTTP

 4. Which of the following is used to obtain the initial
context?

 (a) InitContext() (c) getInitialContext()
 (b) InitialContext() (d) Context()

 5. Which of the following is used to bind an object to
a name?

 (a) assign() (c) bind()
 (b) name() (d) map()

 6. Which of the following are JNDI properties?
 (a) java.naming.factory.initial
 (b) java.naming.provider.url
 (c) Both a) and b)
 (d) None of the above

 7. Which of the following methods is used to resolve
a name?

 (a) lookup() (c) find()
 (b) resolve() (d) search()

 8. Which of the following is used to rename an
existing binding?

 (a) change() (c) modify()
 (b) renew() (d) rename()

 9. Which of the following methods is used to find all
bindings?

 (a) find() (c) list()
 (b) search() (d) enumerate()

 10. Which of the following is an example of a directory
server?

 (a) Apache tomcat (c) Apache
 (b) Apache Ant (d) ApacheDS

Chapter24.indd 20 1/20/2015 5:58:23 PM

54 ADVANCED JAVA PROGRAMMING

 33. Which of the following methods is used to check
the integrity of a signed object?

 (a) check() (c) verify()
 (b) compare() (d) doCheck()

 34. Which of the following methods is used to obtain
the original object from a signed object?

 (a) getOriginalObject()
 (b) getEmbeddedObject()
 (c) extractObject()
 (d) getObject()

 35. Which of the following is true about signed object?
 (a) Private key is required to obtain the

embedded object.
 (b) Public key is required to obtain the

embedded object.
 (c) No key is required to extract the embedded

object.
 (d) The embedded object can never be

obtained.

 36. Which of the following is true about sealed object?
 (a) Decryption key is required to extract the

embedded object.
 (b) Private key is required to obtain the

embedded object.
 (c) Public key is required to obtain the

embedded object.
 (d) The embedded object can never be

obtained.

 37. Which of the following options is used with keytool
to display the content of a certificate?

 (a) -printcert (c) -showcert
 (b) -displaycert (d) -listcert

 38. Which of the following options is used with keytool
to display the content of a keystore?

 (a) -print (c) -show
 (b) -display (d) -list

 39. Which of the following store type can store secret
keys?

 (a) PKCS #12 (c) JCEKS
 (b) JKS (d) None of the above

 40. Which of the following options is used with keytool
to generate a private/public key pair?

 (a) -getseckey (c) -genkeypair
 (b) -genkey (d) -genbothkey

 41. Which of the following is not a secret key
generation algorithm?

 (a) DES (c) RC2
 (b) AES (d) DSA

 42. Which of the following is not a public key
generation algorithm?

 (a) RSA (c) DH
 (b) DSA (d) DES

Subjective-type Questions

 1. What is the difference between a SignedObject
and SealedObject?

 2. Show how objects can be transferred over the
network keeping object’s confidentiality and intrigrity.

 3. What is the purpose of a GuardedObject?

 4. What are the advantages of GuardedObject?

 5. Explain how an RMI application can be made
secured.

 6. How will you write and use your own socket
factories for RMI applications?

 7. Explain how to make an XML-RPC application
secured.

 8. What does the tool jarsigner do?

 9. Show the basic steps required to sign and verify
a JAR file using jarsigner tool.

 10. What is a message digest?

 11. What properties does a message digest satisfy?

 12. What do you mean by signing a JAR file multiple
times? What is its usefulness?

 13. Show the different procedures to install a security
manager.

 14. What is policy?

 15. What are policy files?

 16. Briefly describe the syntax of a policy file.

 17. What is the purpose of a grant entry in a policy
file?

 18. What is the purpose of a permission entry in a
policy file?

 19. How do you write custom permission classes?

Chapter 19.indd 54 1/20/2015 5:52:31 PM

Chapter-end Pedagogy
It comprises keywords,

objective-type questions (with
answers), and subjective-type

questions for students to test their
understanding of the concepts.

the Book

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

Abstract window toolkit 182

 Class hierarchy 183

Access control 545

Accessing GC 83

 Explicit garbage collection 84

 finalize() 84

 Inspecting GC parameters 83

AJAX 830

Algorithms 105

 Counting frequency 108

 Custom sort 106

 Finding extreme values 108

 Manipulation 107

 Searching 108

 Shuffling 106

 Sorting 106

Annotation 664

 Function 665

ApacheDS 698 699

Applets 421 422

 Life cycle 422

 Running the applet 426

 Writing an applet 426

 Communication between two applets 436

Application programming interface 288

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Arrays 150

Asynchronous client 493

Atomicity 59

Attr node 229

 Properties 229

B

Backward compatibility 126

BDK introspection 742

Beaninfo interface 752

Beans 612

Bounded type parameters 119

Browsing queue 728

Buffered stream 252

 Data streams 255

C

Callback 369 373 784

 Compiling the application 372

 Creating interfaces 370

 Implementing interfaces 371

 Running the application 372

 Writing the client 372

 Writing the server 371

C/C++ 159

 Syntax difference in C/C++ 163

 Types and data structures 165

 Using C++ 163

 Using Java package 164

Certificates 526–528

Checkbox 191

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Check box group 191

Choice 192

Classes 134

 Finding class members 140

 Inspecting class 137

 Working with class members 143

Client–Server model 288

Code base 433

Collection 92

Collection framework 116

Collection implementation 95

 ArrayList 99

 HashMap 103

 HashSet 96

 LinkedHashMap 104

 LinkedHashSet 97

 LinkedList 100 101

 List 98

 Map 102

 PriorityQueue 102

 Queue 100

 Set 95

 SortedMap 105

 SortedSet 98

 TreeMap 105

 TreeSet 98

Collection interfaces 94

Collections frameworks 92

 Algorithms 92 93

 Benefits 93

 Implementation 92 93

 Interfaces 92

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Collectors 75

 Concurrent 78

 Parallel 76

 Parallel compacting 77

 Serial 75

Compiling 363

Components 186

Container 185

Cookies 574 616

 Limitations 575

CORBA 770

 Architecture 770

 Developing CORBA applications 772

 IDL 771 795

 IIOP 771

 IOR 771

 ORB 771

Creating thread 47

 Extending thread 47

 Implementing runnable 48

Custom exception classes 40

Customizer 758

D

Data types 447

 Basic data types 447

 Compound data types 449

DDL 673

Deadlock 59

Deserialization 306

Dialog boxes 198

Directories 263

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Directory 694

 Working with directory 703

Document base 433

Document node 225

 Methods 225

 Properties 225

Document object model 217

DOM nodes 219

Dynamic class downloading 379

Dynamic invocation interface 787

Dynamic object activation 375

 Activation protocol 375

 Basic idea 375

 Implementation 375

Dynamic proxies 460

Dynamic proxy 151

 Designing dynamic proxy 151

 Invocation handlers 153

Dynamic skeleton interface 789

E

Element node 227

 Methods 227

 Properties 227

E-mail 392

 Accessing email 409

 Copying emails 415

 Deleting mails 413

 Email with HTML content 408

 Forwarding mails 414

 Internet message access protocol 410

 Multipurpose internet mail extension 403

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

E-mail (Cont.)

 Post office protocol 409

 Replying to mails 414

 Secure sockets layer 411

 Sending emails 393

 Sending emails directly using socket 397

 Simple mail transfer protocol 398

 Transport layer security 411

Event handling 192 435 831

 Adapter classes 197

 Event classes 192

 Event listeners 194 212

 Event sources 192

Exception 26–29

 Checked 29

 Runtime 29

 Types 28

 Unchecked 29

Expression language 817

 Converter tags 824

 Displaying messages 827

 Facelets 820

 Method expression 819

 Validations 828

 Value expression 818

F

File 260

 Copying a file 260

 Creating file 260

 Deleting file 260

 File attribute 261

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

File (Cont.)

 Random access files 262

 Reading, writing, creating files 261

File I/O 258

Filters 575 709

finally 34

Formatting 254

G

Garbage collection 70

 HotSpot’s garbage collection 72

Generation 73

 Permanent 73

 Tenured 73 74

 Young 73

Generations 72

Generator class 676

Generic methods 117

 Constructors 117

Generics 116

Generics 113 121

 Restrictions 127

 Sub-type 121

GenericServlet 563

Graphical user interface 182

H

Hibernate 657

 Basic steps 658

 hibernate application 659

 Hibernate query language 667

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Hibernate (Cont.)

 Hibernate tools 677

 Installing hibernate 658

 SQL query 670

HttpServlet 563

HttpURLConnection 280

I

Inout parameter 791

Interfaces 351 352 354 355

Inter-process communication 287

Interrupting thread 49

Inter-thread communication 61

Introspection 466

J

J2EE 739

Jar 18

 Creating a JAR file 19

 Extracting the content 20

 Manifest file 21

 Syntax 19

 Updating a JAR file 21

 Viewing contents of a JAR file 20

Java archive 542

 Multiple signatures 544

 Signing JAR 542

 Verifying JAR 544

JavaBeans 740

 Advantages 742

 Bean builder 741

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

JavaBeans (Cont.)

 Enterprise JavaBeans 761

 JavaBeans API 759

 Properties 744

Java database connectivity 625

 Basic steps 627

 JDBC architecture 626

 JDBC classes and interfaces 627

 JDBC drivers 625 626

 Loading a driver 628

 Making a connection 629

Javadoc 3

JavaMail API 392

 Installing JavaMail API 393

 JavaMail API support 411

Java native interface 158

 Accessing Java code from native program 171

 Exception handling 174

 Java program with C/C++ 159

Java networking 273

 Classes 273 274

 Interfaces 273–276

Javap 7

JavaScript code 440

Java server faces 801

 Deploying the application 804

 Installing JSF 802

 Testing the application 805

 Writing a JSF page 803

Java server pages 583

 Anatomy 590

 Components 591

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Java server pages (Cont.)

 How JSP works 586

 JSP and HTTP 584

 JSP and servlet 587

 Syntax 591

JAX-WS 480

jcmd 9

jdb 13

jhat 12

JMS API 714

JMS application 722

JMS components 715

Join 53

JSF tags 814

JSP actions 602

JSP engines 584

 Java web server 586

 Tomcat 584

 WebLogic 586

 WebSphere 586

JVM 69

 Options 70

 Performance 69

K

Keys 524

Keytool 519

 Changing password 521

 Generating a certificate chain 521

 Generating a certificate using openssl 522

 KeyStore 519 525

 Keystore aliases 520

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Keytool (Cont.)

 Keystore entries 520

 Public key generation 520

L

Layout 187

Life-cycle 806

 Apply request values 807

 Invoke application 808

 Process validations 807

 Render response 808

 Restore view 806

 Update model values 808

List 190

Local object 356

M

Main thread 45

Managed bean 809

 Accessing managed bean programmatically 813

Menu 200

Messaging 714

 Loosely-coupled 714

 Message consumption 717

 Messaging agent 714

 Messaging models 715

 Tightly-coupled communication 714

Multicasting 323

Multicast sockets 323

Multiple catch blocks 30

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

N

Named queries 670 671 672

Naming 692

 Binding 693

 Context 693

 Convention 693

 Name servers 697

 Operations 700

Nested try-catch 39

Network interface card 274

Node interface 221

 Properties 221

O

Object life cycle 666

Open MQ 720

O/R mapping file 674

Out parameter 791

P

P2P 722 724 725

Page navigation 834

Panel 189

Parameters 434 569

Passing arguments 167

 Passing primitive array 169

 Passing primitives 167

 Passing strings 168

Path 258

 Creating a path 258

 Path operations 259

 Retrieving path information 258

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Peer-to-peer model 288

Persistence 756

Persistent objects 782

Pipes 256

POJO 685

POJO class 658 680

Programming model 717

Proxy 283

ProxySelector 283

Pub/Sub asynchronous consumer 727

Pub/Sub producer 726

Pub/Sub synchronous consumer 726

R

Reading 253

Refection 133 148

 Cons 133

 Pros 133

 Disadvantage 155

Reliability mechanisms 731

Remote method invocation 348

 Application components 349

 Basic Steps 350

Remote object 356

Remote procedure call 348

Result 640 642 647 648

Resuming 51

RMI 699

S

ScrollBar 200

Secure communication 508

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Secure RMI 535

Secure socket layer 508

 Basic security 504

 Java cryptography architecture 505

 Language security 504

 PKI tools 507

 Public key infrastructure 506

Security 430 503 578

Serialization 306

Servlet 557 566–568 578

 Advantages over applets 558

 Problems 577

Servlet alternatives 558

 Active server pages 559

 Common gateway interface 558

 Proprietary APIs 558

 Server-side JavaScript 559

Servlet architecture 560

Servlet life cycle 561

Servlet strengths 559

Session tracking 614

Simple object access protocol 475

 Architecture 476

 Binding 479

 Flavors 477

 Messages 477

 RPC using SOAP 479

Sleep 46

Sockets 289

SQL statements 631

Stack 30

Status bar 432

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Stream 247 248

 Bridging stream 251

 Buffered stream 252

 Byte stream 249

 Character stream 251

 Object stream 255

 Checking existence 260

 Reading/Writing arrays 256

Struts 763

Stub classes 364

Suspending 51

Swing 202

Synchronization 55 59

Synchronous clients 493

T

Tag 606–609

TCP sockets 292

TextArea 190

Text field 189

Text node 228

 Methods 228

 Properties 228

Thread priority 52

Throws 31 33

Tools 80

 jmap 80

 jps 80

 jstat 81

 jstatd 80

Tracing phases 808

Transacted session 733

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Transient objects 782

try block 30

Try-with-resources statement 37

Tuning heap size 82

Tuning memory size 82

Tuning young generation 83

 Tuning survivor space 83

Type erasure 125

Type inference 118

 Classes 119

 Constructors 119

 Generic methods 118

Type naming 117

U

UDP sockets 313 315

URL 277 780

URLConnection 279

Utility methods 431

W

W3C 217 218

Web pages 439

Web service 480

Wildcards 122

 Lower-bound 124

 Unbounded 124

 Upper-bound 123

X

XML 217

 Parsing 229

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

XML-RPC 539 540 445 475

 Apache XML-RPC Java library 455

 Java XML-RPC 454

 Limitations 471

 Messages 451

 Operational principle 446

 Using XmlRpcServlet 462

XML-RPC versus Java data types 455

